EFFICIENCY OF OPERATION OF INTERURBAN TEST-CAR

BY
GEORGE WEBSTER SAATHOFF
HERBERT JOSEPH WEAVER
LAWRENCE FISHER WOOSTER

THESIS
For the Degree of Bachelor of Science
in Electrical Engineering

COLLEGE OF ENGINEERING UNIVERSITY OF ILLINOIS

UNIVERSITY OF ILLINOIS

June 1,

1906

THIS IS TO CERTIFY TIAAT THE THESIS PREPARED UNDER MY SUPERVISION BY GFORGE WFBSTER SATMHOFE, HFRBERT JOSEPH WRAVER and

LAWRFNCE FISHER WOOSTER
ENTITLED EFFICITNCY OF OPERATION OF INTERURBAN TFST CAR

IS APPIROVED BY ME AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE DEGREE

ACKNOTIEDGEIEITT.

The writers here wish to express their thanks to the Illinois Traction System through whose kindness the tests were made possible, and to those of its employees who were of assistance in making the muns.

Much credit is also due Mr. E. I. Wenger of the Electrical Engineering Department, whose personal aid in conducting the tests has been most valuable.

EFPICIENTCY OF OPERATION OF INTERURBAN TEST CAR. -Description of Car-

The following series of tests was conducted on the flectric Test Car recently purchased by the University of Illinois. This car is of the regular interurban tupe, built by the Jewett car Co., the baggage and smoking compartment being given over to instruments. Its length over all is forty-five feet. The trucks are the Standard Steel Company's $C-60$ type, the wheels on one truck being of rolled steel and those on the other of Cast iron. The equipment is the latest Westinghouse system of pneumatic multiple unit control, With four forty-horse power Westinghouse INo. IOl-D motors. This system is operated by current from a storage battery through the master controller. The battery current actuates air valves which in tum operate the individual switches in the switch group. This switch group together with the reverser and circuit-breaker is placed in the instrument room for instructional purposes. An interlocking device on the switch group controls the order of operation of the individual switches. There is also a limit switch in connection which prevents the switches from closing and cutting out resistance until the current in the motor circuit falls below a certain predetermined value, and a line relay which cuts out the switches in case of no voltage.

The instrumental equipment consists of a recording ammeter and a rocording voltmeter both of General Electric make, a Thompson integrating wattmeter, and an autometer made by the

DIAGRAM OF CONNECTIONS

FOR
GENERATOR AND TRANSFORMER.

Warner Instrument Company, which gives the speed in miles per hour at any instant and also shows the mileage for the trip and the total distance travelled by the car. Some trouble was experienced in detemining the rate of acceleration but a method was suggested in an article published in the Proceedings of the Canadian Society of Civil Engineers, and this method was finally adopted. A small one-half kilowatt generator was mounted on one of the trucks and driven by a chain from the axle. The generator was heavily over-excited by current from a storage battery, and the current from the generator being sent through a constant resistance was proportional to the speed of the car. Connections are shown on the accompanying diagram. The generator current was sent through one secondary of a transformer, current from a storage battery through the other secondary, and a voltmeter was connected across the primary. The rate of change of current from the generator, that is, the rate of change of speed (or the acceleration) of the car causes a throw of the voltmeter needle, this throw being proportional to the positive or negative acceleration of the car. On account of the shape of the magnetization curve of the transformer iron, that is, the existence of a lower loop where the permeability is much less than higher on the curve, It was found that the instrument did not indicate acceleration as large proportionally on low current values as it did on higher values. It was decided to paise the zero of magnetization, and this is the purpose of the battery current through the second coil. By properly adjusting the current in this coil the zero of flux is

brought up above the lower bend of the magnetization curve and all the variations in current are on the part of the curve where the permeability is at a maximum and practically constant, and since the acceleration by the transformer method depends upon the permeability the readings were more nearly proportional. The curvature of the track may be obtained at any instant by the apparatus described below. On one side of each truck was placed a sector of a circle concentric with the center bearing plate. This sector has a grooved face on which wires are wound, and these wires give motion to drums whose shafts extend up through the floor of the car. By means of wires the motion of these iwo shafts is averaged and transmitted to the recording pen. On the record thus obtained is read the degree of curvature of the track. Continuous records of speed, acceleration, and curvature were made on a sincle roll of paper. A piece of apparatus was designed especially for this purpose, the paper was fed over a glass plate and stylographic pens were used to mark the record on the paper. These pens were mounted in carriages running on guide rods, their motion being controlled by cords passing around pulleys which are placed above the indicating instruments.

TESTS.

The tests were made on the tracks of the Danville, Urbana, and Champaign Flectric Railway. The track is thirty-one and nine-tenths miles long from the Urbana Courthouse to the Danville Plaza, and has a large number of curves, grades and stretches of straight level track, affording an excellent opportunity for experiment.

In conducting the tests special attention mas paid to the following:
(1) Power required to maintain a speed of thirty miles per hour on level track.
(2) Power required to start the car on level track.
(3) Power required to get up to speed on straight track at different rates of acceleration.
(4) Power required to get up speed on curves at different rates of acceleration.
(5) Power lost on Middle Fork grades.
(6) Porrer lost per stop of car.
(7) Power consumption per ton-mile.
(8) Power consumed by air-compressor per car mile.
(1) POWER REQUIRED TO MAINTAIN SPHTD OF THIRTY MILES PER HOUR OIT LETEL TRACI.

The data for this test was taken from the ammeter and voltmeter curves for a complete mun and was compiled in table ITO.1. Time and distance were obtained from the auxiliary marks on the continuous records. The voltage and current curves were integrated between reference points and the mean ordinates calculated. The Reference points were so chosen that between them the car maintained a speed of approximately 30 miles per hour. From these values were obtained the kilowatt-hours per ton-mile. The average power was found to be 47.1 watt-hours per ton-mile which value was used in subsequent calculations.

POWER REQUIRED TO MAINTAIN SPEED of 30 MILES PER HOUR ON LEVEL TRACK.

TABLE NOM.
(2) POWER REQUIRED TO START THE CAR ON LEVEI TRACK.

In column 5 of table llo. 2 is found a series of readings of the power required to start the car on level track. These power readings were obtained by counting the revolutions of the watt-meter disc. By observation 500 feet was found to be about the average distance passed over in starting the car, so a stretch of straight track 500 feet long was chosen with poles at each end. The car was run back and forth over this stretch and readings taken for both airections to eliminate errors due to wind resistance and any slight variations in elevation of the track. The average value of 470 watt-hours was taken from curve IIO. L.

POWER CONSUMED IN STARTING CAR
ON STRAIGHT TRACK.

TABLE NO. 2.

(3) POWER REQUIRED TO GET UP SPEED ON STRAIGHT TRACK AT DIFYERTHTT RATES OF ACCRIERATIONT.

These tests were made on a straight piece of track 500 feet long as in test No. 2. From standstill the car was brought up to the maximum speed attainable in 500 feet at the rate of acceleration allowed by the limit switch. In order to obtain different rates of acceleration the weight of the limit switch plunger was decreased from time to time. The time, maximum speed, weight on the limit switch, and power consumed, were observed and complled into table $\mathbb{T O}$. 2. From these values were calculated the average acceleration for the different trials. The power consumption was determined by counting therevolutions of the wattmeter.disc. Runs were made in both directions as in test NO. 2 to eliminate errors. For each different weight of the Limit switch trials were made in both directions and the acceleration and power readings for the two were averaged to obtain points on the curve. Curve $1 \mathbb{N} O$. 1 shows that the power consumption increased as the rate of acceleration was increased.
(4) POWER REQUIRED TO GET UP SPEED ON CURVES WITH DIFFERENT RATES OF ACCELERATIOIT.

For these trials a piece of curved track of considerable length was chosen and data taken similar to that in test 11. 3 for a stretch 500 feet long. The rates of acceleration Were varied as before by changing the weight on the limit switch., and the data collected is embodied in table No. 3. As before a curve was plotted. The results obtained would seem to indicate that very little or no more power is required for higher than for lower rates of acceleration. That is, the power required to run between two points on a curve is practically constant regardless of the rate of acceleration.

POWER CONSUMED IN STARTING CAR ON CURVES.

TABLE NO. 3.

Rate of Acceleration.

in
Miles per Hour per Second.

(5) POWER LOST OIT THE MIDDLE FORK GRADES.

In this test which was made on the Middle Fork grades, the heaviest on the line, two poles were chosen 10000 feet apart, Which distance takes in both grades. As may be seen from the profile the track descends rapidly to the bridge and ascends to the same height on the other side. The current and voltage curves were integrated between the reference points for several different runs and the power consumption calculated. These values were then averaged. The power which would be consumed if the track were level was calculated from the data obtained in test No. I. The difference between the average value as actually found and the value found for level track shows the power lost on account of the grades. This difference was found to be 836 watt-hours. Probably the largest part of the loss is accounted for by the fact that the motorman had to apply the brakes in going down to prevent the car from attaining a dangerous speed. The rest mat be accounted for by the curves on both sides of the bridge near the top of the grades.

POWER LOST ON MIDDLE FORK GRADES.

TABLE NO. 4.
(6) POWER LOST PER STOP OF CAR.

In this test it was assumed that in making a stop and start the car passed over about 1250 feet, this velue being chosen as about the average from observations taken with different motormen. From the first test the power required by the car in running this distance at average speed without a stop was obtained. This was found to be 270 watt-hours. Subtracting this value from that obtained for a start in test No. 2, 470 watt-hours, the additional power required for each additional stop was obtained. This power was found to be 200 watt-hours.
(7) POWER CONSUMPTIOIT PER TOIT-MILE.

The date for this test was obtained from several complete runs between Urbana and Danville. The number of stops was noted on each trip and also the number of passengers carried. Elght stops was assumed to be the average number for one trip, and all of the watt-meter readings were corrected by means of the data obtained in test Mo. 6 for this number of stops. After correcting for the number of stops the number of passengers was considered. The average weight of a passenger was assumed to be 150 pounds. This was multiplied by the number of passengers and added to the weight of the car which was found to be 54500 pounds. Dividing the power for the trip by this weight and bu the distance gave the power per ton-mile. Dividing this by 2000 and multiplyIng by 150 gave the power per passenger-mile, for each added passenger. The data for this test and the results may be found in table No. 5. The corrected values of the total power for the trips showed that the power consumption was greater going from Danville to Urbana than from Urbana to Danville. The average pomer required for the trip in each direction was obtained and the difference calculated. The average watt-hours per ton-mile and the average watt-hours per added passenger-mile were calculated. The profile of the track shows a difference in level between Urbana and Danville of 112 feet, Urbana being the li1gher. The average weight of the car and passengers was found to be 56500
pounds. Using this value the power required to lift the car 112 feet is $\frac{56500 \times 112 \times .746}{33000 \times 60}=2.385$ Kilowatt-hours. The difference in power actually required for the runs is 6.43 kilowatthours, this however must be divided by 2 to obtain the power required to lift the car. This gives 3.22 kilowatt-hours. This value is 1.35 times the actual power required to lift the car 112 feet, or an error of 35%. This error may be accounted for to a great extent by the fact that the prevailing winds during the runs were from the South-east.

POWER CONSUMPTION
PER TON-MILE AND PER PASSENGER-MILE.

Averages.
Average Power Consumed. U-D . 50.90 KW-hours. Average Power Consumed, D-U 57.47 KW -hours. Average Watt-hours per Ton-mile 57.1 Average Watt-hours per Passenger-mile 0.428 Average weight of Car and Passengers 56500*
(8) POWER COITSUMED BY AIR-COMPRESSOR PER CAR-IIILE.

An integrating wattmeter was placed in the compressor circuit and during several of the runs readings were taken to obtain data on the power required for braking and operating the pheumatic switches in the switch group. Taking the total watthours per run and dividing by the distance gives the value of the power required per car-mile. The average of several such sets of readings shows a consumption of about 64.8 watt-hours per mıle. While no accurate detemination can be made due to the varied character of the runs and the difference in motormen the average values obtained may serve as a basis for comparison with the total power required per car-mile. According to the data obtained the power consumed was about 4.05% of the total power per car-mile.

From an economic standpoint fast running with the cars full, and with few stops is the ideel condition for an interurban system. In test IIO. 6 it may be seen that the power required for an additional stop is 200 watt-hours, and from table ITo. 5 that the power required for an additional passenger-mile is .43 watthours. That is, more power is lost in making a single stop than is required to carry 14 pessengers from Urbana to Danville on a regular trip. For example, if two cars started from Urbana, car A and car B car A carryine 14 more passengers than B and making elght stops, B making nine, the two cars would consume the same amount of power. While this result is rather starting, it is not so important as might be thought at the first glance. The cost of all the power used on the system is a small part of the expense of conducting an interurban system, probably not more than 15%, so that a material increase or decrease in the power required for one car would make an almost inappreciable difference in the expense account. The comparison serves to show, however, that the power per passenger-mile is so small in proportion to the operating expenses that an increase in the number of passengers carried makes a much greater increase in the earnings.

Some interesting and useful data may be deduced from the preceeding tebles in connection with the extension of interurban systems. In estimating the increased load upon the pover plant it is desirable to know the relative weights of the different
factors influencing the power consumption. In order to have something on which to base an estimate the following table is appended:

For eacl added ton-mileadd 47. 10 watt-hours For each added passenger-mlle........add . 43 watt-hours For each added car-stop...............ad. 200.00 watt-hours
For each added 100 feet difference in elevation.add 84.00 watt-hours

The first and second 亡tems were taken from table ITo. 5 and are assumed to be for average track conditions, and for an average distance of 4 miles betmeen s tops.

The third item was taken from test 10.6
The fourth item was taken from test Mo. 7. This refers to difference in elevation between terminals, and is for a car weighing approximately 28 tons.

