DFFIGN OF A HYIRAULIC RIVETEIR

HY
BEIRNARD CARLYLE VAN PAPIPILENDAM

THESIS FOR TTHE DEGREE OF BACHELOR OF BCHENCE

IN MECHANICAI, ENGINEERING

IN THE

COLLEGE OF ENGINEEIRING

OF THE

UNIVERSITY OF HLLINOIS

JUNE, 1910

UNIVERSITY OF ILLINOIS

$$
\text { May } 31
$$

1900

THIS IS TO CERTIFY THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Bernard Carlyle var Pappelendam

ENTITLED Design of 3 Hydraulic Riveter

IS APPROVED BY ME AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE DEGREE OF-Enchelom of Soienco in Mochanicul Znoinooming---

APPROVED:

HEAD OF DEPARTMENT OF Mechanical Engineering

SPECIFICATIONS

Maximum rivet $11 /{ }^{\prime \prime}$ diameter, requiring a net pressure of 75 tons.

Accumulator pressure 1500 \#/a".
Vertical throat 6 ft .
Distance between jaws 15.
Stroke 4."
Single pressure and single lever operated.
Frame of steel casting having solid \longmapsto section.
Allowable stresses:- Tension and compression $12,000 \%{ }^{\prime \prime}$ ",
Shear $10,000 \% / 0^{\prime \prime}$

Fig. 1.

CALCULATIONS

Main Frame For stresses on the section AB. Fig. 1. A ssume the proportions shown by Fig2. The section beng divided up into the three rectangles marked ©, © and ©. The following table then
shows the properties. Where $A=$ area,$M_{x x}=$ first moment about $x x, I_{x x}=$ second moment or moment of inertia about $x x$,

and $I_{\text {cg. }}=$ same about center of gravity line cg .
Then $C_{t}=M_{x x} / A=240 a^{3} / 30 a^{2}=8 a$
and $\quad C_{c}=($ see Fig.2.) $18 a-8 a=10 a$
$M / S_{t}=I_{c g} / C_{t}$ so $[150,000(72+8 a)] / 12000=1284 a^{4} / 8 a$ from which $a=1.9$ inches. The following dimensions (Fig. 2.) were chosen, due partly to the way in which the other sections worked out. web $a=22^{\prime \prime} .2 a=4^{\prime \prime} . \quad 5 a=12^{\prime \prime} . \quad 15 a=28^{\prime \prime}, a$ (atbottom) $=3^{\prime \prime}$

Since $S_{c}=S_{t}$ and C_{c} is greater than C_{t}, this section is all right for compression

Used the same method as above for section cd (Fig.1.) and it came out S_{c} and $S_{t}=11,750$ \#" with width $=12^{\prime \prime}$, depth $=26^{\prime \prime}$, web thickness $=2^{\prime \prime}$, flange thickness $3^{\prime \prime}$.

For the 45° section EF. Assume flanges $3^{\prime \prime} \times 12^{\circ}$ and we b $2^{n} \times 22^{n}$ then by Carnegie $I / C=\left[12 \times(28)^{3}-(22)^{3} \times 8\right] / 6 \times 28=106$ and S due to bending, both tension and compression $=M C / I$ $=[150000(72+(14 \times .707))] / 106=11600 \% / 0^{\circ}$ and S due to direct force, both tension and shear $=P / A$ $=(150000 \times .707) / 116=910 \% / 0^{\prime \prime}$
Tension stress (combined) $=S_{t}=11600+910=12510 \% / "^{\prime \prime}$ and the
equivalent stress $=S_{t} / 2+\sqrt{\left(S_{t} / 2\right)^{2}+\left(S_{s}\right)^{2}}=6,255+\sqrt{6255^{2}+910^{2}}$ $=12,575 \% / 0^{\prime \prime}$ which is allright because the one flange is considerable more than $3^{\prime \prime}$ wide when measured along this section.

Area required for pure shear, i.e on center line of die equals $P / S_{s}=150000 / 10000=15 \mathrm{sq} . \mathrm{in}$. so make it as shown by

\qquad
fig 3, and the section
Fig. 3. just below this as shown by fig 4.

For the section three feet below the center line of dies S (due to bending both tension and compression for an assumed section with flanges $2 \frac{1}{2}^{\prime} \times 10^{\prime \prime}$ and web $2^{\prime \prime} \times 16^{\prime \prime}$) equals MC / I $=[150000 \times 36 \times 6 \times 21] \div\left[\left(10 \times(21)^{3}\right)-\left(8 \times(16)^{3}\right)\right]=11,300 \% / 0^{\prime \prime}$ and $S_{s}=P / A=150000 / 82=1,830 \# / \mathrm{a}^{\prime \prime}$
so $S_{e}=S / 2+\sqrt{(5 / 2)^{r}+\left(S_{s}\right)^{2}}=5650+\sqrt{5650^{2}+1830^{2}}=11,570 \% 0^{\prime \prime}$

The Piston and Cylinder.

The net area required equals total force on rivet divided by pressure of water used $=150000 / 1500=100 \mathrm{sq} . \mathrm{in}$.
The net area equals the main piston area minus the return piston area. After observing several makes of riveters it was decided to have these areas (i.e of the two pistons) in the ratio of 1 to 0.09 Then the area of the main piston must be $100 / .91=110$ sq.in. and its diameter 12 inches.

The net area $=0.85 \mathrm{sq} . \mathrm{in}$. and the number required $\frac{150000}{15000 \times .85}=12$ Same method shows $6-1 / 2^{\prime \prime} \times 13$ thread studs necessary for the small cylinder head.

Forces on the Piston
It is assumed that the forces P and
 Q (Fig.5) act at the center of the surpace on which they slide. This assumption, though not true, is safe
a Fig. 5 . ting in the cylinder. The 150000^{*} force is that necessary on the rivet. The $164000^{\text {m }}$ and $14000^{\#}$ forces were obtained by multiplying corresponding piston areas by the accumulator pressure. $P=Q$ (only vertical forces) and by moments about $O, \quad P=\left[\left(150000 \times 2 \frac{1}{2}\right)-(14000 \times 33 / 4)\right] / \vartheta=35800^{*}$

For section $A B S$ (due to bending alone, both tension and compression $)=M C / I=\left[\left(164000 \times 2^{1 / 2}\right)-(35800 \times 3)-(14000 \times 6 / 4)\right]$ $\div\left[.098 \times 7^{3}\right]=6400$

$$
S_{c}(\text { due to crushing })=P / A=150000 / 38.5=3900^{7}
$$

Max. $S_{c}=6400+3900=10300^{*}$
Max. $S_{t}=6400-3900=2500^{*}$
So cast iron is all right.

The Valve
After comparing with other makes of riveters a $1 / 2^{\prime \prime}$ valve was decided upon

Diameter of valve piston $=2^{\prime \prime}$. So with ports $5 / 16 \mathrm{in}$. wide and eight guide strips for leather washers, the net area is $\left(5 / 16^{\prime \prime} \times \pi \times 2\right)-\left(8 \times \frac{1}{8} \times 7 / 16\right)($ for $1 / 8$ guide strips $)=1.65$ sq.in

Size of piston stem (Fig.6) Area $=1.75=\pi-\pi x^{2} / 4$. From which $X=1.3^{\circ}=$ say $11_{4}^{\prime \prime}$.

Fig. 7 is a section through weakest part of valve body. i.e, through center line of ports. The stress $=\mathrm{P} / \mathrm{A}=\left[1500 \times .7854\left(3 \frac{\frac{1}{2}_{2}^{2}}{}-2^{2}\right)\right] /[.7854 \times$ $\left.\left(4 \frac{1^{2}}{}{ }^{2}-3 \frac{1}{2}^{2}\right)\right]=1500 \% / a^{\circ} \quad$ So value is to be made of bronze.

Use "Standard Extra Strong" piping and "Line Pipe" couplings.

Mech. Eng. Defartment. univ of ILL.

THESIS

Calculations for
6 Ft. Hydraulic Riveter. SHEET NO. 1.

Mech. Eng. Department. univ. of ILL THESIS. Assembly of

№ OO2. VALVE PISTON
Finish all over.
Mech. Eng. Department univ of ILL. THESIS.

№ 02. PIPE TO RETURN CYLINDER.

Mech. Eng. Department. UNIV. OF ILL. THESIS.
Bill of Materials for 6 Ft. Hyoraulic Riveter sheet no. 8 .

