UNIVERSITY OF ILLINOIS STATE WATER SURVEY

BULLETIN NO. 7

University of Illinois Bulletin

Vol. 7.

SEPTEMBER 13, 1909.

No. 2.

(EXTERED AT URBAN & ILLINOIS, AS SECOND-CLASS MATTER)

CHEMICAL AND BIOLOGICAL SURVEY OF THE WATERS OF ILLINOIS

REPORT FOR YEAR ENDING DECEMBER 31, 1908

EDWARD BARTOW Director

WATER SURVEY SERIES No. 7

URBANA, ILLINOIS

PUBLISHED BY THE UNIVERSITY

PRESS OF S. E. TATE PRINTING COMPANY MILWAUKEE, WISCONSIN

CONTENTS.

Page.

Organization
Letter of Transmittal
General Statement 7
Determination of Nitrates in Drinking Water
Incrustation Experience at Quincy
Character and Composition of the Incrustation from Discharge Pipe
at Quincy
Current Methods of Sanitary Water Analysis
Farm Water Supplies
Hardness of Illinois Municipal Water Supplies
Interpretation of Results, 1909105
Additional Data Concerning Municipal Water Supplies110
Index

CUTS AND ILLUSTRATIONS.

Sections of Pipe Removed From Trench at Quincy, Illinois	. 31
Section of Pipe in the Trench at Quincy, Illinois	. 33
Driven Wells Safer Than Dug Wells	.95
Protection for Dug Wells	. 96

ORGANIZATION.

Staff 1908.

Edward Bartow, Ph.D.	Director
THOMAS J. BURRILL, PH.D., LL. D Consulting H	Bacteriologist
SAMUEL WILSON PARR, M.S Consulti	ng Chemist
ARTHUR NEWELL TALBOT, C.E Consultin	g Engineer
LEWIS ISAAC BIRDSALL, B. A	Chemist
FRANK BACHMANN Ba	cteriologist
WALTER G. STROMQUIST, B. AAssista	nt Chemist
ANDREW JACOBSON, B. SAssista	nt Chemist
ANDREW WATSON SELLARDS, M.ASumme	er Assistant
ANDREW CLIFFORD WILKINS	Clerk
MABEL EUNICE BUSH Ste	enographer

BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS, 1909-1910.

WILLIAM L. ABBOTT, Chicago, President.

WILLIAM L. PILLSBURY, Urbana, Secretary. HENRY A. HAUGAN, Chicago, Treasurer. SAMUEL W. SHATTUCK, Champaign, Comptroller.

THE GOVERNOR OF ILLINOIS, CHARLES S. DENEEN, Springfield. PRESIDENT OF STATE BOARD OF A GRI- CULTURE, JOHN M. CREBS, Carmi.	MRS. MARY E. BUSEY, Urbana. MRS. CARRIE T. BAHRENBERG, Belleville. FRED L. HATCH, Spring Grove. ALBERT P. GROUT, Winchester.
SUPERINTENDENT OF PUBLIC INSTRUCTION. FRANK G. BLAIR, Springfled. WILLIAM L. ABBOTT, 139 Adams St., Chicago.	

DR. CHARLES DAVISON, 103 State St., Chicago.

LETTER OF TRANSMITTAL

STATE WATER SURVEY, UNIVERSITY OF ILLINOIS,

URBANA, ILLINOIS, July 1, 1909.

Edmund Janes James, Ph. D., LL. D., President University of Illinois:

SIR: Herewith I submit a report of the work of the State Water Survey for the year ending December 31, 1908, and request that it be printed as a bulletin of the University of Illinois, State Water Survey Series No. 7.

The report includes a brief description of the work done during the year ending December 31, 1908, with a summary, by years, of analyses made since the foundation of the Survey and a summary; by months, of analyses made during the year. There is also included in the report an article describing the scientific work done at the laboratories of the State Water Survey in the investigation of methods of analysis. A description is given of difficulties experienced with incrustation in the discharge pipe at the filtration plant at Quincy, Illinois. Investigations of farm water supplies in several parts of the State are described. An article entitled "Hardness of Illinois Municipal Water Supplies" shows the character of the mineral matter contained in the various municipal water supplies. Our latest conclusions concerning the methods of "Interpretation of Results" are included and there is also a chapter giving data concerning municipal water supplies which has been collected since the publication of Bulletin No. 5.

Special thanks are due to the regular laboratory staff for their assistance in this work, to Mr. J. S. Rogers for the article on "Determination of Nitrates in Drinking Water," to Dr. A. W. Sellards for the article on "Current Methods of Sanitary Water Analysis," to Mr. W. R. Gelston, Superintendent Quincy Water Works, for the description of the methods of removing incrustation from the water main at Quincy, and to Miss Mabel Bush for the compilation of the data concerning municipal water supplies.

Respectfully submitted,

EDWARD BARTOW,

Director.

GENERAL STATEMENT FOR YEAR ENDING DECEMBER 31, 1908.

From the time of its foundation to December 31, 1908, the State Water Survey has received 18,689 samples of water. Of these, 9,605 were sent by private citizens or local health officers. The remaining samples, with the exception of 2,800, collected in connection with the investigation of the Chicago Drainage Canal, have been collected by members of the staff or under their direction for the study of special problems. During the last year, 1,769 samples were received, 1,682 having been sent to the laboratories by health officers or private citizens. This number greatly exceeds the number sent during any previous year. The time which it has been possible to spare from these routine analyses has been used for the study of special problems that could be handled in the laboratory.

Some changes have been made in the technique and in the methods of analysis during the year. A trap is now used in the determination of nitrogen as nitrates by the aluminium reduction method. This modification has been adopted as a result of the investigation by Mr. J. S. Rogers on the "Determination of Nitrates in Drinking Water." The method is fully described in a later chapter.

The determination of hardness by the soap test is made on part of the samples, especially when the water is to be used for a municipal water supply and the determination of the mineral content is not made. The test for indol has been included in the bacteriological tests as a partial confirmation of the presumptive test for colon bacillus.

The circular on "Interpretation of Results" has been modified by including an explanation of the hardness and indol tests and by the substitution of the term "Gas Formers" for "Colon Bacillus." The presumptive test for colon bacillus shows the presence or absence of bacteria which form a gas, and positive statements can be made concerning this class of bacteria. It seems, on the whole, as desirable to have water free from the bacteria which form gas as to have it free from the specific colon bacillus.

BER OF ERS, A	TABLE I, SHOWING THE NUMBER OF WATER SAMPLES EXAMINED AT THE DIRECT REQUEST OF PRIVATE CITIZI OR LOCAL HEALTH OFFICERS, ARRANGED BY YEARS AND ACCORDING TO THE NATURE OF THE SOURCE.
	NUM OFFIC

Totals for	each source	$\begin{smallmatrix} 1,772\\1,772\\163\\17\\17\\17\\17\\17\\17\\17\\12\\12\\12\\12\\12\\193\\193\\193\\193\\193\\193\\193\\193\\193\\193$	$9,605 \\ 9,084$	18,689
	1908	356 68 68 68 28 28 28 25 83 258 68 32 68 32 68 32 68 32 68 32 68 32 68 32 68 68 68 68 68 68 68 68 68 68 68 68 68	$1,682 \\ 87 \\ 87$	1,769
	1907	336 52 52 52 52 1 1 1 7 17 514 514 514 513 33	1,365 55	1,420
	1906	$\begin{array}{c} 304\\ 63\\ 63\\ 13\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 22\\ 22\\ 112\\ 1\\ 1\\ 1\\ 5\end{array}$	$1,182 \\ 445$	1,627
	1905	$\begin{smallmatrix} & 107 \\ & 5 \\ & 5 \\ & 6 \\ & 6 \\ & & 255 \\ & & & 255 \\ & & & 255 \\ & & & 255 \\ & & & 255 \\ & & & & 255 \\ & & & & 255 \\ & & & & & 255 \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ $	$613 \\ 466$	1,079
	1904	21 x 2 21 x 2 21 x 2 21 x 2 21 x 2 21 x 2 28 28 28 28 28 28 28 28 28 2	525 555	1,080
SS	1903	26	463 419	882
YEAF	YEARS	$^{283350}_{-133350}$	529 147	676
000	1001	61 35 35 35 35 4 4 4 222 56 56 14 209	444 778	1,222
	1900	2744	$^{471}_{1,866}$	2,337
	1899	$\begin{array}{c} & & & & & & \\ & & & & & & & \\ & & & & $	$^{467}_{1,579}$	2,046
	1898	$102 \\ 34 \\ 34 \\ 17 \\ 17 \\ 8 \\ 8 \\ 34 \\ 16 \\ 8 \\ 16 \\ 8 \\ 16 \\ 8 \\ 16 \\ 8 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 $	$^{448}_{988}$	1,436
	1897	245 245 68 65 55 72 72 72 72 72 72 72 72 72 72 72 72 72	517 811	1,328
October, 1895, to	Deć. 31, 1896	5005 5005 314 314 5005 5005 5005 5005 5005 5005 5005 50	899 888	1,787
	SOURCES.	Surface waters, rivers, lakes and pouds, Springs Cristerns Cristerns Natural ice Water for attrificial ice Water for natural ice Shallow wells in rock. Flowing wells in drift Flowing wells in drift Deep wells in drift Swage	Total samples from citizens Other samples	Total for the year

ENDING DECEMBER	
YEAR EN	SOURCE.
THE Y	THE
ST DURING	ATURE OF T
Y REQUEST	THE N
ЭΒΥ	TO
EXAMINED	31, 1908, ARRANGED BY MONTHS AND ACCORDING TO THE NATURE OF THE SC
SAMPLES	THS AND
WATER	BY MONT
ER OF W	B
UMBI	ARRANGEI
	1908,
BLE II. SHOWING	31,
Ξ.	
TABLE	

Jan	Jan. Feb. March
4 09x0000x L4L008	13 13 13 13 13 13 13 13 13 13
0.0	$\begin{array}{ccc} 63 & 120 \\ 6 & 8 \end{array}$
	1469 128
33	50 103 8 23

GENERAL STATEMENT

For suggested limits of impurities of Lake Michigan water there has been substituted for the limit previously used an average of analyses of water taken from the lake $12\frac{1}{2}$ miles from the mouth of the Chicago river. The analyses were made by analysts in the laboratories of the State Boards of Health of Wisconsin, Michigan and Indiana, the Department of Health of Chicago and of the State Water Survey.

We have followed the method of classification used in previous bulletins and show in Table I the number of waters examined at the request of private citizens or local health officers since the foundation of the Survey. The number of waters from shallow wells is the greatest. This no doubt is due to the fact that the individual supply is more frequently obtained from shallow wells and because such wells are more frequently polluted. Surface waters are next in number because of the frequent control necessary, on account of the variation of the character of a surface water with the seasons. During a dry season the suspended matter decreases, the soluble matter increases. While during a wet season there is a larger amount of matter in suspension and less matter in solution. Frequent control tests must be made to determine the amount of chemicals required and to determine the efficiency of the treatment.

In Table II a summary of analyses is given by months for the year 1908. The demand for analyses is much greater during the summer and autumn. The minimum number of samples were sent to the laboratory during February and the maximum during September. During the latter month the typhoid fever rate is usually highest.

A table has also been prepared showing the number of well waters concerning which an opinion has been given. It may be

Depth	Under 25'	25'-50'	50-100'	Over 100'	Unknown	Total
Number examined	254	395	192	312	46	1,199
Number condemned	192	250	66	31	22	561
Per cent condemned	75+	63 +	34 +	9 +	47 +	46 +

CHARACTER OF THE WELL WATERS EXAMINED DURING 1908.

said that the relative purity of the water from these wells varies with the depth. 75 per cent of those less than 25 feet deep were condemned because of probable contamination, whereas only 9 per cent of those 100 feet or more in depth were condemned. We should note that some of these deep wells were condemned because of high mineral content and not because of any possibility of the presence of disease bearing organisms. We believe that this table does not give a true idea of the general condition of the well waters of the State, because the majority of the samples sent to the Water Survey are sent because of suspected contamination. It is to be hoped that a systematic study of the wells will show that a much larger percentage of the wells is above suspicion. The special investigation of farm water supplies in several portions of the State indicates that in five out of six sections visited the well waters used on the farms are in good condition.

The work done by the Water Survey has been distributed over practically the whole of the State. Since the Survey was organized samples have been sent to the Survey from 856 towns scattered through all of the 102 counties of the State. During the year 1908 samples were sent to the Survey from 340 towns in 88 counties.

THE CO-OPERATION WITH THE STATE BOARD OF HEALTH.

The co-operation with the State Board of Health was continued through the year. Water analyses for the State Board of Health have been made when requested. Reports summarizing the work done under this co-operative agreement have been published in the monthly bulletins of the State Board of Health.

ILLINOIS CO-OPERATION.

The data obtained during the investigation of the character of the water of the streams of Illinois, carried on under the cooperative agreement,* has been prepared for publication by Mr. W. D. Collins, Assistant Hydrographer of the U. S. Geological Survey. It is expected that this data will be printed as a Water Supply paper of the U. S. Geological Survey during the year 1909.

EXPERIMENTAL INVESTIGATIONS.

During the summer of 1908, Dr. A. W. Sellards carried on experiments with a view to the improvement of "Current Methods of

^{*}University of Illinois Bulletin, Water Survey Series, No. 3, 1906, p. 19; No. 6, 1907, p. 17.

Sanitary Water Analysis." This work is a continuation of his "Chemical Examination of Water Bacteria."k The work suggested in the first article has been carried farther. Numerous analyses have been made in order to compare current methods and a new method. The results obtained have been very satisfactory and are suggestive of further work in the same line with a view to the adoption of a modified technique in the sanitary examination of potable water.

Mr. J. S. Rogers carried on a study of the methods in use for "Determining Nitrogen as Nitrates in Water." His experiments have led to a modification of our technique in determining nitrogen as nitrates, which we have adopted with success in our routine analyses. A complete account of both of these experiments is given later.

INCRUSTATION IN WATER PIPES AT QUINCY.

The Water Survey was called upon to suggest a remedy for a thick incrustation formed in a water main at Quincy. This incrustation had been forming during several years until the cross sectional area of the opening had been decreased more than half. A study of the situation showed that the removal of the incrustation with acid while possible was not practical. On recommendation of the Water Survey the use of acid was not attempted. The incrustation was removed mechanically as described by Mr. W. R. Gelston and precautions taken to prevent a recurrence of the difficulty. Other filter plants using lime and sulphate of iron in water treatment should be warned by the Quincy experience to avoid the possibility of similar trouble.

FARM WATER SUPPLIES.

The Survey was requested to prepare a lecture on "Farm Water Supplies" for the short course in the College of Agriculture of the University. In order to determine the actual situation with regard to water supplies on some of the farms in the State, samples of water from several localities were collected by representatives of the Survey and analyses made. The results of these analyses, given in this report, indicate that the condition of the farm water supplies

^{*}University of Illinois Bulletin, Water Survey Series, No. 6, p. 22.

in some representative sections of the State is very satisfactory. In other sections, especially where deep rock or deep drift waters are not available, the condition is unsatisfactory. It is hoped, as time permits, that surveys of this nature may be extended to cover all sections of the State. A knowledge of the true conditions will enable the Water Survey officials and health officers to give intelligent opinions concerning the character of the water and concerning the methods of improving the water when there is need for improvement.

HARDNESS OF ILLINOIS MUNICIPAL WATER SUPPLIES.

So many requests come to the Water Survey concerning methods of softening water for boiler and manufacturing uses that a summary was made of the analyses of the mineral content of the municipal water supplies that had been examined. About 100 supplies had been analyzed. From the data thus available the amount of chemicals and the approximate cost of the same for the softening of the municipal water supplies was calculated. This work has suggested the desirability of checking the theoretical cost with the actual cost where water softening plants are installed. Work of this nature will be carried on as opportunity is offered.

MUNICIPAL WATER SUPPLIES.

Bulletin No. 5 gave all the data concerning municipal water supplies available to December 31, 1906. During the years 1907 and 1908 more data was collected. Additional analyses have been made of the water from supplies which had been previously analyzed and waters from a number of supplies have been examined for the first time. The chapter entitled "Additional Data Concerning Municipal Water Supplies" gives a record of all analyses of such supplies made during the two years ending December 31, 1908. There are also included corrections of Bulletin No. 5 which have been brought to the attention of the Water Survey. It is earnestly hoped that municipal authorities in the cities and villages of the State will assist the Water Survey by informing it of mistakes or omissions in this Bulletin No. 7. There has been a greater demand for Bulletin No. 5, "Municipal Water Supplies of Illinois," than for any other bulletin prepared by the Water Survey, and the edition is already nearly exhausted.

DETERMINATION OF NITRATES BY REDUCTION WITH ALUMINIUM.*

The work described in this paper was begun with the intention of making a comparison of various methods for the determination of nitrogen as nitrates; but after a few preliminary tests and also because we noted that E. M. Chamot of Cornell University had prepared a paper on the phenol sulphonic acid method, it was determined to confine the experiments almost entirely to a study of the method which depends upon the reduction of nitrates by means of aluminium.

The first series of the preliminary tests were made on a series of ten waters chosen from the routine samples of the State Water Survey Laboratory. These, according to the analysis made by the method in use in the laboratory, contained nitrogen as nitrates in varying amounts from 0.00 to 72.00 parts per million. These ten waters were then analyzed for nitrogen as nitrates by the aluminium reduction method, by the phenol sulphonic acid method and by the Brucine method of Noll.

Serial Number	Alum	inium R Method	eduction	Phenol Sulphonic Acid Method		ulphuric lethod
$\begin{array}{c} 16924\\ 16922\\ 16948\\ 16938\\ 16921\\ 16914\\ 16926\\ 16955\\ 16944\\ 16912 \end{array}$	$\begin{array}{c} 0.000\\ 0.080\\ 0.360\\ 2.000\\ 3.970\\ 8.000\\ 22.400\\ 35.000\\ 72.000\\ \end{array}$	$\begin{array}{c} 0.280\\ 0.080\\ 0.360\\ 0.680\\ 3.600\\ 2.800\\ 16.000\\ 16.000\\ 20.000\\ 38.000\\ \end{array}$	$\begin{array}{c} 5.200\\ 0.360\\ 0.440\\ 1.160\\ 10.400\\ 6.600\\ 36.000\\ 45.000\\ 60.000\\ 120.000\end{array}$	$\begin{array}{c} 0.050\\ 0.025\\ 0.215\\ 1.630\\ 8.000\\ 7.520\\ 32.000\\ 15.400\\ 70.200\\ 120.000 \end{array}$	$\begin{array}{c} 0.130\\ 0.090\\ 0.150\\ 2.550\\ 6.710\\ 7.400\\ 11.100\\ 9.800\\ 11.700\\ 11.200\end{array}$	$\begin{array}{c} 0.100\\ 0.090\\ 0.190\\ 2.000\\ 6.570\\ 5.640\\ 14.080\\ 13.600\\ 15.700\\ 19.000 \end{array}$

TABLE I.—DETERMINATION OF NITRATES IN SERIES OF TEN WATERS BY DIFFERENT METHODS.

An examination of the results (see Table I) showed that the amount of nitrogen found by the various methods was not the same. The Brucine method gave the lowest results and the phenol sulphonic acid method the highest. Especially was this true of the samples containing the larger amounts.

*Read before the Laboratory Section of the American Public Health Association at Winnipeg, August, 1908, by Edward Bartow and Jerome Stanley Rogers.

Since we could not be certain which method gave the correct results when waters containing unknown quantities of nitrogen as nitrates were used, the second series of preliminary tests was run on ten samples of water containing known quantities of nitrogen as nitrates in amounts varying from .05 to 50.0 parts per million. (See Table II.) Duplicate analyses were made by the phenol sul-TABLE II—DETERMINATION OF NITRATES IN A SERIES OF TEN WATERS OF KNOWN NITRATE CONTENT.

Amount of Nitrates Present in Series of Waters	Alumi	nium Red	luction		Sulphonic Method	Brucin	e Sulphuri	c Acid
$\begin{array}{c} 0.05\\ 0.10\\ 0.25\\ 0.50\\ 1.00\\ 2.50\\ 5.00\\ 10.00\\ 25.00\\ 50.00\\ \end{array}$	$\begin{array}{c} 0.36\\ 0.20\\\\ 0.60\\ 0.92\\ 2.00\\ 4.48\\ 8.60\\ 20.80\\ 34.00\\ \end{array}$	$\begin{array}{c} 0.20\\ 0.24\\ 0.40\\ 0.52\\ 0.92\\ 2.24\\ 4.00\\ 8.48\\ 20.80\\ 50.00\\ \end{array}$	$\begin{array}{c} 0.12\\ 0.24\\ 0.28\\ 0.40\\ 0.60\\ 1.80\\ 3.36\\ 7.04\\ 17.20\\ 33.00\\ \end{array}$	$\begin{array}{c} 0.10\\ 0.025\\ 0.325\\ 0.685\\ 1.130\\ 3.300\\ 11.500\\ 13.000\\ 30.000\\ 60.000 \end{array}$	$\begin{array}{c} 0.075\\ 0.150\\ 0.310\\ 0.575\\ 1.250\\ 3.240\\ 3.500\\ 10.000\\ 21.000\\ 50.000 \end{array}$	$\begin{array}{c} 0.117\\ 0.115\\ 0.232\\ 0.670\\ 1.080\\ 3.600\\ 5.700\\ 11.200\\ 23.750\\ 45.500\end{array}$	$\begin{array}{c} 0.140\\ 0.160\\ 0.250\\ 0.130\\ 1.400\\ 2.600\\ 3.250\\ 7.500\\ 16.250\\ 33.000\end{array}$	$\begin{array}{c} 0.052\\ 0.066\\ 0.170\\ 0.350\\ 0.500\\ 2.600\\ 3.500\\ 6.700\\ 19.000\\ 37.000 \end{array}$

phonic method* and triplicate analyses by both the Brucine and aluminium reduction methods. The aluminium reduction method gave high results in the test of samples which contained less than .5 parts per million and low results in all tests in which one or more parts per million was present. In these latter results there was a recovery of only 80 to 90% of the nitrogen placed in the sample. The phenol sulphonic acid method gave high results in most of the determinations. A few of the determinations, however, were low. The check analyses differed considerably from each other. The Brucine sulphuric acid method in the majority of the tests gave low results. This was especially true of the samples containing the larger quantities of nitrogen as nitrates. These results as a rule were lower even than those obtained by the aluminium reduction method. We did not feel that the results we obtained by any of the methods were entirely satisfactory.

Since Professor E. M. Chamot of Cornell was investigating the phenol sulphonic acid method, and since the aluminium reduction method has been in use in this laboratory almost exclusively since the organization of the Survey, it was decided to determine, if

^{*}Standard Methods of Water Analysis, p. 40. †Chem. News, LXIV, 162.

possible, the cause of the high results in the samples containing low nitrogen and the low results in the samples containing the larger quantities.

The best discussion of this aluminium reduction is that of Hazen and Clark, and our results are in many respects in accord with theirs, though differing in some features.

Experiments were planned with a view to determining the effect of temperature upon the reduction, and of time on the completeness of the reaction. A solution containing 10 parts per million of nitrogen as nitrates was prepared. To portions of 100 c.c. each of this solution was added two c.c. of a 40 per cent. solution of sodium hydroxide, free from nitrates. The solution was concentrated to 15 to 20 c.c., the residue was washed into a test tube holding approximately 100 c.c. and was then diluted to about 75 c.c. with nitrate free water and a strip of aluminium added. Eight of these samples were allowed to stand at room temperature; eight in the incubator at about 371/2°, and eight in the ice box at a temperature of from 5 to 8° C. At the end of sixteen hours half of the samples were diluted with 250 c.c. of distilled water, and the ammonia formed was distilled over and determined. The remainder of the samples were treated in the same way at the end of thirty-two hours. We noted (see Table III) that the longer the solutions were allowed to stand the less nitrogen as nitrates was recovered. We noted also that the largest amount of nitrogen was recovered when the reduction took place at the temperature of the ice box, and the smallest amount of nitrogen at a temperature of from 35 to 40° C. This agrees as far as temperature is concerned with the results obtained by Hazen and Clark.

Two of the solutions were nesslerized directly after dilution to 200 c.c., and the results agreed so closely with results obtained by distillation that in subsequent tests on standard solutions we estimated the nitrogen by direct nesslerization.

The low nitrogen would hardly he accounted for by a failure to reduce all the nitrates present as the results were lower when the solutions were kept the longer. We therefore next sought to

Series	Tempera- ture	Time	c. c. of Water	Volume of Distillate	Volume used	c. c. of Standard	Parts per Million
I. Blank 1 2 3 4* II. Blank 1 2 3 4* III. Blank 1 2 3 4* IV. Blank 1 2 3 4* V. Blank	Room " " 35°-40°C " " 5°-8°C " Room " 35°-40°C " " " S°-8°C " " " " " " " " " " " " "	16 hrs. " " " " " " " " " " " " " " " " " " "	$\begin{array}{c} 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100$	$\begin{array}{c} 200\\ 200\\ 200\\ 200\\ 200\\ 200\\ 200\\ 200$	$\begin{array}{c} 50\\ 10\\ 10\\ 10\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 50\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 50\\ 25\\ 25\\ 25\\ 50\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 1$	$\begin{array}{c} 0.6\\ 3.5\\ 3.8\\ 3.7\\ 1.0\\ 4.5\\ 3.8\\ 4.3\\ 4.3\\ 4.3\\ 1.1\\ 7\\ 3.0\\ 2.7\\ 62\\ 3.3\\ 1.0\\ 1.0\\ 1.0\\ 3.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1$	$\begin{array}{c} 0.24\\ 7.00\\ 7.60\\ 7.00\\ 3.60\\ 3.60\\ 3.60\\ 3.40\\ 4.48\\ 8.60\\ 8.60\\ 8.60\\ 8.60\\ 5.40\\ 5.00\\$
+			100	200	10	4.2	8.40

TABLE III.—EFFECT OF TEMPERATURE AND TIME ON THE REDUCTION OF NITRATES.

determine the amount of nitrogen which was probably carried off as ammonia gas.

A series of experiments was planned in which four solutions were run at room temperature; four at the temperature of the incubator, $37\frac{1}{2}^{\circ}$; and four in the ice box at the temperature of from 5 to 10° C. 100 c.c. of the standard solution containing 10 parts per million of nitrogen as nitrate were used in each case. Each solution was prepared as in the preceding experiment, and in addition the mouth of the test tube was closed with a rubber cork, through which passed a U-shaped glass tube of such a length that the outlet could be placed in a second test tube containing a small amount of dilute hydrochloric acid which served as a trap to catch any ammonia that might escape. The traps were changed at the end of each hour for six hours, and the ammonia caught in the traps was determined by direct nesslerization. Very little ammonia passed off. (See Table IV.) The average for the samples at the temperature

^{*}Indicates that after reduction solutions diluted to 200 c.c. and nesslerized directly. All others were distilled before nesslerization.

		**.nɔilliM 19q sina	³ d	.05 .04 .01 .04		80. 80. 80.		.00 .00 .01	
		e. of Standard.**	.э	<i>2</i> .4.1.4.		& છં છં જ		.0 .0 .1 .1	
	.banol _s HN latoT			$ \begin{array}{c} 10.10 \\ 9.31 \\ 9.31 \\ 9.70 \end{array} $		$10.18 \\ 10.29 \\ 9.77 \\ 10.63$		$10.00 \\ 8.01 \\ 9.62 \\ 9.62 \\ 10.01$	
		.sqarT ai _s HN late.	$^{-10}_{-10}$.18 .29 .17		.00 .01 .02 .01		
	hr.	.noilliM 19q arts	3 4	$\begin{array}{c} .01\\ .04\\ .00\\ .01\\ .01 \end{array}$		$\begin{array}{c} .01\\ .01\\ .01\\ .02\\ .01\end{array}$		00 [.]	.00
	6th	c. of Standard.	·ə	1.4.0.1.		 		0.00.0	
reduction.*	hr.	.noilliM 79g s712	зч	.01 .01 .01 .01		$\begin{array}{c} .02 \\ .02 \\ .01 \\ .01 \end{array}$		00 ⁻ 00 ⁻ 00 ⁻	
redue	5 th	c. of Standard.	.э			 1		0.000	
hours'	hr.	.goilliM 194 21284		00000		.01 10. 10.	C.)	00 [.] 00 [.] 00 [.]	
six	4th	4. c. of Standard.	ure.	0,0,0,0	C.	.1 .1 .1	(5-10°	0 [.] 0 [.]].
during	hr.	noilliM req zirsq	mperat	.01 .02 .01	\$ 37%	.04 .04 .03 .03		.00 .00 .00	•
traps	3rd	с. с. оf Standard.	Room Temperature	1.2.2.1	Temperature	4.4.6.6	Temperature	0.1.0.0.	.
nia in	d hr.	Parts per Million.	I.	.02 .02 .03 .03		.02 .03 .00 .06	Ice-box T	.00 00 00 00	
Ammonia	2n			<i></i>	Ξ.			.0 .0 .0	
4	hr.			8,8,8,8,		.00 032 032 032	III.	00. 000. 000.	
	1st	c. of Standard.	.o	0.0 0.0 0.0				0.0.0.0.	
uo		Ратся рег МіШіоп.		$10.0 \\ 9.2 \\ 9.6 \\ 9.6$		$\begin{smallmatrix}10.0\\10.0\\9.6\\10.4\end{smallmatrix}$		$10.0 \\ 8.0 \\ 9.6 \\ 10.0 \\ 10.0 \\ 10.0 \\ 0$	
reduction		c. of Standard.	22225 22:35		22.55 22.55 2.64		2:5 2:5 2:5		
ound in tubes.		.bəzu əmuloV		ບບບບ		νννα		νυνα	
fc		.noitulib 10 smulc	ρΛ	200 200 200 200		200 200 200 200		200 200 200 200	
Ammonia		. of water.	.э	$100 \\ 100 $		100 100 100 100		100 100 100 100	
4		umper.	-004]	1004		-004	÷	

TABLE IV.-LOSS OF AMMONIA DURING REDUCTION WITH TRAPS ÷ in the ice box was .01 parts per million; for the samples at room temperature the average was .09 parts per million; and for the samples at $37\frac{1}{2}^{\circ}$ the average was .21 parts per million. The amount found in the traps in no way agreed with the amount not recovered in the previous experiments.

The ammonia was determined in the reduction tube after a total period of 20 hours. At room temperature the average for the four solutions was 9.6. At the temperature of $37\frac{1}{2}^{\circ}$ the average was 10.0. At the temperature of the ice box the average was 9.4. If to this we add the ammonia found in the traps the total amount recovered is slightly more than 10 parts per million. The excess was practically equal to the test of our distilled water and reagents. We were surprised at the results of this experiment, for we expected to find considerable ammonia in the traps, whereas practically none was found. We feel that this fact can be explained on the supposition that ammonia is carried out of the solution by the hydrogen evolved. When no traps are used the light gases diffuse quickly, whereas when the trap is used diffusion is slow. The more soluble ammonia is re-dissolved by the liquid while the hydrogen alone passes out through the trap. The results indicate that the temperature at which the reduction takes place is of little importance provided care is taken to prevent diffusion of the light gases.

We next carried out a series of experiments to compare directly the results of reduction with and without traps and to confirm the results of the two preceding series. The same standard solution was used and the tests were made the same as before. (See Table V.) With traps, at room temperature, 9.8 parts per million of nitrogen as nitrates was recovered from the reduction tube and 0.09 from the trap, making a total recovery of 9.89 parts per million, whereas when the traps were not used only 6.0 parts per million were recovered.

With traps, at a temperature of $37\frac{1}{2}^{\circ}$, 10 parts per million were recovered from the reduction tube and .14 from the traps, whereas when the traps were not used only 4.6 parts per million were recovered.

With traps, at the temperature of the ice box, 10 parts per mil-

With Traps						ia found Traps			With	nout Tra	ps	
Number.	c. c. of Water.	Vol. of Dilution.	Volume used.	c. c. of Standard.	Parts per Million.	c. c. of Standard.	Parts per Million.	c. c. of Water.	Vol. of Dilution.	Volume used.	c. c. of Standard.	Parts per Million.
I. Room Temperature.												
$1 \\ 2 \\ 3 \\ 4$	$100 \\ 100 \\ 100 \\ 100 \\ 100$	200 200 200 200	5 5 5 5	2.5 2.3 2.5 2.5	$10.0 \\ 9.3 \\ 10.0 \\ 10.0$	$ \begin{array}{c} 1.0\\ 0.8\\\\ 0.9 \end{array} $.10 .08 .09	$100 \\ 100 \\ 100 \\ 100 \\ 100$	200 200 200 200	5 5 5 5	$1.4 \\ 1.6 \\ 1.5 \\ 1.5 \\ 1.5$	5.6 6.4 6.0 6.0
					II. Ter	nperatu	e 37½°	C.				
$\begin{array}{c}1\\2\\3\\4\end{array}$	$100 \\ 100 \\ 100 \\ 100 \\ 100$	$200 \\ 200 \\ 200 \\ 200 \\ 200$	5 5 5 5	2.5 2.5 2.5 2.5 2.5 2.5	$10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0$	1.3 1.6 1.5	.13 .16 .15	$100 \\ 100 \\ 100 \\ 100 \\ 100$	200 200 200 200 200	5 5 5 5	$1.2 \\ 1.1 \\ 1.1 \\ 1.2 \\ 1.2$	4.8 4.4 4.4 4.8
	III. Temperature 5-8° C.											
1 2 3 4	$100 \\ 100 \\ 100 \\ 100 \\ 100$	200 200 200 200	5 5 5 5 5	2.52.52.52.52.5	$10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0$	$\begin{array}{c} 0.8 \\ 0.8 \\ 0.4 \\ 0.6 \end{array}$.08 .08 .04 .06	$100 \\ 100 \\ 100 \\ 100 \\ 100$	200 200 200 200	5 5 5 5	2.0 2.0 2.1 2.1	8.0 8.0 8.4 8.4

TABLE V. COMPARISON WITH AND WITHOUT TRAPS-10 HOURS.

lion were recovered from the reduction tube and .06 parts per million from the traps, whereas from the tubes without traps only 8.2 parts per million were recovered. These results confirmed our former conclusions.

One of the objections to the aluminium reduction method lies in the fact that considerable time is required for the completion of the reaction. It has been customary to allow the reduction to go on over night. We arranged tests to determine the time at which the reaction would be completed. We first planned five series of four tests each, in which the reduction would run for periods of 2, 4, 6, 8 and 10 hours at room temperature. We used a solution of the same strength as before, containing 10 parts per million of nitogen as nitrates. Traps were used during the reduction and the ammonia formed was determined by direct nesslerization. (See Table VI.) At the end of two hours 7.7 parts per million of nitrogen were recovered from the solution tubes and .02 parts per million from

TABLE VI. TIME REQUIRED FOR COMPLETE REDUCTION.

DIRECT NESSLERIZATION, USING TRAPS, ROOM TEMPERATURE, TEN PARTS PER MILLION.

1.* Two Hours.												
						NH ₃ in	Traps.					
No.	e.e. of Water.	Vol. of Dilution.	c.c. Used.	c.c. of Standard.	Parts per Million.	e.e. of Standard.	Parts per Million					
$ \begin{array}{c} 1\\2\\3\\4 \end{array} $	$100 \\ 100 \\ 100 \\ 100 \\ 100$	200 200 200 200	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{c} 0.3 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \end{array}$.03 .02 .02 .02						
	II. Four Hours.											
$ \begin{array}{c} 1\\ 2\\ 3\\ 4 \end{array} $	$100 \\ 100 \\ 100 \\ 100 \\ 100$	200 200 200 200 200	5 5 5 5	2.5 2.5 2.6 2.5	$10.0 \\ 10.0 \\ 10.4 \\ 10.0$	$0.6 \\ 0.5 \\ 0.6 \\ 0.6$.06 .05 .06 .06					
	III. Six Hours.											
$\begin{array}{c}1\\2\\3\\4\end{array}$	$100 \\ 100 \\ 100 \\ 100 \\ 100$	200 200 200 200	5 5 5 5	2.6 2.6 2.6 2.8	$10.4 \\ 10.4 \\ 10.4 \\ 11.0$	$\begin{array}{c} 0 \ . \ 8 \\ 0 \ . \ 7 \\ 0 \ . \ 8 \\ 0 \ . \ 7 \end{array}$.08 .07 .08 .07					
			IV. I	Eight Hours.								
$\begin{array}{c}1\\2\\3\\4\end{array}$	$100 \\ 100 \\ 100 \\ 100 \\ 100$	200 200 200 200	5 5 5 5	2.6 2.5 2.5 2.5	10.410.010.010.0	$0.9 \\ 0.9 \\ 0.9 \\ 0.7$.09 .09 .09 .07					
	-		VI. 1	en Hours.								
$\begin{array}{c}1\\2\\3\\4\end{array}$	$100 \\ 100 \\ 100 \\ 100 \\ 100$	200 200 200 200	5 5 5 5	2.6 2.5 2.7	10.4 10.0 10.8	0.8 1.2 1.0	.08 .12 .10					

TIME OF TREATMENT. I.* Two Hours.

the traps. At the end of four hours the reduction was evidently complete as 10.1 parts per million of nitrogen as ammonia was recovered from the solution tubes and .06 parts per million from the traps. The tests which ran 6, 8 and 10 hours gave practically the same results as the four-hour test. At the end of two hours nitrites amounting to .02 parts per million were found.

Since at room temperature the reduction was completed in less than four hours, in the next series of tests, at a temperature of $371/2^\circ$, it was arranged to test groups of samples of four each at the

^{*} Nitrites were found to be present approximately 0.02 parts per million.

THE WATERS OF ILLINOIS

end of 1, 2, 3 and 4 hours. These tests were carried out in the same manner as the tests made at room temperature. (See Table VII.)

TABLE VII. TIME REQUIRED FOR COMPLETE REDUCTION.

DIRECT NESSLERIZATION, USING TRAPS, ROOM TEMPERATURE, TEN PARTS PER MILLION.

	1. One Hour.										
							NH ₃ in	Traps.			
	No.	e.e. of Water.	Vol. of Dilution.	c.c. Used.	c.c. of Standard.	Parts per Million.	c.c. of Standard.	Parts per Million			
_	$\begin{array}{c}1\\2\\3\\4\end{array}$	$100 \\ 100 \\ 100 \\ 100 \\ 100$	200 200 200 200	5 5 5 5	.9 1.2 1.4 1.1	3.6 4.8 5.6 4.4	.3 .0 .0 .2	.03 .00 .00 .02			
_				II. 1	wo Hours.	-					
	$\begin{array}{c}1\\2\\3\\4\end{array}$	$100 \\ 100 \\ 100 \\ 100 \\ 100$	200 200 200 200	5 5 5 5	2.3 2.1 2.2 2.3	9.2 8.4 8.8 9.2	. 4 . 2 . 3 . 2	.04 .02 .03 .03			
-				III. T	hree Hours.						
_	1 2 3 4	$100 \\ 100 \\ 100 \\ 100 \\ 100$	200 200 200 200 200	5 5 5 5	2.5 2.6 2.6 2.6	$10.0 \\ 10.4 \\ 10.4 \\ 10.4 \\ 10.4$.4 .3 .1 .5	.04 .03 .01 .05			
_				IV.	Four Hours						
	$\begin{array}{c}1\\2\\3\\4\end{array}$	$100 \\ 100 \\ 100 \\ 100 \\ 100$	200 200 200 200	5 5 5 5	2.7 2.8 2.7 2.7	$10.8 \\ 11.2 \\ 10.8 \\ 10.8 \\ 10.8$. 4 . 5 Cloudy . 4	.04 .05 .04			

TIME OF TREATMENT.

At the end of one hour 4.6 parts per million of nitrogen were recovered from the solution tube and .01 parts per million from the traps. At the end of two hours 8.9 parts per million were recovered from the solution tubes and .03 parts per million from the traps. At the end of three hours 10.3 parts per million were recovered from the solution tubes and .03 parts per million from the traps.

There was a slight increase in the amount of nitrogen recovered at the end of the fourth hour. These tests indicate that the time required for solutions containing nitrates alone need not be as long as has been previously recommended.

Tests were next run with waters containing smaller amounts

of nitrogen, namely, 0.5 and 2.5 parts per million. The tests were run by direct nesslerization at room temperature for four hours, using traps. (See Table VIII.) The distilled water used contained TABLE VIII. TREATMENT OF DISTILLED WATERS CONTAINING .5 AND 2.5 PARTS PER MILLION NITRATES.*

			Distined wa	u is si u	puit per initite	in or minute.	,.					
						NH ₃ in	Traps.					
No.	c.c of Water.	Vol. of Dilution.	c.c. Used.	c.c. of Standard.	Parts per Million.	c.c. of Standard.	Parts per Million					
$\begin{array}{c}1\\2\\3\\4\end{array}$	$100 \\ 100 \\ 100 \\ 100 \\ 100$	200 200 200 200 200	50 50 50 50	1.3 1.3 1.4 1.3	$\begin{array}{c} 0.52 \\ 0.52 \\ 0.56 \\ 0.52 \end{array}$.3 .3 .4	.03 .03 .03 .04					
	WATER USED—II. Distilled water + 2.5 parts per million of nitrates.											
$\begin{array}{c}1\\2\\3\\4\end{array}$	$100 \\ 100 \\ 100 \\ 100 \\ 100$	200 200 200 200	10 10 10 10	$1.3 \\ 1.35 \\ 1.2 \\ 1.2 \\ 1.2$	2.6 2.7 2.4 2.4	. 4 . 8 . 4 . 5	.04 .08 .04 .05					
		١	W ATER USE	z D—III. Disti	lled water.							
$\begin{array}{c}1\\2\\3\end{array}$	$\begin{array}{c} 100\\ 100\\ 100 \end{array}$	200 200 200	50 50 50	$0.4 \\ 0.4 \\ 0.8$.16 .16 .32	. 2 . 0 . 0	.02 .00 .00					
		W A	ter Used—'	Water from I	.ake Michigan.							
$\frac{1}{2}$	100 100	200 200	50 50	$\begin{array}{c} 1 \ . \ 1 \\ 1 \ . \ 0 \end{array}$.44 .40	.0 .0	.00 .00					

WATER USED-I. Distilled water + .5 of a part per million of nitrates.

.21 parts per million of nitrogen as nitrates which, after deduction from the amount of nitrogen recovered by the determination, gives .35 parts per million instead of .5 parts per million, and 2.34 parts per million instead of 2.5 parts per million.

A series of six determinations was run on waters which had been analyzed by the regular routine of the laboratory. The determinations were made by direct nesslerization at room temperature after four hours reduction, using traps. In each case a larger amount of nitrogen was recovered.

In No. I. 0.44 parts per million instead of .12 parts per million. In No. II. 42.00 parts per million instead of 30.00 parts per million.

^{*} Direct nesslerization, room temperature, four hours reduction, using traps.

THE WATERS OF ILLINOIS

In No. III. 0.44 parts per million instead of .32 parts per million.

In No. IV. 30.00 parts per million instead of 25.00 parts per million.

In No. V. 6.8 parts per million instead of 4.20 parts per million. In No. VI. 3.2 parts per million instead of 1.6 parts per million.

A series of analyses in which the amount of nitrogen was unknown to the analyst was next made at room temperature. The period of reduction was four hours, traps were used and the ammonia found was determined by direct nesslerization.

	Amount of	nitro	gen	added.	Amount	of ni	troge	en found.
Ι.	22	parts	per	million	24	parts	per	million
II.	10	parts	per	million	10.8	parts	per	million
III.	2	pasts	per	million	2.8	parts	per	million
IV.	0	parts	per	million	.16	parts	per	million
V.	.28	parts	per	million	.4	parts	per	million

The foregoing series of experiments would indicate that nitrogen as nitrates should be recovered with a reasonable degree of accuracy from pure water to which nitrogen as nitrates had been added and from ordinary drinking water.

Since the phenol sulphonic acid method is said to be unsatisfactory for the determination of nitrogen as nitrates in sewages, it was decided to run a series of tests on sewages to which nitrogen as nitrates had been added. It is well known that nitrates in sewages are very low. We made determinations of nitrogen as nitrates before and after the addition of 10 parts per million to each of three samples of sewage. These were the sewage of Urbana before and after it passed through the disposal works and the water from a polluted stream which passed through the University grounds.

In the first series of tests the analysis was made 24 hours after the nitrates were added. (See Table IX.) We recovered no more nitrogen as nitrates from the samples of sewage to which 10 parts per million had been added than from the original sewages. The ten parts per million of nitrogen as nitrates had entirely disappeared. The water from the polluted stream contained originally one part per million of nitrogen as nitrates. From the sample to

24

TABLE IX. TREATMENT OF SEWAGES AND POLLUTED WATERS.

DIRECT NESSLERIZATION, ROOM TEMPERATURE, FOUR HOURS REDUCTION. NITRATES ADDED AT HOURS BEFORE ANALYSIS.

				on at oround							
						NH ₃ in	Traps.				
No.	c.c. of Water.	Vol. of Dilution.	c.c. Used.	c.c. of Standard.	Parts per Million.	c.c. of Standard.	Parts per Million				
$\begin{array}{c}1\\2\\3\end{array}$	100 100 100	200 200 200	50 50 50	$ \begin{array}{c} 0.5 \\ 0.5 \\ 0.4 \end{array} $	$0.20 \\ 0.20 \\ 0.16$. 1 . 1 . 0	.01 .01 .00				
SOURCE-II: Outflow at Urbana Septic Tank.											
$\begin{array}{c}1\\2\\3\end{array}$	100 100 100	200 200 200	50 50 50	$\begin{array}{c} 0.4\\ 0.5\\ 0.6\end{array}$	$0.16 \\ 0.20 \\ 0.24$. 1 . 2 . 3	.01 .02 .03				
SOURCE-III. Polluted Stream (Boneyard).											
$1 \\ 2 \\ 3$	$ \begin{array}{r} 100 \\ 100 \\ 100 \end{array} $	200 200 200	50 50 50	$2.4 \\ 2.5 \\ 2.6$	$0.96 \\ 1.00 \\ 1.04$. 1 . 1 . 4	.01 .01 .04				
	S	OURCE—IV	. Same as I	+ 10. parts	per million o	f nitrate.					
$\begin{array}{c}1\\2\\3\end{array}$	$ \begin{array}{r} 100 \\ 100 \\ 100 \end{array} $	200 200 200	50 50 50	$0.2 \\ 0.4 \\ 0.3$	$ \begin{array}{r} 0.08 \\ 0.16 \\ 0.12 \end{array} $.0 .8 .2	.00 .08 .02				
		Source—V	. Same as II	. + 10. parts	per million of	nitrate.					
$\begin{array}{c}1\\2\\3\end{array}$	$ \begin{array}{r} 1 00 \\ 1 00 \\ 1 00 \end{array} $	200 200 200	50 50 50	$ \begin{array}{c} 0.6 \\ 0.5 \\ 0.5 \end{array} $	$0.24 \\ 0.20 \\ 0.20$. 2 . 0 . 3	.02 .00 .03				
	S	OURCE-VI	. Same as II	I. + 10. parts	per million of	f nitrate.					
$\frac{1}{2}$	$ \begin{array}{r} 100 \\ 100 \\ 100 \end{array} $	200 200 200	5 5 5	2.0 2.0	8.00 8.00	. 5 . 7	.05 .07				

SOURCE-I. Inflow at Urbana Septic Tank.

which 10 parts per million had been added only 8 parts per million were recovered at the end of the four hours reduction period.

In order to check the results, the work was repeated with similar results.

A series of analyses was then run immediately after the nitrates were added. (See Table X.) Proceeding in this way 7.7 parts per million of nitrogen as nitrates were recovered from the raw sewage, to which 10 parts per million of nitrogen as nitrates had been added:

TABLE X. TREATMENT OF SEWAGES AND POLLUTED WATERS.

DIRECT NESSLERIZATION, ROOM TEMPERATURE, FOUR HOURS REDUCTION. NITRATES ADDED AT TIME OF ANALYSIS.

						Fraps.					
c.c. of Water.	Vol. of Dilution.	c.c. Used.	c.c. of Standard.	Parts per Million.	c.c. of Standard	Parts per Million					
100 100 100	200 200 200	50 50 50	0.3 0.4 0.3	$\begin{array}{c} 0.12 \\ 0.16 \\ 0.12 \end{array}$.0 .0 .0	.0 .0 .0					
SOURCE—II. Outflow at Urbana Septic Tank.											
100 100 100	200 200 200	50 50 50	$\begin{array}{c} 0.5\\ 0.4\\ 0.4\end{array}$	$ \begin{array}{r} 0.20 \\ 0.16 \\ 0.16 \end{array} $. 0 . 0 . 0	.0 .0 .0					
SOURCEIII. Polluted Stream (Boneyard).											
100 100 100	200 200 200	50 50	1.2 1.1	0.48 0.44 	. 0 . 0	.0 .0 					
So	URCE—IV.	* Same as I.	+ 10. parts	per million of	nitrate.						
100 100 100	200 200 200	5 5 5	1.8 2.3 1.8	7.2 9.2 7.2	. 0 . 0 . 0	.0 .0 . 0					
So	URCE-V.*	Same as II.	+ 10. parts	per million of	nitrate.						
$ \begin{array}{r} 100 \\ 100 \\ 100 \end{array} $	200 200 200	5 5 5	2.3 2.5 2.3	9.2 10.0 9.2	: 0 : 0 : 0	. 0 . 0 . 0					
So	URCE—VI.*	Same as II	I. + 10. parts	s per million o	f nitrate.						
100 100 100	200 200 200	5 5 5	2.4 1.9 2.2	9.6 7.6 8.8	.2 .0 .0	.02 .00 .00					
	100 100 100 100 100 100 100 100 100 100	100 100 100 200 200 100 200 200 Source Source 100 200 200 100 200 200 Source Source 100 200 200 100 200 200 Source IV.* 100 200 200 Source V.* 100 200 200 Source V.* 100 200 200 Source VI.* 100 200 200	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	100 200 50 0.3 0.12 100 200 50 0.4 0.16 100 200 50 0.4 0.12 SOURCE—II. Outflow at Urbana Septic Tank. 100 200 50 0.5 0.20 100 200 50 0.4 0.16 100 200 50 0.4 0.16 100 200 50 0.4 0.16 SOURCE—III. Polluted Stream (Boneyard). 100 200 50 1.2 0.48 100 200 50 1.1 0.44 100 200 50 1.8 7.2 SOURCE—IV.* Same as II. + 10. parts per million of 100 200 5 2.3 9.2 100 200 5 2.3 9.2 10.0 100 200 5 2.3 9.2 100	100 100 200 200 50 50 0.3 0.4 0.12 0.16 .0 0 SOURCE—II. Outflow at Urbana Septic Tank. 100 200 50 0.5 0.20 .0 100 200 50 0.5 0.20 .0 SOURCE—II. Outflow at Urbana Septic Tank. 100 200 50 0.4 0.16 .0 100 200 50 0.4 0.16 .0 SOURCE—III. Polluted Stream (Boneyard). SOURCE—III. Polluted Stream (Boneyard). 100 200 50 1.1 0.44 .0 100 200 50 1.2 0.48 .0 100 200 50 1.1 0.44 .0 100 200 5 1.8 7.2 .0 100 200 5 1.8 7.2 .0 100 200 5 2.3 9.2 .0 100 200 5 2.3 </td					

SOURCE-I. Inflow at Urbana Septic Tank.

9.4 parts per million were recovered from the sewage which had passed through the disposal works; 8.7 parts per million were recovered from the polluted stream. Nitrites were found in all of the somples after four hours reduction, indicating that the reduction was not yet complete. We conclude from this series of tests that in the presence of organic matter the reduction of nitrogen to ammonia is slower than when the organic matter is absent. We con-

^{*} Nitrates were found in the solution after four hours reduction.

clude also that it would be useless to make the determination of nitrogen as nitrates in raw sewage, and also in sewage which has passed through a solution chamber similar to the one at Urbana.

GENERAL SUMMARY.

1. Because of loss of ammonia the amount of ammonia recovered in a given time in open reduction tubes varies inversely with the temperature.

2. The loss of ammonia is prevented and the temperature has no effect if the hydrogen is allowed to escape through traps.

3. The reduction is completed in less than four hours in pure water or waters of average purity; in highly polluted waters the reduction requires longer time.

4. In sewage the determination of nitrogen as nitrates is practically without value because the nitrates are reduced by the oxidation of the organic matter present.

INCRUSTATION EXPERIENCE AT QUINCY, ILLINOIS.*

W. R. Gelston.

We have had some incrustation experience at our pumping station, which will probably be of interest to all the members of the American Waterworks Association, and especially to those who may have occasion to design sedimentation and filtration systems. Our experience has brought to light serious defects in the construction of our system and it may be the means of preventing similar defects in future installations.

For a thorough comprehension of our trouble a brief descriptino of the plant is necessary. The pumping station is built on the bank of the Mississippi River from which we secure our supply of water. A Worthington horizontal triple expansion pumping engine, size 12" & 19" & 30" x 24" x 24," pumps the raw water from the intake well to the settling basin, which is located upon the hillside about 450 feet from the pump house and at an elevation of about 40 feet above the pump. This basin is 70 feet square and 10 feet deep. Sulphate of iron and lime are used for coagulating purposes, the iron solution being drawn through the suction of the Worthington pump and the lime solution being pumped into the discharge pipe by a small auxiliary pump. The discharge from the lime pump was connected with the discharge from the large pump in a valve well just outside the pump house and here appears a serious defect. This arrangement allowed a very thorough mixing of the two solutions with the raw water before they were finally discharged into the basin at a point 400 ft. away.

After a sedimentation period of about one hour in the settling basin, the water flows by gravity through a 20" cast iron pipe to the filter house where the purification process is completed by 14 Continental-Jewell filters. From the clear well under the filters the water flows back to the pump house and into the water chamber of a 5,000,000 gallon Gordon-Maxwell pump which discharges it directly into the distribution system, the surplus passing into a

^{*}Proceedings, Am. Water Works Assn., 1908, p. 165.

reservoir of 18,000,000 gallon capacity. This reservoir holds easily a week's supply of water for the city and is located on a hill 230 feet above the pump house and two and one-half miles away.

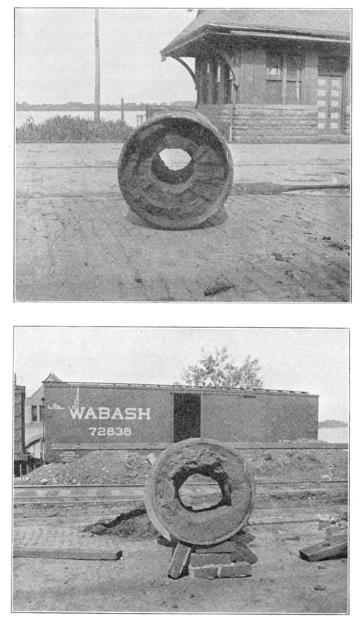
The beginning of the serious trouble precedes the date of my connection with the plant and this information is supplied by Mr. F. J. Brinkoetter, who is Chief Engineer of the pumping station.

During the summer of 1906 the Worthington pump began to show signs of distress. The pressure gauge on this pump should show a head of water of about 47 feet by actual levels, whereas the gauge was indicating a rapidly increasing head. Investigation of the trouble lead to the discovery of a thick deposit of scale on the inside of the 20" discharge pipe. Taps were made at several points along the line of pipe and it was found that the incrustation extended from the point of introduction of the lime solution to the discharge end of the pipe. Mr. Brinkoetter then appealed to Mr. Edward Bartow, Director of The Illinois State Water Survey to find out whether it might be possible to remove the deposit by the use of chemicals. Mr. Bartow came to Quincy and conducted a series of experiments to determine the action of various acids upon the scale and the probable cost of removing it by acid treatment. It was decided that the cheapest and only certain method would be to cut it out with hammer and chisels. Finally, in November, 1906, the storage reservoir was filled and pumping discontinued while the discharge end of the pipe was being cleaned. At the time the pumps were stopped the pressure gauge indicated a head of 100 feet against which the pump was working.

The first 60 feet of the pipe lies exposed in the settling basin and was cleaned without difficulty by melting out the middle joint which allowed three men to work at the same time. Outside the settling basin an excavation was made over every third or fourth joint of pipe which was removed by melting out the spigot end and cutting off the bell end with a diamond-pointed chisel. After cleaning, the same pipe was replaced by using a 20" sleeve where the bell end was cut away.

A force of eight men worked one week and succeeded in cleaning about 150 feet of the pipe. The deposit averaged about 5 inches in thickness and seemed to be about the same throughout the circumference of the pipe.

It was then necessary to begin pumping again and the pressure gauge showed a reduction of the head of water to 70 feet.


Nothing further was done until July, 1907, when the gauges indicated a steam pressure of 100 lbs. and a head of water of 91 feet while the pump was running 19 revolutions per minute. Things began to look serious again so we decided to clean the remainder of it. This end of the pipe was much more difficult to clean because it is crossed by one paved street, in which is a street car track, and by four railroad tracks. A portion of the pipe also lies at a depth of 10 feet which increased the amount of necessary excavation. The work was begun July 27th, and handled in the same manner as before. The pipe was all replaced and ready for use again August 4th. A force of from 10 to 14 men was employed and the thickness of the scale increased from nothing, at the point where the lime solution was introduced, to 6 inches at the point where work was begun. At this time 250 feet of pipe were cleaned, making a total of 400 feet, which was cleaned at a total expense of \$420.00 for labor and new material used.

After this cleaning the steam gauge stood at 61 lbs. and the water gauge at 47 feet while the pump was making 22 revolutions per minute.

In order to obviate the necessity of ever cleaning all of this pipe again, the discharge pipe of the lime solution pump was extended about 300 feet and made to discharge into the large pipe at a point just outside the wall of the settling basin. This allows a distance of 80 feet in the large discharge pipe for the mixing of the two solutions before the final discharge into the basin. This 80 feet of pipe will fill up again and require cleaning, but it will be a comparatively small job. This change in the point of introduction of the lime solution has undoubtedly lessened the efficiency of the basin and thrown more work upon the filters. When the river is very turbid we still use the old discharge opening for the lime pump so as to obtain the best possible results from the basin.

I am advised by Mr. C. R. Henderson, the former superintendent

30

SECTIONS OF PIPE REMOVED FROM TRENCH.

THE WATERS OF ILLINOIS

of the plant, that the present arrangement for handling the lime solution was installed early in the year 1902. As the lime is undoubtedly the active agent in the formation of the incrustation, it would appear that this scale has been in process of formation only about five years, or at an average rate of over one inch per year.

During the past winter the gravity flow line leading from the basin to the filters has also become so filled up with the same deposit as to require cleaning.

This line of pipe is of cast iron, 20 inches in diameter, and it extends from the drop well in the basin, 115 feet along the outside of the north wall of the filter house, then turns a ¹/₄ bend and runs 25 feet along the west wall to a connection with a branch line from the Worthington pump discharge pipe. From this connection the pipe runs under the filter house through a sewer spillway. From this main supply pipe five 10-inch wrought iron risers from 15 to 18 feet in length extend just above the rims of the filter tanks. These risers are capped by tees from which three 6-inch wrought iron branches supply one filter each. These 6-inch branches are, in turn, reduced to four inches and controlled by butterfly valves.

The deposit in this filter pipe system finally became so serious that we could not get water enough into the filter house to keep all the filters in operation, and the speed of the pumps had to be reduced about two revolutions per minute.

In February, 1908, we discontinued pumping for one week and cleaned a portion of the main supply pipe under the filter house, all of the five risers and the 14 filter branch pipes. This work was done by disconnecting every joint and chiseling out the deposit. Numerous difficulties were encountered. The 14 branch pipes are of wrought iron connected with screwed joints. These joints could not be disconnected until the thick incrustation on the inside was broken either by an excessive strain on the wrenches or by hammering. Had these joints been made up with flanged unions the labor would have been much reduced. The five 10-inch risers are each in one piece. Their extreme length and great weight when half filled with solid rock, together with the cramped quarters in which they had to be handled made them almost impossible. They would better be in two sections connected with a flanged union.

32

The deposit had reduced the inside diameter of the 10-inch risers to about six inches. The 4-inch sections just above the butterfly valves were some of them reduced to two inches.

The work was done by a force of six men in six days and the cost of labor alone amounted to \$65.00.

This cleaning resulted in an increase in the filtering capacity of the plant of about 30,000 gallons per hour. The 20-inch supply pipe will soon have to be cleaned also.

During Mr. Henderson's supervision of the plant some cleaning of the filter house piping was necessary and he advised me that plans for a complete rearrangement were being considered at the time of the transfer of the property to the present owners in 1904.

Our experience at Quincy emphasizes the fact that solutions of iron and lime should not be forced together through long lines of pipe. If it is necessary to carry them in the same system, the

THE WATERS OF ILLINOIS

piping should be so arranged as to be conveniently taken apart for cleaning.

Mr. Edward Bartow has made a chemical analysis of a sample of the incrustation taken from the Worthington pump discharge pipe and prepared a paper for the Association, in which he handles this matter from the point of view of the water works chemist.

34

CHARACTER AND COMPOSITION OF THE INCRUSTATION FROM DISCHARGE PIPE AT OUINCY.*

The paper by Mr. Gelston entitled, "Incrustation Experience at Ouincy, Illinois," gives the experience with an incrusted delivery pipe at the pumping station of the Citizen's Water Works Company. Owing to the difficulty of gaining access to the interior of the pipe, they made inquiry of the State Water Survey as to the possibility of removing the incrustation with an acid. An experiment with hydrochloric acid showed that the sediment could probably be removed by means of the acid. We, however, as explained in what follows, calculated the amount needed and decided that the expense of such a treatment would be prohibitive. At the time of the experiment the incrustation in the twenty-inch pipe was four inches thick. This would give a cross section having an area of 1.4 feet. In 400 feet of the pipe there would, therefore be 560 cubic feet of incrustation, Considering that the incrustation was calcium carbonate, having a specific gravity of 2.5,† the total amount to be removed would weigh 87,500 pounds. To dissolve such an amount of calcium carbonate would require 189,500 pounds of commercial hydrochloric acid, having a specific gravity of 1.16 (20° Baumé), and containing 32 per cent. of the pure acid. If this acid could be delivered at Quincy, at one cent per pound, the cost of the acid alone, exclusive of labor, would be \$1,895.00. Necessarily such a method of cleaning the main was not practicable, and the operation of cleaning was carried out as described in the paper by Mr. Gelston.

To account for the character and composition of the scale, we must consider the original composition of the river water, the chemicals used in the treatment, and the manner in which reactions take place between the various substances.

The average composition of the mineral content of the water

^{*}Proceedings, Am. Water Works Assn., 1908, p. 172. †The Specific Gravity, determined later by L. I. Birdsall, was found to be 2.499.

from the Mississippi river at Quincy, for the year ending July 31, 1907, has been determined in the laboratory of the State Water Survey. Samples were collected daily at the intake well of the Quincy pumping station. These samples were combined to cover three periods per month, or thirty-six composite samples during the year. The analytical work was done by Mr. W. D. Collins and Mr. C. K. Calvert, working under a co-operative agreement between the State Water Survey, the State Geological Survey, the Engineering Experiment Station of the University of Illinois, and the Water Resources Branch of the United States Geological Survey. The average of these results must give a good idea of the general character of the Mississippi river at Quincy.

The composite analyses show the widest limits in the turbidity and suspended matter and individual samples would undoubtedly show greater extremes than the composites. The variations in the soluble matter are considerable but not so great. As the analysis of the incrustation is of a cross section, it seems necessary to give only the average of the analyses of the water at this time. The details will be published later.

With regard to the chemicals used, the records of the Water Company show that during the year 1907, the minimum amount of sulphate of iron per million gallons was 195.5 lbs., the maximum amount was 367.4 lbs., and the average was 286.37 lbs. The minimum amount of lime per million gallons was 295.2 lbs., the maximum was 452.37 lbs., and the average was 395 lbs.

Since each pound of sulphate of iron requires two-tenths (.2) of a pound of lime, there will be left 338 lbs. per million gallons to react with the bicarbonates in softening the water. This is more than enough to unite with the calcium bicarbonate and we would expect some magnesium to be removed. That such is the case is shown in two comparative analyses of the water before and after filtration.*

^{*}Proceedings, Am. Water Works Assn., 1906, p. 136.

ANALYSIS OF THE INCRUSTATION.

A CHEMICAL ANALYSIS OF A SPECIMEN OF THE INCRUSTATION GAVE RESULTS AS FOLLOWS:

Determination Made. Per	Cent.
Moisture	.13
Loss on ignition less moisture.	44.31
Silicious Matter	.30
Silica SiO ₂ .15%.	
Oxides of Iron and Alumina Fe ₂ O ₃ +Al ₂ O ₃	.86
Calcium Oxide CaO	53.54
Calcium Ca 38.27	
Magnesium Oxide MgO	.13
Magnesium Mg .08	
Sulphur trioxide S O ₃	.33
Sulphate SO ₄ .39	
Sodium Oxide Na ₂ O	.16
Sodium Na .12	
-	00.76
	99.76

Hypothetical Combinations. Pe	er Cent.
Sodium Sulphate Na ₂ SO ₄	37
Magnesium Sulphate MgSO ₄	17
Magnesium Carbonate MgCO ₃	17
Calcium Carbonate CaCO ₃	. 95.53
Oxides of Iron and Alumina $Fe_2 O_3 + Al_2 O_3 \dots$	· .86
Silicious Matter	30
Moisture	13
Loss on ignition less water+CO ₂ Organic Matter	. 2.23
	99.76

THE WATERS OF ILLINOIS

A VERAGE OF THIRTY-SIX COMPOSITE A NALYSRS OF THE M INERAL CON-TENT OF THE W ATRR FROM THE M ISSISSIPPI RIVER AT

QUINCY, ILLINOIS.

QUINCY, ILLINOIS.	
Constituents.	Parts per
	Million.
Turbidity	176.
Suspended Matter	116.
Dissolved Solids	203.
Alkalies Na	12.
Magnesium Mg.	16.
Calcium Ca.	36.
Iron Fe	46
Nitrate NO ₃	2.2
Chlorine Cl	4.5
Sulphate SO ₄	27.
Bicarbonates HCO ₃	175.
Silica SiO ₂	36.

Hypothetical Combinations.		Grains per
	Million.	Gallon.
Sodium Nitrate NaNO ₃	. 3.0	.17
Sodium Chloride NaCl	. 7.4	.43
Sodium Sulphate Na ₂ SO ₄	. 25.6	1.49
Magnesium Sulphate MgSO ₄	. 12.2	.71
Magnesium Carbonate MgCO ₃	. 46.7	2.72
Calcium Carbonate CaCO ₃	. 89.9	5.24
Iron Carbonate FeCO ₃	. 1.0	.06
Silica SiO ₂	. 18.0	1.05
Total Mineral Matter	. 203.8	11.87

That the reaction between the lime and the calcium bicarbonate occurs first is shown by the very small amount of magnesium in the incrustation. The great difference in the composition of the incrustation and the residue is shown by a comparative table.

COMPARISON OF THE PERCENTAGE COMPOSITION OF THE INCRUSTATION AND THE MINERAL CONTENT OF THE MISSISSIPPI RIVER WATER.

In	crus-	Mississippi
ta	tion.	River.
Per	Cent.	Per Cent.
Sodium Nitrate NaNO ₃		1.5
Sodium Chloride NaCl		3.6
Sodium Sulphate Na ₂ SO ₄	.37	12.6
Magnesium Sulphate MgSO ₄	.17	6.0
Magnesium Carbonate MgCO ₃	.10	22.9
Calcium Carbonate CaCO ₃ 95.	.53	44.1
Oxide of Iron and Alumina $Fe_2O_3 + Al_2O_3$.86	
Iron Carbonate FeCO ₃		.5
Silica SiO ₂	.15	8.8
Bases	.15	
Moisture	.13	
Organic Matter 2.	35	
Total	81	100.00

The preponderance of the calcium carbonate over the other crystalline salts is explained by the insolubility of its crystals and the greater solubility of the other crystalline salts, namely; sodium sulphate and magnesium sulphate. These substances, therefore, remain in solution. The preponderance over the non-crystalline substances, namely: the iron hydrate, formed by the iron sulphate and lime and the hydrates of aluminium and magnesium and the silica, is because the rapidity of the flow prevents these substances from becoming enveloped by the crystals of the carbonate. The small amount of magnesium carbonate is because the lime reacts, first with the calcium salts,* and the magnesium is not precipitated till the calcium is used up.

The experience at Quincy shows that such chemical reactions should not be allowed to take place in a water main, and also indicates the advisability of sufficient sedimentation capacity to allow the reactions to be completed.

^{*}Bartow and Lindgren, Proceedings, Am. Water Works Assn., 1907, page 505.

CURRENT METHODS OF SANITARY WATER ANALYSIS.

ANDREW WATSON SELLARDS.

In recent years the knowledge of sanitary water analysis has undergone considerable modification. The analytical procedures and the conclusions to be drawn from them have grown complex and intricate instead of becoming simple and definite. The chemical problems involved are rather different from those in the ordinary lines of chemical investigation. Attention is not directed toward the detection of dangerous constituents of a water such as injurious chemical or bacterial products, or even if the pathogenic microorganisms could be recognized with certainty, such tests would be insufficient for basing an opinion of a water supply.

The results of the chemical and bacteriological analyses may frequently bear but little direct relation to each other. For example, in a water which is in excellent bacteriological condition, the ammonia content and other constituents may be very high. The reverse situation may also occur and these factors may be comparatively low in waters which are moderately polluted. In a previous article* it was noted that this lack of correlation could be partly obviated by modifications of the current methods of analysis. When water samples are inoculated into nutrient broth, the changes which take place in the media-such as ammonia formation-depend upon the bacterial condition of the inoculated samples and are practically independent of the ammonia content, for example, of the original sample. Hence, while there may be no relation between the ammonia content and the bacteriological condition of a water sample, yet the ammonia formed in artificial culture was at least approximately proportional to the bacterial condition of the water in question.

This paper will consider the practical application of this principle in connection with the various presumptive coli tests. For ascertaining the potability of a water there are two general types of

^{*}J. Infect. Dis., Chicago, 1907, Supple. III, 41. Univ. of Illinois Bulletin, State Water Survey, Series No. 6, p. 22.

fairly distinct procedures, namely: The sanitary survey and laboratory analysis. The value of the sanitary survey is evident. It not only materially supplements the interpretation of the bacteriological and chemical findings, but, in special cases, it may even be the deciding factor.

The laboratory procedures are rather sharply divided into bacteriological and chemical methods. In bacteriological work, the recognition of various intestinal forms has been suggested as an index of sewage pollution. Recently the work of Mereschkowsky* has emphasized the importance of the acidophilus group in the intestinal flora. The presence of B. coli, however, is still to be regarded as the most reliable index of pollution. Equal significance should, of course, be attached to the allied intestinal organisms which may differ somewhat from B. coli in their bio-chemical reactions. Some of these allied forms, such as B. cloaca, give the usual coli tests and possess certain additional activities, such as the power to liquefy gelatine. On the other hand, some groups, for example B. cob anaerogenes, may be overlooked because they fail to give the leading reactions, such as visible fermentation of glucose, by which the attention is usually directed to B. coli. Comparatively little is known as to the relative frequency of the occurrence of the B. coli anaerogenes in the human intestinal flora, but the error which would be introduced by overlooking it is probably not great. As to the laboratory methods for the detection of B. coli, it is of importance, firstly, that they should be fairly rapid. For many laboratories a period not longer than two days is desirable. Secondly, it is of importance to form some opinion of the numbers of B. coli which are present. There is room for some difference of opinion as to the amount of B. coli which should be necessary to condemn a water supply. The city of Baltimore, Md., with a fairly low typhoid fever death rate, uses an untreated river water from which B. coli can be constantly isolated from 1 c. c. quantities. The most advisable standard for this locality, however, is that recommended by Bartow, † which requires that B. coli must be constantly absent in 1 c. c. quantities. Such a standard should

^{*}Mereschkowsky: Centralbl. f. Bakteriol. (etc.), Jena. 1905, XXXIX, 380, 534, 696 and 1906, XL, 118. †Chemical and Biological Survey of the Waters of Illinois. 1908, p. 59.

THE WATERS OF ILLINOIS

effectively protect a community against wide-spread epidemics of typhoid fever. From a bacteriological standpoint then, the central problem in sanitary water analysis is the recognition of the colon group in mixed cultures by rapid methods which give some approximation of the numbers of colon bacilli present.

With glucose broth as a medium in the presumtive test for B. coli, confusion may arise between the intestinal bacteria and the common saphrophytes of the surface soil. Consequently this objection has been raised against the glucose broth test. The question arises then as to whether or not it is necessary to distinguish between pollution from the surface soil and sewage pollution. That is, should not a water supply be protected against surface drainage, and what significance, if any, should be attached to the presence of gas-forming bacteria from the surface soil, such as B. proteus vulgaris? The answer to this question would apparently depend upon the type of water supply under consideration. Thus, for shallow dug wells it is to be expected that, although very well protected, they might contain some gas-forming saphrophytes. On the other hand one does not expect to find any gas-forming bacteria in the deep driven wells of Illinois. These wells are usually from 100 to 1,000 feet deep and are driven in drift or drilled in rock, and are protected with iron casing. Examination of the bacterial content of these driven wells led to the conclusion that the original water supply was not unlikely sterile, and that any bacteria found in the water as delivered from the pump could be accounted for by the technical difficulties in maintaining asepsis during the lifting of the water through the pumping machinery. It must be emphasized, however, that even in the absence of B. coli it may be necessary to condemn a water supply upon the sanitary survey or upon the chemical analysis alone. On the other hand, certain cases may represent the opposite extreme, and it may be desirable to distinguish the pollution of human origin from that due to lower animals.

METHOD OF DISTINGUISHING THE ORIGINAL SOURCE OF AMMONIA AND NITRITES.

One of the disadvantages in the direct sanitary chemical analysis of a water is the difficulty, or the impossibility, of differentiating between the products of sewage pollution and normal constituents of the soil. Thus it is not only impossible to employ universal standards for limits of impurities, but even in the case of local standards the normal quantity may be so high and so variable that the slight increase which might be caused by pollution would not be greater than the limits of error in analysis or the range of normal variation.

It might be supposed, therefore, that any method which would distinguish between normal constituents of the soil and the same substances arising from bacterial pollution would offer some assistance in the interpretation of analytical data. Since the final decomposition products are the same chemical substances as may occur naturally in the soil, any laboratory method of differentiation must rest upon a bacteriological basis. The following method has been developed with especial reference to free ammonia and nitrites. If a water contains high free ammonia which is being produced by bacterial action, one should be able to continue this production by supplying the suitable food material. On the other hand, one may have a water high in ammonia content but almost free from bacteria which produce ammonia. Hence there is no agent to cause the further production of ammonia even in the presence of suitable food material. This principle was tested first with two samples of water, one of unquestionable purity from a deep well, and the other from a polluted stream. The bacteriological analysis of the deep well water showed 80 bacteria per c. c. on gelatine at 20°, with no gas formation in glucose broth. The chemical analysis gave 4.5 parts per million of free ammonia. For the polluted stream the bacterial count was 800 per c. c., with gas formation from .01 c. c. of the sample in glucose broth. The chemical analysis gave 1.2 parts per million of free ammonia.

The high ammonia in the deep well water is presumably derived from a deposit of glacial drift. The ammonia content of these two samples bears no relation to the bacterial condition of the waters in question. On inoculation into media a direct relation was at once seen between the ammonia formed in the culture and the character of the water under examination. To test the constancy of this relation, the reaction was tested on media of somewhat varying compositions. Subsequent results would indicate that the difference in the number of bacteria in the two samples was at least partly responsible for the difference in the amount of ammonia produced by the cultures.

TABLE I.	
----------	--

	Free Ammonia in Culture		Parts per Mil.
	Deep well	Polluted Stream	Sterile Media
Peptone 1% Neutral. Beef Extract ½% Neutral. Peptone 1% and Beef Extract ½% Neutral. Peptone 1%, Beef Extract ½%, Gelatin 2%, Reaction 1% n/1 acid. Peptone 5%, Beef Extract ½%, Reaction 1% n/1 acid.	125. 200. 250. 400. 125.	200. 400. 800. 1250. 1250.	20. 10. 20. 160. 50.

The above cultures were incubated 63 hrs. at 37° C. At the end of this time the microscopic appearance was practically the same. An abundant growth having taken place in all of the tubes. Analysis was made by the Nessler process. One c. c. of the culture was diluted to 250 c. c. with ammonia-free water and 50 c. c. or an aliquot part, were nesslerized directly. The first two media gave especially poor results. The 5 per cent peptone gave much the best Nessler color. In all cases the ammonia in the sterile media has been subtracted from the amount found in the culture.

This experiment not only gives a method for distinguishing the source of origin of the ammonia in the two water samples, but it furnishes a definite method for studying the significance of the free ammonia determinations. The next step of importance is the determination of classes of bacteria which are active in prpducing free ammonia, with a special reference to the comparison of the intestinal bacteria and ordinary saphrophytes. For a preliminary test several pure cultures were inoculated into a 2 per cent peptone

solution and incubated forty-eight hours at 37° C. Analyses were made by direct nesslerization, using a 1-250 dilution.

TABLE II.	
BACTERIAL SPECIES.	FREE AMMONIA. Parts per mil.
Bacillus lactis aerogenes	125
Bacterium aerogenes	150
Bacillus megatherium	200
Bacillus subtilis	175
Bacillus typhosus	50
Bacillus coli (1)	75
Bacillus coli (2)	125

A more extensive series of cultures was inoculated into a broth medium described subsequently in connection with the nitrite experiments. Incubations were carried on for three days at 37° C. The analyses were made by nesslerization after distillation with so-dium carbonate from 500 c. c. volumes of a 1-500 dilution.

		Parts per Million	
BACTERIAL SPECIES.	*Fermenta- tion Lactose	Free Ammonia	Free Ammo- nia Minus NH ₃ in Media
B. coli (3) B. coli (4) B. coli (5) B. coli (6) B. coli (7) B. coli (7) B. coli anaerogenes B. paratyphosus (a) B. paratyphosus (b) B. typhosus (b) B. typhosus (b) B. typhosus (b) B. typhosus (b) B. enteritidis Cloaca (c) B. cloaca (c) B. proteus vulgaris B. megatherium Staphylococcus pybgenes aureus B. subtilis B. mycoides Sterile media Blank on apparatus	$ \begin{array}{c} 15\\20\\30\\20\\25\\0\\0\\0\\0\\25\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0$	$\begin{array}{c} 800\\ 800\\ 1000\\ 1000\\ 1000\\ 900\\ 900\\ 900\\ 900$	$\begin{array}{c} 200\\ 200\\ 400\\ 500\\ 400\\ 300\\ 300\\ 0\\ 100\\ 100\\ 100\\ 100\\ 100$

TABLE III.

Altough ammonia production is a very general property of baceria this table would indicate that the colon group is not especially active, giving even much lower results than ordinary saphrophytes such as B. megatherium and B. mycoides. This finding is of

^{*} Percentage of gas in closed arm of a fermentation tube after 48 hrs. at 37° C. Throughout these experiments the letters and numbers after the bacterial species indicate cultures from different sources. These cultures were furnished by the courtesy of Dr. N. Mac L. Harris of the University of Chicago.

THE WATERS OF ILLINOIS

significance in its relation to the interpretation of analytical data. High free-ammonia determinations do not, therefore, in any way indicate the presence of intestinal bacteria, but are merely an indirect qualitative test for the presence of bacteria without giving any definite idea concerning the number or species present. Direct cultivation by bacteriological methods affords a much more definite procedure for obtaining this information.

The free-ammonia determinations are practically without value for the deep driven wells of Illinois. These wells are in excellent bacteriological condition. The normal free-ammonia content for this region, however, is so high (sometimes 30 parts per million) and so variable that the slight additional amounts, such as are ordinarily caused by pollution, would be insignificant. The access of badly polluted surface waters, or even of sewages, could readily act as a diluting fluid and diminish the concentration of ammonia.

On the other hand there are cases where the free-ammonia determinations afford a very delicate index of pollution, notably in lake waters where samples from the center furnish an accurate standard and changes near the shore can be readily detected. Aside from bacteriological considerations, the presence of freeammonia may possibly be of value as an indirect evidence of the presence of organic matter.

NITRITE INVESTIGATIONS.

This same principle of analyzing cultures is also applicable in determining the origin of nitrites in a water. In case a water is nitrite free one is probably dealing with an extreme type, though it is not possible to say from the nitrite determination alone whether a given sample is in a very good or a very bad condition because the best potable waters and some sewages are nitrite free. Such a condition can be most easily explained by the supposition that the bacteria present in sewage are capable of destroying nitrites. For distinguishing between such extreme types of water, inoculation tests were applied in a manner somewhat analogous to the ammonia determinations. One of the simplest media for obtaining nitrite production is a nitrate broth solution, but since there are so many species of bacteria which reduce nitrates to nitrites, this test, like the free am-

mania determination, would have comparatively little differential value. The experiment was therefore modified so as to test, not for nitrite formation, but to observe the conditions under which nitrites are destroyed. A preliminary test was made upon the same samples of water used in the free ammonia experiments; namely, a polluted creek and a deep well. Except where otherwise noted the following technique has been uniformly employed throughout these experiments:

The medium used was an ordinary meat extract broth of double concentration with an acidity of 2% of normal acid, and to this was added 2% of gelatin and 0.05% sodium nitrite. Precautions were taken to adjust the final acidity before adding the sodium nitrite in order that any loss of nitrite during heating and sterilization might be uniform in different lots of media. No attempt was made to introduce inhibiting agents into the medium though preliminary results with ammonium chloride and glucose indicated that these substances might be used to advantage. Instead of the 1% concentration of glucose used in the fermentation tests, it appeared that concentrations of 10% or even 20% might have some slight selective action in the presumptive gas tests. Five c. c. of the broth were measured accurately into test tubes. Intermittent sterilization was employed. The medium was stored at a temperature of 8° and under these conditions it was solidified. Inoculations were made with 1 c. c. quantities of the waters to be tested or where pure cultures were used, the bacteria were inoculated directly without correcting for the volume of 1 c. c. used in the water sample. As in Table III, the letters and numbers after the bacterial species indicate cultures from different sources. Incubations were carried on at from 37° to 39° C, for 48 hours.

The nitrite determinations were made by the customary napthyl-aminehydro-chloride and sulphanilic acid color method. It was originally planned to make careful quantitative analyses but the differences were so pronounced that this was unnecessary. The data in the tables represent only approximate determinations.

Analyses of the polluted creek and the well water gave results as follows:

	Nitrogen as Nitrites
	parts per million
Pure Well	25
Polluted Creek	0
Sterile Media	25

This experiment was repeated three successive times with sim-

THE WATERS OF ILLINOIS

ilar results. A series of tests were then made upon pure cultures to determine whether or not the reaction is of any differential value.

		N as Nitrites parts per Million	
BACTERIAL SPECIES.	% Gas in Lac- tose Fermen- tation Tube	3 Days	10 Days
B. coli (3) B. coli (4) B. coli (5) B. coli (5) B. coli (6) B. coli (7) B. coli (20) B. coli anaerogenes. B. paratyphosus (a) B. paratyphosus (b) B. typhosus (b) B. typhosus (b). B. lactis aerogenes (b) B. enteritidis B. cloaca (c) B. cloaca (c) B. proteus vulgaris B. meatherium Staphylococcus pyogenes aureus. B. subtilis B. subcilis.	$ \begin{array}{c} 15\\20\\30\\20\\25\\0\\0\\0\\0\\25\\0\\0\\0\\25\\0\\35\\3\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0$	$12.5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 12.5 \\ 18.7 \\ 12.5 $	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 18.7\\ 12.5\\ 12.5\\ 12.5\\ 12.5\\ 12.5\\ 12.5\\ 12.5\\ 12.5\\ 12.5\\ 12.5\\ 12.5\\ 12.5\\ 12.5\\ 12.5\\ 12.5\\ 12.5\\ 12.5\\ \dots\end{array}$

TABLE IV.

From this table it appears that, taken as a class, the intestinal bacteria are very active in destroying nitrites, whereas a comparison with Table III shows that, for the species tested, those which were most active in forming ammonia did not destroy nitrites.

DELICACY OF THE NITRITE TEST.

For testing the delicacy of the reaction for use in water analysis two general methods were employed, namely: 1. Determination of, (a) the maximum time for which the nitrites can exist in a media inoculated with unpolluted waters, and (b) determination of the minimum time in which a polluted water can destroy the nitrites present in the media. 2. Comparison of the reaction with other methods in detecting slight traces of artificial pollution.

Experiments by the first method gave well marked differences. In the case of four dug wells representing moderate pollution, the time required for the complete destruction of the nitrites varied from eighteen to thirty-six hours. Upon deep driven and carefully protected dug wells the time was much longer, ranging from four days to two weeks.

For testing the delicacy of the reaction by the second method, sterilized water was polluted artificially with pure cultures of B. coli and with sewage. Two cultures of coli were used, one of which fermented and one which did not ferment saccharose. Emulsions of the bacterial growth were made in water and. successive ten-fold dilutions prepared. One c. c. quantities of these various dilutions were then inoculated into fermantation tubes containing glucose broth and into nitrite media. In the case of the broth cultures the highest dilution of the. emulsions which gave gas formation was, in every case, also sufficient to completely destroy all the nitrites in the media within at least forty-eight hours. Tests upon diluted sewages gave less definite results. Altogether four different samples were tested. One c. c. samples gave gas production in glucose broth in dilutions 10 to 100 fold greater than could be recognized by the nitrite tests. In these high dilutions; however, the amount of gas formed was not typical of B. coli, being only about 20 per cent of the closed arm of the fermentation tube. Where gas production, typical of B. coli was obtained, the same dilution also gave complete destruction of nitrites within the forty-eight hour limit.

NATURE OF THE PROCESS BY WHICH NITRITES ARE REMOVED.

No attempt has been made to determine the exact nature of the changes which take place during the destruction of the nitrites. In the presence of B. coli oxidation to nitrates could hardly occur, since nitrates are rapidly reduced to nitrites by this organism. It is not improbable that the process is a reduction resulting in the formation of amines, ammonia and elementary nitrogen. The destruction of the nitrites in the medium depends upon the growth of bacteria, and it seems advisable to characterize the reaction as a fermentation. It is possible, of course, that reducing substances such as dissolved oxygen in the inoculated water sample might be responsible for the changes which occur. This possibility is practically eliminated in cases where pure cultures are used. For the water samples, control tests also showed that bacterial growth is

the essential factor. In one series where development was inhibited by chloroform, only a minimal reduction in the nitrite content was obtained, whereas, a series without chloroform gave complete destruction of the nitrites. Cultures were also tested in a medium of simpler composition, in view of the possibility that secondary bacterial changes might result in the production of a medium unstable toward nitrites, i. e., one of such chemical composition that nitrites as such could not exist in it. Samples of pure and polluted waters were inoculated into a solution, free from acid and containing 0.1 per cent peptone and 0.05 per cent sodium nitrite. Growth took place rather slowly, but after four days the nitrites were destroyed in both samples. This result was obtained repeatedly. It is an open question, therefore, whether the destruction of nitrites results from direct bacterial action or from secondary processes. In the preparation of the original culture media it is important to note that it must, of course, be stable toward sodium nitrite. Consequently, the amount of acid which can be used in the medium depends largely upon the quantity of albumen present. In a simple broth medium the addition of the usual 1 per cent normal acid in the presence of sodium nitrite liberates nitrous acid from the solution. The addition of albuminous-like material is sufficient to bind the acid as acid-albumin and protect to a large extent the sodium nitrite. The reaction time for the destruction of a given quantity of nitrites in the cultures is a purely arbitrary period and can be varied at will by adjusting the quantity of albuminous material and the quantity of acid used in the medium. Relatively slight variations from the medium used gave results wholly without value. The optimum acidity in a culture medium depends, therefore, both upon the amount of acid and the amount of proteid present, that is, 1 per cent of free acid is a very different factor from 1 per cent acid albumen. It is hoped that by altering the amount of acid, the amount of albuminous material or the quantity of sodium nitrite, that the reaction time of forty-eight hours might be reduced to twenty-four hours.

APPLICATION OF THE NITRITE TESTS.

The estimation of the value of any tests in water analysis frequently presents considerable difficulties. If the test is applied directly in routine work, where a large number of samples are examined, extreme waters give definite results, but variation will occur in the important border line cases. Unless a special study is made of such cases no final conclusions can be drawn. A somewhat detailed examination was made on five shallow dug wells.

One complete sanitary chemical analysis was made. The bacteriological tests were repeated every twenty-four hours for five days. Glucose broth was used for the presumptive coli test, making duplicate inoculations of 1 c. c. quantities of each sample. The confirmatory cultures were not made as it was desired more especially to test the constancy of the presumptive test.

For this series wells were chosen which, judging from the sanitary survey, might be especially subject to variation. Four of the samples are taken from shallow dug wells lined with stones, and the fifth from a cistern. A is a 20-foot dug well open at the top and poorly protected from surface drainage. B is a 25-foot dug well, rather isolated from contamination. C is a spring with a small reservoir and pump. D is a 30-foot dug well, 20 feet from an open sewer and 25 feet from a privy and stable with drainage toward the well. E is a cemented cistern collecting water from a dwelling house. The weather conditions remained constant and no rainfall occurred during the five-day period of the experiment.

Table V gives the results of the chemical analysis:

Sample	А	В	С	D	Е
Laboratory No. Turbidity Color Odor Residue on Évaporation Chlorine in Chlorides. Oxygen Consumed N as Free Ammonia. N as Sitrites. N as Nitrites. N as Nitrites. Alkalinity Bacteria per c.c. Colon Bacillus 10 c.c. Colon Bacillus 0.1 c.c. Indol	17790 30. 40. 0 366. 48. .030 .086 .005 10.000 127. 450. 1+ 1+ 1+ +	$\begin{array}{c} 17778 \\ 0 \\ 0 \\ 0 \\ 380. \\ 17. \\ 2.3 \\ .052 \\ .108 \\ .000 \\ 8.400 \\ 204. \\ 220. \\ 1? \\ 2. \\ 1- \\ - \end{array}$	$\begin{array}{c} 17802\\ 0\\ 10\\ 0\\ 890.\\ 45.\\ 3.4\\ .072\\ .146\\ .060\\ 253.\\ 240.\\ 1+\\ 2+\\ 2?\\ +\\ \end{array}$	$\begin{array}{c} 17801\\ 0\\ 0\\ 507.\\ 26.\\ .086\\ .106\\ .075\\ 1.375\\ 178.\\ 380.\\ 1+\\ 2+\\ 2-\\ +\\ \end{array}$	$\begin{array}{c} 17800\\ 30.\\ 300.\\ 0\\ 119.\\ 26.1\\ .256.\\ .634\\ .000\\ .240\\ 22.\\ 480.\\ 1+\\ 2+\\ 1+1?\\ -\end{array}$

TABLE V.

Some of the colony counts showed considerable variation from day to day.

Sample.	Day of Analysis.									
	First	Second	Third	Fourth	Fifth					
A B C D E	$\begin{array}{r} 450 \\ 220 \\ 7000 \\ 28000 \\ 4400 \end{array}$	5480 19 380 640 440	$\begin{array}{r} 48000 \\ 106 \\ 240 \\ 380 \\ 480 \end{array}$	50000 470 350 800 510	$4000 \\ 280 \\ 136 \\ 400 \\ 400$					

The results of the NaNO₂ and glucose fermentation tests are grouped in the following table. Plus and minus signs or a question mark are used to indicate whether or not the fermentation tests showed contamination or gave an indefinite result:

TABLE VII.

FERMENTATION TESTS WITH SODIUM NITRITE AND GLUCOSE BROTH. Day of Analysis.

Sample	F	irst	Seco	nd	Thii	rd	Four	th	Fifth		
		Glucose Broth	Nitrites parts per million	Glucose Broth	Nitrites parts per million	Glucose Broth	Nitrites parts per million	Glucose Broth	Nitrites parts per million	Glucose Broth	
A B C D E	*X *X *X *X *X	+ + + +	$\begin{smallmatrix}&0\\18.7\\0\\0\\0\end{smallmatrix}$	+ + + +	$ \begin{array}{c} 0 \\ 18.7 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	+ ? + +	$\begin{array}{c} 0\\ 25\\ 0\\ 0\\ 0\end{array}$	+ ? ?	$\begin{smallmatrix}&0\\25\\0\\0\\0\end{smallmatrix}$	+ ? + ?	

In Tables VI and VII the analyses on successive days show some striking variations. Some of the colony counts, especially on samples A and D, are entirely inconsistent. The glucose broth tests were particularly liable to indefinite results. In Table VII the nitrite tests gave very definite end reactions and entirely consistent results.

Although incomplete routine tests are not well adapted for comparisons of the finer details of different methods, yet they afford

^{*} Nitrite tests not made.

a ready means of forming some approximate idea of the general course of any given procedure. With this object in view the nitrite test has been carried out on the regular routine samples received for examination by the State Water Survey. These samples are shipped by various citizens from all parts of the state. The Survey supplies bottles properly prepared for collection. The bacteriological samples are packed in ice and usually reach the laboratory within twenty-four hours after collection. The routine analysis consists of complete sanitary chemical and bacteriological examination according to the methods recommended by the American Public Health Association.*

The results of the first series are shown in Table VIII:

^{*}J. Infect. Dis., Chicago, 1905, Supple. I, 1.

		.lobul	+ + + + + + + + + + + + + + + + + + + +
Bacteria per c. c.			27,200 1,240
test	ilos .	E svitgausst	+ + + ~ + + + + + + + + + + + + + + +
lin n	oitati 1 Teq	Nitrite fermer zirs Parts	25.5 25.5 25.5 25.5 25.5
		.vtiailsalla	144 144 144 144 144 152 153 153 153 154 144 152 153 154 154 154 154 154 154 154 154 154 154
		Nitrites.	$\begin{array}{c} 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 00$
Nitrogen. a s		Nitrates.	$\begin{array}{c} .400\\ .231\\ .231\\ .233\\ .231\\ .2300\\ .24000\\ .550\\ .550\\ .24000\\ .550\\ .24000\\ .550\\ .24000\\ .550\\ .24000\\ .550\\ .2200\\ .$
NITROG	NIA.	.bionimudIA	3.200 3.376 1.144 1.144 1.136 0.032 0.035 0.035 0.035 0.035 0.035 0.035 0.044 0.044 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.05500000000
	Ammonia	.Free.	$\begin{array}{c} 3.600\\ 4.600\\ 1.600\\ 0.044\\ 0.076\\ 0.076\\ 0.076\\ 0.025\\ 0.032\\ 0.035\\ 0.035\\ 0.032\\ 0.036\\ 0.032\\ 0.036\\ 0.032\\ 0.032\\ 0.036\\ 0.032\\ 0.$
	.bəm	usnoO a92yxO	20 20 20 20 20 20 20 20 20 20 20 20 20 2
		.9πιτοιάθ	38 200 200 200 200 200 200 200 20
		.zbilo2 IstoT	304 238 559 391 3934 1285 1285 1285 391 388 1378 490 3355 335 3355 3355 3355 3355 3355 335
CE.		Odor.	P P C C C C C C C C C C C C C C C C C C
APPEARANCE		Color.	70 70 70 70 70 70 70 70 70 70
App		.vibidauT	$\begin{smallmatrix} & & & & & & \\ & & & & & & \\ & & & & & $
	Source.		Creek-Raw Lake Well 38' drilled Well 35' d. & b. Well 35' d. & b. Well 35' d. & b. Well 20' dug Well 20' dug Samitary Well Well 20' dug Well 20' dug Well 20' dug Well 20' dug Well 25' dug Well 25' dug Well 26' dug Well 26' dug Well 26' dug Well 28' dug Well 28' dug Well 28' dug Well 35' dug Well 35' dug Well 35' dug Well 35' dug Well 35' dug River-Filtered River River Well 35' dug Well 35' dug River River Well 35' dug Well 35' dug River River Well 35' dug
	.¢	Гарогатоту Ис	17838 17839 17839 17840 17845 17845 17845 17845 17845 17845 178555 178555 178555 178555 178555 1785555 1785555 178555555 1785555555555

TABLE VIII.

THE WATERS OF ILLINOIS

+ + + +++ + ++ +++ +++++++	+ + +
$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	750 200 80 80
+ ~ + + + + ~ ~ ~ ~ + ~ +	+ +
$\begin{smallmatrix} & - & - & - & - & - & - & - & - & - & $	$^{0}_{0}_{0}_{18.7}$
2337 237 237 237 237 237 237 237 237 237	137 246
000 000 000 000 000 000 000 000 000 00	.000 .034
34,000 34,000 25,000 11,200 11,2000 11,2000 35,000 11,2000 11,2000 35,000 11,2000 12,20000 12,20000 12,20000 12,20000000000	
$\begin{array}{c} 1.160\\ 1.$	064 064 064
$\begin{smallmatrix} 1.400\\ 0.500\\ 0.510\\ 0.510\\ 0.510\\ 0.510\\ 0.510\\ 0.510\\ 0.510\\ 0.510\\ 0.510\\ 0.510\\ 0.510\\ 0.510\\ 0.510\\ 0.510\\ 0.520$	
6.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	2:4
220004474 220004474 220004474 220004474 220004474 220004474 220004474 220004474 220004474 220004474 220004474 220004474 22000472 22004677 22004677 20004777 20004777 200047777 200047777 2000477777 200047777777777	18 46
$\begin{smallmatrix} & 383\\ & 8802\\ & 8$	349 494
$\mathbb{P}_{\mathbf{S}}^{H}$	
$\begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\$	00 : :
voo88000000vo8880000voo000%4408880000000000000000000000000000	30 30 30
Well 107' drilled Dug Well 107' drilled Well 38' drilled Well 38' drilled Well 38' drilled Well 285' drilled Well 285' drilled Well 101' drilled Well 101' drilled Well 101' drilled Well 101' drilled Well 101' drilled Well 101' drilled Well 37' dug Well 35' dug Well 35' dug Well 35' dug Well 36' driven Well 30' dug Well 3	Well 30' duğ Lake Michigan Lake Michigan Spring
17875 17875 17875 17875 17875 17875 17875 17885 17885 17885 17889 17889 178895 178855 177855 178855 1778555 177855 177855 177855 177855 177855 177855 177855 177855 177855 177855 177855 177855 177855 177855 177855 177855 1778555 1778555 1778555 1778555 1778555 1778555 1778555 17785555 1778555 17785555 1778555 17785555 17785555 17785555 17785555555555	17914 17915 17916 17916

		.lobul	+++++++ +++++++++++++++++++++++++++++++
Bacteria per c. c.		Bacteria per c	500 3,000 1,500 1,500 1,500 1,500 1,500 1,200 1,250 1,250 60 60 60 60 60 60 60 60 60 1,200 1,250 60 60 60 60 60 60 60 60 60 60 60 750 60 750 60 750 750 750 750 750 750 750 750 750 75
.jsəj	tlo9 .8	4 9vitqans9t4	++ ~ + +++ ++++ ~ +++ ~ + ~ +
ת נות.	oitsti 1 19q	Nitrite fermen tests. Parts	$\begin{smallmatrix} & 0 & 0 & 0 \\ & 0 & 0 & 0 & 0 \\ & 12.5 & 0 & 0 & 0 \\ & 0 & 0 & 0 & 0 & 0 \\ & 0 & 0$
		.vtinilsalA	2280 2255 2255 203 2255 203 203 101 101 110 110 1110 1110 236 236 236 236 236
		Nitrites.	000 000 000 000 000 000 000 000 000 00
EN. A S		Nitrates.	5.200 1.972 8.800 8.800 8.800 1.996 11.996 11.996 16.000 1.200 540 540 778 16.000 1.200 7.200 7.200
N ITROGEN. A S	NIA.	.bioaimudlA	
	AMMONIA	.991 <u>4</u>	014 014 016 280 010 010 010 008 008 008 008 008 008 0
		.usgtxU	2.88 1.6 1.6 2.1 2.8 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1
		Chlorine.	15 15 15 69 69 39 39 39 39 39 16 16
		.sbilo2 IstoT	434 434 471 563 563 204 204 635 635 635 7108 748 3012 3012 3012 312 546
CE.		Odor.	
A PPEARANCE.		Color.	$\begin{smallmatrix} & 0 \\ & $
App		.Turdidity.	00000000000000000000000000000000000000
		Source.	Well 35' dug Well 30' dug Well 30' dug Cistern Well 30' dug Well 22' dug Well 22' dug Well 23' dug Well 26' dug Well 17' dug Well 26' dug Well 17' dug Well 26' dug
	.o	Гарогаtогу И	17918 17920 17923 17923 17923 17925 17925 17925 17923 17933 17933 17933 17933 17933 17933 17933 17933 17934 17944 17944 17944 17944 17944 17944 17944 17944 17944 17944 17944 17944 17944

TABLE VIII-CONTINUED.

++++ + +++++++++++
$\begin{smallmatrix} & 400\\ 750\\ 750\\ 300\\ 300\\ 50\\ 100\\ 300\\ 000\\ 000\\ 000\\ 000\\ 000\\ 00$
$ + \cdots \cdots + + \cdots + + + + + + + + $
$\begin{smallmatrix} 18.7\\ 18$
2555 2555 2555 2555 2555 2555 2555 255
000 000 000 000 000 000 000 000 000 00
$\begin{array}{c} 320\\ 160\\ -160\\ -200\\ 200\\ -200\\ -200\\ -200\\ -200\\ -200\\ -200\\ -200\\ -200\\ -230\\ -2$
$\begin{array}{c} 0.032\\ 0.096\\ 0.096\\ 0.096\\ 0.036\\ 0.050\\ 0.050\\ 0.050\\ 0.016\\ 0.006\\ 0.$
$\begin{array}{c} & 2 \\$
$\begin{smallmatrix} 2250\\2250\\2250\\24\\138\\138\\138\\138\\138\\138\\138\\138\\10\\11\\10\\110\\10\\111\\10\\11\\10\\11\\10\\11\\10\\11\\10\\11\\10\\11\\10\\11\\10\\11\\10\\11\\10\\11\\10\\11\\10\\11\\10\\11\\10\\11\\10\\11\\10\\10$
153 858 858 858 858 855 747 747 1633 1113 1113 1113 190 190 190 190 190 190 190 190 190 190
$\overset{H}{_{\mathcal{N}}}$
00000000000000000000000000000000000000
000006490000000000000000000000000000000
Lake Michigan Well 1600' drilled Well 1600' drilled Well 1600' drilled Well 1500' drilled Well 130' drilled Well 130' drilled Well 27' dug Well 27' dug Well 27' dug Well 20' dug Well 20' dug Well 20' dug Well 20' dug Well 20' dug Well 20' dug Well 25' dug River River Well 35' driven River Well 35' driven River Well 35' driven River Well 35' driven River Well 35' driven River River River River River River
17949 17949 17949 17950 17953 17953 17953 17953 17953 17953 17964 17973 17964 17973 17973 17973 17973 17973

For Norman see Table IX.

The indol tests have been carried out in accordance with the recommendation of Mason.* It will be seen that they follow a very bizarre course in regard both to the presumptive coli test and to the source of the water.

In the nitrite inoculation tests it appears that the reduction of 25 to 50 per cent of the total nitrites present is effected rather easily. Beyond this point the nitrites either persist for several days or the reduction is completed within a few hours. In two cases where 3.7 parts of nitrite is recorded it is probable that in the course of a few hours this amount would have disappeared entirely. The amount actually remaining was so small that this result did not seem indefinite and was classed as agreeing with the positive glucose broth tests. With this exception the results are considered as negative, for intestinal bacteria, where any nitrites were found and positive in those cases where the destruction was complete.

The results given in Table VIII may be classified as follows:

D ------

	RESU	LT.	Method.					
			Glucose Broth	NaNO ₂ media				
I.	Positive Negative Indeterminate		Number Per cent. $ \begin{array}{c} 60-46\\ 50\\ 21 \end{array} $ 54	Number Per cent. 62-47 69-63 None				
II.	Agreements Disagreements Indeterminate {	Glucose media NaNO ₂ media Total	No. 91 19 21 0 131	Per cent. 69 15 16 0				

On account of the rather large indeterminate class, the presumptive coli tests were extended to include lactose bile, as well as the glucose broth medium; with the expectation of securing more decisive results. Three glucose broth tubes were inoculated, using 1 c. c. quantities for each of two tubes; and 0.1 c. c. for the third one and two tubes of lactose bile, prepared according to Jackson's[†] method, were inoculated with 1 c. c. quantities each. The data from

^{*}Mason : Examination of water. 3rd Ed. 1906, p. 123. †Jackson : Biol. Stud., W. T. Sedgewick. 25 Anniv., Best., 1900, p. 292.

SANITARY WATER ANALYSIS, INCLUDING SPECIAL FERMENTATION TESTS. TABLE IX.

u Tbje	oitstr ass b	Nitrite fermen test on unice Parts per mil.	18.1 18.1 18.2 18.2 18.2 18.2 18.2 18.2	
	Bacteria per c. c.		10 500 500 500 500 500 5000 5000 5000 5	100 500 100 100
izət il	оэ .Я	Presumptive	+++ ~++ ~ +	
n Jim.	i per 1 Der 1	Nitrite fermer 21ag - Barts	25 25 25 25 25 25 25 25 25 25 25 25 25 2	:::::
		. Υλίαιί ε Μίλου τη τ	3281 3281 3281 3281 3283 3283 3275 3275 3275 3275 3275 3275 3275 327	300^{-120}_{-120}
		Nitrites.	.000 .003 .003 .0148 .0148 .0148 .017 .017 .017 .000 .000 .000 .000 .000	.000 .000 .005 .005
en, a s		Nitrates.		.500 .500 .500
N itrogen , a s	. AINC	.bionimudIA	042 124 086 088 088 088 088 068 048 048 048 048 048 048 048 048 048 04	.15 .05 .15 .15
	A MMONIA.	Free.	$\begin{array}{c} 0.066\\ 0.040\\ 0.040\\ 0.040\\ 0.062\\ 0.062\\ 0.064\\ 0.000\\ 0.088\\ 0.008\\ 0.008\\ 0.008\\ 0.008\\ 0.008\\ 0.008\\ 0.008\\ 0.006\\ 0.000\\ 0.008\\ 0.000\\ 0.$.01 .05 .02-3. .02-3.
	.bəm	usnoO n93yxO	2456 2427 2555 2555 2555 2556 2556 2556 2556 25	1.6 25. 25.
		Chlorine.	13 92 85 85 85 85 85 68 68 93 2216 2216 2216 2216 218 2216 218 237 237 18 237 18 237 18 237 18 237 18 237 237 237 237 237 237 237 237 237 237	4.5 6 115 5+
		Total Solids.	1794 2122 432 433 434 434 434 861 880 881 888 880 888 880 874 1047 1294 1475 1294 1475 876 876 876 876 876	150 300 500 500
CE.		Odor.	$\overset{\mathrm{fill}}{\sim} \overset{\mathrm{fill}}{\sim} $	00000
Appearance.		Color.	70 100 100 100 100 100 100 100 100 100 1	00000
APP		Turbidity.	70 100 100 100 100 100 100 100 100 100 1	$101 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
		Source.	Weil 18' dug Weil 23' dug Weil 23' dug Weil 23' dug Weil 25' bored Weil 13' dug Weil 25' bored Weil 25' bored Weil 25' dug Weil 25' dug Deep well Weil 25' dug Deep well Weil 25' dug Deep well Weil 25' dug Deep well Weil 25' dug Weil 50' drilled Spring Spring Spring Weil 55' driven Spring Weil 55' driven Spring Weil 55' driven Weil 30' dug Weil 35' driven Weil 30' dug Weil 35' driven Weil 35' driven Weil 35' driven Weil 35' driven Weil 36' driven Weil 36' driven Weil 36' driven Weil 36' driven Weil 36' driven Weil 37' d. & b.	Vormal ake Michigan Streams Prings and shallow wells Drift wells Deep rock wells
	•(Гярогасогу Ме	17985 17987 17987 17989 17999 17999 17999 179995 179996 179917 17	Normal Lake Michigan Streams Springs and sh Drift wells Deep rock well

CURRENT METHODS OF SANITARY WATER ANALYSIS

THE WATERS OF ILLINOIS

the two sets of media were not sufficiently varied to justify separate classification and the results recorded in table are the final conclusions from the two sets of media.

Although the nitrite test in any given culture has given a definite end reaction, it is desirable, of course, to know whether or not duplicate inoculations would give anomalous results, such as frequently occur in the sugar fermentation tests.

Some data upon this point were obtained in a series of inoculations to test the possibility of shipping united samples for fermentation tests. The iced sample was examined in the usual manner and then allowed to stand at summer temperature—about 20° to 28° . At the end of twenty-four hours a second tube of nitrite media was inoculated and analyzed after a forty-eight hour incubation period.

The following is a general summary of the results of the series:

	Result.						М	El	н	DD					
		Gas T No. Pe	Fest erce	s nt.							N	lal N	10 0.	² me Per	dium cent.
I	Positive Negative Indeterminate	$\left[\begin{smallmatrix}6\\16\\2\end{smallmatrix} ight\}$	25 75	 	 	 	 		•••		 	5 19			21 21
II	Agreements Disagreements Indeterminate { NaNO ₂ media Gas test	21 1 None 2	 	 	 · · · ·	 · · ·	 	 		 	 · · ·	· · ·	 	N	88 4 8 Ione
	Total	24													

III. Comparison of iced and uniced samples.

Agreements Disagreements Indeterminate	Number 22 2 None	Per cent 92 8 None
Total	24	

THE USE OF INHIBITING AGENTS.

The desirability of selective inhibiting agents for use in the presumptive coli tests has long been recognized. Of all such agents naturally the most rational are those which occur normally in the intestinal tract, such as phenol, for example, and the bile salts. The use of phenol has gradually fallen into disrepute in delicate work. MacConkey* first proposed the use of bile salts. This method has

^{*}MacConkey: Thompson Yates Lab. Rep., Liverp.. 3, Part I, 41, Part II, 151, and 4, Part II, 151.

been modified and advocated especially by Jackson,* who uses undiluted bile to which 1 per cent of milk sugar has been added. This medium for the presumtive coli tests has been compared especially with 1 per cent glucose broth solution recommended by Smith. According to Jackson the chief advantages of the bile medium are that: (1) It prevents overgrowth of B. coli by other organisms, and gives positive results where the glucose medium fails. (2) It eliminates the non-intestinal forms of bacteria which imitate B. coli. (3) It gives a definite reaction and diminishes the number of anomalous results.

All the observations tend to show that the use of bile media materially diminishes the number of cultures giving gas formation. Parker,[†] in a very complete investigation of the method, found in a series of waters that the positive presumptive tests with broth medium averaged rather higher than when lactose bile was employed and in sub-cultures from the fermentation tubes, this excess of positive tests could not be confirmed, whereas typical B. coli could be isolated from practically all of the bile tubes which gave the presumptive test. Such a result appears, at first, as very convincing. There are, however, some possible sources of error which it is well to keep in mind. The glucose broth tubes, of course, were not pure, but were mixed cultures. The fermentation tests which are characteristic of B. coli in pure culture do not necessarily obtain in a mixed culture, but the gas formation may be atypical both with respect to the amount formed and also the rate of formation. In the tubes where the reaction could not be confirmed it is possible that the typical bacillus coli was present and may have given its characteristic reaction within the first twenty-four hours, as it usually does. Then in the subsequent overgrowth it may have been killed by antagonistic bacteria, or its proportions in comparison with the other bacteria present may have become so diminished that its isolation and recovery would be difficult or impossible. Such a course of events would be indicated in a case where no gas forming organisms were recovered in the sub-cultures from tubes giving gas production. This explanation would be analogous to a similar

^{*}Jackson: Biol. Stud., W. T. Sedgewick. 25 Anniv., Bost., 1906, p. 202. †Parker: Am. J. Pub. Hyg., Best., 1908, XVIII, 137.

possibility which Metchnikoff¹ has suggested in certain infectious diseases. ²Weston and Tarbett report a similar series of comparisons together with sub-cultures for confirming presumptive tests. Including the typical and atypical cultures of bacillus coli, the glucose broth test never failed where the lactose bile gave. positive results, although the lactose bile failed in 30 per cent of the cases, as shown by the confirmatory tests from the glucose broth tubes. The presumptive test on glucose broth without the confirmatory tests would have given results which might have been 10 per cent too high. Prescott and Winslow³ and Longley and Baton⁴ also report definitely that in their experience lactose bile has proven to be a less delicate medium than glucose broth for the isolation of B, coli. Parker,⁵ in the examination of 504 routine samples, obtained gas production in sugar media in 66 cases, but none of the samples gave as much as 25 per cent gas in bile media. Sawin⁶ compared the relative value of these two methods and obtained better results with lactose bile for moderately polluted waters, but for slight degrees of pollution glucose broth gave equally good results. In a long series of analyses the use of lactose bile caused a reduction of two-thirds of the anomalous results.

There are several possible factors which may be active in reducing the number of positive tests obtained with lactose bile. The substitution of dextrose for lactose may exclude certain bacteria. Bile, a substance which is exceedingly variable in composition might fail, at times, to contain sufficient nutrient material. The bile salts may inhibit certain gas forming bacteria. Prescott and Winslow report that bile is not inimical to B. coli itself.

In the following experiments special attention has been directed toward the inhibitory action of bile. Inoculation into lactose bile of pure cultures of B. mycoides and B. megatherium showed no such action, but gave abundant growth within twenty-four hours. The first pure culture of B. coli which was tested formed only 5 per cent gas after three days at 37° C. Other intestinal bacteria than B.

coli, such as bacterium aerogenes, and B. lactis aerogenes, also formed gas in lactose bile. This result would be expected, and it is altogether desirable, as a sanitary water test, that the intestinal gasforming bacteria should give the reaction. These experiments have been conducted according to the recommendations of Jackson.* No difficulty has been experienced in obtaining bile which conforms to the authors recommendation as regards acidity. On account of the poor results given with the pure culture of B. coli first used, it was decided to test a variety of intestinal bacteria obtained from various sources. The results of these tests after four days at 37° C. are as follows:

Amount of gas in % of closed arm of fermentation tube.

	L	actose Broth	Lactose Bile
1. Bacillus lactis aerogenes (a). 2. """"(b). 3. """(c). 4. Bacterium aerogenes 5. Bacillus cloaca (a). 6. ""(b). 7. ""(c). 8. ""(d). 9. Bacillus coli (1). ""(d). 9. Bacillus coli (1). ""(d). ""(d). <td></td> <td>$15 \\ 25 \\ 30 \\ 30 \\ 20 \\ 35 \\ 35 \\ 25 \\ 15 \\ 20 \\ 20 \\ 25 \\ 15 \\ 10 \\ 35 \\ 18 \\ 20 \\ 15 \\ 20 \\ 15 \\ 20 \\ 15 \\ 20 \\ 15 \\ 20 \\ 15 \\ 20 \\ 15 \\ 30 \\ 25 \\ 30 \\ 15 \\ 30 \\ 15 \\ 25 \\ 30 \\ 15 \\ 30 \\ 15 \\ 25 \\ 30 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$</td> <td>$\begin{array}{c} 20\\ 55\\ 75\\ 40\\ 0\\ 5\\ trace\\ 30\\ 3\\ 0\\ 20\\ 40\\ 35\\ 30\\ 10\\ 12\\ 0\\ 60\\ 20\\ 40\\ 35\\ 30\\ 10\\ 12\\ 0\\ 60\\ 20\\ 45\\ 20\\ 40\\ 50\\ 50\\ 50\\ 50\\ 50\\ 60\\ 60\\ \end{array}$</td>		$15 \\ 25 \\ 30 \\ 30 \\ 20 \\ 35 \\ 35 \\ 25 \\ 15 \\ 20 \\ 20 \\ 25 \\ 15 \\ 10 \\ 35 \\ 18 \\ 20 \\ 15 \\ 20 \\ 15 \\ 20 \\ 15 \\ 20 \\ 15 \\ 20 \\ 15 \\ 20 \\ 15 \\ 30 \\ 25 \\ 30 \\ 15 \\ 30 \\ 15 \\ 25 \\ 30 \\ 15 \\ 30 \\ 15 \\ 25 \\ 30 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	$\begin{array}{c} 20\\ 55\\ 75\\ 40\\ 0\\ 5\\ trace\\ 30\\ 3\\ 0\\ 20\\ 40\\ 35\\ 30\\ 10\\ 12\\ 0\\ 60\\ 20\\ 40\\ 35\\ 30\\ 10\\ 12\\ 0\\ 60\\ 20\\ 45\\ 20\\ 40\\ 50\\ 50\\ 50\\ 50\\ 50\\ 60\\ 60\\ \end{array}$

In a number of cases it is to be noted that the per cent of gas formed by B. coli in the bile medium is much larger than in lactose broth. It might appear from this that bile favors the growth of B. coli. Freshly isolated cultures of B. coli, however, frequently fail to ferment lactose actively though this power is developed later and the larger per cent of gas in the bile tubes might be due to the fermentation of traces of glucose.

^{*}Jackson: Am. J. Pub. Hyg., Bost., 1908, XVIII, 16.

THE WATERS OF ILLINOIS

Of the twenty-six cultures giving gas on lactose broth, seven, or about 27 per cent, failed to give more than 5 per cent of gas on lactose bile. Of the nineteen pure coli cultures, four, or 21 per cent, failed to react in the lactose bile. Comparisons were then made of the relative delicacy of the lactose bile and lactose broth for some of the cultures which had given gas formation in lactose bile when inoculated in large quantities. The following ones were selected: B. lactis aerogenes (b), B. cloaca (d), and B. coli. Nos. 3, 4, 5, 6 and 10. Emulsions were prepared in sterile water and successive ten-fold dilutions arranged. Duplicate inoculations of 1 c. c. each were made from the various dilutions into lactose broth and lactose bile. After three days at 37°C. the results were as follows:

TABLE 2

D . . .

	BACTERIAL SPECIES. Highest dilution developing gas.		
1. B. Lactis aerogenes (b).	1-1,000 1-100 1-100,000,000 1-10,000,000	Lactose Broth 1-10,000,000 1-100,000,000 1-100,000,000 1-1,000,000,000 1-10,000,000 1-10,000,000 1-1,000,000	

Of these seven cultures it is to be noted that the lactose bile was markedly less delicate for B. cloaca (d) and B coli (3). This theoretical evidence indicates that the lactose bile in pure cultures inhibits the growth of B. coli. A series of tests on thirty-five water samples representing various types of water from different sections of Illinois gave results similar to those reported by the observers previously cited. The number of samples giving the presumptive tests were smaller than with glucose broth and anamolous results were about equally frequent in either medium.

One c. c. quantities of each sample were inoculated in duplicate into each medium. The following is a classification of the results. Under "indeterminate" are included all contradictions between duplicate tubes on the same medium, and also those cases where the bile tubes developed from 5 to 15 per cent of gas:

CURRENT METHODS OF SANITARY WATER ANALYSIS

Medium.

Relation between lactose bile and glucose broth results:

Agreements
Disagreements
Indeterminate9

The conclusions, then, in regard to lactose bile depend upon the type of water in question. The bile media is to be recommended for work with sewage and badly polluted waters. In relatively slight degrees of pollution it is not sufficiently delicate. In such cases apparently no one has found that it gives positive results when glucose broth tests fail. The disadvantages of depending upon the bile test alone would rest on the dangerous side, and its use should be restricted to its value as a positive test for B. coli. In duplicate tubes, anomalous results may occur. The test occupies a rather long period of time. Frequently the three-day limit is not sufficient and must be extended for those tubes which have developed perhaps only 10 per cent of gas. The end reaction is rather doubtful in these cases if no further development occurs. Bile is only a relatively selective agent, inhibiting some traces of B. coli and permitting the growth of certain species of saphrophytes.

METHODS OF QUANTITATIVE ESTIMATION OF BACTERIA.

The presumptive tests for B. coli are still further complicated by the necessity of forming some approximate idea of the quantity of B. coli present. The direct colony counts for the enumeration of bacteria are hardlly applicable for any given organism in mixed culture. For B. coli, aside from the amount of work involved, the direct plating of a water sample on sugar-agar containing an indicator for acids gives a rather less delicate test than when the sample is first enriched in glucose broth. The enrichment, of course, destroys the original quantitative relations. One of the simplest quantitative procedures, therefore, is the determination of the minimum quantity of a sample from which B. coli can be isolated. The problem is somewhat simplified if a standard of one colon bacillus per c. c. is determined upon as a maximum limit of contamination.

The possibility of the approximate quantitative estimation of bacteria by methods other than the customary colony bount, is suggested by certain reactions which are more or less proportional to the quantity of bacteria present. Some of the biological phenomena, such as the agglutination tests, bear a remote relation to the number of bacterial cells present. Of the chemical reactions, the quantitative estimation of the products of bacterial growth in culture media, might show some proportion between the number of bacteria which were inoculated and the amount of chemical change. The rapid changes in nitrites in culture did not appear especially favorable for this quantitative work. Determinations in the usual manner of the free-ammonia in forty-eight-hour cultures of sewage dilutions of 1-1,000 and 1-10,000 gave 344 and 40 parts per million, respectively.

A series of fermentation tubes, inoculated with successive tenfold dilutions of coli cultures during the early hours of growth, showed some proportion between the amount of gas formed and the number of bacteria inoculated. Ultimately, after equilibrium had become established, the amount of gas showed little relation to the dilution employed.

Bacterial Species.	B. coli (3)		B. coli (1)		B. coli (1)	
Age of Culture.	16 hrs.	3 days	10 hrs.	20 hrs.	24 hrs.	48 hrs.
Dilution of emulsion 1 to 10 100 1000 10000	10 tr. 0 0	30 15 10 0	20 10 5 3 7	25 20 30 25 20	50 20 40 35 20	50 25 45 45 30

TABLE XII. Gas Formation. % Closed Arm.

SPECIFIC BIOLOGICAL TESTS.

A continued search for specific inhibiting agents has led to the conclusion, among most workers, that it is hardly rational to expect that any simple chemical substance will be found which will permit the growth of B. coli and restrain all the accompanying organisms.

Biologically, the various species of bacteria are very closely related, and one would hardly expect to find a more limited reaction than occurs in the development of specific immune bodies. Even these reactions are not absolutely specific. Thus, agglutinating serum formed by one race of coli may occasionally fail to agglutinate a coli culture from some other source, though it may be more or less active for other members of the coli group, such as the para-typhoid bacillus.

FIXATION OF THE COMPLEMENT.

The discovery of haemolysims by Belfanti and Carbone¹ followed by the work of Bordet² upon the phenomena of inactivation and reactivation led subsequently to the development by Bordet and Gengou³ of the reaction of the fixation of the complement. Practical application of this test has been developed first by Neisser and Sachs,⁴ and has subsequently been utilized in the identification of bacterial species of amboceptors and of antigens.

The following experiments were made with the special reference to the use of the reaction for the identification of B. coli. Two cytolytic sera were first prepared, namely: a bacteriolytic and a haemolytic serum. The bacteriolytic serum was readily obtained by the intravenous injection of a dilute living emulsion of B. coli into a rabbit. In order to represent the possible differences in various races of B. coli, a mixed emulsion was prepared from four pure cultures obtained from different sources. Two of these cultures fermented and two did not ferment saccharose. Only one inoculation was made and a test two weeks later showed that an active serum had developed. For the haemolytic serum erythrocytes from a chicken were injected subcutaneously into a rabbit. The first injection consisted of the corpuscles from 10 c.c. of chicken blood. Two weeks later this was followed by a second larger injection using the corpuscles from 20 c.c. of chicken blood. A test 10 days later showed development of haemolysis in the blood serum of the rabbit for chicken corpuscles.

The outline of the fixation of the complement test is briefly as

¹Belfanti & Carbone: Gior. d. r. accad. di med. di Torino, 1898, 4,s., XLVI, 321. ²Bordet: Ann. de. 1'Inst. Pasteur, Par., 1898, XII, 688. ³Bordet & Gengou: Ibid. 1901, XV. ^{*}Neisser & Sachs: Berl. klin. Wchnschr., 1905, XLII, 1388.

follows: The sera of the two immunized rabbits are capable of dissolving cells corresponding to those which were injected for the immunization. The normal serum of untreated rabbits possesses practically no solvent action. If the immune serum is heated to 56° C. for thirty minutes it loses its dissolving properties. Its cytolytic action can be restored, however, by the addition of a little normal serum. The serum inactivated by heat has been reactivated by normal serum: which is in itself inactive, i. e., a mixture of the heated immune serum and the normal serum becomes active, although each serum by itself is inert. The heated serum, which contains the thermo-stabile immune-body or amboceptor, requires the thermo-labile complement found in normal serum to complete its action. Now if an emulsion of B. coli is added to the heated serum of an animal immune to B. coli, no bacteriolysis takes place, but the addition of a little complement, as found in the normal serum, causes lysis of the bacterial cells. To show that a reaction has occurred, the haemolysin test may be utilized in the following manner: If the rabbit serum, immune to chicken corpuscles, is first heated and then mixed with chicken corpuscles no haemolysis occurs. If this mixture is added to the mixture consisting of coli bacteria, coli amboceptors, and complement, no haemolysis takes place. The normal serum failed to cause haemolysis of the chicken corpuscles sensitized by the amboceptors of the immune serum. Since no haemolysis occurs it is assumed that there has been destruction or fixation of the complement in the normal serum which was added to the mixture of coli emulsion and coli amboceptors. The reaction may be stated more simply by grouping the different mixtures under a common name. Thus, a mixture of heated immune serum and an emulsion of the cells which were used for immunization may be spoken of as a "system." A mixture then of red blood corpuscles and the corresponding heated immune serum is known as a haemolytic system. Similarly for bacteria one can prepare a bacteriolytic system. If to any of these systems the complement of' a little normal serum is added, a reaction takes place and the complement is no longer able to activate a second system. If,

however, complement is added to an incomplete system, either part of which is wanting, no reaction can occur, and on the addition of a complete system, such as sensitized erythrocytes, the complement is free to act upon the system just added and its effect is shown by the solution of the red corpuscles with the liberation of their coloring matter. The haemolytic system, therefore, serves merely as an indicator. In the bacteriolytic system, if the coli bacilli are present, the complement is bound and no haemolysis occurs upon the addition of the haemolytic system. If the coli bacteria are absent the complement can not be utilized and when the haemolytic system is added haemolysis occurs. This may be represented diagramatically as follows:

Inactivated Serum immune		,	
to B. Coli +	=Bacteriolytic	System	
Emuision of B . Con		-	Complement
Inactivated Serum immune to			(Normal Serum)
red Corpuscles +	=Hacmolytic	System	
Emulsion of red corpuscles			

In the above scheme suitable control tests will show that each of the five factors, the two cellular emulsions, the two immune sera and the complement, is a necessary part of the reaction. By a suitable arrangement of the known factors one may be left unknown and the test arranged to determine it. In any series of tests no definite conclusions can be drawn unless sufficient controls are carried to show that each factor is working properly.

The following are the preliminary experiments which were made for testing the materials employed:

The usual haemolytic technique has been employed throughout these experiments. Both of the immune sera have been inactivated by heating to 56° - 58° C. for a period of 30 minutes. Preliminary digestions to allow fixation of the complement were carried on for 1 hr. at 37° C. The haemolytic system was then added and the incubation continued for 2 hours at 37° C. The final readings taken after the preparations have stood over night at about 8° C. For isotonic salt solution 0.85% NaCl has been employed. Corpuscles, washed twice with 10 c. c. quantities of salt solution, have been used in one-half c. c. volume of a 5% emulsion in salt solution on the basis of 100% concentration for the emulsion of corpuscles as precipitated by centrifugalization. All the different preparations have been made up to a final volume of $2\frac{1}{2}$ c. c.

The following table shows a test of the haemolytic serum and the complement. One c. c. of salt solution was added to each tube in order to bring the final volume up to $2\frac{1}{2}$ c. c., the dilution which is to be employed later in the fixation tests.

XIII.	:
TABLE	

to
1
diluted
c.c.
$\frac{1}{2}$
Amboceptor

10,000 lution	0	0	0
10,0	0	0	^
5000	Trace	0	х
1000	Trace	0	x
500	Par- tial	0	x
200	Par- tial	0	х
100	Almost complete	Trace	х
50	Com- plete	Trace	Х
10	Com- plete	Partial	х
Complement 1 to	10	50	Salt Sol

olysis on number)	Ш	None None Complete Complete Complete None
Haemolysis (determination number	Ι.	None None Complete None Complete Complete None
	.c.c.	Erythrocytes Erythrocytes Erythrocytes Erythrocytes Erythrocytes Erythrocytes Erythrocytes
TABLE XIV. Volume of Fluid	1⁄2 c.c.	Salt Sol Haemolytic Serum Haemolytic Serum Haemolytic Serum Haemolytic Serum Haemolytic Serum Haemolytic Serum
V	1/2 C.C.	Complement Salt Sol Complement Complement Complement Salt Sol
	1/2 C.C.	Salt Sol Salt Sol Salt Sol Salt Sol Coli Serum Salt Sol Coli Serum Coli Serum
	1/2 C.C.	 Salt Sol Salt Sol Salt Sol Salt Sol Salt Sol Emulsion B. coli Salt Solution Emulsion B. coli

In the tests which follow both the normal serum and the inactivated immune serum have been used in 1 to 10 dilution in isotonic NaCl solution. The material for all of the following tables was collected at the same time and the experiments carried out on the same lot of material.

The object of these various controls is as follows:

No. 1. The complement alone is not active.

No. 2. The heated serum is inactivated.

No. 3. The complement is capable of activating the haemolytic system.

No. 4. Test showing the fixation of the complement.

No. 5. Normal serum alone will not unite with the coli bacteria.

No. 6. Sufficient time has elapsed since inoculation so that the coli serum is free from antigens.

No. 7. Shows that neither the coli serum nor the bacterial emulsion produces haemolysis of the erythrocytes.

As shown by these results the material is in proper condition, and it was then used for the following experiments: Firstly, some tests were made on the specificity of the reaction; secondly, on the quantity of bacteria necessary to fix the complement, and, thirdly, some samples of water were tested comparing results with those obtained by other methods.

The data given in Table XV, for the specificity of the reaction, correspond with similar tests upon the specificity of agglutinins,

Emulsion of	¹ ∕₂ c.c.	½ c.c.	1 c. c		Haemolysis
B. coli (6)* B. coli (10) B. coli anaerogenes. B. para-typhosus (a) B. typhosus (a) B. cloaca (a) B. entcritidis (a) B. proteus vulgaris B. megatherium B. wycoides B. substilis	66 66 66 66 66 66	Complement " " " " " " "	Haemolytic " " " " " " "	system " " " " "	None None Trace Partial Almost Complete Trace Partial Complete Complete Complete

TABLE XV.

SPECIFICITY OF THE FIXATION OF COMPLEMENT REACTION.

*This race was used in the production of the bacteriolytic serum.

cytolysins and other immune bodies. The reaction is, of course, highly specific and would furnish very reliable evidence of the presence of B. coli. With the serum used in this experiment, this table would not indicate that there would be any great danger of overlooking B. coli. B. cloaca, and other intestinal organisms, could probably be included in the reaction by introducing the corresponding immune serum.

CONCENTRATION OF THE BACILLARY EMULSION.

Neisser and Sachs,* in working with a precipitin system, have shown that it is possible to obtain fixation of the complement with as little as 0.000,001 c. c. of serum in a case where the serum was the antigen corresponding to the bacilliary emulsion. It would be very desirable, of course, if the fixation test were sufficiently delicate for bacteria also, so that it could be applied directly to a water sample without previously enriching it. This would not only save considerable time, but it would eliminate the danger arising from over-growth and failure of B. coli to develope.

The test was applied to a polluted stream, 0.01 c. c. of which was sufficient to give gas formation in glucose broth typical of B. coli. With the fixation test, complete haemolysis occurred and no evidence of B. coli could be obtained in samples of $\frac{1}{2}$ c. c. volume.

Varying concentrations of an emulsion of B. coli were tested. One-half c. c. quantities were used in the fixation reactions and the results were compared with inoculations of the same quantity into glucose broth. The original emulsion was slightly turbid, but the

½ c.c. of coli Emulsion diluted 1 to	Coli serum	Complement	Haemolytic system	Haemolysis	per cent gas in glucose fermentation tube
$10\\100\\1,000\\100,000\\1,000,000\\1,000,000$	¹ / ₂ c.c. " " " "	¹ /2 c.c. " " " "	1 c.c. " " "	None Partial Almost Complete Complete Complete Complete Complete	$\begin{array}{c} 40 \\ 45 \\ 50 \\ 40 \\ 30 \\ 35 \\ 30 \\ 0 \\ \end{array}$

TABLE XVI.

*Neisser & Sachs: Berl. klin. Wchnschr., 1905, XLII, 1388.

first dilution showed no visible cloudiness. The culture tested, B. coli (6) was one of the races used in immunization.

In this table complete fixation occurred only in relatively high concentration, namely, in the 1 to 10 dilution, although glucose broth was fermented by the 1-10,000,000 dilution.

Morgenroth and Sachs* have shown that the amount of complement required to effect haemolysis is in inverse ratio to the strength of amboceptor solution employed. Perhaps with a very delicately balanced haemolytic system, using just as little excess of complement as necessary to secure constant results, one might be able to detect the presence of much smaller numbers of bacteria, than Table XVI would indicate. It does not seem probable, however, that it would be practicable to make the test directly without enrichment.

Table XVII shows the results of the fixation of the complement test upon nine water samples. After eighteen hours growth in glucose broth, the mixed culture of bacteria was tested directly after adding 0.85% of sodium chloride to insure iso-tonicity with the blood corpuscles. One-half c. c. of the culture was substituted as the unknown quantity in the place of 1.2 c. c. of bacterial emulsion used in the previous experiments. Controls were also carried to test for haemolysins in the bacterial culture.

Serial No.	Source	rce Haemolysis in fixation test		for contamination		
17959 17961 17963 17964 17965 17966 17967 17969 17970	Well-40' dug Well-26' dug Lake Michigan Sangamon River Springfield, Ill. Spring Mississippi River Well-20' dug Well-25' dug	None Partial None Complete Trace Almost Complete None Partial	Glucose + ? + + + + + + + +	NaNO ₂ + not tested + + + 	None None None Trace Grown dis- coloration Grown dis- coloration None	

TABLE XVIII.

*Morgenroth & Sachs: Berl. klin. Wehnschr., 1902, 817.

The result in Table XVIII may be classified as follows:

	METHOD.		
Result Positive Negative Indeterminate	Fermentation of glucose 7 1 1	Destruction of nitrites 5 5 0	Fixation of complement 5 4 0

Consistent results with all three methods were obtained in four cases. Disagreements by one or more of the methods occurred in four cases, and in one instance, the result was indefinite.

The agglutination of the corpuscles caused some difficulty in exposing them to the action of the serum. Any method by which a haemolytic serum could be developed without agglutinating properties might offer distinct advantages.

The fixation of the complement tests were characterized especially by (1) their specificity, (2) their adaptability to mixed cultures, and (3) the relatively short time required for completing the test.

Although the test is rather complicated for routine work it might be of importance in (1) the examination of large municipal supplies or (2) in the investigation of special problems.

SUMMARY.

I. As a general standard, B. coli should be constantly absent from 1 c. c. quantities of potable waters. Under special conditions it may be necessary to vary this standard in either direction. In a single examination, the sanitary survey or the chemical analysis may be sufficient to condemn a water even when the colon group is absent and the bacterial count is low. Cases representing the other extreme might occur when it might be desirable to distinguish between pollution of human origin and that arising from the lower animals.

II. Observers are agreed that, as a presumptive test for B. coli, bile, with the addition of sugar, affords a good medium for waters representing moderate degrees of pollution, but that it is not sufficiently delicate when the pollution is relatively slight. Our results have supported these conclusions in the practical application of the method and in theoretical experiments. Bile is only a relatively selective agent. It *does* inhibit certain *races of B. coli* and *permits* the free growth of *certain species of saphroghytes*.

III. The analyses of bacterial cultures of water samples by the usual sanitary chemical methods, affords a basis for the theoretical interpretation of results and for the development of the analytical procedures which are in current use.

1. The principal conclusions regarding the interpretation of results were reached in connection with the free ammonia determinations. Aside from any inaccuracies of the Nessler process as used in ordinary routine work, the presence of free ammonia does not indicate the presence of intestinal bacteria. The determination of the ammonia might serve as a quantitative test for bacteria, but such a method would be inferior to direct cultivation by the usual bacteriological procedures. No general rules can be adopted. In certain large classes of water supply, the free-ammonia determinations are without value.

The experimental evidence for these conclusions is almost complete and is well supported by the practical work in this laboratory on several thousand routine analyses.

2. The analyses of cultures also affords a laboratory method for distinguishing, in a given sample, between end-products, especially free-ammonia and nitrites, arising from bacterial putrefaction and the same products occurring as normal constituents of the soil.

The ordinary chemical determination of nitrites is, by itself, usually inconclusive regardless of whether or not nitrites are present. By the application of these culture methods, the nitrite determination has been developed so that it is applicable to practically all cases. This modification has been studied by theoretical experiments and by practical routine work with the following results:

1. It is apparently a very delicate and relatively specific test for intestinal bacteria.

2. Thus far the reaction has given very definite results, free from anomalies. The test has been essentially a qualitative one and not dependent on careful quantitative distinctions. 3. Comparisons with the presumptive coli test were made on a series of 155 waters. In 72% of the samples the same result was obtained with each method. In 13% the results disagreed, while 15% were indeterminate owing to indefinite presumptive coli reactions. The conditions of the experiment did not permit final conclusions in this remaining 15%.

The method requires but little time, space, or material in the laboratory and it is well adapted to routine work. The total time required is not over forty-eight hours. It is not probable that any single test would suffice to determine all of the many and various factors which determine the final condition of a water. This modification of the nitrite test, however, has been a definite additional value in this series of 155 waters representative of the State of Illinois. Where an opinion is based on a single analysis, this method should be of especial value on account of its definite reaction and its freedom from anomalous results.

IV. Of the biological method for the identification of bacteria, fixation of the complement tests are characterized (1) by their specificity, (2) by their adaptability to mixed culture, and (3) by the relative short period of time required for completing the examination.

In conclusion, further practical and theoretical investigation is especially desirable in connection with the determination of nitrites in cultures, such as experiments bearing on the specificity of the reaction, its delicacy in pure and mixed culture, and any alterations in the media leading to a reduction in the forty-eight hour time limit.

I take this occasion to recognize the very material assistance of Professor Bartow, in whose department and under whose supervision this investigation has been carried on. The analytical work has also been much facilitated by the assistance of Frank Bachmann.

REFERENCES.

 MERESCHKOWSKY: Centralbl. f. Bakteriol. (etc.), Jena. 1905, XXXIX, 380, 584, 696 and 1996. XL, 118.

- BARTOW: Chemical and Biological Survey of the Waters of Illinois, 1908, p. 59.
- 3. J. Infect. Dis., Chicago. 1905, Supple. I, 1.
- 4. MASON: Examination of water. 3rd. Ed. 1906, p. 123.
- 5. MACCONKEY: Thompson Yates Lab. Rep., Liverp., 3, Part I, 41, Part II, 151, and 4, Part II, 151.
- JACKSON: Biol. Stud. W. T. Sedgwick. 25 Anniv., Bost., 1906, p. 292.
- 7. PARKER: Am. J. Pub. Hyg., Bost., 1908, XVIII, 137.
- 8. METCHNIKOFF: Immunity in Infectious Diseases. Tr. F. G. Binnie. 1905, p. 5.
- 9. WESTON & TARBETT: J. Infect. Dis., Chicago, 1907, Supple. III, 39.
- 10. PRESCOTT & WINSLOW: Am. J. Pub. Hyg., Bost., 1908, XVIII, 19,
- 11. LONGLEY & BATON: J. Infect. Dis., Chicago. 1907, IV, 397.
- 12. SAWIN: J. Infect. Dis., Chicago. 1907, Supple. III, 33.
- 13. JACKSON: Am. J. Pub. Hyg., Bost., 1908, XVIII, 16.
- BELFANTI & CARBONE: Gior. d. r. accad. di med. di Torino, 1898, 4s., XLVI, 321.
- 15. BORDET: Ann. de l'Inst. Pasteur, Par., 1898, XII, 688.
- 16. Bordet & Gengou: Ibid. 1901, XV.
- 17. NEISSER & SACHS: Berl. klin. Wchschr., 1905, XLII, 1388.
- MORGENROTH & SACHS: Berl. klin. Wcherschr., 1902, XXXIX 817.

THE FARM WATER SUPPLY.*

It ought not to be necessary to attempt to prove the necessity for an abundant supply of water for the farm, and most people are convinced that the water should be pure. As many of us do not realize what pure water is, it is our purpose to explain what constitutes a *pure* water, why a pure water is needed, and how to get it.

What constitutes a pure water? The scientist will tell us that a pure water is *water* and nothing else. Pure water from his standpoint, is a difficult thing to obtain; because it will dissolve so many substances with which it comes in contact. The purest natural water is rain water. This has been evaporated from the seas, lakes, streams, and from the surface of the earth, leaving the soluble salts behind. Yet even rain water has dissolved gases from the air or has air itself in solution, and is thus not absolutely pure. The purest rain water is obtained after the first fall of rain has cleared the air. As soon as rain water touches the ground it begins to dissolve substances with which it comes in contact. Limestone, salt, and other mineral substances are dissolved in varying amounts, making the water impure from the scientific standpoint. For drinking purposes small amounts of these substances do not make the water impure, and unless present in excess are beneficial rather than harmful.

For our purpose we should ask, What constitutes an impure water? Impure drinking water contains either substances or organisms, or both, which will disturb the functions of the body and cause illness. Excess of some salts, like epsom salts or salts of lime, are injurious. More especially some organisms known as bacteria, if present in the water, will cause disease. According to the germ theory of disease, diseases like typhoid fever, malaria and cholera,

^{*}Adapted from a lecture prepared for the Illinois Corn Growers and Stockmen's Convention, 1908, by Edward Bartow.

are caused by these germs. The cholera and typhoid germ are introduced into the system by drinking infected water. Water becomes infected from sewage and house drainage or directly from the excreta of persons who have had the disease. The excreta from *one* patient has been known to contaminate a water supply and cause an epidemic of typhoid fever to sweep an entire town. These living germs are not dissolved, but are held in suspension. They are too small to be seen by the naked eye and may be present in the clearest water. It is practically impossible to determine them directly, but a water analysis is their indirect determination. For an explanation of what an analysis is, we refer to "Interpretation of Results," page 105.

Typhoid fever is the principal water-borne disease that we have to deal with. We cannot tell how much typhoid fever occurs on the farms of Illinois. No statistics are available. It is a fact, however, that typhoid fever is at its height in the cities after the summer vacation. One way of accounting for this is that the people of the city become infected in the country or at the seaside. This may be because their body resistance is less than that of the farmer, whose system is accustomed to the impure water. As one can become accustomed to the use of a drug until a large amount can be taken without effect, so it is undoubtedly possible to resist the typhoid fever germs. The farmer is not altogether immune. Many cases occur in his family. When the body resistance is lowered by even a light illness, they become more susceptible and contract the disease.

Milk is an excellent carrier of typhoid germs because it furnishes abundant food for their growth. It is often infected by impure water which is used in washing the milk utensils.

Precautions must be taken to keep wells on dairy farms in good condition. The health departments of Boston, New York, Chicago and Philadelphia make the general requirement that wells on dairy farms "must be free from contamination." The following from the New York City regulations are quoted:

THE WATERS OF ILLINOIS

REGULATIONS OF THE DEPARTMENT OF HEALTH OF NEW YORK CITY.

CREAMERY REGULATIONS.

The water used for cleaning pails, cans and other utensils must be from a public water supply, or, if drawn from a well of spring, must be approved by this department.

RULES FOR THE DAIRY. THE WATER SUPPLY.

The water used in the barn and for washing milk utensils must be free from contamination.

RESOLUTION OF MARCH 31, 1907.

Resolved, That when typhoid fever or dysentery exists in any household of any employee of any creamery, farm or dairy, sending milk to New York City, no water from any well or spring within one hundred feet of such premises, or from any well or spring used by the household, shall be used in barns for cleaning milk utensils without the consent of the Department of Health.

I will also quote from a letter to the owner of a farm located about sixty miles from New York City, in which the statement is made, "That the privy or cesspool be located not nearer than 250 feet from the source of the water supply."

Adherence to these rules will do much to lower the typhoid fever rate.

The importance of a pure water supply on a dairy farm and also on any farm, the water from which may enter the milk supply, may be nicely illustrated by considering the rapid growth of bacteria. It has been shown that some bacteria under favorable conditions, will increase by division every eighteen minutes. This would mean that they would multiply three times in an hour, six times in two hours, etc. Starting with one bacterium, there will be two at the end of eighteen minutes, four at the end of thirty-six minutes, eight at the end of fifty-four minutes, or, say at the end of an hour. With three multiplications during the next hour, at the end of the second hour there will be sixty-four. In three hours and twenty minutes there will be 1,000. In seven hours, 1,000,000, in ten and one-half hours 1,000,000,000, and so on. We cannot ex-

pect this complete multiplication under all conditions, but even should half or one-quarter of the number grow, one can readily see what disaster may follow from a few typhoid fever germs carelessly allowed to enter a can of milk.

A large majority of the farm well waters sent to the State Water Survey for analysis, are sent because the purity of the water is suspected. It is very rare that such a sample is sent in unaccompanied by a report that there are from one to five cases of typhoid fever among the users of the water. For this reason our records give a very poor idea of the actual conditions of farm waters in the state. During 1907 the State Water Survey condemned 60 per cent of all well water analyzed, eighty-five per cent of wells condemned were less than 25 feet deep, and 77 per cent of those between 25 and 50 feet deep were condemned.

In order to have a more accurate knowledge of the condition of farm water supplies, we need to know the character of waters that are perfectly free from contamination; or, in other words, we need to determine the normal waters for each district. In order to have such an accurate knowledge, it would be necessary to make a water survey of the state, similar to the soil survey being made under the direction of Professor C. G. Hopkins. The character of the water supply varies as the soils vary, and as the rock strata vary. Since different kinds of earth and different kinds of rock are found at various depths below the surface, we may say that the character of the water also varies with the depth of the wells. Sometimes, as in the case of dug wells which are cased with brick or stone, the water may enter the wells from various levels; and while a good water might be obtained from the lowest level, there is a possibility of its becoming contaminated by water entering from near the surface or by the water itself washing back into the depths of the well through the curb carrying with it pollution from the surface.

The usefullness of germ free waters for farm water supplies varies with the hardness. A hard water contains salts of calcium and magnesium. These salts, when present in water in which meat or vegetables are cooked, form insoluble albuminates. Tea and coffee are not as good when made with hard water. A hard water is also not economical, requiring a larger amount of soap than does a soft water. It causes a scale on the vessels in which it is used, and it is unpleasant for general lavatory and laundry uses. It has been calculated that \$180,000 was saved annually by the city of Glasgow by changing from a hard water to the soft Loch Katrine water. In many cases it is possible to use a soft cistern water, and this, when collected on the clean roofs of farm houses, is. guite satisfactory. When, however, the cistern water is not available, the hard well water may be easily softened by using chemicals. The most suitable are lime and soda. The lime is used in the form of a saturated solution, the soda as one part dissolved in ten parts of water. The lime removes temporary hardness, that is, hardness caused by the presence of carbonates which is mostly removed by boiling. The soda is for the permanent hardness caused by sulphates, chlorides and nitrates of calcium and magnesium, which are not removed by boiling. The lime water is prepared by slacking lime and dissolving the slacked lime in water, or, better, by dissolving hydrated lime in water. A pail of lime water added to from three to ten pails of hard water in a barrel, according to the hardness of the water, will cause the formation of. a precipitate which will soon settle, leaving a comparatively soft water suitable for domestic use. It must be noted that the lime does not remain in the water but comes out in the precipitate. In some cases it is necessary to add a little soda. When it is considered that one pound of lime will do the work of fifty pounds of soap, the economy of the practice can easily be seen. On well waters in Illinois, it is safe to use one part of lime water to ten; more should often be used, but this should not be done without preliminary tests. An example of the amount to use is seen in the table of "Hardness of Municipal Water Supplies," page 100. All the soap used before a lather forms is absolutely wasted; then, too, when hard water is used in washing cloth, a precipitate of lime soap or curd collects in the cloth and is difficult to wash out.

In order to obtain some definite knowledge of the conditions of a few farm water supplies, we have, during December, 1907, and January, 1908, collected five series of ten samples each, from farms in different parts of the state. An endeavor has been made to obtain waters from wells in places where the conditions differ and which are typical of large sections of territory. Other conditions undoubtedly exist and we wish it might have been possible to obtain specific samples from every county in the state. Some times conditions may vary even in the same county. The collections have been made northwest of Champaign, in Champaign county, from near Centralia, in Marion county; from east of Elgin, most of the samples having been taken from Cook county; from northwest of Kankakee, in Kankakee county, and from north of Cairo, in Alexander county. These points were chosen because widely separated and also because of the differences in sources of supply.

The source and characteristics of the water used at these places on the farms follow:

CAIRO.

A series of ten samples was collected on January 20, 1908, from farms north of Cairo, in Alexander county. The water supply of these farms was quite varied in character. The ten samples included three cisterns, three shallow driven wells, with pitcher pumps; three deeper driven wells, and one deep drilled well, which was free flowing.

No. 1. (17004) is a driven well 35 feet deep. Both chemically and bacterially it was shown to be in good condition.

No. 2. (17005) is from a cistern located at same place as No. 1. The surroundings were poor and the casing was open. The analysis indicates the possibility of leakage, shown by the alkalinity and the high residue on evaporation. The consumed oxygen, albuminoid ammonia, and nitrogen as nitrites indicate the presence of organic matters. The number of bacteria was not excessive, but the chemical examination indicated the probability of rapid growth should any infection enter. This cistern water was preferred to the well water for drinking by the people living in the house. In our opinion the cistern at this time was not in satisfactory condit tion, not having been cleaned for about fifteen months.

No. 3. (17606) is from a 60-foot drilled well. The water-bearing

strata, however, is from 40 to 45 feet deep. The analysis showed results comparable with No. 17004, but the water which was clear when first drawn, became turbid on standing and had an odor of hydrogen sulphide. The water is safe for use for drinking purposes, though the turbidity and odor would render it unattractive. The residents preferred the cistern water obtained from a cistern reported as No. 4.

No. 4. (17007) is from a cistern which, while well curbed, had no covering. It showed evidence of organic matter and a bacterial examination was unfavorable. The well water in this case is preferable to the cistern water.

No. 5. (17008) is a driven well 50 feet deep. The surroundings were not good, yet the chemical examination was quite favorable. From a bacterial standpoint the water was only fair. The unfavorable bacterial condition was probably due to defective casing.

No. 6. (17009) is a 60-foot driven well located at the tri-city park close to the highway. This water shows high chlorine and nitrates, indicating that surface water from the neighborhood is the source of its supply. The low consumed oxygen, free and albuminoid ammonia, and the favorable bacterial examination indicate that the water is satisfactorily filtered before entering the water-bearing strata and is safe for drinking purposes.

No. 7. (17010) is a driven well to which a pitcher pump was attached. This water, while clear when first drawn, became very turbid on standing. Aside from the turbidity, the water is excellent for drinking purposes. The people at the house preferred to use cistern water.

No. 8. (17011) is a well near to and similar in character to No. 7, and aside from its turbidity it is in good condition for drinking purposes. The people in the house use this water for drinking purposes.

No. 9. (17012) is from an artesian well about 800 to 900 feet deep. The water was shown to be excellent, though it has a slight odor of hydrogen sulphide. This water is piped to the farm houses, and is used there.

No. 10. (17013) is a cistern water which was well cared for. The surroundings are excellent and the water is filtered. The filtration, however, would not entirely remove turbidity and color. The consumed oxygen is high. Bacterially the number of bacteria per cubic centimeter is large, though no positive tests for intestinal bacteria were found.

Our conclusions concerning the ten waters taken from near Cairo are that it is possible to obtain a satisfactory water from driven wells about 40 feet deep, although there is a possibility of finding water containing iron, which causes turbidity on exposure to the air. This leads many of the people to prefer cistern water. The cisterns are usually neglected and the water is frequently foul either from washings from the roofs or because of leakages, or from unsatisfactory curbings. The deep artesian well water similar in character to the deep well water obtained at Cairo, would give the more satisfactory water. There is a possibility for several farmers to join together to drill a deep well. They can then have the water piped to their respective farms. The expense of drilling such a well is usually greater than one farmer would care to stand.

CENTRALIA.

A series of ten samples was collected on January 7, 1908, from farms near Centralia:

No. 1. (16888) is from a 30-foot dug well, Sec. 13, T. 1 N., R. 1 E. The well was about 100 feet from the privy, 150 feet from the stable, 50 feet from the feed lot, 10 feet from dumping ground for slops, dish water and wash water. There had been one case of typhoid fever about two years before. Both the chemical and bacterial examination indicated pollution.

No. 2. (16889) is an 18-foot dug well near No. 1. It is about 30 feet from the stable and is used for stock only. Both the chemical and bacteriological data indicate pollution.

No. 3. (16890) is a 24-foot dug well in Brookside township, T. 1, R. 1. The well was dug in clay and cased with brick. All the chemical and bacteriological data would indicate contamination.

THE WATERS OF ILLINOIS

			.галатка.	good	good poor	fair	poor fair good fair			bad	" good bad	: :	3 3
			Depth.	35' driven Cistern	60' drilled Cistern S.	50' driven	60' driven 30' driven 20' driven *800' to 900' Cistern			$\begin{array}{c}3 \ 0\\1 \ 8\end{array}$	22-22 26554	30 35	35 25
			.lobn1	+	+	+	+ +		.7	+ +	+ + + +	+ +	+ +
1908.	LUS.		.o .o I.0	$\frac{2}{2}$	25+	2 —	00000		24, 1907.	1 +	+ +	+ ~.	+
20, 19	COLON BACILLUS		1.0 c. c.	0 +	. +	++ 	-		3ER 24	$\frac{1}{2}$ + 1	 + + + +	2 + 1 - + 1 	$1^{?}_{1+1}$
	COLOR		10 c. c.	$\frac{1}{1}$	1	1?	·		ECEME	$\frac{1}{1}$.	+ + ~ · +		
IAN C		•	Bacteria per c. c	260 180	$380 \\ 300$	120	$ \begin{array}{c} 420\\ 210\\ 580\\ 8\\ 1300 \end{array} $		ED DI	$^{800}_{1200}$	650 Lost 400 16000	400	1500 4600
ECTEI	.vtinifaxIA			466 86	512 36	306	306 434 378 140 58		LECTI	$\begin{smallmatrix}4&4&0\\3&1&0\end{smallmatrix}$	446 8682 4882 442	370	378 436
FROM CAIRO, ILLINOIS. COLLECTED JANUARY	Nitrogen as		Nitratea.	1.03.35	.074 .400	1.905	6.390 .000 .558 .200 .760		IS, COI	22.0 8.6	$\begin{array}{c} 5.12 \\ 41.0 \\ 60.00 \\ 60.00 \end{array}$	31.98 12.00	32.00 51.95
LINOIS			Nitrites.	.050	.006 .200	.015	.010 .000 .000 .000		SAMPLES FROM CENTRALIA, ILLINOIS, COLLECTED DECEMBER	.000	.000 .000 .001	.022	.000 .050
RO, IL		NIA.	.bionimudIA	.084.102	.040190	.024	.056 .056 .000 .092			.108 .056	.048 .078 .028 .048	.114	.096 090
DM CAI		AMMONIA	Free.	.038 .004	.280	000.	.000 .084 .854 .160 .052			.016 .052	.008 008 008 008 008	.020 .050	.058 .030
	Oxygen Consumed.			$\frac{1}{7.5}$	2.7	1.7	1000000000000000000000000000000000000		ROM ($3.2 \\ 1.6$	2.5 3.0 3.0 2.5	2.4 2.4	3.5
SAMPLES			Сһіогіле.	ωω	ω4	4	$^{15}_{77}$		ES E	240 29	$ \begin{array}{c} 134 \\ 122 \\ 8 \\ 8 \\ 200 \\ \end{array} $	118 57	380 66
S∤			.zbilo2 lstoT	505 172	540 79	345	436 530 339 339 85		SAMPI	$\substack{1379\\461}$	$^{765}_{1629}$	$1205 \\ 1546$	$\begin{array}{c} 2640 \\ 1996 \end{array}$
	CE.		Odor.	00	$^{\rm H}_{0}$	0	$^{0}_{0}$			0	0000	Musty 0	00
	APPEARANCE		Color.	04.	. 1 . 8	0	0004.v			0	0000	00	00
	APF		.Turdidity.	00	130 20.	0	$\begin{array}{c} 0 \\ 110 \\ 110 \\ 5. \\ 10. \end{array}$.pe		0 0	0000	$^{10}_{0}$	00
			Laboratory No.	$17004 \\ 17005$	$^{17006}_{17007}$	17008	17009 17010 17011 17012 17012	*Drilled		$ \begin{array}{c} 16888\\ 16889 \end{array} $	$\begin{array}{c} 16890 \\ 16891 \\ 16892 \\ 16892 \\ 16893 \end{array}$	16894 16895	$\begin{array}{c}16896\\16897\end{array}$

No. 4. (16891) is a 24-foot dug well near No. 3. All the data indicated surface contamination.

No. 5. (16892) is a 15-foot dug well, 50 feet from privy, 30 feet from stable, 10 feet from feed lot, and 50 feet from a pig pen. Both the chemical and bacteriological examinations indicated a satisfactory water.

No. 6. (16893) is a 36-foot dug well in Sec. 11, T. 1, R. 1, 75 feet from privy, 100 feet from stable, and 50 feet from feed lot. All the chemical and bacteriological data indicated contamination.

No. 7. (16894) is a 30-foot dug well in Sec. 11, T. 1, R. 1, 50 feet from stable and 10 feet from feed lot, practically located in a barn yard. All the data indicated that this water was unsatisfactory for drinking purposes.

No. 8. (16895) is a 35-foot dug well in Sec. 11, T. 1, R. 1, 50 feet from privy, and 50 feet from feed lot. The well was cased with brick. All the data would indicate contamination.

No. 9. (16896) is a 35-foot dug well, 100 feet from privy, 50 feet from stable, 50 feet from feed lot, and 50 feet from dumping grounds for dish water. All the data indicated that this water was polluted by surface water.

No. 10. (16897) is a 25-foot dug well in Sec. 11, R. 1, T. 1, 100 feet from privy, 40 feet from stable, and 30 feet from feed lot. The curbing in this case is poor. All the analytical data indicated pollution.

The table gives a summary of the results obtained in analyzing waters from Centralia.

An inspection of the data concerning ten wells at Centralia shows that nine are evidently polluted, and yet in only one case was a report given of typhoid fever among the users of the water.

CHAMPAIGN.

A series of ten samples was collected on December 19, 1907, from farms northwest of Champaign:

No. 1. (16873) is a 160-foot drilled well, in Sec. 2, T. 19 N., R. 8 E. This well is located in a barn yard, 60 feet from a privy, 160 feet from a cesspool, 75 feet from a stable. The anaytical results

THE WATERS OF ILLINOIS

showed it to be a water similar in composition to that furnished by the Champaign and Urbana Water Company. It becomes turbid, due to the presence of soluble iron salts, which become insoluble on exposure to the air, causing not only the turbidity, but also giving a color. From a bacteriological standpoint this water was excellent. The turbidity or cloudiness would make it less attractive as a drinking water than the polluted water in a dug well close by, an account of which is seen under No. 2.

No. 2. (16874) is 25 feet deep, in Sec. 2, T. 19 N., R. 8 E.; is cased with tile and had at that time a covering which was faulty. It is located practically in the barn yard, 60 feet from the privy, 150 feet from the cesspool and 60 feet from the stable. From a physical standpoint the water was clear and colorless and had no odor. The chemical examination, however, showed that it evidently contained considerable quantities of the surface drainage. It also contained an excessive number of bacteria. Such a water should not be used for drinking purposes, though from outward appearances a more attractive water than the water from the deep well near by.

No. 3. (16873) is a 16-foot dug well, and is located in Sec. 2, T. 19 N., R. 8 E, and is located 100 feet from privy, 10 feet from the stable and is practically in a barn yard. The chemical analysis showed that this water contained surface drainage. From a bacterio-logical standpoint it was in fair condition, but we would suggest that such water be boiled before using it for drinking purposes.

No. 4. (16876) is a 65-foot bored well, Sec. 35, T. 20 N., R. 8 E., and is cased with cypress, with curbing in poor condition. The well is located in a feed lot about 50 feet from the stable. Physically the water appeared to be good, chemically, poor; bacteriologically poor. This water was only used for stock and should not be used for drinking purposes.

No. 5. (16877) is a 180-foot bored well, and is located in Sec. 35, T. 20 N., R. 8 E., 50 feet from privy, 30 feet from cesspool. The water was similar in character to the Champaign and Urbana supply and was excellent from a sanitary standpoint.

No. 6. (16878) is a 28-foot dug well in Sec. 34, T. 20 N., R. 8 E. Privies and cesspools do not seem to be more than 100 feet distant. It is located near the house in apparently excellent conditions. Physically it was a bright, clear water, chemically it showed evidences of having been collected on inhabited areas. From a bacteriological standpoint it was good. This water is apparently safe for drinking purposes, but contains a higher residue than is desirable and is less suitable for household use than the water from the deep well near by, which is described under the next number.

No. 7. (16879) is a 190-foot bored well located in Sec. 34, T. 20 N., R. 8 E. This water showed results similar to the deep wells of the county and is very satisfactory for drinking purposes.

No. 8. (16880) is a 170-foot drilled well in Sec. 3, T. 9 N., R. 8 E. This water shows the characteristics of a deep well of the section and is an excellent water for domestic uses. The water from this well was pumped to the tank by a gasoline engine located in the basement of the house.

No. 9. (16881) is a 28-foot dug well in Sec. 2, T. 19 N., R. 8 E. It is 50 feet from the stable. No other objectionable features seemed to be within 100 feet, but there was apparently a chance for surface water to enter through the curbing. The chemical analysis showed evidences of pollution.

No. 10. (16882) is a 160-foot driven well in Sec. 2, T. 19 N., R. 8 E., and while it is practically in the barn yard, near the privy and stable, with a dumping ground for slops near by, it had no evidences of any contamination.

An inspection of these analyses shows that the deep well waters were in excellent condition. According to the chemical analysis all of the shallow wells showed pollution. One gave a very favorable bacterial examination and may be considered good. The deep well waters contain less residue and are softer than the shallow well waters. The results of our examinations would indicate that it is advisable for the farmers in the neighborhood of Champaign to use the waters from the deep driven wells in preference to the shallow wells.

THE WATERS OF ILLINOIS

	.гальтья.	Good Bad	Bad	Bad Good	Good	Good Bad	Good		." "	" Bad	." "
	Depth.	160 25	16	65 180	28 190	170	160		35 dug 313 drilled 27 dug	204 drilled 175 drilled 27 drilled	40 dug & driven 197 bored & " 165 drilled 25 dug
	.lobal	+	+	+			I				+ +
Ś	0.1 c. c.	5 	± <u> </u> =	+ -	 2	+ +	$\frac{1}{1}$		$\frac{2}{2}$	1 1 2	 5 5 5 <mark>-</mark> +
PACILLU	1.0 e. e.	$\frac{2}{2}$	2—	2 + 2 +	2	1]	$^{1+}_{-1}$		$\frac{2}{2}$	1+ - 5 - 1+	
	10 c. c.	<u> </u>	-	<u> </u>	<u> </u>		1	3, 1908	1 1 1	<u></u>	<u> +</u>
Bacteria per c. c.		160 650	250	1500 40	100	0 01	10	ANUARY	90 30 Lost	25 21 600	160 200 80 600
-	.viiniisălA	346. 360.	244.	358. 462.	350. 496	340. 338.	324.	ECTED J	210 378 548	438 216 388	430 296 324 324
	Nitrates.	.16 50.00	12.00	4.8 .08	3.04 08	.08	.08	IS, COLI	2.00 .08 3.60	000. 000. 00. 00. 00. 8	.88 .000 .000
	Nitrites.	.000 .020	.008	900. 000	000	000.	000.	, ILLINO	000 000 000	000 000 000 000	.000 .050 .000
ONIA.	.bionimudlA	.144 .136	.064	.080	.056	070	.128	d ELGIN	.058 .160 .072	.240 .024 .152	.056 .104 .032 .044
AMMC	Free.	.720 .024	.016	.116 2.800	.024	1.280	.640	ES FRO	.076 1.60 .008	1.75 .752 .032	.056 .024 .608 .016
	Oxygen Consumed	7.6 4.0	2.3	2.8 8.6	2.3	5.0	3.5	SAMPI	.6 4.3 1.7	9.2 1.9 2.0	1.7 3.2 11.3 1.0
	Chlorine.	3 180	30	37 3	132 3	3 20	2		6 3 32	200 3 2 200	24 36 3
	.sbilo2 lstoT	377 1662	510	567 513	948 512	358 463	345		298 398 752	472 249 973	827 492 325 350
Ţ	Odor.	0 0	0	0 0	00	000	0		000	000	0000
	Color.	0 i	0	04	04	. 0 0	5		0 r; 0	% <u>-</u> 0	0000
	.vibidruT	10.0	0	0 S.	00	000	0		0 10. 0	0 is is	00.00
	Гарогаѓогу Ҋо.	16873 16874	16875	16876 16877	16878	16880	16882		16921 16922 16923	16924 16925 16926	16927 16928 16929 16930
	. AMMONIA.	Color. Modor. Color. Modor. Total Solids. Alburine. Ottor.e. Modol. Ottor.e. Modol. Districtes. Modol. Nitrites. Mitrites. Nitrites. Modol. Modol. Modol.	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </th <th>0 0.0 0.0 0.0 0 0 0.0 0.0 0 0 0.0 0.0 0 0.0 0.0 0.0 0 0.0 0.0 0.0 0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</th> <th>Oddor. Duplity. 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td< th=""><th>AMMONIA Turbidity. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>AMMONIA Turbidity. 0 0.0 0 0.0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<!--</th--><th>Defitiv. Defitiv. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>AMMONIA Ammonia AMMONIA 10 7unbidity. AMMONIA 10 10 7unbidity. AMMONIA 0 0 10 10 10 0 10 10 10 11 0 0 144 Manonia 11 0 0 137 Total Solida. 11 0 0 144 Mitritates. 11 10 0 144 Mitrites. 11 10 0 144 100 144 11 10 0 144 100 144 11 10 0 144 100 144 11 10 0 10 144 100 144 11 10 0 10 10 10 10 10 11 10 144 100 144 10 144 10 11 11 10</th><th>AMMONIA. AMMONIA. 00001. 00 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$</th></th></td<></th>	0 0.0 0.0 0.0 0 0 0.0 0.0 0 0 0.0 0.0 0 0.0 0.0 0.0 0 0.0 0.0 0.0 0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Oddor. Duplity. 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td< th=""><th>AMMONIA Turbidity. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>AMMONIA Turbidity. 0 0.0 0 0.0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<!--</th--><th>Defitiv. Defitiv. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>AMMONIA Ammonia AMMONIA 10 7unbidity. AMMONIA 10 10 7unbidity. AMMONIA 0 0 10 10 10 0 10 10 10 11 0 0 144 Manonia 11 0 0 137 Total Solida. 11 0 0 144 Mitritates. 11 10 0 144 Mitrites. 11 10 0 144 100 144 11 10 0 144 100 144 11 10 0 144 100 144 11 10 0 10 144 100 144 11 10 0 10 10 10 10 10 11 10 144 100 144 10 144 10 11 11 10</th><th>AMMONIA. AMMONIA. 00001. 00 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$</th></th></td<>	AMMONIA Turbidity. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AMMONIA Turbidity. 0 0.0 0 0.0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </th <th>Defitiv. Defitiv. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>AMMONIA Ammonia AMMONIA 10 7unbidity. AMMONIA 10 10 7unbidity. AMMONIA 0 0 10 10 10 0 10 10 10 11 0 0 144 Manonia 11 0 0 137 Total Solida. 11 0 0 144 Mitritates. 11 10 0 144 Mitrites. 11 10 0 144 100 144 11 10 0 144 100 144 11 10 0 144 100 144 11 10 0 10 144 100 144 11 10 0 10 10 10 10 10 11 10 144 100 144 10 144 10 11 11 10</th> <th>AMMONIA. AMMONIA. 00001. 00 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$</th>	Defitiv. Defitiv. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AMMONIA Ammonia AMMONIA 10 7unbidity. AMMONIA 10 10 7unbidity. AMMONIA 0 0 10 10 10 0 10 10 10 11 0 0 144 Manonia 11 0 0 137 Total Solida. 11 0 0 144 Mitritates. 11 10 0 144 Mitrites. 11 10 0 144 100 144 11 10 0 144 100 144 11 10 0 144 100 144 11 10 0 10 144 100 144 11 10 0 10 10 10 10 10 11 10 144 100 144 10 144 10 11 11 10	AMMONIA. AMMONIA. 00001. 00 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

ELGIN.

A series of ten samples was collected on January 3, 1908, from farms near Elgin; most of them were in Hanover township, Cook county:

No. 1. (16921) is a dug and bored well 35 feet deep. The only source of contamination found was a chicken house 50 feet away, and a stable 200 feet away. One case of typhoid fever was reported six years ago. The analysis showed favorable results except in the free and albuminoid ammonia, and perfect satisfaction would undoubtedly be given if all the water were shut out from the dug part of the well.

No. 2. (16922) is from a drilled well 331 feet deep, and while it is near a stable it was shown to be excellent in every particular.

No. 3. (16923) is from a dug well 27 feet deep. The chemical analysis indicates that surface water enters the well. The absence of intestinal bacteria was shown. This water was used only for watering stock, and it would be advisable not to use it for drinking purposes.

No. 4. (16924) is a drilled well 204 feet deep. The water was excellent in every particular.

No. 5. (16925) is a drilled well 175 feet deep. The water was shown to be excellent in every particular.

No. 6. (16926) is a drilled well 27 feet deep, and showed evidence of contamination, both chemically and bacterially. The surroundings were poor, a privy being 50 feet away, cesspool 10 feet away, a stable 100 feet away, and a dumping ground for slops about 20 feet away. Such water should not be used for drinking purposes.

No. 7. (16927) is a 40-foot driven well with an iron casing extending from top to bottom. Bacterially the water was excellent. Chemically it was also good. This is an illustration of the advantage of a driven well over a dug well.

No. 8. (16928) is a driven well 197 feet deep, with very favorable surroundings. Bacterially the water was in excellent condition. Chemically there was evidence of entering surface water, and while not first class, was probably in good condition at the time of the analysis. No. 9. (16929) is a drilled well 165 feet deep. The high consumed oxygen is rather surprising, otherwise the water shows the characteristics of deep wells and was evidently perfectly safe for use for drinking purposes.

No. 10. (16920) is a 20-foot dug well, the surroundings are not very favorable, a privy being located 10 feet away, a cesspool 10 feet, a stable 100 feet, dumping ground for slops, dish water, etc., 10 feet. The chemical examination showed the water to be in excellent condition. The bacterial results showed it to be only fair. The water was probably safe, but liable to surface contamination at any time.

The deep rock wells in the Elgin district furnish an excellent water supply for household purposes. The shallow wells, especially the dug wells, are much less desirable; the one shallow driven well was shown to be good, proving the greater desirability of this class of well over the shallow dug well.

KANKAKEE.

Ten samples were collected on January 13 from farms northeast of Kankakee, in Bourbonnais township, Kankakee county:

No. 1. (16962) is from a 45-foot well drilled in limestone. This well is about 50 feet from a privy, 100 feet from a stable and 20 feet from the barn yard. Chemically there was evidence of entering surface water. The tests for bacteria showed that the water was in excellent condition.

No. 2. (16963) is from a 68-foot well drilled in limestone. The well is located 30 feet from a privy, 100 feet from a stable, feed lot and dumping grounds for slops. There had been a case of typhoid fever last September. Chemically this water showed evidence that the water had been collected on polluted surfaces. From a bacterial standpoint the results were excellent. We can regard this as only fair water for drinking purposes.

No. 3. (16964) is from a 45-foot well drilled in limestone, 100 feet from a privy, 200 feet from feed lot, and 300 feet from stable. All the analytical data indicated that this water was in first class condition.

No. 4. (16965) is a 40-foot well drilled in limestone, 300 feet from a privy, 100 feet from a stable, and 10 feet from feed lot. While this water was used for stock only, it was shown to be in excellent condition for general drinking purposes.

No. 5. (16966) is a 45-foot well drilled in limestone. This well was 40 feet from a privy, 30 feet from a stable, and 50 feet from feed lot. It was shown to be in excellent condition for drinking purposes.

No. 6. (16967) is a 12-foot driven well, located in a barn yard, 20 feet from a stable. Chemically there was evidence of gross contamination. From a bacterial standpoint this water was shown to be good. The organic matter was so high above the average that we believe it ought not to be used for drinking purposes.

No. 7. (16968) is a 37-foot well dug and drilled in limestone, 120 feet from a privy, 75 feet from stable, 20 feet from feed lot. Two cases of typhoid fever were reported in August, 1907. While the bacterial results at this time were shown to be good, the chemical examination showed evidence of gross pollution. The residue on evaporation was excessive, and such a water should not be used for drinking purposes.

No. 8. (16969) is a 100-foot drilled well. Bacterially the water was shown to be only fair. From a chemical standpoint there was evidence of surface pollution, and either the data given us was wrong or surface water enters the well.

No. 9. (16970) is a 104-foot drilled well. All the data, both chemical and bacteriological, indicated a satisfactory water for drinking purposes. The water being very different in character from No. 8, may be regarded as a normal water for a well 100 feet deep.

No. 10. (16971) is a 50-foot dug well, reported dug in clay. The bacteriological examination showed it to be a good water. The chemical examination indicated the entering of surface water. The residue on evaporation is excessive, rendering it only a fair water for domestic use.

Considering the ten samples from Kankakee the drilled rock wells from 40 to 50 feet deep are the most satisfactory. The nor-

			р		q	q	p	г		г	q		
		Remarks.	poog	fair	g00	g00	good	bool	bad	poor	good	fair	
		Depth.	45' drilled	60' drilled	45' drilled	40' drilled	45' drilled	12' drilled	37' dug & drvn.	100' drilled	104' drilled	50' dug	
		.lobnI								+			
SULUS		0.1 c. c.	2—	2—	2-	2-	2—	2—	2—	2—	2—	2—	
COLON BACILLUS		1 c. c.	2—	2—	$^{2-}$	$^{2-}$	2—	2—	2—	2—	2	<u> </u>	+
COL		10 c. c.	1—	-	<u> </u>	<u> </u>	[[[[<u> </u>	-	
		Bacteria per c. c.	120	90	20	120	160	40	200	600	44	230	
Alkalinity.				308	184	172	164	234	364	316	374	246	
		Vitrates.	7.60	29.6	.28	.20	.28	17.57	68.00	18.00	.48	36.00	
JEN AS		Nitrites.	.002	.004	.000	.000	.002	.300	.003	.002	.004	000.	
NITROGEN AS	.AIA.	.bionimudlA	.060	.062	.060	.036	.024	.122	.092	.118	.074	.116	
	AMMONIA.	F166.	.036	.036	.054	.016	.042	.040	.036	.014	.450	.010	
		.DemuanoD negyzO	6.	1.3	6.	1.0	1.3	2.0	1.5	3.3	1.8	2.7	
		Chlorine.	20	4	5	6	3	90	290	126	7	98	
Total Solids.				826	231	263	254	830	1750	1117	403	1016	
CE		Odor.	0	0	0	0	0	0	0	0	0	0	
APPEARANCE		Color.	0	0	0	0	0	0	0	0	0	0	
AF		.vibidruT	0	0	0	0	20.	0	0	30	5.	0	
		Serial No.	16962	16963	16964	16965	16966	16967	16968	16969	16970	16971	

SAMPLES FROM KANKAKEE ILLINOIS. COLLECTED JANUARY 13, 1908.

mal residue on evaporation is less than 400., normal chlorine 10., normal nitrates 0.3. An excess over these figures would indicate surf ace contamination.

GENERAL CONCLUSIONS.

In those parts of the state where it is possible to obtain a satisfactory water by means of driven or bored wells, such wells are much to be preferred to the dug wells. This may be easily illustrated by a little drawing. (See Fig. 1.). In a dug well the casing

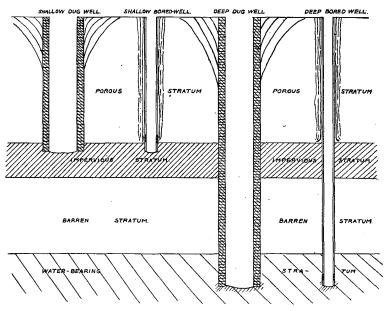


Fig. 1. Driven Wells safer than Dug Wells.

is either stone or brick, or, as in one well which I noticed, tile. Such a casing allows water to seep in through its entire depth. We all know how water will flow through the sides of a hole from top to bottom, the hole draining the earth for some distance. A similar state of affairs will be noticed with dug wells. Water flowing on the surface will carry with it any dirt or filth which may be near. In the case of the drilled, driven or bored wells, carefully cased, there is no chance for water to enter the well above the strainer. All water which enters such a well must therefore pass through a layer of earth of a thickness equal to the distance from the surface to the top of the strainer, the earth thus serving as a natural filter. Comparative tests of dug wells and driven wells show that the driven wells are frequently free from bacteria, though often carrying large quantities of soluble substances like salt and nitrogenous compounds, indicating thus the polluted origin of the water, but showing how the water has been filtered by passing through the earth.

In some cases the drilled, driven or bored well, passes through a layer of earth through which water will not pass, and therefore the water supply must come from a considerable distance and will have a chance to become thoroughly purified during its passage through the earth. For this reason the deeper wells throughout the state, some of which have been analyzed in our series of farm well waters, are shown to be free from bacteria.

We realize that in some sections of the state, possibly at Centralia, it is not practical to obtain water from either the driven, drilled or bored wells, because the deep drilled wells are salty, and the shallower wells enter a stratum of earth of such a character that there is not sufficient flow through the small opening of the strainer. In the latter cases the dug well is needed to give reservoir capacity, so that the water may accumulate between pumpings. In such cases we would suggest that a special reinforcement of the casing be used.

Our suggestion is that the earth be excavated for four feet outside of the regular casing, that a coating of water-proofed Portland

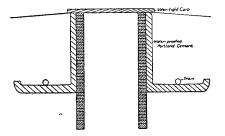


Fig. 2. Protection for Dug Wells.

cement be placed over this casing (See Fig. 2), and that the bottom of this excavation, which should be at least four feet deep, be covered with several inches of water-proofed Portland cement, having a raised portion at the outer edge. (See Fig. 2). This will serve to divert the surface water away from the well, and it

may be led to a distance through a tile drain. The whole arrangement will prevent surface water that has not passed through at least four feet of earth gaining access to the water-bearing strata. Bacteria that would otherwise gain. access to the well will be filtered out.

If care be taken to use the deep drilled, driven or bored wells when such can be used, and to take the special precautions suggested where dug wells are a necessity, the general health of the farmers. and of the people of the state in general will be improved.

THE HARDNESS OF ILLINOIS MUNICIPAL WATER SUPPLIES.*

It is not the purpose of this paper to show the advantages of a soft water. We are all agreed that a soft water is best. The large majority of the municipalities of Illinois have hard water, and, therefore, what we wish to know is how to make them soft and when it is practicable to do so.

Whenever it is necessary to purify a water for drinking purposes an additional installation to soften the water is comparatively inexpensive. The same is true when it is found necessary to remove the iron from a water supply. To soften a hard but pure and clear water would mean a complete installation for softening purposes alone. In the latter case there will therefore be much hesitation on account of the expense before general softening plants are established. In all plants also there is a reluctance to treat all of the water supply when a soft water is not needed for all purposes.

Railroads are finding it profitable to soften the waters used in their locomotives, and plants for water treatment are in operation on all of the principal lines. The matter is of so much importance to them that an extended report has been made by the Committee on Water Service of the American Railway Engineering and Maintenance of Way Association.[†] The committee discusses the matter from the standpoint of use in locomotives quite fully. What has been found practicable in locomotive practice may be extended to general boiler uses or even to domestic practices.

The whole supply of a municipality may be softened or, where this is impracticable, plants may be established by the larger consumer, or even household softening plants may be erected. In order to furnish the chemical data necessary for such treatment the accompanying table has been prepared.

The samples of water analyzed have been sent to the State Water Survey from various towns by the waterworks men, the city officials,

^{*24}th Annual Report, Ill. Soc. Eng. and Sur., 1909, p. 213. † Am. Ry. Eng. & Maintenance of Way Assn., Bull. No, 83, Jan., 1907.

99

or by other citizens. The Water Survey has not been able to collect the samples itself, and thus cannot be absolutely certain that the samples are authentic. The probability is that most of them are all right.

The analytical work reported has been done in the laboratory of the Water Survey at the University of Illinois during the past fifteen years. There is a possibility that some of the waters have changed in character, but most of the well supplies are very stable.

Ninety-seven of the 216 separate sources of supply within the state have been examined. The analytical data which are needed to determine the method of water softening are given. Most all of the analyses are reported in full in a bulletin of the State Water Survey.*

The mineral content given in the table shows hypothetical combinations which have been calculated from the ionic content by calculating bases in the order, potassium, sodium, ammonium, magnesium, calcium, iron and aluminium, to the acid ions in the order, nitrate, chloride, sulphate and carbonate. By using this order the waters can be divided into several classes. To facilitate comparison we made three classes.

Class I. includes those waters which contain more than enough sodium to unite with all of the nitrate, chloride and sulphate ions. These waters would therefore contain sodium carbonate, and possibly the carbonates of magnesium, calcium and iron. The waters of this class will form a sludge or soft scale when used in boilers. They may have a high soap consuming power when used for laundry or in the lavatory. The hardness, which would necessarily consist of the carbonates of calcium and magnesium, will be almost entirely removed by boiling, or by treatment with the necessary amount of lime. The relative cost of softening by boiling and by lime is given by Collet* as 50 to 1.

Class II. includes those waters which have sufficient sodium to unite with all of the nitrates and chlorides and with part of the sulphates present. These waters contain the sulphate of magnesium and sometimes the sulphate of calcium, iron and aluminium. The

^{*} University of Illinois Bulletin, State Water Survey Series, No. 5. † Water Softening and Purification, London, 1908, p. 3.

Ĕ	
REQUIRED	LITIES.
ASH	ICIPA
SODA	MUN
AND	SIONI
LIME	T ILL
OF	HOIE
AMOUNT	NINETY-I
THE	0 L
AND	ISHED
TABLE SHOWING THE HARDNESS, AND THE AMOUNT OF LIME AND SODA ASH REQUIRED TO	ATER FURN
THE	HE W
SHOWING	SOFTEN T
TABLE	

	REMARKS	Deep wells. Edgmont.	Clay and silicious mat- ter 103.5.	rrom dirrerent weils. Artesian well. Spring.	{ Well 140 [,] Suspended	l matter 83.9— Well 17° Wells. Springs.	(a) U. S. G. S. Deep wells.	Mixture of deep and shallow wells.
Chemicals	Approxi- mate Cost per 1000 Gallons	S.00714 .00849 .00650 .01658 .01668 .0763 .0763 .0763 .0763 .0753 .02358 .02358	.00194 .00194 .00444 .02819 .00594	.00512 .00279 .03830 .00615	.00840 .00690 .00589 .00834 .01405	.02303 .00609 .00819 .00951 .00702 .00642 .00552 .02492	.00510 .00734 .00572 .00699 .01350 .01350	.01204 .01661 .00750 .01263 .03864 .00393
	Ibs. per 1000 Gals.	2.38 2.83 1.30 1.76 2.01 2.01 2.02 3.86 2.38		1.24 .53 1.95	2.80 2.30 1.43 2.78 1.85	2.21 2.03 2.73 2.17 1.44 1.54 1.54 1.84 2.14 2.14 1.94		2.48 2.27 2.10 2.18 2.18 2.18 .91
Lime	Grains per Gallon	16.6 19.8 9.1 12.3 14.1 14.1 14.1 14.1 14.1 14.1 14.1 14	3.4 3.4 10.3 13.8	8.7 3.7 15.3 13.6	19.5 16.1 10.0 19.5 12.9	15.5 14.2 19.1 19.1 15.2 10.1 10.8 12.9 13.6 13.6	0.3 7.6 11.4 16.7 19.2	17.4 15.9 14.7 18.3 15.2 6.4
	Parts per Million	285 340. 156. 211. 211. 211. 264. 264. 285. 285.	58. 58. 177. 184. 237.	149. 63. 263.	335. 276. 171. 334. 222.	266. 243. 327 260. 173. 185. 221. 224. 234.	108. 130. 114. 248. 287. 330.	272. 272. 313. 261. 109.
	Ibs. per 1000 Gals.		.05	.14 .12 .03	.16 .85	1.64 .30 .37 .18 .185	.04 .41 .29 .63	.99 .99 .12 .12 .12
Soda Ash	Grains per Gallon	1.8 3.3 3.3 1.1 9.3 9.3 22.4 11.7	 .4 16.5	1.0 .8 .22.2 .2	1.1 5.9	11.5 2.1 1.9 1.3 12.9	2.9 2.0 1.5 4.4	2.2 6.9 3.3 22.5 .8
	Parts per Million	31. 57. 19. 19. 160. 384. 201.	6.4 283.0	17.6 13.9 381.0 4.2	18.6	197 36. 33. 21.9 2222.	4.8 49. 33.8 26.4 76.	33. 119. 57. 386. 14.
	CaCO ₃	212.6 238.5 165.0 189.0 187.2 193.4 193.4 256.8 156.3 156.3 156.3	47.4 47.4 104.9 157.8 79.0	117.3 50.0 228.4 195.0	212.4 202.0 127.0 190.0 38.6	290.0 137 236. 184. 13.5 13.5 113.3 247. 247.	90.0 131.1 69.2 127.0 150.0 255.0 146.4	259.3 259.3 192.1 267.5 96.1
u	CaSO4		119.3	162.0		1.5		225.2
s per Millic	MgCO ₃	125.2 154.6 35.1 56.4 56.4 53.3 95.2 116.5 130.2 130.2 16.4	21.4 21.4 18.6 48.0	55.4 20.4 92.1	148.6 101.0 68.0 121.5 41.1 30.2	118. 144. 104. 60.0 73. 87. 109.5	41.3 23.2 83.0 98. 85.0 85.0	47.9 47.9 96.4 35.9 35.9
Mineral Content—Parts per Million	${ m MgSO_4}$	35.4 65.0 21.6 1.5 182.4 436.2 228.0 228.0	7.3 205.	20.0 15.8 289.0 4.8	21.1	194. 41. 38.0 24.8 253.	55.4 38.4 30.0 86.	02.0 135.1 15.6 65.1 239.7 15.5
neral Con	MgCl ₂				16.9	22.1.		
Mi	Na ₂ CO ₃	14.1 46.8 201.0	49.0 244.0		35.4 56.0 124.3 343.5	18.6 7.2 60.	63.0 255.1	
	Residue	389 517 458 373 373 373 373 373 373 352 735 810 810 810	235 235 1052 1620 1818	248 176 3121 348	429 408 702 420 2116	571 571 310 392 392 281 281 281 281 281 201 1087	253 260 257 257 257 257 257 2719	405 951 396 552 1204 196
	Class							
	СПТҮ	Amboy	Cairo Cambridge Canton	Carlyle (a) Carmi (a) Carrollton	Chadwick Champaign Charleston (a) Chateworth Chillicothe	Chrisman Clinton Collinsville Danville (a) Dectath Dwight East Dubuque .	East St. Lonis Edwardsville Effugham Elgin (a) Elgin Famer City	Galesburg Galesburg Geneseo Greenville Harvey

THE WATERS OF ILLINOIS

HARDNESS OF ILLINOIS MUNICIPAL WATER SUPPLIES

New supply.	Mattoon Clear Well Water Co. Kickapoo Drain. Little Wabash Reservoir	Suspended 108. Variable.	Average of 2.		Well No. 1. Well No. 2.	March, 1902 February, 1906 Use BaOH ₂ Use BaOH ₂ City supply. Auxiliary.	Free acid and sulphates.	Ave. for southern end.
.00675 .00891 .00391 .00764 .01245 .01173 .01172 .01172 .00798	.04089 .00999 .00702 .00924 .02064	.00299 .00591 .00267 .01510 .00549	.00560 .00660 .01781 .03654 .00708 .00636	.02450 .01109 .01570 .00520 .01604 .00759 .00759	.00390 .00660 .00534 .005864 .00580	.000000 .00347 .07163 .05708 .03659 .01302 .00639		.00510
2.25 2.17 1.70 1.28 1.15 2.31 1.28 2.31 1.08	3.33 3.33 1.34 1.48 2.28 1.14		1.88 2.20 3.48 2.16 2.12	$ \begin{array}{c} 1.60 \\ 2.23 \\ 1.70 \\ 2.28 \\ 2.33 \\ 2.33 \\ 1.54 \\ 1.54 \\ \end{array} $	1.00 2.20 1.78 2.88 1.90	2.20 	1.44 1.44 1.53 1.53 3.33 2.07 2.07	1.70 .43
15.7 15.2 11.9 9.0 8.0 11.0 116.2 116.2 116.2 110.2 110.2	23.3 23.3 9.4 15.9 8.0	5.8 5.8 6.2 14.0 12.8	15.2 15.3 11.7 24.3 15.2 14.8	11.2 15.6 13.3 11.8 11.8 16.7 16.7 16.3	6.9 15.3 12.4 20.2 13.3	15.4 6.2 18.3 16.5 17.7 13.6 10.7	$\begin{array}{c} 10.1\\ 10.1\\ 114.2\\ 13.2\\ 23.3\\ 14.0$	11.9 5.2
269. 269. 155. 158. 138. 233. 233. 233. 233. 233.	399. 399. 162. 272. 137.	237. 237. 240. 219.	220. 263. 260. 260. 253.	192. 268. 2239. 274. 279. 186.	119. 263. 346. 228.	264. 107. 314. 283. 304. 183.	174. 244. 399. 276. 240.	204. 89.
2.87 2.87 2.87 2.87 2.87 2.87 2.87 2.87	3.06 	.05	1.28 2.61 .06	1.97 1.00 1.00 1.92 1.92 1.92 1.92	.09 1.70 .01			.05
$\begin{array}{c} 1.7\\ 1.7\\ 2.7\\ 2.3\\ 3.0\\ 2.5\\ 3.0\\ 2.5\\ 1.5\\ 1.5\\ 1.6\\ 1.7\\ 1.7\\ 1.7\\ 1.7\\ 1.7\\ 1.7\\ 1.7\\ 1.7$	21.5 2.2 3.4 9.7 1.0		9.0 18.3 .4	13.8 3.0 6.9 6.5 13.1 3.1 3.1		 44.3 34.9 5.0 1.3	20.9 1.1 1.3 3.1 4.9 2.1 1.1	
29. 29. 29. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25	368.0 37. 58. 167. 17.6	7.3		237.0 51.4 119.0 1.6 111.0 225.0 7.6 53.6	10.8 202. .9	9.7 9.7 765. 599. 347. 86. 22.0	18.5 360. 22.4 54.0 84.0 84.0 35.3 19.4	
94.1 208.0 157.0 145.0 145.0 175.0 175.0 2218.0 2218.0 2216.0 1153.0 1153.0	453.0 258. 96. 144. 233.9 163.0	20.4 80.9 97.1 196.2 142.0	127. 131. 211. 458. 161.5 159.9	118.8 188.2 187.5 160.0 302.8 198.0 173.2 195.9	90.0 167.9 157.0 295.0 203.7	187.0 10.7 87.0 194.6 189.0 293.0 232.0 132.0	35.5 130.0 1160.6 137.0 2243.0 202.0 202.0 202.1 151.1	73.6 81.4
40.0	119.0		9.0	62.1		 480.4 339.7 105.	185.8 185.8	
60.3 96.0 37.4 71.0 97.0 56.0 58.0 35.5	 185. 67. 50. 39.1 17.7	14.6 38.4 38.6 38.0 38.0 53.6 70.0	83. 83. 125.7 95.2	102.1 46.4 85.0 35.0 134.4 134.4 35.7	47.0 112.4 70.0 85.2 85.2	6.5 6.5 40.0 53.0 73.0	25.8 69.0 59.0 59.0 35.0 101.0 85.2 85.2 85.2 85.2 85.2	85.3 29.4
33.2 33.2 52.0 87.0 87.0 87.0 87.0 87.0 87.0 87.0 87	299.0 42. 66. 190.2 20.0	8.3		269.4 58.4 82.1 1.8 126.0 171.0 8.6 8.6	12.3 229. 1.1	 11.0 11.0 380.4 380.4 98.0 98.0 25.0	21.0 153.3 25.5 61.0 65.4 36.0 22.0	7.3
6.4	10.2	74.9		41.7			23.7	
259.1	16	372.8 3.5 88.	70. 153. 69.7				166.9	
2497 374 2506 288 288 1198 1198 446 571 293 223	1060 611 222 298 619 233	2226 177.4 314 281 436 1542	1221 410 856 1068 331 398	701 443 416 339 604 854 854 339	203 357 807 689 337	251 82 82 191 2591 943 943 943 279	796 276 332 332 325 458.3 458.3 408 379 379 379	781 140
					<u></u>			п
Henry	Mascoutah Mattoon Maywood	Minonk Moline (a) Mound City Mu Morris Mu. Secting	Normal Normal Oak Park Onarga Oregon	Palatine	Quincy (a) Rautoul Riverside { Rochelle	Rockford	Sheldon	Wyoming Lake Michig'n

waters of this class will form a scale more or less hard, according to the proportion of sulphate present. Their soap consuming power may be high, and boiling will not remove all of the hardness. Boiling will remove the carbonate hardness, but the sulphate hardness will remain. Lime will remove the carbonates, but soda ash or caustic soda must be used to change the sulphates to sulphates of sodium.

Class III. includes those waters, in which the sodium is not present in sufficient quantity to unite with all the nitrates and chlorides present. These waters will therefore contain magnesium chloride. The hardness may be due to chlorides, sulphates and carbonates of magnesium, calcium, etc. These waters will be corrosive, will form a hard scale and pit when used in boilers. They will also consume a considerable quantity of soap, and the hardness will not be removed by boiling. As in Class II., the lime will remove the carbonates, but soda ash or caustic soda must be used for the mineral acid hardness.

It is noted that the waters of the second class are most common, there being 64 waters in this class. The first class is next in order, with 32 waters, and the third class numbers 10.

Most of these waters will yield to treatment, the exception being those containing a large residue. These may be softened, but because of the necessary addition of sodium salts in the softening process, the foaming constituents will be increased so that they will be unsatisfactory for boiler uses. With the exception of the waters just mentioned, it is possible to so treat the Illinois waters that corrosion will be prevented and the scaling ingredients reduced to less than 85 parts per million (5 grains per gallon).

The amounts of sodium carbonate (soda ash, Na_2CO_3) and lime (CaO) needed to treat the waters were calculated, using 'factors, as follows:

Magnesium chloride, $MgCl_2$ to Soda ash, Na_2CO_3 ... 1.1130 Magnesium sulphate, $MgSO_4$ to Soda ash, Na_2CO_38811 Calcium sulphate, $CaSO_4$ to Soda ash, Na_2CO_37792 Sodium carbonate, Na_2CO_3 to Lime, CaO... .5287 Magnesium chloride, $MgCl_2$ to Lime, CaO... .5889

HARDNESS OF ILLINOIS MUNICIPAL WATER SUPPLIES

Magnesium sulphate, MgSO ₄ to Lime, CaO	.4659
Magnesium carbonate, MgCO ₃ to Lime, CaO	1.3300
Calcium carbonate, CaCO ₃ to Lime, CaO	.5600
Parts per million to grains per gallon	.05833
Parts per million to pounds per thousand gallons	000015

The amounts are calculated on the basis of pure soda ash and pure lime, and no account is taken of the residual carbonate of calcium and magnesium which can not be removed. Practice would probably show that the approximate cost is therefore a trifle high. The amount of soda ash present has been included in the calculation of the lime needed for the waters of Class I. This is according to the laboratory experiments of Bartow and Lindgren.*

The results are given in parts per million, grains per gallon and pounds per thousand gallons. This will make it convenient for treatment on a large or small scale. Those desiring to soften water for use in the household, where the whole supply is not softened, may soften from a few gallons up by adding the calculated amount. We have tried the experiment with the water at the University of Illinois on a laboratory scale, using 30 liters of water; and on a household scale using 1,000 gallons of water. The Champaign and Urbana water supplies are in this way softened so that the soap consuming capacity is very much decreased and so that the possibility of staining white goods from the iron present is entirely eliminated, and there is no danger of clogging the water backs in the ranges.

As an illustration of the possibility of success in water softening, I will mention an incident.. My own cistern was dry, so I arranged to treat 1,000 gallons of water. When I was about to begin my wife expressed the wish that I experiment on some one else. The experiment was carried out, however. A few days later I was informed that the water I had treated was better. A few days later my attention was called to some curtains,. "Don't they look nice?" "They were washed in the water you treated." I had thus one convert to water softening.

^{*}Bartow and Lindgren, Proceedings of the Am. Water Works Assn., Vol. 27, page 505, (1907). Univ. of Illinois Bulletin, State Water Survey Series, No. 6.

Should plans be made to soften the water furnished from streams it is necessary to consider that the waters vary from day to day, that no specific rules can be laid down for the treatment. The results given are the averages. The analyses which are marked (a) are average analyses covering a period of one year, and were made by Mr. W. D. Collins, Assistant Hydrographer of the United States Geological Survey, and Mr. C. K. Calvert, Field Assistant of the United States Geological Survey under the co-operative agreement with the State Water Survey, State Geological Survey, and the University of Illinois Engineering Experiment Station in a study of the streams of Illinois.

The cost of treatment has been calculated on the basis of lime at \$6.00 per ton and soda ash at \$1.00 per hundred. The cost at any place can be readily calculated by noting the relation between this estimated cost and the actual cost on the spot.

The Water Survey is asking the legislature for funds to extend the work of the survey. The above shows one of the lines of work planned. We wish to make analyses of all the supplies, but we wish also to have the privilege of collecting our own samples. We hope that those interested may see our needs and that they will help us in any way they can.

INTERPRETATION OF RESULTS, 1909.

The results obtained by analyzing waters in the laboratory of the State Water Survey show that no hard and fast rules can be drawn concerning standards for all Illinois waters. Some rules, however, are needed for judging the potability of these waters. Each year the Survey issues a circular on the Interpretation of Results, which is sent with each analysis. This circular is revised as new methods are adopted or old methods are modified, and as more is known concerning the normal for the waters of the state. The circular issued December 1, 1908, is as follows:

INTERPRETATION OF RESULTS OF SANITARY WATER ANALYSIS.

The statement of chemical results is made in parts per million by weight, that is, in milligrams per liter, since one liter of water weighs 1,000,0000 milligrams. On the scale of 100, one part is equivalent to one ten-thousandth of 1 per cent. Should the data be desired in terms of the United States gallon of 231 cubic inches, multiply by .058335.

In arriving at the conclusion set forth, the following is the basis for interpretation of the analytical data:

"TURBIDITY" refers to the amount of insoluble matter in suspension. It may be perfectly harmless, though a turbid water is less attractive for drinking purposes than a perfectly clear water. The turbidity standard is silica suspended in water.

"COLOR" refers to colored substances in solution. It is due usually to an extract of vegetable matter. The color standard is the color obtained by a solution of platinum chloride and cobalt chloride in water.

"ODOR" is a descriptive term and is reported as vegetable, fishy, moldly, disagreeable, etc.

"TOTAL RESIDUE ON EVAPORATION" comprises the solid matters left on evaporating the water and drying the residue at 180 degrees Centigrade. It includes both inorganic and organic substances. Unless the quantity is excessive or the water is to be used for industrial purposes the individual constituents are not separately determined.

"CHLORINE IN CHLORIDES" refers to the quantity of chlorine in combination with metals, for example, sodium chloride (common salt). In unpolluted waters the amount of chlorine, or the "normal chlorine" varies according to location; for example, distance from the sea coast or the presence of salt deposits.

Chlorine is a constant and considerable constituent of sewage therefore, if it is present in a water in amounts exceeding the normal for that locality, pollution is indicated.

OXYGEN CONSUMED" refers to the quantity of oxygen required to oxidize the organic matters present in the water. However, many organic substances which may be present in water are not readily affected by the oxidizing, agent. Sometimes inorganic matter is oxidized, hence the quantity of "oxygen consumed" does not always bear a direct ratio to the total quantity of organic matters present.

"ORGANIC MATTERS." At present we have no practicable means for the accurate determination of the quantity and character of the various individual organic substances contained in water. These substances include living organisms, both vegetable and animal; products of organic life, such as fecal matters, and decaying vegetation. Because nitrogen is an essential of all living things, we therefore base the estimation of organic matters on the determination of nitrogen in four of the forms in which it may exist in water.

"NITROGEN AS ALBUMINOID AMMONIA" represents the nitrogen contained in various organic substances in an undecomposed state but which will decompose under certain conditions. These substances include products of organic life, as albuminous substances, tissues, urea, fecal matters, etc., substances which serve as nutrients for germs. The presence of much nitrogen as albuminoid ammonia usually suggests pollution with sewage or drainage from refuse animal matters.

"NITROGEN AS FREE AMMONIA" so called, represents ammonia contained in the water in either the free or saline condition. It is

usually formed by the natural decomposition of nitrogenous organic matters. It is the first stage of oxidation or decomposition. Its quantity ordinarily indicates the amount of organic matters which are contained in the water in a partially decomposed state. It is a constant and considerable constituent of sewage, though it must be remembered that free ammonia occurs in considerable quantity in the deep drift wells of the State.

The above combinations of nitrogen in undergoing further decomposition are further oxidized, forming nitrous and nitric acids. These acids combine with basic mineral matters forming first nitrites and finally nitrates.

"NITROGEN AS NITRITES." The presence of any considerable quantity of nitrous acid or nitrites in a water may indicate that decomposition of living organisms is under way. Nitrites indicate pollution, but in the case of pure deep well waters containing soluble iron salts a change of the iron to insoluble compounds causes the formation of nitrites from nitrates which may be present.

"NITROGEN AS NITRATES." The presence of considerable quantities of nitrogen as nitric acid or nitrates indicates that at least correspondingly large quantities of organic matter have been previously present in the water.

The danger attending the presence of organic matter in water arises chiefly from the fact that disease germs may accompany organic matters of animal origin.

"ALKALINITY" of water helps to determine its value for household and industrial uses. It is measured in terms of calcium carbonate.

"HARDNESS" is the amount of dissolved substances that will form insoluble compounds with soap. It is measured in terms of calcium carbonate.

"SULPHATES AND IRON" are also helps to determine the household and industrial value.

THE WATERS OF ILLINOIS

BACTERIAL EXAMINATION OF WATER.

"THE NUMBER OF BACTERIA" per cubic centimeter reported is the number of bacteria that will develop colonies on gelatine at 20 degrees Centigrade unless otherwise noted.

"GAS FORMERS." Bacteria of the colon group are always present in the intestinal tract of men and of animals. They are therefore present in sewage. They will ferment dextrose and form a gas in a broth containing it. The determination of the formation or non-formation of gas, while not an absolute test for the colon bacillus, helps in the formation of an opinion concerning sewage pollution.

In the report, the amount of water used is denoted by 10 c. c.; 1.0 c. c. etc.; the number of tests made is denoted by figures directly after the amount, and the result of the test is denoted by the plus (+) sign when the test gave a positive result and by the minus (-) sign when the result was negative.

"INDOL." The bacteria of the colon group will form indol when added to a solution of peptone. The indol test is therefore a confirmation of the test for gas formers.

STANDARDS OF PURITY.

For the information and convenience of those to whom our reports are sent, the following limits have been provisionally adopted as a reasonable basis for reaching conclusions regarding the wholesomeness of waters in the State of Illinois. No absolute standards of purity whereby to judge the conditions of any and all potable waters can be justly established, because of differences due to the nature of the strata from which waters are drawn or with which they have been ni contact, the topography of the district, and the general environment of the sources.

SUGGESTED LIMITS OF ÌMPURITIES.

PARTS PER MILLION.

	Lake Michigan.	Streams*	Springs and Shallow Wells.	Deep Drift Wells.	Deep Rock Wells.
Turbidity Color Odor Residue on evaporation Chlorine Oxygen consumed Oxygen consumed Image: State of the state of	None None 150. 4.5 1.6 .01 .08 .000 .04 120. 100 Absent	10. .2 None 300. 6. 5. .05 .15 .000 5.5 200. 500 Absent	[†] None [†] None None 500. 15. 2. .02 .05 .000 2.00 300. 500 Absent	†None †None 500. 15. 25.†† .02-3. .20 .005 .50 300. 100 Absent	[†] None [†] None 500. 5100. 25.†† .02-3. .15 .000 .5 300. 100 Absent

The formation of a reasonable and just opinion regarding the wholesomeness of a water requires that there be taken into consideration all the data of the analysis together with the history of the water; the nature of the source; character of the soil and earth or rock strata, and the surroundings. The interpretation of results is a task for the expert. The purpose of this sheet is, therefore, merely to present to the layman such information, touching the evidence and the line of argument, as shall aid him to an understanding and appreciation of the conclusion or opinion.

^{*}This standard of purity is seldom found in the unfiltered water, as all streams are more or less polluted. †None when drawn from wells. They may become turbid and develop color on standing. ††Varies as the waters contain ferrous salts.

ADDITIONAL DATA CONCERNING MUNICIPAL WATER SUPPLIES.*

Abingdon, Knox county, obtains its water supply from a well 1,300 feet deep through the St. Peter sandstone. The system is owned by the city and was established in 1903.

Albion, Edwards county, has no general supply.

Aledo, Mercer county, see Bulletin No. 5, page 12. An additional sanitary analysis of the water from the well which is 3,165 feet deep gave the following results:

Turbidity 7.	Nitrogen as	Bacteria per c. c 60
Color	Free Ammonia376	Gas formers in
Odor Putrid	Alb. Ammonia112	10 c. c 1 -
Residue on Evapor- ation 2592.	Nitrites900	1 c.c 2 -
Chlorine in Chlorides 343.	Nitrates000	0.1 c. c 2 -
Oxygen Consumed_ 7.3	Alkalinity as CaCO ₃ 231.3	Indol —

Laboratory	No.	16121.	Collected	June	10,	1997.
------------	-----	--------	-----------	------	-----	-------

Altamont, Effingham county, has no general supply.

Alton, Madison county, see Bulletin No. 5, page 12.

Amboy, Lee county, see Bulletin No. 5, page 12.

Anna, Union county, has no municipal water supply.

Arcola, Douglas county, see Bulletin No. 5, page 12. The three wells at Arcola are from 90 to 100 feet deep. Additional analyses of the water from these wells gave the following results:

	п.	App	Appearance.				d.	Nitrogen as						
÷	etio					hlor	ume	Amm	onia.					c.c.
Serial Number.	Date of Collection.	Turbidity.	Color.	Odor.	Residue on Evaporation.	Ohlorine in O	Oxygen Consumed.	Free.	Albuminọid.	Nitrites.	Nitrates.	Sulphate.	Iron.	Bacteria per e
13189 13190	1907. May 27 May 27	De- cided De-	Yel- low Yel- low	0 0	776.8 786.4	82.24 81.25	14.55 16.45	33.60 36.00	.48 .56	.000 .000	.20 .20	Very Little Very Little	Con- sid. Con- sid.	280. 1450.
		cided	10 w									Little	510.	

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF ARCOLA.

*Supplementary to Bulletin of the University of Illinois, Water Survey Series No. 5.

Arlington Heights, Cook county, see Bulletin No. 5, page 12.
Ashland, Cass county, has no general supply.
Assumption, Christian county, has no general supply.
Astoria, Fulton county, has no general supply.
Athens, Menard county, see Bulletin No. 5, page 13.
Atlanta, Logan county, see Bulletin No. 5, page 13.
Auburn, Sangamon county, has no general supply.
Augusta, Hancock county, has no general supply.
Aurora, Kane county, see Bulletin No. 5, page 13.
Barrington, Cook county, see Bulletin No. 5, page 13.
Barry, Pike county, see Bulletin No. 5, page 15.
Batavia, Kane county, see Bulletin No. 5, page 15.
Beardstown, Cass county, see Bulletin No. 5, page 15.
Addtional analyses gave the following results:

SANITARY ANALYSES OF THE. MUNICIPAL SUPPLY OF BEARDSTOWN.

		Ар	peara	nce.	ation.	ation. les.			Nitro Amn	gen as ionia.	5			E	Col Bacil		
Serial Number.	Date of Collection.	Turbidity.	Color.	Odor.	Residue on Evaporation	Ohlorine in Chlorides	Oxygen Consumed.	Free.	Albuminoid.	Nitrites.	Nitrates.	Alkalinity.	Bacteria per c.c.	10 c.c.	1 c.c.	0.1 c.c.	Indol.
17868 17869	1908. Aug. 7 Aug. 7	$\begin{array}{c} 0 \\ 0 \end{array}$	10. 10.	0 0	366. 360.	20. 20.	1.0 1.1	.032 .032	.064 .048	.000 .001	.680 .680	235. 229.	64 28	1- 1-	2- 2-	2- 2-	

An analysis of the mineral content gave the following results:

Laboratory No. 17868.

Ions	Parts Per Million	Hypothetical Combi	nations	Parts Per Million	Grains Per Gallon
Sodium, Na Magnesium, Mg Calcium, Ca Oxide of Iron, Fc ₂ O ₃ and Alumina, Al ₂ O ₃ Nitrate, NO ₃ Chloride, Cl Sulphate, SO ₄ Silica, SiO ₂ Bases	15.8 29.4 75.8 1.8 3.0 20.0 55.4 17.5 .9	Sodium nitrate, Sodium chloride, Sodium sulphate, Magnesium sulphate, Magnesium carbonate, Calcium carbonate, Oxide of Iron and Alumina, Silica, Bases, Total,	NaNO3 NaCl Na2SO4 MgSO4 MgCO3 CáCO3 Fe2O3+ Al2O3 SiO2	4.1 33.0 5.2 65.0 56.4 189.2 1.8 17.5 .9 373.1	24 1.92 .30 3.79 3.29 11.03 .10 1.02 .05 21.74

THE WATERS OF ILLINOIS

112

Belleville, St. Clair county, see Bulletin No. 5, page 15. Owing to lack of sufficient water in the deep wells new wells from 80 to 100 feet deep were dug in the drift of the American bottoms at Edgemont. This water was turned into the mains during the spring of 1908. These wells furnish an abundant supply of a pure, though hard, water. Comparative analyses of the water from these wells and from the original source are given below.

SANITARY ANALYSES OF MUNICIPAL WATER SUPPLY OF BELLEVILLE.

		App	beara	ince.	ation.	es.		N	itroger	n as				E	Colo Bacillu		
nber.	ollection.				n Evaporation	n Chlorices.	onsumed	Amm				÷	er c.c.				
Serial Number.	Date of Collection.	Turbidity.	Color.	Odor.	Residue on	Chlorine in	Oxygen Consumed.	Free.	Albuminoid.	Nitrites.	Nitrates.	Alkalinity	Bacteria per	10 c.c.	1 с.с.	0.1 c.c.	кешагкз.
F	rom Lake Lake			ne o	r												
16294	1907 July 23	10	.4	1E.	165	4	14.2	.200	.592	.000	.120	89	20,000		1+	2 -	(1)
16295	July 23	20	.4	М.	157	4	14.5	.056	.624	.000	.000	89	10,000		1 - 2 +	1 +	(2) (1) (3)
16295	July 23	20	.4	М.	166	4	14.3	.192	.608	.000	.080	89	30,000		$\frac{1}{1?}$	2 -	(3) (2)
16297*	July 23	10	.3	M.	185	5	8.5	.040	.296	.000	.080	111	500,000		2+	1 + 1 = 1	(1)
16298*	July 23	30	.3	$^{2}_{0}$	195	4	8.2	.024	.304	.000	.000	111	290,000		2 +	1+	$\binom{1}{2}$
16299	July 23	15	.3	0	183	6	8.5	.040	.304	.325	.035	130	80,000		1 – 1 +	1 – 1 –	(2) (2) (1)
16300	July 23	30	.3	0	186	5	9.2	.024	.296	.750	.360	130	20,000		$\frac{1}{2}$ –	2 -	(1) (2)
16505* 16506*	Sept. 17 Sept. 17	30 20	.5 .1	E. E.	189 179	2 5	13.7 7.	.032 .072	.720 .452	.000 .000	.12 .120	87 109	600 400	1– 1–	2 - 1 ? 1 +	$\frac{2}{1} + \frac{2}{1}$	(2)
16507*	Sept. 17	5	.4	E.	163	4	7.1	.384	.360	.005	.195	89	1,500	1+	1+	1 -	
16508*	Sept. 17	3	.6	E.	180	2	13.8	.072	.720	.000	.200	87	1,000	1+	1 – 1 – 1 +	1 - 1 + 1 + 1	
From	Deep We	lls.															
15687	1907 Feb. 11	CIr	2	0	401	16	1.75	.008	.048	.008	.752	297	50+	1 -	$\frac{2}{2}$ -	$\frac{2}{2}$ -	(3)

398 413 2.2 .008 $.032 \\ .048 \\ .003$.640 .400 302 345 650 200+ 15688 Feb. 11 Feb. 11 Sli. VS .2 .2 00 16 21 2 22 + (3) .2 .0 .0 15690 15950 16293 VS 0 0 382 409 403 .008 .048 .000 .000 .002 .720 .320 .360 500 2 -(3) Feb. 11 2.1 291 1 2 -0 17 .056 Apr. 16 July 23 0 0 19 22 2.65 .024 329 318 16,000 2 -2 -.016 .040 (1)(2) .000 308 13,000 1? 2 -.0 2P. 17 .000 .056 .120 16301 July 23 0 388 1.7 (1)1 – 1? $\binom{2}{1}$.072 .000 .160 235 40,000 2 -2.7 .000 16302 July 23 1908 35 .1 2 M 457 18 .000 .056 .000 366 .2 19 3.5 .280 (2)17167 Mar. 6 0 M. 443 11.3 .344 .000 9.000 9900 (4) .2 11888 20 .056 17168* Mar. 6 80 0

*Taken from boiler after fourteen days' run. (1) Estimated. (2) Ice Melted. (3) Liquified. (4) Phenolphthaleln 6040.

BELLEVILLE

(5) Nitrate —. (6) Hardness 235. (7) No ice, hardness 228. (8) Bacteria bottle broken.

Analyses of the mineral content gave the following results:

HYPOTHETICAL	Amounts Are Stated in Parts Per Million.									
COMBINATIONS	Lake (Christine	Deep	Wells	Edger	mont.	Boiler Water			
	16295	17478	15688	17167	17398	17480	17168*			
Potassium, K Sodium, Na Ammonium (NH ₄) Magnesium, Mg Calcium, Ca Iron, Fe Oxide of Iron, Fe ₂ O ₃ and Aluminum, Al ₂ O ₃ Silica, SiO ₂ Nitrate, NO ₃ Nitrite, NO ₃ Chloride, Cl Sulphate, SO ₄ Bases	6.4 6.2 26.3 .8 11.2 4. 27.8	53.4 .15 22.6 59.3 1.0 26.6 1.41 .02 11. 31.4 .8	107.1 15.4 17.4 .4 11.2 2.8 16.0 19.2 1.0	154.1 4 8.1 7.6 4.0 15.4 19, 18.1 0.7	15.8 31.9 75.0 7.4 33.1 .5 8. 40.2 .6	54.5 .2 24.0 58.5 5.9 49.3 2.1 9. 31. 2.1	4852.5 .056 10.9 7.9 16.0 428. 39.8 820.0 388.4 8.			

MINERAL	ANALYSES	OF	CITY	WATER	FROM	BELLEVILLE.

Т

		Amoun	ts Are	Stated in	n Parts	Per Mil	llion.	
HYPOTHETICAL COMBINATIONS.	Lake (Christine	Deep Wells		Edgemont		Boiler Water	
	16295	17478	15688	17167	17398	17480	17168*	
Sodium Nitrate, NaNO ₃ Sodium Chloride, NaCl Sodium Sulphate, Na2 SO ₄ Sodium Carbonate, Na2CO ₃ Sodium Hydroxide, NaOH Ammonium Carbonate, (NH ₄) ₂ CO ₃ Magnesium Sulphate, (MgSO ₄ Magnesium Carbonate, MgCO ₃ Magnesium Hydroxide, MgCO ₁ ₂ Calcium Carbonate, CaCO ₃ Calcium Garbonate, Ca(OH) ₂ Iron Carbonate, FeCO ₃ Aluminium, Al ₂ O ₃ Oxide of Iron Fe ₂ O ₃ and Alumina, Al ₂ O ₃ Silica, SiO ₂ Bases	6.6 11.7 24.9 4.2 65.6 1.7 6.6 11.2	1.9 18.2 46.5 70.4 .4 78.3 148.0 1.0 26.6 .8	3.8 26.4 28.4 200.9 53.3 43.4 .8 1.0 11.2 1.0	31.4 26.8 306.1 1.1 28.1 19.0 4.0 15.4 .7	7 13.2 32.1 1.8 21.6 95.2 187.2 7.4 33.1 6	2.9 14.9 45.9 75.7 .5 83.1 146.0 5.9 49.3 2.1	54.6 1352.2 574.8 7144.4 1761.0 45.3 19.3 16.0 428.0 8.0	
	132.5	392.1	370.2	432.6	392.9	426.3	11404.5	

*Water from deep wells concentrated in boilers at the water works pumping station.

		Am	ounts S	tated in	Grains	Per Ga	llon.
HYPOTHETICAL COMBINATIONS	Lake C	hristine	stine Deep Wells		Edge	mont	Boiler Water
	16295	17478	15688	17167	17398	17480*	17168**
Sodium Nitrate, NaNO ₃ Sodium Chloride, NaCl Sodium Carbonate, Na ₂ SO ₄ Sodium Carbonate, Na ₂ CO ₃ Sodium Hydroxide, NaOH Ammonium Sulphate, (NH ₄) ₂ SO ₄ Ammonium Carbonate, (NH ₄) ₂ SO ₄ Magnesium Sulphate, MgSO ₄ Magnesium Hydroxide, MgCO ₃ Magnesium Hydroxide, MgCO ₃ Calcium Hydroxide, Ca(OH) ₂ Calcium Carbonate, CaCO ₃ Calcium Hydroxide, Ca(OH) ₂ Iron Carbonate, FeCO ₃ Aluminium, A1 ₂ O ₃ Oxide of Iron Fe ₂ O ₃ + and Alumina, Al ₂ O ₃ Silica, SiO ₂ Bases	.38 .68 1.45 .24 3.82 .10 .38 .65	.11 1.06 2.71 4.10 .02 4.57 8.63 .06 1.55 .04	.22 1.53 1.66 11.71 3.11 2.53 .05 .06 .06	1.83 1.56 17.85 .06 1.64 1.11 .23 .90 .04	.04 .77 1.87 .10 .26 5.56 10.92 .43 1.93 .03	.17 2.67 4.41 4.85 8.52 .34 2.88 .12	3.15 78.92 33.53 416.70 1?2.72 2.64 1.12 .93 24.96 .46
Total,	7.70	22.85	21.58	25.23	22.91	24.86	665.13

*Sample taken before deep well water was removed from the mains. It is evidentlys a mixture of deep well water and Edgemont water. **Water from deep wells concentrated in boilers at the water works pumping station. Belvidere, Boone county, see Bulletin No. 5, page 16. Bement, Piatt county, see Bulletin No. 5, page 16. Benton, Franklin county, has no general supply.

Berwyn, Cook county, obtains its water supply from two wells 1,650 and 1,700 feet drilled in limestone. The system is owned by the South Berwyn Water Works Company and was established under the regime of the town of Cicero, about 1893. The reservoirs are situated on 30th Street and Baldwin Avenue. The pumps used are, one air compressor and two Worthington duplex and compound steam pumps. The average daily consumption is 250 thousand gallons.

For sanitary and mineral analyses of the city water supply see Bulletin No. 5, page 17.

Bloomington, McLean county, see Bulletin No. 5, page 17. Sanitary analyses of the water from the driven wells 100 feet deep gave the following results:

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF BLOOMINGTON.

		Appea	rance						Nitrog	en as		
								Amm	ionia			
Serial Number	Date of Collection	Turbidity	Color	Udor	Total Residue on Evaporation	Chlorine in Chlorides	Oxygen Consumed	Free	Albuminoid	Nitrites	Nitrates	Alkalinity
15733 17074	Feb. 20, 1907 Jan. 29, 1908	Slight 20.	.15 .4	$\begin{array}{c} 0\\ 0 \end{array}$	971 1007	16 16	2.35 2.0	.100 .120	.144 .080	.010 .032	.230 .488	423 432

An analysis of the mineral content gave the following results:

Collected February 20, 1907. Laboratory No. 15733.

Ions	Parts Per Million	Hypothetical Comb	inations	Parts Per Million	Grains Per Gallon
Sodium, Na Magnesium, Mg Calcium, Ca Iron, Fe Alumina, A1:03 Nitrate, NO2 Chloride, C1 Sulphate, SO4 Silica, SIO2 Bases,	26.0 125.6 62.6 .9 1.0 16.0 348.0 8.2 2.8	Sodium nitrate, Sodium chloride, Sodium sulphate, Magnesium sulphate, Magnesium carbonate, Calcium carbonate, Iron carbonate, Alumina, Silica, Bases, Total,	NaNO3 NaCl Na2SO4 MgSO4 MgCO3 CaCO3 FeCO3 FeCO3 Al2O3 SiO2	1.4 26.4 46.9 436.2 130.2 156.3 .6 .9 8.2 2.8 809.9	0.8 1.54 2.73 25.44 7.59 9.10 03 05 .47 .16 47.19

Blue Island, Cook county, see Bulletin No. 5, page 17. Braceville, Grundy county, has no general supply.

Bradley, Kankakee county, obtains its water supply from a well 380 feet deep. The pumping station and standpipe are located in the business part of the village. The pumps used are of the Gould type, with a capacity of 40 gallons.

Braidwood, Will county, obtains its water supply from driven wells. The system is owned by the city and was established in 1895, at a cost of \$15,000. The reservoir and pumping station are located in the business part of the town. A Knowles pump with a capacity of 50,000 gallons is used. The daily consumption is about 10,000 gallons.

Breese, Clinton county, see Bulletin No. 5, page 17. Sanitary analyses of the water from Shoal Creek, gave the following results:

		A	Appe	arance					Nitro	gen as	1			C	Colon acillu	_	
								Amn	ionia				ి	Ва	aciiiu	s	
Serial Number	Date of Collection	Turbidity	Color	Odor	Residue on Evaporation	Uniorine in Chlorides	Oxygen Consumed	Free	Albuminoid	Nitrites	Nitrates	Alkalinity	Bacteria per c.c.	10 c.c.	1 с.с.	0.1 с.с.	Indol
17237 17238	1908 March 23 March 23	20. 30.	2. 0	Musty 0	353 353	9 8	4.8 5.7	.066 .064	.210 .198	.015 .003	.600 .680	222 220	225 220	1— 1—	2— 2—	2— 2—	+++

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF BREESE.

Brooklyn, St. Clair county, has no general supply.

Brookport, Massac county, (1,500) is located on the Ohio River. The water supply is obtained from drilled wells 207 feet deep. The plant is owned by the city and was established in 1907 at a cost of \$12,000. The daily consumption is about 40,000 gallons in the summer. Recent analyses of the city supply gave the following results:

		A	ppea	rance				Amn	Nitrog 10nia	gen as					Colo acillu		Γ
Serial Number	Date of Collection	Turbidity	Color	Odor	Residue on Evaporation	Chlorine	Oxygen Consumed	Free	Albuminoid	Nitrites	Nitrates	Alkalinity	Bacteria per c.c.	10 c.c.	1 c.c.	0.1 c.c.	Indol
17627 17628	1908 June 29 June 29	35. 10.	$\begin{array}{c} 0\\ 20 \end{array}$	0 Musty	269 248	9 12	2.2 1.3	.000 .072	.032 .148	.000 .000	.160 .000	201 195	12 480	1— 1—	2— 2—	2— 2—	_

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF BROOKPORT.

Bunker Hill, Macoupin county, has no general supply.

Bushnell, McDonough county, see Bulletin No. 5, page 17, obtains its water supply from two wells, one 125 feet deep in gravel and one 1,351 feet deep in St. Peters. The system is owned by the city and was installed in 1889. The cost of installation and additions from time to time is estimated at about \$27,000. The pumping station is located in the western part of the city. The system includes two impounding reservoirs and a standpipe. The water is said to be excellent.

Additional sanitary analyses of the water from these wells gave the following results:

	Ap	opearan	ice.					Nitroger	n as		
							Ammo	onia.			
Serial Number.	Turbidity.	Color.	Odor.	Residue on Evaporation.	Ohloride in Ohlorines.	Oxygen Consumed.	Free.	Albuminoid.	Nitrites.	Nitrates.	Alkalinity.
1500 15008 15009	Distinct Distinct Distinct	$1.0 \\ 1.0 \\ 1.0 \\ 1.0$	5 Musty 0 0	564 1917 1916	2 390 397	9.5 5.5 5.3	7.4 1.04 1.04	.320 .040 .072	.007 .007 .010	.233 .193 .230	529 270 268

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF BUSHNELL. Samples Collected September 17, 1906.

Byron, Ogle county, see Bulletin No. 5, page 17.

Cairo, Alexander county, see Bulletin No. 5, page 18, obtains its water supply from the Ohio River. The plant is owned by the Cairo Water Company and was established in 1886. The pumping station is located on 42nd Street. The pumps used are, low service, 6,000,000 McGowan, high duty, 10,000,000, 2 Gordon, 1 Herrin. The water is treated. The daily consumption is 3,000,000 gallons.

Cambridge, Henry county, see Bulletin No. 5, page 18.

Camp Point, Adams county, has no general supply.

Canton, Fulton county, see Bulletin No. 5, page 18. Additional analyses of the water taken from the old well 1,800 feet drilled, and the new well 2,042 feet drilled, gave the following results:

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF CANTON. Samples Nos. 14625, 14746, 16494 taken from old well. No. 17327. taken from new well.

		Appe	earan	ice.					Nitrog	gen as					Colc	n	
								Amm	onia.					Ba	acillu	ıs.	
Serial Number.	Date of Collection.	Turbidity.	Color.	Odor.	Residue on Evaporation.	Chlorine in Chlorides.	Oxygen Consumed.	Free.	Albuminoid.	Nitrites.	Nitrates.	Alkalinity.	ber c.c.	10 c.c.	1 c.c.	0.1 с.с.	Indol.
14625 14746 16494 17327	Aug. 7 1907. Sep. 16 1908	Clear 5.	0 0 0 .2	000	1820 1892 1832 1627	275 285 30 300	4.85 4.2 5.5 4.2	.720 .456 .340 .072	.072 .042 .032 .120	.001 .001 .008 .000	.240 .240 .532 .200	215 225 241 232	Liq. 7	1— 1—	1? 1— 2—	1+ 1? 2—	_

An analysis of the mineral content of the water from the old well gave the following results:

MINERAL ANALYSIS OF THE MUNICIPAL WATER SUPPLY OF CANTON.

Laboratory No. 14625.

Ions	Parts Per Million	Hypothetical Com	binations	Parts Per Million	Grains Per Gallon
* Sodium, Na Ammonium, NH ₄ Magnesium, Mg Calcium, Ca Iron, Fe Alumina, Al ² O ₃ Nitrate, NO ₃ Chlorine, Cl Sulphate, SO ₄ Silica, SiO ₂ Bases	421.1 .9 .44.1 101.2 2.2 .8 1.1 275.0 763.2 12.0 2.4	Sodium nitrate, Sodium chloride, Sodium sulphate, Ammonium sulphate, Calcium sulphate, Calcium sulphate, Calcium carbonate, Iron carbonate, Alumina, Silica, Bases, Total,	NaNO 3 NaCl Na 2SO 4 (NH 4)2SO 4 CaSO 4 CaSO 4 CaCO 3 FeCO 3 Al 2O 3 SiO 2	$\begin{array}{c} 1.5\\ 453.8\\ 745.9\\ 3.3\\ 218.0\\ 117.5\\ 166.2\\ 4.6\\ 8\\ 12.0\\ 2.4\\ 1726.0\end{array}$	$\begin{array}{c} .09\\ 26.47\\ 43.51\\ .19\\ 12.72\\ 6.85\\ 9.69\\ .27\\ .05\\ .70\\ .14\\ 100.68\end{array}$

*Potassium and sodium not separated, all calculated as sodium.

Carbondale, Jackson county, see Bulletin No. 5, page 19. Carbon Hill, Grundy county, see Bulletin No. 5, page 20. Carlinville, Macoupin county, see Bulletin No. 5, page 20. Additional analyses gave the following results:

SANITARY ANALYSES OF THE MNUICIPAL WATER SUPPLY OF CARLINVILLE

		Арј	peara	nce.				Amm		gen as				В	Color acillu	ı ıs.	
Serial Number.	Date of Collection.	Turbidity.	Color.	Odor.	Residue on Evaporation.	Chlorine In Chlorides.	Oxygen Consumed.	Free.	Albuminold.	Nitrites.	Nitrates.	Alkalinity.	Bacteria per c.c.	10 c.c.	1 с.с.	0.1 c.c.	Yndol.
15909 15910 18550	1907. Apr. 5 Apr. 5 1908. Nov. 25	50. 5. 0.	.4 .2 40.	0 0 0	365 311 337	10 10 10	7.35 5.9 5.5	.064 .016 .128	.272 .144 .348	.000 .000 .006	.320 .480 .480	199 178 211	320 560	1 + 1 +	2— 1— 1—	1 + 1— 1? 1—	_

Carlyle, Clinton county, see Bulletin No. 5, page 20.

Carmi, White county, see Bulletin No. (5, page 21.

Carpentersville, Kane county, has no general supply. Sanitary analyses of the proposed city supply to be obtained from a spring, gave the following results:

SANITARY ANALYSES OF THE PROPOSED MUNICIPAL WATER SUPPLY OF CARPENTERSVILE.

Sample	Collected	February	19,	1907.
--------	-----------	----------	-----	-------

	Appe	earance							gen as				F	Colo acill	on
							Amn	Ammonia.							
Serial Number.	Turbidity.	Color.	.rob0	Residue on Evaporation.	Chlorine in Chlorides.	Oxygen Consumed.	Free.	Albuminoid.	Nitrites.	Nitrates.	Alkalinity.	Bacteria per c.c.	10 c.c.	1 c.c.	0.1 c.c.
15734 15735	Clear Clear	$\begin{array}{c} 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \end{array}$	498 488	3 3	1.3 1.65	.066 .052	.094 .100	.000 .000	.200 .120	439 390	34 155	1— 1—	2— 1+ 1—	2— 2—

Carrollton, Greene county, see Bulletin No. 5, page 22. Carterville, Williamson county, has no general supply. Carthage, Hancock county, see Bulletin No. 5, page 22. Casey, Clark county, see Bulletin No. 5, page 22. Centralia, Marion county, see Bulletin No. 5, page 22. Cerro Gordo, Piatt county, has no general supply. Chadwick, Carroll county, see Bulletin No. 5, page 23. Champaign, Champaign county, see Bulletin No. 5, page 23. Ad-

ditional sanitary analyses gave the following results.

		.lobal	+++
		.o.o I.0	
	Colon Bacillus	.9.9 L	32-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-
		.9.9 OI	
AIGN.		Bacteria per c.c.	$\begin{smallmatrix} & & & & \\ & & & & \\ & & & & \\ & & & & $
CHAMPAIGN		.Tinilsala	8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9
LY OF		Nitrates.	2280 2280 2280 2280 2280 2280 2280 2280
SUPPLY	gen as	RJJJJJN	001 001 002 002 002 002 002 002 002 002
MUNICIPAL WATER	Nitrogen	.bionimudlA	0 0 0 0 0 0 0 0 0 0 0 0 0 0
CIPAL	Ni Ammonia	.591T	3.040 3.040 3.040 3.040 3.040 3.040 3.040 3.040 3.040 3.040 3.040 3.040 2.056 3.040 2.056 3.040 2.056 3.000 3.050 3.050 3.050 3.050 3.050 3.050 3.040 2.056 3.050 2.056 3.050 2.056 3.000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.00000 3.00000 3.00000000
INUM 3		Oxygen Consumed.	4 000004444 000000000466 000000 00000000
OF THE		Chlorine in Chlorides.	x
		Residue on Evaporation.	3397 3397 3397 3397 3397 3397 3397 3397
SANITARY ANALYSES	i	.TobO	0 Earthy 0 0 0 0 2 Earthy 0 0 0 0 0 0 0 0 0 0 0 0 0
SANIT∉	Appearance.	.10[0]	ة אאטטאפאזיט אאאפאטאטטטאזיטט (
	ΙΨ	.TurbiduT	Decided Decide
		Date of Collection.	D1906 D1906 D1906 Sept. 27 Sept. 27 Sept. 27 Sept. 27 Sept. 27 Sept. 27 Sept. 28 March 19 March 10 March
		Serial Kumber.	13869 155067 155067 155067 155051 155553 1555553 1555553 1555553 1555553 155555555

120

THE WATERS OF ILLINOIS

Charleston, Coles county, see Bulletin No. 5, page 23.

Chatsworth, Livingston county, see Bulletin No. 5, page 23, obtains its water supply from a well 1,315 feet deep. The plant is owned by the city and was established in 1908 at a cost of \$4,500. One deep well pump with a capacity of 150 gallons per minute, and one direct pressure pump with a capacity of 325 gallons per minute are used. The air pressure plant was constructed by the National Company of South Bend, Ind., and has two iron pressure tanks 9 ft. x 38 ft., and a cement reservoir, 30 ft. x 12 ft. deep. The daily consumption is about 15,000 gallons. An analysis of the old supply and an analysis of the new supply gave the following results: SANITARY ANALYSES OF THE OLD AND NEW MUNICIPAL WATER SUPPLY OF CHATSWORTH.

No. 17459 collected May 23, 1908, from old well. No. 18438 collected November 5, 1908, from new well; 1315 drilled.

	App	earar	nce.					troge	n as				C	olon acillu	15.	
				n ion.	a -	÷	Ammo				۶.					ł
Sérial Number.	Turbidity	Color.	Odor.	Residue on Evaporation	Chlorine in Chlorides.	Uxygen Consumed.	Free.	Albuminoid	Nitrites.	Nitrates.	Alkalinity	Bacteria per c. c.	10 c. c.	1 c. c.	0.1 c. c.	Indol.
17459 18438	20. 10.	0 30	0 0	556 696	6 9	2.1 8.9	.200 3.600	.120 .320	.100 .068	.420 .092	336 477	18,000	ī-	2+	ī- 1+	 +

An analysis of the mineral content of the water from the new well gave the following results:

MINERAL ANALYSIS OF CITY WATER FROM CHATSWORTH. Laboratory No. 18438.

Ions	Parts Per Million	Hypothetical Com	Parts Per Million	Grains Per Gallon	
Sodium, Na Ammonium, NH4 Magnesium, Mg Calcium, Ca Iron, Fe Alumina, Al Nitrate, NO3 Chloride, Cl Sulphate, SO4 Silica, SiO2 Bases	131.0 4.6 35.1 76.3 3.5 .4 9.0 148.0 11.7 3.5	Sodium nitrate, Sodium chloride, Sodium sulphate, Sodium carbonate, Ammonium carbonate, Calcium carbonate, Calcium carbonate, Iron carbonate, Alumina, Silica, Bases, Total,	NaNO3 NaCl Na2CO3 (NH4)2CO3 MgCO3 CaCO3 FeCO3 Al2O3 SiO2	.5 14.9 219.0 124.3 12.2 121.5 190.0 .6 3.5 11.7 3.6 701.8	.03 .87 12.77 7.25 .71 7.09 11.08 .03 .20 .68 .21 40.92

Chenoa, McLean county, see Bulletin No. 5, page 24. Chester, Randolph county, see Bulletin No. 5, page 24.

Chicago, Cook county, see Bulletin No. 5, page 24. Additional sanitary analyses of the city water supply gave the following results:

THE WATERS OF ILLINOIS

		Location.	Stock Yards. Stock Yards. Lake View. Rogers Park Rittered. Rogers Park Filtered. Stock StMain. Austin. Austin. Austin. Austin. Stock Yards. Stock Yards. Austin. Austin. Austin. Austin. Austin. Austin. Austin. Austin. Austin. Austin. Austin. Austin. Austin. Austin. Austin. Austin. Austin.
		.lobn1	+ + + + +
		.9 .9 I.0	
Colon	acillus	1 c. c.	
0	В	10 c. c.	· + + + · + +
		Васtегія рег с.с.	$\begin{array}{c} 490\\ 490\\ 1300\\ 158\\ 158\\ 158\\ 158\\ 158\\ 158\\ 158\\ 158$
		.TtinilsAlA	120 124 126 126 127 128 128 128 128 128 128 128 128 128 128
		Nitrates.	240 240 240 240 240 2540 2540 2540 2540
1 as		Vitrites.	$\begin{array}{c} \begin{array}{c} 0.00\\ $
Nitrogen	onia.	.bionimudIA	$\begin{array}{c} .080\\ .126\\ .190\\ .118\\ .068\\ .068\\ .088\\ .088\\ .088\\ .080\\ .080\\ .080\\ .080\\ .144\end{array}$
	Ammonia.	.991 ^T	035 036 036 036 014 014 014 014 014 014 016 016 016
		Oxygen. Consumed.	0.000000000000000000000000000000000000
		Chlorine In Chlorides.	100000000000000000000000000000000000000
		Residue on Evaporation.	$\begin{array}{c} 135\\ 230\\ 230\\ 154\\ 154\\ 142\\ 147\\ 145\\ 147\\ 147\\ 147\\ 147\\ 161\\ 161\\ 161\\ 161\\ 161\\ 161\\ 161\\ 16$
ance.		Odor.	Earth
Appearance.	: [Color.	00000000000000000000000000000000000000
4		$\cdot v$ tibid τnT	vovvoo
	<u>.</u>	Date of Collection.	1908 April 11 April 20 April 30 April 30 Argenta 10 Argenta 10 Argent
		Serial Number.	17335 17385 17385 17388 17389 17399 17399 17390 17390 17390 17391 17391 17391 17391 17391 17391 17391 17391 17391 17381 17391 173811 173811 17381 17381 17381 17381 17381 17381 17381 17381 17381 1738

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF CHICAGO.

Chicago Heights, Cook county, see Bulletin No. 5, page 24. Chillicothe, Peria county, see Bulletin No. 5, page 25. Chrisman, Edgar county, see Bulletin No. 5, page 25.

Clinton, DeWitt county, see Bullettin No. 5, page 25. Additional sanitary analyses of the city water supply gave the following results:

						Ice melted. Ice melted.	Ice melted.
		.loba1					+
		.9.9 I.O	+ -		- + - 6-	1 1 1 2 2 5 2 5 2 1 1 2 5 2 1 2 3 2 5 1 1 2 3 2 5 1 2 3 2 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3	$\frac{1}{2}$
Colon	actitus	.9.9 I	2—	2—	$^{2}_{}$	5 555 5 555	1 ?
6	2	.9.9 OF	+	+		<u> </u>	1
		Bacteria Per c.c.	31	42	$^{19}_{280}$	$^{820}_{10000}_{10000}$	2000
		Alkslinity.	415	415	445 442	$^{+406}_{-4063}$	404
		Nitrates.	.317	.250	.120	1.200 .218 .188 .188 .200	.244
en as		Nitrites.	.003	.030	000.000	.720 .022 .012 .000	.036
Nitrogen	onia.	.bionimudlA	.048	.312	.232	.200 .160 .216 .176	.176
	Ammonia.	.F'ree.	.040	2.154	$1.840 \\ 6.400$	512 4.000 4.800 5.200	4.640
		nsayro OonusnoO	3.0	6.2	$^{8.2}_{9.9}$	6.5 5.4 5.8	5.8
		Chlorides. Chlorides.	9	3	ωm	51 50 47 47	47
		Residue on Evaporation.	517	491	$^{460}_{800}$	530 544 513 469	517
001	Icc.	Odor.	0	0	00	0000	0
1010000	Appearance.	Color.	1.0	4.	.6	140. 120. 150.	80.
· ~	۲	.vibidruT	100.	25.	35. 245.	200. 200. 200.	10.
		Date of Collection. 1907.	Aug. 5	Aug. 5	Aug. 5 Aug. 5	1908. Aug. 4 Aug. 10 Aug. 10 Aug. 10	Aug. 10
		Serial Number.	16336	16337	$16338 \\ 16340$	17875 17901 17902 17903	17904

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF CLINTON.

Coal City, Grundy county, has supply for fire protection only. Cobden, Union county, has no general supply. Colchester, McDonough county, has no general supply.

Colfax, McLean county, has no general supply.

Collinsville, Madison county, see Bulletin No. 5, page 26. An additional mineral analysis of the city supply gave the following results:

MINERAL ANALYSIS OF THE MUNICIPAL WATER SUPPLY OF COLLINSVILLE. Samples collected June 18, 1906. No. 14529 from well 90' driven. No. 14530 from well 70' driven.

Ions	Pa: Per M	rts Iillion	Hypothetical Cor	nbinations		rts Aillion		ins Gallon
	14529	14530			14529	14530	14529	14530
Potassium, K Sodium, Na Ammonium, NH ₄ Magnesium, Mg Calcium, Ca Iron, Fe Alumina, Al ₂ O ₃ Nitrate, NO ₃ Chlorine, Cl Sulphate, SO ₄ Silica, SiO ₂ Bases	1.79.0.334.782.8.61.6.25.048.119.22.5	2.2 12.6 41.8 65.2 2.5 1.6 3.9 5.5 51.2 19.0 .7	Potassium nitrate, Potassium chloride, Sodium nitrate, Sodium sulphate, Ammonium sulphate, Magnesium carbonate, Calcium carbonate, Iron carbonate, Alumina, Silica, Bases, Total,	KNO3 KC1 Na C 1 Na SO4 (NH4)2 SO4 MgSO4 MgSO3 CaCO3 FeCO3 Al2O3 SiO2	$\begin{array}{c} .3\\ 3.0\\ 5.9\\ 20.7\\ 1.1\\ 41.7\\ 91.1\\ 206.7\\ 1.2\\ 1.6\\ 19.2\\ 2.5\\ 395.0\end{array}$	27.4 41.0 116.0 162.7 5.8 1.6 19.0 .7	.06 2.43 5.31 12.06 .07	1.60 2.39 677 9.49 .34 .09 1.11 .04

Columbia, Monroe county, has no general supply.

Creal Springs, Williamson county, see Bulletin No. 5, page 27. Crotty, La Salle county, has made no report.

Cuba, Fulton county, has no general supply.

Cullom, Livingston county, obtains its water supply from a well 280 feet deep, located on Washington street. A sanitary analysis of water from this well gave the following results:

SANITARY ANALYSIS OF THE MUNICIPAL WATER SUPPLY OF CULLOM.

Sample collected October 5, 1908. Laboratory No. 18273.

Turbidity Color Odor Residue on Evaporation- Chlorine in Chlorides Oxygen Consumed	70. 0. 2056. 19.	Nitrates	.080	Bacteria per c.c. Colon bacillus Gas Formers in 10 c.c. 1 c.c. 0.1 c.c. Indol	12 1— 2— 2— —
---	---------------------------	----------	------	---	---------------------------

Ions	Parts Per Million	Hypothetical Combination	IS	Parts Per Million	Grains Per Gallon
Potassium, K Sodium, Na Ammonium, NH4 Magnesium, Mg Calcium, Ca Oxide of Iron, Fe2 O3 and Alumina, Al2 O3 Nitrate, NO3 Chloride, Cl Sulphate, SO4 Silica, SiO2 Bases	$19.0 \\ 198.0 \\ 2.2 \\ 3.3 \\ 247.7 \\ 11.5 \\ .4 \\ 19.0 \\ 1125.7 \\ 18.5 \\ 1.5 \\ $	Potassium nitrate, KNO Potassium chloride, KCI Sodium sulphate, Na2 S Ammonium sulphate, (NHA Magnesium sulphate, CaSC Calcium sulphate, CaSC Calcium carbonate, CaCC Oxide of Iron Fe2 C and Alumina, Al2 O Silica, SiO2 Bases, Total,	O_4 $)_2 SO_4$ $)_4$ $)_3$ $)_3 +$	$\begin{array}{r} .6\\ 33.1\\ 5.4\\ 604.1\\ 8.0\\ 481.5\\ 464.4\\ 341.5\\ 11.5\\ 18.5\\ 1.5\\ 1970.1\\ \end{array}$	03 1.92 31 35.23 47 28.05 27.13 19.95 .67 1.08 .09

MINERAL ANALYSIS OF MUNICIPAL WATER SUPPLY OF CULLOM.

An analysis of the mineral content gave the following results:

Danville, Vermilion county, see Bulletin No. 5, page 27. Additional sanitary analyses of the raw and treated water from the Vermilion River, gave the following results:

			.lobal	· +++++++ +
			.9.9 1.0	$\begin{array}{c} 2^{-1}\\ 2^{-1}\\ 2^{-1}\\ 2^{-1}\\ 1^{-1}\\$
	Colon	Bacillus	.9.9 I	
			.9.9 0.1	L+++++++++++++++++++++++++++++++++++++
			Bacteria per e.e.	3,700 1,500 1,500 1,500 25,000 25,000 1,500 1,500 1,200 1,200 1,400 1,200 1,200 1,200 2,5,000 2,5,000 1,5,000 2,5,000 1,5,000 2,5,000 1,5,000 2,5,000 1,5,000 2,5,000 1,5,000 2,5,000 1,5,000 1,5,000 2,5,000 1,5,000 1,5,000 2,5,000 1,5,000 1,5,000 2,5,000 1,5,000 1,5,000 2,5,000 1,5,000 1,5,000 2,5,000 1,5,0000 1,5,0000 1,5,0000 1,5,0000 1,5,00000 1,5,00000 1,5,0000000000
			.TinifsalA	1723 1974 1974 1974 1974 1974 2005 2005 2005 2005 2005 2005 2005 200
			.estruut	$\begin{array}{c} 2.960\\ 2.230\\ 1.452\\ 1.75\\ 1.75\\ 1.75\\ 1.75\\ 1.75\\ 1.75\\ 1.75\\ 1.75\\ 1.75\\ 1.75\\ 1.75\\ 1.75\\ 1.75\\ 1.75\\ 1.77\\ 1.75\\ 1.$
	gen as		Nitrites.	005 005 005 005 007 007 007 007 007 007
	Nitrogen	onia.	.biontmudlA	224 224 2254 2254 2240 2240 2240 2240 22
		Ammonia.	.991H	058 0040 0040 0040 0040 0040 0040 0040 0
			Oonsumed.	688 689 697 697 697 697 697 697 697 69
			Uniorine in Ohlorides.	4w40LNww44Nw NNNw4NU®JL®
			residue ou Evaporation.	33252 35252 35252 35252 35252 35252
	n,		Odor,	$000\underline{H}_{\rm H}^{\rm 2000000} = 000{\rm M}_{\rm H}^{\rm 10000000}$
	Appearance.		Color.	M MMM 4.00 .00.000.00 .00.000.000.00 .000.000.
	A		.Turbidīty.	2000,000,000,000,000,000,000,000,000,00
			Date of Collection.	1907. Jan. 25 March 25 March 25 May 27 July 22 July 22 July 22 July 22 Dec. 23 Dec. 23 Dec. 23 March 30 March 30 March 30 March 30 Nov. 28 Nov. 28 Nov. 28
Raw.			Serial Number.	15514 15554 15859 15859 16067 16108 16108 16108 16108 16520 17720 17700 177200 17700 17700 17700 17700 17700 17700 17700 17700 17700 17700 17700

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF DANVILLE.

												Ι	Ι		1	+	Ι	+	Ι	Ι		+		+	
		2—	2—	2—	 + -	2+	 +	$^{2-}$	2—	$^{2-}_{-}$	2—	2-	2-		2-	2—	$^{2-}$	2—	2-	2—	<u> </u>	2+	2-	$^{2-}$	2—
						2+																			
		<u> </u>	-	+	+	1+	+	+	<u> </u>	+1+	1?	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u>+</u>	+	+	1?	+	1?	<u> </u>	<u>+</u>	+
		90	165	200	160	1,600	100	101	Liquified	1,400	4,500	50	9,000		105	2,400	82	650	11	8	108	98	2	160	13
		116.8	153.3	197.4	189.	155.9	163.3	175.4	175.4	102.7	228.9	224.	204.		196.	84.	128.	130.	159.	142.	97.	228.	271.	258.	242.
		3.68	2.40	2.64	1.52	1.60	1.72	6	2.	.80	.160	.80	.76		1.000	1.84	2.00	2.40	1.600	.560	1.680	.200	.240	.008	.520
		.002	.000	.000	.002	.000	.000	.000	.000	.000	.000	.002	.000		.002	.006	.000	.000	.000	.000	.000	.000	.000	.000	.001
		.080	.064	.064	.104	.072	.040	.128	.128	.080	.110	.032	.060		.074	.150	.094	.106	.126	.182	.160	.156	.088	.100	.170
		.040	.024	.008	.008	.008	000.	.024	.024	.016	.036	.100	.038		.068	.132	.060	.054	.048	.024	.032	.036	.004	.032	.042
		2.7	2.4	2.1	3.35	3.05	2.95	3.6	3.1	3.1	2.8	2.5	3.4		2.6	4.0	2.9	3.1	4.0	3.9	з.	2.6	3.9	1.4	2.5
		4	2	4	6	5	ю	2	3	4	4	5	4		5	9	5	ю	4	5	2	×	12	7	8
		238	232	273	267	262	259	271	273	131	276	314	274		287	118	208	192	266	216	170	309	339	327	317
		2 E.	0	0	0	0	0	0	1 M.	0	M.	0	0		0	0	0	0	0	0	0	0	0	0	Mo.
		0	0	0	-:	<i>c</i> i	4	9.	9.	0	0	0	0		0	0	0	0	10.	0	20.	0	0	20.	10.
		Clear	Clear	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	2.
	1907.	2	25	22	27	10	1	22	22	19	23	2			2	3	30	27	1	13	26	28	2	30	28
	_	Jan.	March	April	May	June	July	July	July	Aug.	Sept.	Dec.	Dec.	1908	Feb.	March	March	April	June	July	July	Sept.	Nov.	Nov.	Dec.
Filtered		15515	15858	15971	16068	16109	16188	16271	16272	16387	16521	16823	16902	_				17358			17787		18399 n	18563	18651

Decatur, Macon county, see Bulletin No. 5, page 31, Additional analyses of the water from the Sangamon River gave the following results

I				
			.lobл1	+ + +++++
			. э .э.1.0	□
	Colon	Bacillus.	J C.C.	$2^{2}+$
		, .	.9.9 OI	
			Bacter ia Per e.e.	250 250 1700 880 880 880 8500 31000 31000 31000 2500 2500 2500 11500 11500 11500 11500 650 650 650 650 650 650 7200
			.TinilaálA.	2221 2222 2222 2222 2222 2222 2222 222
			Nitratea.	1.520 2.190 1.772 1.772 1.772 1.772 1.720 1.720 1.720 1.720 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.730 1.305
	cen as		Nitrites.	000 000 000 000 000 000 000 000 000 00
	Nitrogen	Ammonia.	.bionimudiA	2230 2240 2250 2250 2250 2250 2250 2250 225
		Amr	.991 T	055 075 075 075 075 075 075 075 075 075
			Охуgел Сопяитед.	855 315 315 3525 3555 3555 3555 3555 3555 3555 3555 3555 3555 3555 3555 3555 3555 3555 3555 3555 3555 35555 35555 35555 35555 35555 35555 35555 35555 35555
			Chlorine in Chlorides.	NWD04WN0W00 NN4NWN0511111
			Residue on Evaporation.	3355 3355 3355 3355 3355 3355 3355 335
			Odor.	000000 ¹ 0000 00000000000000000000000000
	Annearance	a second s	Color.	Mu. Mu. 350.000,400,400,400,000,000,000,000,000,00
	Ar		.Turbidity.	D S S S S S S S S S S S S S
ľ			Date of Collection.	1907. Feb. 14 Feb. 14 March 25 March 25 March 25 March 25 June 10 June 22 Nov. 23 Nov. 23 March 23 Mar
Raw.			Serial Number.	15569 15751 15751 15751 15755 16775 16775 16775 16775 16775 16518 16518 16518 16518 16575 16775 16775 16775 17740 17740 17758 17758 17758 17758 17758 17758 17778

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF DECATUR.

DECATUR

											I		+	+	+	+	+	+	+	I	I	I	+	+	+
	4	2—	⊥ <u>+</u> 1	$^{-2}$	⊥ + 1	2+	2?	2+	2+	2?	$^{-5}$		$^{-5}$	$^{2-}$	$^{-5}$	$^{-2}$	2+	1?⊢	2—	$^{-5}$	1?1+	$^{-5}$	$^{-2}$	$^{-2-}$	$^{-2}$
+ 0		1+1	2+	$^{2-}$	1+1-	2+	1+1-	2+	2+	1+1?	$^{2-}$		1-1+	1?1+	1 - 1?	1+1-	1+1?	1+1?	2—	2-	1 - 1?	1 - 1?	1?1+	2+	$^{2-}$
<u>+</u>		<u> </u>	1+	<u> </u>	+	±	<u>+</u>	<u> </u>	<u>+</u>	1?	<u> </u>		<u>+</u>	1+	<u>+</u>	÷	<u>+</u>	<u>+</u>	1?	<u>+</u>	<u>+</u>	<u>+</u>	÷	<u>+</u>	<u> </u>
030		490	290	180	320	800	80	12500	Liq.	600	300		740	900	140	450	1120	65	65	75	150	15	76	560	27
207	217	235	220	237	90	183	225	128	224	288	274		250	160	194	226	173	225	212	278	278	310	312	306	281
2 000	1.800	2.200	2.38	1.146	1.10	1.12	.800	.440	.760	.718	.080		1.19	1.88	2.64	1.81	1.577	.880	.640	.480	.320	.320	.160	.200	.200
006	.004	.007	.017	.014	.011	.012	.006	000.	.002	.002	000.		.010	.005	.005	.012	.023	.001	.000	000.	.000	000.	.001	000.	.002
160	.120	.056	.080	.112	.112	.096	.080	.144	.128	.128	.188		.052	.096	.094	.116	.190	.110	.112	.218	.308	.310	.232	.160	.174
480	.128	.056	.072	.016	.000	.024	.008	.024	.000	000.	.006		.044	.042	.024	.062	.052	.020	.052	.056	.050	.058	.052	.040	.056
3.0	1.9	2.4	2.75	2.95	3.85	3.55	3.0	4.0	3.5	4.5	5.0		2.3	3.1	2.4	2.6	2.7	4.	4.1	3.0	4.0	3.4	4.7	3.0	2.5
s	, 0	3	4	9	ю	ю	4	2	5	ŝ	%		4	5	4	4	33	5	~	=	10	=	13	13	21
060	290	310	305	290	191	251	202	221	303	343	327		305	225	243	290	263	286	319	332	326	355	367	338	376
0	0	0	0	2 Pe.	2 Mu.	5 Mu.	2 Mu.	0	ц	0	0		0	0	0	0	0	0	0	0	0	Mu.	0	0	Mu.
0	, ci	0	Γ.	4	2	εj	Γ.	9.	Γ.	0	6		0	0	0	0	0	0	0	10.	10.	20.	10.	20.	10.
Clear o	Slight 10	Slight 10	Clear 0	20.	10.	0	З.	20.	20.	0	0		5.	5.	0	0	0	0	0	0	0	0	0	0	0
	18	25	25	29	27	10	24	22	12	23	4	~	20	0	23	20	25	22	20	19	19	12	26	30	28
1907 Feb	Feb.	Feb.	March	April	May	June	June	July	Aug.	Sept.	Nov.	1908	Jan.	March	March	April	May	June	July	Aug.	Aug.	Oct.	Oct.	Nov.	Dec.
15570	15729	15752	15870	16001	16073	16112	16163	16279	16376	16519	16693		16999	17141	17235	17342	17473	17584	17756	17975	17976	18298	18367	18566	18679

Filtered

A boiler analysis of the water of the Sangamon River gave the following results:

BOILER ANALYSIS OF THE MUNICIPAL WATER SUPPLY OF DECATUR. Sample Collected February 18, 1907.

Laboratory No. 15729.	Parts per Million	Grains per Gallon
Residue on Evaporation Alkalinity (as CaCO ₃) Incrustants (as CaCO ₃) Magnesium (as CaCO ₃) Chlorine	290. 225. 56. 108. 4.	16.9 13.1 3.2 6.3 .2
Possible Hypothetical Combination	ons are as follows	:
SodiumchlorideNaClMagnesiumsulphateMgSO4MagnesiumcarbonateMgCO3CalciumcarbonateCaCO3Total	6. 68. 45. 173. 292.	$ \begin{array}{r} .3 \\ 4.0 \\ 2.6 \\ 10.1 \\ 17.0 \end{array} $

DeKalb, DeKalb county, see Bulletin No. 5, page 35, obtains its water supply from wells 135 feet to 1,300 feet deep. The plant is owned by the city, and has been established and improved during the last fifteen years. The plant is located near the city limits, and one Downey Pump, and one American Well Works Air Com-pressor are used. The daily consumption is about 450,000 gallons. Additional sanitary analyses of the city water gave the following results:

SANITARY ANALYS	SES OF T	THE MUNICIPAL	WATER SU	JPPLY OF	DE KALB.
-----------------	----------	---------------	----------	----------	----------

	πo	App	oeara	nce	Evaporation.	les.		:	Nitrog	en as					Colon acillu	s			
e:	Collection				apor	Chlorides.	V ned.		horic ned.		Ammonia				ల				
Serial number.	Date of Col	Turbidity.	Color.	Odor.	Residue on Ev	Chlorine in Ch	Oxygen Consumed.	.Free.	Albuminoid.	Nitrites.	Nitrates,	Alkalinity.	Bacteria per c	10 c. c.	1 с. с.	0.1 c. c.	Indol.		
16166	1907 June 24 1908	0	0	0	288	2	1.0	.176	.040	.007	.320	279	100	1—	2—	2—			
17793	July 27	5.	60	0	350	3	2.7	.524	.066	.000	.240	388	32	1—	2—	2—	—		
17794	July 27	0	0	0	295	3	3.2	.352	.056	.000	.240	293	4	1?	2—	2—	_		

Delavan, Tazewell county, see Bulletin No. 5, page 36.

Desplaines, Cook county, see Bulletin No. 5, page 36. Dixon, Lee county, see Bulletin No. 5, page 36, obtains its water supply from three artesian wells, the water coming from Potsdam sandstone. The plant is located near the river, and compound condensing engines, 2,500,000 gallons capacity, are used. The daily

consumption is 250,000 gallons. An additional analysis of the city water supply gave the following results:

SANITARY ANALYSIS OF THE MUNICIPAL WATER SUPPLY OF DIXON. Sample collected September 22, 1908.

Dolton Station, Cook county, see Bulletin No. 5, page 36. Downers Grove, Cook county, obtains its water supply from wells. Analyses of the water gave the following results:

SANITARY CHEMICAL ANALYSIS OF THE MUNICIPAL WATER SUPPLY OF DOWNERS GROVE.

		AP	APPEARANCE.									
	ion.				Evaporation	Chlorides.	aed.	Ammonia.				
Serial Number.	Date of Collection.	Turbidity.	Color.	Udor.	Residue on Ev	Chlorine in Ch	Oxygen consumed	Free.	Albuminoid.	Nitrites.	Nitrates.	Alkalınıty.
15710 15713 15803 16412 16413	1907. Jan. 7 Feb. 11 Mar. 2 Aug. 20 Aug. 19	Distinct Distinct Distinct 10. 10.	.0 .2 .0 .1 .0	2 Moldy 0 Musty Musty	729 540 732 511 501	66 70 66 41 41	4.9 2.3 3.6 1.9 2.2	.280 .120 .560 .296 .304	.120 .040 .072 .056 .040	.007 .010 .000 .000 .000	3.84 .150 .120 .04 .20	366 316 371 329 325

Dundee, Kane county, see Bulletin No. 5, page 36. DuQuoin, Perry county, has no general supply.

Dwight, Livingston county, see Bulletin No. 5, page 36. An additional analysis of the city supply gave the following results:

MINERAL ANALYSIS OF THE MUNICIPAL WATER SUPPLY OF DWIGHT.

Sample	collected	May	8,	1906.	Mineral-	Laboratory	No.	14337.
--------	-----------	-----	----	-------	----------	------------	-----	--------

Ions.	Parts per Million	Hypothetical Combinatio	ns.	Parts per Million	Grains per Gallon
Potassium K Sodium Na Ammonium NH4 Magnesium Mg Cafcium Ca Iron Fe Alumina Al203 Nitrate N03 Chloride Cl Sulphate SO4 Silica SiO2 Bases	$\begin{array}{c} 4.8\\ 161.5\\ 3.6\\ 526.0\\ 123.5\\ 2.9\\ 6.8\\ 5.3\\ 33.0\\ 529.0\\ 10.4\\ 2.4\end{array}$	Potassium nitrate Potassium chloride Sodium sulphate Ammonium sulphate Calcium sulphate Calcium sulphate Calcium carbonate Iron carbonate Alumina Silica Bases + 1	KNO ₃ KCl NacI Na: SO ₄ (NH.) 2 SO ₄ C a S O ₄ C a S O ₄ C a C O ₃ FeCO ₃ Al ₂ O ₃ SiO ₂	$\begin{array}{c} 8.6\\ 2.9\\ 52.1\\ 434.8\\ 13.2\\ 260.0\\ 25.8\\ 289.3\\ 6.0\\ 6.8\\ 10.4\\ 2.4\end{array}$	$\begin{array}{r} .50\\ .17\\ 3.04\\ 25.36\\ .77\\ 15.17\\ 1.50\\ 16.87\\ .35\\ .40\\ .60\\ .14\end{array}$
		Total		1,112.3	64.87

Earlville, La Salle county, see Bulletin No. 5, page 36.

East Dubuque, Jo Daviess county, see Bulletin No. 5, page 36.

A recent analysis of the city water supply gave the following results:

SANITARY ANALYSIS OF THE MUNICIPAL WATER SUPPLY OF EAST DUBUQUE. Laboratory No. 17958. Collected August 17, 1908.

Turbidity Color Odor Residue on evaporation Chlorine in chlorides Oxygen consumed	10.0 .0 290. 14.	Nitrogen as Free ammonia. Alb. ammonia. Nitrites Nitrates Alkalinity (as CaCO ₃)	.056 .040 .005 .520	Bacteria per c. c Gas formers in— 10 c. c 1 c. c 0.1 c. c Indol	1? 1+1— 2—
--	---------------------------	--	------------------------------	--	------------------

An analysis of the mineral content gave the following results: MINERAL ANALYSIS OF CITY WATER FROM EAST DUBUQUE.

Ions.	Parts per Million	Hypothetical Combinatio	ns.	Parts per Million	Grains per Gallon
Potassium K Sodium Na Magnesium Mg Calcium Ca Oxide of Iron Fe ₂ O ₃ and Alumina Al ₂ O ₃ Nitrate NO ₃ Chloride Cl Sulphate SO ₄ Silica SiO ₂ Bases	$ \begin{array}{c} 14.0\\ 34.7\\ 31.6\\ 45.4\\ 1.6\\ 2.4\\ 14.0\\ 24.7\\ 17.9\\ 1.9\\ \end{array} $	Potassium nitrate Potassium chloride Sodium sulphate Sodium carbonate Magnesium carbonate Calcium carbonate Oxide of Iron and Alumina Silica Bases	KNO3 KCI NaCI Na2CO3 MgCO3 CaCO3 Fe2O3 + Al2O3 SiO2	3.9 23.8 4.4 36.6 48.3 109.5 113.3 1.6 17.9 1.9	.23 1.39 .26 2.13 2.81 6.39 6.61 .09 1.04 .11
		Total		361.2	21.06

Laboratory No. 17958. Collected August 17, 1908.

East St. Louis, St. Clair county, see Bulletin No. 5, page 36. Edinburg, Christian county, see Bulletin No. 5, page 37.

Edwardsville, Madison county, see Bulletin No. 5, page 37, obtains its water supply from six wells located at Poag, four miles from Edwardsville. The plant is owned by a local company and was established in 1898. The plant, with extensions has cost the company \$120,000. An emergency reservoir with about 500,000 gallons capacity, is located at the pumping station. Two Gardner Compound Duplex pumps, each of 1,000,000 gallons capacity, are used. The daily consumption is 250,000 to 300,000 gallons. Additional analyses of the city water gave the following results:

		.lobal	+	+			Ι	:		:	+
911	rus.	0.1 c. c.	2—	2—	- 10	 2	2–	:,	1	:	<u> </u>
		Тс. с.	+ -	2_	5-	 2	2	:,		:	+
	CULL	10 c. c.	1+	+	<u> </u>	<u> </u>	<u> </u>	:.	ΙI	:	<u> </u>
		Bacteria per c. c.		1500	175	620	12		160	:	320
		Alkalinity.	152	152	170	164	160	162	160	178	157
		Nitrates.	1.600	1.600	1.88	1.320	1.400	1.800	1.480	1.200	.200
EN as		Nitrites.	000.	000.	.004	80	000.	00 00 00 00 00 00 00 00 00 00 00 00 00	80	000.	000.
NITROGEN as	NIA	.bionimudlA	.336	.188	.040	940.	.050	.064	.064	.064	.0 64
	AMMONIA	Free.	.100	.070	.032	.036	.050	.032	.016	.016	.0 24
	.b	omuanoD no2yxO	5.6	3.0	1.9	i i.	1.3	، و ا	121	1.0	٢.
	'sə	biroldO ni əniroldO	8	8	10	21	7	∞ r		×	6
'uoj	iter	ogrvA no subizsA	278	200	240 720	270	246	265 260	273	349	278
Ę	Ę	Odor.	D	D	00	00	0	0 0	00	0	0
	FEAKAIN	Color.	10	.2	0	0	0	10	0	0	0
4	.vjibidauT		60	30	0	00	0	00	00	0	0
	۰t	Date of Collection	1907 Dec. 9	Dec. 9 1908	Mar. 2			May 11 May 75			
		.0N Isir92	16863	16864	17143	17178	17239	17433	17461	17515	17912

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF EDWARDSVILLE.

Effingham, Effingham county, see Bulletin No. 5, page 38. Eldorado, Saline county, has no general supply. Elgin, Kane county, see Bulletin No. 5, 38. Additional

Elgin, Kane county, see Bulletin No. 5, 38. Additional analyses of the city supply from the Fox River, the artesian wells and the filters, gave the following results:

THE WATERS OF ILLINOIS

	I					1
			.loba1	:::::::::::::::::::::::::::::::::::::::	: :	
		.us.	. j .o <u>Ť</u> .0	2	22	
	¢.	COLON BACILLUS.	<u>т</u> с.с.	+	2— 2—	
FELGIN.	Ċ	100	10 c. c.		<u>_</u> _	
SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF ELGIN Fox River			Bacteria per c. c.	5,600 2,400 700 18,000 18,000 1,700 3,500 3,400 1,600 1,700 1,600 1,700 1,600	00	
WATER			Alkalinity.	200 207 207 207 203 203 203 203 214 203 214 214 214 214 212 222 222 223 223 223 223 223 223 223	332 338	
MUNICIPAL Fox River			.zətrates.	680 -760 -760 -760 -540 -540 -560 -572 -112 -112 -112 -336 -572 -112 -360 -360 -372 -112 -120 -360 -372 -372 -372 -372 -376 -376 -540 -540 -540 -540 -540 -540 -540 -540	.160 .240	
THE MU Fox	NITROGEN AS		Nitrites.	.000 .000 .000 .000 .000 .000 .001 .001	000.	
(SES OF	NITRO	AMMONIA	.bionimudlA	048 296 0056 280 0056 280 0056 340 0056 440 0056 440 0056 440 0072 216 0072 216 0072 216 0072 216 0072 346 01122 553 0072 414 266 346 1122 553 0072 413 1122 353 0072 453 006 352 0048 250 0048 250 0056 250 0050 250 000 250 0000000000	960. 960.	
(ANAL?		AMN	Бтее.		2.56 2.400	
ANITARY		.bəmuznoO nə2vxO		9.15 7.55 7.55 7.55 11.45 11.45 11.75 12.65 8.1 7.2 8.1 7.2 8.1 13.0 13.0 13.0 13.0 21.6 8.8 8.5 8.5 8.5 8.5 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0	3.6 1.0	
Š		səp	chlorine in Chlori	04mmm0 000 NN4mm40mNN88	5	
	יםס.	itst	ogavä no subizsA	284 301 271 271 339 339 336 336 336 337 377 377 377 330 330 332 332 332 332 332 332 332 332	368 388	
		žį.	Odor.	Мш Ма 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0	
		APPEARANCE.	Color.	23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0	مة دن	
		API	.TurbidıuT	De. De. 23: 23: 23: 23: 50: 50: 50: 50: 50: 50: 50: 50: 50: 50	De Di	
	Date of Collection.		Date of Collectic	1907. Jan. 6 Jan. 6 Jan. 11 April. 11 April. 12 June 10 Jour Jour Jour Jour June 10 June 113 Jour Jour <td< td=""><td>1907 Jan. 6 Feb. 16</td><td>oken.</td></td<>	1907 Jan. 6 Feb. 16	oken.
	Serial No.			15549 1 15727 1 15819 1 15819 1 15819 1 15819 1 15819 1 15819 1 15819 1 15819 1 15810 1 16116 1 16116 1 16116 1 16116 1 16365 1 16850 1 17073 1 1703 1 1703 1 1703 1 1703 1 1730 1 1730 1 1730 1 1730 1 1730 1 1730 1 1843 1 18617 1	15550 J 15726 F	* Bottle broken

E	LC	βI	Ν

::::::	
	$\begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$
	<u>++ +++</u>
$\begin{smallmatrix}&&&&&\\&&&&&\\&&&&&&\\&&&&&&&\\&&&&&&&\\&&&&&$	$\begin{array}{c} 1.500\\ 1.500\\ 1.920\\ 75\\ 3.3\\ 5.3\\ 2.40\\ 2.5\\ 5.5\\ 5.5\\ 7.5\\ 2.40\\ +\\ +\\ +\end{array}$
6015240 201	2333 247 2269 2216 2337 2099 2099 2337 2337 2337 2337 2337 2337 2337 23
$\begin{smallmatrix} & 12220\\ & 12200\\ & 12200\\ & 12200\\ & 12200\\ & 12200\\ & 12200\\ & 12200\\$	5680 5560 5560 5533 5560 5560 5560 5560 556
00000000000000000000000000000000000000	006 007 007 007 007 007 007 007 007 007
072 072 072 072 072 072 072 072 072 072	ека. 2564 2564 2564 2564 2564 2564 2512 2512 2516 2516 2512 2512 2582 2582 2582 2584 2584 2584 2584 258
	FILTERS FILTERS 080 096 096 096 094 0040 0940 0946 0040 0040 0040 0040 0040 0040 0060 00000 00000 0000 0000 0000 0000 000
	0.00-00-00-00-00-00-00-00-00-00-00-00-00
20100000000000000000000000000000000000	www44www400
373 379 371 372 373 3755 378 3783 3783 3783 3783 3783 3	3315 3315 3315 3315 3315 3318 3318 3312 2312 2312 2312 2312 2323 3334 2336 2336 2336 2336 2336 233
0000000 00000000000	² ⁰ ² ⁰ ⁰ ⁰ ⁰ ⁰ ⁰ ⁰ ¹ ¹ ⁰ ⁰ ¹ ¹ ⁰ ⁰ ¹ ¹ ⁰ ⁰ ¹ ¹ ⁰
448444966 0444 0 0000000	00 44
0.300%%2809366 0.3%%%289 <u>0</u>	00mm
	2 1 1 1 1 1 1 1 1 1 1 1 1 1
Mar. Mar. Juney Juney Juney Juney Jese Jese Juney June June June June June June June June	Jan. 1907. Jan. Feb. Feb. Mar. Mar. Mar. May June June June June June June June June
15817 15946 159346 160138 16118 16128 16223 16223 162849 168849 177558 171077 17221 17077 17077 17077 17077 17077 17077 17077 17077 17077 17077 17077 17077 17077 17077 17077 17775 17755 17775	15547 15547 15548 15548 15724 15724 15724 15724 15725 15613 16033 16033 16033 16119 16125 16112 16125 16126

135

* Bottle broken. ** Bacteria bottle empty. † Liquified.

THE WATERS OF ILLINOIS

		.lobal	::	:	+	+	I	+	+	.	Ι	:	I	+	I	.	+ +	+	:	I	:	I	+	+			
SU		.ə.ə I.O	2—		2–	2—	2—	+	2		2—		2-	- 2		7	1: I+ 23	2?		2—			2+	- 20			2—
COLON BACILLUS		.9.9 I	2—		27	1+ 1-	2-	2+		1-1?	2-		2-	- 2		.	+ +	1-1?		- +]		2-	1? 1—	1? 1+	,	1	2—
COLO		.9.9 OI	+			1	<u> </u>	<u> </u>	<u> </u>	1?	<u> </u>	:		<u>+</u> .					:	1			<u>+</u>	1?	<u> </u>		1
	.0	Bacteria per c.	20 *	÷	30	40	20	500	200 3 200	6,000	14	×	42	45	120	100	420	102		85	¥	8	6	120	300	120	92
		Alkalinity.	265 250	318	320	294	294	318	316 200	200	330	352	274	274	330	248	627	276	270		263	257	281	275	525 219	318	
		Vitrates.	.000 .040	.370	.130	.700	.640	.432	.552	.104	000.	.120	.014	.272	.280	067	007:	.080	.100		.030	.700	.580	800	.200 227	312	
AS.		Nitrites.	.026 .056	.030	.030	.015	.005	.008	.008 2008	.010	000.	000.	.046	.048	080.	+700 1000	160	.080	.100		.250	.140	.140	.120	900 [.]	.0880	
NITROGEN AS	AMMONIA.	.bionimudlA	.216 .280	.168	.246	.184	.200	.226	.228 176	.208	.064	.088	.162	.150	.142	.144	047.	.240	.280		.184	.208	.184	.200	2112	.048	
	AMM	Free.	.960 .270	.704	1.950	.280	.320	.564	.496 560	1.120	.640	1.120	.526	.514	000	.042	264	.752	.720		.144	.104	.080	.072	1.280	.480	
	.bət	nusnoO n93yxO	6.3 7.2	5.3	5.8	5.3	5.5	4.8	5.1	5.9	3.2	2.2	5.3	5.8		7.7	4.0 4.4	5.9	5.9		4.5	5.2	4.9	9.6	1.7	13.7	
.sət	0 1 0	Chlorine in Chl	5 4	9	9	5	5	5	94	. 9	7	5	5	Ś	، ب	4 (n (r	9	9		9	5	9	9 0	ہ م	01	
.noit.	r100	lavU no eubizeR	322 330	389	305	365	371	353	375	244	350	365	320	310	2.67	CI 6	316	313	312		299	286	331	330	360	387	
		.10bO	0	Е	0	0	0	0	0 0	0	0	Mu	0	0 0	0 0	0 0		0	0		Mo	Мо	0	0 0	0 0	00	
APPEARANCE.		Color.	ui ui	<i>c</i> i :	0	6	6	0	0 (i 4	0	0	<i>c</i> i	сi ;	40.	.00	.04 30.	10.	20.		30.	20.	10.	20.	.0 ç	10.	
APPEA		Turbidity.	0	× ×	0	0	0	0	0 0	ŝ	30	10	0	0 0	0	-		0	0		0	0	0	0 8	07 0	010	
	•u0]	Date of Collect	0.0	6	5	08. 13	13	ŝ																		5 4	
			Sept. Sept.	Dec.	Dec.	15 Jan.	Jan.	Feb.	Feb.	Feb.	Mar.	Mar.	Apr.	Apr.	May	May	June	July	July	July	Sept.	Sept.	Oct.	Cot.	Nov.	Dec.	Dec.
		.19dmuV lsi192	16445 16446	16851	16852	16984 16985	17072	17078	17109	17220	17222	17321	17322	17475	1/4/1	60271	17706	17707	17713	18153	18154	18344	18345	18494	18495	18618	

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF ELGIN-CONTINUED.

136

* Bottle broken.

Elmhurst, DuPage county, see Bulletin No. 5, page 44, obtains its water supply from Mammoth Spring. The plant is owned by a private corporation and was established in 1890 at a cost of \$75,000. A standpipe of 30,000 gallons capacity is located in the village, but the pumping station is located at the spring. Two Ramsey triplex 6¹/₂x10 pumps are used. The daily consumption is 200,000 gallons. Additional analyses of the city water supply gave the following results:

	Ŀ	Ар	PEARAN	CE.	Evaporation.	Chlorides.	ъd.	N	ITROC	GEN AS	5				Colo Colo		
r.	tio				rap	blo	me	Амм	ONIA.				с. С.				
Serial Number.	Date of Collection.	Turbidity.	Color.	Odor.	Residue on Ev	Chlorine in C	Oxygen Consumed.	Free.	Albuminoid.	Nitrites.	Nitrates.	Alkalinity.	Bacteria per	10 с. с.	1 c. c.	0.1 c. c.	Indol.
	1906.	D:-		_	160		0.75		10.1	001	1(0	255	1440	1	2—	2	
14890	Sept. 1	Dis	.3	0	469	2.5	2.75	.304	.104	.001	.160			1—	2	2—	• •
15403	Nov. 27	S 1	.1	0	472	3.0	2.55	.184	.040	.003	.160	358	1000	1—	2—	2—	
18632	1908. Dec. 20	20.	30.	H ₂ S	479	5.0	.9	.276	.064	.000	.320	353	25	1—	2—	2—	_

SANITARY ANALYSES OF MUNICIPAL WATER SUPPLY OF ELMHURST.

An analysis of the mineral content gave the following results:

MINERAL ANALYSIS OF ELMHURST CITY SUPPLY.

Laboratory No. 18632. Sample collected December 20, 1908.

Ions.	Parts per Million	Hypothetical Combinations.		Parts per Million	Grains per Gallon
Potassium K Sodium Na Ammonium NH ₄ Magnesium Mg Calcium Ca Iron Fe Alumina Ab ₀ 3 Nitrate NO ₃ Chloride Cl Sulphate SO ₄ Silica SiO ₂ Bases	$\begin{array}{c} 2.0\\ 11.2\\ .3\\ 39.8\\ 102.0\\ 2.4\\ 1.4\\ 3.0\\ 90.\\ 15.6\\ 1.1 \end{array}$	Potassium nitrate Potassium chloride Sodium chloride Sodium sulphate Ammonium sulphate Magnesium carbonate Calcium carbonate Iron carbonate Alumina Silica Bases Total	KNO ₃ KCI Na,SO ₄ (NH4),SO ₄ MgSO ₄ MgCO ₃ CaCO ₃ FeCO ₃ ALO ₃ SiO ₂	$\begin{array}{c} 2.3\\ 2.1\\ 3.3\\ 30.5\\ 1.0\\ 86.1\\ 77.6\\ 255.0\\ 1.2\\ 2.4\\ 15.6\\ 1.1\\ 478.2 \end{array}$	13 12 19 178 06 5.02 4.52 14.87 .14 .91 .06 27.87

Elmwood, Peoria county, see Bulletin No. 5, page 45.

El Paso, Woodford county, see Bulletin No. 5, page 45, obtains its water supply from three wells 115 feet deep. The plant is owned

	-	.lobn1		:::::::::+++ + ++++
SUL		.ə.ə I.0		±
COLON BACILLUS		.9.9 I		2 + 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +
S		.9.9 OI		****
	·0	Bacteria per c. e		310 520 5200 52000 52000 52000 33,000 30,0000 30,0000 30,0000 30,0000 30,0000 30,0000 30,0000 30,00000000
		Alkalinity.		118 119 119 119 119 119 119 119 119 119
		.estertiv		280 280 280 280 280 280 280 280 280 280
N AS		Nitrites.		
NITROGEN AS	ONIA.	.bionimudlA	RAW.	
	AMMONIA.	.991 ¹	RA	014 014 014 014 016 016 008 016 008 016 016 016 018 018 018 018 018 018 018 018
	ıeq.	nusaoO a93yxO		3.9 3.9 3.9 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5
.səl	bi r o	Chlorine in Chl		44000040044 0000000
.noit	.810(lsvA no subizsA		146 174 189 189 146 146 144 164 164 161 177 196 161 177 196 190 190 190
Ë		Odor.		2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
APPEARANCE.		Color.		0.0000 M 00000 00000 000000000000000000
AP		Turdity.		De. Di. Di. Di. Di. Di. Di. Di. Di. Di. Di
	·u0	Date of Collecti		1907. Jam. 7 Mar. 25 Mar. 25 June 26 June 25 June 26 June 25 June 25 June 26 June 25 June 25 J
		Serial Number.		15551 15951 15945 16012 16012 16012 16012 16122 16425 16425 16425 16425 16425 16425 16520 16520 16520 17738 17758

EVANSTON

			.lobal		:::::: ++
	SUL		.ə.ə I.0		4444444 111111111111111111111111111111
	COLON BACILLUS		.1 e.e.		
Z	CC		.9.9 OI		±
VANSTO		10	Bacteria pe r c. (0 144 22 66,000 50,000 50,000 50,000 50,000 50,000 1,10 1,1
OF E			.LinitallA		112 113 119 110 117 121 117 121 119 126 116 116
SUPPLY			.sətrtiN		360 240 2240 2280 280 280 280 280 280 280 280 280 2
WATER	EN AS		Nitrites.		002 000 000 000 000 000 000 000 000 000
NICIPAL	NITROGEN AS	. AIA.	.bionimudlA	ERED.	.080 .048 .048 .048 .072 .096 .096 .098 .088 .088 .088 .088 .088 .088 .088
SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF EVANSTON		AMMONIA	Free.	FILTERED.	.046 .022 .014 .024 .016 .016 .016 .016 .028 .028 .028 .028 .028 .028 .028 .028
SES OF		.b9ı	Oxygen Consum		3.25 2.54 2.55 3.23 3.23 3.23 3.23 3.23 3.23 3.23
NALY	.səl	òi 1 0	ldO ai sairoldO		400044004 00000
TARY A	.noit	810(qavA no subizsA		147 171 164 164 146 146 137 137 137 142 141 141 131 133 133
SANI	Е.		.10bO		³ E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	APPEARANCE.		.10loJ		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	AF		Turdidity.		000000000000000000
		• u o	Date of Collecti		1907. Jan. 7 Jan. 7 May: 25 May 6 June 25 June 25 June 25 Sept. 9 Sept. 9 Sept. 30 Oct. 13 Jan. 13 Jan. 13 Mar. 28 Nov. 11 Nov. 30 Nov. 30
			Serial Number.	1	15552 16013 16013 16173 16474 16466 16466 16607 16726 16979 17156 17364 18224 18224

by the city, and is located in the west part of the city. A Gould triplex pump, with a capacity of 228 gallons per minute, is used. The daily consumption is 30,000 gallons.

Eureka, Woodford county, see Bulletin No. 5, page 45. A recent analysis of the water gave the following results:

SANITARY ANALYSIS OF THE MUNICIPAL WATER SUPPLY OF EUREKA. Laboratory No. 16977. Collected January 13, 1908.

Turbidity Color Odor Residue on evaporation Chlorine in chlorides Oxygen consumed	.0 674. 30.	Alb. ammonia Nitrites Nitrates	.088 .004 .20	Bacteria per c. c Gas formers in 10 c. c 0.1 c. c 0.1 c. c Indol	$\frac{1}{2}$
--	-------------------	--------------------------------------	---------------------	---	---------------

Evanston, Cook county, see Bulletin No. 5, page 45. Additional analyses of the water from Lake Michigan are shown on pages 138 and 139.

Fairbury, Livingston county, see Bulletin No. 5, page 51. Additional analyses of the city water supply gave the following results:

	-		Appe	ARA	NCE.	Evaporation.	Chlorides.		N	ITRO	GEN A	s				OLON CILLU		
J.	ction					vapo	hlor	ime	Аммо	ONIA.				ບ ບ				
Serial Number.	Date of Collection.		Turbidity.	Color.	Odor.	Residue on E	Chlorine in C	Oxygen Consumed.	Free.	Albummadd	Nitrites.	Nitrates.	Alkalinity.	Bacteria per e	10 c. c.	1 c. c.	0.1 c. c.	Indol.
	1907	<i>.</i>																
16364	Aug.	12	0.	0	Е	1248	530	2.7	.296	.016	.009	.311	321	30	1—	2—	2—	
	1908	3.																
17076	Feb.	4	5.	0	0	1320	545	6.3	.040	.400	.000	.000	330					
17418	May	11	10.	10	H_2S	1343	550	7.0	.880	.016	.000	.600	346	2	1—	2—	2—	_
17419	May	11	0.	0	0	1316	550	3.9	.880	.024	.000	.800	342	6	2—	2—	2—	_
18237	Sept.	28	10.	0	H ₂ S	1288	520	1.9	.960	.040	.000	.240	322	152	1?	2?	1+ 1 —	+

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF FAIRBURY.

Fairfield, Wayne county, see Bulletin No. 5, page 51, obtains its water supply from an artificial lake or reservoir which is supplied with water from a watershed of about 200 acres of open fields. The plant is owned by the Fairfield Water Works Company, and

was established in 1894 at a cost of \$5,000. The water is used for fire protection and sprinkling purposes only.

Farmer City, DeWitt county, see Bulletin No. 5, page 51.

Farmington, Fulton county, see Bulletin No. 5, page 51.

Flora, Clay county, has no general supply, though plans, specifications, etc., have been prepared. It is hoped to begin work in the spring of 1909.

Forrest, Livingston county, has a general supply. No report has been made.

Forreston, Ogle county, see Bulletin No. 5, page 51, obtains its water supply from a well 300 feet deep. The plant is owned by the city, and was established in 1890 at a cost of \$8,000. The plant is located in the heart of the city, and the stand pipe in the southwest part of town.

Fort Sheridan, Lake county, see Bulletin No. 5, page 51.

Freeburg, St. Clair County, see Bulletin No. 5, page 51, obtains its water supply from a lake. The plant is owned by a private party and leased by the city. It was established in 1898 at a cost of \$4,000. The plant is located at the lake, east of the city. The daily consumption is 1,000 barrels.

Freeport, Stevenson county, see Bulletin No. 5, page 51. Additional analyses of the city supply gave the following results:

	-		Арр	ERAN	NCE.	Evaporation.	ides.		Ν	litroc	GEN AS	5				OLON CILLU	
Serial Number,	Date of Collection.		Turbidity.	Color.	Odor.	Residue on Evapo	Chlorine in Chlorides.	Oxygen Consumed.	Free.	Albummoid.	Nitrites.	Nitrates.	Alkalinity.	Bacteria per c. c.	10 c. c.	1 c. c.	0.1 c. c.
	1907.																
15794	Mar.	4	S 1	. 2	0	463	18	1.40	.104	.064	.000	3.16	350				
15795	Mar.	4	C1	0	0	475	18	1.50	.000	.000	.000	3.36	365				
15800	Mar.	4												200	1—	2—	2—
15903	April	2	10	0	0	351	18	1.75	.000	.032	.002	5.20	304				
15904	April	2	Cl	0	0	361	19	1.7	.000	.032	.001	3.20	276				

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF FREEPORT.

An analysis of the mineral content gave the following results:

MINERAL ANALYSIS OF CITY WATER FROM FREEPORT.

Laboratory Nos. 15794 and 15795.

Ions.	Parts per	million.
Free carbon dioxide (as CaCO ₃) Magnesium (as CaCO ₃) Incrustants (as CaCO ₃) Alkalinity (as CaCO ₃) Total residue on evaporation Chlorine	180.6 51. 351. 463.	15795 25. 201.0 55. 365. 475. 18.

Possible combinations of the above:

		Parts pe	r million.	Grains pe	r Gallon.
		15794	15795	15794	15795
Sodium chloride Magnesium sulphate Magnesium carbonate Calcium carbonate Undetermined SiO ₃ , Na ₂ SO ₄ , etc.	$egin{array}{c} NaCl \\ MgSO_4 \\ MgCO_3 \\ CaCo_3 \end{array}$	29.762.109.4221.440.5	29.7 67. 123.2 219.0 36.1	$ \begin{array}{r} 1.73\\ 3.62\\ 6.38\\ 12.91\\ 2.36 \end{array} $	$ \begin{array}{r} 1.73\\ 3.91\\ 7.18\\ 12.77\\ 2.111 \end{array} $
Total		463.0	475.0	27.00	27.70

Fulton, Whiteside county, see Bulletin No. 5, page 52.

Galena, Jo Daviess county, see Bulletin No. 5, page 52, obtains its water supply from an artesian well 1,500 feet deep. The plant is owned by the Galena Water Company, and was established in 1879 at a cost of \$3,000. Pumps are used with a capacity of a million gallons per day. The daily consumption is about 30,000 gallons.

Galesburg, Knox county, see Bulletin No. 5, page 52. Additional analyses of the city supply gave the following results: (See page 143.)

Galva, Henry county, see Bulletin No. 5, page 54, obtains its water supply from two wells 1,400 feet deep. The plant is owned by the city and was established in 1894. The plant is located in the center of the city and pumps of 1,000 gallons per hour capacity are used. The daily consumption is 10,000 gallons. Recent analyses of the city water gave the following results: (See page 144.)

Y OF GALESBURG.	
ATER SUPPLY	
UNICIPAL W/	
ES OF THE M	
X ANALYS	
SANITAF	

		.lobal			::	:	:		:	:	+			
110	.00.	0.1 c. c.					:		:		2—	2—	<u>+</u>	2?
	JN DACILL	Т с. с.					:		:		2—	2—	<u>+</u>	2? 2?
	COL	10 c. c.					:		:		<u> </u>	1?	1?	1?
		Bacteria per c. c.						:			240	70	760	480 480
		Alkalinity.	295	398	368	334	340	342	340	340	336	347	167	345 343
		.zətritiN	.120	.520	.520	.080	.520	.530	.550	.650	.800	.554	.240	1.000
NITROGEN AS		Nitrites.	000.	.001	.003	.002	.002	.020	.000	000.	.000	.006	000.	000.
NITRO	AMMONIA	.bionimudlA	.400	.184	.064	.152	.080	.104	.072	.096	.076	.104	.296	.048
	AMM	Free.	1.120	.444	.304	.464	.080	.048	.096	.080	.104	.184	.112	.112
	.bə	muznoO n934xO	7.5	2.85	2.95	8.75	1.9	1.5	2.1	1.9	2.0	3.2	6.6	2.3 2.2
	səp	Chlorine in Chlori	49	43	62	72	98	98	98	98	104	88	98	66 66
' U O	itst	ogrvä no subizsA	659	817	943	867	1087	1120	1097	1095	1099	1054	874	1099
Ê		Odor.	0	0	0	0	Mu	0	0	Mu	0	0	Мо	00
A DDEAD ANCE	FEANAIN	Cołor.	г.	0.	9.	9.	ω	0.	<i>.</i>	6	20.	10.	0	0 0
14	£	.vfibidauT	V.S	SI	De	60.	20.	10.	20.	20.	5.	0	0	0 6
	.nc	Date of Collectic	1906. Oct. 15 1907	Jan. 14	Jan. 14	July 1 1908.	Mar. 17	Mar. 17	Mar. 17	Mar. 17	June 1	July 27	July 27	Oct. 26 Nov. 8
		.oN IsirəZ	15172	15576	15577	16196	17216	17217	17218	17219	17510	17798	17799	18379 18418

FREEPORT TO GALESBURG

THE WATERS OF ILLINOIS

Serial Number.	ï	Appearance.			Evaporation. Chlorides	ides.		١	Nitrog				
	stioi				Residue on Evapo	Chlorine in Chlorides.	Oxygen Consumed.	Ammonia.					
	Date of Collection	Turbidity.	Color.	Odor.				Free.	Albuminoid.	Nitrites.	Nitrates.	Alkalinity.	Sulphates.
	1905												
13843	Dec. 18	Decided	. 2	2 Earthy	948	149	5.4	1.040	.066	.002	.08	244	Much
13844	Dec. 18	Decided	. 3	2 Earthy	958	147	5.0	.960	.034	.000	.12	244	Much

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF GALVA. No. 13843, Well No. 2. No. 13844, Well No. 1.

Gardner, Grundy county, has no general supply. Geneseo, Henry county, see Bulletin No. 5, page 54. An additional analysis of the city water taken from wells and springs gave the following results:

SANITARY ANALYSIS OF THE MUNICIPAL WATER SUPPLY OF GENESEO. Laboratory No. 15594. Collected January 14, 1907.

Geneva, Kane county, see Bulletin No. 5, page 54. Genoa, DeKalb county, see Bulletin No. 5, page 54. Additional analyses of the city water supply gave the following results:

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF GENOA.

Samples collected January 27, 1908. Laboratory No. 17063 taken from dead end of water main. Laboratory No. 17064 taken direct from well.

Serial Number	APPEARANCE.			Evaporation.	ides.	ï	Nitrogen as						COLON BACILLUS.			
				vapo	Chlorine in Chlorides.	Oxygen Consumed	Амм	IONIA.			Alkalinity.	Bacteria per c. c.				
	Turbidity.	Color.	Odor.	Residue on E			Free.	Albuminota.	Nitrites.	Nitrates.			10 c. c.	1 c. c.	0.1 c. c.	Indol.
17063	110	0	0	353	2	4.5	.200	.072	.008	.072	328	40	1—	2—	2—	_
17064	0	0	0	323	2	2.0	.280	.016	.002	.320	324	1500	1—	2—	2—	—

Germantown, Vermilion county, was annexed to Danville in 1907, from which town the water supply is obtained. See Bulletin No. 5, page 54.

Gibson City, Ford county, see Bulletin No. 5, page 54. Recent analyses of the city supply gave the following results:

		.lobal	I	:	
s.		o.5 I.0	2—	÷	- 2
COLON BACILLUS.		1 с. с.	2—		$^{2-}$
CC		10 c. c.	_	-	1 + 2
	. ⁹ .	Bacteria per c	9	:	520
ON.		Filtered.	:	119	
Loss on IGNITION.		.wsЯ		171	
	-	337	308	316	
		Nitrates.	.160	.600	.280
EN AS		Nitrites.	.006	.005	.004
N ITROGEN AS	AMMONIA.	.bionimudIA	.072	.608	.088
	AMN	Free.	.384	.400	.072
.,	pətu	usnoO n98yxO	2.2	29.43	2.8
.səbi	ilor	Chlorine'in Ch	9	5	9
Residue.		Filteredd.		338.	•••••
Res		.w.g.H	352	864	337
ACE.		Odor.	0	H2S	0
A PPEARANCE.		Color.	10.	.50	10.
AP		.vibid1nT	30	900	0
		19dmuN lsi192	18499	18500	18501

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF GIBSON CITY.

Samples collected November 16, 1908.

Gilman, Iroquois county, has sent no report.

Girard, Macoupin county, has no general supply.

Glencoe, Cook county, see Bulletin No. 5, page 55. The additional analyses of the Lake Michigan water furnished by the city of Winnetka gave the following results:

SANITARY ANALYSES	OF	THE	MUNICIPAL	WATER	SUPPLY	OF	GLENCOE.,
-------------------	----	-----	-----------	-------	--------	----	-----------

	л.			PPE/ ANC		Evaporation.	ides.	đ.	N	ITROC	GEN AS	5				OLOI CILLU		
lber.	Collection.						Chlorides.	Consumed	Амм					ir c. c.				
l Number.			Turbidity.			lue on	rine in	-		Albuminoid	tes.	ites.	Alkalinity.	eria per	ల	ల	ల	
Serial	Date of		Turb	Color.	Odor.	Residue	Chlorine	Oxygen	Free.	AIbu	Nitrites.	Nitrates.	Alkal	Bacteria	10 c.	1 c. c	0.1 c.	
15684	1907. Feb. 1908.	11	10	0	0	158	4	4.0	.034	.098	.001	.640	126.	500+	1 —	2 —	2—	
17401	May	5	0	0	0	150	4	1.5	.058	.116	.000	.280	120.	85	1 —	2 —	2—	—
17402	May	5	0	0	0	151	4	1.7	.020	.098	.000	.200	120.	3	1—	2 —	2—	

Golconda, Pope county, see Bulletin No. 5, page 55.

Grand Ridge, La Salle county, has no general supply. A recent analysis made of the proposed city supply, taken from a well 150 feet deep, gave the following results:

SANITARY ANALYSIS OF THE PROPOSED MUNICIPAL SUPPLY OF GRAND RIDGE. Sample collected December 6, 1908.

Laboratory No. 18600		
Turbidity2.Color40.Odor0.Residue on evaporation343.Chlorine in Chlorides8.Oxygen consumed3.7	Nitrogen as Free Ammonia 1.840 Alb. Amonia 112 Nitrites 000 Nitrates	Bacteria per c.c

An analysis of the mineral content gave the following results:

MINERAL ANA	LYSIS OF	PROPOSED	MUNICIPAL	SUPPLY	OF	GRAND	RIDGE.

Ions.	Parts per Million	Hypothetical Combinations.		Parts per Million	Grains per Gallon
Potassium K Sodium Na Ammonium NH ₄ Magnesium Mg Calcium Ca Iron Fe Alumina Al ₂ O ₃ Nitrate NO ₃ Chloride Cl Sulphate SO ₄ Silica SiO ₂ Bases	$\begin{array}{c} 83.5 \\ 2.4 \\ 10.8 \\ 20.8 \\ .4 \\ 2.0 \\ .5 \end{array}$	Potassium nitrate Potassium chloride Sodium chloride Sodium carbonate Ammonium carbonate Magnesium carbonate Iron carbonate Alumina Silica Bases	KNO.3 KCI NaCl NazCo.3 (NH4)2CO.3 CaCO.3 FeCO.3 AI2O.3 SiO.2	$\begin{array}{c} & & 8 \\ 1 & 3 & 9 \\ 2 & 3 \\ 1 & 9 & 1 \\ 6 & . & 4 \\ 3 & 7 & . & 4 \\ 5 & 2 & . & 0 \\ & & 8 \\ 2 & . & 0 \\ & & 7 & . & 7 \\ & & . & 8 \end{array}$	$\begin{array}{r} .05\\ .81\\ .13\\ 11.09\\ .37\\ 2.18\\ 3.03\\ .05\\ .12\\ .45\\ .05\end{array}$
Dases	. 0	Total		314.2	18.33

Granite City, Madison county, see Bulletin No. 5, page 55.

Grayville, White county, see Bulletin No. 5, page 55, is located on the Wabash River, from which stream the city water supply is obtained. The plant is owned by the city, and was established in 1893 at a cost of \$20,000. The plant is located near the river. Two Dean duplex steam pumps, with a capacity of 25,000 gallons per hour each, are used. The daily consumption is about 150,000 gallons.

Greenfield, Greene county, has no general supply.

Greenup, Cumberland county, see Bulletin No. 5, page 55, is located on the Embarrass River, from which stream the city water supply is obtained. The plant is owned by the city, and was established in 1897 at a cost of \$15,000. The plant is located on the bank of the river. One 8x10 Dean duplex pump is used. The daily consumption is 18,000 gallons.

Greenview, Menard county, located on Green Creek, has no general supply.

Greenville, Bond county, see Bulletin No. 5, page 55. Additional analyses of the city water supply gave the following results:

	т.		Appe	EARANCE.	Evaporation.	Chlorides.	d.		Nitroo	GEN AS		
er.	ction				vapc	blor	Ime	Амм	ONIA.			
Seriál Number.	Date of Collection.	Turbidity.	Color.	Odor.	Residue on E	Chlorine in C	Oxygen Consumed.	Free.	Albuminoid.	Nitrites.	Nitrates.	Alkalinity.
18092 18093	1908. Sept. 8 Sept. 8	0 0	0 0	Sewer Gas Sewer Gas	624 621	40 40	1.6 2.0	.016 .016	.048 .048	.000 .020	8.800 9.980	370 385

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF GREENVILLE.

Griggsville, Pike county, has no general supply.

Grossdale, Cook county, has sent no report.

Hamilton, Hancock county, located on the Mississippi River, has no general supply.

Harrisburg, Saline county, see Bulletin No. 5, page 55, is located on the middle fork of Saline River, from which the water supply is obtained. The plant is owned by a private company. The reservoirs are located 1¹/₄ miles east of the town. The pumps have a daily capacity of 300,000 gallons. The daily consumption is 200,000.

Harvard, McHenry county, see Bulletin No. 5, page 55, obtains the city water supply from an artesian well 1,800 feet deep. The plant is owned by the city and was established in 1893. A new tower and tank of 100,000 capacity has just been completed. The capacity of the pumps is about 360,000 gallons daily.

Harvey, Cook county, see Bulletin No. 5, page 55, obtains the city water supply from wells 1,700 feet deep. The plant is owned by the North Shore Electric Company. Centrifugal motor pumps are being installed. The daily consumption is 300,000 gallons. A recent analysis of the city supply gave the following results:

SANITARY ANALYSIS OF THE MUNICIPAL WATER SUPPLY OF HARVEY.

Laboratory No. 18165. Collected September 15, 1908.

Turbidity 0. Color 0. Odar 0. Residue on evapor- ation 0. Chlorine in chlorides 136. Oxygen consumed. 1.5	Nitrites	Bacteria per c.c. .46 Gas Formers in 1 1 0 c.c. .1 c.c. .2 0.1 c.c. .2 In d ol
--	----------	--

An analysis of the mineral content gave the following results:

MINERAL ANALYSIS OF THE CITY OF HARVEY.

Laboratory No. 18165. Collected September 15, 1908.

Ions.	Parts per Million	Hypothetical Combinations.	Parts per Million	Grains per Gallon
Potassium K Sodium Na Magnesium Mg Calcium Ca Iron oxide Fe ₂ O ₃ Alumina Al ₂ O ₃ Nitrate NO ₃ Chloride Cl Sulphate SO ₄ Silica SiO ₂ Bases	48.5 173.5 .2 3.0 3.3 136.0	Potassium nitrate KNO ₃ Potassium chloride KCl Sodium slophate Nacl Sodium sulphate MagSO ₄ Calcium sulphate CaSO ₄ Calcium carbonate CaCO ₃ Iron oxide F e:O ₃ Alumina Al ₂ O ₃ Slica Bases Silca SiO ₂	5.4 61.5 176.2 212.1 239.7 225.2 267.5 .2 3.0 8.8 4.8	$\begin{array}{r} .31\\ 3.59\\ 10.28\\ 12.38\\ 13.98\\ 13.13\\ 15.60\\ .01\\ .17\\ .51\\ .28\end{array}$
		Total	1,204.2	70.24

Havana, Mason county, see Bulletin No. 5, page 55. Henry, Marshall county, see Bulletin No. 5, page 56. Herrin, Williamson county, has no general supply. Highland, Madison county, see Bulletin No. 5, page 56. Highland Park, Lake county, see Bulletin No. 5, page 56. Recent

analyses of the Lake Michigan water at Highland Park gave the following results:

	HE MUNICIPAL WATER SUPPLY OF LAND PARK.
Laboatory No. 18214.	Collected September 28, 1908.

		PPE A		Evaporation.	rides.	đ.		Nitro	GEN AS	8				O L O CILL		
Serial Number.	Turbidity.	Color.	Odor.	Residue on Evapo	Chlorine in Chlorides	Oxygen Consumed.	Free.	Albuminoid.	Nitrites.	Nitrates.	Alkalinity.	Bacteria per c. c.	10 c. c.	1 c. c.	0.1 c. s.	Indol.
18214 18215	5 0	0 0	0 0	155 140	5 5	1.2 1.3	.024 .012	.106 .102	.000 .000	.200 .200	112 114	480 400	1 ? 1 +	1 + 1 ? 2 + 1	1+ 1— 2—	+ +

Laboatory No. 18214. Collected September 28, 1908. Laboratory No. 18215. Collected September 28, 1908.

Hillsboro, Montgomery county, see Bulletin No. 5, page 57. Hinsdale, DuPage county, see Bulletin No. 5, page 57. Homer, Champaign county, has no general supply.

Hoopston, Vermilion county, see Bulletin No. 5, page 57.

Jacksonville, Morgan county, see Buletin No. 5, page 57, has obtained its supply from wells, a creek, and a lake near the city. The system was owned by the city and was established in 1868 at a cost of \$400,000. Smith Vaile and Worthington pumps, each of 2,000,000 gallons capacity are used. The daily consumption is 1,000,000 gallons. The capacity of the reservoir is 2,660,000 gallons. A new supply is obtained from wells 66 feet deep in the Illinois River bottoms west of Bluffs. The new supply is furnished by a corporation known as the Jacksonville Water Works Company, which has been granted a franchise to furnish water for 30 years to the city. The company has installed a pumping station west of Bluffs, 18 miles from Jacksonville, and with two 3,000,000 gallon pumps are forcing water through a 20-inch main and supplying the city. As soon as the company can demonstrate that it can furnish 3,000,000 gallons every 24 hours, under the terms of the franchise, the municipal plant is to be turned over to it. Additional analyses of the water from the old supply gave the following results:

		.lobal		+	I	+	+	+			:	:	:	:	:	:	:				+
SUL		.ə.ə I.0		2—	2—	1?	2+ 2+	2+			1?	2 <u> </u>	1?	23 23	2—	<u> </u>	2+		2—	2—	2—
COLON BACILLUS		.9.9 I		2—	2—	2+	2+	2?			1?	1 <u>-</u> 2?	<u>+</u> -	1 61 -	2-1-	1	2+		2—	2—	2—
C		.9.9 01		<u> </u>	<u> </u>	+	<u>+</u>	<u> </u>			<u> </u>	+	<u>+</u>	+	1?	1?	<u> </u>		<u>+</u>	<u> </u>	1
		Bacteria per c. c.		8,400	40	6,400	8,800	720			006	1,000	1,000	1,000	15,000	10,000	11,500		40	90	75
		.viiniisala		206	332	154	154	148			324	334	338	324	279	291	291		340	334	336
		Vitrates.		.280	.160	.192	.200	.160			.200	.200	.200	.200	.200	.200	.120		.080	.160	000.
N AS		Nitrites.		.075	.000	.008	.003	.001			.002	.001	000.	000.	000.	.000	.000		000.	.000	.000
NITROGEN AS	NIA.	.bionimudlA		.224	.074	.516	.856	.862			.032	.040	.040	.040	.112	.112	.112		000.	.064	.052
	AMMONIA.	.99 T Tee.		.112	.032	.302	.144	.170	g results:		.040	.024	.008	.024	.008	.016	.024		.016	.058	.030
	.bé	omusuoO n934xO		15.6	1.6	5.8	8.0	6.8	Additional sanitary analyses of the new supply from Bluffs gave the following results:		1.7	2.0	1.7	1.6	2.0	1.1	2.3		2.4	1.0	6:
.səl	bir	Chlorine in Chlo		325	5	113	9	5	fs gave th		6	4	.0	4	10	9	5		5	5	5
.noit	.810	oqavA no subizsA		1226	362	422	227	183	from Bluf		383	357	360	361	418	428	462		373	339	360
Ë		Odor.		0	0	Mo.	Mo.	Mo.	w supply		0	0	0	0	2 V.	0	2 V.		0	0	0
APPEARANCE.		Color.		0	0	40	70	40	of the ne		9.	9.	9.	9.	.3	с.	с.		0	Fe0	0
AF		Turbidity.		240	30	5	20	10	maly ses		De	3	3	3	15.	25.	25.		0	5	5
	Date of Collection.		.8(17	2	21	21	21	anitary a	77.	30	30	30	30	8	8	8	.8	4	2	8
		- 775 (10D %) 040(I	1908.	Feb.	Mar.	Sept.	Sept.	Sept.	tional sa	1907.	Jan.	Jan.	Jan.	Jan.	July	July	July	1908.	Feb.	Mar.	Mar.
		Serial Number.		17118	17149	18193	18194	18195	Addit		15643	15644	15645	15646	16217	16218	16219		17070	17147	17148

SANITARY ANALYSES OF THE OLD MUNICIPAL WATER SUPPLY OF JACKSONVILLE.

An examination of the mineral content gave the following results:

MINERAL ANAL	YSES OF THE	CITY WATER	OF JACKSONVILLE.
--------------	-------------	------------	------------------

Ions	Pa	urts per Milli	ion
	17070	17147	17148
$\begin{array}{llllllllllllllllllllllllllllllllllll$.8 36.6 84.1 2.4 .4 5.0 26.4 38.7 .5	$5.2 \\ 20.8 \\ 100.3 \\ 3.8 \\ 5.0 \\ 5.0 \\ 26.0 \\ 55.2 \\ 2.6 \\ 2.6 \\ 100000000000000000000000000000000000$	7.4 33.3 82.6 9.3 5.0 35.1 13.0 1.5

Hypothetical Combinations.	Parts	per M	illion	Grains per Gallon				
	17070	17147	17148	17070	17147	17148		
$\begin{array}{llllllllllllllllllllllllllllllllllll$.5 1.8 5.2 33.1 99.0 209.9 2.4 18.8 .5	8.3 5.9 27.6 52.6 250.4 3.8 15.6 2.6	8.3 12.6 33.3 92.1 206.2 9.3 13.0 1.5	$\begin{array}{c} .03\\ .10\\\\ .30\\ 1.93\\ 5.77\\ 12.24\\ .14\\ 1.10\\ .03\end{array}$.48 .34 1.61 3.07 14.60 .22 .91 .15	.48 .73 1.94 5.37 12.03 .54 .76 .09		
Total,	371.2	366.8	376.3	21.64	21.38	21.94		

Jerseyville, Jersey county, see Bulletin No. 5, page 58. An additional analysis of the city supply gave the following results:

SANITARY ANALYSIS OF THE MUNICIPAL WATER SUPPLY OF JERSEYVILLE. Sample Collected July 24, 1908. Laboratory No. 17687.

THE WATERS OF ILLINOIS

An examination of the mineral content gave the following results:

MINERAL ANALYSIS OF THE CITY SUPPLY OF JERSEYVILLE.

Ions	Parts Per Million	Hypothetical Combinations.	Parts Per Million	Parts Per Gallon
Sodium, Na Ammonium, NH ₄ Magnesium, Mg Calcium, Ca Oxide of Iron Fe, O ₃ + and Alumina, Al ₂ O ₃ Nitrate, NO ₃ Chloride, Cl Sulphate, SO ₄ Silica, SiO ₂ Bases,	798.7 4.6 57.8 99.8 3.2 2.1 1200.0 363.2 11.2 1.8	$\begin{array}{llllllllllllllllllllllllllllllllllll$	2.9 1980.3 54.3 16.8 285.7 122.5 159.0 3.2 11.2 1.8	.17 115.51 3.17 98 16.66 7.15 9.27 .19 .65 .10
		Total,	2637.7	153.85

Joliet, Will county, see Bulletin No. 5, page 58. Additional analyses of the city supply are shown on page 153.

Jonesboro, Union county, see Bulletin No. 5, page 58, obtains a water supply from a well 400 feet deep. The plant is owned by the city and was established in 1900. The water is used to supply mills, elevators, etc., and not for drinking purposes.

Kankakee, Kankakee county, see Bulletin No. 5, page 58. Additional analyses of the raw and filtered water from the Kankakee River are shown on page 154.

JOLIIET TO KANKAKEE

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF JOLIET.

		.loba1		:	+					:	
SUL		.9.9 I.O		2-	1?	2	2+	2—	2—		2—
COLON BACILLUS		.9.9 I		2—	2—	2?	61 -	13 13	2—	i	2—
CC		.9.9 OI		<u> </u>	1?	+	1?		1	:	Ţ
		Bacteria pe r c. c		115	720	240	3,000	1,160	16,000		38
		Alkalinity.		221	232	236	266	236	263	265	287
		.estrativ		1.107	.200	1.191	.640	.640	.800	.400	.468
IN AS		Nitrites.		.013	.018	600.	.000	000.	.002	.003	.052
NITROGEN AS	.VIA.	.bionimudlA		.072	.094	.088	.148	.190	.080	.128	.064
	AMMONIA	.99 1 ⁹		.024	.056	.016	.036	.048	.016	.056	.400
	.b9	musaoO a93yxO		3.05	3.2	2.7	2.7	3.1	3.2	1.6	1.7
.səl	bi r o	Chlorine in Chl		15	20	15	14	15	16	15	38
.noit	810	gavA ao subizsA		509	488	526	475	497	499	484	486
CE.		Odor.		0	0	0	Mu	Mu	0	E.	0
APPEARANCE.		.10I0J		.2	0	20	0	0	0	20	10
A		.Turdidity.		10	5	10	0	0	10	5	3
	• π 0	Date of Collection	×.	25	17	12	20	29	14	×	11
	uu	Healton to stoll	1908.	Feb.	Feb.	May	June	June	July	Sept.	Nov.
		Serial Number.		15765	17103	17415	17625	17626	17717	18080	18483

		.lobal		:::::::::+ +++++++++
.s		0.01 c. c.		
COLON BACILLUS		0.1 c. c.		+ - - + + + - - - - + + + - - - - - + + - - - - - - + - - - - - - + - - - - - - + - - - - - - + - - - - - - + - - - - - - + - - - - - - + - - - - - - + - - - - - - + - - - - - - + - - - - - - + - - - - - + + - - - - - + + - - - - - - - -
COLON		Т с. с.		$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
		10 c. c.		<u> +++-;+++++-;</u> -+++++++
	.o.,	Bacteria per c		230,000 1,500 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 2,400 2,400 2,400 2,400 2,400 2,400 2,400 2,200 2,0000 2,000 2,0000 2,0000 2,0000 2,00000000
		Alkalinity.		22002 2212
		.zətrtin		$\begin{smallmatrix} & 1 \\ & 1 \\ & 2 \\ & $
gen as		.sətirtiN		000 000 000 000 000 000 000 000 000 00
Nitrogen	AMMONIA.	.bionimudIA	RAW.	
	Амм	.991 T	Ч	0.00000000000000000000000000000000000
đ.	oəun	елоО пэзухО		48014 48014 14914 2002 2002 2002 2002 2002 2002 2002 20
.səbi	Told	O ni onivoldO		0004mmn-m0n m40mm4sp
.noitsr	ođev	A no subizsA		09611158887002 33328887002 000115888700 00011158887002 00011158887002 00011158887002 00011158887002 00011158887002 00011158887002 00011158887002 00011158887002 00011158887002 00011158887002 00011158887002 000111588887002 000111588887002 000111588887002 000111588887002 000111588887002 000111588887002 000111588887002 000111588887002 000111588887002 0001115888887002 0001115887002 000111588887002 0001115887002 0001115887000000000000000000000000000000
Ë		Odor.		оо ^щ оощі шообоооооо
EARANG	A PPE A PPE ARANCE Color.			1 1020 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.000000
APF				DD:: DD:: DD:: DD:: DD:: DD:: DD:: DD:
•u	Date of Collection.			1907. Jan. 21 Jan. 21 Mar. 21 April 12 April 12 April 12 April 12 July 21 July 20 Jan. 24 June 28 April 28 April 28 June 23 June 24 June 24
	Serial Number.			15545 15545 15545 155855 1588955 1588955 1588955 1588955 158895 1713845 16996 1713845 17528 177558 177558 177558 1

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF KANKAKEE.

	KANKAK
-	· · · · · · · · · · · · · · · · · · ·
-	$\begin{array}{c} 71,900 \\ 77,900 \\ 650 \\ 650 \\ 650 \\ 110 \\$
-	91 14 15 15 15 15 15 15 15 15 15 15
-	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
ED.	22222222222222222222222222222222222222
FILTERED	0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000
-	40.08 401-46 200 200 200 200 200 200 200 20
-	20202020-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-
-	00000 00000 00000 000
-	
-	1007: Feb. 25 Mar: 25 April 2 April 2 April 2 April 2 April 2 Nav: 25 June 2 June 2 June 2 June 2 Nov. 3 Dec. 3
-	555 555 555 555 555 555 555 555 555 55

Kansas, Edgar county, has no general supply.

Keithsburg, Mercer county, see Bulletin No. 5, page 63. Recent analyses of the city supply gave the following results:

SANITARY ANALYSES	OF	THE	MUNICIPAL	WATER	SUPPLY	OF	KEITHSBURG.
-------------------	----	-----	-----------	-------	--------	----	-------------

	ū.			PEA		Evaporation.	ides.	d.	N itrogen			NITROGEN AS						Colo Acili		
Serial Number.	Date of Collection.		Turbidity.	Color.	Odor.	Residue on Evapo	Chlorine in Chlorides.	Oxygen Consumed.	Нree.	Albuminoid.	Nitrites.	Nitrates.	Alkalinity.	Bacteria per c. c.	10 c. c.	1 c. c.	0.1 c. c.	Indol.		
16456	1907. Sept 2 1908.	3	0	0	0	920	89	3.75	.000	.088	.013	17.000	238	200	1—	2—	2—			
18231 18233	Sept. 29 Sept. 29		0 0	0 0	0 0	900 548	110 34	1.8 1.1	.336 .032	.104 .064		15.948 3.840	318 195	7 8		2— 2—	2— 2—	_		

Kenilworth, Cook county, obtains its water supply from Lake Michigan. Recent analyses of the Lake Michigan water, raw and filtered, taken at Kenilworth, are shown on page 157.

Kewanee, Henry county, see Bulletin No. 5, page 63. Additional analyses of the water from the deep well gave the following results:

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF KEWANEE.

Samples Collected December 7, 1907.

		PPEA ANCE.		Evaporation.	Chlorides.	ri H	NITROG		Nitro		GEN AS					Colon cillu		
er.				rapo	hlor	ime	Амм	ONIA.				с. С				1		
Serial Number.	Turbidity.	Color.	Odor.	Residue on Ev	Chlorine in C	Oxygen Consumed.	Free.	Albuminoid.	Nitrites.	Nitrates.	Alkalinity.	Bacteria per e	10 c. c.	1 c. c.	0.1 c. c.	Indol.		
16831	0	0	0	1269	410	3.8	.128	.016	.004	1.396	248	30	1—	2—	2—	_		
16832	0	0	0	1273	410	5.3	.720	.016	.080	.420	248	0	1 —	2—	2—	_		
16833	0	0	0	1287	410	5.2	.880	.016	.080	.160	248	0	1 —	2—	2—			
16834	0	0	0	1269	410	4.3	.800	.016	.050	.110	248	30	1 —	2—	2—	—		

KANSAS TO KENILWORTH

		it it it	0110	
		.lobal		: + +++
TLUS.		0.1 c. c.		$\begin{array}{c c} 1 & 1 \\ 1 & 2 \\ 2 & 2 \\ 1 & 2$
Colon Bacillus	<u>1</u> с.с.			2 + 22 + 22 + 12 + 12 + 12 + 12 + 12 +
Co		10 c. c.		
	·ə ·:	Bacteria per (1,000+ Lost 280 380,000 380,000 2,800 2,800
		.LinitsAlA		86 120 126 112 112 122
		Nitrates.		.160 .360 .3280 .280 .280
N AS		Nitrites.		.000 .003 .001 .003 .003
Nitrogen as	ONIA.	.bionimudIA	R a w.	.124 .062 .102 .152 .138
	Ammonia	Free.	R,	.034 .022 .040 .028 .016 .042
ו	pətu	uznoO n927xO		3.0 2.3 2.5 2.1
.səbi	plor	Chlorine in C		v vvvor :
ration.	ođe.	vA no subizsA		$153 \\ 174 \\ 177 \\ 147 \\ 156 \\ 203 \\ \cdots \cdots$
Е		Odor,		0 00000
A PPEARANCE		Color.		. 2 Mi 0 30. 20.
AP		.Turbidity.		10. 200. 200.
	noit	Date of Collec		1907. June 15 Jan 27 Jan 7 March 3 March 3 May 25 Nov. 23 Nov. 23 Dec. 21
		odmuN lsir92.		16135 16949 17159 17471 18464 18536 18637

H.	
Ë	
- 4	
В	
~	
≯	
Ч	
H	
~	
KЕ	
\mathbf{X}	
[L	
0	
Х	
РР	
5	
S	
ъ	
Щ	
F	
~	
2	
\$	
1	
H	
~	
H	
τj	
Ĕ	
Z	
D	
1	
4	
Ш	
÷	
Ë	
r ,	
ГĽ	
0	
-	
S	
Щ	
S	
×	
Ļ	
A	
z	
4	
Υ	
24	
\mathbf{A}	
F	
Ì	
4	
\triangleleft	
S	

157

666666666

| + | ~ ~ . | | | |

 $\begin{array}{c} .072 \\ .076 \\ .078 \\ .078 \\ .086 \\ .086 \\ .081 \\ .080 \\ .080 \\ .080 \end{array}$

 $\begin{array}{c} .008 \\ .007 \\ .0016 \\ .0000 \\ .0016 \\ .0016 \\ .0016 \\ .0016 \\ .0016 \\ .0016 \\ .0016 \\ .$

 143
 5
 143

 143
 5
 1
 1

 143
 5
 1
 1
 1

 145
 1
 1
 1
 1
 1

 145
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 <

0 000000000

0 000000000

0 000000000

> 16950 16951 16951 16951 17160 17160 17160 17470 18463 18535 18535 18638

16136

1,000+

FILTERED

Kinmundy, Marion county, has sent no report.

Kirkwood, Warren county, see Bulletin No. 5, page 65. Recent analyses of the water from the well 130 feet deep gave the following results:

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF KIRKWOOD.

Samples collected August 22, 1908.

		PEAR NCE.	-	Evaporation.	Uhlorides.	ed.		Nitro	GEN AS					Colon		
Number.					-	aum	Аммс					er c. c.				
ial Nun	Turbidity.	о г.	ŗ.	Residue on	Chlorine in	Oxygen Con:	ల	Albuminoid.	Nitrites.	Nitrates.	Alkalinity.	Bacteria pe	c. c.	ల	ల ల	ol.
Serial	ınL	Color.	Odor.	Res	Chlo	0xy	Free.	AIb	Nitı	Niti	Alk	Bac	10 c	1 c.	0.1	Indol.
17952	40.	80.	0	555	4	3.2	3.040	.104	.000	.200	520	50	1—	2—	2—	_
17953	40.	50.	0	526	3	2.7	3.040	.072	.000	.200	524	10	1+	2—	2—	—

Knoxville, Knox county, see Bulletin No. 5, page 65. Lacon, Marshall county, see Bulletin No. 5, page 65. Ladd, Bureau county, see Bulletin No. 5, page 66.

La Grange, Cook county, see Bulletin No. 5, page 66. Recent analyses of the water from the well 2,040 feet drilled gave the fol-

lowing results:

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF LA GRANGE. 15475 collected December 18, 1906. Other samples collected February 17, 1908.

		PEAR NCE.	-	Evaporation.	ides.	1.		Nitro	GEN AS					Colon		
er.				tvapo	Chlorides.	Consumed.	Амм					.c. c.				
Serial Number.	ity.			uo	in			Albuminoid.	3.	ŝ	ity.	a per				
rial l	rurbidity.	Color.	Odor.	Residue	Chlorine	ygen.	Free.	bumi	Nitrites.	Nitrates	Alkalinity.	Bacteria	с. С.	ల ల	l c. c.	Indol.
se	$\mathbf{T}^{\mathbf{U}}$	ů	Õð	Re	СÞ	Oxyı	Fr	Αl	Ni	in	AI	Βε	10	1,	0.1	In
15475		.4	0	498	12	2.3	.184	.048	.001	.240	364	0	1—	2—	2—	
17112	20	0	0	452	15	1.8	.096	.064	.006	.032	366	720	1—	2—	2—	+
17113	10	0	0	523	16	1.7	.104	.088	.003	.048	366	880	1—	2—	2—	+
17114	5	0	0	533	15	1.8	.072	.048	.006	.064	366	80	1—	2—	2—	+
17115	5	0	0	511	14	1.7	.048	.048	.006	.064	366	40	1—	2—	2—	—

KINMUNDY TO LAKE FOREST

Analyses of the mineral content gave the following results:

MINERAL ANALYSES OF THE CITY SUPPLY OF LA GRANGE.

December 18, 1906 (well 2024' drilled).

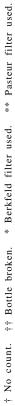
Samples collected February 17, 1908 (well 2040').

Ions.		Parts per	Million
IONS.		15475	17115
Sodium Ammonium Magnesium Calcium Iron Alumina Oxide of Iron & Alumina Nitrate Chloride Sulphate Silica Bases	Na NH4 Mg Ca Fe Al ₂ O ₃ Fe ₂ O ₃ +Al ₂ O ₃ NO ₃ Cl SO ₄ SiO ₂	$ \begin{array}{c} 38.8 \\ \\ 99.6 \\ \\ 1.4 \\ 1.4 \\ 14.0 \\ 97.5 \\ 10.2 \\ \\ \end{array} $	$30.7 \\ 2 \\ 43.9 \\ 131.6 \\ .2 \\ 1.9 \\ \\ 1.1 \\ 12.0 \\ 99.2 \\ 9.1 \\ 3.3 $

Hypothetical Combinations.	Parts per	r Million.	Grains pe	er Gallon.
	15475	17115	15475	17115
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 1.5\\ 18.8\\ 64.9\\ .7\\ 69.3\\ 103.\\ 328.5\\ .4\\ 1.9\\\\ 9.1\\ 3.3\\ \end{array}$	$\begin{array}{c} 1.9\\ 23.1\\ 90.0\\ 46.0\\ 120.2\\ 248.6\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $.09 1.15 3.78 .04 4.04 6.03 19.16 .02 .11 	$\begin{array}{c} .11\\ 1.35\\ 5.25\\\\ 2.68\\ 7.01\\ 14.50\\\\ .02\\ .59\\\\ .59\end{array}$
Total	603.0	540.4	35.14	31.51

La Harpe, Hancock county, see Bulletin No. 5, page 66.

Lake Forest, Lake county, see Bulletin No. 5, page 66. Additional analyses of the water from Lake Michigan, raw and treated, gave the following results:


ĺ			.ІораІ	:				::::	++++	+ + :+
	. SUL		0.1 c. c.	1+1	 +	$\frac{1}{2}$	$\frac{1+1}{1-1}$	2^{-1}	222^{+1}	$^{122+}_{11+}$
	COLON BACILLUS		Тс.е.	2 +	+ 2	22 + 22 + 1 - 1 - 1	$\frac{12}{2-}$	$\frac{2-}{2-}$ 1-1?	2^{2+}_{1+1}	+ +
	Сого		10 c. c.	+		: : <u>+</u>	<u>+</u>	1+1+1	<u> + + -: + +</u>	+++
		'0 'C	Bacteria per 0	24,000	3 200+	1,000+ 850	2,900 9,800	300 †† 470	Lost 5,600 600 1,600 80,000	21,000 $80,000$ 200 $7,200$
			.LinilsAlA	122	147	115 115 116	91 119	127 190 121	116 130 124 126 126	112 122 110 112 118
			Nitrates.	.360	180		.280	.156	$\begin{array}{c} 360\\ .060\\ .200\\ .200\\ .280\\ 5.190\end{array}$	
	JEN AS		Nitrites.	.002	000		.002	.001 .001 .004	.000 .020 .001 .001 .006	.000 .000 .000 .000 .000
	Nitrogen	AMMONIA.	.bioaimud lA	.180	160	2200 2300 096	.112	.100	132 132 114 114 120	1172 1240 166
		Амм	Free.	.064	110	.104.030	040	006	.020 .038 .038 .020 .020	$ \begin{array}{c} 0.038 \\ 0.038 \\ 0.058 \\ 0.040 \\ \end{array} $
	'n.	om	isnoU n924xO	5.4		5.35 6.1 3.45	3.8	0.04 0.04	$31.34 \\ 31.34 \\ 31.14 \\ 31.11 \\ 31.1$	8212 2026
	.zəbi	loid	O ni əniroldO	4	¥	0404	9	, 44 v	NN49N4	0 N J 0 0
	.noiter	ođe.	vA no subizsA	251	120	400 171 195	189	165 131 163	$217 \\ 630 \\ 214 \\ 4187 \\ 223 $	148 143 139 186
	CE.		Odor,	4 Mu	- 11 - 2	° × 6. 5 Mu.	00	0.0 0	Mu. 0 0 0 0 0	Mao. 0
	A PPEARANCE.		Color.	.1		idi-ic	vic	iooo	000000	00000
	A PI		.Turbid1uT	De.	¢	De. J.	14¢	15 25 25	170 100 60 90	0 ¹ 00000000000000000000000000000000000
		uoit	Date of Collec	1906. Dec31	_ 1907	Feb. 5 Mar. 4 April 1 May	June 3	July July 29 Aug. 26 Oct. 14 Dec. 0	Jan. 27 Jan. 27 Mar. 9 April 6 April 27 May 11	June 15 July 6 Aug. 10 Sept. 8 Oct. 13
		•	serial Number	15507		15672 15798 15902	16094	16200 16329 16437 16612		17574 17677 17915 18086 18315

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF LAKE FOREST.

RAW.

													*	
		· ·	· ·	· ·	· ·	. +	+	*		*	•	* .	+	*
2 —	+ 	-+	 00	$ \frac{1}{1} ^{+}$	2^{-1}_{-1+}	- 10	100		100		- 10-	 ,	 01	2 —
2+	$^{1+1-}_{2-}$	$\frac{2}{1+1}$	 + -	$\frac{1}{1}$	+ +	2 - 1	2 + + - 		$\frac{5}{1}$	1 1	+		+ +	2 —
1 +	÷		+ . 	+ +	+ 		13	+	++	+ 		 	+	1
6,500	1,000+57	10,000+	3,000+	1,200 1,075	1 8 8	Lost	1,200	50	30,400 2,400	16,000	2,200 100	00	1,520	4
114	$\begin{smallmatrix}1&3&0\\1&2&8\\1&2$	121	91 117	119	121	116 174	122	124	$\begin{array}{c} 1.24\\ 1.16\\ \end{array}$	120	112		116	
.400	.720	.200	320	.320 160	000.	.320	240	.320	.270	.560	.240		.360	
.001	000.001	.000	0000	000	.002	.000	002	.001	.010	.000	0000.		000.	
.172				0.880		.096 154	0.288	.152	.034 .138	.144	.074		.102	
.060	25	00	1 V	020	0	n ox	080.034	4	$\begin{array}{c} 0 & 1 & 0 \\ 0 & 7 & 0 \end{array}$	in (.012		.028	
3.2	3.9 3.0	4.42 3.0	2.7	2.5	2.6	2.2 5.2	3.1 2.2	1.5	$\frac{2.3}{1.8}$	2.5	3.5 3.5		3.1	
4	L 4	- <u>C</u> r	y 0	nun vi	94	. v v	04 C	N.	s s	9	2		9	
170	163	139	1300	140 142	154	140	170	0	$^{\circ}190$	144	$141 \\ 142$		154	
0	3 Ve.	о ^щ о	0 0 Min	0 0 Min	0	Mu.	00	0	00	0	00	(0	
. 1					:	00	000	0	00	Ő	00		0	
De.	Di.		, w r	000	1_0		000 000	2 0	$\stackrel{6}{_{0}}$	0			1	
1906. Dec. 31	Feb. 5 Mar 4	April 1 Mav 6	June 3	July 29 July 29	Dec. 9.	1908 Jan. 6	Mar. 29 Mar. 9 Anril 6	April 27	510	69	000	080	m0	3 0
15508	15671	15901	16095	16328	16611 16853	16953	17174	17365	17575	17678	18087	18252	18557	18558

FILTERED.

LAKE FOREST

Lanark, Carroll county, see Bulletin No. 5, page 69.

La Salle, La Salle county, see Bulletin No. 5, page 69. Later analysis shows that the water is not deteriorating in quality as stated in Bulletin No. 5.

Lawrenceville, Lawrence county, see Bulletin No. 5, page 70.

Lebanon, St. Clair county, has no general supply.

Lemont, Cook County, see Bulletin No. 5, page 70, obtains a water supply from two wells, one 224 feet deep and one 1,260 feet deep. The plant is owned by the city and was established in 1884 at a cost of \$20,000. Smith-Vaile pumps are used. The daily consumption is 90,000 gallons.

Lena, Stephenson county, see Bulletin No. 5, page 70.

LeRoy, McLean county, see Bulletin No. 5, page 70.

Lewiston, Fulton county, see Bulletin No. 5, page 70.

Lexington McLean county, see Bulletin No. 5, page 70.

Lincoln, Logan county, see Bulletin No. 5, page 70. Additional analyses of the city water gave the following results:

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF LINCOLN.

	Арр	EARANCE	•	ration	ides.	l.		NITRO	GEN AS		
Serial Number.	Turbidity.	Color.	Odor.	Kesidue on Evaporation	Chlorine in Chlorides.	Oxygen Consumed.	Нгее. Ими	Albuminoid.	Nitrites.	Nitrates.	Alkalinity.
14768 14769	Distinct Distinct	. 2 . 2	0 0	303 320	6 6	2.50 3.05	.136 .080	.082 .048	.000 .000	.440 .400	238 240

Samples collected August 13, 1908.

Litchfield, Montgomery county, see Bulletin No. 5, page 71, obtains a water supply from a reservoir and creek. The plant is owned by a private company and was established in 1874 at a cost of \$90,000. Two pumps with a capacity of 1,500,000 gallons each are used. The daily consumption is 1,250,000 gallons.

Lockport, Will county, see Bulletin No. 5, page 71. McHenry, McHenry county, see Bulletin No. 5, page 71. McLeansboro, Hamilton county, see Bulletin No. 5, page 71. Macomb, McDonough county, see Bulletin No. 5, page 71. Madison, Madison county, see Bulletin No. 5, page 71.

Marengo, McHenry county, see Bulletin No. 5, page 71. Marion, Williamson county, has sent no report. Marissa, St. Clair county, has no general supply. Maroa, Macon county, see Bulletin No. 5, page 71. Marseilles, LaSalle county, see Bulletin No. 5, page 71. Recent

analyses of the water from the 600 foot drilled well gave the following results:

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF MARSEILLES.

	A PPEAR- ANCE.				Evaporation.	Ides.		N	Itroc	GEN AS					CILL		
Serial Number.	Date of Collection.	Turbidity.	Color.	Odor.	Residue on Evapo	Chlorine in Unioriaes.	Oxygen Consumed.	Free. У	Albuminoid.	Nitrites.	Nitrates.	Alkalinity.	Bacteria per c. c.	10 c. c.	1 c. c.	0.1 c. c.	Indol.
	1906.																
15529	Dec. 31	V.S.	. 2	0	473	62	2.25	.264	072	.022	.300	304					
	1907.																
15603	Jan. 21	0	. 2	0	464	61	2.25	.080	032	.004	.400	297	0	1—	2—	2 —	
	1908.																
17225	Mar. 17	0	0	0	479	67	. 9	.040	032	.002	.320	304	125	1—	2—	2—	_
17226	Mar. 17	0	0	0	463	67	. 8	.000	.000	.000	.440	306	90	1—	2—	2—	_
17227	Mar. 17	0	0	0	511	67	. 8	.040	.048	.000	.320	306	82	1—	2—	2—	—

Marshall, Clark county, see Bulletin No. 5, page 71. Additional sanitary analyses of the water from the 200 foot bored well gave the following results:

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF MARSHALL.

	-i	Арри	EARAN	ICE.	Evaporation.	rides.	d.		ROGE	N AS					OLON		
d Number.	Date of Collection.	Turbidity.			uo	rine in Chlorides.	en Consumed		Albuminoid.	tes.	ttes.	Alkalinity.	eria per c. c.	c.		.c.	
Serial	Date	Turb	Color.	Odor.	Residue	Chlorine	Oxygen	Free.	Albu	Nitrites.	Nitrates.	A]ka]	Bacteria	10 с.	1 c. c.	0.1 c.	Indol.
	1908.																
18304	Oct. 12	0	0	0	255	7	. 5	.032	.064	.000	1.00	211	900	1 +	2 +	2 +	+
18462	Nov. 9												2	1—	2—	2—	—

Martinsville, Clark county, located on North Fork Creek, has no general supply.

Mascoutah, St. Clair county, see Bulletin No. 5, page 71.

Mason City, Mason county, see Bulletin No. 5, page 72, obtains a water supply from deep wells. The plant is owned by the city. A Cook deep well pump with a capacity of 500 gallons per minute is used. The daily consumption is 50,000 gallons.

Mattoon, Coles county

MATTOON.

In order to determine the quality of water available as an additional source of water supply for Mattoon, three samples were obtained and forwarded to the State Water Survey for examination. No. 15911 was taken from farm drain tile located south of Mattoon on the Kickapoo drain. No. 15912 was taken from the Little Wabash Creek on Section 33, Twp. 12, R. 7. No. 15913 was taken from a pipe entering the Big Four pumping station sump, at the west end of the city. Below is given the comparative analyses to determine their availability for use in boilers.

Comparing these waters, the water from the farm drain tile, No. 15911, is seen to be the best water. The water from the Little Wabash Creek, No. 15912, is next best. Either of these waters would be satisfactory for manufacturing or boiler use. The water from the pipe entering the Big Four pumping sump, No. 15913, should not be considered for boiler use. It would form a hard scale and treatment would give a water liable to foam.

During 1907 the Little Wabash River was dammed, creating a reservoir 100 acres in extent, having a capacity of 165,000,000 gallons, and a depth of 123 feet at its deepest point. During part of the year the water from the Kickapoo tile drainage system is used. Pumping stations were erected at the Little Wabash reservoir, five miles southwest of the city, and one in the City of Mattoon. Fairbanks-Morse compound duplex pumps are used, having a total capacity of 2,000,000 gallons per day. The daily consumption is 700,000 gallons. The plant supplies only the large consumers.

Drinking water is obtained as heretofore from the Mattoon Clear Well Water Company, which is described on page 72 of Bulletin No. 5.

Below are found analyses of the two supplies:

Boiler Analysis—Water from Farm Drain Tile No. 15911. Water from Little Wabash Creek, No. 15912. Water from pipe entering Big Four Pumping Sump, No. 15913. Samples collected April 8, 1907.

	I	Parts per Millior	1
Ions	15911	15912	15913
Alkalinity (as CaCO ₃) Chlorine, Cl Magnesium (as CaCO ₃) Incrustants (as CaCO ₃) Total Solids, Free Carbonic Acid (CO ₂)	175. 6. 113. 34. 222. 24.	203. 8. 113. 54. 298. 12.	260. 119. 181. 212. 1148. 27.

	Parts	per Mi	llion	Grain	allon	
Hypothetical Combinations.	15911	15912	15913	15911	15912	15913
Sodium chloride, NaCl Magnesium sulphate, MgSO4 Magnesium carbonate, MgCO3 Calcium carbonate, CaCo3 Alkaline sulphates and sus- pended pended matter, CaSO4	9.9 41.6 66.7 96.0 10.0	13.2 65.9 49.8 144.0 25.1	196.4 220.8 260. 428.7 42.1	.58 2.40 3.89 5.60 .58	.77 3.84 2.90 8.40 1.46	11.5 12.9 15.2 25.0 2.5
Totals,	222.0	298.0	1148.0	13.06	17.37	67.1

Sanitary and bacteriological analyses of the water taken from the Little Wabash Reservoir gave the following results:

		Appe	ARAN	CE.	ation.	les.		N	ITROG	GEN A	s				OLO		
Serial Number.	Date of Collection.	Turbidity.	Color.	Odor.	Residue on Evaporation	Chlorine in Chlorides.	Oxygen Consumed.	Free.	Albuminoid.	Nitrites.	Nitrates.	Alkalinity.	Bacteria per c. c.	10 c. c.	1 c. c.	0.1 c. c.	Indol.
	1908.																
17548	June 15	5	20	Рu	236	5	2.3	.090	.202	.006	1.720	172	360	1 +	2 +	1?	+
*17550	June 15	0	0	0	235	3	1.1	.040	.080	.016	1.584	165	280	1—	2—	2—	—
17552	June 15	20	30	0	250	4	1.8	.098	.122	.030	1.690	172	810	1 +	2 +	2 ?	+
17611	June 29	20	20	Рu	236	4	2.6	.138	.168	.009	1.591	171					
17934	Aug. 17	10	30	Mu	203	6	6.7	.300	.124	.000	.280	169					
	Nov.9		60	Mo	260	9	6.6	.658	.516	.012	.148	190	710	1 +	2 ?	2—	+

* Filter on tap.

Sanitary and bacteriological analysis of the city water supply used for drinking purposes, taken from the wells of the Clear Well Water Co., gave the following results:

Sample Collected June 15, 1908. Laboratory No. 17549.

Turbidity50.Color,60.Odor,0.Residue on Evaporation,517.Chlorine in Chlorides,19.Oxygen Consumed,4.	Nitrogen as Free Ammonia, 9.600 Alb. Ammonia, .176 Nitrites, .000 Nitrates, .280 Alkalinity, 441.	Bacteria per c.c. 8 Gas formers in 1 1 c.c. 1 0.1 c.c. 2 Indol, -
--	--	---

Maywood, Cook county, see Bulletin No. 5, page 73. Additional analyses of the water taken from the deep well gave the following results:

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF MAYWOOD.

			ppea ince						Nitrog	en as	I				olon		
		6						Amm	onia.					В	acillu	18.	
Serial Number.	Date of Collection.	Turbidity.	Color.	Odor.	kesique on Evaporation.	Uhlorine in Chlorides.	Uxygen Consumea.	Free.	Albuminoiđ.	Nitrites.	Nitratecs.	Alkalinity.	Bacteria per c. c.	10 c. c.	1 c. c.	0.1 c. c.	Indol.
17788 17789 18409 18410 18411	1908 July 27 July 27 Nov. 2 Nov. 2 Nov. 2	0 0 0 0		$\begin{array}{c} 0\\ 0\\ 0\\ \hline 0\\ \hline 0 \end{array}$	635 609 623 	18 18 27 	1.6 1.6 .9 2.0	.120 .048 .400 .384	.048 .056 .056 .048	.007 .000 .000 .000	.553 .320 .280 .480	265 269 263 	$320 \\ 800 \\ 1400 \\ 75 \\ 2160$	1? 1— 1+ 1— 1+	2 2 2	2— 2— 2— 2— 2—	 + + +

Melrose Park, Cook county, see Bulletin No. 5, page 73. Mendota, La Salle county, see Bulletin No. 5, page 73. Additional analyses of the city supply gave the following results:

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF MENDOTA. Samples Collected June 15, 1908.

	App	pearanc	ce.				A	Nitrog	en as				-	olon acillu	s	
Seríal Number.	Turbidity.	Color.	Odor.	Residue on Evaporation.	Chlorine in Chlorides.	Uxygen Consumed.	Free.	Albuminoid.	Nitrites.	Nitrates.	Alkalinity.	Bacteria per c. c.	10 c. c.	1 c. c.	0.1 c. c.	Indol.
17564 17565 17566	30. 30. 5.	50. 90. 60.	$\begin{array}{c} 0\\ 0\\ 0\\ 0\end{array}$	376 370 383	2 2 2	4.7 4.8 4.5	1.440 1.120 .104	.144 .144 .160	.003 .055 .006	.277 .505 1.120	321 321 319	6 24 30	1— 1— 1—	2— 2— 2—	2— 2— 2—	

Metropolis, Massac county, see Bulletin No. 5, page 73. Additional analyses of the water supply taken from the Ohio River gave the following results:

		App	eara	nce.					Vitrog	en as	1				Colon acillu		
	-				101.	'n.		Ammo		-							
Serial Number.	Date of Collection	Purbidity	Color.	Odor.	Residue on Evaporation	లత	Uxygen Consumed	Free.	Albuminoid.	Nitrites.	Nitrates.	Alkalinity	Bacteria per c. c.	10 c. c.	1 c. c.	0.1 c. c.	TODUT
18185	1908 Sept. 21	20	50	0	195	16	2.1	.040	.138	.000	.400	112					
18407	Nov. 3	20	25	0	204	20	2.8	.014	.122	.001	.320	128	620	1+	2+	1-1?	+

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF METROPOLIS.

A new supply to be taken from deep wells is being installed. Analysis of this supply, a well 217 feet deep at the foot of Catherine street, gave the following results:

SANITARY ANALYSIS OF THE MUNICIPAL WATER SUPPLY OF METROPOLIS. Laboratory No. 18647. Sample Collected December 28, 1908.

Turbidity,3.0Color,25.Odor,0.Residue on Evaporation,236.Chlorine in Chlorides,8.Oxygen Consumed,.8	Nitrogen as Free Ammonia, Alb. Ammonia, Nitrites, Nitrates, Alkalinity,	.016 .024 .001 .280 185.	Bacteria per c. c. Colon bacillus, Gas formers in 10 c. c., 1 c. c., 0.1 c. c., Indol,	1 1— 2— 2—
--	--	--------------------------------------	--	---------------------

An analysis of the mineral content of the new supply gave the following results:

MINERAL ANALYSIS OF THE NEW CITY SUPPLY OF METROPOLIS Laboratory No. 18647.

Ions	Parts Per Million	Hypothetical Combinations.	Parts Per Million	Grains Per Gallon
Potassium, K Sodium, Na Magnesium, Mg Calcium, Ca Iron, Fe Alumina. Al ₂ O ₃ Nitrate, NO ₃ Chloride, Cl Sulphate, SO ₄ Silica, SiO ₂ Bases,	3.0 2.6 9.8 65.1 1.2 8.0 15.9 10.9 3.4	Potassium nitrate, KNO ₃ Potassium chloride, K C1 Sodium chloride, MaCl Magnesium chloride, MgCl ₂ Magnesium carbonate, MgSO ₄ Calcium carbonate, CaCO ₃ Iron carbonate, FeCO ₃ Alumina, Al ₂ O ₃ Silica, SiO ₂ Total,	$\begin{array}{c} 2.0\\ 4.2\\ 6.6\\ 2.7\\ 19:9\\ 17.7\\ 162.5\\ .8\\ 2.1\\ 10.9\\ 3.4\\ \hline 232.8\end{array}$.12 .24 .38 .16 1.16 1.03 9.47 .05 .12 .64 .20 13.67

Milford, Iroquois county, see Bulletin No. 5, page 73. Milledgeville, Carroll county, obtains its city water supply from

THE WATERS OF ILLINOIS

			.lobal																	+			+	+	+ -	+ +	• +	+	+ +	
			.9.9 L.O	2— 2—	1+] - -		5+2+	5+ 5+	+ + 7 7	5+	5 + 7 +			2+	2+ -	+ + +	1+1	2+	1+1 2+	2+ 2+	$^{2-}$		$^{2-}$	2+	+121	 + +	: ±	2-	$\frac{2}{1-1+}$	
	Colon	Bacillus.	.9.9 I	2+ 1+1	$\frac{1?1+}{2-}$	- 2 + +	; ; ;	5+7	2+ 1+	2+	4 4			5+ 2+	2+ 1 +	1+1- 1+1-	5 + 7 +	, 5+ 5	+ 5 /	2+ 2+	2—	ken	1?1+	2+	5+ 5+	+ +	; ±	1+1?	$\frac{2}{1-1+}$	í ,
			.9.9 OI	± ±	<u>+</u> +	: ± ±	± <u>+</u>	<u>t</u> ±	<u>+</u> +	<u>+</u>	± ±			+ 7	<u>+ </u>	. ± :		<u>+</u> -	<u> </u> ±	<u>+</u> +	<u> </u>	bottle bro	1?	<u>+</u> .	<u>+</u> :	± ±	: <u>+</u>	<u>+</u> .	<u>+</u> ::	;
ſ			Васtегія рег с.с.	82,000 98,000	920 730	5,500	3,500	1,400	1,600 2.900	2,600	Liq. Liq.		000 0	3,200	400	400	1,900	2,500	6,000	2,100 120	300	Bacteria	14,000	19,200	32,000	2000	12,000	726	1,200 2.200)
			.vtinilsalA	115	17	99	121	124	115 126	126	111		151	158	154 105	12	121	119	49 126	107	160	174	104	130	c01	112	147	151	147 155	, ,
			Vitrates.	.520	160	.400	.120	.410	.460	300	.240 .240		002	.000 .680	.720	.120	.160 1160	.330	.300	.240 400	.28	514	.71	.340	207	007.	400	.240	.160	2
	gen as		Nitrites.	.002	000	000	.017	.030	090.	.060	.002 .002		200	.003 2003	.003	000	.017	.030	.090	.002	000.	.006	.012	.015	.018	000.	000.	100.	.002	*
	Nitrogen	Ammonia.	.bionimudlA	.256 264	264	312	360	.592	.464 .480	.528	.472 .622		F UU	-224	.224 264	272	.528	.608 321	.728	.396 236	.234	.232	.576	.574	.410	367	.302	.290	.330 .326	1
		Amm	Pree.	.336 224	032	.080	.056	.032	.032 .080	.080	.048 .036		1 4.4	.152	.112 264	.040	.040	.032	.080	.044 .052	.030	.074	.324	.062	280.	0/0.074	.056	.032	.014 .046	2
Ī			Oxygen Consumed.	11.90	13.15	14.3 14.45	15.8	16.4	15.0 3.8	15.2	22.1 23.2		0 0	9.0 9.0	8.95 11 9	13.0	16.4	16.8 5 0	5.5 15.5	22.2	6.6	5.7	14.7	22.0	20.6	8.8	10.1	8.8 4.7	5.5 5.9	;
Ī			Сһіотіпе іп Сһіотіdея.	2 0	100	144		0.01	00	0	<i>ლ</i> ლ		۲	t ω	4 ¢	100	n m	00	2 10	ω4	б	5	9	9	4 -	4 4		91	- 6	
Ī			Residue on Evaporation.	205 188	157	187	251	529	430 391	511	303 337		100	230	225	195	428	548	608 608	328 195	118	225	297	736	9/.9	218 266	401	237	212 341	:
		0	.10bO	0	000	000	000	00	0 0	0	0 0		¢	0 0	0 0	00	0 0	0 0	00	0 0	0	0	Ma.	0	0	.nn	0	0	0 0	,
	Annearance	vppcai airc	.10loD	S. S	ي و و		Mud	bum	Mud	Mud	Mud		*	i 4	4 v	ا به ز	/. Mud	buM	Mud	Mud 2	5	-	1.0	×.	120.	-140. 50	65.	. 09	40. 50.	;
		4	Turbidity.	E	60.09	60.	120.	392.	392. 429.	429.	192. 195.		Ż	ъ. В	e. Pe	99	00. 120.	427.	, 00 600.	196. 20.	10.	10.	200.	1.	425.	40.	120.	30.	20. 5.	i
Ī				10	525	<i>m</i> "	15	29	29 19	19	~ ~			14	4 0	52	ہ 15	29	19	r 0	25	. 20	6	30	52	0 [28	6	30 28	ì
om River.			Date of Collection.	1907 March March	April April	June	July	July	July Aug.	Aug.	Oct.	w Water	1907	Feb.	Feb. March	April	July	July	Aug.	Oct. Dec.	Dec.	1908 Jan.	March	March	May	And	Sept.	Nov.	Nov. Dec.	i
Direct from River.			Serial Number.	15812	15975	16090	16241	16315	16316 16400	16401	16579 16580	Tap—Ra	15664	15665	15666	15974	16092 16243	16317	16399	16581 16825	16899	17017	17153	17259	17493	17967	18248	18427	18582 18674)) *

								+			+	+			+	+	+	+	+		+
c	7	<u> </u>	$^{-2}$	2—	2-	2—	1-13	$^{2-}$	2—			2^{-}	$^{-2}$	2—	<u> </u>	<u> </u>	$^{2-}$	+	$^{2-}$	$^{-2}$	2-
ć	+7	<u> </u>	1-1?	2—	1+1	2+	1-13	+ 	$^{2-}$		1-1+	$^{-5}$	$^{2-}$	2—	1?1+	 + 	1+1?	+	-2	$^{2-}$	2—
		<u> </u>	1	[[+	<u>+</u>	+	<u> </u>		+	[1	<u> </u>	1?	<u>+</u>	+	<u>+</u>	<u> </u>	<u> </u>	11
L C T	cn/	200	58	110	75	6,300	40	20	60		100	150	160	500	28,000	120	150	1,800	48	65	360
	110	71	52	49	81	87	53	110	108			148	46	64	56	103	94	116	110	114	120
0.1	.160	.520	.160	.234	.280	.40	.240	.316	.280			.512	.460	.340	.351	.480	.320	.240	.400	.080	.320
LOO	/00.	.015	.003	.006	000.	.000	000.	.004	000.			.008	.020	.015	600.	000.	000.	000.	000.	000.	.002
101	.184	.184	.136	.160	.216	.184	.182	.162	.138			.146	.214	.140	.194	.268	.216	.178	.152	.136	.166
	.144	.200	.024	.040	.024	.040	.024	.036	.024			.040	.298	060.	.050	.068	.070	.072	.030	.008	.040
	c/ .0	6.65	7.5	7.9	7.9	5.7	11.1	6.3	5.8			4.3	4.0	5.3	6.2	9.0	6.6	2.9	5.3	2.6	4.7
,	ŝ	7	7	3	ю	2	ŝ	5	4			5	9	5	3	ю	4	5	7	7	7
	15/	130	95	124	138	144	132	148	135			177	104	108	123	170	103	177	132	163	180
c	0	0	0	0	0	Mu.	0	0	0			0	Ma.	0	0	0	0	0	0	0	Mu.
Ċ	7:	.3	.3	4.	4.	0	1.2	.2	.1			.1	0.	.2	40.	50.	.30	30.	20.	20.	30.
c	0	0	7	2	3	0	0	0	0			5	5	0	0	0	0	0	0	0	2
	4	10	22	3	15	19	7	0	25		20	20	0	30	25	9	28	17	ю	30	28
1907.	Feb.	March	April	June	July	Aug.	Oct.	Dec.	Dec.	1908.	Jan.	Jan.	March	March	May	July	Sept.	Aug.	Nov.	Nov.	Dec.
	/0001	15811	15976	16093	16244	16402	16824	16582	16898		17016	17018	17154	17260	17494	17680	17968	18249	18428	18583	18675

a well 600 feet deep. A recent analysis of the water from this well gave the following results:

SANITARY ANALYSIS OF THE MUNICIPAL WATER SUPPLY OF MILLEDGEVILLE. Laboratory Number 18099. Sample Collected September 9, 1908.

Turbidity, Color, Odor, Residue on Evaporation, Chlorine in Chlorides, Oxygen Consumed,	0 0 322. 7. 1.0	Nitrogen as Free Ammonia, Alb. Ammonia, Nitrites, Nitrates, Alkalinity,	.048 .056 .000 .560 313.0
--	-----------------------------	--	---------------------------------------

Millstadt, St. Clair county, has no general supply.

Minonk, Woodford county, see Bulletin No. 5, page 73.

Moline, Rock Island county, see Bulletin No. 5, page 74. Additional analyses of the raw and filtered water from the Mississippi River are shown on pages 168 and 169.

Momence, Kankakee county, see Bulletin No. 5, page 77. An additional analysis of the water from the three wells gave the following results:

SANITARY ANALYSIS OF THE MUNICIPAL WATER SUPPLY OF MOMENCE. Sample Collected March 19, 1906. Laboratory No. 14122.

Turbidity, Color, Odor, Residue on Evaporation, Chlorine in Chlorides, Oxygen Consumed,	Clear 0 542. 17.0 2.2	Nitrogen as Free Ammonia, Alb. Ammonia, Nitrites, Nitrates, Alkalinity, Sulphates,	.152 .086 .013 .87 298.8 15.
--	-----------------------------------	--	---

Monmouth, Warren county, see Bulletin No. 5, page 77, obtains a water supply from three wells 430 feet deep in St. Peters sandstone. The plant is owned by the city and was established in 1888 at a cost of about \$200,000. The pumping station and reservoir are located inside the city limits. One air compressor, one Smedley deep well pump, one Holly distributing, and one Smedley distributing pump are used, with a capacity of about 1,000,000 gallons each. The daily consumption is about 475,000 gallons. Monticello, Piatt county, see Bulletin No. 5, page 77.

Morgan Park, Cook county, see Bulletin No. 5, page 77. Recent analysis of the water taken from the deep wells gave the following results:

SANITARY ANALYSIS OF THE MUNICIPAL WATER SUPPLY OF MORGAN PARK. Sample Collected January 28, 1907. Laboratory No. 15635.

Turbidity,CleaColor,0Odor,0Residue on Evaporation,1122.Chlorine in Chlorides,130.Oxygen Consumed,3.3	Nitrogen as Free Ammonia, Alb. Ammonia, Nitrites, Nitrates, Alkalinity,	.080 .032 .001 .560 249.5	Bacteria per c. c., Gas formers 10 c. c., 1 c. c., 0.1 c. c., Note—Bacterial ferred with by fo gas.	1— 2— 2— count inter-
--	--	---------------------------------------	--	--------------------------------

Morris, Grundy county, see Bulletin No. 5, page 77.

Morrison, Whiteside county, see Bulletin No. 5, page 77. Additional analyses of the city water supply from the three sources, spring, artesian well and the four driven wells, gave the following results:

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF MORRISON. Samples Nos. 15582 and 15583 taken from Spring 17' Dug. Collected January 14, 1907.

	App	eara	nce.					Nitro	gen a	s				Colo	n
							Amm	onia.					Ba	acillu	is.
Serial Number.	Turbidity.	Color.	.10DO	Residue on Evaporation.	Chlorine in Chlorides.	Oxygen Consumed.	Free.	Albuminoid.	Nitrites.	Nitrates.	Alkalinity.	Bacteria per c. c.	10 c. c.	1 c. c.	0.1 c. c.
15582 15583	0 0	0 0		340 340	12 11	1.55 1.25	.080 .078	.036 .026	.002 .001	1.920 1.920	287 281	200 300	1— 1—	2— 2—	2 <u>—</u> 2—

Samples Nos. 15584 and 15585 taken from Artesian Well 1,645' Drilled. Collected Jan. 14, 1907.

	Арр	bearanc	e.				Amm	Nitrog	en as					Color acillu	
Serial Number.	Turbidity.	Color.	.0dor.	Residue on Evaporation.	Chlorine in Chlorides.	Oxygen Consumed.	Free.	Albuminold.	Nitrites.	Nitrates.	Alkalinity.	Bacteria per c. c.	10 c. c .	1 c. c.	0.1 c. c.
15584 15585	0 0	0 0	0 0	296 250	3 3	1.15 1.15	.024 .144	.176 .088	.001 .000	.120 .200	271 271	1350 1800	2— 1—	2— 2—	2— 2—

Samples Nos. 15586 and 15587 taken from four Wells 75' Driven. Collected Jan. 14, 1907.

	App	earanc	e.						gen as				Ba	Colon cillu	s.
Serial Number.	Turbidity.	Color.	Odor.	Residue on Evaporation.	Chlorine in Chlorides.	Oxygen Consumed.	Amme .	Albuminoid.	Nitrites.	Nitrates.	Alkalinity.	Bacteria per c. c.	10 c. c.	1 c. c.	0.1 c. c.
15586 15587	$\begin{array}{c} 0 \\ 0 \end{array}$	0 0	0 0	352 356	11 11	1.9 1.3	.056 .016	.040 .064	.002 .002	1.84 3.040	312 310	960 1300	1— 1—	2— 2—	2— 2—

Mound City, Pulaski county, see Bulletin No. 5, page 78.

Mount Carmel, Wabash county, see Bulletin No. 5, page 79. Recent analyses of the water taken from the Wabash River at Mount Carmel gave the following results:

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF MOUNT CARMEL.

		A	opeara	nce.					Nitrog	gen as					olon		
								Amn	nonia.					E	acill	us.	
Serial Number.	Date of Collection,	Turbidity.	Color.	Odor.	Residue on Evaporation.	Chlorine in Chlorides.	Oxygen Consumed.	Free	Albuminoid.	Nitrites.	Nitrates.	Alkalinity.	Bacteria per c. c.	10 c. c.	1 c. c.	0.1 c. c.	Indol.
15033 15034 15036 17863 17684 17865	1906 Sept. 24 Sept. 24 Sept. 24 I908 Aug. 3 Aug. 3 Aug. 3	De.	Mud. Mud. Mud. 50. 40. 50.	0 0 Ea_ 0 0 0	488 492 512 306 321 289	90 90 90 41 41 39	6.6 6.7 6.6 3.7 4.1 3.4	.056 .048 .024 .086 .086 .056	.232 .240 .224 .232 .292 .360	.000 .006 .000 .006 .005 .002	.160 .154 .200 .560 .560 .640	205 209 203 172 174 171	3900 1140 4440	1+ 1+ 1+	2+ 2+ 2?	1+ 1— 1?	+ +

Mount Carroll, Carroll county, see Bulletin No. 5, page 79. A recent analysis of the water supply obtained from the artesian wells gave the following results:

SANITARY ANALYSIS OF THE MUNICIPAL WATER SUPPLY OF MOUNT CARROLL. Sample Collected October 19, 1908. Laboratory No. 18346.

Turbidity, Color, Odor, Residue on Evaporation, Chlorine in Chlorides, Oxygen Consumed,	10. 0.	Nitrogen as Free Ammonia, Alb. Ammonia, Nitrites, Nitrates, Alkalinity,	.056 .056 .000 .280 285.	Bacteria per c. c., Gas formers in 10 c. c., 1 c. c., 0.1 c. c., Indol.	280 1— 2— 2— —
--	-----------	--	--------------------------------------	--	----------------------------

The analysis of the mineral content gave the following results:

MINERAL ANALYSIS OF THE CITY WATER OF MOUNT CARROLL. L.

aboratory No. 18356.

Ions	Parts Per Million	Hypothetical Co	ombinations	Parts Per Million	Grains Per Gallon
Potassium, K Sodium, Na Ammonium, NH ₄ Magnesium, Mg Calcium, Ca Iron, Fe Alumina, Al ₂ O ₃ Nitrate, NO ₃ Chloride, Cl Sulphate, SO ₄ Silica, SIO ₂ Bases	10.3 19.4 .1 38.1 64.4 1.5 1.2 12.0 27.8 11.9 .7	Potassium nitrate, Potassium chloride, Sodium sulphate, Sodium sulphate, Sodium carbonate, Ammonjum carbonate, Calcium carbonate, Iron carbonate, Alumina, Silica, Bases, Total,	KNO3 KC1 Na2 SO4 Na2 SO4 Na2 CO3 (NH4)2 CO3 GaCO3 FeCO3 FeCO3 A12 O3 SiO2	2.0 18.1 5.6 41.1 9.0 .3 132.0 160.6 .2 1.5 11.9 .7 383.0	.12 1.06 .33 2.40 .52 7.70 9.36 .01 .09 .69 .04 22.34

Mount Morris, Ogle county, see Bulletin No. 5, page 79. Mount Olive, Macoupin county, see Bulletin No. 5, page 79. Nount Pulaski, Logan county, see Bulletin No. 5, page 79. Recent analyses of the water supply taken from the shallow wells gave the following results:

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF MOUNT PULASKI.

		Apper- Nitrogen as												Colon			
			ance					Amm	ionia.						Bacillu	s.	
Serial Number.	Date of Collection,	Turbidity.	Color.	Odor.	Residue on Evaporation.	Uniorine in Chlorides.	Oxygen Consumed.	Free.	Albuminoid.	Nitrites.	Nitrates.	Alkalinity.	Bacteria per c. c.	10 c. c.	1 c. c.	0.1 c. c.	Indol.
13558 13559 13560 16586 16588 17344 17346 17347 18300	1905 Sept. 18 Sept. 18 I907 Oct. 7 Oct. 7 1908 Apr. 20 Apr. 20 Apr. 20 Oct. 12	3 0	0 0 0 -0-	0 0 0 0	694 723 787 796 797 913 832 778	57 53 64 63 64 68 69 69	2.8 2.8 2.95 2.1 2.6 1.2 1.7 .6	.022 .036 .008 .032 .016 .016 .016 .024	.050 .124 .048 .048 .096 .048 .048 .064	.000 .001 .001 .002 .001 .001 .001	18.000 22.000 20.000 19.900 16.000 2.200 4.600 32.000	370 353 368 368 368 360	10 160 220	 1 1+	2— 1?1+	2 <u></u>	 +

Mount Sterling, Brown county, see Bulletin No. 5, page 79. Mount Vernon, Jefferson county, see Bulletin No. 5, page 80. Additional analyses of the water taken from the reservoir gave the following results :

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF MOUNT VERNON. Samples Collected October 29, 1906.

	Ap	peran	ce.			Nitrogen as							Colon Bacillus.		
							Amm	onia.					B	acıllı	us.
Serial Number.	Turbidity.	Color.	Odor.	Residue on Evaporation.	Chlorine in Chlorides.	Oxygen Consumed.	Free.	Albuminoid.	Nitrites.	Nitrates.	Alkalinity.	Bacteria per c. c.	10 c. c.	1 c. c.	0.1 c. c.
15269 15270	De. De.	.8 .8	0 0	259 261	7 8	7.95 7.75	.304 .528	.264 .400	.030 .034	.530 .446	40 48	180 280	1+ 1?	1 + 1— 2—	2— 2—

Moweaqua, Shelby county, see Bulletin No. 5, page 80. Murphysboro, Jackson county, see Bulletin No. 5, page 80. Naperville, DuPage county, see Bulletin No. 5, page 80. An additional analysis of the supply from the deep wells gave the following results :

SANITARY ANALYSIS OF THE MUNICIPAL WATER SUPPLY OF NAPERVILLE. Laboratory No. 17443. Sample Collected May 16, 1908.

Turbidity, 0 Color, 0 Mor, 0 Residue on evaporation, 533 Chlorine in chlorides, 32 Ogygen consumed,	Nitrogen as Free Ammonia, .000 Alb. Ammonia, .032 Nitrites, .001 Nitrates, .800 8 Alkalinity, .310.	1 c.c., 2—
--	--	------------

Nashville, Washington county, has no general supply.

Nauvoo, Hancock county, see Bulletin No. 5, page 80. An unsatisfactory plant has been installed, but is not used by the city. It pumps water to St. Mary's Academy only.

Neoga, Cumberland county, has no general supply.

Newman, Douglas county, see Bulletin No. 5, page 80, obtains water supply from a well 257 feet bored, located in the city park. A recent analysis of the water from this well gave the following results:

SANITARY ANALYSIS OF THE MUNICIPAL WATER SUPPLY OF NEWMAN. Sample Collected August 7, 1908. Laboratory No. 17885.

Turbidity,20Color,300Odor,0Residue on Evaporation,1248Chlorine in Chlorides,520Oxygen Consumed,27	Nitrogen as Free Ammonia, 3.700 Alb. Ammonia, .640 Nitrites, .000 Nitrates, 445.	Bacteria per c. c. 3 Gas formers in 1 10 c. c., 1 0.1 c. c., 2 00.1 c. c., 2 Indol, -
---	--	---

An examination of the mineral content of this water gave the following result:

MINERAL ANALYSIS OF THE CITY SUPPLY OF NEWMAN.

Ions	Parts Per Million	Hypothetical Cor	nbinations	Parts Per Million	Grains Per Gallon
Sodium, Na Ammonium, NH ₄ Magnesium, Mg Calcium, Ca Oxide of Iron, Fe ₂ O ₃ + Alumina, Al ₂ O ₃ Nitrate, NO ₃ Chloride, Cl Sulphate, SO ₄ Silica, SiO ₂ Bases,	376.5 4.8 24.9 50.9 15.2 .7 520. 10.2 22.8 6.8	Sodium nitrate, Sodium chloride, Sodium-carbonate, Ammonium carbonate, Magnesium carbonate, Calcium carbonate, Oxide of Iron and Alumina, Silica, Bases, Total,	NaNO 3 NaCl Na2CO 3 (NH4)2CO 3 MgCO 3 CaCO 3 Fe 20 3 Al 20 3 SiO 2	1.0 858.1 15.1 76.4 12.8 86.2 127.1 15.2 22.8 6.8 1221.5	.06 50.05 .88 4.46 .75 5.02 7.41 .89 1.33 .40 71.25

Newton, Jasper county, see Bulletin No. 5, page 80. Nilwood, Macoupin county, has no general supply.

Nokomis, Montgomery county, see Bulletin No. 5, page 80.

Normal, McLean county, see Bulletin No. 5, page 80. Additional analyses of the supply from the deep wells gave the following results :

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF NORMAL.

Appearance							Nitrog	gen as				C B	olon acillı	18.	\square																												
								Amm	Ammonia.		Ammonia.		Ammonia.		Ammonia.		Ammonia.		Ammonia.		Ammonia.		Ammonia.		Ammonia.		Ammonia.		Ammonia.		Ammonia.		Ammonia.		Ammonia.								
Serial Number.	Date of Collection.	Turbidity.	Color.	Odor.	Residue on Evaporation.	Chlorine in Chlorides.	Oxygen Consumed.	Free.	Albumfnoid.	Nitrites.	Nitrates.	Alkalinity.	Bacteria per c. c.	10 c. c.	1 c. c.	0.1 c. c.	Indol.																										
15571 16666 16669	1907 Jan. 14 Oct. 28 Oct. 28	5 25 30	.6 .6 .6	0 Tar 0	461 486 490	10.0 15. 15.0	8.7 11.3 10.5	2.600 2.80 2.00	.256 .400 .344	.004 .000 .000	.120 .080 .080	401 406 406	60 500 30	1-1? 1?	2— 2 + 2—	2-1? 1-1 1-1																											
*16672 16673 16784 16786 16789	Oct. 28 Oct. 28 Nov. 21 Nov. 21 Nov. 21		.0 .6 .4 .8 .4	0 0 0 0 0 0 0 0	1094 456 432 437 467	48. 15. 13. 15. 15.	4.0 10.5 7.2 9.2 8.55	$\begin{array}{r} .100\\ 3.600\\ 1.80\\ 1.112\\ 2.00\end{array}$.076 .240 .240 .550 .360	.030 .000 .000 .000 .000	1.57 .080 .320 .080 .240	402 406 398 417 417	Liq. 150 50 120 90	1? 1? 1? 1+ 1?	2? 2— 2— 1? 1 +	1? 2— 2— 2— 2—	+																										

* Old city well.

North Chicago, Lake county, see Bulletin No. 5, page 81, obtains its supply from Lake Michigan. The plant is owned by the city and was established in 1900. The plant is located on the lake shore. Worthington pumps are used. The daily consumption is 200,000 gallons. An additional analysis of the water from Lake Michigan gave the following results:

SANITARY ANALYSIS OF THE MUNICIPAL WATER SUPPLY OF NORTH CHICAGO. Sample Collected September 28, 1908. Laboratory No. 18216.

Turbidity,0.Color30.Odor,0.Residue on Evaporation,146.Chlorine in Chlorides,5.Oxygen Consumed,1.3	Nitrogen as Free Ammonia, .052 Alb. Ammonia, .280 Nitrites, .000 Nitrates, .320 Alkalinity, 116.	Bacteria per c. c., Gas formers in 10 c. c., 1 1 c.c., 1 0.1 c. c., 1 Indol,	420 $+$ $+$ $1?$ $+$ $1+$
---	---	---	---------------------------

North Peoria, Peoria county, see Bulletin No. 5, page 81. Oakland, Coles county, has no general supply.

Oak Park, Cook county, see Bulletin No. 5, page 81. Recent analyses of the water from the deep wells gave the following results.

			.lobrī	+	++++	+	+		+ + + + -	+
			.9.9 I.O	$2^{-1+1-}_{2^{-1}}$	$^{22}_{1+13}$	$^{2-}_{1?1+}$	 00000		+	
	Colon	Bacillus	.9.9 L	.; + 5555	22:2-1 22:2-1 22:2-1 22:2-1 2:2:2-1 2:2:2-1 2:2:2-1 2:2:2-1 2:2:2-1 2:2:2-1 2:2:2-1 2:2:2-1 2:2:2-1 2:2:2-1 2:2:2-1 2:2:2-1 2:2:2-1 2:2:2-1 2:2:2-1 2:2:2:2:2-1 2:2:2:2:2:2:2:2:2:2:2:2:2:2:2:2:2:2:2:	$^{2-2-22}_{1+1-1}$	$\begin{array}{c} 1+1\\ 2\\ 2\\ 1+1\\ 1+1 \end{array}$			
AKK.			.9.9 OI	$\frac{12}{1}$	++ _~ .+	13 13 13	$\frac{13}{12}$			+
UAK PAKK			Bacteria. Per e.e.	$^{30}_{40}$	$180 \\ 134 \\ 134 \\ 1100 \\ 3200 \\ 920 \\ 920 \\ 001 \\ 1100 \\ 001 \\ 100 \\ 001 \\ 0$	600 650 125 162	$ \begin{array}{c} 160\\ 194\\ 115\\ 360\\ 360\\ 360\\ 360\\ 360\\ 360\\ 360\\ 360$		230 650 275 44 275 750	001
D D			.vjinifsAlA	252 255 250 250	248 254 258 238 238 242		251 246 253 250	261 246 238 238	244 255 251 251 251	CC7
SUPPL			.zətratiN	.080 .068 .160 .146	231 231 231 231 236 230 236 230 236 236 236 236 236 236 236 236 236 236		.150 .060 .320 .320	196 174 174	221 280 280 280 280 280 280 280 280 280 280	00T.
WALEK SUPPLY	gen as		Vitrites.)12 ^{.002} .000 .014	.001 .008 .005 .003 .003 .003		.010 000 000 000	020 2900 2900 2900 2000	000 000 000 000 000 000 000 000 000 00	000.
	Nitrogen	Ammonia.	.bioaimudlA	.016 .060 .044 .112	.042 .048 .048 .048 .048 .048 .096		.064 .048 .048 .048 .048	040 048 040 040 052	080 064 040 1048 1048	7117
MUNICIPAL		Amn	Free.	.212 .278 .162 .240	148 222 280 280 224 224		1500 1500 1500 1500 1500 1500 1500 1500	-256 -336 -336 -336	2006442080 2006442080	007
ТНЕ			Oxygen Consumed.	4.0 3.8 4.0 4.0	0.000 0.000 0.000 0.000		0022855 55555555555555555555555555555555	1040	1.1 1.1 0.0 2.1 2.0 2.1 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	C.4
ANALYSES UF			Chlorine in Chlorides.	200 200 200 200	215 215 280 280 280 280 280 280 280 280 280 280		235 235 235 235 235 235	2500 2500 2500	22000000000000000000000000000000000000	2024
NALYS		,	Residue on Evaporation	897 889 894 883	879 865 867 875 875 873 873 873		931 920 889 889	954 868 868	828 828 858 858 858 858 858 858 858 858	0.00
	.e.		.10bO	0000	000000		00000	0000	000000	>
SANIJAKY	A ppearance.		Color.	0000	0000000		00000	0000	0.0000	10
	$\mathbf{A}_{\mathbf{j}}$		Turbidity.	0000	000000		00000	0000	0000000	>
			СоЛестіоп.	7. 111 111 111 8	55553 55553 55553 55553 5555 555 555 55				0000000	1/1
			fo 938C	1907. Nov . Nov . Nov .	March March June June June	July July Vluy Vluy	July July July July	July	Aug.	Juğ.
			Serial Ицпрег.	16722 16723 16723 16724 16725	17254 17255 17256 17256 17589 17590 17591	17672 17673 17674 17675	176764 17764 17765 17765 17767 17767	17804 17805 17806	17908 17908 17908 17910 17948	11747

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF OAK PARK.

OAK PARK

+ 1	+++ +++ +
2-2-	
××22 100 100 100 100 100 100 100 100 100 1	$\sim \sim $
<u></u>	그 그 작 약 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
$^{100}_{10}$	75 350 40 100 75 50 175 50 1175 1175 1175 1175 1
250 317 251 257	251 251 332 332 332 332 3317 255 242 242 242 242 242 242 255 255 255
.400 .560 .480	430 430 490 490 490 490 490 490 490 490 490 49
000.000	$\begin{array}{c} 0.09\\ 0.09\\ 0.000\\ 0.000\\ 0.001\\ 0.001\\ 0.001\\ 0.002\\ 0.00$
.072 .048 .048 .048	$\begin{array}{c} 0.080\\ 0.080\\ 1.128\\ 1.128\\ 0.056\\ 0.056\\ 0.056\\ 0.056\\ 0.056\\ 0.056\\ 0.056\\ 0.056\\ 0.024\\ 0.024\\ 0.024\\ 0.024\\ 0.024\\ 0.024\\ 0.024\\ 0.024\\ 0.056\\ 0.023\\ 0.024\\ 0.026\\ 0.$
.096 .304 .088 .088	2556 2556 2556 2556 2968 2968 2968 2008 2008 2008 2008 2008 2008 2008 20
5 1.0 1.3 1.3 1.3 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	12.2 33.2 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
250 230 216 216	220 220 2218 222 222 222 222 222 222 222 222 22
881 747 685 880 880	887 887 887 887 887 887 887 887 887 887
00000	Sil.
00000	00000000000000000000000000000000000000
00000	00000000000000000000000000000000000000
Aug.17 Aug.17 Aug.24 Aug.24	Aug.24 Aug.31 Aug.31 Aug.31 Aug.31 Aug.31 Aug.31 Sept.29 Sept.29 Sept.29 Sept.29 Sept.29 Sept.29 Sept.29 Dec. 29 Dec. 29 Dec. 29
17950 17951 17997 17999	18000 18001 18003 18035 18035 18036 18040 18041 18041 18257 182566 18256 18256 18256 18256 18256 18256 18256 18256 18256 18256

Analyses of the mineral content of the water from the deep wells gave the following results:

Ions	Parts per Million				
	17804	17805			
Sodium, Na Ammonium, NH ₄ Magnesium, Mg Calcium, Ca Oxide of Iron and Alumina, $Fe_2O_3 + Al_2O_3$ Nitrate, NO ₃ Chloride, Cl Sulphate, SO ₄ Silica, SiO ₂ Bases,	149.4 .3 35.5 83.9 2.2 .9 200. 169.0 14.7 .2	194.5 38.1 86.6 2.2 .9 290. 175.9 13.2 .2			

MINERAL ANALYSES OF THE CITY SUPPLY FROM OAK PARK.

Hypothetical Combinations	Parts pe	r Million	Grains per Gallon			
	17804	17805	17804	17805		
Sodium nitrate, NaNO ₃ Sodium chloride, NaCl Sodium sulphate, Na2SO ₄ Ammonium sulphate (NH ₄)2SO ₄ Magnesium sulphate, MgSO ₄ Calcium sulphate, CaSO ₄ Calcium sulphate, CaSO ₄ Calcium sulphate, CaSO ₄ Calcium sulphate, CaSO ₃ Calcium sulphate, CaSO ₃ Silica, SiO ₂ Bases,	$\begin{array}{c} 1.2\\ 320.0\\ 58.9\\ 1.1\\ 161.0\\ 10.0\\ \hline \\ 209.5\\ 2.2\\ 14.7\\ \hline \\ .2\end{array}$	1.2 478.6 17.3 1.8 188.3 18.0 202.9 2.2 13.2 .2	.07 19.25 3.43 .06 9.39 .58 12.22 .13 .86 .01	$\begin{array}{r} .07\\ 27.91\\ 1.01\\ .10\\ 10.99\\ \hline 1.05\\ 11.83\\ .13\\ .77\\ .01\\ \end{array}$		
Total,	788.8	923.7	46.00	53.87		

O'Dell, Livingston county, see Bulletin No. 5, page 81. Odin, Marion county, has no general supply.

O'Fallon, St. Clair county, see Bulletin No. 5, page 81. Olney, Richland county, see Bulletin No. 5, page 81. A recent mineral analysis of the city supply used only for fire protection, water power, etc., gives the following results:

> MINERAL ANALYSIS OF CITY SUPPLY FROM OLNEY. Sample Collected October 21, 1907. Laboratory No. 16629.

Ions	Parts Per Million	Hypothetical Com	Parts Per Million	Grain Per Gallon	
Nitrate, NO ₃ Chlorine, Cl Sulphate, SO ₄ Sodium, Na Ammonium, NH ₄ Magnesium, Mg Calcium, Ca Iron, Fe Alumina, Al ₂ O ₃ Silica, SiO ₂	$ \begin{array}{r} .7\\ .6.0\\ 33.1\\ 13.6\\\\ 4.2\\ 13.7\\ 3.6\\ 6.9\\ 18.2 \end{array} $	Sodium nitrate, Sodium chloride, Sodium sulphate, Magnesium sulphate, Magnesium carbonate, Calcium carbonate, Iron carbonate, Alumina, Silica, Total,	NaNO3 NaCl Na2SO4 MgSO4 MgCO3 CaCO3 FeCO3 Al2O3 SiO2	1.0 9.9 28.9 17.0 2.8 34.2 7.5 6.9 18.2 126.4	.06 .58 1.69 .99 .16 1.99 .44 .40 1.06

Onarga, Iroquois county, see Bulletin No. 5, page 81. Oquawka, Henderson county, has no general supply.

Oregon, Ogle county, see Bulletin No. 5, page 81, obtains its water supply from an artesian well. The plant is owned by the city and was established in 1896. The plant is located near the well at the edge of the Rock River.

Ottawa, La Salle county, see Bulletin No. 5, page 82. Additional analyses of the water from the artesian wells gave the following results:

		App	oeara	nce.					Nitrogen as						Color acillu		
								Amm	onia.								
Serial Number.	Date of Collection.	Turbidity.	Color.	Odor.	Residue on Evaporation.	Uhlorine in Uhlorides.	Oxygen Consumed.	Free.	Albuminoid.	Nitrites.	Nitrates.	Alkalinity.	Bacteria per c. c.	10 c. c.	1 c. c.	0.1 c. c.	Indol.
14938 14939 16491 18519 18520 18522 18522 18523 18524	1906 Sept. 10 Sept. 10 1907 Sept. 16 1908 Nov. 21 Nov. 21 Nov. 21 Nov. 21 Nov. 21	0.	0. 0. 20. 30. 0.	0 0 0 0 0	409 408 390 377 356 388	31 28 27 32 30 41	1.80 1.25 2.25 .7 .8 .8	.654 .580 .448 .400 .480 .120	.066 .062 .024 .024 .072 .048	.000 .000 .004 .016 .000 .040	.240 .040 .156 .104 .160 .600	320 322 329 316 318 314	$\begin{array}{c} 0\\ 0\\ 2500\\ \\ \\ \\ \\ \\ 3\\ 2\\ 2 \end{array}$	1-	2 2 2 2 2 2	2 2 2 2 2 2	
18526 18527 18580	Nov. 21 Nov. 21 Nov. 21 Dec. 29 Dec. 29	5. 40. 0.	10. 20. 15.	0 0 0	2641 2320 431	1200 1100 55	2.7 3.4 .5	1.200 1.120 .640	.048 .032 .056	.000 .003 .002	.120 .120 .120 .120	277 271 329	21 21 7 9	1— 1— 1— 1—	2— 2— 2— 2—	2— 2— 2— 2—	

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF OTTAWA.

Palatine, Cook county, see Bulletin No. 5, page 83. Recent analyses of the city water supply gave the following results:

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF PALATINE. Sample Collected August 17, 1908.

	Appearance.						Nitrogen as							Color acill		
		1	1				Amm	Ammonia.				e.c.	D	aciii	us.	
Serial Number.	Turbidity.	Color.	Odor.	Residue on Evaporation.	Chlorine in Oblorides.	Oxygen Consumed.	Free.	Albuminoid.	Nitrites.	Nitrates.	Alkalinity.	Bacteria per	10 c.c.	1 c.c.	0.1 c.c.	Indol.
17941 17942	$\begin{array}{c} 0 \\ 0 \end{array}$	20 0	0 0	708 743	8 7	1.9 2.2	.576 .024	.096 .064	.005 .028	.200 .372	144 131	60 18	1— 1—	2— 2+	2— 2—	_

A mineral analysis of the city water gave the following results:

Ions	Parts Per Million	Hypothetical Com	Parts Per Million	Grains Per Gallon	
Sodium, Na Ammonium, NH ₄ Magnesium, Mg Calcium, Ca Oxide of Iron Fe ₂ O ₃ and Alumina, Al ₂ O ₃ Nitrate, NO ₃ Chloride, Cl Sulphate, SO ₄ Silica, SiO ₂ Bases,	73.7 .7 54.5 65.9 2.8 .9 8.0 402.7 20.6 	Sodium nitrate, Sodium chloride, Sodium sulphate, Ammonium sulphate, Calcium sulphate, Calcium carbonate, Oxide of Iron and Alumina, Silica, Bases,	$\begin{array}{c} NaNO_{3} \\ NaCl \\ Na_{2}SO_{4} \\ (NH_{4})_{2}SO_{4} \\ CaSO_{4} \\ CaSO_{4} \\ CaCO_{3} \\ Fe_{2}O_{3} + \\ Al_{2}O_{3} \\ SiO_{2} \end{array}$	1.2 13.2 210.3 2.6 269.4 62.1 118.8 2.8 20.6	$\begin{array}{c} .07\\ .77\\ 12.27\\ .15\\ 15.71\\ 3.62\\ 6.93\\ .16\\ 1.20\\\end{array}$
		Total,	701.0	40.88	

MINERAL ANALYSIS OF THE CITY WATER FROM PALATINE.

Laboratory No. 17941.

Pana, Christian county, see Bulletin No. 5, page 83.

Paris, Edgar county, see Bulletin No. 5, page 83.

Park Ridge, Cook county, see Bulletin No. 5, page 84.

Paxton, Ford county, see Bulletin No. 5, page 84. Recent analyses of the supply taken from deep wells gave the following results:

		Ap	peara	nce.					Nitrogen as						olor		
Serlal Number.	Date of Collection.	Turbidity.	Color.	Odor.	Residue on Evaporation.	Chlorine in Oblorides.	Oxygen Consumed.	Amn Free,	Albuminold.	Nitrites.	Nitrates.	Alkalinity.	Bacteriz per c. c.	10 c. c.	1 c. c.	0.1 c. c.	Indol.
16390 16391	1907. July 29 Aug. 19 Aug. 19 Aug. 19 1908. Oct. 27	30	1. .8 .8 .0 120.	E. T. T. M. 0	513 477 473 447 508 508	2 2 2 2 2 2 5	5.9 5.0 5.4 6.0 4.8 5.5	6.40 5.00 6.20 5.40 4.60 6.066	.184 .160 .104 .200 .192 .138	.016 .001 .001 .000 .000 .000	.000 .200 .200 .200 .160 .280	487 483 483 487 475 469	50 130 125	1— 1 + 1+ 1—	2 + 2 - 1 + 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	2 + 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF PAXTON.

Pecatonica, Winnebago county, see Bulletin No. 5, page 84. Pekin, Tazewell county, see Bulletin No. 5, page 84. Additional analyses of the supply obtained from the wells gave the following results:

		Ap	peara	nce.					Nitrog	gen as		
			F					Amm	ionia.			
Serial Number.	Date of Collection.	Turbidity.	Color.	Odor.	Residue on Evaporation.	Chlorine in Chlorides.	Oxygen Consumed.	Free,	Albuminoid.	Nitrites.	Nitrates.	Alkalinity.
14668 14814	1906 July 23 Aug. 20	0 0	0 0	$\begin{array}{c} 0 \\ 0 \end{array}$	495 546	45 47	1.35 1.95	.040 .028	.040 .052	Trace .003	5.6 5.2	261 259

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF PEKIN

Peoria, Peoria county, see Bulletin No. 5, page 85. Additional analyses of the city supply gave the following results:

		Ар	peara	ince.					Nitrog	gen as	1				olon		
								Amm	ionia.					В	acillu	us.	
Serial Number.	Date of Collection.	Turbidity.	Color.	Odor.	Residue on Evaporation.	Unlorine in Chlorides.	Oxygen Consumed.	Free.	Albuminoid.	Nitrites.	Nitrates.	Alkalinity.	Bacteria per c. c.	10 c. c.	1 c. c.	0.1 c. c.	
16155 16156 16181	1907 June 17 June 17 July 1	15 0	.3 0	Mu. 0	376 390	24 24	2.9 1.9	.024 .008	.080 .056	.003 .000	.700 .600	214 229	530	 1?	1?	 2—	
16182	July 1	0											120	1?	1 + 1?	1?	
16212 16213 16214 16215 16273	July 8 July 8 July 8 July 8 July 8 July 22	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 3 \\ 0 \end{array} $.1 0 .1 0	0 0 0 0 0	433 392 428 402 343	29 29 28 29 18	1.8 1.9 1.8 2.1 2.0	.018 .024 .014 .008 .018	.062 .140 .060 .094 .082	.000 .006 .000 .000 .000	.600 .43 .520 .480 .320	211 222 238 233 248	$102 \\ 130 \\ 45 \\ 250 \\ 500$	1— 1— 1— 1 + 1 +	1 - 2 - 2 - 2 - 2 - 2 - 1 + 1	1— 2— 2— 2— 2— 2—	
16274	July 22	5	.1	0	363	25	2.4	.032	.084	.005	.240	220	100	1 +	1 - 1 + 1	2—	Liq.
16321 16322 16323	July 29 July 29 July 29												1000 23 19	1? 1— 1—	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	2-2-2-2-2	

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF PEORIA.

Peotone, Will county, see Bulletin No. 5, page 87, obtains its supply from wells 136 feet deep.

Peru, La Salle county, see Bulletin No. 5, page 87.

Petersburg, Menard county, see Bulletin No. 5, page 87.

Pinckneyville, Perry county, see Bulletin No. 5, page 87, obtains its water supply from Baucamp Creek, with Breeze Lake as a reserve. The plant is owned by the city and was established in 1890 at a cost of \$45,000 to \$50,000. The plant is located on the bank of the creek northeast of the city limits. The pumps have a capacity of 1,250,000 and 1,500,000 gallons.

Plainfield, Will county, obtains its water supply from a well 100 feet drilled. Recent analyses of the water from this well gave the following results:

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF PLAINFIELD. Samples Collected August 3, 1908.

	App	earar	ice.				Ammo		gen a	5			В	Colo acill	n us.	
Serial Number.	Turbidity.	Color.	Odor.	Residue on Evaporation.	Chlorine in Chlorides.	Oxygen Consumed.	Free.	Albuminoid.	Nitrites.	Nitrates.	Alkalinity.	Bactería per c. c.	10 c. c.	1 c. c.	0.1 c. c.	Indol.
17878 17879 17880	0 0 0	$\begin{array}{c} 0\\ 10\\ 0\end{array}$	$\begin{array}{c} 0\\ 0\\ 0\\ 0 \end{array}$	968 993 1008	204 206 206	1.5 1.2 1.2	.056 .064 .024	.072 .104 .072	.005 .006 .004	14.000 11.200 16.000	355 355 360	120 420 22	1— 1? 1—	2— 2— 2—	2 <u>—</u> 2 <u>—</u> 2—	

An analysis of the mineral content gave the following results:

MINERAL ANALYSIS OF THE CITY SUPPLY OF PLAINFIELD.

Ions	Parts Per Million	Hypothetical Com	binations.	Parts Per Million	Grains Per Gallon
Sodium, Na Magnesium, Mg Calcium, Ca Oxide of Iron, Fe ₂ O ₃ + and Alumina, Al ₂ O ₃ Nitrate, NO ₃ Chloride, Cl Sulphate, SO ₄ Silica, SiO ₂ Bases,	123.4 64.2 79.1 13.0 61.9 204.0 136.0 19.4 4.8	Sodium nitrate, Sodium chloride, Magnesium sulphate, Magnesium chloride, Calcium carbonate, Oxide of Iron and Alumina, Silica, Bases,	NaNO ₃ N a C 1 MgSO ₄ MgCO ₃ MgCl ₂ CaCO ₃ Fe ₂ O ₃ + Al ₂ O ₃ SiO ₂	84.9 254.8 171.0 42.2 66.6 198.0 13.0 19.4 4.8	4.95 14.87 3.97 2.46 3.88 11.55 .76 1.13 .28
		Total,		854.7	49.85

Plano, Kendall county, see Bulletin No. 5, page 87. An additional analysis of the water from the spring 16 feet dug gave the following results:

SANITARY ANALYSIS OF THE MUNICIPAL WATER SUPPLY OF PLANO.

Sample Collected November 30, 1908. Laboratory No. 18576.

Turbidity, Color, Odor, Residue on Evaporation, Chlorine in Chlorides, Oxygen Consumed,	0 0 358 9. .5	Nitrogen as Free Ammonia, Alb. Ammonia, Nitrites, Nitrates, Alkalinity,	.042 .054 .000 3.040 273.	Bacteria per c.c., Gas Formers in 10 c.c., 1 c.c., 0.1 c.c., Indol,	250 1— 2— 2—
--	---------------------------	--	---------------------------------------	--	-----------------------

Polo, Ogle county, see Bulletin No. 5, page 87, obtains its water supply from artesian wells 2,200 feet deep. The plant is owned by the city and was established in 1890. Dean horizontal duplex pumps are used. The daily consumption is 65,000 gallons.

Pontiac, Livingston county, see Bulletin No. 5, page 88. An additional analysis of the supply taken from the Vermilion River gave the following results:

SANITARY ANALYSIS OF THE MUNICIPAL WATER SUPPLY OF PONTIAC. Sample Collected October 5, 1908. Laboratory No. 18269.

Turbidity, Color, Odor, Residue on Evaporation, Chlorine in Chlorides, Oxygen Consumed,	0 10. 0. 299. 9. 2.1	Nitrogen as Free Ammonia, Alb. Ammonia, Nitrites, Nitrates, Alkalinity,	0.062 .180 .000 .320 170.	Bacteria per c. c., Gas formers in 10 c.c., 1 c.c, 0.1 c.c., Indol,	42 1
--	-------------------------------------	--	---------------------------------------	--	---------

Princeton, Bureau county, see Bulletin No. 5, page 88. A recent analysis of the supply from the deep well gave the following results:

SANITARY ANALYSIS OF THE MUNICIPAL WATER SUPPLY OF PRINCETON.

Sample Collected August 12, 1908. Laboratory No. 16378.

Turbidity, Color, Odor, Residue on Evaporation, Chlorine in Chlorides, Oxygen Consumed,	$0\\0\\488.\\62.\\3.95$	Nitrogen as Free Ammonia, Alb. Ammonia, Nitrites, Nitrates; Alkalinity,	.720 .016 .075 .525 299.6	Bacteria per c.c., Gas Formers in 10 c.c., 1 c.c., 0.1 c.c., No ice when	600 1 2 received.
--	-------------------------	--	---------------------------------------	---	----------------------------

Prophetstown, Whiteside county, see Bulletin No. 5, page 89. Pullman, Cook county, see Bulletin No. 5, page 89.

Quincy, Adams county, see Bulletin No. 5, page 89. Additional analyses of the raw and treated water from the Mississippi River gave the following results:

THE WATERS OF ILLINOIS

			.lobal										+		+	+	+	+ -	+ +	+	+	+	+ +	l
			.9.9 I.O	2 +	2—	5 +	+ +	 + -	1+1	+	+ -	+	5		2—	+ 5	 + -	+ 7	2 + 1	1 21+	1	. 10	1 71+ 2 + 1	
	Colon	Bacillus.	.9.9 I	2 +	2 +	+	+ +	+ +	2 +	2+		+ +			2 +	2 +	+	7 + 7	2 + -2	1 ? 1+	2 +	5 + 	1+1. + 1.	
			.9.9 01	+		<u> </u>	+ +	<u> </u>	+	+	+ -	+ +	<u> </u>		<u> </u>	+	+	+ -	+ +	+	+		+ +	
			Васtегія рег с.с.	2,600	32,006	23,400	4 800	28,000	21,000	33,700	2,500	2000	210		1,200	630	2,000	2,200	2,400	6.000	1,240	900	2,000	
			.LtinitsilA	170	140	117	126	132	132	158	166	160	176		192	200	124	102	771	116	144	182	174	
			.səfrtiN	.880	.320	.520	.440 16	.480	.160	.510	.471	080	.240		.360	.47	59	6C.	550	560	.280	6.400	320	
	en as		.sətirtiN	.002	.003	.003	100.	.003	.000	.010	600. 200	200.	.002		.005	.010	.015	010	010	000	.003	000.	.002 1002	
	Nitrogen	onia.	.bionimudlA	.240	.240	.344	.760	.480	.512	.464	.464	-452 284	.284		.246	.358	.860	9CC.	1.030	.430	.442	.350	.428	
		Ammonia.	.991 ^H	.056	.136	.240	.120	.112	.024	.040	.072	012	.064		.058	.020	.128	9/0.	164	080	.096	.030	.038	
		<u> </u>	Consumed. Oxygen	10.9	9.55	10.15	21.95	13.45	17.2	15.0	14.7	12.9	9.0		7.6	10.8	18.9	15./	21.9	14.0	4.6	8.6	8.8 7.0	
			Chlorine in Chlorides.	3	б	ŝ	s c	14	2	7	<i>ლ</i> (4 6	4		ю	5	S.	4 0	n vo	9 4	3	1 0 1	4 1-	
			Residue on Fvaporation.	250	247	276	802 214	362	478	439	464 265	202 240	230		237	270	858	410	757	296	244	271	256 266	
			.10bO	2 E.	0	2 E.	00	0	0	0	0	.0 U	0		Mu.	0	Mu.	ц <	р Ц	i 0	0	щ	00	
		Appearance	.10I0D	4.	.5	Mud	9 Mud	Mud	Mud	Mud	<i>с</i> і (i c	10		2	4.	οç ι	с. 0	. 09	180.	140.	45.	. 40 . 04	
		A.	.Turbidity.	De.	V. D.	V. D.	. D.	210	350	325	300	30	30		30	20	550	120	001	190	90	80	28	ĺ
			L	31	5	4		4	-	29	26	11 م	6		9	27	6	° :	16	9	3	45	17	I
er.			Date of Oollection.	1906. Dec.	Feb.	March	April Mav	June	July	July	Aug.	Nov	Dec.	1908.	Jan.	Jan.	March	April Mari	June	Julv	Aug.	Sept.	Dec.	ĺ
Raw Water.			Seria l Number,	15505	15674	15789	15898	16098	16191	16319	16432	164734	16826		16947	17055	17177	667/1	17570	17667	17860	18141	18598	

ANALYSES OF THE MUNICIPAL WATER SUPPLY OF MOLINE.

0	U	IN	O	Y

													(QU	II	٩C	γ															
												+				I	+	I	I	+	+	I			+	+	+	+	+	+	+	+ +
2—	2—	2—	2 +	2—	1+1	1?1-		2—	2—	2—	2^{-}	2—	2—		2—	$^{2-}$	2—	2—	1?1-	2?	2^{-}	2—	+									$^{2-}_{2-}$
2 +	2—	2—	2 +	2—	- +]	$\frac{2}{2}$		+	1+1	+ 	2—	2?	$^{2-}$		$^{2-}$	$^{2-}$	1+1-	2—	4 +	2 +	1+1	2—	1?1+		2 +	2?	1?1+	2 +	1+1?	1+1-	1-1?	$^{2}_{1+1-}$
1		<u> </u>	+	<u> </u>	+	<u> </u>		+	<u> </u>	+	+	1?	<u> </u>		+	<u> </u>	+	<u> </u>	1?	+	1?	1?	+							-		$\frac{1?}{1+}$
10	53	450	95	300	66	160		100	60	600	500	30	20		400	230	400	120	250	400	300	38	7,200		103	140	174	360	280	52	50	$^{240}_{120}$
91	103	84	88	75	91	84	87	85	128	117	98	85	106		110	104	80	110	82	67	88	114	110	107								$^{102}_{98}$
.480	.920	.640	.450	.220	.480	.160	.040	.320	.540	.480	.280	.400	.320		.360	.720	.560	.433	.360	.992	1.000	.200	.520	6.400								.160 .120
.002	.006	.008	.030	.025	.004	.000	.002	.001	.000	.000	000.	.000	000.		.006	600.	.006	.007	.006	.008	000.	000.	000.	000.								.000
.136	.144	.152	.136	.144	.144	.152	.176	.160	.168	.152	.136	860.	.108		060.	.130	.148	.114	.164	.276	.250	.242	.246	.176								.158 .136
.048	.136	.096	.080	.040	.048	.016	.048	.080	.016	.032	.056	.024	.032		.034	.046	.204	.026	.058	.068	.072	.044	.092	.048								.044 .058
6.1	5.75	4.65	5.3	5.0	6.2	6.4	5.0	5.9	5.8	5.7	5.25	6.8	5.0		3.3	5.4	4.6	3.5	5.3	8.9	6.9	5.3	5.5	4.4								3.6 2.5
3	ю	2	5	0	4	4	ю	m	2	ю	5	ę	4		4	4	5	5	4	6	9	ę	m	5								6
159	163	158	137	124	152	171	164	173	186	184	156	145	164		144	130	146	161	138	123	151	157	169	149								$144 \\ 150$
0	0	0	0	0	0	2 Mu.	3 E.	1F.	0	0	Mu.	0	0		0	0	Mu.	0	0	0	0	0	0	0					<u> </u>		<u> </u>	00
2	ć	Mud	2	9	ć	0	5	4	0	0	0	0	0	-	0	0	0	6	40.	50.	40.	40.	30.	30.								$^{20.}_{0.}$
0	0	0	0	0	ю	2	~	2	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0								00
1906. Dec 31	190/. Feb. 5	March 4	April 1	May 1	June 4	July 1	July 11	July 22	July 29	Aug. 26	Sept. 9	Nov. 11	Dec. 2	1908.	Jan. 6	Jan. 27	March 9	April 6	May 11	June 15	July 6	Aug. 3	Aug. 3	Sept. 14	Oct. 12 Dec. 7							
15506	15675	15790	15899	16019	16099	16192	16233	16281	16320	16433	16477	16735	16827		16948	17056	17176	17300	17427	17571	17668	17861	17862	18142	18143	18144	18145	18146	18147	18148	18149	$18308 \\ 18599$

Filtered Water

Rantoul, Champaign county, see Bulletin No. 5, page 93.
Redbud, Randolph county, has no general supply.
Ridgely, Sangamon county, is part of the City of Springfield.
River Forest, Cook county, see Bulletin No. 5, page 93.
Riverside, Cook county, has no general supply.
Riverton, Sangamon county, has no general supply.
Robinson, Crawford county, see Bulletin No. 5, page 93.

Rochelle, Ogle county, see Bulletin No. 5, page 93, obtains its water suply from artesian wells 1,000 feet deep. The plant is owned by the city and was established in 1906 at a cost of \$75,000. The plant is located within the city limits. Worthington pumps with a capacity of 750,000 gallons each are used. The daily consumption is 300,000 gallons.

Rock Falls, Whiteside county, see Bulletin No. 5, page 94.

Rockford, Winnebago county, see Bulletin No. 5, page 94. Additional analyses of the water from the five wells gave the following results:

		Ap	peara	ince				Amn	Nitrog 10nia.	en as					olon acillu	15.
Serfal Number,	Date of Collection,	Turbidity.	Color.	Odor.	Residue on Evaporation.	Uhlorine in Chlorides.	Oxygen Consumed.	Free. Albuminoid.		Nitrites.	Nitrates.	Alkalinity.	Bacteria per c.c.	10 c.c .	1 c. c.	0.1 c. c.
16080 16533 16600 16601 16602 16604	1907 May 31 Sept. 23 Oct. 14 Oct. 14 Oct. 14 Oct. 14	5 0 0 0 0 0	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 18 \\ 0 \end{array} $	0 0 0 Tar 0	295 280 295 325 307 319	9 6 6 6 6	1.55 1.8 1.2 1.3 1.6 1.5	.024 .000 .004 .004 .012 .020	.048 .032 .020 .040 .028 .048	.000 .000 .002 .004 .000 .004	.040 .160 .160 .240 .000 .160	280 293 288 297 299 297	$ \begin{array}{r} 35 \\ 20 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 ?	2—	2— 2— 2— 2— 2— 2—

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF ROCKFORD.

Rock Island, Rock Island county, see Bulletin No. 5, page 95, Additional analyses of the raw and treated water from the Mississippi River at Rock Island gave the following results:

		Ap	pearan	ce.					Nitrog	en as				C	olon acillu	6	
Serial Number.	Date of Collection.	Turbidity.	Color.	Odor.	Residue on Evaporation.	Uhlorine in Uhlorides.	Uxygen Consumed.	Amm	onia. PioujunqIV	Nitrites.	Nitrates.	Alkalinity.	Bacteria per c. c.	10 c. c.	1 c. c.	0.1 c. c.	Indol.
18479 18584	1908 Nov. 9 Nov. 30	10. 10.	60. 40.	0 Mu.	192 207	6 6	6.0 5.0	.012 .048	.220 .270	.000 .002	.120 .200	155 147	8800 1300	1? 1+	2+ 2+	2 + 2—	+ +

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF ROCK ISLAND.

Filtered

Raw River Water.

17020	Jan. 20	20.	.4	0	210	4	7.5	.038	.178	.006	.074	176	800	1+	1?		+
	Oct. 19 Nov. 9 Nov. 30	10. 5. 0.	30. 30. 20.	$\begin{array}{c} 0\\ 0\\ 0\end{array}$	189 198 176	6 6 6	6.4 6.2 3.3	.018 .014 .006	.180 .204 .080	.000 .000 .000	.000 .120 .200	155 159 147	480 2200 40	l l l	$\frac{2}{2}$	2 <u>—</u> 2 <u>—</u> 2—	+

Rogers Park, Cook county, see Bulletin No. 5, page 99. Roodhouse, Green county, see Bulletin No. 5, page 99.

Roseville, Warren county, see Bulletin No. 5, page 99.

Rossville, Vermilion county, see Bulletin No. 5, page 99, obtains its water supply from three wells 85 to 100 feet in depth. The plant is owned by the village and was established in 1896.

Rushville, Schuyler county, see Bulletin No. 5, page 99.

St. Anne, Kankakee county, see Bulletin No. 5, page 100. Recent analyses of the city water supply, taken from the drilled well, gave the following results:

SANITARY ANALYSES	OF THE	MUNICIPAL	WATER	SUPPLY	OF ST	ANNE.
-------------------	--------	-----------	-------	--------	-------	-------

		Ap	opeara	nce.					Nitrog	gen as				D	Color acilli	n	Γ
					ġ			Amn	nonia.					В	aciin	is.	
Serial Number.	Date of Collection.	Turbidity.	Color.	Òdor.	Residue on Evaporation.	Unlorine in Chlorides.	Oxygen Consumed.	Free.	Albuminoid	Nitrites.	Nitrates.	Alkalinity.	Bacteria per c. c.	10 c. c.	1 c. c.	0.1 c. c.	Indol.
17812 17813	1908 July 27 July 27	60 40	150 70	0 0	943 939	9 8	2.6 2.7	.672 .800	.064 .080	.005 .023	.200 .217	238 233	240 780	1— 1—	2 <u>—</u>	2— 2—	_

An examination of the mineral content gave the following results:

MINERAL	ANALYSIS	OF 7	ГНЕ С	ITY	SUPPLY	FROM	ST.	ANNE.
---------	----------	------	-------	-----	--------	------	-----	-------

Ions	Parts Per Million	Hypothetical Con	nbinations.	Parts Per Million	Grains Per Gallon
Sodium,Na Ammonium, NH ₄ Magnesium, Mg Calcium, Ca Oxide of Iron Fe ₂ O ₃ + and Alumina, Al ₂ O ₄ Nitrate, NO ₃ Chloride, Cl Sulphate, SO ₄ Silica, SiO ₂ Bases,	69.0 1.0 60.8 148.1 2.8 1.0 8.0 448.5 14.3 .5	Sodium nitrate, Sodium sulphate, Sodium sulphate, Ammonium sulphate, Calcium sulphate, Calcium carbonate, Oxide of Iron and Alumina, Silica, Bases, Suspended Solids, Total,	$\begin{array}{c} NaNO_{3} \\ NaCl \\ Na_{2}SO_{4} \\ (NH_{4})_{2}SO_{4} \\ MgSO_{4} \\ CaSO_{4} \\ CaCO_{3} \\ Fe_{2}O_{3} + \\ Al_{2}O_{3} \\ SiO_{2} \end{array}$	1.4 13.2 195.5 3.6 300.6 104.9 292.6 2.8 14.3 .5 14. 943.4	.08 .77 11.40 .21 17.53 6.12 17.06 .16 .83 .03 .82 55.01

Laboratory No. 17813.

St. Charles, Kane county, see Bulletin No. 5, page 100, obtains a water supply from wells 350 feet deep. The plant is owned by the city and was established in 1907 at a cost of \$45,000. The reservoirs are located on the highest point in the city. Worthington pumps, with a capacity of 600 gallons per minute, are used. Recent analyses of the supply taken from the deep wells gave the following results:

```
SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF ST. CHARLES.
```

Samples Collected September 28, 1908.

	Appearance.		nce.				Amn	Nitrog 10nia.	gen as					Color Bacillu	n 18.	
Seríal Numb er.	Turbidity.	Color.	Odor.	Residue on Evaporation.	Uniorine in Chlorides.	Oxygen Consumed.	Free.	Albuminoid.	Nitrites.	Nitrates.	Aikalinity.	Bacteria per c. c.	5	1 c. c.	0.1 c. c.	Indol.
18227 18228	5 0	$\begin{array}{c} 0 \\ 0 \end{array}$	Tar 0	490 512	20 20	.7 .4	.360 .320	.056 .056	.076 .019	.644 3.021	394 343	58 60	1+ 1+	2— 1+1—	1+1 <u>-</u> 2—	+ +

St. Elmo, Fayette county, see Bulletin No. 5, page 100. Salem, Marion county, has no general supply. Sandoval, Marion county, has no general supply.

Sandwich, DeKalb county, see Bulletin No. 5, page 100. Recent analyses of the supply taken from the deep well gave the following results:

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF SANDWICH.

Samples Collected September 14, 1908.

	App	beara	ance.			gen as				Colo	n Bac	illus.				
Serial Number.	Turbidity.	Color.	Odor.	Residue on Evaporation.		Oxygen Consumed.	Free.	Albuminoid.	Nitrites.	Nitrates.	Alkalinity.	Bacteria per c. c.	10 c. c.	1 c. c.	0.1 c. c.	Indol.
18159 18160	5 10	20 30	0 0	550 550	20 22	.7 1.1	.064 .104	.072 .104	.005 .005	2.800 2.960	349 349	140 18	1— 1—	2— 2—	2— 2—	_

Savanna, Carroll county, see Bulletin No. 5, page 100. Additional analyses of the water obtained from the deep well gave the following results:

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF SAVANNA.

	Appearance			Appearance.					Nitrog 10nia.	en as					Colo acill		
Serial Number.	Date of Collection.	Turbidity.	Color.	Odor.	Residue on Evaporation.	Chlorine in Chlorides.	Oxygen Consumed.		Albuminoid.	Nitrites.	Nitrates.	Alkalinity.	Bacteria per c. c.	10 c. c.	1 c. c.	0.1 c. c.	Indol.
16220 16961 18250 18415	1907 July 8 1908 Jan. 6 Sept. 30 Nov. 2	3 0 0	0 0 $3.$	0 0 	302 292 282	7 7 9	.7 1.0 1.2	.024 .024 .040	.024 .032 .024	.003 .002 .000	2.000 .120 .280	251 274 267	17 120 72,000 12.	1— 1— 1— 1—	2— 1—	2— 2— 1— 2—	

Seneca, La Salle county, see Bulletin No. 5, page 100, obtains its water supply from artesian wells. The plant is owned by the village and was established in 1878 at a cost of about \$1,000 for each well sunk. The wells flow constantly and no pumping station has been built. The water is stored in cisterns.

Shawneetown, Gallatin county, has no general supply. Sheffield, Bureau county, see Bulletin No. 5, page 100. Shelbyville, Shelby county, see Bulletin No. 5, page 100. Additional analyses of the water obtained from the shallow wells gave the following results.

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF SHELBYVILLE.

Samples Collected April 1, 1907.

	Appeara	ance.						Nitroge	en as				Colon Bacillus.		
			1				Ammonia.						Ba	cillu	s.
Serial Number,	Turbidity.	Color.	Odor.	Residue on Evaporation.	Chlorine in Chlorides.	Oxygen Consumed.	Free.	Albuminoid.	NITITES.	Nitrates.	Alkalinity.	Bacteria per c. c.	10 c. c.	1 c. c.	0.1 c. c.
15894 15895	V.Slight Distinct	0 . 2	0 0	359 355	15 19	2.0 2.1	.040 .048	.040 .040	.003 .006	.280 .440	260 266	$\begin{array}{c} 0\\ 0\end{array}$	1— 1—	2— 2—	2— 2—

An analysis of the mineral content of this water gave the following results:

MINERAL ANALYSIS OF THE CITY WATER FROM SHELBYVILLE.

Laboratory No. 15895.

Ions	Parts Per Million	Hypothetical Combinations.	Parts Per Million	Grains Per Gallon
Sodium, Na Magnesium, Mg Calcium, Ca Iron, Fe Alumina, Al ₂ O ₃ Nitrate, NO ₃ Chloride, Cl Sulphate, SO ₄ Silica, SiO ₂	$ \begin{array}{c} 13.2 \\ 35. \\ 84.0 \\ 1.2 \\ 3.2 \\ 1.9 \\ 19.0 \\ 78.4 \\ 6.6 \\ \end{array} $	Sodium nitrate,NaNO3Sodium chloride,NaClMagnesium sulphate,MgSO4Magnesium carbonate,MgCO3Calcium carbonate,CaCO3Iron carbonate,FeCO3Aluminium,Al2O3Silica,SiO2Bases,SiO2	$\begin{array}{c} 2.6\\ 31.4\\ 98.2\\ 52.6\\ 209.7\\ 2.5\\ 3.2\\ 6.6\\ 1.1 \end{array}$.15 1.83 5.72 3.07 12.23 .15 .19 .38 .06
		Total,	407.9	23.78

Sheldon, Iroquois county, see Bulletin No. 5, page 102.

Sorento, Bond County, has sent no report.

Sparta, Randolph county, see Bulletin No. 5, page 102.

Springfield, Sangamon county, see Bulletin No. 5, page 102. Additional analyses of the water from the Sangamon River gave the following results:

		.lobn1		+ +
		.ə.ə I.0	2^{-1}	
Colon	Bacillus.	.9.9 I	+ + +	$\begin{array}{c} 1+1-\\ 1?1-\\ 2+\\ 2+\\ 2\end{array}$
		.9.9 01	++	<u>+ + ~ + </u>
		Васtегія рег с.с.	660 220 20 1,000 340 800 Liq.	190 130 870 2,000 390
		.ViinitsilA	217 216 31 197 182 182 75 222 233 271 320	232 228 193 236 236 232
		.zəfrtiN	$\begin{array}{c} 1.120 \\880 \\387 \\387 \\960 \\720 \\720 \\720 \\320 \\320 \\640 \\2.800 \end{array}$	1.270 1.320 .400 .320 .600
en as		.sətirtiN	.000 .000 .013 .013 .000 .000 .008 .004 .003 .003	.002 .000 .000 .000
Nitrogen as	Ammonia.	.bionimudlA	.048 .072 .072 .048 .048 .048 .046 .046 .144	.030 .026 .256 .158 .068
	Amm	.991 ^H	.024 .024 .026 .016 .072 .072 .032 .032 .000	.004 .008 .088 .088 .062 .008
		Oxygen Oxygen	2.1 3.4 1.0 2.5 3.5 3.5 3.5 6.25 6.25	1.7 2.2 3.1 3.5 2.0
		Сһlотіпе іп Сhloтіdea.	ν ο ο ν 8 - ο ν ο ο ο ο ο ο ο ο ο ο ο ο ο ο	7 5 112 13
		Residue on Evaporation.	272 250 250 251 257 250 250 251 257 257 257 257 257 257 257 257 257 257	288 300 281 322
		Odor.	0 0 0	000 00
	Appearance	Color.	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	0. 0. 30. 30.
	e.	.Turbidīty.	0 De De 0 0 0 15 138 260 260 0	5 0 20 0 0
		Collection.	1907 1907 14 14 15 18 18 18 18 18 18 18 18 18 27 29 27 29 10 00	22 25 31 31 31 -
		to 9tRU	19 Feb. Reb. Mar. Mar. Apr. Apr. Apr. Sept. Dec.	Jan. Jan. Jan. May Aug. Aug. Dec.
		Serial Number.	15714 15772 15787 15787 15787 15787 15787 15862 16004 16005 16434 16467 16442	17051 17052 17462 17965 17971 18690

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF SPRINGFIELD.

Spring Valley, Bureau county, see Bulletin No. 5, page 102.

Staunton, Macoupin county, see Bulletin No. 5, page 103, obtains its supply for sprinkling, fire protection, etc., from a large reservoir. The plant is owned by the city, and was established in 1895 at a cost of \$12,000.

Sterling, Whiteside county, see Bulletin No. 5, page 103.

Stonington, Christian county, see Bulletin No. 5, page 103. Recent analyses of the city water supply gave the following results:

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF STONINGTON.

Laboratory No.	15890	15891		15890	15891
Turbidity, Color, Odor, Residue on Evaporation, Chlorine in Chlorides, Oxygen Consumed,	Decided . 6 .0 340. 18.0 3.55	Decided .6 .0 340. 13.0 3.65	Nitrogen as Freë Ammonia, Alb. Ammonia, Nitrites, Nitrates, Alkalinity,	.688 .048 .002 .360 310.8	.736 .056 .002 .120 315.

Samples Collected April 1, 1907.

Streator, La Salle county, see Bulletin No. 5, page 103. Additional analyses of the water from the Vermilion River are shown on page 193.

Sullivan, Moultrie county, see Bulletin No. 5, page 106. Sumner, Lawrence county, has no general supply. Sycamore, DeKalb county, see Bulletin No. 5, page 106.

SPRING VALLEY TO STREATOR 193

			.loba1	+
			.1 c. c.	
	Colon	Dacillus	1 c. c.	
			10 c. c.	++++++++++++++++++++++++++
STREATOR			Ваеtегі я рег с. с.	3,100 7,200 7,000 4,100 1,0000 1,0000 1,0000 1,0000 1,00000000
OF ST			Alkalinity.	22321212222222222222222222222222222222
SUPPLY			.sətritiN	$\begin{array}{c} \begin{array}{c} 4.4\\ 4.000\\ 2.560\\ 2.560\\ 2.560\\ 2.560\\ 2.560\\ 1.280\\ 2.560\\ 1.280\\ 2.560\\ 1.280\\ 0.000\\ 0.000\\$
	cii as		Nitrites.	
Nitroven	Romini	Ammonia.	.blonimudlA	$\begin{array}{c} 0.000\\ 0.$
MUNICIPAL WATER		Amn	.9 6 .	00000000000000000000000000000000000000
THE MU	Oxygen Consumed.			w4%w7 w-2000,044,00,044,00,044,00,00 0-2000,000,000,000,000,00,00,00,00,00,00,0
OF	Chlorine In Chlorides.			నునును జను1ౖ0జౖ⊳ లెనిం4జు144,00 0055588,00 88,8 88,8
ALYSES			Residue on ToitsrogsvH	$\begin{array}{c} 333333333333333333333333333333333333$
SANITARY ANALYSES	e.		.10bO	00000000000000000000000000000000000000
ANITAI	Appearance.		.ToloD	<u>, 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </u>
s	A		.Turbidity.	
			Date of Collection.	1907 1907 Feb. 4 Feb. 4 Feb. 4 Feb. 4 Feb. 4 Feb. 4 Feb. 12 Feb. 12 Feb. 12 Feb. 12 June 3 June 3 June 3 June 3 June 3 June 3 June 3 June 3 June 3 Sept. 23 Sept. 24 Sept. 23 Sept. 24 Sept. 24 Sept. 24 Sept. 24 Sept. 25 Sept. 25
			Serial Number.	* 15638 * 15639 15658 * 15659 * 15659 * 15709 * 15709 * 15709 * 15709 * 15709 * 15709 * 15709 * 15525 166405 166650 177405 166605 177405 166605 177405 166605 177405 177755 177755 177755 177755 177755 177755 17775

Taylorville, Christian county, see Bulletin No. 5, page 106. A recent analysis of the supply from Taylorville gave the following results :

SANITARY ANALYSIS OF THE MUNICIPAL WATER SUPPLY OF TAYLORVILLE. Sample Collected October 15, 1908. Laboratory No. 18327.

Turbidity, Color, Odor, Residue on Evaporation, Chlorine in Chlorides, Oxygen Consumed,	3. 20. 0. 492. 37. 2.6	Nitrogen as Free Ammonia, Alb. Ammonia, Nitrites, Nitrates, Alkalinity,	.088 .048 .240 6.560 289.
--	---------------------------------------	--	---------------------------------------

An analysis of the mineral content gave the following results :

MINERAL ANALYSIS OF THE CITY WATER FROM TAYLORVILLE.

Sample Collected October 15, 1908. Laboratory No. 18327.

Ions	Parts Per Million	Hypothetical Combinations.	Parts Per Million	Grains Per Gallon
Sodium, Na Magnesium, Mg Calcium, Ca Oxide of Iron, Fe2O3 and Alumina, Al2O3 Nitrate, NO3 Chloride, Cl Sulphate, SO4 Silica, SiO2 Bases,	23.3 29.3 97.2 9.0 28.7 37. 52.2 10.1 1.2	Sodium nitrate, NaNO ³ NaCl Sodium chloride, Mg Cl ₂ Magnesium sulphate, Mg CO ₃ Magnesium sulphate, Mg CO ₃ Calcium carbonate, Mg CO ₃ Oxide of Iron Fe ₂ O ₃ + and Alumina, SiO ₂ Silica, SiO ₂ Total, Total,	39.4 31.9 23.7 65.4 35.0 242.6 9.0 10.1 1.2 458.3	2.30 1.86 1.38 3.81 2.04 14.14 .52 .59 .07 26.71

Tolono, Champaign county, see Bulletin No. 5, page 107.

Toluca, Marshall county, obtains a city supply from a new artesian well 2,000 feet drilled. A recent analysis of the water from this well gave the following results :

SANITARY ANALYSIS OF THE MUNICIPAL WATER SUPPLY OF TOLUCA.

Sample Collected October 9, 1908. Laboratory No. 18289.

Turbidity,400.Color,70.Odor,PeculiarResidue on Evaporation,3465.Chlorine in Chlorides,1500.Oxygen Consumed,31.	Nitrogen as Free Ammonia, .640 Alb. Ammonia, .560 Nitrites, .160 Alkalinity, .213.	Bacteria per c. c. Gas formers in $10 c. c.,$ $1 c. c.,$ $1 c. c.,$ $2 +$ $0.1 c. c.,$ $1 - 1 +$
--	--	--

Toulon, Stark county, has no general supply. Trenton, Clinton county, has no general supply.

Troy, Madison county, has no general supply.

Tuscola, Douglas county, has sent no report.

Upper Alton, Madison county, see Bulletin No. 5, page 107. An additional analysis of the supply taken from the Mississippi River gave the following results:

SANITARY ANALYSIS OF THE MUNICIPAL WATER SUPPLY OF UPPER ALTON. Sample Collected October 29, 1906. Laboratory No. 15274.

Turbidity,ClearColor,.1Odor,0.Residue on Evaporation,215.Chlorine in Chlorides,10.Oxygen Consumed,5.75	Nitrogen as Free Ammonia, .024 Alb. Ammonia, .136 Nitrites, .000 Nitrates, .76 Alkalinity. 140.2	Bacteria per. c. c., 1500+ Gas formers in 1 c. c., 1? 1 c. c., 2- 0.1 c. c., 1+ 1-
--	---	--

Urbana, Champaign county, see Bulletin No. 5, page 108. For additional analyses see Champaign.

Utica, La Salle county, see Bulletin No. 5, page 109.

Vandalia, Fayette county, see Bulletin No. 5, page 109.

Venice, Madison county, see Bulletin No. 5, page 109.

Vermont, Fulton county, has no general supply.

Vienna, Johnson county, has no general supply.

Virden, Macoupin county, obtains its supply from two shallow wells about 18 feet deep.

Virginia, Cass county, has no general supply.

Walnut, Bureau county, see Bulletin No. 5, page 109, obtains its water supply from a well about 265 feet drilled. The plant is owned by the village and was established in 1897 at a cost of \$9,000.

Warren, Jo Daviess county, see Bulletin No. 5, page 109. Additional analyses of the water from the 700 foot well gave the following results :

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF WARREN. Samples Collected September 22, 1908.

Laboratory No.	18196	18197		18196	18197		18196	18197
Turbidity, Color, Odor, Residue on Evaporation, Chlorine in Chlorides, Oxygen Con- sumed.	0. 0. 359. 16. .2	0. 0. 0. 363. 16. .8	Nitrogen as Free Am., Alb. Am., Nitrites, Nitrates, Alkalinity,	.016 .032 .000 .800 319.	.040	Bacteria per c.c Gas formers in 10 c.c., 1 c.c., 0.1 c.c., Indol,	18,400 1— 2— 2—	2,200 1— 2— 2—

The examination of the mineral content gave the following results:

Ions	Parts Per Million	Hypothetical Combinations.		Parts Per Million	Grains Per Gallon
Patassium, K Sodium, Na Magnesium, Mg Calcium, Ca Iron, Fe Aluminum Oxide Al2 O ₃ Nitrate, NO ₃ Chloride, Cl Sulphate, SO ₄ Silica, SiO ₂ Bases,	$ \begin{array}{r} 1.9\\ 9.0\\ 32.7\\ 82.8\\ .7\\ 3.5\\ 16.0\\ 28.6\\ 16.4\\ 1.6\\ \end{array} $	Potassium nitrate, Sodium nitrate, Sodium chloride, Magnesium chloride, Magnesium carbonate, Calcium carbonate, Iron carbonate, Aluminum oxide, Silica, Bases, Total,	KNO ₃ NaCO ₃ MgCl ₂ MgCO ₃ CaCO ₃ CaCO ₃ FeCO ₃ FeCO ₃ Al ₂ O ₃ SiO ₂	4.9 .7 22.3 8.3 35.9 85.2 206.7 1.5 .3 16.4 1.6 378.7	$\begin{array}{c} .29\\ .04\\ 1.30\\ .19\\ 2.09\\ 4.97\\ 12.06\\ .09\\ .02\\ .96\\ .09\\ \hline 22.10\\ \end{array}$

Laboratory No. 18196.

MINERAL ANALYSIS OF THE CITY WATER FROM WARREN.

Warsaw, Hancock county, see Bulletin No. 5, page 109.

Washington, Tazewell county, see Bulletin No. 5, page 109, obtains its water supply from a well 90 feet deep. The plant is owned by the city. A double-acting pump is used.

Waterloo, Monroe county, see Bulletin No. 5, page 109, obtains its water supply from Fountain Creek and a reservoir fed by springs. The plant is owned by the city and was established in 1897 at a cost of \$2,000. The plant is located two miles from the city. Two Dean pumps are used.

Waterman, DeKalb county, obtains its water supply from a well 73 feet drilled. A recent analysis of the water from this well gave the following results:

SANITARY ANALYSIS OF THE MUNICIPAL WATER SUPPLY OF WATERMAN.

Sample Collected July 23, 1907. Laboratory No. 16286.

Turbidity, Color, Odor,20. 6. 0.Residue on Evaporation, Chlorine in Chlorides, Oxygen Consumed,393. 7.	Nitrogen as Free Ammonia, Alb. Ammonia, Nitrites, Nitrates, Alkalinity,	.416 .056 .000 .280 350.9	Bacteria per c.c. Gas formers in 10 c.c., 1 c.c., 0.1 c.c.,	150 1 <u></u> 2 <u></u> 2 <u></u>
---	--	---------------------------------------	---	--

Watseka, Iroquoios county, see Bulletin No. 5, page 109.

An additional analysis of the supply taken from the artesian well gave the following results:

SANITARY ANALYSIS OF THE MUNICIPAL WATER SUPPLY OF WATSEKA.

Sample Collected December 10, 1906. Laboratory No. 15443.

Turbidity, Color, Odor, Residue on Evaporation, Chlorine in Chlorides, Oxygen Consumed	Clear .0 343. 4.	Nitrogen as Free Ammonia, Alb. Ammonia, Nitrites, Nitrates, Alkalinity,	2.28 .094 .004 295.7
---	---------------------------	--	-------------------------------

An examination of the mineral content gave the following results:

MINERAL ANALYSIS OF THE CITY WATER SUPPLY FROM WATSEKA.

Ions	Parts Per Million	Hypothetical Combinations.	Parts Per Million	Grains Per Gallon
Sodium, Na Ammonium, NH4 Magnesium, Mg Calcium, Ca Oxide of Iron, Fe2O3 and Alumina, Al2O3 Chloride, Cl Sulphate, SO4 Silica, SiO2 Bases,	76.3 2.9 15.9 47.9 1.2 4.0 19.8 9.0 3.8	Sodium chloride, Sodium sulphate, Ammonium carbonate, Magnesium carbonate, Oxide of Iron and Alumina, Silica, Bases, NaCl Na ₂ CO ₃ (NH ₄) ₂ CO ₃ (Silica, SiO ₂	6.6 29.3 147.7 7.7 55.1 119.5 1.2 9.0 3.8 379.9	.38 1.71 9.61 .45 3.21 6.97 .07 .52 .22 22.14

Waukegan, Lake county, see Bulletin No. 5, page 109. Additional analyses of the water from Lake Michigan gave the following results:

THE WATERS OF ILLINOIS

		.lobn1		++	ĺ
		.9.9 I.O	$\begin{array}{c} \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ $		
Colon Bacillus	Davina.	.o.o I	+++ 		
		.9.9 OL	<u>++</u>		
		Васtегія рег с.с.	5,300 5,300 10,600 780 3,500 1,700 1,700 1,700 4,000 4,000	7,000 4,200 200	
		.viniisiiA	126 126 128 128 128 128 128 128 128 128 128 128	120 118 116 116	
		.setsitiN	200 200 200 200 200 200 200 200 200 200	.515 .480 .760	
en as		.estittiV	000 000 000 000 000 000 000 000 000 00	.005 .000 .000	
Nitrogen	onia.	.bionimudlA	136 136 137 138 138 138 138 138 138 138 138 138 138	086 082 084 088	
	Ammonia.	.951 ^H	0164 0164 0164 0164 0164 0164 0164 0164	.042 .024 .016	
		Охувел Соляитеd.	8488 8488 8488	$^{1.5}_{$	
		Ohlorine in Ohloridea.	40000000444444404	N44N	
		Residue on Evaporation.	$\begin{array}{c} 1000 \\ 10$	154 134 140 141	
e.	;	Odor.	3 Mo. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Mu. 0	
Appearance.		Color.	-00000000000000000000000000000000000000	0000	
A		Turbidity.	2019.2029.2029.2020.002	0000	
	_	Date of Collection.	1907. Jan. 22 Jan. 22 Jan. 22 Feb. 12 Feb. 12 Feb. 12 Feb. 25 Feb. 25 Feb. 25 Feb. 25 Feb. 25 Feb. 25 July 22 July 22 July 22	Jan. 18 Jan. 18 March 23 June 22 June 22	
		Serial TedmuN	15538 15539 15599 15500 15700 15700 15760 15760 15760 15760 15760 15760 15760 15760 15760 15760 15760 15760 15760 15760 15760 15760 15760 15760 15770 15760 15770 15700 15770 15770 15770 15770 15770 157700 157700 157700 157700 157700 157700 157700 157700 157700 157700 157700 157700 157700 157700 157700 1577000 157700 15770000000000	17014 17233 17599* 17600*	

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF WAUKEGAN.

198

Waverly, Morgan county, has no general supply.

Wenona, Marshall county, see Bulletin No. 5, page 110, obtains its water supply from an artesian well 1,850 feet deep. The plant is owned by the city and was established in 1892 at a cost of \$18,000. A Downey pump, with a capacity of 6,000 gallons per hour, is used. The daily consumption is 100,000 gallons. The annual cost of pumping is \$1,200.

West Chicago, DuPage county, see Bulletin No. 5, page 110. West Hammond, Cook county, see Bulletin No. 5, page 111. Westville, Vermilion county, has no general supply. Wheaton, DuPage county, see Bulletin No. 5, page 111. Whitehall, Greene county, see Bulletin No. 5, page 111. Wilmette, Cook county, see Bulletin No. 5, page 111. Additional analyses of the water from Lake Michigan gave the following results:

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF WILMETTE.

Samples Collected December 28, 1908.

Laboratory No.	18648	18649		18648	18649		18648	18649
Turbidity, Color, Odor, Residue on Evapo- ration, Chlorine in Chlorides, Oxygen Consumed,	.4 20. 0. 141. 7. 1.4	3. 25. 0. 133. 5. 1.4	Nitrogen as Free Am., Alb. Am., Nitrites, Nitrates, Alkalinity,	.016 .096 .001 .240 116.	.038 .090 .002 .280 116.	Bacteria per c.c., Gas formers in 10 c.c., 1 c.c., 0.1 c.c., Indol,	45 1— 2— 2— +	44 1— 2— 2—

Wilmington, Will county, see Bulletin No. 5, page 111. Winchester, Scott county, has no general supply.

Winnetka, Cook county, see Bulletin NO. 5, page 111. Additional analyses of the water from Lake Michigan are shown on page 200.
Winstanley Park, is part of the City of East St. Louis.
Woodstock, McHenry county, see Bulletin No. 5, page 113.
Wyoming, Stark county, see Bulletin No. 5, page 113.
Yorkville, Kendall county, see Bulletin No. 5, page 113.

		.lobal				+ +	++	+ +	Ι
		.5 .9 î .0	1+	2— 1+1		$^{2-}_{1-1}$		+ 	1+1
Colon	Bacillus.	J G. G.	2—	2+ 2-	+ + 20000	$^{1-1?}_{2+1?}$	$\frac{1}{2}$	 0000	5-
		10 c. c.	1+	<u> </u> <u>-</u>	+++	<u>+</u> -	; <u>+++</u>	++ +	++
		Bacteria. per c. c.	467	290 1 i.d	8,400 180 420 30	460 520 760 370	780 85 650 650	76,000 840 20	12,000
		.TinilsalA	126	116	116 108 132 96	126 130 124	113 113 112	109 1122	124
		Uitratea.	080.	.160	.000 .160 .160 .160	.320 .760 .240	360 240 280	360 360 360 360	240
en as		Vitrites.	.001	.002	000	00.000 000.000 000.000		100,00,00	100
Nitrogen	Ammonia.	.bionimudlA	.120	.174	.112 .044 .084 .076	.082 .128 .080	.136 .086 .098	.116 .094	.122
	Amn	Free.	.022	.016	.012 .008 .016 .032	.008 .032 .022 .048	020000000000000000000000000000000000000	016	.044
		Oxygea Consumed.	3.55	4.55	3.2 3.2 2.8 2.8	4.0 2.3 4.0	2-1-1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2	4.4.6.4	2.1
		Chlorine in Ohlorides.	4	4	NON4	5000	w441	NNLO	° ∞
		Residue on Evaporation.	151	156	155 116 120 94	164 174 178 240	149 151 151	152 153 148	161
2	с.	.10b0	0	0	0000	0000	Mustv	`0000	Earthy
	Appearance.	Color.	0	0	0000	0,000	00000	10	10
<	¢	.Turbidity.	De	De	20 0 35 10	20000	nooē	wwwe	35
		Date of Collection.	1906 Dec. 10	Jan. 28	Nov. 4 Nov. 4 Dec. 16 Dec. 16	Jan. 20 Feb. 24 Mar. 30 Apr. 20	May 26 June 24 July 20	Sept. 21 Oct. 26 Oct. 26	Dec. 20
		Serial Number.	15442	15629	16396 16896 16868 16868	17003 17132 17253 17253	17483 17484 17601	18199 18365 18366	18640

SANITARY ANALYSES OF THE MUNICIPAL WATER SUPPLY OF WINNETKA.

INDEX

1

Abbott, W. L	5
Abingdon	110
Adams County	118, 183
Albion	110
Aledo	110
Alexander County	83, 117
Alkalinity	107
Altamont	110
Alton	110
Amboy	100, 110
Ammonia, Method of distinguishing	43
Anna	. 110
Arcola	110
Arlington Heights	111
Ashland	111
Assumption	111
Astoria	
Athens	111
Atlanta	100, 111
Auburn	111
Augusta	100 111
Aufora	100, 111
Bachmann, F.	5, 76 108
Bacteria	108
Bahrenberg, Mrs. Carrie T	111
Barrington	111 111
Barry	29, 34, 76
Batavia	111
Baucamp Creek	181
Beardstown	100, 111
Belleville 100,	112, 113
Belvidere	100, 115
Bement	115
Benton	115
Berwyn	100, 115
Birdsall, L. I	5,35
Blair, Frank G	
Bloomington	. 100, 115
Blue Island	115 149
	147, 190
Bond County	147, 190
Boston Health Department	. 79
Bourbonnais Township	92
Braceville	116
Bradley	116
Braidwood	116
Breese	116
Breese Lake	181
Brinkoetter, F. J	29
Brooklyn	116
Brookport	116, 117
Brookside Township	85
Brucine method	14 173
Brown County	1/3
Bunker Hill	192, 195
Burrill, T. J	172, 195
Busey, Mrs. Mary E	5
Bush, Mabel	5.6
Bushnell	100, 117
Byron	100, 117
Cairo 83 86	
Calvert, C. K	104
a	. 36, 104
Cambridge	100, 118
Camp Point	100, 118
Cambridge	100, 118

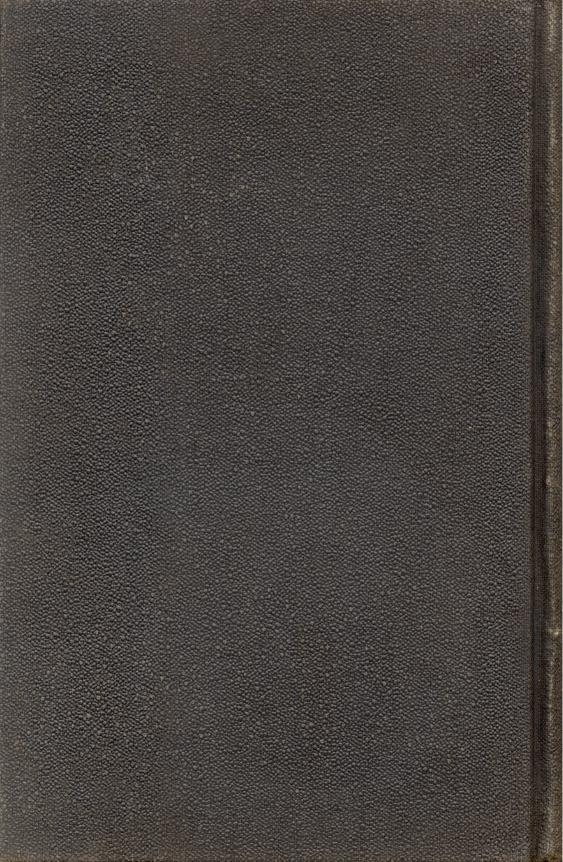
Carbon dala 100	. 119
Carbondale	
Carbon Hill	119
Carroll County 119, 162, 170, 172	
Carlinville	119
Carlyle	, 119
Carmi	
Carpentersville	119
Carrollton	, 119
	119
Carterville	119
Carthage	
Casey	119
Cass County	, 195
Centralia	. 119
Cerro Gordo	' 119
Chadwick	. 119
Charact E M	
Chamot, E. M	+, 13
Champaign 83, 87, 90, 100), 119
Champaign	4, 15), 119 149,
100, 194	, 195
Charleston). 121
Chatsworth). 121
Chenoa · · · · · · · · · · · · ·	121
	121
	121
Chicago Department of Health 10	121
Chicago Department of Health 10	123
Chicago Heights	
Chicago River	10
Chillicothe), 123
Chlorine	106
Chrisman	, 123
Christian County 111, 132, 180, 192	, 194
Clark County 119, 163	. 164
Classification of Waters	99
Chrisman	141
Clinton	
Clinton County	, 194
Coal City	124
	124
Colchester	124
Coles County 121, 164	, 175
Čolfax	124
Collins, W. D	104
Collins, W. D), 124
Colon Bacillus	7, 121
	67
Complement, Fixation of	105
Color Cook County. 83, 91, 111, 115, 116, 121, 130, 131, 137, 146, 147, 148, 156, 158, 166, 170, 175, 179, 180, 183, 186, 187 Columbia	105
Cook County 85, 91, 111, 115, 116, 121,	123,
130, 131, 137, 146, 147, 148, 156, 158,	162,
166, 170, 175, 179, 180, 183, 186, 187	, 199
Columbia	124
	186
Creal Springs.	124
Crebs, J.M.	125
Creal Springs. Crebs, J.M.	124
	124
	124
Cullom	124 7, 174
Cumberland County	(, 1/4)
Danville), 125
Davison, Dr. Charles	5
Decatur), 127
DeKalb), 130
DeKalb County 130, 144, 189, 192	, 196
Delavan	, 196 130
Deneen, Charles S	5
	130
Desplaines	3, 141
	120
Dixon	130 131
Dolton Station	151

Index—Continued.

		Continued.
Douglas County 110, 174, 10, 174, 10, 174, 10, 174, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	105	Grundy County 116 110 124 144 171
Douglas County 110, 174,	131	Grundy County 116, 119, 124, 144,, 171 Hamilton
Drainage Canal	7	Hamilton County
Dug Wells, Protection for	96	Gründy County 116, 119, 124, 144, 171 Hamilton 147 Hamilton 162 Hancock County 111, 119, 147, 159, 174, 196 Hanover Township 91 Hardness of Illinois Municipal Wa- 91 ter Supplies 98 Harris, Dr. N. McL 45 Harrisburg 147 Harvard 148 Hatch, F. L 5 Haugan, H. A 5 Havgan, H. A 100, 148
Dundee	131	Hanover Township
DuPage County 137, 149, 174,	199	Hardness of Illinois Municipal Wa-
DuQuoin	131	Harris Dr N McL 45
Earlyille	132	Harrisburg 147
East Dubuque	132	Harvard 148
Edgemont	112	Harvey
East St. Louis	199	Haugan H Δ 5
Edgar County	132	Havana
Edwards County	110	Havgan, H. A
Edwardsville	132	Henderson County 179
Effingham	133	Henry County 118 142
Elfingham County	133	Herrin
Elgin	133	Highland 148
Elmhurst	137	Highland Park 148
Elmwood	140	Hillsboro 149 Hinsdale 149
El Paso Embarass River	140	Hinsdale 149 Homer 149
Engineering Experiment Station 36,	104	Hoopeston 149
Eureka	140	Hopkins, C. G
Embarass River	137 5	Hinsdate 149 Homer 149 Hoopeston 149 Hopkins, C. G. 81 Illinois R 149 Illinois State Board of Health 11 Illinois Cohe Cohe in all former 26 104 10
Evanston	137	Illinois State Board of Health 11 Illinois State Geological Survey 36 104
Fairbury	140	Impurities. Limits of
Fairbury Fairfield	141	Illinois State Geological Survey
Farmington	141	Indiana State Board of Health 10
Farm Water Supply	/8	Indol 108 Interpretation of Pecults Sonitary 105
Farming City Farm Water Supply	141	Indiana State Board of Health10Indol108Interpretation of Results, Sanitary.105Iroquois County146, 170, 179, 190, 197Jackson County119, 173Jacksonville100, 149Jacobson, Andrew5James, Edmund J5, 6Jasper County173Jersey County151Jersey County101, 151Jo Daviess County132, 142, 195Johnson County152
Ford County	180	Jackson County
Forest	141	Jacksonville
		Jacobson, Andrew
Fort Sheridan	141 196	Iasper County 175
Fountain Creek	133	Jefferson County 173
Franklin County	115	Jersey County 151
Fountain Creek Fox River Franklin County Preeburg Freeport Fulton County 111, 118, 124, 141, 162, Galena Galsburg Gallva Gardner	141	Jerseyville $\dots \dots \dots$
Freeport	141	Johnson County
Fulton County 111 118 124 141 162	195	Joliet 152 Jonesboro 152
Galena	142	Jonesboro 152 Kane County111, 119, 131, 133, 144, 188 Kankakee Kankakee
Galesburg	142	Kane County111, 119, 131, 133, 144, 188
Gallatin County	142	Kankakee County, 83 92 116 152 170 187
Gardner	144	Kankakee River
Gas Formers	108	Kansas 156
Gardner Gas Formers 7,1 Gelston, W. R	35	Keithsburg 156
Geneseo100,1	144	Kenilworth 156
Geneva	144	Kewanee
Germantown	145	Kansas 156 Keithsburg 156 Kendall County 182, 199 Kenilworth 156 Kekense 101, 156 Kinkwood 164 Kinwood 158 Knox County 110, 142, 158 Knoxville 101, 158 Ladd 158 Ladd 151 Ladd 158
Gibson City	145	Kinmundy 158
Gilman	146 146	Knox County 110, 142, 158
Glasgow Scotland	82	Knoxville 101, 158
Glencoe	146	Lacon
Golconda	146	Ladd 158
Grand Ridge	140	LaGrange
Gravville	147	Lake County
Grand Ridge Granite City Grapyville Greene County	199	Lake Forest 159
Green Creek	147	Lake Michigan 10, 100, 109, 137, 146, 149
Greenneid	147	100, 109, 1/5, 197, 199
Greenup	147	LaSalle
Greenville 100,	147	LaSalle County 124, 132, 146, 162,
Griggsville	147	163, 166, 179, 181, 189, 192, 195
Greenview	147	Ladd 158 LaGrange 101, 158 LaHarpe 159, 159 Lake County 141, 148, 159, 175, 197 Lake Corest 150, 109, 137, 146, 149 Lake Michigan 156, 159, 175, 197, 199 Larark 162, 159, 175, 197, 199 Lasalle 101, 162 Lasalle 101, 162 Lasalle 101, 162 Lasalle 163, 166, 179, 181, 189, 192, 195 Lawrence County 162, 192 Lawrenceville 162
Giout, A. I	5	

INDEX.

Index—Continued.


Lee County		130
Lee County		162
Lemont		162
Lena		162
		162
Lewistown		162 162
Lexington.		162
Lincoln		162
Litchfield		162
Little Wabash River		164
LeRoy Lewistown. Lewington Lincoln Litchfield Little Wabash River Livingston County	121 124 131	140
Ervingston County	141,178,	183
Lockport	141,170,	162
Logan County	111 162	162 173
McDonough County	117 124	162
McDonough County	117,124,	162
MaHanry County	149 162 162	102
MoLeon County 115	140, 102, 103, 101, 101, 102, 103, 100, 100, 100, 100, 100, 100, 100	199 175 162
MaLeenshere	, 121, 124, 102,	162
Measure		162
Lockport Logan County McDonough County McHenry McHenry County McLean County Macomb Macon County Macoupin County	107	162
Macon County		163
Macoupin County	.117, 119, 140, 175, 102	195
	175, 192,	195
Madison		162
Madison County110, 132	, 147, 148, 162,	195
Mammoth Spring		137
Madison		163
Marion		163
Marion County83	3, 119, 158,178,	188
Marissa		163
Maroa		163 163
Marseilles		163
Marshall Marshall County Martinsville	101, 158,	163
Marshall County		199
Martinsville		164
Mascoutah	101	164
Mason City		164
Mason County		164
Massac County		167
Mattoon		164
Maywood		166
Meeker, Arthur	····· ,	5
Melrose Park		166
Menard County		181
Mendota	,	166
Mercer County		156
Metropolis.		167
Michigan State Board of Health		10
Milford		170
Milledgeville		170
Millstadt		170
Minonk	100	170
Mississinni River	28 36 38 39	147,
inisoisoippi iuvei	167 183 186	195
Moline	100,	167
Mason City		170
Monmouth		170
Monroe County	124	196
Monmouth Monroe County Monroe County Montcello. Moore, A. F. Morgan County Morgan Park. Morris.	149 162	175
Monticello		170
Moore A F		1/0
Morgan County	149	100
Morgan Dark	149,	170 171 171
Morris		171
Morrison	101	171
Morrison Moultrie County Mount Carmel Mount Carroll	101,	102
Mount Cormel		172
Mount Carroll		175
Mound City	101	171
Mound City Mount Morris	101,	172
		173
Mount Olive		173
Mount Pulaski		173
Mount Sterling	101,	173
Mount Vernon		173
		1/2
Mount Olive Mount Pulaski Mount Sterling Mount Vernon Moweaqua		173 173 173 173 173 173

Murphysboro Naperville Nashville		173
Naperville		174 174 174 174 174
Nashville		174
Nauvoo		174
Neoga Newman	100,	174
Newton	100,	175
Newton New York Health Department	79,	80
New Fork Realin Department Nitrite Investigations Nitrogen as Albuminoid Ammonia Nitrogen as Albuminoid Ammonia Nitrogen as Free Ammonia Nitrogen as Nitrates Nitrogen as Nitrates Nitrogen as Nitrates Nitrogen as Nitrates Nitrogen as Nitrates	,	46
Nitrates, Determination by Reduc-		
tion with Aluminium		14
Nitrogen as Albuminoid Ammonia		106
Nitrogen as Free Ammonia		$\begin{array}{c} 106 \\ 107 \end{array}$
Nitrogen as Nitrotos		107
Nilwood		107 175 175 175 175
Nokomis		175
Normal North Chicago North Fork Creek	100,	175
North Chicago	100,	175
North Fork Creek		164
North Peoria		175 175
Oakland		175
Oak Park	100,	175
O'Dell		178
Odin		$\begin{array}{c} 178 \\ 105 \end{array}$
Odor		178
Odor O'Fallon O'gle County	183	186
Ohio River 116	183, 117,	167
Olney	,	178
Önarga	101,	179
Orarga Oquaqua Oregon	- /	179
Oregon	101,	109
Ottawa Oxygen Consumed	101,	179
Oxygen Consumed		106
Palatine	101,	179
Pana	101	180
Paris Park Ridge	101,	$180 \\ 180$
Part, S. W		100
Paxton		180
Pecatonica		180
Pekin	101,	180
Peoria	101, 175,	$\begin{array}{c}180\\180\end{array}$
Peoria County 123, 140,	175,	180
Peotone	101,	181
Perry County	131,	181 181
Peru		181
Peotone Perry County		
Philadelphia Department of Health		14 79
Piatt County 115 119	170	180
Pike County	111.	147
Pillsbury, C. L	,	5
Pinckneyville		181
Plainfield	101,	182
		182
Polo	101,	183
Pontiac		183 146
Pope County Princeton		183
Prophetstown	101,	183
Prophetstown. Pulaski County	101,	171
Pullman		183
Quincy	101,	183
Pullman Quincy	186,	190
Kantoul	101,	186
		186
Richland County Ridgely		178
Ridgely		186
River Forest	101	186
Riverside	101,	186
Riverton		186
Robinson Rochelle	101,	186 186
Received	101,	100

Index—Continued.

Rock Falls	
	86
Rockford	36
	36
	36
Rogers, J. S	14
Rovers Park 1	87
Roodhouse	37
	5/
Roseville	87
	37
Rushville	37
	37
	88
St. Charles	50
St. Clair County	1,
162, 163, 164, 170, 17	78
St. Clair County	88
Salem	88
	47
	47
Sandoval 18	88
Sandwich 15	39
Sandwich	э́ό
Saligation County 111, 180, 101, 127, 1	
Sangamon River	90
Sanitary Water Analysis, Methods	
of	40
Savanna	<u>3</u> 9
Sabuular County 19	37
Scott County 19	99
Sellards, A. W	40
Seneca 18	
	κ9
Shattuck SW	39
Shattuck, S.W	5
Shattuck, S.W	5 89
Shattuck, S.W	5 89 89
Shattuck, S.W	5 89
Shattuck, S.W	5 89 89 89
Shattuck, S.W	5 89 89 90 90
Shattuck, S.W	5 89 89 90 90
Shatuck, S.W	5 89 89 90 90 21
Shattuck, S.W	5 89 89 90 90 21 90
Shatuck, S.W	5 89 89 90 90 21
Shatuck, S.W	5 89 39 90 90 21 90
Shatuck, S.W	5 89 89 90 90 21 90 90
Shatuck, S.W	5 89 89 90 90 21 90 90 90 90
Shatuck, S.W	5 89 39 90 90 21 90 90 90 90 90 90 90
Shatuck, S.W	5 89 39 90 90 21 90 90 90 90 90 90 90 90 90 90 90 90 90
Shatuck, S.W. 1 Shawnectown 1 Shelby County 173, 1 Shelby Clounty 173, 1 Shelby Clounty 173, 1 Shelby Clounty 101, 1 Shelby Clounty 101, 1 Shelby Clounty 101, 1 Sparta 1 Spring field 101, 1 Spring Valley 10 Standards of Purity 10 Staunton 101, 10	5 89 89 90 90 90 90 90 90 90 90 90 9
Shatuck, S.W. 1 Shawnectown 1 Shelby County 173, 1 Shelby Clounty 173, 1 Shelby Clounty 173, 1 Shelby Clounty 101, 1 Shelby Clounty 101, 1 Shelby Clounty 101, 1 Sparta 1 Spring field 101, 1 Spring Valley 10 Standards of Purity 10 Staunton 101, 10	5 89 89 90 90 90 90 90 90 90 90 90 9
Shatuck, S.W. 1 Shawnectown 1 Shelby County 173, 1 Shelby Clounty 173, 1 Shelby Clounty 173, 1 Shelby Clounty 101, 1 Shelby Clounty 101, 1 Shelby Clounty 101, 1 Sparta 1 Spring field 101, 1 Spring Valley 10 Standards of Purity 10 Staunton 101, 10	5 89 89 90 90 90 90 90 90 90 90 90 9
Shatuck, S.W. 1 Shawneetown 1 Shelby County 173, 1 Shelby County 173, 1 Shelby County 173, 1 Shelby County 101, 1 Shelby County 101, 1 Shelby County 101, 1 Sporta 11 South Bend, Ind 11 Sparta 10 Springfield 101, 1 Spring Valley 10 Standards of Purity 194, 10 Sterling 101, 10 Sterling 101, 12	5 89 89 90 90 90 90 90 90 90 90 90 9
Shatuck, S.W	5 89 89 90 90 90 90 90 90 90 90 90 90 90 90 90
Shatuck, S.W. 1 Shawneetown 1 Shelby County 173, 1 Shelby County 173, 1 Shelby Ville 101, 1 Shelbyville 101, 1 South Bend, Ind 1 South Bend, Ind 1 Spring Valley 101, 1 Spring Valley 101, 1 Standards of Purity 194, 1 Staunton 101, 1 Sterling 101, 1 Streator 101, 1	5 89 89 90 90 90 90 90 90 90 90 90 9
Shatuck, S.W	5 89 89 90 90 90 90 90 90 90 90 90 90 90 90 90
Shatuck, S.W	5 89 89 90 90 21 90 90 90 90 90 90 90 90 90 90 90 90 90
Shatuck, S.W. 1 Shawneetown 1 Shelby County 173, 1 Shelby County 173, 1 Shelby Ville 101, 1 Shelby Ville 101, 1 South Bend, Ind 11 Sorento 11 Spring Valley 101, 1 Stark County 19 Stauton 101, 1 Stark County 194, 15 Staunton 101, 1 Stevenson County 141, 16 Streator 101, 16 Streator 101, 1 Streator 101, 1 Stering 01, 1 Stevenson County 141, 10 Streator 101, 10	5 89 89 90 90 21 90 90 22 90 90 90 90 90 90 90 90 90 90 90 90 90
Shatuck, S.W. 1 Shawnectown 1 Shelby County 173, 1 Shelby County 173, 1 Shelby County 173, 1 Shelby County 101, 1 Shelby County 101, 1 Shelby County 101, 1 Specified 101, 1 Sporta 1 Sporta 10 Spring Field 101, 1 Spring Valley 10 Standards of Purity 10 Statanton 101, 1 Sterling 101, 1 Stervenson County 141, 1 Stromguist, W. G. 101, 15 Sullivan 10	5 89 89 90 90 21 90 90 22 90 90 90 90 90 90 90 90 90 90 90 90 90
Shatuck, S.W. 1 Shawneetown 1 Shelby County 173, 1 Shelby County 173, 1 Shelby County 101, 1 Shelby Ville 101, 1 Shelby Ville 101, 1 South Bend, Ind 11 Sorento 11 Spring Valley 10 Stark County 194, 19 Staunton 101, 19 Stevenson County 141, 10 Streator 101, 19 Streator 101, 19 Streator 101, 19 Stark County 194, 14 Stark County 101, 10 Stevenson County 141, 10 Streator 101, 15 Streator 101, 10 Streator <td< td=""><td>5 89 89 90 90 21 90 90 22 90 90 90 90 90 90 90 90 90 90 90 90 90</td></td<>	5 89 89 90 90 21 90 90 22 90 90 90 90 90 90 90 90 90 90 90 90 90
Shatuck, S.W. 1 Shawneetown 1 Shelby County 173, 1 Shelby County 173, 1 Shelby County 101, 1 Shelby Ville 101, 1 Shelby Ville 101, 1 South Bend, Ind 11 Sorento 11 Spring Valley 10 Stark County 194, 19 Staunton 101, 19 Stevenson County 141, 10 Streator 101, 19 Streator 101, 19 Streator 101, 19 Stark County 194, 14 Stark County 101, 10 Stevenson County 141, 10 Streator 101, 15 Streator 101, 10 Streator <td< td=""><td>5 89 89 90 90 90 90 90 90 90 90 90 90 90 90 90</td></td<>	5 89 89 90 90 90 90 90 90 90 90 90 90 90 90 90
Shatuck, S.W. 1 Shawneetown 11 Shelby County 173, 19 Shelby County 173, 19 Shelby County 101, 19 Spring Valley 101, 19 Stark County 194, 19 Stark County 194, 19 Sterling 101, 11 Stervenson County 194, 14 Stervenson County 101, 14 Streator 101, 19 Sullivan 10 Sycamore 10 Taylorville 101, 19	59990021000228922522254
Shatuck, S.W. 1 Shawneetown 11 Shelby County 173, 19 Shelby County 173, 19 Shelby County 101, 19 Spring Valley 101, 19 Stark County 194, 19 Stark County 194, 19 Sterling 101, 11 Stervenson County 194, 14 Stervenson County 101, 14 Streator 101, 19 Sullivan 10 Sycamore 10 Taylorville 101, 19	59990021000228922522254
Shatuck, S.W. 1 Shawneetown 1 Shelby County 173, 1 Shelby County 173, 1 Shelby Ville 101, 1 Shelby Ville 101, 1 South Bend, Ind 11 South Bend, Ind 11 Spring Valley 101, 1 Standards of Purity 14 Standards of Purity 194, 1 Staunton 101, 1 Sterling 101, 1 Strearen 10 Strearen 10 Stromquist, W. G. 101, 1 Summer 14 Sycamore 17 Talbot, A. N. 10 Tazewell County 130, 180, 19	59990021990022899225222546
Shatuck, S.W. 1 Shawnectown 1 Sheby County 173, 1 Shebby Clean 101, 1 Shebby Clean 101, 1 Spring Field 101, 1 Spring Valley 10 Standards of Purity 10 Standards of Purity 10 Statadration 101, 1 Sterling 101, 1 Stervenson County 141, 1 Storington 101, 1 Stromquist, W. G. 101, 1 Sullivan 10 Sycamore 16 Sycamore, I 17 Taylorville 101, 19 Tazewell County 130, 180, 19	599900100028922225225464
Shatuck, S.W. 1 Shawnectown 1 Sheby County 173, 1 Shebby Clean 101, 1 Shebby Clean 101, 1 Spring Field 101, 1 Spring Valley 10 Standards of Purity 10 Standards of Purity 10 Statadration 101, 1 Sterling 101, 1 Stervenson County 141, 1 Storington 101, 1 Stromquist, W. G. 101, 1 Sullivan 10 Sycamore 16 Sycamore, I 17 Taylorville 101, 19 Tazewell County 130, 180, 19	59990021990022899225222546

-		
6	Toulon	194
6	Trenton	194
	Troy	195
664777777	Turbidity	105
4	Tuscola	195
7	Union County110, 124,	152
7	Upper Alton	195
4	Urbana	195
7	Ution 24, 101,	195
4	Utica United States Geological Survey	104
2	Vandalia	195
8	Venice	
	Vermilion River	195 125
	Vermilion County	140
0	125, 145, 187, 192,	149,
00	Vermont	199
207	Vermont	195
88877890	Vienna	
0	Virden	195
ð	Virginia	195 172
9	Wabash County	
ŏ	Wabash River	147
0	Walnut	195
~	Warren	195
0	Warren County158, 170,	187
9	Warsaw	196
/	Washington	196
9	Washington County	174
0	Waterloo	196
09790959900	Waterman	196
S	Watseka	197
9	Waukegan	197
9	Waverly	199
0	Wayne County	140
0	Wenona	199
0	West Chicago 101,	199
1 0	West Hammond	199
0	Westville	199
0	Wheaton	199
0	White County 119,	147
2	White Hall	199
8	White County 119, White Hall 119, Whiteside County 142, 171, 183, 186,	192
9	Wilkins, A. C Will County	5
2	Will County116, 152, 162, 181, 182,	199
2	Williamson County119, 124, 148,	163
2	Wilmette	199
2	Wilmington	199
2	Winchester	199
5	Winnebago County180,	186
0289222222522254	Winnetka	199
2	Winstanley Park	197
2	Wisconsin State Board of Health	10
5		
4	Woodford County140,	
6	Woodstock	199
4	Wyoming 101,	199
4	Yorkville	199

