Monitoring and Modeling of Nutrient & Sediment Loads for Varying Climate & Landscapes

Laura Keefer, Momcilo Markus and Elias Getahun Illinois State Water Survey Champaign, IL

Overview

ISWS Watershed Data Collection Activities – Laura Keefer

- What, where and how data is collected
- Not all watersheds are the same
 - Examples from Illinois River & Kaskaskia River Basins
- Monitoring for long-term sediment trends
- Data applied for better modeling...

Building Resiliency in the

Face of Risk

June 14th, 2017 Springfield, IL

- Watershed Management Tool (WMT) Elias Getahun
- Statistical Modeling Momcilo Markus
 - Development of short- and long-term nutrient predictions
 - How and why to calculate nutrient and sediment loadings

ISWS Monitoring Stations

-since 1980s

- Investigative:
 - Streamgaging
 - Sediment
 - Nutrient
- **ISWS Sediment Network**
 - 15 stations (1981-today) ٠

Current ISWS Stations

Building Resiliency in the Face of Risk June 14th, 2017 Springfield, IL

Kaskaskia – nitrogen & sediment sampling

Building Resiliency in the Face of Risk June 14th, 2017 Springfield, IL

 $\overline{}$

PRAIRIE RESEARCH INSTITUTE | UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Spoon - Nitrogen

Court Creek (301) - Water Year 2003

PRAIRIE RESEARCH INSTITUTE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Resources

Kaskaskia - Nitrogen

Nutrient & Sediment Summary Statistics

					<i>t-P-</i>		
	<i>NO3-N</i>	D3-N NH4-N TKN		t-P	dissolved	oPO4-P	SSC
Court Creek -II							
Count	1250	1250	747	747	747	1250	6201
Mean	2.9	0.1	2.5	0.8	0.1	0.1	617
Median	2.7	0.1	1.4	0.4	0.1	0.1	111
Min	< 0.04	< 0.03	0.23	0.03	< 0.03	< 0.003	2
Max	11.4	1.7	18.7	6.6	1.0	0.9	13632
25th Percentile	0.9	0.1	0.7	0.1	0.1	0.0	48
75th Percentile	4.6	0.2	3.2	1.1	0.1	0.1	485
Lost Creek - KS							
Count	496	460	389	411	348	413	490
Mean	0.7	0.4	2.9	1.0	0.5	0.2	604
Median	0.5	0.4	2.4	0.9	0.5	0.1	249
Minimum	0.0	0.0	0.2	0.0	0.0	0.0	4
Maximum	4.9	1.3	21.3	6.2	1.4	1.2	15704
25th Percentile	0.3	0.3	1.7	0.7	0.3	0.0	92
75th Percentile	0.9	0.6	3.3	1.2	0.6	0.2	589

Building Resiliency in the Face of Risk June 14th, 2017 Springfield, IL

Kaskaskia – N loads

PRAIRIE RESEARCH INSTITUTE | UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

June 14th, 2017 Springfield, IL

Benchmark Sediment Monitoring Program

Develop comprehensive, long-term database of suspended sediment transport to provide a means for investigating and quantifying <u>long-term trends</u> that may be occurring in Illinois watersheds.

Has 35+ years of suspended sediment data.

- Identify watersheds with high erosion rates
- Evaluate effectiveness of erosion control programs
- Identify areas of potential degradation of surface water supplies
- Estimate sediment loads in nearby unmeasured streams

Building Resiliency in the

Face of Risk

June 14th, 2017 Springfield, IL

Determine long-term trends in sediment transport

Ĩ

Long-term trends in Sediment Loading

Kaskaskia River @ Vandalia

Natural

Resources

Face June 14th, 201

Watershed Management Tool for Improving Water Quality in Streams and Rivers

75% of nutrient fluxes to the Gulf of Mexico originates from only 9 midwestern states including Illinois (Alexander et. al, 2008), mainly from agricultural sources

Nutrient Loss Reduction Strategies

Agricultural <u>watershed</u> <u>management</u> <u>tools</u> can be used to <u>identify critical</u> <u>source areas of nutrient loss and BMP selection and placement</u>

►ISWS developed WMT to:

- >evaluate water quality impacts of <u>user-specified</u> BMP scenarios and <u>unit costs</u>
- provide comparison of selected BMP implementations between
 - user specified and
 - ➢ optimal scenario

Ĩ

FRAMEWORK OF THE <u>WATERSHED MANAGEMENT TOOL</u>

Building Resiliency in the Face of Risk June 14th, 2017 Springfield, IL

PRAIRIE RESEARCH INSTITUTE | UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

WMT EXAMPLE: LAKE DECATUR WATERSHED

Building Resiliency in the Face of Risk June 14th, 2017 Springfield, IL

WATERSHED MANAGEMENT TOOL

<u>0++</u> 0

11:26 AN

Statistical methods used in nutrient and sediment load calculation, trend analysis and prediction

Building Resiliency in the Face of Risk June 14th, 2017 Springfield, IL

State Contributions to Nitrogen and Phosphorus loads delivered by the Mississippi River to the Gulf of Mexico

	Total	Nitrogen		Total Phosphorus					
State	Percent	Cumulative	Delivered	State	Percent	Cumulative	Delivered		
	of Total Percent of Yield		Yield		of Total	Percent of	Yield		
	Flux Total Flux $(\text{kg km}^{-2} \text{ yr}^{-1})$			Flux	Total Flux	(kg km ⁻² yr ⁻¹)			
Illinois	16.8	16.8	1734.9	Illinois	12.9	12.9	117.4		
Iowa	11.3	28.1	1167.2	Missouri	12.1	25.0	89.4		
Indiana	10.1	38.2	1806.6	Iowa	9.8	34.8	89.2		
Missouri	9.6	47.8	800.5	Arkansas	9.6	44.4	94.6		
Arkansas	6.9	54.7	750.1	Kentucky	9.0	53.4	113.4		

Nitrogen

Phosphorus

Excessive Nutrient Loadings

 The hypoxic (low oxygen) zone in the Gulf of Mexico is a result of excessive nutrient loadings (primarily N and P) from the Mississippi River.

Mother Nature Network <u>http://www.mnn.com/earth-matters/translating-uncle-</u> sam/stories/what-is-the-gulf-of-mexico-dead-zone

EPA Science Advisory Board. (2008). "Hypoxia in the Northern Gulf of Mexico: An update by the EPA Science Advisory Board." EPA SAB-08-003, EPA Science Advisory Board, Washington DC.

Why do we calculate nutrient loadings?

- •To detect watersheds with highest and lowest contributions.
- •To determine if the management practices are efficient.
- To predict future trends (short-term, annual, and long-term)
- To design nutrient reduction strategies.

How do we calculate nutrient loadings?

How do we calculate nutrient loadings?

Regression-Based Estimator

 $\ln(C) = \beta_0 + \beta_1 \ln(Q/\tilde{Q}) + \beta_2 [\ln(Q/\tilde{Q})]^2 + \beta_3 (T - \tilde{T}) + \beta_4 (T - \tilde{T})^2 + \beta_5 \sin(2\pi T) + \beta_6 \cos(2\pi T) + \varepsilon$

Rating Curve Estimator:

$$L_{RC} = \sum_{j=1}^{N} C_j Q_j \Delta t$$

MVUE:

Building Resiliency in the

Face of Risk

June 14th, 2017 Springfield, IL

$$L_{MVUE} = L_{RC}g_m \left[\frac{m+1}{2m}(1-v)s^2\right]$$
$$L_{SM} = L_{RC}\frac{1}{M}\sum_{i=1}^{M}\exp[e(i)]$$

Smearing Estimator:

Ĩ

Trend Analysis

			Decreasing Trends				Increasing Trends				
	Confidence Level (%)	99	95	90	80	70	70	80	90	95	99
Ilinois R. at Havana	Discharge										
	NO ₂ +NO ₃ Conc.										
	NO ₂ +NO ₃ Load										
	DP Concentration										
	DP Load										
	TP Concentration										
	TP Load										
Illinois R. at Valley City	Discharge										
	NO2+NO3 Conc.										
	NO ₂ +NO ₃ Load										
	DP Concentration										
	DP Load										
	TP Concentration										
	TP Load										

Building Resiliency in the Face of Risk June 14th, 2017 Springfield, IL

Trend Analysis (continued)

			Decreasing Trends				Increasing Trends				
	Confidence Level (%)	99	95	90	80	70	70	80	90	95	99
Spoon R. at Seville	Discharge										
	NO2+NO3 Conc.										
	NO ₂ +NO ₃ Load										
	DP Concentration										
	DP Load										
	TP Concentration										
	TP Load										
5	Discharge										
ple	NO ₂ +NO ₃ Conc.										
Et B	NO ₂ +NO ₃ Load										
Ř	DP Concentration										
oine	DP Load										
Å	TP Concentration										
Н	TP Load										
ord.	Discharge										
akf	NO2+NO3 Conc.										
o st	NO2+NO3 Load										
гÄ	DP Concentration										
gamon	DP Load										
	TP Concentration										
San	TP Load										

Building Resiliency in the Face of Risk June 14th, 2017 Springfield, IL

Nutrient Reduction Goals

 To reduce the size of the hypoxic zone in the Gulf of Mexico, the Mississippi River/Gulf of Mexico <u>Watershed Nutrient Task</u> Force set a nutrient reduction goal of 45% for nitrogen and phosphorus by 2050 to reduce the size of the hypoxic zone from 8000 to 5000 square miles (MRGMWNTF, 2008).

MRGMWNTF (Mississippi River/Gulf of Mexico Watershed Nutrient Task Force). 2008. Gulf Hypoxia Action Plan 2008 for Reducing, Mitigating, and Controlling Hypoxia in the Northern Gulf of Mexico and Improving Water Quality in the Mississippi River Basin. Washington, DC: Mississippi River/Gulf of Mexico Watershed Nutrient Task Force http://water.epa.gov/type/watersheds/named/msbasin/actionplan.cfm

Ĩ

Nutrient Loadings: Contributing factors

- A wet year in terms of nutrient loading is defined by large storm events.
- More precipitation, on average, in a given year doesn't necessarily lead to an increase in pollution.
- The increase is tied to heavy precipitation.

1

Evaluating the Impact of Legacy P and Agricultural Conservation Practices on Nutrient Loads from the Maumee River Watershed

Rebecca Logsdon Muenich,* Margaret Kalcic,[†] and Donald Scavia

Graham Sustainability Institute, University of Michigan, 625 East Liberty Street, Suite 300, Ann Arbor, Michigan 48104, United States

I

Building Resiliency in the Face of Risk June 14th, 2017 Springfield, IL

Probabilistic assessment and validation of nutrient reduction goals

I

Building Resiliency in the Face of Risk June 14th, 2017 Springfield, IL

Goals:

- To design a new probabilistic framework for *setting the nutrient reduction goals,* which would also show the uncertainty distribution based on past observed climates
- To evaluate the potential *effects of climate variability* on achieving the nutrient reduction goals.
- To design a tool to verify if the goals have been achieved.

Summary

Importance of modeling

- Watershed models/Statistical models
- Monitoring, monitoring, monitoring
 - Frequency/Spatial distribution

