108 model .

EXPERIMENTS OF THE STRENGTH OF BOLTS AND SCREWS

BY

JONATHAN HUNTOON SAMUELS HODGSON BERT ANDREW MILLER

.

THESIS FOR THE DEGREE OF BACHELOR OF SCIENCE

IN MECHANICAL ENGINEERING

IN THE

COLLEGE OF ENGINEERING

OF THE

UNIVERSITY OF ILLINOIS

JUNE, 1910 ml

UNIVERSITY OF ILLINOIS

May 31 1910 190

THIS IS TO CERTIFY THAT THE THESIS PREPARED UNDER MY SUPERVISION BY

Jonathan Huntoon Samuels Hodgson and Bert Andrew Miller

Experiments on the Strength of Bolts and Screws ENTITLED

IS APPROVED BY ME AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE

Bachelor of Science in Mechanical Engineering

H.F. Moo G.a. Goodenough

Instructor in Charge

HEAD OF DEPARTMENT OF Mechanical Engineering

Introduction	Page	1
Test Dieges and Testing		2
TODU TIOUD and TODUNG TION		
Data	n	6
Conclusions	**	11
Tables	9	13
Photographs	Ħ	16
Cupres		21
ONTAOD		

In this country very little has been done on the strength of bolt threads. A. L. King made some experiments on the tensile strength of screw threads, an account of which appeared in the American Machinist of August 12th, 1896. His work was confined to comparison of different types of thread made by other methods, which was the plan followed out in this thesis. His results showed that; (1) when subjected to plain tension the different types of screw threads were stronger than the plain bars of the same area of cross section by about fourteen (14) per cent, (2) no very marked difference in the strength of the different styles of threads appeared; the perfectly sharp groove, being slightly stronger than the others which were grooves of round and flat bottoms, (3) the weakening effect of the turning of the nut under stress was in the one inch bolts twenty per cent, and in the one half inch, about fifteen per cent, (4) in general, it may be said that the turning of the nut upon the bolt at rupture reduces the strength of the net section thirty per cent.

The object of this work is to give the comparative strength of three different kinds of threads, viz: die-cut, machine-cut, and rolled, using bolts one half, three quarters, and one inch in size for each make of thread. The tests were to determine the strength of bolt in static tension and the shearing strength of the thread. All cut threads were U. S. Standard, and the rolled threads were as nearly like them as was possible to get them.

The die and machine cut threads are the commonest type of thread and, are most used in practice. The die-cut, since it is cheaper, is used where workmanship and cost enter into consideration, while the machine-cut thread is adapted to work where accuracy and smoothness are required, regardless of the cost of production. The rolled threads are made extensively for track bolts and rough work where the size of the shank does not make an appreciable difference. The general practice does not seem to take into account the strength of the rolled thread but simply the cheapness of the bolt and the adaptability to rolling the form of bolt required.

*******TEST PIECES AND TESTING*******

The material for the bolts and threads of the die-and machine-cut type was ordinary soft steel bought in the open The specimens were obtained from different bars and as market. strenaths a result the stresses were not the same in all cases. The stock, being cheap, was not uniform in size and it was due principally to this fact that the threads were not perfect in every case. The machine-cut threads were made as smooth as possible. No half-inch lathe cut bolts were tested on account of the difficulty in cutting so small a bolt in the lathe. The die-cut threads were turned out in the thread cutting machine in the shops of The University of Illinois. The dies were not very sharp but were as good as would ordinarily be found in practice. The rolled threads were obtained from the Oliver Steel and Iron Co. of Pittsburg, Pa. The process in the manufacture seems to be the passing of heated stock between two dies that move in opposite directions and at the same speed, thus causing the stock to

rotate but not to have translation. The threads are simply squeezed into shape by diagonal thread forming projections on the dies which works the material so that its strength is increased. The nuts cannot be rolled in the small sizes.

All of the specimens, except the rolled stock, were two feet long with each end threaded. One end was tested for tensile strength, the other for shearing strength of thread. The rolled stock was about eighteen inches in length with approximately the same number of threads. For the shearing tests the specimens were set up in a lathe and centred as true as possible. The threads were then turned off at the root except for about two whole threads. Calculations showed that under ordinary stresses for mild steel that about sixteen hundredths of an inch was about all that would shear, while in the three quarters inch eighteen hundredths could be used, and for the one inch twentyone one hundredths of an inch was necessary.

A system of classification of specimens was deemed necessary and the following was adapted. The identification mark gives the number of the specimen, diameter of the stock, and the kind of thread; as for instance, 2-3/4-M would mean specimen number two of the three-quarters inch machine cut thread. D and R were used for the die and rolled threads respectively. From the tabulated data it will be noticed that the one half inch die cut specimens begin with the number 4-1/2-D. This is because the first three specimens were discarded on account of the inaccuracy of the root diameter measurements. The anvils of the micrometer did not fit the V shaped thread. Thereafter an ordinary clamp caliper was used.

Nearly all the tests were made in a Richle testing machine, having a capacity of 100000 pounds. The tests were run at slow speed until the yield point was passed and then higher speed used till rupture occurred. A little trouble was encountered with the eighteen inch rolled specimens. The head of the machine was so thick that not enough material was left to allow for attaching the instruments. A head made of two and one quarter inch slabs of steel was fitted to a 100000 pound Philadelphia testing machine and this machine used for the tests of short bolts.

Two extensometers were used to get the extensions. They were of the wire-wound drum type, reading to ten-thousandths of an inch. The other instruments used were micrometer calipers for the shank of the bolt, thread calipers reading accurately up to one- hundredth of an inch, and some tools such as wrenches and hammers for marking test pieces.

It was intended to get the elongation in the thread by the use of the two extensometers. One was to record the elongation in the known length of the shank and the other, the elongation in the part of the thread in tension and a part of the shank. Then knowing the elongation in inches per inch from the first extensometer and the length of the shank above the second extensometer, the elongation in the thread could be calculated by subtracting the elongation in the shank from the total elongation as recorded by the second extensometer. This was very good in theory but the length of the thread in tension was so indefinite results that, as much as twenty five per cent too great or too small were possible since a part of the stress was in the mut as was plainly

evidenced on examination.

A description of the actual carrying out of a tension test will not be amiss here. The specimen was placed in the machine without the instruments and the space inside of which the recording apparatus was to be placed, was marked roughly with a piece of chalk. The root and thread diameters were measured and recorded. The stock or shank extensometer was set up in the jig which takes the length of stock of eight inches, and the bolt clamped in. Then the second or thread extensometer was put on in the middle of the first with an ordinary clamp. The test piece was then set in the machine and the nut turned on. A nickle steel washer was used between the head of the machine and the nut. This plate had two small holes drilled to permit passing a small wire over a lever fastened to the nut, for the operation of the thread extensometer. The lever and its attachments are shown in Fig. I. The lower extensometer marked I is the shank extensometer and the upper marked II is the thread extensometer. The length of shank from No. II up to the threads was measured and the lower head of the machine raised. The jaws were placed as high up as possible because of the threads on the lower end of the test piece. The bar was then aligned and a light load of about a hundred pounds put on it. The pointers were placed at zero and the test was begun, first by putting on about 1200 pounds, but after that, readings were taken at equal increments of elongation on the thread extensometer as far as the elastic limit. Readings of both extensometers and load were obtained, and after every third reading the strain was relieved when the extensometer release readings were taken. The instruments were taken off after the

elastic limit had been passed, and the load increased till rupture occurred.

In the shear tests no instruments were used because there did not seem to be any yield in the specimen, but a sudden failure. The thread diameter at the root and the length of the thread in shear were measured. The test was made on the end which had been previously prepared. The nut A, shown in figure II, was turned on till the threads to be sheared were well up in the nut. The exact position was varied in the different specimens. The bolt was then placed in the machine. The plate B acted as a washer and a head as in the tension test. The specimen was then aligned and the jaws C clamped on. The bolt was then loaded at slow speed while the poise was carefully adjusted so that any sign of yield could be noticed in the fall of the beam.

After the tension and shear tests had been pulled off, the ultimate strength of the bar was found except in the case of the rolled stock, where the bar ruptured in the tension test. For these it was necessary to drill a part of the material out of the thread and then set up the specimen as in the other ultimate tests. The part drilled out was as near the center as could be obtained with an ordinary center punch and drills.

The data as compiled in Table I shows the calculated results for each specimen, and the averages for each classification. The blank spaces in the plate are where no definite values could be obtained from the curves. With a different selection of points on the curve this would probably not occur. There was

some difficulty in getting the ultimate strength of the rolled threads as has been mentioned before and explained, but in the table the figures give the stress on the whole area of the root of the thread as calculated from the reduced part under test. The results obtained are probably not widely different from what they would be if fracture had occurred across the original area. The calculated results were used in finding the per cent strength for these threads which, in every case, was greater than one hundred per cent.

The point of rupture in the machine and die out threads was about half way between the nut and the shank. This was not true of the rolled. They broke at the bottom of the drilled out portion. The rolled specimens were hard to handle in the ultimate tests on the threads on account of the difficulty of setting them up straight. In one case there was evidence of a little bending action. This may have been due partially to the poor bearing surface of the nut. This fact entered into the results of some of the other tests and was unavoidable.

The comparative strength of the root and shank of the thread is shown in Table II. Reducing the load on the shank and on the thread, at the different events, to pounds per square inch shows that the stress on the smaller area is greater than that on the larger area of the shank. This seems to be an accepted fact for static tension tests. The difference in the stress on the area at the root of the thread and that on the shank is greatest for the rolled threads, the machine cut next, and the die cut least. From this, it seems that the lathe tool has something of the effect on the material that rolling has. The table also shows

that in the case of the rolled bolts the per cent strength is greatest at the ultimate, while for the die- and machine- cut, the yield point shows the greatest per cent strength.

The shear tests brought out some important considerations in the design of nuts, including lock nuts. There is a minimum allowable thickness which may be sufficient to stand the strain on the bolt. If we assume a factor of safety of five under static loads, the following formula is derived:-

Thickness of nut = ----- S · C

where T is the allowable stress in pounds on the bolt in tension, S, the allowable shearing stress in pounds per square inch, and C, the circumference of the root of the thread in inches. The nut must fit well in each case in order that this may hold good. Table No. III shows the thickness of the nut required to stand the strain of the threaded portion, except in the case of the rolled threads, where the threaded portion was stronger than the shank.

The efficiency of a bolt has been taken to mean the ratic of the load on the thread to the load on the shank of the bolt at the corresponding events. For instance the efficiency of a bolt at the yield point would be the ratic of the load on the thread at yield, determined from the curve, to that of the shank determined in a similar manner. It is concluded that the events on the stress-strain curves for the shank and thread are for the thread alone since the area of that section is smaller and any failure would appear in the threaded portion first. This is not exactly true of the rolled threads, but it has been assumed

that the events on this curve were also true for the threaded part. The efficiency has been determined for each kind of thread at the elastic limit, yield point, and ultimate. Plate I gives the results of these calculations and shows that the relative per cent strengths of the rolled threads at ultimate, is much greater than the two others. The same is true of the other events. The efficiency of the one inch rolled was one hundred nineteen (119) per cent at the ultimate, while the die-and machine-cut were eighty three (83) and eighty four (84) per cent respectively. The per cent strength seems to increase with the diameter of the shank for the die and machine cut threads. This was the case in all but the machine-cut threads at yield, where it decreased slightly. In the rolled threads the one inch increased a little at the ultimate, but, for all other events on the different sizes, the curves ran about horizontal. These curves from plate I show that the rolled threads are by far stronger than the others, and that there is no choice as far as strength is concerned between the die and machine threads. The working of the metal increases the strength and this no doubt accounts for the high values in favor of the rolled threads.

Plates No. III---XXXI are the load-elongation curves for each specimen that was tested. Each curve was plotted on a separate sheet to avoid confusion, and for the reason that the curves could not be reduced to the same basis since the areas and the lengths of the threads were not uniform. The latter could not be accurately determined. The ordinates were load in pounds and not in pounds per square inch, because the ratio of the loads was wanted at the events, and by plotting the curves as they are the

load can be read directly. The elongations were plotted as they were read. The points of release were plotted and show definitely where permanent set began.

Johnson's method was used in determining the elastic limit, in preference to the old way of assuming the elastic limit at the point where the curve broke away from the tangent. His method is as follows; take one half of the abscissa of any point on the straight line below the elastic limit and lay it off to the right from the chosen point on the curve. A line drawn through this point to the intersection of the given straight line with the vertical through 0 determines the position of a second line parallel with the construction line and tangent to the curve. The point of tangency gives the elastic limit. This is shown better on Plate III where AB represents the length from the point to the ordinate, and BC, one half of this distance laid off to the right. CO is the line through the origin and this last determined point, and EF is the line parallel to OB tangent to the curve at the point G,- the elastic limit.

The yield point was taken at the point of inflection on the curve after the elastic limit had been passed. This is not a very accurate way to determine this point, but knowing that in tension tests of soft steel the curve is horizontal at what is called the yield, this method is considered sufficiently accurate for these tests. The ultimate was simply the maximum load on the specimen.

Plate II shows the ratio of areas at the root of the thread and the shank of the bolt for the three kinds of bolts. The curves show that the ratio for the die-and machine-cut bolts

are practically the same, but the rolled threads are from nine hundredths to twelve hundredths nearer unity. The fact that the rolled thread is not sharp but of rounding section probably accounts for this high ratio. The fact that the curves for the rolled threads decrease, and the die-and machine-cut increase cannot be taken as of any consequence. The curves if carried farther would probably become horizontal.

********** CONCLUSIONS *********

From the results obtained in this thesis the following conclusions are drawn in regard to the kind of thread and their respective strengths:-

(1) The ratio of the area of cross section at the root of the thread to the area of the shank is practically a constant for the rolled threads and increases slightly for the die-and machinecut threads as the size of the bolt increases.

(2) The efficiency of the rolled thread in tension is greatest at the ultimate, and is also greater than the machine or die cut threads at any event. This efficiency decreases as the size of the bolt increases. The efficiency of the machine and die cut threads is practically the same, and increases as the size of the bolt increases.

(3) The die- and machine-cut threads will stand a greater load in shear on the threads than the specimens of rolled stock because of the loose fit of the nuts furnished with this stock. The rolled bolts are not adapted to the uses that machine bolts are put to, or to any work where a close fit of the shank is required.

(4) A thickness of nut of one half the diameter of the

stock is all that is necessary to prevent shearing in the nut for the die-and machine-cut threads while for the rolled threads a thickness of three-fourths of the stock is required.

SAMPLE DATA SHEET.

SPECIMEN 3 - 1 - D.

Load	Total	Elong-	At release to	Remarks
, in	elong-	ation	500 lbs.	
lbs.	ation	in 8	Extensometer	
	in in.	in. of	No. I No. II	
		bar in		
		in.		

1600	.0051	.0008			Diameter at root .84"
4100	.0111	.0016			Diameter of stock 1.0
8800	.0154	.0030	.0119	.0004	Diameter of stock
11200	.0205	.0041			after rupture .961
16100	.0255	.0059			Diameter at root
20600	.0302	.0075	.0198	.0004	after rupture .69
24200	.0391	.0082			Length from Ext. No. I
24900	.0495	.0082			up to end of thread 9.2
24900	.0560	.0088	.0440	.0004	Nut fit snug.
25200	.0630	.0089			
25800	.0685	.0090			
26200	.0745	.0092	.0610	.0004	
26800	.0810	.0093			
27400	.0870	.0098			
27700	.0950	.0122	.0812	.0035	Scaled slightly at bottom.
28100	.1034	.0208			
27900	.1095	.0358			
27700	.1165	.0541	.1018	.0448	
28000	.1308	.0861			
28100	.1465	.1120			
28000	.1655	.1145	.1512	.1042	
28100	.1855	.1339			
28200	.2100	.1625			
29200	.2605	.1321	.2500	.1695	
29200	.2830	.1842			
30100	.3070	.1882			Scaled all over.
31300	.3438	.2380	.3245	.2042	
38400	Ultimat	e of thr	ead.		
35000	Rupture				
	-				

SPECIMEN 3 - 1 - D. In Shear.

16500 Ultimate	Length in shear	.2"
Rupture not definite as failure	Diameter at root	.84
was gradual.	Diameter of stock	1.0
Sheared nut and bolt.	Nut fit snug	
Good clean shear.	Threads near middle of	nut.

7-1	DI	5	T	
- I A	DL	.L.	1	

1	7	2	3	4	5	6	7	8	9	10	11	12	13		15	16	17	18	19	20	21	22	23	21	26
	Sp	eci-	Diam	Diam	Areao	f cross	Ratio	Elastic	limit	Yield	point	UI	limate	Elasti	c limit.	Yield	point	1///	imate	Ratin	Sinad.	wihe	1111 unnt	ATEN	1. Surprise
ł	Em	en	etero	at root	section	insgin	otareas	in pool	unds	in pou	unds	in po	unds	Innour	ndsner	in polin	dsper	in non	TAS DE	thorns	Inland (n shunk	lout in	117	hadin
I	1 10	No.	shank	of threa	shank	at root	af root	in the	in the	int	the	in	the	sa inci	hinthe	sa inch	inthe	inch	inthe	NELAS	at Viald	at 181	shear	show	hear the
ł			in in.	in in	of bolt.	of thread	to shank	shank	thread	shank	thread	shank	thread	shank	thread	shank	thread	shank	the ad	lic heart	at nena	mai	Sileur	oncur	Shear nos
ľ	14.	-2.D	495	400	1924	1256	6525	6850	5300	7800		12900	10470	35550	42250	40500		ATIAN	83300	7740	Lonn	8110	OGEO	2755	25130
ł	2 5-	ź.D	496	410	.1930	1320	6840	7080	5180	7100	5900	10900	8400	36700	39250	367.30	AAGAA	564/0	63600	7320	8310	7710	5050 GI30	2/00	28000
ł	3 6.	ź·D	505	410	2002	1320	6590	6750	4250	6900	5700	10900	8000	33700	32180	34450	43200	54400	60600	6300	8260	7340	7210	2575	20300
ł	4 7-	ź-D	494	410	1916	1320	6885		52.00		6000	12.900	102.50		39.380		15200	67100	77600	.0000	.0200	7910	6400	2201	28300
I	5 8.	ź-D	.503	400	1986	1256	6320	6950	4150	7100	5600	10900	8000	35000	33050	35700	44600	51900	63700	5970	7890	7340	6500	2000	21510
	6 9	t.D	.504	410	1994	1320	6620	6400	44.50	6800	6000	10.900	8000	32100	33700	34080	15400	546 50	GAGAA	6060	8830	7310	50500	2000	27400
ł	7 10-	·ź·D	.500	410	1964	1320	6720	7280	5300	7700	6200	12900	10200	37050	40200	39200	16900	65650	77250	7280	8050	7910	6200	2512	21680
	8 AVE	FRAGE	4996	4071	1959	1302	6641	1200			0.000	10000	9040	35020	37140	36780	45020	GOIDO	69500	6928	8268	7670	0200	.L JIL	20200
I	9 1-	3-R	446	410	1562	1320	8450	6800	5480	6.920	6880	9400	8000*	43500	41500	11200	52100	60200	70300*	8050	0200	11210#	EZAN	2100	23200
1	10 2-	+.R	444	410	1550	1320	8520	6200	5.900	6700	6700	9140	7900 *	30050	11500	13150	52100	60250	73300‴ 78300#	9515	1000	INDE #	1910	.2190	24300
	113	+ R	4.50	400	1591	1256	7885	5800	6600	6.900	6900	9500	8100*	36450	52600	12250	5100	50700	85700*	11380	1000	1.090	1100	1007	22200
ł	12 AVE	FRACE	4467	4067	1568	1299	8285	5000	0000	0000	0000	9450	0100	39070	16270	13600	57500	60250	33700 ···	0010	1.000	1.132	4400	1332	23200
	13 1-	3-7	742	620	4322	3016	6980		ainn		IIMA	21100	16800	00370	20150	4 3000	26500	ARRAD	55700	.9640	.9900	1,1160	11000	1000	24430
	14 2-	-3-D	745	620	4357	3018	6925	12400	9650	13100	1000	20200	16300	20500	32000	30100	25150	40000	53700	7700	0170	.1910	1000	.4088	26900
	15 3.	4 D 3-D	745	620	4257	3018	6925	12700	9900	15100	10700	20000	10000	20300	22700	50100	35700	41150	24000	.1780	0110	.7840	12000	4203	28020
	16 4.	4 D	748	620	1307	3057	6060	13300	9500	12720	10100	2000	14000	20200	2000	21220	25700	40400	49100	7140	7010	.1020	10100	.3894	25920
	17 5	4 D	740	620	1200	3018	6820	1000	8580	12500	10900	20000	16700	30300	ISHOU	51250	35/00	4/400	54600	.1140	.7940	.0030	12500	.4418	27930
	18 1	= L	7110	620	ASAE	3025	6922	1100	0000	12 300	10700	2000	10200	20000	20450	29100	35700	4/900	53030	.1130	0560	.7890	13500	.3894	34700
	10 11	- A.	750	620	+540	3023	6830	12000	9600	12250	12000	21251	16170	LOLIU	50090	30140	35/60	90050	53460	.7550	.0223	.1750			28690
ł	20.2	3M	747	6.20	1200	3010	6095	12,000	9000	12220	0750	24336	120000	29230	31000	30200	39770	55100	66300	1440	.8990	.0225	11700	.4478	26130
ľ	21 2	4 141 3 MA	751	6.20	7.000	2010	0000	12700	9550	12000	3/30	20000	1200	29000	31630	29200	32300	4/400	57000	.75150	.7610	.8270	10800	.4283	25250
ľ	221	7 14	7103	620	4420	3010	0973	12200	9200	15200	11500	24500	19600	27550	30450	29810	38100	55350	65000	.7540	.8720	.8000	9600	.3831	25050
ľ	22 AVE	LHAGE	692	630	3750	3116	2205	11250	11250	14500	11150	122400	18930	68590	31290	29/40	36720	52610	62170	.7498	.8440	.8165			25480
ł	201.	4 '/\ 3 D	.UJZ	0.50	3739	JID	0200	4330	14250	14300	14450	23400	19/30*	00150	45/00	38550	46400	62300	53900*	.9940	.9960	1.1180#	8040	.3215	24980
ł	25 2	471	.101	630	.3924	SHO	1940	14400	11700	14500	14450	23600	18710*	36700	37350	36950	46400	60150	79700*	.8120	.9.960	1.053;#	8600	.4946	17400
ľ	201	777	102	0.00	3009	SIIO	.8060	14200	14080	14520	14480	23700	18660	36700	45200	37500	46500	61250	79400*	.9920	.9970	1045*	9600	.4946	19380
ł	20 AVE	RAGE	.7003	.030	3851	5116	.8095	20000	01500	20000	2 40.00	235/0	/	37180	42820	37670	46430	6/230	81000	.9327	,9963	1.072			20590
ł	202	ID ID	.300	0.70	1083	5559	1210	26600	21500	28200	24000	46900	38800	34630	38820	36700	73300	61100	10100	.8080	.8520	.82.80	20000	6067	33000
	202	TD	.990	040	1094	5520	.7190	21000	21000	20200	24300	46100	38500	35100	37920		43850	3 98 50	69600	.7780		.8360	21300	.6594	32300
	2010	TD	1000	040	1050	3339	.7000	26800	22500	28200	24900	4580C	38400	34150	40600	35900	45000	38300	69400	.8395	.8825	8390	16500	5275	31280
	SU AV	ERAGE	002	,840	1/43	3339	1/33	21100	10000	25500	010 50		38570	34630	39110	36300	44050	59750	69700	.8085	.8673	.8343			32190
1	222	1.14	.992	040	1120	5539	.///0	24000	18800	25700	21250	39300	33300	31080	33950	33250	38380	50900	60150	,7830	8270	.8390	18200	,7749	23500
1	332	1 - /V/	992	.840	1125	2539	.1110	26800	21400	28050	23000	45500	38000	34700	38680	36330	41600	58900	68600	.7990	.8200	,8340	20300	7122	28520
	244	1-14	993	.040	1/4/	0000	.7150	27800	20200	28300	23600	45 30 0	38200	35930	36500	36520	42600	58600	68900	,7270	.8340	.8440	20800,	6594	31550
	3T AVI	ERAGE	3923	,040	.1730	.3538	.7103	00000	177 10 -	22222			36500	33900	36380	35370	40860	56130	55880	.7697	.8270	8390			27860
	200	1.R	923	830	.06/0	5420	.8125	22.500	17400	23200		36400	34600*	33720	32/00	34780		54600	80200*	.7730		.1925#	6300	6440	25300
	302	TR	925	.830	6120	,5420	.8060	23400	22100	23400	23200	36400	34600*	34820	40700	34828	34530	54200	30200*	.9440	.9920	1925#	20100	6260	32100
	3/3.	TR	.930	,830	6780	5420	1990	2.3000	22000	23500	22700	36500	34140*	33950	40600	34630	41850	53800	79200*	.9570	9670	1760*	3900	6260	2.2.2.2.0
	38 AV	ERAGE	9260	.830	6723	5420	8058					36430)	34160	37800	34750	38190	54200	79867	8913	9795 V	1870			26540
	*	k The	ese bai	's were	drilled	out to	make	this se	ction w	eaker.	Drill	used of	nthel	inch be	IT Was	\$;on u	he + in	ch was	5, on	theill	nch wa	25.199.			
	tt	+ Th.	in matin	- Columi	719 X Colun	<u>nn6</u>																			

This ratio = Column 12

TABLE II

1/2 Inch Specimen.

	Roll Sto in 1bs Sq. in	.ed ock 5. per 1. in	Mach: Sto in lbs sq.	ined ock 3. per in. in	Die Ste in 1bs sg.	Cut ock 3. per in. in	Increase in percent strength in lbs. per sq. inch						
	shank	thread	shank	thread	shank	thread	Rolled	Mach.	Die				
El. Lim.	39970	46270			35020	37140	15.5		6.0				
Y. Point	43600	52570			36780	45020	20.5		22.8				
Ultimate	60250	81100			60100	69500	34. 5		15.5				
3/4 Inch Specimen.													
El. Lim.	37180	42820	28590	31290	28210	30890	15.2	9.5	9.5				
Y. Point	37670	46430	29740	36720	30140	35760	23.0	23.3	18.5				
Ultimate	61230	81000	52610	62770	48050	53460	32.3	19.2	11.3				
			11	Inch Sp	ecimen.								
El. Lim.	34160	37800	33900	36380	34630	39110	10.8	7.2	12.8				
Y. Point	34750	38190	35370	4 0 860	363 0 0	44050	9.8	15.5	21.3				
Ultimate	54200	79867	56130	65880	59150	6 970 0	47.2	17.5	17.8				

ł.

TONTO TTT	Т	a	b	1	е	I	E	I
-----------	---	---	---	---	---	---	---	---

Speci	imen	Actual stress on bolt in pounds	Diameter of root of thread in inches	Circum- ference of root, inches	Allowable shear in lbs. per sq. inch.	Thickness of nut in inches.
1/2"	D	9040	0.4071	1.281	5840	0.241
1/2"	R	9450	0.4067	1.279	4890	0.302
3/4"	D	16170	0.62	1.949	5740	0.289
3/4"	M	18930	0.62	1.949	5100	0.381
3/4"	R	23570	0.63	1.98	4120	0.576
1"	D	38570	0.84	2.64	6440	0.454
1"	М	36500	0.84	2.64	5570	0.497
1"	R	36430	0.83	2.609	5300	0.531

20 0 0 - Entert 1-3/4-R 0 0 -----1-3/4-M 2-3/4-D

Wind 18	no	noui'l	actuce	e area	Ela	stic Sen	ut				91	atima	2		1		an'	
19 Jacker	100.	Same	Stank	Room Fly	1.m 50	iank		In	Fliread)	.0.	Hear	10 -	0	te .		Allore	ing
(Mond					Lond	Stress.	Cor'd Load	Load	Stress	Coid Load *	Lond	Stress 1	Porid Loast	Jan	Ktre.	Coding *	UPN.	Elas Lin
DU M	1	+	-	,125%	-		8795	-		I	12 8	68000		10110	\$1000	- 8910	7911	
340 ,325	2	~	1924	,1353	7000	36400	7270	4420	32700	4250	13103	11200		10290	76000	12-12 7548 910	. 797	631 703
126 1265	3-		.1963	,116.4	8200	41600	6880	8080	43500	4250	13000	17/100		10370	39000	155092/20 940	793785	616 594
20 200	9		1924	1230	6880	35800	6100	5100	38500	4860	18900	56500		10470	83500	Hare 9350	-770	759 653
112 232	ž		1934	1320	6850	34200	6700	4260	32300	4360	10900	54400		8000	62600	8830	,733	623 659
576 235	7		1916	.1320	8050	42000	67000	5250	39700	4380	12900	67300		10250	77600	9150	,795	651 689
299 307	8		,1987	,1257	7030	35500	6920	4230	33600	4170	10900	54900		8000	63800	8750	.733	60/ 632
40 1235	.9		1995	,1320	6600	and the second	7000	4780	36200	5060	12900	65800		8000	60400	8800	.733	723 652
. 634 . 330	10		,1963	,1320	7450	88000	6860	5410	41000	4900				10200	77000	4300	1771	106618
	-	-	12311			20 11 (4601		-		16800)	FELM	20700	795	688698
107	2	7	4359	3019	13200	29307	15200	9100	30100	10500	21100	48600		16300	54000	20500	784	735 692
Ver . 2.42	3		4359	.3019	11900	27250	15 330	1000	37100	17200	20800	47600		14800	49000	18350	702	- 839 692
1010 257	9		4394	.3058	12250	27900	15 370	2 5400	50100	68003	2.0800	47400		16700		21100	803	75674
325 . 213	5		4300	3019	13500	31400	15050	10200	33700	11400	20600	47900		16 260	53800	20400	191	100 100
-757										11475		,,,				20210		
446 2496	1	1	.7667	.554.2	28000	36500		206071	37200	19750	469100	61100		38800	70000	38100	828	735 721
1050 ,450	2		.7698	.5542	27500	35700		22500	40600	221071	46100	59800		38500	69500	38600	834	818 719
1945 . YLS	3		,7854	.554		-				01925	45800	58400		38400	69300	39500	837	705
Mart			mund	2000		00/100			7.4.000	20120				7 0 100	112-1	017/50	823	717 684
Propriet 2 60	5	7	11242	,3017	13500	32600		10250	25500	11000	29330	55200		17200	571900	21750	. 825	793688
1916			4430	,301 9	14000	31600		9400	29110	9751	2.4500	55300		19600	65000	35500	801	628681
STE INVE	0		1100			0,000		0000	21100	10970	27000	00000		,,,		21800	007	0000-1
532 .532	1	1	,772.9	.5542	245777	217071		174100	21400	192100	302.0	509/01		33.300	60100	39300	845	709 716
2, 507	2		.7729	.5542	25700	33200		2.0600	37200	7-17/07)	45500	58900		38000	68500	38700	835	802 716
499 .460	3		7744	,5542	- 282.00	36400		19800	35700	19050	453071	58500		38200	68900	39200	843	701 714
D 10 5			11-1-		1.1.1.0					19980						37070	Del Del	# 12 m
alles and	2	2	12218	1320	6010	42400		66 50	67400	5500	9400	60000		8000	81000	9400	, any	2854
STY AVZ	3		1590	1256	6100	38400		6190	62100	5640	arrow a	5000		8100	82.000)	7200	2	& Jupan
288 1			-			2.44				5320	7000	51000		0100		9400	R	af they
120 1905	1	4	.376 /	.3117	14900	39600		14900	63400	13200	23400	62200		19730	84000	22400	1	Muy 8
100 1 To	2	7.	3926	8117-	15000	38200		14400	61200	13200	23600	60200		18710	19500	235-00	4	Ly 199
5961 A	13		8870	101111	15100	39000		15000	63800	13750	23700	61300		18660	79300	23200	S.	6803
544 . 243	1	4	6641	1.411	130.00	237571		11 0100	342.00)	175502	214000	54500		2.00	U ho m	41/100	the.	804.
Can Assy	2		6720	man-	23400	211010		10700	57 2100	115201	3400	52.711		34600	60300	10100	ary.	805
543 133	3		6793	5411	23400	54800		22500	n lin	22600	2110	5220		54600	00300	27400	3	798
and a second				- mar	23600	34800		22600	32 400	22/00	36500	55750		34140	79200	82671		110
3.9										22650						39230		

