LEAPING WEIRS AND OVERFLOW WEIRS FOR SEWERS

BY
HAROLD EATON BABBITT

S. B. Massachusetts Institute of Technology, 1911.

THESIS

Submitted in Partial Fulfillment of the Requirements for the

Degree of MASTER OF SCIENCE

IN MUNICIPAL AND SANITARY ENGINEERING

THE GRADUATE SCHOOL

OF THE

UNIVERSITY OF ILLINOIS

UNIVERSITY OF ILLINOIS THE GRADUATE SCHOOL

```
__June 2, _._._19r7
```

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPER-

VISION BY \qquad HAROLD EATON BABBITT ENTITLED LEAPING WEIRS AND OVERFLOW WEIRS FOR SEWERS
\qquad

BE ACCEPTED AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN MUNICIPAL AND SANITARY EIVGINEERING

Head of Department

Recommendation concurred in:*

Committee
on
Final Examination*
*Required for doctor's degree but not for master's.
—.-...-:T A B L E O F C O N T PREFACE: pages 1-2
Bibliography. 2
PARTI. LEAPING HEIRS. pages 3-44CHAPTER I. INTRODUCTION pages 3-7
Sect. 1. Definition. 3
Sect. 2. Purpose 3
Sect. 3. Historical Kesumé 4
Sect. 4. Previous Investigations 4
Sect. 5. Existing Instailations 6
CHAPTER II. INVESTIGATIONS OF LEAPINA WEIRS AT THE UNIVERSITYOF ILLINOIS. jages $8--12$
Sect. 6. Period Govered By Eaperimental Work. 8
Sect. 7. Tests And Observations 8
Sect. 8. Apparatus Used 9
Sect. 9. Making A Run. 11 11
CHAPMER III. RESULTS COMPJTED FROM ObSERVATIONS. pages 13 20
Sect. 10. Direct Observations 13
Sect. 11. Rate Of Flow. 13
Sect. 12. Value of n In Kutter's Furmula 13
Sect. 13. Calculated Depth Of Flow. 14
Sect. 14. Velocity Heads 15
CHAPTER IV. DEDUCTION OF FORMULAS. pages 21 -- 39
Sect. 15. Rational Considerations 21
Sect. 16. Empirical Expressions. 22
Sect. 17. Outside Curves, General 23
Sect. 18. Outside Curve, Value of in, Exponent of y.... 23
Sect. 19. Outiside Curve, Value of n, Exponent Of v.... 26
Sect. 20. Outside Curve, Value of k, The Coefficient.. 26
Sect. 21. Outside Curve, Final Foriii Of The Equation. 27
Sect. 22. Inside Gurve, General. 27
Sect. 24. Inside Curve, 估lue of m, Exponent of y 27
Sect. 25. Inside Curve, Value of n, Ex onent of v..... 28
Sect. 26. Inside Curve, value of k, The Coefficient 28
Sect. 27. Inside Curve, Final Form Of The Equation. 30
Sect. 28. Middle Curve, General 30
Sect. 29. Middle Curve, Va lue of m. Exponent of 30
Sect. 30. Midale Curve, Whlue of n, Exponent of 30
Sect. 31. Middle Curve, 何lue of k, The Coefficient. 30
Sect. 32. Middle Curve, Final Form Df The Equation. 31
(Table of Contents, Continued)
Sect. 33. Use Of Equations Beyonu Limits Of Tests 31
Sect. 34. Accuracy Of Results 33
CHAPTER V. DESIGN OF LEAPING WEIRS. pages 40 -- 44
Sect. 35. Formulas and Diagrains 40
Sect. 36. Investigation Of Existing Neir 40
Sect. 37. The Design of A Leaping Weir 42
Sect. 38. Structural Features Of A Leaping Weir 44
PARTII.OVERFLOW WEIRS. Nages 45 -- 71
CHAPTER VI. INTRODJCTION. pages 45 47
Sect. 39. Definition 45
Sect. 40. Purpose 45
Sect. 41. Historical Resume 45
Sect. 42. Existing Installations. 46
CHAPTER VII. INVESTIGATIONS OH OVERFLOW WEIRS AT THE UNI VESITY OF ILLINOIS. pages 48-60
Sect. 43. Period Covered By Experimental Work. 48
Sect. 44. Description Of Apparatus 48
Sect. 45. Making A Run. 49
Sect. 46. Difficulties Observed 50
Sect. 47. Sumary Of Direct Observations 50
Sect. 48. Computed Kesults 50
CHAPTER VIII. LAW OF FLON OVER OVERFLOW WEIRS. pages 61-69
Sect. 49. Rational Considerations. 61
Sect. 50. Empirical Expression. 65
Sect. 51. Conclusions. 67
Sect. 52. Accuracy Of Results 68
CHAPTER IX. DESIGN OF DVERFLON WEIRS. pages 70--71
Sect. 53. Methods 70
Sect. 54. Example Of Design. 70
LIST OF DRAWINGS
ILLUSTRATIONS ANDTABLES
To face juge
Figure 1. Photograph of Leaping Weir in Action. 1
Figure 2. Leajing Weir at Milwaukee, Wisconsin. 4
Figure 3. Syracuse Intercepting Sewer Board, Diagrams and Tables of Experimeats on Leaping Noir. 4
Figure 4. Sketch of Sinnie Separating Weir, and Diagram for Jnwin's Analysis of Leaping Weir. 4
Fizure 5. Leaping Weir at hapioneta, Ohio 6
Figure 6. Leaping Teir at Syracuse, New Iork 7
Figure 7. Shape of Falling Stream, Leaping Neir Tests. 8
Figure 8. Sketch of Apparatus for Learing Weir Tests. 9
Figure 9. Sketch of Appaatus for Measuring Coordinates of
Falling Stream, Leaping Neir Tests. 9
Figure 10. Hydraulic Elements of A Circular Section. 13
Figure 11. Plots of Y against X for Outside Curve 22
Figure 12. Plots of Y against X for Outside Curve 22
Figure 13. Plots of Y against X for Outside Curve. 22
Pigure 14. Plots of X against V for Outside Curve 26
Figure 15. Value of m , Outside Curve. 26
Figure 16. Determination of P and Q, Dutside Curve 26
Figure 17. Determination of Coefficient for Outside Curve. 27
Figure 18. Flots of Y against X for Inside Curve 27
Figure 19. Plots of Y ageinst X for Inside Curve 27
Figure 20. Flots of Y against X for Inside Curve... 27 27
Figure 21. Plots of X against V for Inside Curve. 28
Figure 22. Value of m . Inside Curve 28 28
Figure 23. Deteraination of Coefficient for Inside Curve 29 29
Figure 24. Plots of Y against X for Middle Curve 30
Figure 25. Plots of Y against X for Middle Curve. 30
Figure 26. Plots of Y against X for Middle Curve 30
Figure 27. Plots of X against V for Middle Curve 28
Pigure 29. Determination of Coefficient for Midide Curve 31Figure 30. Distribution of Discrepancies Between Observationsand Calculations, Leaping Weir Tests.33
Figure 31. Values of X, V and S when Y is One Foot, Outside Curve40
Figure 32. Values of X, V and S when Y is One Foot, Inside Curve 40
Figure 33. Values of $Y^{\text {m }}$, for all values of Y and m................. 40
Figure 34. values of X_{2}, V and S when Y is One Foot, Middle Curve 40
Figure 35. 40
Figure 36. Values of m, for F lues of S and V , Middle Curve..... 40
Figure 37. Values of m, for Values of S ana V, Insidie Curve. 40

Drawings, Illustrations and Tables, continued.
To face Page
Figure 38. Photograph of Qverflow Weir, No Water Flowing........ 45
Figure 39. Photograph of Overflow Nair in Action................... 45
Figura 40A. Adams Special Adastable Casting for Overflow Weirs. 46
Figure 40B. Dverflow Weir, London England.................................. 46
Figure 40C. Overflow Neir at Clevaland, Ohio.46

Figure 41 . Overflow at Lombard, Illinois.................................... 47
Figure 42. Sketch of Apparatus for Testing Overfiow Heirs....... 48
Figure 43. Diagrams for Parmiey's Analysis and Original
Analysis of Hydraulic Elements of Overflow Weirs. 61
Figure 44. Plot of Rate of Discharge Over Weir against velocity 65
Figure 45. Plots of Q against $c_{\text {, }}$ Overflow Neirs.................... 66
Figure 46. Plots of 12 against q, Overflow Weirs.................... 66
Figure 47. Distribution of Discrepancies vetween Observed and
Calculated Discharge from Overilow Weirs........ 68
On page
Table I. Comparison of Unwin's Leaping Welr Formula and
Direct Ovservations............................ 6
Table II. Miscellaneous Data for Leaping Weirs...................... 16
Table III. Coordinstes of Points Observed Un Leaping Heir....... 17
Table IV. Value of n in Kutter's Formula................................ 14
Table V. Value of m, the Exponent of Y.................................... 35
Table VI. Values of k for Laping Wair Formulas......................... 36
Table VII. Coordinates of Inside Curve, Leaping Weirs.............. 37
Table VII Coordinates of Middle Curve, Leaping Weirs............ 38
Table IX. Coordinates of Outside Curve, Leaping Meirs............ 39
Table X. Observations on Overflow Weirs................................ 52

$$
\text { - }: P R E F^{1} A C:-\infty
$$

The aim of this work has been to record the results of a series of tests on two types of sewer regulators without aoving parts, the leaping weir and the overflow weir, and to present methods for their design. Some information has ween collested concerning other tests on there two devices, a few examples of existing installations have boon shown, and a briaf historical resumé has been hade.

The thesis has been divided into two parts: Part I treating the leaping weir and Part II the overflow woir.

Sawer ranulatiors are used for relieving surcharged severs of excess sewage. They may be ised in combinet sewers to divert the storm water, in overcharged soparate sewers to divert the excess semage into rolief sewars, and in other cases to divert the sewage fron one channel to ancther.

The types of regulators may be divided into two ciasses, those without moving parts and those with Lioving parts. Most of the noving part regulators depend on 9 float, which upon rising opens the gate to a ralief outlat. Some of the davices are cuite simple, others very complinated. Tncifer certain conditions the ioving part rogulators will give satisfaction. ost of the moving part retulators are inanufactured under the control of the patentee, and inforiation as to their adaptability and capacity can be outained frofi the manufacturer After installation the devices usually recuire calibration.

The two regulators without woving jarts are the leaping weir and the overflow weir. These are not patented and can be 'manactured' easily in the field. The advantages and disadvantages of the weirs are discussed under each division of the subject.

The experimental work was done in the aydraulic laboratory of the College of Engineering at the Uni versity of Illinois. The study of the results and the deduction of the formulas was done after the completion of the laboratory rork.

Literature on leaping weirs and overflow weirs is scarce. The most valuable information on the subject is to we found in Anerican Sewerage Practice, Volume I, Dy Metcalf and Eddy. The following books have something to say of more or less vaiue on these subjects:
"Sanitary Engineering" by E.C.S. Moore, and the second euition by Moore and Silcock.
"Sanitary Enginaering" by Vernon Harcourt. p. 313
"Sewers and Drains for Populous Districts" py J.W. Adams. p. 133
"The Sewerage of Sea Coast Towns" by H.C. Adams. p. 53 "The Cleaning and Sewsrage of Cities" by R. Baumeister. pp. 5, 47, and 122.
"Sanitary Engineering" by Noud. Second Ed. p. 155
"Construction of Sewers" vy Oyden. Chapter XI .
"The pain, Brajighge of Towns" by F.N. Taylor
"Sewerage" by A.P. Folwell. p 170
"Sanitary-Engineering" by Baidain Latham Second Edition p. 460
Other Publicetions
"The Elimination of Stori Water from Sewerage Systains" by D.E. Lloyd-Davis in Minutes of Proccodings of the Institution of Civil Engineers, Vol CLXI V p. 41
"The Milwaukea Sawarage System" by G.H. Benzenverg in Transactions of the Anerican Society of Civil Engineers Vol. XXX p. 367 and 711
"The Welworth Run Sewer, Cleveland, Ohio" by W.C. Parmley in Transactions of the American Society of Civil Ensineers Volume LV p. 341.

_-... : E A P I N G W E I R S :
——UHAPTER I:---
————INTRODUCTION:......

Sect. 1. Definition:- A learing Neir is a device for controlling the amount of flow in a sewor. It operates auto..aticaly without moving parts, in such a imamer that a relatively low flow in the sewer falls into a channel bendatin the weir, whereas tile highel velocities of laryer quantities cause tna stryam to leap the gap opening into the channel below, and pass out through another channel. Figures 2, 5, and 6 show the ciatails of typical lapping weirs.

Sect. 2. Purivose:- Jndor cartain conditions in a conibinod sewerage system it is undesirabl ϵ to conduct the entire siorn flow to the point of dischalge of the dry weather fiow. The outfall sewer can be relieved of the stora flow by inserting a leaping weir at its upper end and conducting the storin flow to sowe nearby outiet.

When a sowage treatment plant is placau at the outiall of a combined sewergge system it is undesirable to attempt to trakt al. of the storm water which will be delivereci through tre outfail. In some ceses the amount of storm water wiil so dilute tiae ordinary dfy weather flow as to permit the discharge of the untreated mizture into the body of water ordinarily receiving tne treated ury veather flow, without causing a nuisense. A learing weir is a device, without moring parts, which will successfully accomplish this purpose, so that the treatmant plant can we ontirely at rest during times of storm discharge from tha sewerage system.

One of the original purposes of leaping or "separating" weir as mentionsd in some of the boks listed in the bibliography, was to collect the alear 10 , nater flow of a simil stream as potalle water, and to allow the mudy storill haters to pass by without

Figure 2 $\angle E A P I N G$ WEIR NORTH AVE. INTERCEPTER MILWAUKEE, WIS.

SYRACUSE InTERCEPTING SEWER BOARD
DIAGRAMS AND TABLES
LEAPING WEIT EXPERIMENTS

Tun	Woter Thr	ruMeter	Vntercepte	Water	Disch.at	Outlet	Slope	Fun	A	B	c	D	E	F	G
	Total	C.F.S.	Heod, Heir	C.F.S.	Heodyeir	C.F.S.		2	. 4	. 4	. 17	1.08	. 21	. 75	. 4
,	30	. 5	. 15	. 2	. 2	. 3	. 01	3	"	"	. 20	1.21	. 25	1.17	"
2	10	. 15	. 13	. 15	0	0	"	4	"	"	.24	1.27	. 25	1.00	"
3	10	. 26	. 15	. 2	. 07	. 07	"	5	"	"					
4	130	. 36	16	. 21	. 16	. 21	"	6	"	"	19	1.04	. 25	. 8	. 4
5	117	. 70	-1/8	43. 22	. 29	. 48	"	7	"	"	. 29	1.35	.	1.2	"
6	69	. 124	${ }^{\text {opp. } 1170 \%}$	${ }^{43} \times 12^{+1}$	0	0	"	8	"	"	. 25	1.25	"	1.05	"
7	88	512	. $/ 5$. 2	. 2	. 29	"N.6.	9	"	"	. 27	1.3	"	1.12	$"$
8	49	. 438	14	. 18	. 1	. 12	"	10	"	"	. 34	1.5	"	1.3	"
9	52	. 407	\%	. 19	. 15	. 19	"	11	"	"	.36	1.50	"	1.4	"
10	68	. 708	15	. 19	. 29	. 5	"	12	"	"	. 20	1.17	*	. 93	$"$
//	50	. 862	. 18	. 25	. 35	. 62	" N_{4}	13	"	-	.21	1.2	"	. 96	"
12	75	. 4	1.13	. 16	. 06	. 06	\cdots	14	"	"	. 27	1.3	"	1.10	"
13	40	. 268	. 14	. 18	. 07	. 06	"	15	"	"	. 31	1.4	"	1.25	
14	50	. 443	16	. 21	. 17	. 22	". \sim_{G}	16	"	"	.34	1.5	-	1.4	
15	60	. 731	. 17	. 22	. 25	. 40	"	17	\because	*					
16	50	. 758	17	. 22	. 30	. 52	"	18	"	"	.39	1. 55	25	1.4	. 4
17							"NC	19	"	"	. 44	1.7	"	1.5	
18			. 20	. 28	. 36	. 67	"	20	"	"	. 44	1.7		1.55	
19			20	. 28	. 50	1.09	"	29	. 3	. 6	. 27	1.4	"	1.25	
20	Dam. 2 '		. 22	. 32	. 52	1.13	"	30	"	"	. 30	1.45	"	1.2	
21	disch.	fipe	. 21	. 31	. 36	. 67	"								
22			. 21	. 31	. 48	1.05	"						wer	Pipe	
23	-		. 19	. 27	. 05	. 05	\cdots					Je	wer		
24	"		. 20	. 29	. 10	. 11	\cdots								
25	"		. 21	. 31	. 20	. 29	"						1	1	
26	"		. 21	. 31	. 45	. 93	"								
27	-		. 15	. 20	. 00	. 00	"								
28	40	. 33	. 22	. 33	. 00	. 00	"								
29	40	. 55	. 30	. 52	. 01	. 01	"								
30			. 30	. 52	. 05	. 05	"								
31			.31	. 55	. 15	. 20	"								
32			. 31	. 55	. 20	. 28	"								
33			. 31	. 55	. 36	. 69	\cdots								

$\cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5$

Binnie Separating Weir Bradford, England WATERWORKS

DIAGRAM
UNWIN'S ANALYSIS
LEAPING WEIR
interception. Such a device installed by Sir A. R. Binnie at Bradford England is shown in Figure 4.

The adventages of the leaping weir are obvious, but the fact that it operates automatically and without moving parts should do enphasized. Ons of its greatest disadvantages is the anount of head consumed, which may be prohibitive in sewers on ilat grades. It would probably be difficult to install a learing weir in an existing sewer because of the necessary change in the grade of the storm water outlet.

Sect. 3. Histarical Resumb:-Leaping weirs were probabiy installed in the United States for the first time in Milwakee, Wis. These weirs are mentioned by Benzenberg in Transaotions of the American Society of Civil Enginears, Volure XXX, pp. 367 and 711 (Nov. 1893) Pigura 2 shows the details of one of the exisitng weirs at Milwaukee which is very similar in detail to those described by Benzenberg. It is probable that the Engish had instaliec such devices previous to 1893, as English sanitary ongineering literature has many references to leaping, weeping, or separating weirs bafore that time.

Sect. 4. Provious Investijarions:- An investigation of a ieaping weir made under the direction of Gienn D. Holues, Chief Engineer of the Syracuse, N. Y. Intarcepting Sewer board was the only one about which inforiation was found. Letters of inyury were sent to a number of engineers engayed in seweraje design and construetion but none who replied knew of otner investigations.

The results of the lolmes investigations are puilished in "American Sewerage Practice" Volune I, by Metcaif and Bidy, The investigation was of a special form of veir, and its results are not extensive ennugh for ceneral application. A cony of the results of the original observetions and a sketcn of the arparatus used is given in Figura 3.

The best known netrod in use by ongineers for the design of leaping wairs is that credited to Professor W. C. Unwin. As cuoted from the first edition of "Sanitary Engineering" by E.C.S. Noore, it
is as follows:
".....This (the action of the weir) is effected by the velocity inparted to the water discharged over a weir calising it to follow a parabolic path: the distance the water is projected depends on the depth of water on the weir and the conseçent a iount of velocity. In Figure 4 iet h be the head of water discharging over a weir, then, according to Professor Unwin, it is sufficiently a acurate for practical purposes to assume the rean velociry of the water jassing over the woir ecuais $2 / 3 \sqrt{2 g h}$. Then if x ecual the width of the orifice ef, and y ecuel the difisrence of level ae of the two edges, and if a pirticle passes from a to f in t seconds, then

$$
\begin{aligned}
y & =1 / 3 g t^{2} \\
x & =2 / \sqrt{2} t \\
\text { Therefore } y & =\frac{9}{16} \frac{x^{2}}{h}
\end{aligned}
$$

This gives the width for anj difference of level waich the jot will just pass over with a head h. If in addit:on there is a velocity of approach h_{2} must include the nead nesessary to give that voiocity. winch is, $\frac{v}{2 g}$ if v is the velocity of approsich in feet rer socond. In order to describe the patn of the et, set off ad vertically to $1 / 2$ on any scale; and be horizontally equai to $2 / 3 \sqrt{3 n}$; divide ad and de into an equal numoer of gulai parts, join a with the divisions on $d c$, and verticals through the divisions on ad, the inter sections of these lines will give the paravoilc fatn of the underside of the jet."

The results of the tests in the iaboratory of the University of Illinois which are reported harein, led to tne conclusion tnat this method is not correct. It is besed on fallacies in the assumptions that first, the path of the center of gravity of the falling stream is a parabola with a vertical axis and with its apox at tho point of leap, second that all of the partisles in the stream descriwe the same path, and that the slope of the approaching stream can bo neglected. The coordinates of the points of the falling stream in different tests have been plotted on lojarithillc pajer in Figures 11, 12 end 13 for the nutside of the jet, in Figures 18, 19 and 20

Plan

Sec $b-b$
Leaping Weir at Blockhoof St
for the inside of the et, and in ilgures 24,25 , and 26 for che 'middle'. curve or unbroken surface on the underside of the jot. The slope of these lines shows that none of tae particies on these surfaces follows the path of a common parabola in its fall. The different slopes of the pioted lines on the figures mentioned shows the effect of both the velocity of approach and the siope of the aproaching stream.

The design of a wair on this basis, particularly if the fail is greater than twelve to elghteen inches is linely to lead to marnedly erroneous conclusions. Table I has been prapared to show the discropancy betweon this method and the actual observetions.

> TABLE I

COMPARISON OF UMIN'S LEAPING UEIR FORMULA

> AND

DIRECT OBSER NATI JIS

				$\begin{array}{r} + \\ 10 \\ 10 \end{array}$	\% VALUES Of x					
						$=1$.				
					Unwin	Obs	¢		Obs	erved
						Inside	Middle	UnWIN	Inside	Middle
	0.12	1.66	. 043		0.53	0.34	0.42	0.92	0.	1.03
2	0.14	2.04	. 255	-0.2.	0.61	0.25	0.49	1.06	0.85	1.13
214	0.20	3.30	. 170	0.37	0.81	0.41	0.60	1.40	1.05	. 41
7	0.98	4.65	. 338	1.32	1.53	1.07		2.64	1.92	
19	0.04	4.05	. 256	. 20	. 46	. 01		2.52	. 80	
29	0.85	6.29	. 617	1.47	. 61	. 24		2.78	2.00	
195	1.20	55	. 482	1.68	1.73	1.45	1.59	2.99	2.16	2.49
9	0.61	3.73	. 218	0.83	1.21	0.79		2.10	1.59	
206	0.63	4.40	. 303	0.93	1.28	0.32	. 02	2.21	1.49	1.86
217	0.55	6.35	0.53	1.18	. 45	0.95	1.18	2.51	1.15	2.

Sect. 5. Existing Instaliaivons:- The iact that eristing installations designed by the Unwir inethod aro reporter as giving satisfactor results is prowanly due to the uncertainty comearning the ariount of dilution necessary before the mixture of rain water and sewage may be discharged untreated without causing a nuisance. The British Rojal Comission resomended a dilution of five to one, that is, the storm fion a.3 to ve six times the dry neather flow

Defore it could be passed untreated into a stream.
There are nany leaping weirs in existence. Fisure 5 shows one of the weirs at Wapkoneta, Ohio, designed by A.E. Kiniverley, by the 'Jnwin' method, and reported as giving satisfaction. Figure 2 shows one of the weirs at Milwanee. This is provaily the earliest of the leaping woirs installed in the united States. Figure 3 shows, in diagramatic form, the experimental weir used at Syracuse, N.Y. and Figure 6 shows one of the weirs instailed on the basis of these tests. Figure 4 shows one of the eariy water supply weirs at bradford, England.

Sect. 6. Period Govered by Experimental hork:- The experimentel wrork on the lopping weir was begun in May 1916. The first preliminary run wes made on July 13, 10!6, the interifi befng ocoupied With setting up the apmaretus. The first run, the results of winch are innluded in the following work was nade on Lily 20. From then until November 18, the laboratory mork was pushed vigorousiy. Ino lattor part of the period was devoted to observations on overfiow weics as whll as lappine poirs.

Sect. 7. mests and Ouservations:- Tho type of ieaning woir tested was that formed by tho suisot end of a standard vitrilied sewar pipe. The original plen has to fisasure the sonrdinates of certain pints on the upper and lower surfaces of the strean leaping from such a pipe, and to axpress these coordinates in teriw of the known conditions of the run. In this wanner it was hoped to obtain a genernl exprossion whion would lizite possible the location of the "Inwer lip' of the weir for any recuired conditions of separation. It was found however, that the illside suriace of the stream was extremely rough and broker, (ser Figures 1 and 7) that is, the falling strean did not remain oolid. As a result three curves mere measured: the inside surve which represents the imernost line of drops of any consegience; the middle curve which represents the inner adge of the unbroken etream; and the outside curve which represents the sanot unibroken surfaon of the upper portion of the stream. In the first fer inches of fall the inside and inicile curves are coincident.

It was possible to observe the foints on the outside curve with the greatast accuracy because of the sioothness of the suriace. The coordinates of the other two curves could we aprozi hiated oniy to the nearest tenth to two tenths of a foot, jecause of the broken and rough condition of the streaf. Even on the outside curve surging

waves and changes in the stream causec vations of 0.05 , to 0.10 of a foot.

Tweive feet of eignteen inch pipe were used for the iirst.ten runs, recordea as rins 6 to 15 in subsecient tabies. Measuraments of the drop down curve above the weir ana the drop down curve oolow, the entrance at the upper snd of the pipe, when the pipe was on a ilat grade, aia not show conclusively the distance which the two curves reached into the pipe ana mace uncertain the determination of a possible rueting of the two curves. The length of the plpe was taen increased to twentyfour feet, ana this length was usea in all subsecuent runs. Measurements of the drop down curve were taken above the weir and velow the entrance when the sewer was on a fiat grade. Although not of great accuracy the measurements were sufficient to show that the drop awn curve cila not extend above the weir more than about three fe日t, which was well dolow tne lowest point due to the arop cown curve caused by the loss of head at the entrance of the pipe.

Sect. 8. Aiparatus Jsedt- Figure 8 shows some of the details of the flume and pipe line which were used to convey the water to the leaping weir. The ilume was built of one inch, watched, smooth lumber, well braced ana joineo so as to permit little leakage. For the runs on the eighteen inch pipe, the pottoii of the outsiae of the bell of the pipe was laia on the floor of the flume, the siaes of the flume were convergea towara the pipe, and a rather abrupt oell routn was foriec by a flaring conerete block around the entrance to the pipe. The invert of the twentyiour inch pipe was laia flush with the bottom of the flume as shown in the figure. No vell douth or converging entrance was used with the larger size of pipe. The sices of the flurue ana the siass of the pipe were aprocimately in. the same straignt line.

The joints of the pipe were tiade watertight and the inner surface Was miade smjoth by filling the joints with ceuent, flush witn the inner face of the pipe.

The siope of the invert was determinea by measurements tanen froiil a levpl string suspenaed above the wipe, by means of a feasuring
stick passed through noles in the pipe. Tnese holes were soue distance apart, and to make certain that the grade of the invert was smooth a small strean was run through the pipe and aiscrepancies in the grade were noted by the changes in the wiath and appearance of the stream. The slope of the invert was changed by uears of screw jacns placed permanently as supjorts under the pipe. A relatively large change of the jack screw would make but little change in the elevation of the pipe above it, and because of the manner of support the pipes were maintained in good alignent cotn norizontaliy and vertically.

The coordinates of the leaping stream were feasured by means of the apparatus shown on a larga scale in Figure 9. The origin of coordinates was taken as the lip of the weir. The abscissas were measured out from a plumb line hung from the 'origin', the 'zero' coing located on the scale of the movalo board shown. Figure 1 is a photograph of the apparatus in action showing a portion of the measuring device in place.

The cuantity of water passing over the leaping weir was measured on a standarc weir placea in tha ladoratory weir channel. Different sizes of weirs were used in accorciance with the auount of water being used. The woirs varien frou one to three feet in length, with the miax ilum head on any weir not exceeding about fifteen incios. Both suppressed and contracted weirs wore used. Because of the large rates of flow and the dificulty $O_{\text {a maintaining air under the suppressed }}$ weir with high rates of fiow, the trree foot contractea weir was usea iuore than any other.

The water was obtained from a suip in the waselient of the laboratory and was raised by either one or both of two pumps. One of these puips was a staziil ariven direct acting duplex pump and the other a centrifugal pump delt driven frou a simple Cofliss engine. Bath pumps were ariven to tha limit of tneir capacity during various runs. The highest quantity obtained at any time with both puivs going was about six thousand gilons per minute during run number 490. The aischarge from these two pumps passed through a tweive inch pife to a stilling box (See Fig8) at the upper and of the flume. Aarcuate
covering and baffles wereplaced on and in the box to prevent splasiing and to force tine water to issue into the fluie in a fairiy guiescent condition. A valve was placed on the twolve inch ripe imuediately above the stilling Dox and rariations in the rate of flow in the pipe were obtained partly by manipulation of this valve and partly by altering the speed of the two pumps. The rate of flow during a run was raintained constant by means of a connection between the discharge from the pumps and the stanapipe in the lavoratory in whici a constant level was maintainad by a Fisher automatic governor connectod to the steam pipe on the steam pump. A measureuent of the rate of flow through the apparatus was made after every coordinate observation in oroer to make sure that the conditions nad not cnanged during the run. After the water had passed over the stancard usasuring weir it was led to the sump and used over again.

The depth of water in the sewer for different rates of flow was observed. The cegree of accuracy of the cepth measurements was low becuse of the roughness of the surface, the preserice of standing waves and the occassional occurrence of the phenomenon of the hydraulic jump. Constant vigilance was nocessary to guard against the presence of the latter condition during a run. The ump was easily broken up by placing anobstruction in the pipe until the water nad backed up considerabiy and then sucidenly reiloving the oustruction. Escept for very low rates of flow the depth measurerients were accurate oniy to the nearest 0.05 foot.

Sect. 9. Nabing A Run: - The order of procedura in making a run was as follows:

Adjust the coordinate measuring cievice and measure the zero of coorcinates. Then reilove the plumb bob frow inter ${ }^{\text {ference }}$ with further observations.

Take reasurements from the level line down to the invert of the pipe to deteraine the slope, and adjust by iueans of jacns if not correct. Run a thin strean of ter through the pip to wane sure that the s.lignment is good and adjust if unsatisiactory.

Start the steam pipe and fill the stanapipe until the governor shut off the purup. Prime the centrifugal pump. Open the valve into the stilling box and start the centriâugal puimp. Adjust the two pumps
to about the proper speed with the valie above the stilling cok at such an opening as to give the desired rate of flow over the leaping weir. The pumps were allowed to run for iroui two to file minutes until it was certain that there were no great fluctuations in the conditions.

Read the hook gage on the standara weir.
Rea: the coorainates to some paint on the curve under obsariation and continue to alternate this and the preceding step until four or five points have been read on each curve.

Read the depth of the water at the lip of the weir.
Read the depth of water in the pipe.
It is believed from the results calculated from these observatlons that the greatest error in this process was in readings of the slope of the invert of the pipe. A relatively sinall variation in the slope will mane a maraed change in the coordinates of a point in the falling stream.

CHAPTER III

-..- :RESULTS COMPUTED FROM OBSERVATIONS:---

Sect. 10. Direct Opsertations:- The slope of the invert and the depth of water on the lip of the weir and in the sower are recorded in TableII. The coorainates of the points on the falling stream are recorded in Table III. These tables are made up from the direct observations recorced in the note book, by making the proper correction for the observed 'zero'.

Sect. 11. Rate of Fiow: - Tha rate of flow through the sewer was computed by applying the appropriate Francis weir formuia to the observations made. Tre collputation of the rate of ilow for run number 20 , is given as an example, as follows:

The hook gage reading on the three foot contracted weir was 1.295 feet. The zero reading on the gage was 0.767 feet. The difference between these two ralues was substitured for n in the oxpression $Q=3.33(1-0.2 h)^{3 / 2}$ The value of Q in this case is 6.38 cubic ieet per second.

Sect. 12 Value of 1 In Kutioc's Formjatat- Before proceoding with velocity computations it was necessary to compute the exact depth of flow, the hydraulic radius, and the area of the cross section of the streain, for each run. The deptns of flow as observed were too inascurate for direct use, due to tre rough condition of the surface of the flowing streati. The procedure foliowed was to compute the average value of n from the rate of flow and the observed depth of water in the pipg for ail runs. Having obtained anaverage value of n by this means, the depth of flow for the individul runs was computed, and the computed deptns were used in subseguent calculations, not the observed depths.

The ratio of the observed depth of flow to the diameter of the pipe was first computed. The otner hydraulic elements were then read from Figure 10. The velocity of flow was then found by
dividing the rate of flow by the area of the cross section of the stream. The velocity, hydralilic radius and slope were then substituted in Kutter's formula and n solsa for airectly. The arerage of all of these computations is snown for each slope in Table IV. The final average of all results, and the figure that was used tiroughout all the subsequent computations was that $n=0.013$

TABLE IV

------: VALUE OF n IN KKTTER'S FORMJLA DETERMINED:-... from
------ :OBSERVATIONS OF DEPTH OF FLON:--..--
in
------- LEAPING WEIR EXPERIMENTS:------

Diameter of pipe in inches	18			24			
Slope	.007	.010	.018	.005	.006	.010	.014
Average value of n	.012	.013	.012	.011	.014	.016	.015

Sectur 13. Calculated Depth_of Elow:- The deptin of flow calculations are probauly more accurate than the observations of the depth of flow, because the calculations represent the average of all of the observations. The computations were made as follows: A tabie was made up showing the rate of ilow in eighteen and twentyfour inch pipes when flowing fuil on different slopes, as read from Swan and Horton's Hydraulic Diagrams, and checked by computations using Kutter's formula.

For any particular run the ratio between the flow when part full and the flow when full was next computed, and the ratio of the depth of flow to the diameter of the pipe was read frow Figure 10. The actual depth of flow was then the product of this ratio and the diameter of the pipe. In a few cases the dopth calculated in this manner was checked by a deterimination of the hydraulic radius and a direct substitution in kutter's formula. In no case was a material discrepancy found between the results read from Figure 10 and the results as computed from Kutter's formula.

The results of the depth of flow computations are given in Table I.

Sect. 14. Volocity Heads - The velocity nead for each run was computed in order to deteraine the possible relation oetween the coordinates of the stream and the velocity nead. The fact that the lines in Figures $11,12,13,18,19,20,24,25$, and 26 are not parallel indicates conclusively, as was shown on page 6 , that the velocity head cannot act as is suggested in Unwin's analysis.

TABLE II
MISCELLANEOUS DATA FOR LEAPING WEIRS

			Depth inf Obser- ved	$\begin{aligned} & \text { hof Flow } \\ & \text { Feet } \\ & \text {-Calcula- } \\ & \text { ted } \end{aligned}$	Velocity Feet per Second		$\left\|\begin{array}{lll} 0 & 0 \\ 0 & \frac{1}{2} \\ 0 & 0 & 0 \\ \hline 0 & 0 & = \\ \hline \end{array}\right\|$		Depth of Flow in Feet observal Calculato		Velocity Feet per Second
		181	隹	pipe				24 in	-		
6	. 005	1.356		0.44	3.20	195	. 005	10.30		20	5.55
7	. 205	5.54		0.98	4.65	196	. 005	6.48	0.33	0.92	4.91
8	. 005	4.02		0.79	4.37	197	. 005	7.60	0.92	0.90	4.79
9	. 005	2.55		0.61	3.73	198	. 005	4.64	0.69	0.74	4.21
10	. 005	. 479		0.26	2.30	199	. 005	3.06	0.56	0.59	4.05
11	. 023	6.33		0.66	8.40	200	. 005	1.62	0.42	0.43	3.19
12	. 023	5.51		0.61	8.05	201	. 006	10.79	113	1.13	5.90
13	. 023	4.633		0.54	7.91	202	. 006	9.14	0.99	1.03	5.55
14	. 023	2.40		0.40	6.46	203	. 006	6.84	0.92	0.87	5.18
15	. 023	0.66		0.22	4.16	204	. 006	0.585	0.25	0.27	2.40
16	. 004	2.09	. 76	0.59	3	205	. 006	2.22	0.50	0.48	3.80
7	. 004	0.78		0.35	2.4	206	. 006	3.75	0.63	0.63	4.40
18	. 00	. 085	. 25	0.14	1.12	207	. 006	5.64	0.76	0.78	4.88
19	. 004	4.66		0.94	4.05	208	. 009	0.514	0.23	0.25	2.64
20	. 004	3.76	. 97	0.82	3.92	209	. 009	2.14	0.46	0.42	4.28
21	. 007	6.2	. 83	0.95	5.34	$21:$. 009	3.86		0.57	5.17
22	. 007	3.98	. 70	0.71	4.78	21	. 009	6.34	0.82	0.74	5.97
23	. 007	1.93	. 44	0.49	3.92	212	. 009	8.51	1.06	0.87	6.40
2	. 007	0.80	. 35	0.31	2.96	213	. 009	11.58	1.21	1.05	7.10
25	. 007	. 083	. 12	0.12	1.66	214	. 014	0.364	0.15	0.20	3.30
2	. 010	0.66	. 25	0.27	3.28	215	. 014	1.22	0.29	0.30	4.10
27	. 010	1.72	. 44	0.41	4.33	216	. 014	3.17	0.51	0.46	5.70
28	. 010	0.13	. 14	0.1 .4	2.04	217	. 014	4.44	0.63	0.55	6.35
29	. 010	6.38	. 81	0.85	6.29	218	. 014	8.10	0.94	0.75	7.53
30	. 010	4.07	. 65	0.56	5.49	219	. 014	11.48	1.07	0.91	8.20
31	. 018	4.02	. 54	0.55	6.77						
32	. 018	6.29	. 75	0.70	7.71						
33	. 018	1.68	. 33	0.35	5.30						
34	. 018	0.71	. 21	0.24	4.55						
35	. 018	. 075	. 08	0.25	2.45						

CODRUINATES OQ POINTS OBSERVEJ ON LEAPING WEIR Distances in feet

	Coordinates fromLip of weir					Coordinates fromLip of Weir				
	Y		\times			Y		\times		
	$\begin{aligned} & \text { All } \\ & \text { Curves } \end{aligned}$	Inside	Middle	Outside		All Curves	Inside	Middle	Outside	
6	0.71	0.53	- 24	1.24	13	0.13	0.31		1.38	
	0.91	0.65	---	1.37		0.48	0.73		1.71	
	1.21	0.77		1.54		0.98	1.29		2.15	
	1.71	0.92		1.79		1.48	1.41		2.55	
	2.21	1.10		2.01		1.98	1.57		2.87	
	2.71	1.30		2.23		2.48	1.88		3.18	
	3.21	1.46		2.44	14	2.48	1.5		2.77	
7	2.71	1.87		3.18		1.98	1.3		2.50	
	2.21	?. 65		2.91		1.48	1.16		2.21	
	1.71	1.40		2.63		0.98	0.9		1.85	
	1.21	1.15		2.33		0.48	0.63		1.38	
	0.71	0.8 ?		1.93		0.18	0.30		1.22	
8	0.71	0.30	--.	1.54	15	0.18	0.26	---	0.78	
	1.21	1.20		2.02		0.48	0.4	0,53	1.07	
	1.71	1.43		2.24		0.98	0.65	1.0	1.48	
	2.21	1.61		2.61		1.48	0.86	1.26	1.79	
	2.71	1.77		2.86		1.98	1.07	1.47	2.06	
$\overline{9}$	3.21	1.69		2.74		2.93	1.51		2.49	
	2.21	1.26		2.29	16	0.49	0.59	0.74	1.17	
	1.71	1.10		2.05		0.99	0.84	0.99	1.50	
	1.21	0.90		1.78		1.49	0.95	1.30	1.81	
	0.71	0, 52		1.44		1.99	1.26	1.46	2.18	
10	0.71	0.36		0.88		3.49	1.33	1.43	2.70	
	1.21	0.56		1.15	17	0.49	0.29	0.49	0.33	
	1.71	0.75		1.37		0.99	0.54	0.59	1.11	
	2.21	0.81		1.54		1.49	0.70	0.80	1.36	
	3621	. 14		1.85		2.49	1.02	1.17	1.76	
11	0.18	0.35		1.80		3.49	1.33	1.43	2.07	
	0.48	0.78		2.12	18	3.49	0.93	----	1.26	
	0.98	1.40		2.50		2.49	0.72		1.07	
	1.43	1.86		3.01		1.49	0.45		0.82	
	1.98	2.12		3.37		0.99	0.24		0.66	
	2.48	2.38		3.63		0.49	0.04		0.46	
12	2.48	2.03	-	3.46	19	0.49	0.69	----	1.54	
	1.98	1.77		3.10		0.99	0.94		1.96	
	1.48	1.51		2.74		1.49	1.25		2.30	
	0.98	1.25		2.35		2.49	1.62		2.92	
	0.48	0.73		1.78		3.49	1.93		3.38	
	0.18	-	$=$	\|1.57	1					

	Coordinates fromLip of Weir					Coordinates from Lip of Weir			
	Y	\times							
	Curves	Inside	Middle	Outside			Inside	Middle	Outside
20	3.49	1.38		3.15	28	0.57	0.13	0.13	0.69
	2.49	1.52	---	2.67		0.77	0.13	0.3	0.80
	1.49	1.05		2.11		1.07	0.3	0.5	0.95
	0.99	0.89		1.79		1.57	0.4	0.7	1.13
	0.49	64		. 41		2.57	0.7	1.0	1.45
21	0.53	0.8		1.93		3.57	1.1	1.25	1.73
	0.73	1.0		2.09	29	2.57	1.9	2.2	3.51
	1.23	1.3		2.51		1.57	1.4	1.73	2.86
	1.73	1.4		2.34		1.07	1.2	1.33	2.51
	73	1.8		3.45		0.77	1.1	1.13	2.24
22	2.73	1.42		3.10		0.57	0.9	0.9	2.06
	1.73	1.13		2.55	30	0.57	0.8	0.8	1.69
	1.23	0.94		2.24		0.77	0.93	1.03	1.85
	0.73	0.7		1.86		1.07	1.1	1.23	2.10
	0.53	0.65		1.76		1.57	1.2	1.5	2.42
23	0.53	0.5		1.23		2.57	1.7	1.94	3.07
	0.73	0.6		1.42	31	2.36	1.4	1.9	3.18
	1.23	0.84		1.77		1.36	1.02	1.4	2.50
	2.23	1.2		2.30		0.86	0.76	1.11	2.13
	3.23	1.4		2.78		0.56	0.51	0.86	1.84
24	3.23	1.22	1.42	2.27	32	0.56	0.06	0.91	2.17
	2.23	0.9	1.13	1.88		0.86	0.96	1.21	2.47
	1.23	0.54	0.7	1.43		1.36	1.22	1.47	2.95
	0.73	0.34	0.6	1.13		2.36	1. 1.69	2.04	3.71
	0.53	0.3	0.55	1.00	33	2.86	1.2	1.75	2.97
25	0.53	0.05		0.58		1.86	0.9	1.33	2.41
	0.73	0.2		0.67		1.36	0.72	1.12	2.09
	1.23	0.4	0.5	0.88		0.86	0.51	0.81	1.73
	2.23	0.7	0.83	1.18		0.56	041	0.56	1.46
	3.73	1.1	1.22	1.54	34	0.56	0.36	0.36	1.17
26	0.57	0.33	0.33	1.09		0.86	0.41	0.56	1.44
	0.77	0.33	0.43	1.22		1.36	0.62	0.32	1.76
	1.07	0.38	0.58	1.42		2.36	0.94	1.24	2.30
	1.57	0.6	0.8	1.68		3.36	1.2	1.7	2.77
	2.57	0.85	1.15	2.12	35	3.36	1.1	1.3	1.53
	3.57	1	1.45			2.36	0.84	1.02	1.35
27	3.57	1.55	1.9	3.08		1.36	0.54	0.65	1.03
	2.57	1.2	1.35	2.61		0.86	0.44	0.44	0.83
	1.57	0.9	1.13	2.27		0.56	0.26	0.26	0.06
	1.07	0.7	0.9	1.78					
	0.77	0.53	0.73	1.55					
	0.57	0.5	0.63	1.46					

TABLE III
(continued)

TABLE III (continued)

CHAPTER IV

--.----DEDUCIION OF RORMULAS:---.--

Sectu15. Rational considerations:- The conditions in a flowing stream are complex in so far as the locity of indiudual particles is concerned, as scarcely any two particies hay nave the same velocity. The average velocity of all the particies way not represent the velocity of any particle. As a ilowing stream approaches a jump or free leap, as in this series of tests, the velocity of the stream increases, resulting in a lowering of the depth of fiow, so that the actual depth of flow and the velocity at the point of leaping are different from the depth of flow and the velocity in the main channel. Althougn the indiviaual particies may tend to fall in a parabolic path determined by the horizontal and wertical compenents of their velocity and the action of gravity, the effect of the other particles with different velocities will be to disturb tnis parabolic path. In consequence it is probaile that the upior and lower edgas of the falling stream will not rewain paraliel, and that no particle in the stream will follow a parabolic path unless it be due to such a combination of the various velocities of its neighbors as to render the resultant path of the group that of a parabola.

Assuming, howsver, that the velocities of all the particlos of a flowing streali are the same, that the strean has a constant depth up to the point of leaping, and that the slope of the invert of the conduit is zero, the horizontal distance travelled in the time t will be vt, in which v is the initial horizontal velocity. The product ot is cual to the horizontal coordinate of any point on the falling stream as measured from tin point of leaping as the origin. The distance which the same particle will drop in the time t will be $1 / 2 \mathrm{gt}^{2}$, which is the vertical coordinat of any point on the falling streali measured iron the same origin. Using x and y to represent the lues of the coordinates, and eliminating t it is found that $x=1 / 4 \mathrm{vy}^{1 / 2}$ which is the equation of a common parabola, with a vertical axis and its apex in the origin.

The preceding assumption as to a constant depth of flow on a

$$
\text { Values of } Y \text { in feet. }
$$

flat grade is an assumption of an impossible condition. The ordinary condition would be somewnat as shown in Figure 7 with a slignt drop down curve above the lip. Disregarding the change in velocity due to the change in the section of the stream, and assuming that all of the particles have the same relocity egalal to the average velocity, then, using the same notation, with the addition of \varnothing to represent the angle of the slopa with the norizontal, see Figure ?,

$$
x=t v \cos \phi \text { and } y=t v \sin \phi+1 / 2 t^{2}
$$

Solving for t as before and equating it will be iound that

$$
x=v \cos \phi\left(\frac{-V \sin \phi \pm \sqrt{V^{2} \sin ^{2} \phi+2 g \gamma}}{9}\right)
$$

It is evident from the form of this last expression that the path describod by the failing particles is not that of a common parabola with a vertical axis and the apex at the origin. It is also evident that the character of the path traversed is not inderendent of the slope of the pipe.

Since the average velocity of the streati is sreater than the velocity at the bottom of the streali and is less than the average velocity at the point of leaping, it is ovident that the last express ion is not correct for the cuordinates of the insiae curve. It is also true that if the depth of waterin tne pipe be added to the y coordinate the Expression wolld be erroneous for the coordinates of the outside curve for similar reasons. If the relation detween the average velocity and the top and bottoli velocities were known, and the actual velocities of the particles were suustituted for v in the expression, the result would still be incorrect as is evioent from consideration of the fact that the mutual attraction of the particles will tend to impart the path of one upon the path of the other and the forfir of the inside and outside curves is an averaging of these initial velocities and later tendencies.

Sect. 16. Empicical Exprassions:- Professor W. C. Unwin's empirical expression, referred to in section 4, based on a portion of the preceding theory would lead to the conclusion that py piotting y against x for any particular ourve, on logarithmic paper the points would fall on a straight line whose slope was two. This suggested the plotting of such points for the three curves which were observed in the tests. Sinee the observations for the outside
curve were the riost accurat the points on the outside curve were plotted first.

Secte 17. Dutside Curves_Gengrail- The coordinates y
and x recoraed in Table III, have been plottea for the wajority of runs in Figures 11, 12 and 13. The points for any one run lie close ly on a straight line, except for the higher velocities and slopes, where there is a slight tendency for the line to curve faster to the right as the value of y increases. It is probaule that there is a tendency for these lines to approach a slope of two. This tendency is so slight however, that within the limits of error of the opservations and the desired accuracy of the results, it can de ignored. Although the points lie on straight lines the slope of these lines is different for each run, which would indicate that the exponent of y is not a, constant, but is dependent on either s or v or both. That is for v and s constant it is gvident that

$$
x=k y^{m}
$$

It is possible that by ploting x against v with y constant that it may be discoverea that $x=k v^{n}$. In Figure $14, x$ as read from Figures 11,12 and 13 has been plotted against v for various constant ialues of y and lines drawn joining points on the same slope. Although these points do not lie as closely on a straight line as the plots of the x and y coordinates, the evidence is that for any particular vilue of y and s

$$
x=k v^{n}
$$

and therefore for any particular value of s

$$
x=k y^{m_{v} n}
$$

in which k is a function of s, Im a function of s and v, and n a function of y and s.

Sect. 18. Outside Curve. value of me Eaponant of yi- It will first be attempted to find the value of in, the exponent of y. For this purpose the siope of each xy line has beon read from Figures 11,12 and 13 and recorded in Tabie V. The valles of v were then plotted against m for each line, but as the slope of the $x y$ lines could not be read with any great degree of accuracy the natural tendency of the lines tnrougn the vil points was assumed and the slopes reread to see how closely they would conforiil to the assumed tendency. Three different relations for the vilu lines were assumed
and the lines replotted to coincice with these relations as closely as possible

The relation assumed first was that the points laj on a straight line for any one value of s and that the lines determined for different values of s were paraliel. This would mean that the relation between v and I is in the form $v=p m+i n$ which p is a constant and represents the slope of the vm lines, and G_{1} is a variable dependent on the value of s. The value of p was scaled froii the vm lines and found to be (-)24.6. The nezt step was to find the relation between c and s. For this purpose s was plotted against q. The points foll on a straight line, showing that the relation between q and s is in the form $s=p^{\prime} q_{2}+k$. The values of p^{\prime} and k as read frof the sq ine were 0.0059 and (-)0.0786 respectively. Substituting and transposing it was found that

$$
m=6.92 s+0.0407 v+0.542
$$

The vm lines conforming to this eciation were drawn for values of s and the values of vand mwereread from Figures 11,12 and 13 So as to conforiil as closely as possible to the above relation and these ralues were also plotted. The discrepancy between the calculated and ooserved lines made it evident that for the ste日per invert slopes the slope of the vm lines (value of p avove) was geater than that given by the precedine expression. For this reason the relation assumed first was considered as not correct, and the graphic al analysis has not been included nerein.

The next relation which was assured was that the locus of the values of v when plotted against in was a conic whose equation was in the form $m=0.5-\mathrm{kv}^{p}$ which was used in the form

$$
\log k+p \log v=\log (0.5-m)
$$

The lines formed on logarithmic paper with values of ($0.5-\mathbb{I I}$) as absiccas and values of v as ordinates for different but constant values of s were equally spaced for equal variations in s. It follows from the logarithmic ecuation above that when. v. ecuals unity $k=(0.5-m)$. It is therefore true that

$$
\sin \phi=\overline{\log 0.0068-\log k}
$$

in which cs represents the distance which any $(0.5-\mathrm{m})$ v line is from the line representing the value of s equal to zero and \varnothing is the
complementary angle of the slope of these lines. By scaling from the plot it was found that $C=12.5$ Then substituting and transposing

$$
m=2-\frac{1}{10(2 \cdot 17+28 \mathrm{~s})}
$$

The vil lines sonforming to this relation were treated as for the relation previously assumed. In studying the resuits it seemed that as the velooities increased the values of m decreased too rapidly. It was also evioent that the conic did not cross the $X-X$ axis at the point $v=0, m=0.5$, and in view of the resuits obtain ed from subsecuent studies of the midale and inside curves a tnird assumption was wade with regard to the relation between v and m.

Figure 15 is a graphical representation of the relation finally assumed and adopted. This relation is such that the values of v when ploted against m for different a lues of s, fall on a series of straight lines converging at the point $v=0, \mathbb{m}=0.57$. Under this assumption the relation between v and m can be expressed in the form $v=q m+p$ in which both c and p are functions of s. The values of q for different values of s were scaled from.Figure 15 and plotted in Figure 16. Tis points fell upon a straight ine giving the relation between q and s in the form (-) $q=r s+k$. By scaling and computation it was found that the relation between c_{1} and s was in the form (-$)_{q}=1180 \mathrm{~s}+20.1$ The relation between p and s was found similarly and plotted in Figure 16, and the relation found that $p=0.57(1180 s+20.1)$. Substituting these values in the original form of the equation between v and \mathbb{T}

$$
m=0.57-\frac{y}{118 s+20.1}
$$

The vil lines conforiming to this relation haie been plotted in Figure 15 and the lines drawn through the corresponding talus of v and m as read from Tables II and V, for different slopes have also been plotted in this figure. Tno fuil lines represent the values as raad frofir the tables; the dash lines represent the relation as expressed by the abo ve ecuation.

The values of π for ail three assured reiations were studied and the results were compared with the observations. The final exprossion for I gave the most accurate results and was more in conformity with the results obtained by similar studies of the inside and middle curves. It was therefore selected as the expression for

Values of 6
the exponent of y for the outside curve.
Sect. 19e Outside Curat riblue of D. The Exwonent of y :-
If in the equation $x=k \bar{y}_{\mathrm{v}} \mathrm{n}$ the lue of y is unity, then $x=k v^{n}$. Then by holding y ecual to unity and plotting v against x on logarithmic paper, the exponent of v can be determined. This has been done in Figure 14 and the value of n read as 1.0 regardless of the slope of the invert. The slope of the $x V$ lines is not the same for different raiues of y as is shown in the figure, but since the value of x for any ralue of y is ecual to the value of x when y is unity multiplied by $y^{\pi /}$ the preceding uethod of finding $\mathrm{m}^{\prime \prime}$ is correct.

The equation of the outside curve has now been developed to the form

$$
x=k y \quad 18 \mathrm{~s}+20.10
$$

It now remains to find some relation betwen k and x. Sect. 20. Outside Curve. Value of k, the Coofficiont :When y is unity the value of k is x / v_{0}. /aiues of k for different but corresponding values of x and v were computed for all runs and recorded in Table VI. A study of this table will show that the value of k is practically constant for any particular talue of s. The values of k were plotted against s in Figure 17 and a line was drawn through the argrage value of k for each talue of s rocorded.

The oquation of this line as determined by trial. It was concluded that the portion of the line within the limits of $s=.023$ and 0.010 was straight, and for values of s less than 0.010 the ecuation besame that of a curve in the form $k s^{p}=1$. Values of this relation were determined by trial in such a manner that the value of k for values of s greater than 0.010 was changed by less than 0.001 , whion is a greater change than the accuracy of the computations will permit. In other words the error introduced into the expression for the straight line portion by the expression for the curved partion is so small as to be veyond the limits of the accuracs of the computations. The value of k was f inally oxfressed in terms of s as

$$
k=\left(\frac{1}{10}\right)^{\prime \prime}\left(\frac{1}{s}\right)^{4}-7.5 s+0.543+\varnothing
$$

The line determined by this equation was plotted in Figure 17 and

the result coincides satisfactorily with the observations.
The term is included in the abo ve expression to eare for that portion of the curve extending bayond the diagram for laryer values of s. It is probable that the expression for k is not trie for much higher slopes because the value of k would pecoue negative for values of s greater than 0.072, which would, in turn, give negative values of x which is unreasonable. Subsecuent studies of otner curves indicates that the curve between k and s becoues asymptotic to some horizontal line, i.e. the value of k approaches a constant as s approaches infinity.

Secte 21. Dutside Curve. Finel Fiorill Qf the Equation:- The final form of the equation for the outside curve is

$$
x=\left\{\left(\frac{1}{10}\right)^{\prime \prime}\left(\frac{1}{5}\right)^{4}-7.55+0.543\right\} y^{\left\{0.57-\frac{V}{118 s+20.1}\right\}} y
$$

This equation is good only within the following limits: Liuits of s between 0.204 and 0.023
Iimits of v betwean 1.0 and 8.5 feet per second Limits of diameter between 18 and 24 inches. Limits of y Detween 0.75 and 4.0 feet
There is no certainty as to the value of results computed from factors beyond these limits. A more extended discussion of this point is given in section 33 . The value of the term $\left(\frac{1}{10}\right)^{\prime \prime}\left(\frac{1}{5}\right)^{4}$ is negligible for values of s equal to or greater than 0.010 . Short cut methods, tables and diagrams for the solution of this expression have been prepared and are discussed in section 35 .

Sect. 22. Inside Curve Genaral:- The procedure followed in the dedustion of the equation of the insiae curve was similar to that followed for the outside curve. Lalues of y were plotted against x in Figuros 18, 19 and 20, and of x against v in Figure 21 , from which it is evident that the middle curve is also in the form

$$
\mathrm{x}=\mathrm{ky}^{\mathrm{m}_{\mathrm{v}} \mathrm{n}}
$$

Sect. 24. Inside Curve. Valuo of m. Enconet of y:- The values of the slope of the $x y$ lines read from the plots in Figures 18, 19 and 20 are rocorded in Table V. The value of v was then plotted ageinst corresponding values of m and but two different relations assumed, insteal of three as for the outside curve.

The first assumed relation was that the points of the $v m$ line

lay on a straight line for any one value of s and that the lines deterinined by different values of s were parallel and equally spaced. The equation for this relation was worked up, the lines plotted to agree with the equation and the values of ill reread froii the xy lines were also plotted against v. It was eviaent, as in the attemp for the outside curve, that this assumed relation did not give a sufficiently steep slope to the vm lines for the larger values of. S. The relation was not used as a result.

The second relation assumed was similar to the final relation assumed for the outside curve, that is, that the values of v when plotted against il would fall on a series of straight lines determined by different values of s, and that these lines would converge at a point where $v=0$ and $m=1.095$. The relation between m, v, and s, was determinad in tho same wamer as for the outside curve and the result reached that

$$
m=1.085-\frac{V}{470 \mathrm{~S}+5.4}
$$

The dash lines in Figure 22 have been plotted in accordance with this ecuation. The full lines are determined by the values of v and in as read from Tables II and V . The agreament between the assumed (dash) lines and the obsorvad (full) lines is graphically shown. Although there is a greater discrepancy between the results for the inside than for the outside curves, the accuracy of the observations was alse of a lower degree. The above expression has been accepted as final for the relation setween $I I, v$, and s for the inside curve.

Secte. 25a Inside Suvve. Nalue of n. The Suponent of y^{1-}

The values of v hava been plotted against x in Figure 21 with y as unity. As in the case of the outside curve, when y is unity $x=k v^{n}$ for the inside curve. Then by reading the slope of the $v x$ line when y is unity, from Figure $2 i$ the value of n was determined as 1.4

The ecuation for the inside curve has now been reduced to the form

$$
x=k y^{\left\{1.085-\frac{v}{4705+5.4}\right\}} v^{1.4}
$$

It now ramins to find some rolation between k and x. Sect. 26. Inside Curve. Ib lue of k. The Copficient:- Table

V contains the values of k computed from the relation that $k=\frac{x}{v} \cdot 4$ when y is unity. It is evident from this table that the value of k is practically constant for any partioular vaiue of s, and that it is independent of values of v, or x. The values of k have been ploterd against s in Figure 23. The equation of the ine drawn through average values of k was determined by trial to be

$$
k=\left\{\frac{37}{10^{5} s}+.039\right\}
$$

It is to be noted that this is in a somewnat different form from the expression for k for the outside ourve. It was determined on the assumption that the curve followed the law $k=C / s^{P}+C_{1}$ which is the ecuation of a curve asymptotic to the $Y-Y$ axis and to a line para llel to the $X-X$ axis through the value of the ordinate C_{1}. This equation was rewritten in the form $\operatorname{logK}+P \log S=\log \left(\frac{C}{1-C_{1}}\right)$. Since C and $C_{\mathcal{Y}}$ are constant the coordinates of any point substituted in this expression should ecual the result obtained by substituting the coordinates of any other point in the expression. The substitution of the two extreme points, with $s=0.004$ and 0.023 was made and the results equated. C_{1} was assumed to be 0.5 and the value of p determined as 1.5. The equation was then rewritton as $k=\frac{c}{s^{1.5}}+0.5$ and the value of C determined by substituting the values of k and s for any point. The value of C was thus determined as 0.000033 and the resultant expression as $k=\frac{0.000033}{s^{1.5}}+0.5$ This curve was plotted and found to be unsatisfactory. The values of p and C_{1} ware readjusted by trial and the different curves plotted until a satisfactory result was obtained. The trials were mede with the snowledge that by increasing the exponent pof the denouinator tne curvature was increased: by adding a constant to the denominator the curve was shifted irom left to right or rigit to left according as the sign of the constant was plus or minus; and that by increasing the value of C_{1} the curve was raised, or by decreasing it the curve was lowered.

The line determined by the final value of k in terius of s is shown in Figure 23. This line seems to be more reasonavle than the one for the outside curve becalse the talue of k approaches a constant (in this case 0.039) as s approaches infinity. Error in exterding the ecuation for steejer siopes than those observed should not be so great as in the former case.

dash line indicates assumed locus.
$\begin{array}{llllll}0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8\end{array}$

Sect. 27. Inside Curve. Final Erin of the Equation:- Tine final form of the equation of the inside curve is

$$
x=\left\{\frac{0.00037}{\mathrm{~s}}+.039\right\} y^{\left\{1.085-\frac{1}{4705+5.4}\right\}} v^{1.4}
$$

A discussion of the accuracy of results to be obtained by extending this equation beyond the limits of the observations is to be found in section 33. Short cut methods, tables and diagrams have been prepared for the solution of the option. They are discussed in section 35

Sect. 28. Middle Curve, General:- With the experience gained from the determination of the equations for the inside and out side curves the procedure for the determination of the equation of the riddle curve was simplified.

The values of y gere plotted against x in Figures 24, 25 and 26 and the values of x against v in Figure 27. The relation was found to be in the typical form $x=k^{m} y^{n}$.

Sect. 29. Middle Curve . Value of m. Exponent Of y: - The values of v were plotted against m and the general tendency of the val lines was observed. It was assumed that the vil points fell upon a straight line for any particular value of s, and that the lines determined by different values of s converged at a point whose coordinates were m equal to unity and v equal to zero. The ecuation of these lings was determined, as in the preceding examples, to be $m=1-\frac{r}{550 S+6.5}$ The lines determined by this expression have been plotted as dash lines in Figure 28 and the actual values of V and $I I$ have also been plotted as full ines in this figure. The agreement between the observed and calculated lines is sufficiently accurate for use.

Sect. 30. Middle Curve. Value of n. Evuonant of y: The value of x was plotted against v with y as unity, in figure 27 The slope of this line gives the exponent of v as 1.3 v
The equation is now in the corm $\quad x=k y\left\{1-\frac{v}{550 S+6.5}\right\} y^{1.3}$ and it remains to determine the value of k .

Sect. 31. Middle Curve Value of kn The CoolfisientTable V contains values of k computed from the relation that $k=\frac{x}{v^{13}}$ when y equals one. These values are plotted against s in Figure 29, and the relation between k and s determined as before to be

$$
k=\left\{\frac{625}{(10)^{14} s^{4}}-5 s+.204\right\}
$$

Sect. 32. Mid le Curve. Finsl Eorm of tian Ruation:- The
final form for the equetion of the midale curve is

$$
x=\left\{\frac{625}{(10)^{14} s^{4}}-5 s+.204\right\} y^{\left\{1-\frac{1 s}{550 s+6.5}\right\}^{1.3}}
$$

A discussion of the accuracy of results to be obtained by extending this ecuation beyond the limits of the observations is to found in spation 33 . Short cut methods, tables and diagraïs have been prepared for tha solution of the equation. They are discussed section 35 .

Sect. 33. Use Of Equations Beyona Limits Of Trests:- With the empirical axpressions in hand, deduced fromil observations made between fixed limits of certain conditions, it is desirable to kno to what extent it will be safe to use the relations beyond the limits within which the tests were made.

Consider first the effect on tre middie and inside curves of the use of a different diameter of pipe than one between the liuit of gightean and twentyfour inches. If the ratio petween the bottor velocity and the mean velocity of the stream is constant, a change in the diameter of the pipe should not affect the ourves. No diffe ence is noticable between the results obtained in the experiments on the eighteen and twentyfour inch pipes for any of the curves studied. In the words of Professor Dwight Porter in his monozraph Hydraulic ieasurementsl "There has been much diversity of opinion as to the geometrical curve best representing the distribution of velocities in the vertical (plane), and investigators nave various found it to be the ordinary paraboia with norizontal axis.... (etc) Each of these may perhaps best fit some particular set of experiments......but the most extensive series of observations, such as those of Humphreys and Abbot, Ellis, Cunningham, and others have 1 their authors to adopt the common parabola with norizontal axis as the typical curve, and this is now very generaliy assumed."

It follows that although tione nay be souit dount as to the ei act ratio, the ratio between the mean velocity and the velocity at any particular relative depth is generally assuned as constant for all streams provided the condition of the deannel sides reluains the same. Upon this basis it would be safe to a atend the ecuation herein deduced for the insiae and riddle curves to any dianeter of pipe. The different character of the outsice curve iuight affect the condition of the inside and middle curves, howevar.

The effect on the outside curve of a change in the diameter
the pipe may be cuite different since the coordinates ars to be measured from the lip of the welr and not from the surface of the stream. If the hydraulic elements of a circular section be shown Graphically, as in Figure 10, it is evident from the shape of the draulic radius curve that if the diameter of the pipe be increase to maintain the same hydraulic radius when the pipe is flowing pa full, the depth of fiow must be less. The greater the slope of th invert the greater the velocity of flow, and tie greater the hydr lic radius the smaller the correction in the depth of flow for an crease in the diameter. This means that the ouation for the outs curve if extended to large diameters of pipe woula give too large rasult for z for any one value of y, since the larger the diaiue the lower the 'start' of the leaping point, that is, the stream in the larger pipe has the greater handicap in the broad ump. A clo approximation to the true curve could probably we reached by appl ing the equation deduced herein with the value of y corrected b the difference in the dopth of flow between that in a twentyfour inch pipe and in the larger pipe used when the velocity and slope in each pipe are the same. That the difference in the result is likely to be soiall is indicated by the insignificance of the diff ence in the results obtained in the eighteen and twentyfour inch pipe tested. This correction for depth of flow would not te absol ly accurate because of the effect of the change of section of the stream caused by the drop down curve. The steeper the slope the mo accurate the correction because the drop down is less on stegp the on flat slopes. The drop down curve becomes tangent to the surfach of the water in the pipe for any slope. Since the total drop down a function of the slope as well as the depth of flow, a correctiol for the depth of flow only is not all that is necessary, but will aid in approaching the truth.

The equation of the drop diown has not veen comiuted. The gen form for a circular shannel would be very compioated, ana would of little benefit in this work. For any particular case it is com paratively easily determined by a 'out and try' method.

Considering now the effect of applying the equations to fiat slopes than were tested, it is eviaent from Figures 17,23 and 29 that the result might be a serious error because of the rapidity which the values of k are changing. The values of v^{n} and y^{m} do change very rapidly with changes in s so that they would have littio effect in reducing the rapidity of change in the value of for the small slopes.
tass

$$
\begin{aligned}
& \begin{array}{l}
\text { DIAGrAM SHOWING } \\
\text { DISTRIBUTION orDISCREPANCIES }
\end{array} \\
& \text { OBSERVE BETWEEALCUL AgED } \\
& \text { COORDINATES }
\end{aligned}
$$

Line No. 1 Inside Curve $y=1 \mathrm{ft}$ Line No. 2 "id " $=3$ ". Line No. 3 Middle " $=1$ ". to.20 Lime No 4 " $n=3 \ddot{n}$ $\because \quad$ Line No 5 outside: $\quad "=1 "$.

For slopes greater than 0.023 the change in K is not so rapid and the error in using steeper slopes will not be so great.

It would seem safe to extend the resuits to higher volocities than those used in the experiments because where v has been plotted against K , as in Figures 14,21 and 27 the points have laid very closely on a straight line with mo decided tendency at either extromity, except that in the xy lines there is a slight, but aimost insignificant tendency for these lines to curve as the velocity increases. Figures 31, 32 and 34 , wich are explained in section 35 show that for velooities higher than about ten feet per second the ecuations of the different curves will give a iarger value of x for the inside or middle curve than for the outside curves. These diserepancies are probably negligible for velocities below ten feet per second which is as high as should be used in a well designed sewer.

In brief, it would seem safe to apply these ecuations for the inside and midale curves to pipes of any diameter; the ecuation of the outside curve could probably be applied to pipes of any diamoter providsd the value of y were correctea by the change in flow necessitated in the new diameter of pipe to maintain the same hydraulic radius as in a twentyfour inch pipe on the same slope and with the same velocity. The application of these formulae to pipes on flatter slopes than 0.004 is unsafe but the curves iuay be extended to slightly steeper siopes, particularly the equation of the inside curve. The equations may be used for all velocities between one and ten feet par second, which are the ordinary limits for veiocities in well designed sewers.

Sest. 34, Accuracy of Resuits: - The values of x have been computed for every run froiu the empirical ecuations and compared With the observations. The results have wean recorded in Tables VII, VIII and IX and have been shown graphically in Figure 30. The discrepancies have been calculated on the basis that the observed result are correct, which is not necessarily true. The degree of aceuracy of the results is far from satisfactory, but it is not beyond the limits within which the results ialay be used for actual design. As explained in section 38 , in the construction of the leaping weir the lower lip should consist of a movale cast iron shoe with a play of two and a half to three inches on eitner side of the calcuiated value of x. After the onstruction of the weir the lower lif can be adjusted to the correct position.

It is evident from the results shown in Tables VII, VIII and IX that the largest error for any one run was about forty percent and that approxfirately sixtyseven percent of all of the runs were below

TABLEV
VA LJES OF m, THE EXPONENT OF y, READ FROM THE LOGARITHMIC PLOTS OF Y AGAINST x, FIGIRES 11, 12, 13, 18, 19, 20, 24, 25 AND 26, FOR THE INSIDE, MI DULE, AND OUTSIDE CIJRVES.

TABLE VI
VALUES OF K IN THE EMPIRICAL EXPRESSIDNS FOR THE INSIDE, MIDDLE, AND OUTSIDE CURVES, AS COMPUTED FROM THE OBSERVED VALUES OF x AND y.

		Va	ve of	k			e		
	Slope	Inside	Middle	Outside	$\left\lvert\, \begin{array}{ll} 5 \\ \\ \hline \end{array}\right.$	Slope	Inside	Middle	Outside
6	. 005	. 132		.444	195	. 005	. 132	.171	. 477
7	. 005	. 124		.474	196	. 005	. 133	. 158	. 455
8	. 005	. 130		.436	197	. 005	.137	. 181	
9	. 005	. 125		. 441	198	. 005	. 126		. 475
10	. 005	. 149		.457	199	. 005	.121	.161	. 433
11	. 023	. 0697		. 312	200	. 005	. 112	.151	. 439
12	. 023	. 0680		. 295	201	. 006	. 121	.155	
13	. 023	. 0658		.276	202	. 006	. 122	. 143	. 455
14	. 023	. 0686		. 291	203	. 006	. 123	. 159	. 454
15	. 023	. 0029	. 157	. 362	204	. 006	. 112	.107	. 455
16	. 004	. 162	. 218	. 487	205	. 006	. 096	.142	. 419
17	. 004	. 155	. 185	. 462	306	. 006	. 091	.149	. 426
18	. 004	. 256		. 598	207	. 006	. 1,14	. 159	. 433
19	. 004	. 142		.502	208	. 009	. 0952	. 175	. 436
20	. 004	. 136		. 465	209	. 009	. 0888	. 138	. 403
21	. 0007	-. 1055		. 443	210	. 009	. 0870	. 133	.375
22	. 007	. 0943		. 440	211	. 009	. 0844	. 125	. 388
23	. 007	. 1080		. 422	212	. 009	. 0915	. 133	. 403
24	. 007	. 1009		. 446	213	. 009	. 1040	. 132	. 451
25	. .007	. 1675	. 218	. 476	214	. 014	. 0771	. 127	. 373
26	. 010	. 0705	. 177	. 418	215	. 014	. 0805	. 127	. 391
27	. 010	. .0836	. 129	.404	216	. 014	. 0699	.106	. 371
28	. 010	. .0920	. 194	. 451	217	. 014	. 0718	. 107	. 350
29	. 010	. 0944		.398	218	. 014	. 0746	. 109	$.365$
30	. .010	. .0978	. 130	. 379	219	. 014	. 0845	.107	. 376
31	. 018	. 0580	. 132	. 337					
32	. 018	. 0603	. 0892	. 350					
33	. 018	. .0565	. 1042	. 355					
34	. 018	. 0589	. 0878	. 341					
35	. .018	L. 1198	. 1590	. 364					

TABLE VI I
COORDINAIRES OF INSIDE CURVE
CALCULATHD AND OBSERVED

	Value of X, in feet				Discrepancy		$\left[\begin{array}{l} \bar{x} \\ 2 \\ 2 \\ \frac{w}{2} \\ \frac{0}{2} \\ 2 \\ 2 \end{array}\right.$	Value of X, in feet						
	Observed		Calculated				Observed	Calculated		Discrepancy				
	$y=1$	$y=3$	$y=1$	$y=3$	$y=1$	$y=3$		$y=1$	$y=3$	$y=1$	$y=3$	$y=1$	$y=3$	
6	0.67	1.40	0.66	1.39	-. 01	-. 01		195	1.45	2.16	1.45	2.19	0.00	. 03
7	1.07	1.92	1.11	1.90	. 04	-. 02	196	1.23	1.97	1.21	2.00	-. 02	. 03	
8	1.07	1.87	1.03	1.84	-. 04	-. 03	197	1.23	2.12	1.15	1.93	-. 08	-. 19	
9	0.79	1.59	0.83	1.62	. 04	. 03	198	0.94	1.68	0.98	1.76	. 04	. 08	
10	0.48	1.12	0.42	1.01	-. 06	-. 11	199	0.86	1.59	0.92	1.71	+02	12	
11	1.36	2.74	1.32	2.48	-. 04	- 26	200	0.57	1.21	0.65	1.36	-. 08	. 15	
12	1.26	2.21	1.22	2.32	-. 04	. 11	201	1.45	2.19	1.40	2.10	-. 05	. 01	
13	1.19	2.08	1.19	2.30	0.00	. 22	202	1.33	2.18	1.28	2.20	-. 05	. 02	
14	0.93	1.68	0.91	1.94	. 02	. 16	203	1.23	2.27	1.16	1.93	-. 07	. 34	
15	0.68	1.51	0.49	1.22	-. 19	- -29	204	0.38	0.97	0.40	0.97	.. 02	0.00	
16	0.85	1.57	0.79	1.59	-. 06	. 02	205	0.62	1.27	0.76	1.51	\ldots	-. 24	
17	0.55	1.20	0.53	1.21	-. 02	. 01	2:6	0.82	1.49	0.93	1.66		. .17	
18	0.30	0.82	0.18	0.50	12	=.3-	207	1.05	1.80	1. 6	1.73	. 01	-. 07	
19	1.01	1.80	1.06	1.91	,	- 11	208	0.37	0.97	0.37	0.90	0.00	. 07	
20	0.92	1.70	1.00	1.82	\ldots	. 12	209	0.68	1.40	0.72	1.45	. 0.04	. 05	
21	1.10	1.86	1.11	1.88	-. 01	. 02	210	0.87	1.58	0.93	1.69	-. 06	.11	
22	0.84	1.50	0.95	1.71	-. 11	- 21	211	1.03	1.75	1.13	1.88	-.10	-	
23	0.78	1.43	0.73	1.47	0.00	. 04	212	1.23	2.10	1.26	2.02	. 03	08	
24	0.46	1.15	0.48	1.06	. 02	$=.09$	213	1.61	2.28	1.46	2.15	$=.15$	-. 13	
25	0.34	0.91	0.20	0.54	$=.14$	$=-37$	214	0.41	1.05	0.42	1.01		. 04	
26	0.42	0.98	0.47	1.09	-. 05	-. 11	215	0.58	1.31	0.57	1.30			
27	0.65	1.35	0.70	1.45		- 10	216	0.80	1.59	0.90	1.75	0		
28	0.25	0.85	1.25	0.67	0.00	$=-\frac{18}{04}$	217	0.95	1.75					
29	1.24	2.00	1.18	1.96	-. 06	-. 04	218	1.26 1.60	2.02 2.28	1.33 1.50	2.20 2.34	$\frac{.07}{-.10}$	18	
30	1.06	1.85	0.98	1.76	-. 08	$\underline{.09}$	219	1.60	2.28	1.50	2.34	-. 10	析	
31	0.84	1.64	1.03	1.99	. 19	--35								
32	1.05	1.93	1.25	2.25	$\rightarrow 20$	-. 32								
33	0.58	1.25	0.72	1.57	-. 14	-. 32								
34	0.49	1.13	0.59	1.36	- 10	-. 23								
35	0.42	1.02	0.25	0.68	-. 1	- 34								

Note. Underlined figures indicate that the percent of error is greater than five.

TABLE VII
GOORDINATES OF MDDLE CURVE

	Value of X, in Feet				Discrepancy			Value of x, in feet				Discrepancy		
	Observed		Calculated				obser	rved	Calcu	lated				
	$y=1$	$y=3$	$y=1$	$y=3$	$y=1$	$y=3$		$y=1$	$y=3$	$y=1$	$y=3$	$y=1$	$y=3$	
6								195	1.59	2.49	1.55	2.40	-. 04	. . 09
7							196	1.22	2.22	1.32	2.19	. 10	-. 03	
8							197	1.39	2.30	1.26	2.17	-. 13	$=.13$	
9 10							198	0.09	9.83	1.02	1.87	. 03	4	
11							200	0.68	1.43	0.74	1.52	. 06	. 0.09	
12							201	1.55	2.38	1.54	2.39	-. 01	. 01	
13							202	1.32	2.39	1.42	2.29	.10	-. 10	
14							203	1.35	2.20	1.29	2.18	-. 06	-. 02	
5	1.00	1.98	0.44	1.04	-. 56	-. 9.9	204	0.52	1.22	0.52	1.20	0.00	-. 02	
16.	1.02	1.85	0.89	1.77	$\underline{-13}$	$=.08$	205	0.81	1.54	0.87	1.69	. 0.06	. 15	
17.	0.60	1.35	0.62	1.36	. 02	. 01	206	1.02	1.86	1.05	1.92	. 03	. 06	
18							217	1.25	2.08	1.19	2.07	-. 06	-. 01	
19							208	0.62	1.46	0.47	1.10	-. 15	-. 36	
20							209	0.91	1.72	0.89	1.77	-.02	. 05	
-							210	1.13	2.01	1.13	2.07	0.00	. 06	
22							211	1.28	2.20	1.26	2.33	. 08	. 13	
23							212	1.49	2.43	1.50	2.44	. 01	. 01	
4							213	1.69	2.73	1.62	2.50	-. 0.07	-. 23	
25;	0.42	1.03	0.29	0.73	-. 13	-. 30	214	0.60	1.41	0.52	1.22	$=.08$	-. 19	
26.	0.55	1.29	0.60	1.35	. 05	$\underline{.06}$	215	0.79	1.68	0.70	1.53	-.09	-. 15	
27.	0.87	1.72	0.87	1.75	0.10	. 03	216	1.02	2.01	1.06	2.04	. 04	. 03	
28.	10.49	1.13	0.33	0.83	$=.16$	$=-30$	217	1.18	2.15	1.22	2.23	. 04	. 08	
29							218	1.50	2.53	1.52	2.52	. 02	-. 01	
30	1.19	2.10	1.19	2.14	0.00	. 04	219	1.65	2.66	1.70	2.68	. 05	. 02	
31	1.21	2.18	1.12	2.13	-. 0.09	-. 05								
32	1.26	2.30	1.32	2.38	-. 06	. 08								
33	0.91	1.81	0.82	1.72	-. 09	$=09$								
34	0.63	1.54	0.67	11.48	. 04	-. 06								
35	0.5	1.2	40.30	O 0.76	, $=2$	-. 48								

\#note: The results for these runs are unreliable. The error is probably due to inexperience in ouservation

Underlined figures indicate that the percent of error is greater than five

TABLE IX

	Value of X, in Feet				Discrepancy			Value of x, in Feet				Discrepancy		
	Obse		calc	ated			Obser	ryed	Calcula	ated				
	$y=1$	$y=3$	$y=1$	$y=3$	$y=1$	$y=3$		$y=1$	$y=3$	$y=1$	$y=3$	$y=1$	$y=3$	
6	1.42	2.35	1.45	2.36	. 03	. 01		195	2.65	3.88	2.51	3.72	$=.14$	-. 16
	2.20	3.27	2.10	3.24	-. 10	-. 03	196	2.23	3.40	2.21	3.38	-. 02	. 02	
8	1.90	2.96	1.96	3.04	. 06	. 08	197							
9	1.64	2.63	1.69	2.70	. 05	. 07	198	2.00	2.99	1.90	2.98	-. 10	01	
10	1.05	1.79	1.04	1.78	-. 01	-. 01	199	1.75	2.72	1.82	2.86	. 07	14	
11	2.62	3.99	2.41	3.72	-. 21	$\square 27$	200	1.40	2.30	1.42	2.31	. 02	01	
12	2.37	3.69	2.30	3.56	-. 07	-. 13	201							
13	2.18	3.42	2.25	3.48	. 07	. 06	202	2.52	3.75	2.41	3.59	-. 11	. 16	
14	1.88	3.01	1.85	3.07	-. 03	. 06	203	2.35	3.45	2.24	3.43	-. 11	. 02	
	1.50	2.48	1.18	2.02		$=.46$	204	1.09	1.81	1.05	1.80	-. 04	. 01	
16	1.59	2.55	1.55	2.51	04		205	1.59	2.55	1.65	2.64	. 06	09	
17	1.14	1.94	1.16	1.95	. 02	. 01	205	1.87	2.90	1.91	3.00	. 04	10	
18	0.67	1.17	0.54	0.97	-. 13	-. 20	207	2.11	3.29	2.14	3.30	. 03	. 01	
19	2.03	3.18	1.92	3.00	-. 11	- 18	208	1.15	1.99	1.07	1.84	-. 08	-. 15	
20	1.82	2.88	1.86	2.92	. 04	. 04	209	1.72	2.79	1.72	2.76	0.00	03	
21	2.36	3.57	2.25	3.44	-. 11	-. 13	210	1.94	3.03	2.08	3.22	$\ldots .14$	9	
22	2.10	3.23	2.01	3.12	-. 09	-. 11	211	2.32	3.50	2.39	3.00	07	0	
23	1.65	2.66	1. 65	2.64	0.00	-. 02	212	2.58	3.75	2.60	3.87	. 02	12	
24	1.32	2.20	1.25	2.07	-. 07	-. 13	213	3.20	4.211	2.89	4.19	-. 11	. 02	
25	0.79	1.37	0.70	1.23	-. 09	$=.14$	214	1.23	2.00	1.27	2.17	. 04	7	
26	1.37	2.13	1.30	2.16	-. 07	. 03	215	1.60	2.06	1.47	2.43	$=.13$	$=.23$	
27	1.75	2.82	1.73	2.78	-. 02	-. 04	216	2.11	3.29	2.03	3.19	-. 08	10	
28	0.92	1.58	0.82	1.43	-. 10	-. 15	217	2.22	3.41	2.26	3.50	. 04	. 09	
29	2.50	3.76	2.50	3.78	0.00	. 02	218	2.75		2.70	4.02	-. 05		
30	2.08	3.18	2.19	3.40	. 11	. 22	219	3.08		2.91	4.25	-. 17		
31	2.28	3.46	2.15	3.35	-. 13	- 11								
32	2.70	4.05	2.50	3.85	-. 20	-. 20								
33	1.88	3.00	1.71	2.77	$\underline{-.17}$	13								
34	1.55	2.60	1.46	2.42	$\underline{-.09}$	-. 18								
35	0.89	1.54	0.89	1.56	0.00	. 02								

秀note; The results from this unservarion nave disagreed with tile othea ouservations tiroughout all of the runs.

Jnderlined figures indicate tnat the percent of error is greater than five.

OHAPTER V

-----DESIGN OF LEAPING WEIRS:--...

Sect. 35. Formasasad Diacrans:- In the design of a leapin weir by the method proposed in this thesis, it will be necessary to solve one or ail of the equations for the inside, Ifiddle and outsiae curves. To facilitate this solution Figures $31,32,33$ and 34 have been prepared.

In order thet the coordinates of a point may be determined, the slope of the invert and the velocity of the aprroaching stream must be known. Figures 31, 32 and 34 will give the value of x when y is unity, on the respective curve desired. For any otrier value of y this value of x (wion y is unity) must be suitiplied by the new value of y raised to the mth. power. Figures 35, 36, and 37 give the values of m for different values of siope and velocity on the three different curves and Figure 33 gives the value of y^{m} for all ordinary values of y. and m.

For example, let it be recuirea to find the abscissa of a point whose ordinete is 2.5 feet on the outside curve of a stream with a velocity of approach of 4 fost per sevond, leaping froill a sewer on a graje of 0.010 From Figure 31 the value of x when y is unity is 1.60 From Figure 35 the value of in when s is 0.010 and v is 4.0 is 0.445 From Figure $332.5^{0.445}$ is 1.5 The recuired value of z is then (1.50)(1.60) or 2.40 feet.

Sect. 36. Investiation of Existing Teir:- The use of the diagrams in the investigation of an existing weir is more simio than their use in the design of a netw weir.

Figure 5, showing the existing weir at Biacinoof St., Mapioneta, Ohio, will be taken as an exarple for investigation. The diameter of the pipe is eighteen inches, and its slope, though not shown, will be assumed as 0.010 The coefficient of roughness in Kutter's formula will be taken as 0.015 for vitrified sewer wipe.

The coordinates of the lower lip of the weir are $x=0.92$ and $y=0.75$

The information ordinarily desired for a weir is the rate of flow over the weir which is necessary to start a discnarge from the ovarflow and the rate of flow over the weir at wich the dry weather intercepter will coase to discharge. The first rate of flow will aiso represent the full capacity of the intercepter.

The first conaition recuires that the coordinates of a point on the outside curve shall be $10.92 ; 0.75$) This can we solved inost easily by a method of trial. It is inown that the value of x, when y is one, multiplied by $0.75 \frac{\mathrm{~m}}{2}$ is equal to 0.92

$$
\begin{aligned}
& 1 \text { st. Assume } v=3 \mathrm{ft} \text {. Fer second }, 086 \text { दumbem } \\
& \text { then } x \text { ior } y=1.0(\text { Fig 31) is } 1.35 \text { and } m \text { *. } \\
& \text { (Fig. 35) is } 0.455 \\
& \text { then } y^{\mathbb{I}} \text { (Fig.33) is } 0.88 \text { and } \mathrm{x} \text { is (1.35)(0.88) } \\
& \text { which gives a value too large }
\end{aligned}
$$

2nd. Assume $v=2.5$ fset per second then x for $J=1.0$ is 1.13 and in is 0.474 then y^{m} is 0.88 and x is $(1.13)(0.88)=0.99$, which again gives a value too laro.

3rd. Assuiue $v=2.3$ feet rer second then x for $y=1$ is 1.04 and II is 0.476 then $y^{\text {IM }}$ is 0.88 and x is $(1.04)(0.88)=0.92$

The velocity in the sewer as tha overflow bogins to discharge is therefore, 2.3 ft . per second. Froii Kutter's formula it is found that the velocity of fiow when the sewer is full is 4.90 feet per second, and the rate of discharge is 8.6 cubic feet per second. From Figure 10, when the ratio of the velocity part full to the velocity when full is 0.47 , the depth of flow is about 0.21 ft . and the rate of discharge is about 0.344 cubic feet per second. That is to say, the capacity of the dry weather interceptor snould be 0.344 cubic feet per second, and the overflow will begin to discharge when the rate of flow in the main sewer exceeds this rate.

The second condition reciires that the coordinates of a point
on the mildde\# curve shali be (0.92; 0.75) A inethod of trial is to be followed;

1 st. Assume $v=4.3$ feet per second.
then x for $y=1(f i g .34)=1.10$ \& M(Fig.36E. 535 then $y^{\text {III }}$ (Fig.33) is 0.86 and x is (1.10)(0.86) which eguals 0.95. Too large a vaiue.

2nd. Assume $v=4.2$ feet per second
then x_{m} for $y=1$ is 1.07 and m is 0.520 then y^{m} is 0.85 and x is $(1.07)(0.86)=0.92$

When the dry weather intercepter ceases to discharge the velocity in the contributing sewer is 4.2 feet per second, which is 88% of the full velocity. From Figure 10 the rate of discharge is 31% of the full capacity of the sewer or 2.66 cuipic feet per second, and the depth of flow is 0.58 feet. That is to say wisen the contributing sewer is discharging at abour one third of its capacity the dry weather intercepter ceases to act.

Sect. 37. The Design of A Leaping Weir:- Local conditions and other considerations must determine the diameter of the contributing or inlet sewar, the slope of this sewer, its coefficient of roughness, the full capacity of the dry weather intercepter, and the rate of discharge from the overfiow when the interceuter is to cease discharging.

For the purpose of illustration all of these factors will be assumed as for the Blackhoof Street weir Just studied. In this case the fixed conditions are: Diametar, 18 inches; slope 0.010; coefifcient of roughness 0.015 ; capacity of the dry weather intercepter, 0.344 cubic feet per second; ana the a...ount veing aischaryed from the overflow when the intercepter ceases to discharge is 2.66 cubic feet fer second.

An 18 inch sewer on a grade of 0.010 has a capacity, when full, $=-\ldots$ \#Fotnote: The inside curve is of lictie practical value as it represents little more than the spray due to the breaking up of the stream.
has a capacity of 8.6 cubic feet per second and a velocity of 4.9 feet per second. When discharging at the rate of 0.344 cubic feet per second, or at 4% of its full capacity, the velocity will be 47% of the full velocity or 2.3 feet per second. When discharging at the rate of 2.66 cubic feet per second, or at 31% of its full capacity, the velocity will be 83% of the fuil velocity or 4.2 iest per second. These ratios were read from Figure 10.

The abscissa of the midde curve, when $y=1.0$ and $v=4.2$ feet per second is 1.07 (Fig. 34) and the abscissa of the outside curve when $y=1.0$ and $v=2.3$ feet jer second is 1.04 (Fig. 31) The value of If for the middle curve is 0.520 (Fig. 36) and for the outside curve is 0.476 (Fig. 35), thergfore:

$$
1.04 y^{.476}=1.07 y^{.52} \text { and } y^{.044}=0.973
$$

which reduces to $y=0.536$
It is not possibie to read the abscissas of the curves from Figures 31,32 , and 35 to the nearest 0.01 foot, and a discrepancy of this much will materially affect the value of y when solved by the above process, for exple, assune that

$$
\begin{aligned}
& 1.04 \mathrm{y}^{.476}=1.06 \mathrm{y}^{.52} \text {. Solving } y=0.661 \text { or assuiie } \\
& 1.05 \mathrm{y}^{.476}=1.06 \mathrm{y}^{.52} \text {. Solving } y=0.832
\end{aligned}
$$

Since such a small discrepancy in reading the abscissas, when the value of y is one will mane such a large difference in the final value of y, a method of trial in which the valus of y are assumed until the abscissas of the points on the two curves bocoue equal will give more accurate results. Following this procedure: it is evident from the values of the abscissas when $y=1$ thet the desirea lue of y is less than 1. It will first ve assumed that $y=0.5$. Then (1.04)(0.5) ${ }^{.476}=(1.07)(0.5)^{.52}$ and solving $0.748=0.746$ Now assumed that $y=0.75$, then $(1.04)(0.75)^{.476}=(1.07)(0.75)^{.52}$ and solving $0.007=0.910$

It becoues evident that the value of y can be selected within a relatively large range, providing the corresponding value of x is selected. Any value of y between 0.5 and 1.0 would prokaily be suitable, but one foot would probably give the iiost reliable results since the diagrams may not be reliavie for values of y less than 0.75 of a foot.

The design of leaping weirs by this methoa will probably give greater accuracy than a design by the method credited to Unwin and aescrived in section 4. The discrepancy between Unwin's method and the observations are shown in Table I. The discrepancy between the results of the preceding metnod and the owservations are shown in Tables VII, VI II and IX, and in Figure 30

Sect. 38. Stuctirai Features of A Lsamg ireir:- The lower lip of the leaking neir will be subjected to rough usage due to the impact of falling objocts. To resist this wear the lip should be made of a heavy cast iron plate as shown in Figure 5. It is ciesirable to have this plate adjustable within $21 / 2$ to 3 inches on either side of the computed mae of x in order that proper aajustrient may be made after installation.

In order to apply the precedine rethod of design the upwer lip should be smooth and circular. No unusual protection against erosion need be given to the upper lip, unless the character of the sewase is unusually gritty, or the waterial of the weir is soft. In Milwaukee the upeer and lower lips in brick and concrete sewers have betn iiade of a hard granite: See. Figure 2.

It is sometimes desirable to place a grit chamber above the Weir to protect the dry weathor intercepter from the materials which would be dropped into it. Since the intercepter is usually suller than the inlet semer, there is a possibility that it iuay we coine clogged, particularly if the velocity is not maintained as high as in the influent sewer.

P A R I I L

-----:CHAPTER VI:-----

Sect. 39. Definition:- The term overflon weir refers to an opening in the side of a conduit over which a portion of the contents of the conduit will spill when the depth of flow becomes sufficiently great. Photographs of the overfiow weir used in the series of tests to be described are shown in Figures 38 and 39.

Sect. 40. Purnose:- An overflow weir, as used in sewers,
is a device for controlling the amount of water to ve carried in the sewer volow the wair. Its purpose is to relieve the seiver of a portion of its contents in order to prevent overcharging, and consecuent blocking up of the sewer.

Among the advantages of an overlow weir are: it does not consume any head for its operation; none of the fritty material in the contributing sewer is discharged into the relief sewer: it is easily constructed in an existing sewer: ana when placed properly in a combined sewer only dilute sanitary sewage is removed, the undilute sanitary flow passing the weir because of inadequate dapth to overflow. Its greatest disadvantage is that if the main sewsr terminates in a treatiment plant, during tiiies of storiu the plant wust treat a large amount of dilute sewage.

Sect. 41. Historical Resume:- So far as could be determined by a search of exi sting literature no tests of overflow weirs in sewers have been made the results of which have veen pubilshed. W.C. Parmley analyzes the hydraulics of an overfilow wair in nis art-

icle on the "Walworth Run Sewer" in the Transactions of the American Society of Civil Engineers, Volume XL, page 341, and yuotei in Chapt. VIII of this work. A bibliography of the references to overfiow weirs which were found in the search has been given in the Preface.

The use of overflow and leajing weirs has apparentiy been wore extensive in Europe than in the United States, if the numiver of times they are mentioned in the engineering literature of the two continents is to be taken as a criterion. No definite aate as to the installation of the first overifow weir was found, wut apparently the principle was applied as early as the first instatlation of extensive sewerage systems in the early wart of the nineteenth century.

Sect. 42. Existing Instaliations:- There are inany overfiow Weirs in existence, but the ma,jority have some wodilication of the simple form used in these tosts. Fisure 40 " $C^{\prime \prime}$, taken from Metcalf and Eddy's "American Sewerage Practice" Volume I shows the overfiow weir in the Walworth Run sewer at Cleveland, Onio. It is to be noted that this weir is built on a curve which would probanly cause the discharge to be difforent frof the same woir if built on a straight line. Figure $40^{\prime \prime} A^{\prime \prime}$ shows an adرistrili a casting for overfiow veirs manufactured by the Adams Hydraulic Company of York, England. The edge of this weir is an element of the outside of the pipe, instead of the inside as is shown in Figure 38. Figure 40 " B " shows the over flow weir on the outfall of the London Main Drainage.

A somewhat complicated arrangement is shown in Figure 41. It is a weir desicned by W.S. Shieids for use at Lomivard, Illinois.

The hydraulic elements of such instailations as are shown in these figures cannot be determined with great accuracy since the factors entering into the problem are so many and so difficult to determine. In spite of the lack of definite information on wich to base the design of these weirs they are usually said to give entire satisfaction. This is probadly because littio care is given to the

exact amount of sewage to be intercepted, and the purpose of relieving the main sewer is accomplished. As to whether this purpose uight not have been accomplished at a smaller expense is an open cuestion.

--INVESTIGATIONS OF OVERFLOH NEIRS AT THE UNIVERSITY OF ILLINOIS:-

Sect. 43. Pariod Covered By_Euencimantal Hors:- The ex-

 perimental work on the overfiow weirs was run in conjunction with the tests on the ieaping weirs. The apparatus for the leaping weirs was comimenced in May 1916. The overflow weir was cut in the eighteen inch pipe on July 31, 1916. The first run which is recorded in Table X was made on August 5th. although some preliminary runs were made earlier in the month. The observations on the overfiow weirs in the oighteen inch pipe were completed on August 18 th. The observations on the overflow weir in the twentyfour inch pipe were comimenced on September 23 rd , and were completed on November 18 th .Sect. 44. Desariution Of Aparatus: - Figure 42 shows in diagramatic form the equipwent and arrangement used in the observations on the overflow weirs. The same sewer pipe, flume, cradie, measuring weirs, pumps, etc. kere used in these tests as for the leaping weirs described in Chapter II. The only additional arparatus necessary for the observetions on the overflow woirs was the weir box and appurtenances suspended beneath the overflow weir.

The overflow weir shown in Figure 38 consisted of a slot cut in the side of the sewer pipe. The upper portion of this slot was on the center line of the top of the pipe. The two sides were at right angles to the axis of the pipe, and were pointed up witn cement so as to be sharp and scuare, and to follow the curve of the pipe, making a smooth surfacs on the inside of the pipe. The distance from the lower edge of the wair to the lower end of the sewer was never less than ten feet, and the distance from the upior end of the weir to the upper end of the sewer was fixed.at eleven feet for all tests. These
distances were sufficient to remove the weir frou the turoulence occasioned by the water entering and leavins the pipo.

The lower edge of tre slot, or the true weir, consisted of an iron bar ground to a sharp edge and set in cement mortar so that the upper edge formed an element of the inside of the pipe cylinder. Tne inside face was smoothed off with cement mortar and the outside face was angied so that the water fell freely froul the weir, with air weneath the falling strea. A cross section of the pipe at the weir is shown in Figure 42.

Secte 45. Making A.Run:- After measuring the length of the weir and its neight above the invert the order of procedure in naking a run was as follows:

First: Take measurenents from the level line suspended above the sewer down to the invert to deterinine the slope, and adjust the slope by means of the jachs supporting the cradle. The adjustment was assisted by ruming a small stream of water down the pipe, which indicated, by its uneveness, spots out of alignment.

Second: Start the steari pump and fill the stand pipe until the governor shut of the pump. Prime the centrifugal puin from the stand pipe. Open the valve into the stilling box and start the centrifugal pump. By means of the valve above the stilling box and the throttle on the engine and pump, aa,ust the two pumps to the proper speed to deliver the desired rate of flow. The pumps were tinen allowed to run for from two to five minutes until mo fluctuations in conditions were apparent.

Third: Set the hook gage on the standard three foot weir to about the correct position. The entire discharge over and past the overflow weir were comibined and aischarged over this standara three foot weir.

Fourth: Set and read the hook gage in the weir box, Heasur ing the discharge over the overflow weir, and inmediately readust
and read the gage on the three foot weir.
Fifth: Observe the distance from the top of the pipe to the surface of the water at the following points; (a) 12 inches above the overflow weir, (b) at the upier end of the weir, (c) at the middle of the weir. (d) at the iower end of the weir, and (e) 12 inches below the weir. All of these points were not recorded for every run.

Secte 46. Difficuities_Opserved - When the eighteen inch pipe was put in place the outside of the vell rested on the botcoul of the flume. In this position it was not possible to much more than half fill the pipe without overflowing the flume. Because of this the measurements on the weir placed nalf way up the eignteen inch pipe had to be abanoioned. The twentyfour inch pipe as placed with its invert in line with the bottom of the flume. In this position it was possible to fill the pipe avo ut three fourths full, when on a low slope. The pumps were working to the limit of their capacity. After having miede several runs on the steep slopes it was noticed that at the upper end of the weir there was a sufficientiy sudden change in the slope of the pipe to vitiate the results of runs numbers 220 to 298 inclusive.

The capacity of the weir ko was taxed to the limit for rates of discharge over the overflow weir of more than three second feet. It was difficult to obtain good readings on the gage because of the turbulence of the large rates of flow.

Sect. 47. Sumary of Direct Obsazvations:- The diameter of the pipe, the siope of the invert, the height of the weir above the invert, the length of the weir, and the depth of water in the pipe and on the overflow weir were observed directly, and with the exception of the last two are recorded in Table X.

$$
\text { Sect. 48. Computed Resuits:- The rates of flow, } n \text { in }
$$

Kutter's formula, and the depth of flow in the pipe were calculated in the sane manner as for the leaping weirs described in Chapter III

The rates of flow in the pipe above the overflow weir, and the rate of discharge over the overfion wair are recorded, for aach run, in Table X. The value of n in Kutter's formuia was tanen as 0.013 since the conditions were the same as for the leaping weir.

TABLE X
OBSERVATIONS ON OVERFLOF WEIRS

$Q=$ Rate above weir. $q=$ Rate over weir.

	Length weir. Feet	Rate Discharge Second Feet			$\begin{aligned} & \text { Length } \\ & \text { of } \\ & \text { weir. } \\ & \text { Feet } \\ & \hline \end{aligned}$	Rate Discharge second Feet				
		Q	or			Q	q			
-.--…-Diameter of pipe 18 inches - -Height of Weir avove invert. 0.565 feet-										
			- Slope							
100	2.156	5.35	0.379	110	3.583	6.50				
	$2 \cdot 156$	4.94	0.281	111	3.583	6.73	0.031			
---Height of weir avove invert, 0.464 feet--										
112	1.292	67	0.674	122	2.135	6.90				
113	1.292	0.13	0.584	123	3.583	6.93	1.647			
114	1.292	5.41	0.478	124	3.583	6.62	1.548			
115	1.292	3.87	0.270	125	3,5883	6.62	1.56			
116	1.292	2.96	0.1076	126	3.583	5.84	1.236			
117	1.292	2.12	0.026	127	3.583	4.55	0.780			
118	2.135	2.70	0.0971	128	3.583	3.79	0.603			
119	2.135	3.60	0.291	129	3.583	3.25	0.387			
120	2.135	5.34	0.665	130	3.583	2.45	0.1513			
121	2.135	6.16	0.995							
			ope	0.0						
131	1.297	6.76	0.637	142	2.135	5.11	0.633			
132	1.297	6.26	0.584	143	2.135	4.23	0.433			
133	1.297	5.56	0.472	144	2.135	3.42	0.277			
134	1.297	4.90	0.362	145	3.583	7.21	1.709			
135	1.297	4.07	0.229	146	3.583	0.35	1.389			
136	1.297	3.62	0.1752	147	3.583	5.85	1.238			
13	1.297	2.70	0.0873	148	3.583	5.19	0.979			
138	2.135	7.10	1.160	149	3.583	4.32	0.646			
139	2.135	5.82	1.050	150	3.583	3.31	0.287			
140	2.135	6.27	0.910	151	3.583	3/10	0.242			
141	2.135	5.72	0.301							
			-Slope	0.01						
152	1.328	7.10	0.594	162	12.107	5.07	0.602			
153	1.328	6.59	0.506	163	2.167	4.66	0.420			
154	1.328	5.81	0.421	164	2.167	3.31	0.271			
155	1.328	3.34	0.333?	165	2.167	3.00	0.118			
156	1.328	3.10	0.272?	166	3.583	7.39	1.545			
157	1.328	3.99	0.164	167	3.583	6.58	1.30			
158	1.328	3.15	0.0758	168	3.503	6.00	1.058			
159	2.167	7.40	1.125	169	3.583	5.30	0.900			
160	2.167	6.74	0.918	170	3.583	4.61	0.638			
161	2.167	5.95	0.750	171	3/583	3.79	0.402			

TABLEX
(continued)
OBSERVATIONS OL OVERMLOW WEIRS

		Rate Discharge second Feet			$\begin{aligned} & \text { Wength } \\ & \text { weir. } \\ & \text { Feet } \end{aligned}$	Rate Discharge second Feet				
		Q	or			Q	or			
-Diaiieter of pipe 13 inches----Helght of weir aivove invert, 0.464 feet										
---1----1.-10pe $0.014 \ldots \ldots \ldots \ldots$										
173	1.328	6.44	0.404	183	2.177	3.81	0.163			
174	1.328	6.11	0.354	184	2.177	3.09	0.0539			
175	1.328	5.41	0.281	185	3.583	3.04	0.0828			
176	1.328	3.76	0.090	186	3.583	4.01	0.381			
177	1.328	4.44	0.166	187	3.583	4.61	0.551			
178	1.328	5.51	0.288	188	3.583	5.68	0.738			
179	2.177	7.10	0.809	189	3.583	6.18	1.059			
180	2.177	6.08	0.616	190	3.583	6.79	1.218			
181	2.177	5.32	0.466	191	3.583	7.41	1.5			
-------Diameter of pipe 24 inches---------1-1										
	1.16	1.80	0.111	23		- 72	0.1630			
2	1.16	11.49	0.0866	232	3.78	11.88	0.222			
222	1.16	10.76	0.0526	233	3.78	12.70	0.348			
2	1.16	10.65	0.046	234	3.78	12.46	0.308			
224	1.16	10.00	0.0155	235	3.78	11.65	0.206			
2	2.27	12.52	0.269	236	3.78	12.10	0.251			
226	2.27	11.49	0.138	237	3.78	11.94	0.251			
227	2.27	10.33	0.336	238	3,678	11.32	0.219			
228	2.27	10.52	0.0483	239	3.78	11.22	0.1320			
229	2.27	10.79	0.0796	240	3.78	9.38	. 0545			
230	2.27	11.05	0.1170							
			-S lope	. 01						
241	1.18	11.35	0.156	258	2.28	10.70	0.1538			
242	1. 18	11.59	0.181	259	2.20	11.31	0.2115			
243	1.18	11.78	0.191	260	2.28	10.38	0.1675			
244	1.18	11.60	0.159	261	2.28	10.61	0.1420			
24	1.18	11.38	0.164	262	2.28	9.65	0.0713			
246	1.18	11.10	0.143	263	3.79	12.33	0.442			
247	1.18	11.00	0.1411	264	3.79	12.20	0.425			
248	1.18	10.96	0.1411	265	3.79	12.05	0.414			
249	1.18	10.83	0.132	266	3.79	11.90	0.398			
	1.18	10.10	0.0925	267	3.79	11.78	U. 373			
251	2.28	12.18	0.292	268	3.79	11.74	0.366			

\# Note:The results outianed Irom runs 220 to 298 were not used in reaching the conclusions, a cause of a provable error in mexsuring the slope ior

> TABLE X
> (continued)

DBSERVATIONS ON OERALON WEIRS

	Length weir. Feet	Rate Discharge second Feet			$\begin{gathered} \text { Length } \\ \text { of } \\ \text { weir. } \\ \text { Feet } \end{gathered}$	Rate Discharge second Feet				
		Q	ar			Q	9			
\qquad iameter of pipe 24 inches- \qquad - -Helaht of weir above invert, 1.0 foot--										
253	2.28	10.96	0.1730	270	3.	11.50	0.320			
25	2.28	11.75	0.2465	271	3.79	11.11	0.244			
255	2.28	12.11	0.284	272	3.79	10.52	0.132			
256	2.28	11.98	0.2760	273	3.79	11.38	. 230			
257	2.28	11.49	0.2195	274		11.22	0.223			
			0ve	0.0						
275	1.18	11.80	0.1582	287		9.34	0.0448			
276	1.18	11.76	0.140	288	2.2	7.07	0.0074			
277	1.18	10.38	0.0769	289	3.78	12.33	0.406			
278	1.18	10.15	0.066	290	3.78	11.95	0.370			
	1.18		0.0447	291	3.78	$1: .05$	0.219			
			0.357	292	3.78	11.81	0.3415			
2	1.18	30	0.0061	293	3.78	10.90	0.2115			
282	2.27	12.12	0.465	294	3.78	10.92	0.2005			
2	2.27	10.74	0.1380	295	3.78	9.64	0.0799			
284	2.27	11.30	0.228	296	3.78	10.05	0.1098			
285	2.27	10.29	0.0911	297	3.78	9.41	0.066			
286	2.2		0. 508	298	3.78		0.0368			
			-S10ps	0.00						
	1.1	11.38	0.1690	312	2.27	6	0.1747			
300	1.17	11.22	0.1420	313	2.27	9.38	0.1603			
3	1.17	11.95	0.1783	314	2.27	10.71	0.1911			
302	1.1	11/32	0.1450	315	2.27	11.62	0.2705			
303	1.17	10.96	0.1290	316	2.27	12.50	0.370			
304	1.17	8.73	0.0701	317	3.78	7.84	0.0634			
	1.17	7.13	0.0545	318	3.78	8.24	0.0702			
306	1.17	6.76	0.0078	319	3.78	9.75	0.206			
307	1.17	9.35	0.1502	320	3.78	10.36	0.256			
308	2.27	6.41	0.0038	321	3.78	10.60	0.288			
30	2.27	7.56	0.0673	322	3.78	10.92	0.3285			
310	2.27	8.46	0.0725	323	3.78	11.73	0.469			
311	12.27	9.35	820	32	3.18	12.32	0.685			
---Height of weir above invert,						0.833.	1̂et-			
3	1.18	5		338	2.29	. 07	0.234			
326	1.18	6.65	0.169	339	2.29	8.23	0.376			
327	1.18	5.38	0.0181	340	2.29	8.82	0.407			
328	1.18	6.20	0.1748	341	2.29	,	0.536			
329	1.18	7.08	0.188	342	2.29	10.50	0.657			
330	1.18	7.55	0.212	343	2.29	11.38	0.785			

55
 TABLE X

(continued)
OBSERVATIONS ON OVERHLON WEIRS

$2 \underset{\mathbb{R}}{\stackrel{\alpha}{K}}$	$\begin{aligned} & \text { Length } \\ & \text { of } \end{aligned}$	Rate Disc second	scharge Feet			Rate Di Second	charge eet
	Feet	Q	9	120	Weir Feet	Q	9
	che	0.	0	n		833	
331	1.18	8.30	0.298	344	3.79	6.30	0.223
332	1.18	9.13	0.348	345	3.79	7.19	0.335
333	1.18	9.85	0.409	346	3.79	7.78	0.510
334	1.18	0.57	0.470	347	3.79	9.21	0.690
335	1.18	11.48	0.465	348	3.79	10.45	0.910
336	2.29	6.56	0.257	349	3.79	11.678	1.482
337	2.29	6.92	0.210				
			ope	.			
3	8	6.56	0.0250	360	12.27	9.16	0.462
3	1.18	7.44	0.0834	361	2.27	10.25	0.576
352	1.18	8.34	0.191	362	2.27	11.06	0.721
353	1.18	9.02	0.234	363	2.27	11.92	0.907
354	1.18	9.61	0.288	364	3.79	6.90	0.211
355	1.18	9.60	0.281	365	3.79	7.87	0.368
356	1.18	11.35	0.474	366	3.79	8.80	0.586
357	1.18	11.80	0.599	367	3.79	9.98	0.895
358	2.27	6.41	0.0856	3368	3.79	10.63	1.045
359	2.27	8.44	0.383	369	3.79	11.80	1.669
			-S 100	0.010	0		
370	1.17	6.28	0.0397	382	12.27	10.40	0.496
371	1.17	7.79	0.0735	383	2.27	10.88	0.604
372	1.17	9.07	0.182	384	2.27	11.35	0.695
373	1.17	9.81	0.270	385	2.27	12.10	0.893
374	1.17	10.52	0.298	386	3.79	8.05	0.328
375	1.17	10.95	0.381	387	3.79	9.15	0.538
376	1.17	11.10	0.402	388	3.79	9.70	0.626
377	1.17	12.18	0.525	389	3.79	10.56	0.794
378	2.27	7.39	0.1115	390	3.79	11.22	0.964
379		7.81	0.1366	391	3.79	11.12	
$\begin{aligned} & 380 \\ & 381 \\ & \hline \end{aligned}$	2.27	8.63 9.79	$\begin{aligned} & 0.220 \\ & 0.412 \end{aligned}$	392	13.79	12.21	1.194
			Slope				
	1.18	6.82	0.0133	406	,	11.12	0.656
394	1.18	8.38	0.1033	406	2.29	11.63	0.770
395	1.18	9.38	0.217	408	2.29	13.18	1.011
396	1/18	9.99	0.285	409	3.29	6.70	0.0339
397	1.18	10.68	0.348	410	3.29	7.33	0.0906
398	1.18	11.11	0.400	411	3.29	7.86	0.188
399	1.18	11.72	0.441	412	3.29	9.35	0.424
400	1.18	12.42	0.496	413	3.29	10.25	0.672
401	2.29	7.87	0.0857	414	3.29	10.61	0.760
402	2.29	9.06	0.262	415	3.29	10.86	0.860

		Rate of D Cubic Fee	Discharge et perSecond	$z \stackrel{\stackrel{\varrho}{U}}{\underline{\omega}}$		Rate of	charge Seconal
䦽	Weir. Feet.	Q	9	Q2 \sum^{5}	Feet	Q	9
	ht	Of N	a	inv		-	
403 404 405	2.29 2.29 2.29	$\begin{array}{r}9.87 \\ 10.38 \\ 10.70 \\ \hline\end{array}$	$-S 10 p \theta$ 0.419 0.525 0.566	\|r $\begin{array}{r}\text {. } \\ 416 \\ 417 \\ 418\end{array}$	3.29 3.29 3.29	10.78 12.20 12.41	0.835 1.132 1.253
		Of wo		inve			
419		61	-S10pe	43	2.28	0.68	. 984
420	1.18	5.95	0.1225	435	2.28	10.80	0.990
421	1.18	5.95	0.1252	437	2.28	11.15	1.130
422	1.18	7.30	0.1822	438	2.28	11.45	. 210
423	1.18	8.55	0.310	439	2. 23	12.27	0
424	1.18	9.57	0.475	440	3.79	5.21	0.1228
425	1.18	9.59	0.450	441	3.79	6.99	0.491
426	1.18	10.50	0.586	442	3.79	8.15	0.740
427	1.18	11.18	0.676	443	3.79	8.76	0.906
428	1.18	11.80	0.725	444	3.79	9.44	1.058
429	1.18	12.44	0.305	445	3.79	10.38	1.308
430	2.28	5.88	0.0556	446	3.79	10.90	1.502
431	2.28	6.47	0.262	447	3.79	11.29	1.620
432	2.28	7.26	0.318	448	3.79	11.72	1.720
433	2.28	8.15	0.424	449	3.79	12.43	1.910
434	2.28	9.79	0.725				
			-Siope	.			
450	1.18	5.90	0.157	465	2.28	11.11	1.160
451	1.18	7.86	0.307	466	2.28	11.39	1.230
452	1.18	9.15	0.400	467	2.28	11.65	1.342
453	1.18	9.65	0.475	468	2.28	12.00	1.402
454	1.18	10.10	0.537	469	3.79	6.73	0.458
455	1.18	11.19	0.706	470	3.79	7.51	0.715
456	1.18	10.91	0.686	471	3.79	8.71	0.999
457	1 .	11.62	0.794	472	3.79	9.07	1.224
458		12.11	0.875	473	3.79	10.30	1.418
459		6.19	0.283	474		10.81	8
460		7.78	0.529		3.79	11.21	
451		8.35	0.627	476	3.79	11.30	
462	2.28	8.98	;. 687	477	3.79	11.81	1.876
463	2.28	9.96	0.861	478	3.79	11.90	1.918
464	2.28	10.36	0.935	479	13.79	12.12	1.944
			-Slope	0.0			
480	1.18	5.68	0.0834	496	2.28	9.16	0.759
481	1.18	7.44	0.296	497	2.28	9.60	0.780
482	1.18	8.49	0.441	498	2.28	9.56	0.822
483	1.18	9.30	0.479	499	2.28	10.41	0.935
484	1.18	11.05	0.482	500	2.28	11.10	1.028

OBSERVATIONS ON OVERFLON NEIRS

		Rate Discharge Second Feet				Rate Discharge second Feet				
						Q				
--------Diameter of pipe 24 inches ---Heicht of weir awove invert, 0.067 feet -										
		10.07	0.524	02						
		10		03						
488		10.78		4						
489		11.10	0.647	505			6			
	1.	11.40	0.692	7		3				
492		11.88								
494										
			09							
				8			0.893			
		8.	0.434	9	2.29					
				30						
		10								
							37			
		10								
		10					1.12			
		11. 42								
			0.264							
Height of mir above invert, 0.500										
			0.288							
		5.31								
				559		10.85				
				0						
				561						
							0.471			
			1.25				42			
			1.34							
			1.44	565			1.29			
			1.48	66		7.82	1.67			
			1.55	567						
55	2.		0.436	568	3		2.4			

TABLE X
 (continued)

OBSERVATIONS ON OERFIOW WEIRS

	$\begin{aligned} & \text { Length } \\ & \text { of } \\ & \text { weir. } \\ & \text { Feet } \end{aligned}$	Rate Discharge Second Feet			$\begin{array}{\|c\|} \hline \text { Length } \\ \text { of } \\ \text { weir. } \\ \text { Feet. } \\ \hline \end{array}$	Rate Discharge second Feet				
			9			Q	or			
\qquad Dianeter of pipe 24 inches - Height of weir above invert, 0.500 feet-										
	2.28	35	0.665			10.08	. 64			
		6.30	0.871	570	79	10.60	88			
5	2.28	7.10	0.991	571		11.00	3.04			
			-Slope	. 0						
	1	2.78	0.074		,					
5	1.	4.69	0.253	595	2.30	5.67	0.945			
5	1.	5.69	0.432	596	2.30	6.53	0.924			
	1.1		0.623	597	2.30	6.59	0.924			
5	1.1	7.56	0.736	598	2.30	7.56	1.09			
5	1.	8.56	0.925	599	2.30	7.53	1.07			
	1.		0.991	500	2.30	8.40	1.19			
	1.	9.33	1.10	601	2.30	8.44	1.20			
	1.	10.50	1.16	602	2.30	9	1.32			
5	1.	11.00	1.11	603	2.30	46	1.47			
	1.1	10.83	1.10	604	2.30	9.76)			
5	1.1	10.79	1.16	605	2.30	10.19	1.56			
5	1.	10.80	1.08	606	2.30	10.08	1.54			
	1.1	10.80	1.07	507	2.30	11.35				
5	1.17	11.15	1.15	608	2.30	11.80	2.29			
		11		609	0	5.00	800			
		11.62	1.25	61	. 30	6.36				
	1.17	11.71	1.25	611	3.30	8.06	1.71			
5	2.30	4/29	0.378	612	3.	9.2	. 35			
59	2.30	4.33	0.374	613	3.80	9.68	2.52			
5	2.30	5.16	0.595		3.80	0.59	2.81			
	2.30		0.574							
			-Slope	0.						
			0.385							
	1.	6.42	0.546	631	$2 \cdot 27$	10.94	1.88			
	1.	7.71	0.681	632		11.71	2			
618	1.17	8.81	0.754	633	2.27	12.17	2.18			
	1.1	9.56	0.908	634	3.79	. 4.26	0.501			
620	1.17	10.10	1.01	635	3.79	5.88	0.896			
621	1.17	10.50	1.11	636	3.79	6.67	1.19			
6	1.17	11.48	1.28	637		7.33	1.41			
623	1.17	12.02	1.40	638	3. 19	7.90	. 59			
624	2.27	5.69	0.586	639	3.79	9.02	2.06			
625	2.27	5.42	0.839	640	3.79	9.79	2.43			
02	2.27	7.16	1.05	641	3.19	10.22	2.61			
		8.57	1.30	642	3.79	10.48	2.66			
62	2.	9.	1.42	643	3.7	.	2.92			

TABLE X
 (continued)

OBSERVATIONS ON UVERHLOW WEIRS

	$\begin{aligned} & \text { Length } \\ & \text { of } \\ & \text { ofeir. } \\ & \text { feot } \end{aligned}$	Rate Discharge second Feet		[Rate Discharge secand Feet	
		Q	9			Q	9
------Diametar of wipe 24 inches ---Height of weir above invert, 0.500 feet-							
629	2.27	10.04	$\begin{aligned} & -510 p \theta \\ & 1.56 \end{aligned}$	644	3.79	11.81	3.
			-Slope	0.015			
645	1.16	5.46	0.354	660	2.28	9.44	1.24
646	1.16	6.33	0.404	061	2.28	9.79	1.35
647	1.16	7.10	0.441	662	2.28	10.23	1.42
648	1.16	7.73	0.521	663	2.28	10.70	1.55
649	1.16	8.76	0.666	604	2.28	11.03	1.65
650	1.16	0.72	0.751	665	2.28	11.62	1.92
651	1.16	9.94	0.896	666	3.80	5.98	0.860
652	1.16	10.38	1.03	607	3.80	7.13	1.18
653	1.16	11.05	1.11	068	3.80	7.92	1.42
654	1.16	11.48	1.18	669	3.80	8.62	1.66
655	1.16	11.38	1.27	670	3.80	9.26	1.89
656	2.28	6.39	0.691	671	3.80	9.52	1.98
657	2.28	7.05	0.305	672	3.80	9.90	2.11
658	2.28	8.09	0.966	673	3.80	10.18	2.24
659	2.28	8.79	1.11	674	3.80	10.70	2.38

Parmley's Analysis Overflow Weirs

Sect. 49. Rational Considerations:- W.C. Pariniey in Transections of the American Society of Civil Engineers, Volume LV, page 362 analyzes the rate of discharge over an overflow weir as follows:
"Let Figure 43A represent the cross section of the overflow
chamber at the upper and of the weir, at the point where the water emerges from the sewer.

Let X and Y represent the axes of coordinates, with the origin In the axis of the sewer. Consider this section to represent a unit length of sewer.

Let A be the crest of the weir, and let $a+y$ we the depth of water over the weir.

Let the radius of the sever equal r.
The coordinates of the weir are therefore, $x=x_{1}$ and $y=-a$
How long will it require for the water flowing over the weir to reduce the head of water on the weir from atty to any given lesser head?

Let $d Q$ equal the volume of water discharged for the reduction of head dy, and let dit equal the time required for the discharge of the quantity $d Q$. We then rave the equations

$$
d Q=2 x d y=2 \sqrt{x^{2}-y^{2}} d y
$$

For the read $a+y$ the rate of discharge $4=$ approximately

$$
3.33(a+y)^{3 / 2}
$$

$$
3 / 2
$$

Then $d Q=0.0 .33(a+y)^{3 / 2} d t$
Therefore $d t=\frac{0.6 \sqrt{r^{2}-y^{2}}}{(a+y)^{3 / 2}} d y$
Integrating between the limits y_{1} and y_{2} for ally two heads upon the weir, gives the time required to reduced the head from y_{1}
to y_{2}.
It has not been possible however to integrate this equation and therefore it has been necessary to mane use of it in the approximate form:

$$
t=\sum\left[\frac{0.6 \sqrt{r^{2}-y^{2}} \Delta y}{(a+y)^{3 / 2}}\right]_{y_{2}}^{y_{1}}
$$

Obtaining the Δt, for successive difierences in head, Δy, wetween the limits of y_{1} and y_{2}, and taik ng the sum of all these Δt 's will give the approximate time t recuired.

This being a tedious process, an approximetion can be made by reducing the circular sewer to a rectanguiar one of the same average width. In this case let Figure 43B represent the cross section of the rectangular sewer, with the reir at A, and with an initial depth of water y over the weir. Let the width of the channel \mathbb{W} equal the average width of the circular sever shown in Figure 43A to the left of the weir A. In this case the water overnanging the weir on the right is assumed to fall away by the force of gravity without interfering with the weir discharge over and back of the weir. In this case then we have

$$
\begin{aligned}
& q=\text { rate of discharge for head } y,=3.33 y^{3 / 2} \text { and } \\
& Q=\text { the total quantity discharged. }
\end{aligned}
$$

For an infinitesimal reduction in head, dy, we have

$$
d \theta=d d y=c d t=3 / 33 y d y
$$

therefore $d t=\frac{W}{3.33}-y^{-3 / 2} d y$
Integrating between the limiting heads

$$
t=\left(-\frac{w}{1.67 \sqrt{y}}\right)_{y_{2}}^{y_{1}}=\frac{w}{1.67}\left(\frac{1}{y_{2}^{1 / 2}}-\frac{1}{y_{1}^{1 / 2}}\right)
$$

If $y_{2}=0, t=\infty$, which shows......that theoretically it would recuire a woir of infinite length to reduce the water to a zerc head.

The last formula is simple and easily applied, and does not give results varying greatiy from those obtained from the differential equation for the circular sewer.

If the velocity in the sewer were constant wile ilowing the length of the weir, and if all the filaments in the entire cross section had the same velocity, the foregoing equations would give the time required to reduce the level of the water from one stage to another, and this time, multiplied by the velocity of flow in the sewer behind the weir would give the length of the weir reyuired. These ideal conditions, however, are not obtained in practice. The velocity in the sewer is graduaily retarded as the head wecoimes less, and, consgcuently, the sill must be lengthened somewhat in order to perform the same amount of work."

Parmley's method is not only difficult, but it is uncertain as to the value of the results, because of the assumptions on which it is based. An example has been solved iy the metrod suggested by Parilley, at the end of Chapter IX. The uncertainty as to the correctness of the assumptions made in the Parmley analysis, and the riation from the experimental ouservations, together witn the absence of experinental results by parmley, tend to cast doubt on the value of the formula suggested by him.

The following analysis is based on somewhat different assumptions, which are also open to criticism. This analysis led to somewhat different conclusions which were helpful in making certain empirical assumptions as to the factors affecting the flow ever the weir.

For the sake of simplicity the analysis will first be wade for the discharge from an overflow weir in a rectanguiar flume, as shown in Pigure 43 C .

For any karticular differential length of the weir it will be assumed that the discharge is

$$
d q=3.33 \mathrm{~h}^{3 / 2} \mathrm{~d}
$$

It now remains to find h in teriis of x.

- Froni the figure it is ovident that the tilie, dt, for the hoad to drop a distance $d h$ is equal to the time, $d t$, for a particlo to travel the distance dx. From the preceaing analysis cuoted from

Parriley $\quad d t=\frac{W h^{-\frac{7}{2}}}{3.33} d h$
Now let V^{\prime} represent the velocity in feet per second at the section in question, then

$$
d x=v^{\prime} d t=V^{\prime}-\frac{W}{3.33} h^{3 / 2} d h
$$

therefore $d y=$ V'Wdh
Since V^{\prime} is a variable it rehains to express V^{\prime} in terms of h. With a constant slope V' varies only with the hydraulic radius. The hydraulic radius of the rectangular section is aproximately

$$
\frac{W(h+k)}{W+2(h+k)}
$$

Then from the Chezy formula
and

$$
\begin{aligned}
& V^{\prime}=c_{1} \sqrt{\frac{w(h+k)}{w+2(h+k)} s} \\
& V=c_{1} \sqrt{\frac{w\left(h_{1}+k\right)}{w+2\left(h_{1}+k\right)} s}
\end{aligned}
$$

from waich $V^{\prime}=V \sqrt{\frac{(h+k)\left[W+2\left(h_{1}+k\right)\right]}{\left(h_{1}+k\right)[w+2(h+k)]}}$
and $Q=W \int_{h_{2}}^{h_{1}} \sqrt{\frac{(h+k)\left[w+2\left(h_{1}+k\right)\right]}{\left(h_{1}+k\right)[w+2(h+k)]}} d h$
This integration would result in an expression of no practical Use. The difficulty lies in the exression for the hydraulic radius. If it were possible to express V in more simple terms, an expression of greater value might be obtained.

The relation between the depth of flow and the nydralicic radius of a circular section is shown in Figure 10. An approximation to the Corm of the equation of the hydraulic radius curve, particulariy the portion below the maximum point at 0.3 depth, wnen referred to the invert of the pipe as the origin of coordinates with horizontal and vertical azes, can be made by assuming it to be in the foriu of a paraboia. By a series of trials the following equation ras selected as representative of this curve: $y^{2}-1.6 y+0.52 x=0$

Now, up to the roint in the precoding anaiysis for a rectangular channel where $d q=V^{\prime} W d h$, all the steps are eyually appicawie to a circular section. If we substitute D, the diameter of the circle, for W, then $d q=V^{\prime} D d h$
In the preceding expression for x and $y, y=\frac{h+k}{D}$ and $x=\frac{4 r}{D}$ where r represents the indraulic radius at any dopth. Substituting these values and solving

$$
\begin{aligned}
r & =\left[1.6\left(\frac{h+k}{D}\right)-\left(\frac{h+k}{D}\right)^{2}\right] \frac{D}{2.08} \\
\text { As before } Q & =D V \int_{h_{2}}^{h_{1}} \sqrt{\left.\frac{1.6\left(\frac{h+k}{D}\right)-\left(\frac{h+k}{D}\right)^{2}}{1.6\left(\frac{h 1}{D}\right)}\right)-\left(\frac{h_{1}+k}{D}\right)^{2}}
\end{aligned} d h
$$

It becomes avident that any "rational" formula for Q which includes all of the factors affecting it, will be too cumbersolue to serve a useful purpose. An empirical formula besed on tae preceding analysis might be more simple and cuite as accurate.

Sect. 50. Empirical Expression:- Froni the preceling discussion it would seem that is is dependent upon $D, V,\left(h_{1}-h_{2}\right)$, and h_{1}. An important factor which does not appear here is the lengt h of the weir. This, however, is dependent upon Q and ($h_{1}-h_{2}$).

An attempt was made to find the relation Detween Q, and the fact ors entiuerated by following the procedure outlined below:

First, to compute the value of V, h_{1} and h_{2} for all of the runs. Second, To hold D, l (the length of the weir), and k constant and to plot Q against V. It becaiie evicient that eacn value of S (the slope) determined a different QV line. Points on the different $Q V$ lines which were deterfined by the same velues of h_{1} were joined. One of these plots is shown in Figure 44.

Third, Determine the proper scale for the values of h_{1} on the QV lines and draw lines connecting equal values of h_{1}.

Velocity of Flow in Pipe. Feet per Second $\begin{array}{lllll}3.0 & 4.0 & 5.0 & 6.0 & 7.0\end{array}$

66

Froin the appearance of the lines in Figure 44 it is evident that $Q=m V+n$ (very closely) in which $I I$ and n are functions of h_{i}. It now ramained to antermine these functions. The resulting equations became so complicated, and so meny inconsistencies appeared as to make advisable the avandonment of this line of reasoning for the solution of the problem. A basic objection to the expression in the form just studied is the appearance in it of h_{1} and V, which must be calculated by a rather roundabout method.

Because of this larter objection an expression was sought which Would give the expression for Q in terms of conditions which could be observed directly, or were easily computed. These variables are:
Q = The rate of flow in cubic feet per second in the sewer above the overflow weir
$c_{2}=$ Tree rate of discharge in cuvic feet per second over the ovorflow weir.
$S=$ The slope of the invert
$1=$ Th: length of the weir in feet
$k=$ The height of the weir aoove the invert, in feet
$\mathrm{d}=$ The diameter of the pipe, in feet.
$k^{\prime}=$ The ratio of k to $d,=k / d$
It was thought possible, because of the nature of the results obtained in the tests, that there was some direct relation wetween Q and C_{1}. Since the preceding rational consiaerations, assisted by simple empirical assumptions, led to no valuable result, th values of Q were plotted against \& to a natural scale. The appearance of the curve suggested an exponential relation between them, and they were replotted on logarithmic paper. Figure 45 is a plot of all of the observations made on eighteen inch pipe, and Figure 46 a few typical observations made on twentyfour inch pipe. The appearance of these lines is sufficient to lead to the conclusion that (very closely)

$$
Q=k_{1} q_{1}^{m}
$$

For very small values of q the rolation doas not approximato a straight line when drawn on logarithmic paper, but since the values of g less than one tenth of a cubic foot per second are of but littie practical value the value of the preceding expression is not impaired

The terms, k_{1} and m are probauly functions of the other variables which were held constant in order to deterimine the relation between Q and q. These variables are S, l, k, and d. It is evident froii the appearance of Figures 45 and 46 that the value of m is defendent upon d and k ' only. The values of m were plotted against k^{\prime} to a natural scale and found to lie very closely on a straight line for the value of d ecual to eighteen inches. Since only three points vere available for the location of this line for the twentyfour inch pipe and two points for the eighteen inch pipe, the result is not of great certainty. The écuations of these ilines were developed. Too few points wore 3 valable for a more certain determination of the relations between m, d and k^{\prime}. The values of these variadios as observed in the eaperiments are thorefore presented in Tavie XI. TABLE XI
VALJES OF EXPONENT II IN RELATION $Q=k_{4} q^{m}$ FOR OVERFLOW WEIRS

d	$2^{\prime}-0^{\prime \prime}$			$1^{\prime \prime}$		
$\mathrm{k}^{\prime \prime}$	0.500	0.416	0.333	0.250	0.377	0.309
m	0.170	0.305	0.44	0.58	0.24	0.45
$1 / \mathrm{m}$	5.9	3.28	2.28	1.72	4.2	2.22

Further attempts were inado to determine a general relation between d, k^{\prime} and m were iiade, Lut they proved fruitless.

Seat. 51. Conclusions:- Sufficient observations have ueen made to determine conclusively that

$$
Q=k_{1} q^{m}
$$

It was not possible, with the number of observations made, to determine satisfactorily a zeneral relation vetween k_{1}, G, Q, and m.

Tables XI and XI I have therefore been included, showing direct observations of these factors under various conditions. For the solution of any particular provelm the values can we selected from the tables and the ecuation solved. It is to be noted that the use of the formula beyond the limits of the exferimontal ouservations would not be possible because of the limitations of the tables.

Sect. 52. Accuracy of Results:- The expression $Q=\mathrm{k}_{1} q_{1}^{\text {II }}$ has been solved for each run and the result compared with the observed value of g . The percent which the difference between the computed cuantity and the observed cuantity was of the ouserved cuantity has been plotted for all runs in which the rate of discharge over the overflow weir was equal to or greater than one cubic foot fer second. For rates of discharge of less than one oubic foot per second the 2ctual, and not the percent, difference was plotted. This change was made because the actual discrepancies were so high compared to the observed discharges, for the siall rates, that the percentage discrepancy had little significance. It is to do understoou that these discrepancies do not represent an actual error in either the observation or the computation, but that one or the other is provably in error to some extent.

F'igure 47 shows that the largest percentage of error for any run (with a discharge greater than one cubic foot per second) was about 29, and that eighty percent of all, of the runs in which large ratos of discharge were observed have a discrepancy of less than 10 percent. For the smaller rates of discharge the greatest error is about 0.24 of a cubic foot per second, and 89 percent of the sualler discharges have a discreancy of less than one tenth of a cubic foot per second.

TABLE XII
VALJES OF THE COEFFICIENT k, in THE RELATION

$$
Q=k Q^{m}
$$

OVERELOW WEIRS

Dia.	k^{\prime}		6.140				
ft.	ft.	It.	. 004	. 007	. 010	. 015	. 018
2.0	. 500	1.17	16.0				
2.0	. 500	2.29	14.7				
2.0	. 500	3.79	13.3				
2.0	. 416	1.17	13.1	13.4	13.7	14.2	
2.0	. 416	2.29	11.7	11.9	12.2	12.7	
2.0	. 416	3.79	10.5	10.7	11.0	11.6	
2.0	. 333	1.17	12.6	12.8	13.1	13.5	
2.0	. 338	2.29	10.0	10.3	10.6	11.0	
2.0	. 333	3.79	8.5	8.8	9.0	9.5	
2.0	. 250	1.17	9.3	9.6	9.8	10.3	
2.0	. 250	2.29	7.0	7.3	7.5	- 8.0	
2.0	.250	3.79	5.5	5.8	6.0	6.5	
1.5	. 377	1.31	8.6	9.0	9.5		10.6
1.5	. 377	2.14	7.6	8.1	8.5		9.6
1.5	. 377	3.58	6.6	7.0	7.4		8.6
1.5	. 309	1.31	7.6	8.1	8.5	9.1	
1.5	. 309	2.14	5.1	6.6	7.0	7.7	
$1 / 65$. 309	3.58	4.9	5.3	5.8		

k' represents the distance that the edge of the overflow weir is above the wotiou of the invert

1 represents the iength of the weir

* The slope for these runs was 0.014

----: CHAPTER IX:-----

-.-. - ESIGN OF OVERFLON WEIRS:----

Sect. 53. Metbods:- The purpose of an overflow weir as
 "is to relieve a sewer of a certain proportion of its contents which threaton to overcharge it". It is usually desirable not to allow the overflow to begin until there has deen a consicieravie dilution of the sanitary sewage, in order to render the portion removed from the sewer less offensive. This can be accomplished by placing the odge of the weir high in the sewer, but the higher the weir the longer it must be in order to dischargs the same yantity.

So far as could be determaner by inyuiry aizong engineers, the only 'inethod' in use for the design of overflows was a ruie of thumb guessing, except for the analysis quoted from Parmiay. The value and accuracy of this formula or fethod nave been discussed in section 49 on page 63 , and the results to ve obtained in the following example will serve to emphasize the conclusion.

In order to illustrate the method for the design of a weir in accordance with the results of the observations of this series of tests an example will be worked out in the following section.

Sect. 54. Example \&f Design:- The conditions to be assumed

 are: a twentyfour inch combined sewer on a grade of .01 with a coefficient of roughness of 0.015 . At the time of sudden suminer thunder showers the sewer does not carry away water f ast enough and overflows at the manholes. It becomes desiraile to construct an overflow weir which will relieve the sewer of one haif of its contents, without spilling any of the dry weather flow which is assumed to be one fifth of the full capacity of the sewer.By Kutter's formula it is found that the full capacity of the
sewer is 19 cubic feet per second, which is oyual to the value Q in the formula $Q=k_{1} G_{1}$. Since one half of the capacity of the sewer is to $\dot{\text { b }}$ spilled $G=9.5$ cubic feet per second. By consuiting Figure 10 it is found that when the sewer is carrying one fifth of its full capacity it is flowing at a depth which is three tentins of its diameter, in this case six tenths of a foot. The vallie of k^{\prime} is therefore 0.3. For the extra factor of safety a value of 0.333 will be assumed for k '. Then from Table XI m equals 0.44 . Substituting these respective values of Q, C_{1} and m in the expression $Q=k_{1} C_{1}$ it is found that $k_{1}=7.3$ By interpolation in Taole XII the iength of the weir is found to be about 2.5 feet.

By a vsry simple process it has ieon found that a weir thirty inches long placed 7.2 inches above the nuttoin of a twenty four inch sewer pipe on a grade of 0.01 will discharge one half of the full capacity of the sewer when this cuantity is being delivered through the sewer, above the weir.

A solution of this problem 11 ve iilade by the Parinley method and the results compared. Substituting in the formula given on page 62. $\quad t=-\left(\frac{d}{1.67 \sqrt{h}}\right)_{h_{2}}^{h_{1}}=\frac{d}{1.67}\left(\frac{1}{\sqrt{n_{2}}}-\frac{1}{\sqrt{h_{1}}}\right)$ The value of d in this case is 2 , h1 is about 0.8×2 or 1.6 and h_{2} is 0.5×2 or 1.0 Thereiore $t=\frac{2}{1.67}\left(\frac{1}{1}-\frac{1}{1.27}\right)=0.24$ The velocity of flow when h_{1} is 1.6 is about 7 feet per second therafore the length of the weir should be $1.68^{\prime}=7 \times 0.24$

Parmley states in his method that after having solved for the length of the weir by his method; "the sill must we lengthened to perform the same work". The difference etween the value of 1.68 and 2.5 represents the necessary increase. The I act that the correct value w as found at once by the formula ${ }^{Q}=k_{1} c_{1}^{m}$ emphasizes the value of that formula.

