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ABSTRACT

A distributed system consists of networked components that interact with

each other in order to achieve a common goal. Given the ubiquity of dis-

tributed systems and their vulnerability to adversarial attacks, it is crucial to

design systems that are “provably secured”. In this dissertation, we propose

and explore the problems of performing consensus, consensus-based learning,

and statistical learning in the presence of malicious components.

• Consensus: In this dissertation, we explore the influence of commu-

nication range on the computability of reaching iterative approximate

consensus. Particularly, we characterize the tight topological condi-

tion on the networks for consensus to be achievable in the presence of

Byzantine components. Our results bridge the gap of previous work.

• Consensus-Based Learning: We propose, to the best of our knowl-

edge, consensus-based Byzantine-tolerant learning problems: Consensus-

Based Multi-Agent Optimization and Consensus-Based Distributed Hy-

pothesis Testing. For the former, we characterize the performance

degradation, and design efficient algorithms that can achieve the opti-

mal fault-tolerance performance. For the latter, we propose, as far as

we know, the first learning algorithm under which the good agents can

collaboratively identify the underlying truth.

• Statistical Learning: Finally, we explore distributed statistical learn-

ing, where the distributed system is captured by the server-client model.

We develop a distributed machine learning algorithm that is able to (1)

tolerate Byzantine failures, (2) accurately learn a highly complex model

with low local data volume, and (3) converge exponentially fast using

logarithmic communication rounds.
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CHAPTER 1

INTRODUCTION

This dissertation considers security problems in distributed systems.

A distributed system consists of networked components that communicate

and coordinate their actions by passing messages [1].1 The components inter-

act with each other in order to achieve a common goal. Distributed systems

are ubiquitous in both industry and our daily life. For example, we use clus-

ters and networked workstations to analyze large amounts of data, the world

wide web for information and resource sharing, and the Internet of Things

(IoT) to access a much wider variety of resources.

In distributed systems, components are more vulnerable to adversarial

attacks. We are no longer surprised when we are told that some websites,

companies, and even cloud systems were attacked by hackers. Sony pictures

entertainment and iCloud, respectively, were hacked in 2014. Given the

ubiquitousness of distributed systems and their vulnerability to adversarial

attacks, it is crucial to design systems that are “provably secured”.

In this dissertation, to capture the adversarial behaviors of an unknown

fraction of components, we consider the general fault model – the Byzantine

fault model, which was introduced in [2] and has received much attention

for decades. In this model, it is assumed that up to a certain fraction of

the computing components may be compromised by a system adversary, and

the compromised components are reprogrammed to behave under the control

of the system adversary. In addition, the system adversary is also assumed

to have complete knowledge of the system, including the live status of each

component (including the non-compromised components). The Byzantine

fault model is fundamental in distributed computing and real-world systems

for the following reasons.

• Due to the constraint of domain knowledge, detailed descriptions of

1Note other information exchanges models exist, for example, shared memory.
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Figure 1.1: Overview of the dissertation

the adversarial attacks may not always be available. If the systems are

required to have high fault-tolerance guarantee, the Byzantine fault

model can be used.

• Due to its generality, the Byzantine fault model suggests a good start-

ing point to investigate the adversarial attacks in general by providing

fundamental insights into the effects of adversarial agents/components.

The focus of this dissertation is to develop, via the concrete topics such

as reaching consensus, multi-agent optimization, distributed hypothesis test-

ing, and statistical learning, approaches for charactering the fundamental

limits of the system’s performance in the presence of Byzantine computing

components, and designing efficient algorithms with optimal or near optimal

performance.

1.1 Dissertation Overview

We start the dissertation by investigating the consensus problem (Chapter

2). In this problem, a collection of networked processes/agents interact with

each other using simple coordination rules in order to aggregate scattered in-

formation. Following the consensus chapter, we present two lines of research:

Consensus-based multi-agent optimization (Chapter 3) and consensus-based

2



distributed hypothesis testing (Chapter 4). In both of the above two chapters

(Chapters 3 and 4), we mainly focus on the family of algorithms in which the

agents/processes interact with each other using the simple coordination rules

that are similar to the one discussed in Chapter 2. In the subsequent chapter

(Chapter 5), observing the trends in collaborative machine learning (mo-

bile + cloud computing), we explore the problem of performing distributed

machine learning in the adversarial setting. One key distinction between the

distributed system assumed in Chapter 5 and that discussed in Chapters 2, 3

and 4 is the existence of a parameter server, which is used for the inter-agent

coordination.

The slightly detailed problem descriptions and our contributions can be

found in the following sections.

1.2 Reaching Consensus

In a consensus problem, a collection of components (referred as processors in

distributed computing) are required to reach a common decision. Reaching

consensus in a distributed system is one of the fundamental problems, and

thus has received intense attention. The existing work assumes either local

communication or full message forwarding. In the former, each processor

can only exchange messages with its neighbors. In the latter, processors can

exchange information with each other as long as there is a route. We observe

that in some communication networks, processors’ communication power is

stronger than that in the local model, but is still limited – supporting multi-

hop communication.

This dissertation addresses the impact of communication range on the com-

putability of reaching consensus asymptotically. Specifically, we assume that

in each iteration the processors can only communicate with other processors

that are up to ` hops away, where ` is a positive integer. For a given `, we

identified a necessary and sufficient condition on the network structure for

the existence of correct iterative algorithms that achieve asymptotical con-

sensus in the presence of Byzantine agents. Our results bridged the above

two lines of literature. In particular, our tight condition generalized the tight

condition identified in existing work for ` = 1, i.e., local communication. For

` ≥ `∗, where `∗ is the length of a longest cycle-free path in the given network,
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our condition is equivalent to the tight conditions obtained for full message

forwarding communication.

1.3 Consensus-Based Multi-Agent Optimization

In consensus-based multi-agent optimization, each agent keeps a local cost

function that is initially known only to itself, and the networked agents want

to collectively reach agreement on a global decision x such that a global

objective that properly aggregates these local costs is minimized. From the

previous description, it can be seen that consensus is part of the requirements

satisfied by any solution for the optimization problem of interest.

Assuming that every agent is non-faulty, a typical goal of the multi-agent

optimization problem [3, 4, 5, 6, 7, 8] is to minimize the average of the local

cost functions of individual agents. Precisely, let hi be the local cost function

associated with agent i. The goal of (failure-free) multi-agent optimization

is to have all the agents reach agreement on x that minimizes

1

n

n∑
i=1

hi, (1.1)

where n is the total number of agents in the system. Due to its many po-

tential applications, multi-agent optimization has been a topic of significant

research activity [3, 4, 5, 6, 7, 8]. The applications include distributed ma-

chine learning and distributed resource allocation. In a distributed machine

learning problem [9], x represents parameters that need to be learned, using

data available to a collection of agents. The local objective hi denotes a loss

function for agent i that depend on data initially available to agent i only.

In the resource allocation problem, the argument x represents allocation of

shared resources to the agents, and the local cost functions depends on the

fairness of the resource allocation. The global objective is to allow the agents

to collaboratively agree on the most fair resource allocation. Many problems

in distributed robotics are also represented in the above form [10].

While the failure-free version of the above problem is well-understood,

very little attention has been paid to the scenario when some agents may be

malicious. In this dissertation, we characterize the performance degradation

caused by the existence of malicious agents, and design efficient algorithms

4



that can achieve the optimal (the best possible) performance.

1.4 Consensus-Based Distributed Hypothesis Testing

Collaborative distributed hypothesis testing over multi-agent networks has

received a significant amount of attention. To avoid the complexity of Bayesian

learning, a non-Bayesian learning framework that combines local Bayesian

learning with consensus was proposed by Jadbabaie et al. [11], and has at-

tracted much attention since then. The prior work implicitly assumes that

the networked agents are reliable in the sense that they correctly follow the

specified distributed algorithm. However, in some practical multi-agent net-

works, this assumption may not hold. For example, in social networks, it

is possible that some agents are adversarial, and try to prevent the true

state from being learned by the good agents. This dissertation addresses

the problem of developing distributed learning algorithms that are robust

to adversarial attacks. We proposed the first Byzantine-resilient learning

algorithm [12], and characterized a tight network identifiability condition

in [13] – the extended version of [12]. At first glance, our learning rule is

counter-intuitive: by applying the cumulative likelihood, the “old informa-

tion” contained in the previous signals is used again and again in updating

local pseudo beliefs. It turns out that this learning rule enables us to deal

with the dependency between the pseudo beliefs and the effective message

propagation. This dependency is crucial in our adversarial attacks setting.

1.5 Distributed Statistical Learning

Many efficient distributed machine learning algorithms [14, 15] and system

implementations [16, 17, 18, 19] have been proposed and studied. Prior work

mostly focuses on the traditional “training within cloud” framework where

the model training process is carried out within the cloud infrastructures.

In this framework, distributed machine learning is secured via system ar-

chitectures, hardware devices, and monitoring [20, 21, 22]. This framework

faces significant privacy risk, as the data has to be collected from owners and

stored within the clouds. Although a variety of privacy-preserving solutions
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have been developed [23, 24], privacy breaches still occur frequently, with

recent examples including iCloud leaks of celebrity photos [25] and PRISM

surveillance program [26].

To address privacy concerns, a new machine learning paradigm called Fed-

erated Learning was proposed by Google researchers [27, 28]. It aims at learn-

ing an accurate model without collecting data from owners and storing the

data in the cloud. The training data is kept locally on the owners’ computing

devices, which are recruited to participate directly in the model training pro-

cess and hence function as working machines. Google has been intensively

testing this new paradigm in their recent projects such as Gboard [28], the

Google Keyboard. Compared to “training within cloud”, Federated Learning

has lower privacy risk, but inevitably becomes less secure. In particular, it

faces the following three key challenges:

• Security: The devices of the recruited data owners can be easily re-

programmed and completely controlled by external attackers, and thus

behave adversarially.

• Small local datasets versus high model complexity: While the total

number of data samples over all data owners may be large, each indi-

vidual owner may keep only a small amount of data, which by itself is

insufficient for learning a complex model.

• Communication constraints: Data transmission between the recruited

devices and the cloud may suffer from high latency and low throughout.

Communication between them is therefore a scarce resource, whose

usage should be minimized.

In the last part of this dissertation, we address the above challenges faced

by Federated Learning by developing a new iterative distributed machine

learning algorithm that is able to (1) tolerate Byzantine failures, (2) accu-

rately learn a highly complex model with low local data volume, and (3)

converge exponentially fast using logarithmic communication rounds.
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CHAPTER 2

REACHING CONSENSUS

2.1 Introduction

The problem of reaching consensus concerns a collection of processes that are

connected by a network. Among the networked processes, some unknown

processes may be compromised by an adversary, and be reprogrammed to

behave arbitrarily, and adversarially try to degrade the behavior of the sys-

tem. This fault model is referred to as Byzantine fault [29]. In this chapter,

we are interested in the approximate Byzantine consensus problem, wherein

all the faulty-free processes reach consensus asymptotically (approximately

in finite time). In particular, we focus on the algorithms under which each

process communicates with other processes that are up to l hops away via

synchronous FIFO (first-in-first-out) communication channels and maintains

minimal states across iterations – no messages received during previous iter-

ations will be used in the state updates.

The Byzantine fault-tolerance problem was first introduced in [30], and

is one of the most fundamental problems in distributed computing. [31]

showed that the fault-tolerant consensus problem cannot be solved in an

asynchronous system even in the presence of only one crash failure. A process

suffering crash faults may unexpectedly stop participating in the specified al-

gorithms/protocols. As one way to circumvent this impossibility result, the

notion of approximate consensus was introduced in [32] by requiring that

the nodes agree with each other only asymptotically (approximately in finite

time). The notion of approximate consensus is of interest in synchronous sys-

tem as well [32, 33, 34]. The discussion in this chapter applies to synchronous

systems.

Let n be the total number of processes and f be the upper bound on the

number of faulty processes in the system. The actual number of compro-
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mised (faulty) processes may vary across executions, and may not known

to the fault-free processes. However, each fault-free process knows that in

each execution at most f processes may be faulty. In networks with bidirec-

tional links, approximate consensus is achievable if and only if the network

node-connectivity is at least 2f + 1 and less than one third of the processes

can be faulty, i.e., n ≥ 3f + 1 [35]. Relaxing the bidirectional communi-

cation assumption, a tight condition for directed graphs was presented in

[36]. There has been increasing interest in designing iterative variants of ap-

proximate Byzantine consensus where only local knowledge of the network

topology (and local communication) is needed, and processes carry minimal

state across iterations [37, 38, 39, 33, 34]. [39] studied the convergence rate of

approximate consensus algorithms over complete networks. [33, 34] consid-

ered arbitrary directed networks and derived tight (necessary and sufficient)

topological conditions on the communication network. While [34] investi-

gated the Byzantine fault model, [33] considered a restricted fault model in

which the faulty nodes are restricted to sending identical messages to their

neighbors. When f = 0, such iterative approximate consensus algorithms

have been well-studied in the cooperative control community [40, 41, 42].

To the best of our knowledge, no attempts have been made to investigate

the impact of each process’s communication range on the network condition

for a correct iterative approximate consensus algorithm to exist. In this

chapter, we model the network as a directed graph, and we focus on the

family of algorithms in which a process communicates with processes that

are up to l hops away by forwarding messages through intermediate processes.

The directed graph model is motivated by the presence of directed links in

wireless networks. Our goal is to identify a necessary and sufficient condition

on the network structure for the algorithms of interest to exist.

Contributions Our main contribution is to identify a necessary and suffi-

cient condition on the network structure for a given l, named Condition NC

for a given l. Informally speaking, our Condition NC states that for any four

set process partition L,R,C, and F such that both L and R are nonempty

and |F | ≤ f , with up to l–hop communication, at least one process in L is

influenced by processes in R ∪ C or at least one process in R is influenced

by processes in L ∪ C. Condition NC will be formally stated in Section 2.3.

Our sufficiency proof is shown by constructing a simple iterative algorithm,
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whose trim function is defined based on a minimal messages cover property

that we introduce in this chapter.

The tight condition we found is consistent with the tight condition identi-

fied in [34] when only local communication is allowed, i.e., l = 1. For l ≥ l∗,

where l∗ is the length of a longest cycle-free path in the given network, our

condition is equivalent to the tight condition for consensus in undirected

networks [35] as well as exact consensus in directed networks [36].

Organization The rest of this chapter is organized as follows. Section 2.2

presents our models and the structure of the iterative algorithms considered

in our work. Our necessary condition is presented in Section 2.3, and its

sufficiency is proved constructively in Section 2.4. The correspondence be-

tween our condition and the results in [32, 35, 36] is discussed in Section 2.5.

Section 2.6 discusses possible relaxations of our fault model and concludes

the chapter.

2.2 Problem Setup and Structure of Iterative

Algorithms

Communication model The system is assumed to be synchronous. The

communication network is modeled as a simple directed graph G with self-

loop at each process. Denote V(G) = {1, . . . , n} as the set of n processes,

where n ≥ 2, and E(G) as the set of directed links between processes in V(G).

In general, V(·) and E(·) are two functions defined over graphs that return

the vertex set and the edge set, respectively, for a given graph. For instance,

let H be a graph, then V(H) and E(H) are the vertex set and edge set of

H. In this chapter, we use “process” and “node” interchangeably, and use

“link” and “edge” interchangeably.

Let l be a positive integer. For each node i, let N l−
i be the set of nodes that

can reach node i via at most l hops. Similarly, denote the set of nodes that

are reachable from node i via at most l hops by N l+
i . Note that i ∈ N l−

i and

i ∈ N l+
i . When l = 1, we write N1−

i and N1+
i as N−i and N+

i , respectively, for

simplicity. We also assume each node i knows the entire network topology.

Node i may send messages to node j via different i, j–paths with inter-

mediate nodes on an i, j–path forwarding messages accordingly. To capture
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this distinction in transmission routes, we represent a message as a tuple

m = (w,P ), where w ∈ R is the message content, and P indicates the path

via which message m should be transmitted. It is assumed that the network

layer in the system delivers the messages along the specified paths. The inter-

mediate nodes on the paths do not view the message values (i.e., the message

values are not used by intermediate nodes in performing consensus). Four

functions are defined over message m, corresponding to message content,

transmission route, message source, and message destination, respectively.

Specifically, for m = (w,P ), let function value be value(m) = w and let path

be path(m) = P , whose images are the first entry (message content) and the

second entry (message route), respectively, of message tuple m = (w,P ). In

addition, functions source and destination are defined by source(m) = i and

destination(m) = j if P is an i, j–path, i.e., message m = (w,P ) is sent from

node i (source) to node j (destination).

Fault model Let F ⊆ V(G) be the collection of faulty nodes in the system.

We consider the Byzantine fault model with up to f nodes becoming faulty,

i.e., |F| ≤ f . We assume that each fault-free node knows f , but does not

know the actual number of faulty agents |F| in a given execution. A faulty

node may tamper with the message arbitrarily. Possible misbehavior includes

sending incorrect and mismatching (or inconsistent) messages to different

neighbors. In addition, a faulty node k ∈ F may tamper with message m if

it is in the transmission path, i.e., k ∈ V(path(m)). However, faulty nodes

may only tamper with value(m), leaving path(m) unchanged. This constraint

is placed for ease of exposition; later in Section 2.6 we relax this constraint.

Thus, the fault model considered is the general Byzantine fault model [29].

Faulty nodes are also assumed to have complete knowledge of the algorithm

execution, including the states of all nodes, contents of messages that the

other nodes send to each other, and the algorithm specification, so that they

may potentially collaborate with each other adaptively.

Iterative approximate Byzantine consensus (IABC) algorithms The

algorithms considered in this chapter proceed in iterations, and each itera-

tion has the following structure: Each node i maintains state vi, with vi[t]

denoting the state of node i at the end of the t-th (t > 0) iteration, and

vi[t − 1] denoting the state of node i at the start of the t-th iteration. The

10



initial state of node i, vi[0], is equal to the initial input provided to node

i. The IABC algorithms of interest will require each node i to perform the

following three steps in iteration t. Note that the faulty nodes may deviate

from this specification.

Algorithm 1: IABC: Generic code

1 Transmit step: Transmit messages of the form (vi[t− 1], P ) on each

l–hop path P (including self-loops) to nodes in N l+
i ;

2 Receive step: Receive messages from N l−
i for which destination is i.

When node i expects to receive a message from a path but does not
receive the message, the message value is assumed to be equal to some
default value. Let Mi[t] be the set of messages that node i received in
this step;

3 Update step: Update vi[t] as

vi[t] = Zi(Mi[t]). (2.1)

In the Transmit step and Receive step of an IABC algorithm, nodes ex-

change messages with nodes that are up to l hops away. As noted previously,

the network layer of the system forwards each message to its destination

along the path specified for the message. Then in the Update step, node i

updates its state using a transition function Zi, where Zi is a part of the

specification of the algorithm, and takes as input the set Mi[t]. Note that

vi[t] only depends on Mi[t]–the messages collected by node i at iteration t

(which includes vi[t − 1]). No information collected/obtained during previ-

ous iterations will affect the update step in iteration t. Intuitively speaking,

fault-free node i is assumed to have no memory across iterations other than

its most recent state vi[t − 1] (maintain minimal states across iterations).

Algorithms with similar structure are considered in prior work in the dis-

tributed computing community as well [33, 34], and are also well studied in

the cooperative control community [40, 41, 42] for the case when l = 1.

Remark 1. Although only minimal states are carried across iterations, since

the size of Mi[t] is exponential in l, the space complexity of each fault-free

node in an IABC algorithm is also exponential in l. As can be seen later,

there is a tradeoff between the space complexity and the minimal topological

condition on the underlying network for asymptotic consensus to be achieved.
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Let U [t] be the largest state among the fault-free nodes at the end of the

t-th iteration, i.e., U [t] = maxi∈V−F vi[t]. By convention, U [0] is the largest

input among the fault-free nodes. Similarly, we define µ[t] = mini∈V−F vi[t]

and µ[0] to be the smallest input among the fault-free nodes. For an IABC

algorithm to be correct, the following two conditions must be satisfied:

• Validity: ∀t > 0, µ[t] ≥ µ[0] and U [t] ≤ U [0];

• Convergence: lim t→∞ (U [t]− µ[t]) = 0.

The above validity condition is a canonical condition adopted in the dis-

tributed computing community [35, 31]. Without such validity condition,

all fault-free nodes may trivially agree on some default value which may be

independent of the system inputs. Such trivial algorithms may not be sat-

isfactory in many applications, especially in the scenario where the convex

hull of the inputs at fault-free nodes forms a safe area, and any deviation

from this safe area will induce a forbiddingly high penalty.

Our goal is to identify the necessary and sufficient conditions on graph G

for the existence of a correct IABC algorithm (i.e., an algorithm satisfying

the above validity and convergence conditions) for a given l.

2.3 Necessary Condition

For a correct IABC algorithm to exist, the network G must satisfy the con-

dition presented in this section. First, we introduce some definitions.

Definition 1. Suppose W ⊆ V(G) and x ∈ V(G) such that x /∈ W. A

W,x–path is a path from some vertex w ∈ W to vertex x. A set Sl ⊆ V(G)

with x /∈ Sl is an l–restricted vertex cut if the deletion of Sl disconnects all

W,x–paths of length at most l. The l–restricted W,x–connectivity, denoted

by κl(W,x), is defined by

κl(W,x) = min
Sl:Sl is an l–restricted W,x–cut

|Sl|.

A set of vertices S is a W,x–vertex cut if the removal of set S disconnects

12



p1

p4

p2

p3

p5

Figure 2.1: In this system, there are five nodes p1, p2, p3, p4 and p5; all
communication links are bi-directional; and at most one node can be
adversarial, i.e., f = 1.

all W,x–paths. The W,x–connectivity, denoted by κ(W,x), is defined by

κ(W,x) = min
S:S is a W,x–cut

|S|.

The second part of Definition 1 is the classic definition of node connectivity

in graph theory [43], which is a global notion. The first part of Definition

1 adapts node connectivity to our multi-hop communication setting by re-

stricting the path length of interest. Note that κl(W,x) = κ(W,x) for all

l ≥ l∗, and that κ1(W,x) = |W ∩N−x | – recalling that l∗ is the length of a

longest cycle-free path in the given network.

In general, κl(W,x) 6= κ(W,x) and κl(W,x) ≤ κl+1(W,x) for all l. Consider

the system depicted in Figure 2.1; via enumeration it can be seen that

κ ({p2, p3}, p1) = 2 ≥ 1 = κ1 ({p2, p3}, p1) .

Intuitively speaking, in general, the stronger the communication capability

of each node (the larger l), the harder it is to prevent one node from being

influenced by other nodes.

Definition 2. For non-empty disjoint sets of nodes A and B in graph G, we

say A⇒l B if and only if there exists a node i ∈ B such that κl(A, i) ≥ f+1;

A;l B otherwise.

Intuitively, A ⇒l B implies the existence of a node i in B that can be

influenced by fault-free nodes in A despite the presence of Byzantine nodes.

Let F ⊆ V(G) be a set of vertices in G. Denote the subgraph of G induced

by vertex set V(G) − F by GF .1 We describe the necessary and sufficient

1Subgraph of G induced by vertex set S ⊆ V(G) is the subgraph H with vertex set S
such that E(H) = {(u, v) ∈ E(G) : u, v ∈ S}. Recall that V(·) and E(·) are the vertex set
and edge set, respectively, of a given graph.

13



condition below, termed Condition NC, whose necessity is proved in Theorem

1 and sufficiency is shown constructively in Section 2.4.

Condition NC: For any node partition L,C,R, F ofG such that L 6= Ø, R 6=
Ø and |F | ≤ f , at least one of the two conditions below must be true: (i)

R ∪ C ⇒l L in GF ; (ii) L ∪ C ⇒l R in GF .

Condition NC requires that, for any node partition L,C,R, F , either the

nodes in R ∪ C are able to collectively influence a node in L in GF or vice

versa. When l = 1, Condition NC is equivalent to the following condition,

which is shown to be both necessary and sufficient [34].

“For any node partition L,C,R, F of G such that L 6= Ø, R 6= Ø and |F | ≤ f ,

at least one of the two conditions below must be true: (i) there exists a node

i ∈ L such that
∣∣(R ∪ C) ∩N−i

∣∣ ≥ f + 1; (ii) there exists a node j ∈ R such

that
∣∣(L ∪ C) ∩N−j

∣∣ ≥ f + 1.”

Our proof of the next theorem shares the structure of the proof of Theorem

1 in [34].

Theorem 1. Suppose that a correct IABC algorithm exists over G. Then G

satisfies Condition NC.

Proof. We prove the theorem by contradiction. Let us assume that a correct

IABC algorithm exists, and there exists a partition L,C,R, F of G such that

L 6= Ø, R 6= Ø and |F | ≤ f , R ∪ C ;l L in GF and L ∪ C ;l R in GF .

Execution E Consider an execution E in which all the nodes in F are

faulty, and the other nodes in sets L,C,R are fault-free. Note that the fault-

free nodes are not aware of the identities of the faulty nodes. In addition,

assume that (i) each node in L has initial input 0, (ii) each node in R has

initial input 2ε, where ε > 0, and (iii) each node in C has initial input in the

interval [0, 2ε]. The behavior of the Byzantine faulty nodes (i.e., nodes in F )

in execution E is as follows. In the Transmit step of iteration 1, each faulty

node k ∈ F sends value 0 to the nodes in N l+
k ∩L, sends value 2ε to the nodes

in N l+
k ∩R, and sends ε to the nodes in N l+

k ∩C. When forwarding message m

of the form m = (w,P ), for which k ∈ F is an intermediate node on path P ,

if destination(m) ∈ L, node k sets value(m) = 0, and if destination(m) ∈ R,

node k sets value(m) = 2ε. In this case, all the messages received by each

node in C contain values in the range [0, 2ε]. Therefore, to satisfy the validity
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condition, each node in C must choose its state at the end of iteration 1 to

be also in the range [0, 2ε].

Consider an arbitrary node i ∈ L. Since |F | ≤ f , we have |N l−
i ∩ F | ≤ f .

In addition, C ∪ R ;l L in GF implies that κl(C ∪ R, i) ≤ f . Let Sl be a

minimum l–restricted (C ∪R, i)–cut in GF . Then |Sl| ≤ f .

Observe that all the paths of length up to l hops from nodes in R ∪ C to

node i contain at least one node in F ∪Sl. Due to the above faulty behaviors

in execution E, node i receives value 0 on all paths that contain at least one

node in F . Thus, node i may receive values > 0 only on paths that do not

contain nodes in F – such paths necessarily include at least one node in Sl.

Execution E ′ Now consider another execution, denoted by E ′, in which

the nodes in Sl are faulty, while the remaining nodes are fault-free, and all

the fault-free nodes have initial input 0. Then, in this execution, node i may

receive values > 0 only on paths that include at least one node in Sl, and

will receive value 0 on the remaining paths. Since the nodes in Sl are faulty,

it is possible that all the message values > 0 should have been 0, but were

tampered with by nodes in Sl. In this case, to satisfy the validity condition,

node i must set its new state vi[1] as 0.

Notice that, from the perspective of node i, executions E and E ′ appear

identical – it receives an identical set of messages in both cases. Thus, in the

execution E also node i must set its new state vi[1] after iteration 1 as 0.

The above argument shows that the state of each node in L will remain

0 after iteration 1 (recall that its state was 0 before iteration 1 as well). By

an analogous argument, we can show that each node in R will maintain its

state equal to 2ε. We have already shown that after iteration 1, the state

of the nodes in C remains in [0, 2ε], analogous to the initial state. Applying

this argument inductively, it follows that the state of the nodes in L and

R remains as 0 and 2ε, respectively. Since L and R both contain fault-free

nodes, the convergence requirement is not satisfied. This contradicts the

assumption that a correct iterative algorithm exists.

The above necessary condition is in general weaker than the necessary

condition derived under single-hop message transmission model in [34], i.e.,
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Figure 2.2: In this system, there are n nodes p1, . . . , pn; all communication
links are bi-directional; and at most one node can be adversarial, i.e.,
f = 1. Nodes p2, . . . , pn form a cycle of length n− 1 and these nodes are all
connected to node p1.

when l = 1. Consider the system depicted in Figure 2.1. The topology of

this system does not satisfy the necessary condition derived in [34] for l = 1

and f = 1. Since in the node partition L = {p1, p4}, R = {p2, p3}, C = Ø

and F = {p5}, neither L ∪ C ⇒l R in GF nor R ∪ C ⇒l L in GF holds for

l = 1 and f = 1. However, via enumeration it can be seen that the graph,

depicted in Figure 2.1, satisfies Condition NC for l ≥ 2 and f = 1.

Nevertheless, the larger the communication range l, the higher space com-

plexity of the IABC algorithm.

It follows from the definition of Condition NC that if a graph G satisfies

Condition NC for l ∈ {1, . . . , n − 1}, then G also satisfies Condition NC

for all l′ ≥ l. Let l0 be the smallest integer for which G satisfies Condition

NC, where l0 = n by convention if G does not satisfy Condition NC for

any l ∈ {1, . . . , n − 1}. We observe that in general given a graph G, the

diameter of G can be arbitrarily smaller than l0. For instance, the diameter

of the graph depicted in Figure 2.2 is 2. However, for the depicted graph,

l0 ≥ n+1
4

when n = 4k + 3 and f = 1, where k is a positive integer. So l0 is

much larger than 2 for large n. To see l0 ≥ n+1
4

, consider the node partition

F = {p1}, C = Ø, L = {p2, . . . , pn+1
2
} and R = {pn+3

2
, . . . , pn}. For f = 1, in

order to have L∪C ⇒l R or R∪C ⇒l L hold in GF for this particular node

partition, it must be hold that l ≥ n+1
4

. Thus l0 ≥ n+1
4

.

Similar to [34], as stated in our next corollary, Condition NC for general l

also implies a lower bound on n and a lower bound on each node’s incoming

degree, both of which are independent of l.

Corollary 1. For f > 0, if G satisfies Condition NC, then n ≥ 3f + 1, and

each node must have at least 2f+1 incoming neighbors other than itself, i.e.,

|N−i − {i}| ≥ 2f + 1.

16



Proof. The proof of Corollary 1 is similar to the proof in [34], and is presented

below for completeness.

We first show the claim that n ≥ 3f + 1. The proof is by contradiction.

Suppose that 2 ≤ n ≤ 3f . Since f > 0, we can partition V(G) into sets

L,R,C, F such that 1 ≤ |L| ≤ f , 1 ≤ |R| ≤ f , 0 ≤ |F | ≤ f and |C| = 0, i.e.,

C is empty. Since 1 ≤ |L∪C| = |L| ≤ f and 1 ≤ |R∪C| = |R| ≤ f , we have

L∪C 6⇒l R in GF and R∪C 6⇒l L in GF , respectively. This contradicts the

assumption that G satisfies Condition NC. Thus, n ≥ 3f + 1.

It remains to show |N−i − {i}| ≥ 2f + 1. Suppose that, contrary to our

claim, there exists a node i such that |N−i −{i}| ≤ 2f . Define set L = {i} and

partition N−i −{i} into two sets F and H such that |H| = b|N−i −{i}|/2c ≤ f

and |F | = d|N−i −{i}|/2e ≤ f . Define R = V(G)−F −L = V(G)−F −{i}
and C = Ø. Since |V(G)| = n ≥ max(2, 3f + 1) and f > 0, it is true that

R is non-empty. From the construction of R, we have N−i ∩ R = H, and

|N−i ∩ R| = |H| ≤ f . Since L = {i}, |N−i ∩ R| ≤ f and C = Ø, it follows

that R∪C 6⇒l L. On the other hand, as f > 0 and |L| = 1 < f + 1, we have

L ∪ C 6⇒l R in GF . This violates the assumption that G satisfies Condition

NC, proving the corollary.

Note that Corollary 1 also characterizes a lower bound on the density of

G, that is |E(G)| ≥ n(2f + 2), including self-loops, which is independent of

the communication range l as well.

2.3.1 Equivalent Characterization of Condition NC

Informally speaking, Condition NC describes the information propagation

property in terms of four set partitions. In this subsection, an equivalent

condition of Condition NC is proposed, which will be used in the sufficiency

proof in Section 2.4. This alternative characterization is based on character-

izing the structure of a family of special subgraphs, termed as reduced graphs,

of the power graph Gl. The new condition suggests that all fault-free nodes

will be influenced by a common collection of fault-free nodes.

Definition 3. [44] Let K1, . . . , Kk be the strongly connected components

(SCCs) of G. The graph of SCCs, denoted by GSCC, is defined as follows :

(i) nodes in GSCC are K1, . . . , Kk; and (ii) there is an edge (Ki, Kj) in GSCC
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if there is some u ∈ Ki and v ∈ Kj such that (u, v) is an edge in G.

Kh is a source component if it is not reachable from any other node in GSCC.

It is known that the GSCC is a directed acyclic graph (DAG [44]). Thus,

a graph G has at least one source component.

Definition 4. [43] The l–th power of a graph G, denoted by Gl, is a multi-

graph2 with the same set of vertices as G and a directed edge between vertices

u, v is defined by a path of length3 l from u to v in G.

Note that up to l–multi-hop communication can be viewed as single-hop

communication with the l–powered graph. Note that a Byzantine node k

can corrupt the messages whose transmission paths contain k, explained as

follows. There is a one-to-one correspondence between an edge e in Gl and

a path of length l in G (including self-loops). A path of length 1 between

vertices u and v in G exists if (u, v) is an edge in G. A path of length 2

between vertices u and v in G exists for every vertex w such that (u,w) and

(w, v) are edges in G. Then for a given graph G with self-loop at each node,

the (u, v)th element in the square of the adjacency matrix of G counts the

number of paths of length at most 2 in G. Similarly, the (u, v)th element in

the l–th power of the adjacency matrix of G gives the number of paths of

length l between vertices u and v in G.

Let e be an edge in Gl, and P (e) be the corresponding path in G; we say

an edge e in Gl is covered by node set S if V(P (e)) ∩ S 6= Ø, i.e., path P (e)

passes through a node in S.

Definition 5. For a given graph G and F ⊆ V(G), let E be the set of edges in

Gl that are covered by node set F , i.e., E , {e ∈ E(Gl) : V(P (e))∩F 6= Ø}.
For each node i ∈ V(G) − F , choose Ci ⊆ N l−

i − {i} such that |Ci| ≤ f .

Let Ei be the set of incoming edges of node i in Gl that are covered by node

set Ci, i.e., Ei , {e ∈ E(Gl) : head of e is node i, and V(P (e)) ∩ Ci 6= Ø}.
A reduced graph of Gl, denoted by G̃l

F , is a subgraph of Gl whose node set

and edge set are defined by (i) V(G̃l
F ) , V(G) − F ; and (ii) E(G̃l

F ) ,

E(Gl)− E − ∪i∈V(G)−FEi, respectively.

2A multigraph (or pseudograph) is a graph which is permitted to have multiple edges
between each vertex pair, that is, edges that have the same end nodes. Thus two vertices
may be connected by more than one edge.

3Recall that we assume that each node in G has a self-loop.
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Note that for a given graph G and a given node set F , multiple reduced

graphs may exist because for each node i ∈ V(G)−F , there may be multiple

choices of Ci. Let us define set RF to be the collection of all reduced graph

of Gl for a given F , i.e.,

RF = {G̃l
F : G̃l

F is a reduced graph of Gl}. (2.2)

Note that Gl
F , the l–th power of GF , itself is a reduced graph of Gl, where

we choose Ci = Ø for each i ∈ V(G)−F . Thus RF is nonempty. In addition,

|RF | is finite since the graph G is finite.

Theorem 2. Graph G satisfies Condition NC if and only if every reduced

graph G̃l
F contains exactly one source component.

Proof. We first show that if graph G satisfies Condition NC, then every

reduced graph of Gl contains exactly one source component.

For any reduced graph G̃l
F , the meta-graph (G̃l

F )SCC is a DAG and finite.

Thus, at least one source component must exist in G̃l
F . We now prove

that G̃l
F cannot contain more than one source component. The proof is by

contradiction. Suppose that there exists a set F ⊆ V(G) with |F | ≤ f , and a

reduced graph G̃l
F corresponding to F , such that G̃l

F contains at least two

source components, say K1 and K2, respectively. Let L = K1, R = K2, and

C = V(G)−F −L−R. Then L,R,C together with the given F form a node

partition of G such that L 6= Ø, R 6= Ø and |F | ≤ f . Let Ci be the sets (for

each i) used to construct this reduced graph.

Since graph G satisfies Condition NC, without loss of generality, assume

that R∪C ⇒l L in GF , i.e., there exists a node i ∈ L such that κl(R∪C, i) ≥
f + 1 in GF . On the other hand, since L is a source component in G̃l

F , by

the definition of reduced graph, we know ∃ Ci, such that |Ci| ≤ f and that

all paths from R ∪ C to node i of length at most l in GF are covered by Ci.

Thus, Ci is an l–restricted (R ∪ C, i)–cut of GF . This contradicts the fact

that κl (R ∪ C, i) ≥ f + 1 in GF .

To complete the equivalence proof it remains to show that if every reduced

graph contains exactly one source component, then the graph must satisfy

Condition NC.

Suppose, on the contrary, that G does not satisfy Condition NC. Then

there exists a node partition L,R,C and F of G with L,R are nonempty
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and |F | ≤ f such that L ∪ C 6⇒l R in GF and R ∪ C 6⇒l L in GF . By the

definition of the relation 6⇒l, we have κl(L ∪ C, i) ≤ f in GF , ∀ i ∈ R, and

κl(R∪C, j) ≤ f in GF ,∀ j ∈ L. That is, all paths of length l (including self-

loops) from L∪C to i ∈ R can be covered by f nodes, and all paths of length

l (including self-loops) from R∪C to j ∈ L can be covered by f nodes. Next

we construct a reduced graph with at least two source components, which

contradicts the assumption that every reduced graph of Gl contains a unique

source component.

For the given F , consider the reduced graph constructed as follows: choose

Ci to be a minimum l–restricted (L ∪ C, i)-cut in GF for each i ∈ R, choose

Cj to be a minimum l–restricted (R ∪ C, j)-cut in GF for each j ∈ L, and

choose Ck to be an arbitrary set such that |Ck| ≤ f for each j ∈ C. Since

κl(L ∪ C, i) ≤ f in GF , ∀ i ∈ R, and κl(R ∪ C, j) ≤ f in GF ,∀ j ∈ L, it

follows that |Ci| ≤ f, ∀i ∈ R, |Cj| ≤ f, ∀j ∈ L. In addition, by construction,

|Ck| ≤ f , ∀k ∈ C. Thus the reduced graph defined by the given set F , and

the chosen Ci,∀i ∈ R ∪ L ∪ C is a valid reduced graph of Gl. Denote the

obtained reduced graph of Gl as G̃l
∗
F . Since Ci is an l–restricted (L∪C, i)–cut

in GF , there are no links from L ∪C to node i in the reduced graph G̃l
∗
F for

each i ∈ R. Thus by definition, R is a source component of G̃l
∗
F . Similarly,

we can show that L is also a source component of G̃l
∗
F . Thus G̃l

∗
F contains

at least two source components, leading to a contradiction.

The proof of Theorem 2 is complete.

Some corollaries will be useful in the proof of sufficiency of Condition NC.

Corollary 2. Suppose that graph G satisfies Condition NC. Then it follows

that in each reduced graph G̃l
F ∈ RF , there exists at least one node that has

directed paths to all the nodes in G̃l
F .

Corollary 2 follows immediately from Theorem 2.

Corollary 3. Suppose that G satisfies Condition NC. Let φ , |F|. For any

G̃l
F ∈ RF with H as the adjacency matrix, Hn−φ has at least one non-zero

column.

Proof. By Corollary 2, in graph G̃l
F there exists at least one node, say node

k, that has a directed path in G̃l
F to all the remaining nodes in V(G) − F .

Since the length of the path from k to any other node in G̃l
F can contain
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at most n − φ − 1 directed edges, the k-th column of matrix Hn−φ will be

non-zero.4

2.4 Sufficiency: Algorithm TrimCov

In this section we propose an algorithm, named Algorithm TrimCov, and

show its correctness. As can be seen later, our proposed update function

works by first trimming away the received messages that contain extreme

values, and then averaging the remaining message values. The extreme values

are removed in order to guarantee validity condition. We first introduce our

trimming strategy and show that it is well-defined.

Definition 6. For a graph G, letM be a set of messages transmitted through

G, and let P(M) be the set of message routes of all the messages in M, i.e.,

P(M) = {path(m) : m ∈ M}. A message cover of M is a set of nodes

T (M) ⊆ V(G) whose removal disconnects all messages routes, i.e., for each

path P ∈ P(M), we have V(P ) ∩ T (M) 6= Ø. In particular, a minimum

message cover is defined by

T ∗(M) ∈ arg min
T (M)⊆V(G): T (M) is a cover of M

|T (M)|.

Conversely, given a set of messages M0 and a set of nodes T ⊆ V(G), a

maximal set of messages M⊆M0 that are covered by T is defined by

M∗ ∈ arg max
M⊆M0: T is a cover of M

|M|.

Recall that Mi[t] is the collection of messages received by node i at it-

eration t. Let M′
i[t] = Mi[t] − {(vi[t − 1], (i, i))}. Sort messages in M′

i[t]

in an increasing order, according to their message values, i.e., value(m) for

m ∈ M′
i[t]. Let Mis[t] be the largest sized subset of M′

i[t] such that (i) for

all m ∈ M′
i[t] − Mis[t] and m′ ∈ Mis[t] we have value(m) ≥ value(m′),

and (ii) the cardinality of a minimum cover of Mis[t] is exactly f , i.e.,

|T ∗(Mis[t])| = f . Similarly, we define Mil[t] to be the largest sized sub-

set of M′
i[t] as follows: (i) for all m ∈ M′

i[t] − Mil[t] and m′′ ∈ Mil[t]

4That is, all the entries of the column will be non-zero (more precisely, positive, since
the entries of matrix H are non-negative). Also, such a non-zero column will exist in
Hn−φ−1 too. We use the loose bound of n− φ to simplify the presentation.
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we have value(m) ≤ value(m′′), and (ii) the cardinality of a minimum cover

of Mil[t] is exactly f , i.e., |T ∗(Mil[t])| = f . In addition, define M∗
i [t] =

M′
i[t]−Mis[t]−Mil[t].

Intuitively speaking, from the perspective of node i, Mis[t] is the largest

sized set of received messages that may be generated or tampered by faulty

nodes, and contain extreme small values. Similarly,Mil[t] is the largest sized

set of received messages that may be generated or tampered with by faulty

nodes, and contain extreme large values.

Theorem 3. Suppose that graph G satisfies Condition NC; then the sets of

messages Mis[t], Mil[t] are well-defined and M∗
i [t] is nonempty for f > 0.

Proof. For ease of exposition, we drop the time indices of M′
i[t], Mis[t],

Mil[t] and M∗
i [t], respectively. From Corollary 1, we know |N−i − {i}| ≥

2f + 1. Since |T ∗(Mis)| = f and |T ∗(Mil)| = f , the message from at least

one incoming neighbor of node i is not covered by T ∗(Mis) ∪ T ∗(Mil). So

M∗
i is nonempty.

We prove the existence ofMis andMil by construction. The setMis can

be constructed using the following algorithm, which can be easily adapted

for the construction of set Mil. For clarity of proof, we construct Mis and

Mil sequentially, although they can be found in parallel.

Sort the messages inM′
i in an increasing order according to their messages

values. Initialize Mis ← Ø, Q ← Ø and M ←M′
i. At each round, let ms

be a message with the smallest value in M, and update Q, M as follows:

Q← Q ∪ {ms}, and M←M− {ms}.

If |T ∗(Q)| ≥ f + 1, set Mis ← Q −ms and return Mis; otherwise, repeat

this procedure.

If the algorithm terminates, by the code, it is easy to see that the returned

Mis satisfies the following conditions: For all m ∈M′
i−Mis and m′ ∈Mis

we have value(m) ≥ value(m′); and the cardinality of a minimum cover of

Mis is exactly f , i.e., |T ∗(Mis)| = f . It remains to show this algorithm

terminates. Suppose this algorithm does not terminate. The problem of

finding a minimum cover of a set of messages, i.e., computing T ∗(Q), can be

converted to the problem of finding a minimum cut of a vertex pair, by adding

a new vertex y and connecting y to every vertex in V(G) − {i}. The latter
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problem can be solved in polynomial time. Thus, non-termination implies

that |T ∗(M′
i)| ≤ f , which further implies that the l–restricted (V(G) −

{i}, i)–connectivity is less than or equal to f . On the other hand, consider

the node partition that L = {i}, R = V(G) − {i}, and C = F = Ø, neither

L ∪C ⇒l R nor R ∪C ⇒l L holds. This contradicts the assumption that G

satisfies Condition NC. So the above algorithm terminates.

We can adapt the above procedure to constructMil by modifying the ini-

tialization step to be Q ← Ø, M←M′
i −Mis. Termination can be shown

similarly. Suppose this algorithm does not terminate. Non-termination im-

plies that |T ∗(M′
i − Mis)| ≤ f , which further implies that in the node

partition L = {i}, F = T ∗(Mis), R = V(G)−F −L, C = Ø, the l–restricted

(R ∪ C, {i})–connectivity is no more than f , i.e., R ∪ C ;l L. In addition,

since |L| = 1, L ∪ C ;l R. This contradicts the assumption that G satisfies

Condition NC. Therefore, Mis and Mil are well-defined.

From the generic code in Algorithm 1, we know that to design an IABC

algorithm, it is enough to specify an update function for each fault-free node.

For each i ∈ V − F , define

Zi(Mi[t]) , aivi[t− 1] +
∑

m∈M∗i [t]

aiwm, (2.3)

where wm = value(m) and ai = 1
|M∗i [t]|+1

. For future reference, we name the

IABC algorithm with the update function (2.3) as Algorithm TrimCov.

Note that in (2.3), only messages in M∗
i [t] and the value vi[t − 1] are

used in updating vi. Messages in both Mis[t] and Mil[t] are trimmed away.

This trimming strategy is motivated by the observation that the messages

in Mis[t] (or Mil[t]) may be tampered with by nodes in T ∗(Mis[t]) (or

T ∗(Mil[t])). These faulty behaviors are possible because of the fact that

|T ∗(Mis[t])| = f and |T ∗(Mil[t])| = f . Recall M∗
i [t] = M′

i[t] −Mis[t] −
Mil[t]. The “weight” of each term on the right-hand side of (2.3) is ai (which

ai > 0), and they add up to 1. For future reference, let us define α, which is

used in Theorem 5, as:

α = min
i∈V−F

ai. (2.4)
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In Algorithm TrimCov, each fault-free node i’s state, vi[t], is updated as a

convex combination of all the messages values collected by node i at round

t. In particular, for each message m ∈ M′[t], its coefficient is ai if the

message is in M∗
i [t] or the message is sent via self-loop of node i; otherwise,

the coefficient of m is zero. The update step in Algorithm TrimCov is a

generalization of the update steps proposed in [38, 45, 33, 34], where the

update summation is over all the incoming neighbors of node i instead of

over message routes. In [38, 45, 33, 34], only single-hop communication is

allowed, i.e., l = 1, and the fault-free node i can receive only one message

from its incoming neighbor. With multi-hop communication, a fault-free

node can possibly receive messages from a node via multiple routes. Our

trim function in Algorithm TrimCov takes the possible multi-route messages

into account.

2.4.1 Correctness of Algorithm TrimCov

With our trim function, the iterative update of the state of a fault-free node

i admits a nice matrix representation of states evolution of fault-free nodes.

This representation allows us to prove the correctness of Algorithm TrimCov.

We first briefly review some useful concepts and theorems.

Matrix Preliminaries

We use boldface upper case letters to denote matrices, rows of matrices, and

their entries. For instance, A denotes a matrix, Ai denotes the i-th row of

matrix A, and Aij denotes the element at the intersection of the i-th row

and the j-th column of matrix A.

Definition 7. A vector is said to be stochastic if all the entries of the vector

are non-negative, and the entries add up to 1. A matrix is said to be row

stochastic if each row of the matrix is a stochastic vector.

For a row stochastic matrix A, coefficients of ergodicity δ(A) and λ(A)

are defined as [46]:

δ(A) = max
j

max
i1,i2

|Ai1 j −Ai2 j|, and λ(A) = 1−min
i1,i2

∑
j

min(Ai1 j ,Ai2 j).
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It is easy to see that 0 ≤ δ(A) ≤ 1, 0 ≤ λ(A) ≤ 1, and that the rows are

all identical if and only if δ(A) = 0. Additionally, λ(A) = 0 if and only if

δ(A) = 0.

The next result [47] establishes a relation between the coefficient of er-

godicity δ(·) of a product of row stochastic matrices, and the coefficients of

ergodicity λ(·) of the individual matrices in the product.

Theorem 4. [47] For any p square row stochastic matrices Q(1),Q(2), . . . ,Q(p),

δ(Q(1)Q(2) · · ·Q(p)) ≤ Πp
i=1 λ(Q(i)).

Theorem 4 implies that if, for all i, λ(Q(i)) ≤ 1− γ for some γ > 0, then

δ(Q(1)Q(2) · · ·Q(p)) will approach zero as p approaches ∞.

Definition 8. [47, 46] A row stochastic matrix H is said to be a scrambling

matrix, if λ(H) < 1.

In a scrambling matrix H, since λ(H) < 1, for each pair of rows i1 and i2,

there exists a column j (which may depend on i1 and i2) such that Hi1 j > 0

and Hi2 j > 0, and vice-versa [47, 46]. As a special case, if any one column

of a row stochastic matrix H contains only non-zero entries that are lower

bounded by some constant γ > 0, then H must be scrambling, and λ(H) ≤
1− γ.

Definition 9. For matrices A and B of identical size, and a scalar γ, A ≤
γB provided that Aij ≤ γBij for all i, j.

Definition 10. The adjacency matrix of graph G, denoted by A, is a matrix

with rows and columns labeled by graph vertices, and Aij = 1 if (i, j) ∈ E;

and Aij = 0 otherwise.

Matrix Representation of Algorithm TrimCov

Recall that F is the set of faulty nodes. Let |F| = φ. Without loss of

generality, suppose that nodes 1 through (n− φ) are fault-free, and if φ > 0,

nodes (n − φ + 1) through n are faulty. Denote by v[0] ∈ Rn−φ the column

vector consisting of the initial states of all the fault-free nodes. Denote by

v[t], where t ≥ 1, the column vector consisting of the states of all the fault-

free nodes at the end of the t-th iteration, t ≥ 1, where the i-th element of

vector v[t] is state vi[t].
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The next theorem is our main result. Theorem 5 states that there exists

a matrix representation of the states evolution of all the fault-free nodes. In

addition, as will be seen later, this matrix has nice structures that guarantee

the convergence condition of approximate consensus is met by Algorithm

TrimCov.

Theorem 5. We can express the iterative update of the state of a fault-free

node i (1 ≤ i ≤ n − φ) performed in (2.3) using the matrix form in (2.5)

below, where Mi[t] satisfies the four conditions listed below. In addition to t,

the row vector Mi[t] may depend on the state vector v[t − 1] as well as the

behavior of the faulty nodes in F . For simplicity, the notation Mi[t] does not

explicitly represent this dependence.

vi[t] = Mi[t]v[t− 1] (2.5)

1. Mi[t] is a stochastic row vector of size (n−φ). Thus, Mij[t] ≥ 0, where

1 ≤ j ≤ n− φ, and
∑

1≤j≤n−φ Mij[t] = 1

2. Mii[t] ≥ ai ≥ α.

3. Mij[t] is non-zero only if there exists a message m ∈ Mi[t] such that

source(m) = j and destination(m) = i.

4. For any t ≥ 1, there exists a reduced graph G̃lF ∈ RF with adjacent

matrix H[t] such that βH[t] ≤ M[t], where β = 1
16n2l .

The proof uses a structure similar to the proof of Claim 2 in [38].

Proof. Recall that nodes 1 through n−φ are fault-free, and the remaining φ

nodes (φ ≤ f) are faulty. Consider a fault-free node i performing the update

step in Algorithm TrimCov. Recall that Mis[t] and Mil[t] messages are

eliminated from Mi[t]. Let Sig[t] ⊆Mis[t] and Lig[t] ⊆Mil[t], respectively,

be the sets of removed messages that are not covered by faulty nodes. Let

P∗i [t] be the set of paths corresponding to all the messages inM∗
i [t]. With a

little abuse of notation, we also use P∗i [t] to denote the union of the vertex

sets of all paths in P∗i [t]. The actual meaning of P∗i [t] should be clear from

the context. Untampered message representation of the evolution of vi and

construction of Mi[t] differ somewhat depending on whether sets Lig[t],Sig[t]
and P∗i [t]∩F are empty or not, where P∗i [t]∩F = Ø means that no message
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in M∗
i [t] has been tampered by faulty nodes and P∗i [t] ∩ F 6= Ø means

that there exists a message that is covered by faulty nodes. It is possible

that T ∗(Mis[t]) = T ∗(Mil[t]) = F , which means all messages in Mis[t] and

Mil[t] are tampered with by faulty nodes, i.e., Sig[t] = Ø and Lig[t] = Ø.

We divide the possibilities into six cases:

1. Case I: Sig[t] 6= Ø,Lig[t] 6= Ø and P∗i [t] ∩ F 6= Ø.

2. Case II: Sig[t] 6= Ø,Lig[t] 6= Ø and P∗i [t] ∩ F = Ø.

3. Case III: exactly one of Sig[t],Lig[t] is empty and P∗i [t] ∩ F 6= Ø.

4. Case IV: exactly one of Sig[t],Lig[t] is empty and P∗i [t] ∩ F = Ø.

5. Case V: Sig[t] = Ø,Lig[t] = Ø and P∗i [t] ∩ F 6= Ø.

6. Case VI: Sig[t] = Ø,Lig[t] = Ø and P∗i [t] ∩ F = Ø.

We first describe the construction of Mi[t] in case I. Recall that wm =

value(m). Let w̄is[t] and w̄il[t] be defined as shown below.

w̄is[t] =

∑
m∈Sig [t] wm

|Sig[t]|
and w̄il[t] =

∑
m∈Lig [t] wm

|Lig[t]|
.

By the definitions of Sig[t] and Lig[t], w̄is ≤ wm′ ≤ w̄il, for each message

m′ ∈ M∗
i [t]. Thus, for each message m′, we can find convex coefficient γm′ ,

where 0 ≤ γm′ ≤ 1, such that

wm′ = γm′w̄is + (1− γm′)w̄il =
γm′

|Sig[t]|
∑

m∈Sig [t]

wm +
1− γm′
|Lig[t]|

∑
m∈Lig [t]

wm.

(2.6)

Recall from (2.3) that vi[t] = aivi[t−1]+
∑

m∈M∗i [t] aiwm, where ai = 1
|M∗i [t]|+1

.

In case I, since P∗i [t]∩F 6= Ø, there exist messages inM∗
i [t] that are tampered

with by faulty nodes. We replace these “bad messages” by “good messages”
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in the evolution of vi.

vi[t] = aivi[t− 1] +
∑

m∈M∗i [t]: V(path(m))∩F=Ø

aiwm +
∑

m∈M∗i [t]: V(path(m))∩F6=Ø

aiwm

= aivi[t− 1] +
∑

m∈M∗i [t]: V(path(m))∩F=Ø

aiwm

+
∑

m∈M∗i [t]: V(path(m))∩F6=Ø

ai(
γm
|Sig[t]|

∑
m′∈Sig [t]

wm′ +
1− γm
|Lig[t]|

∑
m′∈Lig [t]

wm′) by (2.6)

= aivi[t− 1] +
∑

m∈M∗i [t]: V(path(m))∩F=Ø

aiwm

+
∑

m′∈Sig [t]

( ∑
m∈M∗i [t]: V(path(m))∩F6=Ø

aiγm
|Sig[t]|

)
wm′

+
∑

m′∈Lig [t]

( ∑
m∈M∗i [t]: V(path(m))∩F6=Ø

ai(1− γm)

|Lig[t]|
)
wm′ .

That is, vi[t] can be represented as a convex combination of values of untam-

pered messages collected at iteration t, where vi[t−1] = value(vi[t−1], (i, i)).

For future reference, we refer to the above convex combination as untampered

message representation of vi[t] in case I and the convex coefficient of each

message in the untampered message representation as message weight.

Note that if m is an untampered message in M∗
i [t] or m ∈ Sig[t] ∪ Lig[t],

then wm = vj[t − 1] holds, where node j is the source of message m, i.e.,

source(m) = j. vi[t] can be further rewritten as follows, where 1{x} = 1 if x

is true, and 1{x} = 0, otherwise.

vi[t] =
∑

j∈V−F

vj[t− 1]
(
ai1{j = i}+

∑
m∈M∗i [t]: V(path(m))∩F=Ø

ai1{source(m) = j}

+
∑

m′∈Sig [t]

( ∑
m∈M∗i [t]: V(path(m))∩F6=Ø

aiγm
|Sig[t]|

1{source(m′) = j}
)

+
∑

m′∈Lig [t]

( ∑
m∈M∗i [t]: V(path(m))∩F6=Ø

ai(1− γm)

|Lig[t]|
1{source(m′) = j}

))
,

Thus, for i, j ∈ V − F , define the entry Mij[t] as follows:

28



Mij[t] = ai1{j = i}+
∑

m∈M∗i [t]: V(path(m))∩F=Ø

ai1{source(m) = j}

+
∑

m′∈Sig [t]

( ∑
m∈M∗i [t]: V(path(m))∩F6=Ø

aiγm
|Sig[t]|

1{source(m′) = j}
)

+
∑

m′∈Lig [t]

( ∑
m∈M∗i [t]: V(path(m))∩F6=Ø

ai(1− γm)

|Lig[t]|
1{source(m′) = j}

)
.

(2.7)

Condition 3 in Theorem 5 follows trivially from (4.33). By (4.33), we have

Mii ≥ ai ≥ α, satisfying condition 2 in Theorem 5. Now we show that Mi[t]

satisfies condition 1 in Theorem 5, i.e., Mi[t] is a stochastic vector. We get

∑
j∈V−F

Mij[t] = ai
∑

j∈V−F

1{i = j}+
∑

m∈M∗i [t]: path(m)∩F=Ø

ai
∑

j∈V−F

1{source(m) = j}

+
∑

m∈M∗i [t]: path(m)∩F6=Ø

( aiγm
|Sig[t]|

∑
m′∈Sig [t]

∑
j∈V−F

1{source(m′) = j}
)

+
∑

m∈M∗i [t]: path(m)∩F6=Ø

(ai(1− γm)

|Lig[t]|
∑

m′ ∈Lig [t]

∑
j∈V−F

1{source(m′) = j}
)

= ai +
∑

m∈M∗i [t]: path(m)∩F=Ø

ai +
∑

m∈M∗i [t]: path(m)∩F6=Ø

aiγm
|Sig[t]|

∑
m′ ∈Sig [t]

1

+
∑

m∈M∗i [t]: path(m)∩F6=Ø

ai(1− γm)

|Lig[t]|
∑

m′ ∈Lig [t]

1

= ai +
∑

m∈M∗i [t]: path(m)∩F=Ø

ai +
∑

m∈M∗i [t]: path(m)∩F6=Ø

ai

= ai(|M∗
i [t]|+ 1) = 1.

In addition, by (4.33), we know that Mij[t] ≥ 0. Thus Mi[t] is row stochastic.

In case II, since P∗i [t]∩F = Ø, all messages inM∗
i [t] are untampered with

by faulty nodes. Let m0 be an arbitrary message inM∗
i [t], with source(m0) =
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j∗. We rewrite vi[t] as follows:

vi[t] = aivi[t− 1] +
∑

m∈M∗i [t]

aiwm by (2.3)

= aivi[t− 1] + aiwm0 +
∑

m∈M∗i [t]−{m0}

aiwm

= aivi[t− 1] +
1

2
aiwm0 +

1

2
aiwm0 +

∑
m∈M∗i [t]−{m0}

aiwm

= aivi[t− 1] +
1

2
aiwm0 +

1

2
ai(

γm0

|Sig[t]|
∑

m′∈Sig [t]

wm′ +
1− γm0

|Lig[t]|
∑

m′∈Lig [t]

wm′) by (2.6)

+
∑

m∈M∗i [t]−{m0}

aiwm

= aivi[t− 1] +
1

2
aiwm0 +

∑
m′∈Sig [t]

aiγm0

2|Sig[t]|
wm′ +

∑
m′∈Lig [t]

ai(1− γm0)

2|Lig[t]|
wm′

+
∑

m∈M∗i [t]−{m0}

aiwm.

We refer to the above convex combination as the untampered message rep-

resentation of vi[t] in case II. And we refer to the convex coefficient of each

message in the above representation as weight assigned to that message.

Combining the coefficients of messages according to message sources, it is

obtained that

vi[t] =
∑

j∈V−F

vj[t− 1]
(
ai1{i = j}+

1

2
ai1{j = j∗}

+
∑

m∈M∗i [t]−{m0}

ai1{source(m) = j}+
aiγm0

2|Sig[t]|
∑

m′∈Sig [t]

1{source(m′) = j}

+
ai(1− γm0)

2|Lig[t]|
∑

m′∈Lig [t]

1{source(m′) = j}
)
.

Thus, for i, j ∈ V − F , define Mij by

Mij = ai1{i = j}+
1

2
ai1{j = j∗}+

∑
m∈M∗i [t]−{m0}

ai1{source(m) = j}

+
aiγm0

2|Sig[t]|
∑

m′∈Sig [t]

1{source(m′) = j}+
ai(1− γm0)

2|Lig[t]|
∑

m′∈Lig [t]

1{source(m′) = j}.

30



Following the same line as in the proof of case I, it can be shown that the

above Mij satisfies conditions 1, 2 and 3 in Theorem 5.

In case III, case IV, case V and case VI, at least one of Sig[t] and Lig[t]
is empty; without loss of generality, assume that Sig[t] is empty. By the

definition of Sig[t], we know that the set Mis[t] is covered by F . On the

other hand, by the definition of Mis[t], a minimum cover of Mis[t] is of

size f . Since |F| ≤ f , then we know F is a minimum cover of Mis[t] and

|F| = f . From the definition ofMis[t], we know there exists a message with

the smallest value inM∗
i [t], denoted by ms, that is not covered by F . So, we

can use singleton {ms} to mimic the role of Sig[t] in cases I and II. Similarly,

we can use the same trick when Lig[t] is empty. The untampered message

representation of vi[t] and message weight are defined similarly as that in

case I and case II.

To show the above constructions satisfy the last condition in Theorem 5,

we need the following two claims.

Claim 1 For node i ∈ V −F , in the untampered message representation of

vi[t], at most one of the sets Sig[t] and Lig[t] contains messages with assigned

weights less than β, where β = 1
16n2l .

Now we prove Claim 1. An untampered message is either in M∗
i [t] or in

Sig[t] ∪ Lig[t].
For case V and case VI, both Sig[t] and Lig[t] are empty, all untampered

messages are contained inM∗
i [t]. For each untampered message inM∗

i [t], its

weight in the untampered message representation is ai ≥ 1
|M∗i [t]|+1

. InMi[t],

at most n messages were transmitted via one hop, at most n2 messages were

transmitted via two hops. In general, Mi[t] contains at most nd messages

that were transmitted via d hops, where d is an integer in {1, . . . , l}. Thus,

|M∗
i [t]|+ 1 ≤ |Mi[t]| ≤ n+ n2 + . . .+ nl =

n(nl − 1)

n− 1

(a)

≤ n(nl − 1)
n
2

≤ 2nl.

Inequality (a) is true because n ≥ 2. Thus, ai ≥ 1
2nl

. In cases V and VI,

as both Sig[t] and Lig[t] are empty, all untampered messages have weight no

less than 1
2nl

.

For case III and case IV, without loss of generality, assume Sig[t] is

empty. An untampered message is either in M∗
i [t] or in Lig[t]. For each
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untampered message in M∗
i [t], the weight assigned to it in the untampered

message representation of vi[t] is at least 1
2nl

. Thus, only Lig[t] may contain

untampered messages with assigned weights less than 1
2nl

.

For case II, both Sig[t] and Lig[t] are nonempty, an untampered message is

in one ofM∗
i [t], Sig[t] and Lig[t]. In the untampered message representation

of vi[t], either γm0 ≥ 1
2

or 1−γm0 ≥ 1
2
. Without loss of generality, assume that

γm0 ≥ 1
2
, which implies that for each message in Sig[t], the assigned weight

is at least ai
4|Sig [t]| ≥

1
16n2l , since |Sig[t]| ≤ |Mi[t]| ≤ 2nl. Letting β = 1

16n2l ,

then we can conclude that only Lig[t] may contain untampered messages

with assigned weights less than β–note that the ≥ β weight is assigned to

messages instead of nodes.

It can be shown similarly that the above claim also holds for case I.

The proof of Claim 1 is complete.

Now we are ready to show the following property is also true.

Claim 2 For any t ≥ 1, there exists a reduced graph G̃lF ∈ RF such that

βH[t] ≤ M[t].

Now we prove Claim 2.

We construct the desired reduced graph G̃lF as follows. Let

E = {e ∈ E(Gl) : V(P (e)) ∩ F 6= Ø}

be the set of edges in Gl that are covered by node set F .

For a fault-free node i: (i) if both Sig[t] and Lig[t] are empty, then choose

Ci = Ø; (ii) if one of Sig[t] and Lig[t] is empty, without loss of generality,

assume that Sig[t] is empty, then choose Ci = T ∗(Mil[t]); (iii) if both Sig[t]
and Lig[t] are nonempty, without loss of generality, assume that the weight

assigned to every message in Sig[t] is lower bounded by β, then choose Ci =

T ∗(Mil[t]). Let

Ei = {e ∈ E(Gl) : e is an incoming edge of node i inGl and V(P (e))∩Ci 6= Ø}

be the set of incoming edges of node i in Gl that are covered by node set Ci.

Set V(G̃lF) = V(G)−F . And let E(G̃lF) = E(G̃l)− E − ∪i∈V−FEi.
From Claim 1, for node i, at most one of the sets Sig[t] and Lig[t] contains
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messages with assigned weights less than β. Then it is easy to see that H[t],

the adjacency matrix of the obtained reduced graph G̃lF , has the property

that βH[t] ≤ M[t].

The proof of Claim 2 is complete.

Note that Claim 2 says that for each t ≥ 1, the constructed matrix M[t]

satisfies condition 4 in Theorem 5.

Therefore, the proof of Theorem 5 is complete.

Correctness of Algorithm TrimCov

With the matrix representation in Theorem 5, we are ready to show the

correctness of Algorithm TrimCov.

By “stacking” (2.5) for different i, 1 ≤ i ≤ n − φ, we can represent the

state update for all the fault-free nodes together using (2.8) below, where

M[t] is a (n − φ) × (n − φ) row stochastic matrix, with its i-th row being

equal to Mi[t] in (2.5).

v[t] = M[t] v[t− 1]. (2.8)

By repeated application of (2.8), we obtain:

v[t] =
(

Πt
τ=1M[τ ]

)
v[0].

As the backward product Πt
τ=1M[τ ] is a row-stochastic matrix, it holds that

µ[0] ≤ vi[t] ≤ U [0] for all i = 1, . . . , n−φ and all t. Thus Algorithm TrimCov

satisfies validity condition.

The convergence of vi[t] depends on the convergence of the backward prod-

uct Πt
τ=1M[τ ]. As a result of this, our convergence proof uses toolkit of weak-

ergodic theory that is also adopted in prior work (e.g., [41, 37, 34, 33]). Recall

from Theorem 5 that for any t ≥ 1, there exists a reduced graph G̃lF ∈ RF
with adjacent matrix H[t] such that βH[t] ≤ M[t], where β = 1

16n2l .

Lemma 1. In the product of H[t] matrices for consecutive τ(n−φ) iterations,

i.e., Π
z+τ(n−φ)−1
t=z H[t], at least one column is non-zero.
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Proof. Since the above product consists of τ(n− φ) matrices in RF , at least

one of the τ distinct connectivity matrices in RF , say matrix H∗, will appear

in the above product at least n− φ times.

Now observe that: (i) By Lemma 3, Hn−φ
∗ contains a non-zero column,

say the k-th column is non-zero, and (ii) all the H[t] matrices in the product

contain a non-zero diagonal. These two observations together imply that the

k-th column in the above product is non-zero.

Let us now define a sequence of matrices Q(i) such that each of these

matrices is a product of τ(n− φ) of the M[t] matrices. Specifically,

Q(i) = Π
iτ(n−φ)
t=(i−1)τ(n−φ)+1 M[t].

Observe that

v[kτ(n− φ)] =
(

Πk
i=1 Q(i)

)
v[0]. (2.9)

Lemma 2. For i ≥ 1, Q(i) is a scrambling row stochastic matrix, and

λ(Q(i)) ≤ 1− βτ(n−φ).

Proof. Since Q(i) is a product of row stochastic matrices M[t], thus, Q(i) is

row stochastic.

From Theorem 5, for each t, βH[t] ≤ M[t]. So,

βτ(n−φ) Π
iτ(n−φ)
t=(i−1)τ(n−φ)+1 H[t] ≤ Q(i).

By using z = (i − 1)(n − φ) + 1 in Lemma 1, we conclude that the matrix

product on the left side of the above inequality contains a non-zero column.

Thus, there exists a non-zero column in Q(i) with each entry being ≥ βτ(n−φ).

Therefore, Q(i) is a scrambling matrix, and λ(Q(i)) ≤ 1− βτ(n−φ).

Theorem 6. Algorithm TrimCov satisfies the validity and the convergence

conditions.

Proof. Since v[t] = M[t] v[t − 1], and M[t] is a row stochastic matrix, it

follows that Algorithm TrimCov satisfies the validity condition.
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By Theorem 4,

lim
t→∞

δ(Πt
i=1M[t]) = lim

t→∞
δ

(
Π
b t
τ(n−φ) c
i=1 Q(i)Πt

j=b t
τ(n−φ) c+1M[j]

)
≤ lim

t→∞

(
Π
b t
τ(n−φ) c
i=1 λ(Q(i))

)
λ
(

Πt
j=b t

τ(n−φ) c+1M[j]
)

≤ lim
t→∞

(
Π
b t
τ(n−φ) c
i=1 λ(Q(i))

)
≤ lim

t→∞

(
1− βτ(n−φ)

)b t
τ(n−φ) c

= 0.

The above argument makes use of the facts that λ(M[t]) ≤ 1 and λ(Q(i)) ≤
(1− βτ(n−φ)) < 1. Thus, the rows of Πt

i=1M[t] become identical in the limit.

This observation and the fact that v[t] = (Πt
i=1M[i])v[t− 1] together imply

that the state of the fault-free nodes satisfies the convergence condition.

Now, the validity and convergence conditions together imply that there

exists a positive scalar c such that

lim
t→∞

v[t] = lim
t→∞

(
Πt
i=1M[i])

)
v[0] = c1,

where 1 denotes a column with all its entries being 1.

2.5 Connection with Existing Work

In this section, we show that Condition NC is equivalent to the existing

results on both undirected graphs and directed graphs.

2.5.1 Undirected graph with unbounded path length

If G is undirected, it has been shown in [35] that n ≥ 3f + 1 and node-

connectivity 2f + 1 are both necessary and sufficient for achieving Byzantine

approximate consensus. Recall that l∗ is the length of a longest cycle-free

path in G. We will show that when l ≥ l∗, our Condition NC is equivalent

to the above conditions, formally stated below.
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Theorem 7. When l ≥ l∗, if G is undirected, then n ≥ 3f + 1 and node-

connectivity of G is at least 2f + 1 if and only if G satisfies Condition NC.

Proof. First we show “Condition NC implies n ≥ 3f + 1 and node connec-

tivity at least 2f + 1”.

When f = 0, it holds that 3f + 1 = 1. In addition, we know n ≥ 2. Thus,

we get n ≥ 2 ≥ 1 = 3f + 1.

For f > 0, it has already been shown in Corollary 1 that n ≥ 3f + 1. It

remains to show the node connectivity of G is at least 2f + 1. We prove this

by contradiction. Suppose the node-connectivity is no more than 2f . Let S

be a min cut of G, then |S| ≤ 2f . Let K1 and K2 be two disjoint connected

components in GS, the subgraph of G induced by node set V(G)− S.

Construct a node partition of G as follows: Let L = K1, R = K2 and

C = V − F − L− R, where (1) if |S| ≥ f + 1, let F ⊆ S such that |F | = f ;

(2) otherwise, let F = S. For the latter case, C = Ø and since F = S is

a cut of G disconnecting R from other nodes in GF , then there is no path

between L ∪ C and R in GF , i.e., κ(L ∪ C, i) = 0 ≤ f for each i ∈ R in GF .

Similarly, κ(R ∪ C, j) = 0 ≤ f for each j ∈ L. On the other hand, we know

that G satisfies Condition NC. Thus, we arrive at a contradiction.

For the former case, i.e., F ⊂ S, since G satisfies Condition NC, without

loss of generality, assume R ∪ C ⇒l∗ L in GF , i.e., there exists a node i ∈ L
such that there are at least f + 1 disjoint paths from set R ∪ C to node i in

GF . Add an additional node y and connect node y to all nodes in R ∪ C.

Denote the resulting graph by G′F . From Menger’s theorem we know that a

minimum y, i-cut in graph G′F has size at least f + 1. On the other hand,

since S is a cut of G, we know that S−F is a y, i–cut in G′F . In addition, we

know |S − F | = |S| − |F | ≤ 2f − f ≤ f . Thus we arrive at a contradiction.

Next we show that “n ≥ 3f + 1 and 2f + 1 node-connectivity imply Con-

dition NC”. Consider an arbitrary node partition L,R,C, F of G such that

L 6= Ø, R 6= Ø and |F | ≤ f . Since n ≥ 3f + 1 and |F | ≤ f , either

|L ∪ C| ≥ f + 1 or |R ∪ C| ≥ f + 1. Without loss of generality, assume

that |R ∪ C| ≥ f + 1. Add a node y connecting to all nodes in R ∪ C ∪ F
and denote the newly obtained graph by G′′. Since |F | + f + 1 ≤ 2f + 1,

by Expansion Lemma5 [43], G′′ is |F | + f + 1 connected. Fix i ∈ L. There

5Expansion Lemma If G is a k-connected graph, and G′ is formed from G by adding
a vertex y having at least k neighbors in G, then G′ is k-connected.
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are at least |F | + f + 1 internally disjoint y, i–paths. So there are at least

f + 1 internally disjoint y, i–paths in G′′F . Thus R ∪ C ⇒l∗ L in GF . Since

this holds for all partitions of the form L,R,C, F where L 6= Ø, R 6= Ø and

|F | ≤ f , then we conclude that Condition NC holds. This completes the

proof.

2.5.2 Directed graph with unbounded path length

Synchronous exact Byzantine consensus is considered in [36].

Definition 11. [36] Given disjoint subsets A,B, where B is non-empty:

(i) We say A→ B if and only if set A contains at least f+1 distinct incoming

neighbors of B. That is, |{i| (i, j) ∈ E , i ∈ A, j ∈ B}| > f .

(ii) We say A 6→ B iff A→ B is not true.

A tight condition (both necessary and sufficient) over the graph structure

is found in [36].

Theorem 8. [36] Given a graph G, exact Byzantine consensus is solvable

if and only if for any partition L,C,R, F of G, such that both L and R are

non-empty, and |F | ≤ f , either L ∪ C → R, or R ∪ C → L.

We term this condition as Condition 1. Note that in order for A → B to

hold, we only require that there are at least f + 1 incoming neighbors of set

B to be in set A. As a result of this observation, our Condition NC with

l = 1 is, in general, strictly stronger than Condition 1. However, it can be

shown that our Condition NC with l ≥ l∗ is equivalent to Condition 1. We

first state an alternative version of Condition 1.

Definition 12. [36] Given disjoint subsets A,B, F of G such that |F | ≤ f ,

set A is said to propagate in GF to set B if either (i) B = Ø, or (ii) for each

node b ∈ B, there exist at least f + 1 disjoint (A, b)–paths in GF .

We will denote the fact that set A propagates in GF to set B by the

notation A
V−F
 B. When it is not true that A

V−F
 B, we will denote that

fact by A
V−F
6 B.
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Theorem 9. [36] Given graph G, Condition 1 holds if and only if for any

node partition A,B, F of G, where A and B are both non-empty, and |F | ≤ f ,

either A
V−F
 B or B

V−F
 A holds in GF .

For ease of future reference, we term the second condition in the above the-

orem as Condition Propagate [36]. Now we are ready to show the equivalence

between Condition NC and Condition 1.

Theorem 10. Condition NC is equivalent to Condition 1 when l ≥ l∗.

Proof. We will show that Condition NC implies Condition 1, and Condition

Propagate implies Condition NC. By Theorem 9, Condition 1 and Condi-

tion Propagate are equivalent. Then we can conclude that Condition 1 and

Condition NC are equivalent.

We first show that Condition NC implies Condition 1. Let l ≥ l∗. For

any node partition L,C,R, F of G such that L 6= Ø, R 6= Ø and |F | ≤ f ,

in the subgraph GF , at least one of the two conditions below must be true:

(i) R ∪ C ⇒l L in GF ; (ii) L ∪ C ⇒l R in GF . Let i ∈ L. Without loss of

generality, assume that R ∪ C ⇒l L in GF and that κ(R ∪ C, i) ≥ f + 1,

i.e., node i has at least f + 1 disjoint paths from R∪C. For each such path,

there exist at least one edge that goes from R ∪ C to a node in L. Since

all the paths considered are disjoint, R ∪C contains at least f + 1 incoming

neighbors of L.

We next show that Condition Propagate implies Condition NC. We prove

this by contradiction. Suppose, on the contrary, that Condition NC does not

hold. There exists a partition L,C,R, F of G such that L 6= Ø, R 6= Ø and

|F | ≤ f , in the induced subgraph GF , (i) R ∪ C 6⇒l L; (ii) L ∪ C 6⇒l R. For

each node i in L, there are at most f disjoint (R ∪ C, i) paths excluding F .

Thus R ∪ C
V−F
6 L.

On the other hand, as L∪C 6⇒l R, for each node j ∈ R, there are at most

f disjoint paths from L∪C to j excluding F , which further implies that there

are at most f disjoint paths from L to j excluding F . Thus, L
V−F
6 R ∪ C.

This contradicts the assumption that Condition Propagate holds. Thus we

conclude that Condition Propagate implies Condition NC.

Besides, Condition Propagate is equivalent to Condition 1. Therefore,

Condition NC, Condition Propagate, and Condition 1 are all equivalent.
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2.6 Summary and Discussion

In this chapter, we assume that each node knows the topology within its l–

hop neighborhood, and in each iteration it can send messages to nodes that

are up to l hops away, where l ≥ 1. We prove a necessary and sufficient

condition for the existence of iterative algorithms that achieve approximate

Byzantine consensus in directed graphs, while maintaining minimal memory

across iterations.

Throughout the presentation so far, we assumed that faulty nodes are only

able to tamper with message values, leaving message paths unchanged. How-

ever, this restriction of faulty behaviors of Byzantine nodes is not necessary.

In fact, the above results still hold when both message value tampering and

message path tampering are allowed. Next, we sketch a proof that is also

briefly discussed in [48]. Indeed, we will show that tampering with both

message values and message paths is equivalent to tampering with message

values only. In other words, for any faulty behavior of the faulty nodes un-

der the more general fault model, there is an equivalent faulty behavior of

the faulty nodes when only message value can be tampered with. Thus, our

proposed Algorithm TrimCov also works under the more general fault model.

In iteration t, if multiple messages arrive at node i along the path P , then

this multiplicity is caused either by message values tampering or by message

paths tampering. In both cases, at least one node in path P is faulty. The

former case can be seen easily. To see the message paths tampering case,

suppose a fault-free node k receives or relays a message m = (w,P ) from

node j containing a path that does not have the form . . . jk . . .. Then node k

knows that node j is faulty, and will discard the message. This way, on any

given path P , at least the very last faulty node will have to remain on the

path (it may delete the earlier nodes on the path, but not itself). Since at

least one node in path P is faulty, from the perspective of node i, the message

path tampering faulty behavior is equivalent to having a faulty node in P

send additional value tampered messages directly.

Similarly, in iteration t, if node i does not see any message along path P ,

then either a faulty node does not send/forward the message m = (w,P ), or

it resets the message route P to be P ′ such that P ′ 6= P . From the perspective

of node i, the message path tampering faulty behavior is equivalent to having

a faulty node in P not to send/forward the message with route P .
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The above two scenarios together prove that tampering with both message

values and message paths is equivalent to tampering with message values

only.

Throughout this chapter, we have focused on approximate Byzantine con-

sensus, where fault-free nodes asymptotically agree with each other. We

found that the tight topological condition depends on parameter l. Whether

parameter l has an effect on achieving exact consensus or not is still open,

and is left as further work.
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CHAPTER 3

CONSENSUS-BASED MULTI-AGENT
OPTIMIZATION

3.1 Introduction

In this chapter, we are interested in an optimization problem over a multi-

agent network, where each agent keeps a local cost function that is initially

known only to itself, and the networked agents want to collectively reach

agreement on a global decision x such that a global objective that properly

aggregates these local costs is minimized. The focus of this chapter is on the

fault-tolerant multi-agent optimization problem, where an unknown subset

of agents may be compromised by a system adversary, and be reprogrammed

to behave arbitrarily under the control of the adversary.

While the failure-free version of the above problem is well-understood, we

explore the case where some unknown subset of the computing agents may

be adversarial. Specifically, we assume that up to f agents among the total

n agents suffer Byzantine faults [49]. An agent suffering Byzantine fault may

not follow the pre-specified algorithms/protocols, and misbehave arbitrarily.

With the global objective function defined in (1.1), the global decision x

identified by the non-faulty agents can be significantly biased, and may even

be completely controlled by the faulty agents. Thus, a proper global objective

should not directly aggregate the local functions kept by the faulty agents.

If we denote by N the set of non-faulty agents in a given execution, then,

ideally, we would like all the non-faulty agents to collaboratively minimize

1

|N |
∑
i∈N

hi, (3.1)

i.e., the average of the local cost functions associated with non-faulty agents

only. The global objective in (3.1) can be viewed as a weighted average∑
i∈N αihi with weight αi equal to 1

|N | for all i ∈ N . Unfortunately, since
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the non-faulty agents do not necessarily know the identity of Byzantine faulty

agents, and may not be able to identify the faulty agents, the goal in (3.1)

is unachievable (as proved in Theorem 11 in Section 3.4).

Observing this, we define a relaxed version of the multi-agent optimization

problem. In particular, the goal of the relaxed problem is to design algorithms

that enable all the non-faulty agents in the network collaboratively to reach

agreement on a global decision x for which there exists weight vector α ∈ Rn

such that the global objective ∑
i∈N

αihi (3.2)

is minimized, where
∑

i∈N αi = 1, αi ≥ 0 for all i = 1, · · · , n, and αi = 0 for

each i /∈ N . We note that the problem (3.2) does not require the non-faulty

agents to learn the actual weights (αi’s) corresponding to the global cost

function that was optimized.

We say that problem (3.1) (or (3.2)) is solvable if there exists an algorithm

whose output minimizes the objective in (3.1) (or (3.2)) for all admissible

local cost functions, and all possible behaviors of faulty nodes.

Since the (qualitative) goal of fault-tolerant multi-agent optimization is to

decide on an output that takes into account the local cost functions of all

the non-faulty agents, it is desired that the weights (αi’s) above be non-zero

for the largest possible number of non-faulty agents, and, preferably, these

non-zero weights be as close to 1
|N | as possible. This would ensure that the

global objective that is optimized has approximately equal representation for

each agent’s cost function.

We define β, γ to characterize the “goodness” of a weight vector α.

Definition 13. (β, γ)–admissibility: For β > 0 and γ ≥ 1, vector α is

(β, γ)-admissible if: (1)
∑

i∈N αi = 1, αi ≥ 0, for each i ∈ N ; (2) αj = 0

for each j 6∈ N ; and (3) at least γ elements of α are lower bounded by β.

In this chapter, we focus on the impact of Byzantine attacks on the max-

imal achievable γ. To characterize the fundamental limits on γ, we assume

that the argument of each local cost function is a (real-valued) scalar, the

network is fully-connected, and there is no restriction on the information

exchange among agents.
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Contributions In its general form, in (3.2) above, the argument x of the

cost function hi is a k-dimensional vector of reals (i.e., x ∈ Rk), where k ≥ 1.

In this chapter, as a first step towards solving the fault-tolerant multi-agent

optimization problem, we consider the special case when k = 1, i.e., x is a

scalar. Problem (3.2) remains open for vector arguments with k ≥ 2. Later

in the chapter, we discuss the technical difficulty in solving the problem with

vector inputs. We prove the following key results:

1. (Theorem 11) Problem (3.1) is not solvable when f > 0.

That is, the local objectives kept by the non-faulty agents cannot be

guaranteed to be utilized equally for all executions.

2. (Theorem 12) In a synchronous system, when f > 0, for problem (3.2),

it is impossible to guarantee thatα is (β, γ)-admissible with γ > |N |−f
for all executions.

That is, any synchronous system cannot guarantee to utilize more than

|N | − f local objectives of the non-faulty agents.

3. (Theorem 13) When n > 3f , problem (3.2) is solvable in a synchronous

system with β = 1
2(|N |−f)

and γ = |N | − f for all executions.

We prove this claim by constructing algorithms. Our algorithms are

optimal in the sense that they match the bound in Theorem 12. By ex-

ploiting Byzantine broadcast for information exchange between agents,

our proposed algorithms essentially solve a centralized problem where

there are n functions among which up to f functions are injected by

the system adversary. Nevertheless, these algorithms are useful for

characterizing the fundamental limits that we are interested in.

4. (Section 3.6) We also propose a low-complexity suboptimal algorithm,

where agents individually minimize local objectives, and run consensus

over local optima. This suboptimal algorithm ensures that at least

dn
2
e− φ (i.e., γ = dn

2
e− φ) agents have weights that are bounded away

from 0 nontrivially (indeed, β = 1
|N |), where φ (φ ≤ f) is the actual

number of Byzantine agents in a given execution.

5. (Section 3.7) Finally, we present an iterative distributed algorithm that

is optimal in the sense that it matches the bound in the impossibil-

ity result of Theorem 12. In particular, the proposed algorithm is
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2-approximation within each index of the optimal convex combination,

i.e., the achieved α is ( 1
2(|N |−f)

, |N | − f)-admissible.

The iterative algorithm presented in Section 3.7 can be extended to a

constrained version of the optimization problem, to the crash failure model,

and to asynchronous environments. While much of the chapter addresses

Byzantine faults in a synchronous completely connected network, Section

3.8 summarizes the above extensions, as well as a few open problems.

3.2 Related Work

The distributed optimization problem is related to Byzantine fault-tolerant

consensus. In particular, the non-faulty agents are all required to produce

(approximately) equal output; thus, consensus is part of the requirements

satisfied by any solution for our problem. There is a significant body of work

on fault-tolerant consensus, including our own prior work [32, 50, 51, 39, 33,

34, 52, 53, 54, 55, 56].

Although distributed optimization has a long history, we believe our work

is the first to explore the problem of designing Byzantine fault-tolerant al-

gorithms that achieve optimality in the sense defined earlier. Primal and

dual decomposition methods that lend themselves naturally to a distributed

paradigm have been known for at least fifty years, and their behavior is well

understood [57]. In their seminal work, Tsitsiklis and colleagues [58, 59] an-

alyze algorithms for minimization of a smooth function h(x) by distributing

the processing of the components vector x ∈ Rn among n agents assum-

ing h(x) is separable. As noted earlier, there has been significant research on

problem (1.1). The need for robustness for distributed optimization problems

has received some attention recently [3, 8, 60, 61]. Duchi et al. [3] and Lobel

and Ozdaglar [8] study the impact of random communication link failures

on the convergence of distributed variant of dual averaging algorithm and

sub-gradient method, respectively. In particular, both [3] and [8] assume

that each realizable link failure pattern admits a doubly-stochastic matrix

which governs local estimates evolution dynamics. Byzantine agents are first

considered in the context of optimization in our series of four technical re-

ports [61, 62, 63, 64]. Subsequent to our work, [60, 65] also considered the

fault-tolerant optimization problem but under a weaker model of faults. In
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the weaker model, a faulty node must send identical messages to its neigh-

bors, unlike the Byzantine faults. More importantly, the results obtained by

[60, 65] do not demonstrate optimal fault-tolerance as achieved in our work.

Also, since the Byzantine fault model is more general, our algorithms are

also applicable under the weaker model in [60, 65].

3.3 System Model, Assumptions and Notations

The system under consideration is synchronous, and consists of n > 3f

agents, 1 where f is the maximum number of agents that may be Byzan-

tine faulty. The communication network is completely connected (i.e., each

agent has a communication channel to each of the agents). We discuss some

extensions of our results in Section 3.8. The set of n agents is denoted

V = {1, · · · , n}. In a given execution, let F denote the set of Byzantine

faulty agents, and let N = V − F denote the set of non-faulty agents. The

set F of faulty agents may be chosen by an adversary arbitrarily, and may

be different across different executions.

We say that a function h : R → R is admissible if (i) h is convex, and

continuously differentiable, (ii) the set arg minx∈R h(x) containing the optima

of h is non-empty and compact (i.e., bounded and closed), (iii) the magnitude

of the gradients are bounded by L, i.e., |h′(x)| ≤ L,∀x ∈ R. Each agent

i ∈ V is initially provided with an admissible local cost function hi : R→ R.

Similar assumptions on the local functions are standard in past literature on

failure-free distributed optimization [3, 4, 5, 6, 7, 8].

3.4 Impossibility Results

In this section, we derive an upper bound on γ.

For a given choice of αi ≥ 0 such that αi = 0 for i ∈ F and
∑

i∈N αi = 1,

1For Byzantine consensus to be reachable, n > 3f is needed.
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define Xi (for i ∈ N ) and X as follows:

Xi = arg min
x∈R

hi(x),∀ i ∈ N ;

X = arg min
x

∑
i∈N

αihi(x).

The connection between Xi (for i ∈ N ) and X is characterized in Proposition

1.

Proposition 1. For any choice of αi ≥ 0 such that αi = 0 for i ∈ F and∑
i∈N αi = 1, it holds that

X ⊆ Cov (∪i∈NXi) ,

where Cov (∪i∈NXi) is the convex hull of set ∪i∈NXi.

Proposition 1 can be easily shown by contradiction.

Recall that we say that problem (3.1) or (3.2) is solvable if there exists an

algorithm whose output minimizes the objective in (3.1) or (3.2), respectively,

for all admissible local cost functions, and all possible behaviors of faulty

nodes.

Theorem 11. Problem (3.1) is not solvable when f > 0.

Proof. We prove this theorem by contradiction. Suppose that there exists a

correct algorithm A that solves problem (3.1). For each x ∈ R, define the

cost functions of the n agents as follows:

• h1(x) = (x+ 1)2,

• hn(x) = (x− 1)2, and

• hi(x) = x2 + i, where 2 ≤ i ≤ n− 1.

Note that the functions defined above satisfy the admissibility conditions

specified in Section 3.3 except for the “bounded gradient” condition. How-

ever, the “bounded gradient” condition can be easily enforced by carefully

modifying the functions values (and correspondingly gradient values) for x

that are far enough away from convex hull of optima of the set of functions

listed above.
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It is easy to see that X1 = {−1}, Xn = {1}, and for 2 ≤ i ≤ n − 1,

Xi = {0}. We consider two executions wherein A produces different outputs,

and show that there exists a non-faulty agent that cannot distinguish these

two executions.

The identities of the faulty agents in these two executions are different.

In both executions, the faulty nodes follow the algorithm correctly with the

above choice of cost functions.

Execution 1: In execution 1, let N = {1, · · · , n−1} and F = {n}. Since

A is a correct algorithm, by Proposition 1 it follows that the output of the

algorithm must be in Cov
(
∪n−1
j=1Xj

)
= [−1, 0] for all agents i ∈ {1, · · · , n−1}.

Execution 2: In execution 2, let N = {2, · · · , n} and F = {1}. Since

A is a correct algorithm, by Proposition 1 it follows that, in this case, the

output of the algorithm must be in Cov
(
∪nj=2Xj

)
= [0, 1] for all agents

i ∈ {2, · · · , n}.
The agents in {2, · · · , n− 1} cannot distinguish the above two executions,

and hence must produce identical output in both cases. That is, their output

must be 0 since [−1, 0] ∩ [0, 1] = {0}. (When f > 0, n ≥ 3f + 1 = 4. Thus,

the set {2, · · · , n− 1} is non-empty.)

On the other hand, it holds that
∑n−1

i=1 h
′
i(0) 6= 0 and

∑n
i=2 h

′
i(0) 6= 0,

contradicting the hypothesis that 0 is an optimum for either execution –

note that h′i(x) is the derivative of function hi at x for each 1 ≤ i ≤ n. This

contradicts the assumption that A is correct and the proof is complete.

Theorem 11 implies that potential faulty behavior of the Byzantine agents

can confuse the system to deviate from minimizing 1
|N |
∑

i∈N hi. Next, we

characterize this deviation.

Theorem 12. In a synchronous system, when up to f agents may be Byzan-

tine faulty, for problem (3.2), it is impossible to guarantee that more than

|N | − f weights in vector α are non-zero. In other words, for any β > 0, it

is impossible to guarantee that α is (β, γ)-admissible with γ > |N | − f .

The proof of Theorem 12 is similar to the proof of Theorem 11, and can

be found in Section 3.9.1.

By Theorem 12, we know that regardless of the value of parameter β, if

γ > |N | − f , no algorithm can solve (3.2).
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3.5 Tightness of γ ≤ |N | − f : Optimal Algorithms

In this section, we present two different algorithms, both of which use Byzan-

tine broadcast algorithm (such as [66]) as a communication primitive. The

Byzantine broadcast algorithm allows a designated sender to a message to

the other agents, while satisfying the following properties when n > 3f :

• all the non-faulty agents decide on an identical value, and

• if the sender is non-faulty, then the received value decided by the non-

faulty agents is the sender’s proposed value.

In the first algorithm, by broadcasting the local functions using Byzantine

broadcast, each non-faulty agent knows all the n local functions over the

whole system, among which up to f functions may be faulty. We show that

the non-faulty agents are essentially minimizing a global objective H (defined

in Theorem 14) instead of the ideal objective 1
|N |
∑

i∈N hi.

Although broadcasting local cost functions may be costly and not always

practical, it allows us to derive the mathematics basis for a more practical

algorithm. Indeed, the second algorithm can be viewed as an implementation

of the first algorithm using a gradient descent method.

3.5.1 Algorithm 2

Given a set of admissible functions {h1, · · · , hn}, for each x ∈ R, define mul-

tisets A(x), B(x), C(x) below, where h′i(x) denotes the gradient of function

hi at x.

A (x) , {i : h′i (x) > 0},

B (x) , {i : h′i (x) < 0},

C (x) , {i : h′i (x) = 0}. (3.3)

Let F ∗1 (x) ⊆ A (x) and F ∗2 (x) ⊆ B (x) such that

F ∗1 (x) ∈ arg min
F1⊆A(x),|F1|≤f

∑
i∈A(x)−F1

h′i (x) ,

F ∗2 (x) ∈ arg max
F2⊆B(x),|F2|≤f

∑
i∈B(x)−F2

h′i (x) . (3.4)
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All the non-faulty agents follow Algorithm 2. Faulty agents can deviate from

the following description arbitrarily.

Algorithm 2: pseudo-code for agent j

1 Perform Byzantine broadcast of local cost function.
2 if there exists x ∈ R such that∑

i∈A(x)−F ∗1 (x)

h′i (x) +
∑

i∈B(x)−F ∗2 (x)

h′i (x) = 0 (3.5)

then
3 deterministically choose output xo to be any one x value that

satisfies (3.5);

4 else
5 choose output xo =⊥.
6 end

Note that in step 1, agent j should receive from each agent i ∈ V its cost

function hi. In step 1, each agent j broadcasts a complete description of

its cost function to other agents, using any Byzantine broadcast algorithm,

such as [66]. For non-faulty agent i ∈ N , hi will be an admissible function

(admissible is defined in Section 3.3). If a faulty agent k ∈ F does not

correctly perform Byzantine broadcast of its cost function, or broadcasts an

inadmissible cost function, then hereafter assume hk to be a default admissible

cost function that is known to all agents.

For the multiset {h1, · · · , hn} of n admissible cost functions gathered in

step 1 of Algorithm 2, define function F (·) and function G (·) as follows. For

each x ∈ R,

F (x) ,
∑

i∈A(x)−F ∗1 (x)

h′i (x) , and (3.6)

G (x) ,
∑

i∈B(x)−F ∗2 (x)

h′i (x) . (3.7)

Note that F (x) ≥ 0 and G (x) ≤ 0 for each x ∈ R. In particular, F (x) = 0

if |A (x) | ≤ f and F (x) > 0 otherwise. Similarly, G (x) = 0 if |B (x) | ≤ f

and G (x) < 0 otherwise.

Besides, the functions F and G have the following properties. The cor-

rectness of Algorithm 2 relies crucially on the following proposition.
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Proposition 2. Functions F (·) and G (·) are both non-decreasing and con-

tinuous over R.

The proof of Proposition 2 can be found in Section 3.9.2. The monotonicity

and continuity of functions F and G imply the existence of x satisfying (3.5),

formally stated next.

Lemma 3. Algorithm 2 returns xo ∈ R when n > 3f (i.e., it never returns

⊥).

Proof. Consider the multiset of admissible functions {h1, h2, · · · , hn} ob-

tained by a non-faulty agent in step 1 of Algorithm 2. Recall that Xi =

arg minx∈R hi(x). Let maxXi and minXi denote the largest and smallest

values in Xi, respectively. Sort the above n functions hi in an increasing

order of their maxXi values, breaking ties arbitrarily. Let i0 denote the

f + 1-th agent in this sorted order (i.e., i0 has the f + 1-th smallest value in

the above sorted order). Similarly, sort the functions hi in a decreasing order

of minXi values, breaking ties arbitrarily. Let j0 denote the f + 1-th agent

in this sorted order (i.e., j0 has the f + 1-th largest value in the above sorted

order).

Define function H as

H (x) = F (x) +G (x) , for each x ∈ R.

Consider x1 ∈ Xi0 and x2 ∈ Xj0 . It follows that |A(x1)| ≤ f and |B(x2)| ≤ f .

Thus,

F (x1) = 0 = G(x2).

So, we obtain

H (x1) = F (x1) +G (x1) = 0 +G (x1) ≤ 0, and

H (x2) = F (x2) +G (x2) = F (x2) + 0 ≥ 0.

If H(x1) = 0 or H(x2) = 0, then x1 or x2, respectively, satisfy equation

(3.5), proving the lemma. (Note that H = F + G, and the definition of F

and G implies that, if H(xi) = 0 then xi satisfies equation (3.5).)

Let us now consider the case when H(x1) < 0 and H(x2) > 0. By Proposi-

tion 2, we know that H (·) is non-decreasing and continuous. Then it follows
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that x1 ≤ x2, and there exists xo ∈ [x1, x2] such that H (xo) = 0, i.e., xo

satisfies equation (3.5), proving the lemma.

Next we present our main theorem. The following theorem says that the

output xo of Algorithm 2 satisfies the conditions listed in (3.2) with γ =

|N | − f , proving that the bound on γ stated in Theorem 12 is tight for

certain values of β (as stated in the theorem below).

Theorem 13. When n > 3f , the output xo of Algorithm 2 satisfies the

conditions listed in (3.2) with γ = |N | − f and β = 1
2(|N |−f)

.

Proof. By Lemma 3, we know that Algorithm 1 returns a value in R. Let x̃

be the output of Algorithm 1 for the set of functions {h1, · · · , hn} gathered

in Step 1 of the algorithm. Let F ∗1 ⊆ A(x̃) and F ∗2 ⊆ B(x̃), with |F ∗1 | ≤ f

and |F ∗2 | ≤ f , be the sets that minimize
∑

i∈A(x̃)−F1
h′i (x̃), and maximize∑

i∈B(x̃)−F2
h′i (x̃), respectively (as per equation (3.5)).

Recall that V = {1, . . . , n}. Sort the elements in the multiset

{h′1(x̃), . . . , h′n(x̃)}

in a non-increasing order, breaking ties in such a way that the elements

corresponding to the agents in F ∗1 are among the first f elements in the

sorted order and the elements corresponding to the agents in F ∗2 are among

the last f elements in the sorted order. Such a sorted order is well-defined

since |F ∗1 | ≤ f and |F ∗2 | ≤ f . Let F̄1 ⊆ V be the agents corresponding

to the first f elements in the sorted order, and let F̄2 ⊆ V be the agents

corresponding to the last f elements in the sorted order. Note that F ∗1 ⊆ F̄1

and F ∗2 ⊆ F̄2. Since A (x̃) , B (x̃) and C (x̃) form a partition of V , we have∑
i∈V−F ∗1−F ∗2

h′i (x̃) =
∑
i∈C(x̃)

h′i (x̃) +
∑

i∈A(x̃)∪B(x̃)−F ∗1−F ∗2

h′i (x̃)

(a)
= 0 +

∑
i∈A(x̃)∪B(x̃)−F ∗1−F ∗2

h′i (x̃)

(b)
= 0 + 0 = 0. (3.8)

Equality (a) follows by definition of C (x̃), and equality (b) is true because x̃
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satisfies equation (3.5). Denote R∗ = V − F̄1 − F̄2. Next we show that∑
i∈R∗

h′i (x̃) = 0. (3.9)

If |A(x̃)| ≥ f , by definition of F ∗1 , it holds that |F ∗1 | = f . Thus, F̄1 = F ∗1 .

Consequently, we have ∑
i∈F̄1−F ∗1

h′i(x̃) =
∑
i∈Ø

h′i(x̃) = 0.

If |A(x̃)| < f , by definition of F ∗1 and F̄1, and the fact that F ∗1 ⊂ F̄1, it follows

that F ∗1 = A(x̃), and h′i(x̃) ≤ 0 for each i ∈ F̄1 − F ∗1 = F̄1 − A(x̃) 6= Ø. In

addition, if there exists i ∈ F̄1 − F ∗1 such that h′i(x̃) < 0, then by definition

of F̄1, we have h′j(x̃) < 0 for each j ∈ V − F̄1. So we get

0 =
∑

i∈V−F ∗1−F ∗2

h′i (x̃) by (3.8)

=
∑

i∈V−F̄1−F ∗2

h′i (x̃) +
∑

i∈F̄1−F ∗1

h′i (x̃) since F ∗1 ⊆ F̄1

≤
∑

i∈V−F̄1−F ∗2

h′i (x̃) since h′i(x̃) ≤ 0,∀ i ∈ F̄1 − F ∗1

< 0 since h′i(x̃) < 0, ∀ i ∈ V − F̄1,

proving a contradiction. Thus, there does not exist i ∈ F̄1 − F ∗1 such that

h′i(x̃) < 0, i.e., h′i(x̃) = 0 for each i ∈ F̄1 − F ∗1 . Consequently, we have∑
i∈F̄1−F ∗1

h′i(x̃) =
∑

i∈F̄1−F ∗1

0 = 0.

Hence, regardless of the size of |A(x̃)|, the following is always true.∑
i∈F̄1−F ∗1

h′i(x̃) = 0. (3.10)

Similarly, we can show that ∑
i∈F̄2−F ∗2

h′i(x̃) = 0. (3.11)
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Therefore, we have

0 =
∑

i∈V−F ∗1−F ∗2

h′i (x̃) by (3.8)

=
∑

i∈V−F̄1−F̄2

h′i (x̃) +
∑

i∈F̄1−F ∗1

h′i (x̃) +
∑

i∈F̄2−F ∗2

h′i (x̃)

=
∑
i∈R∗

h′i (x̃) +
∑

i∈F̄1−F ∗1

h′i (x̃) +
∑

i∈F̄2−F ∗2

h′i (x̃)

=
∑
i∈R∗

h′i (x̃) + 0 + 0

=
∑
i∈R∗

h′i (x̃) ,

proving equation (3.9).

Let F̃1 ⊆ F̄1 −F and F̃2 ⊆ F̄2 −F such that

|F̃1| = f − φ+ |R∗ ∩ F| and |F̃2| = f − φ+ |R∗ ∩ F|. (3.12)

Since |F| = φ ≤ f , |F̄1| = f = |F̄2|, and R∗ ∪ F̄1 ∪ F̄2 = V , it holds that

|F̄1 −F| ≥ f − φ+ |R∗ ∩ F| and |F̄2 −F| ≥ f − φ+ |R∗ ∩ F|.

Thus, F̃1 and F̃2 are well-defined.

We now show that∑
i∈F̃1

h′i (x̃) ≥ 0 and
∑
i∈F̃2

h′i (x̃) ≤ 0. (3.13)

Suppose
∑

i∈F̃1
h′i (x̃) < 0, then there exists i0 ∈ F̃1 ⊆ F̄1 − F such that

h′i0 (x̃) < 0. Since agents in F̄1 have the f largest values (including ties) in

the set {h′1(x̃), . . . , h′n(x̃)}, then h′i(x̃) < 0 for each i ∈ R∗, contradicting the

fact that (3.9) holds. Analogously, it can be shown that
∑

i∈F̃2
h′i (x̃) ≤ 0.

In addition, we observe that∑
i∈F̃2

h′i (x̃) ≤
∑

i∈R∗∩F

h′i (x̃) ≤
∑
i∈F̃1

h′i (x̃) . (3.14)

To see this, consider three possibilities:

(i)
∑

i∈R∗∩F h
′
i (x̃) = 0;
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(ii)
∑

i∈R∗∩F h
′
i (x̃) > 0;

(iii)
∑

i∈R∗∩F h
′
i (x̃) < 0.

Consider the case when
∑

i∈R∗∩F h
′
i (x̃) = 0 (i.e., case (i)).

Due to (3.13) and the case assumption, it holds that∑
i∈F̃2

h′i (x̃) ≤ 0 =
∑

i∈R∗∩F

h′i (x̃) = 0 ≤
∑
i∈F̃1

h′i (x̃) ,

which is (3.14).

Now consider the case when
∑

i∈R∗∩F h
′
i (x̃) > 0 (i.e., case (ii)).

Since
∑

i∈R∗∩F h
′
i (x̃) > 0, it follows that R∗ ∩ F 6= Ø, and there exists

k ∈ R∗∩F such that h′k (x̃) > 0. This implies that hi (x̃) > 0 for each i ∈ F̃1.

Let µ = mini∈F̃1
h′i(x̃). Note that µ > 0. By definition of F̃1, it follows that

h′i(x̃) ≤ µ ≤ h′j(x̃),

for each i ∈ R∗ and j ∈ F̃1. Thus, we obtain∑
i∈R∗∩F

h′i (x̃) ≤
∑

i∈R∗∩F

µ = (|R∗ ∩ F|)µ ≤
(
|F̃1|

)
µ

=
∑
i∈F̃1

µ ≤
∑
i∈F̃1

h′i (x̃) . (3.15)

Due to (3.13) and the assumption that
∑

i∈R∗∩F h
′
i(x̃) > 0, we get∑

i∈F̃2

h′i (x̃) ≤ 0 <
∑

i∈R∗∩F

h′i (x̃) ≤
∑
i∈F̃1

h′i (x̃) ,

proving relation (3.14).

Similarly, we can show the case when
∑

i∈R∗∩F h
′
i (x̃) < 0 (i.e., case (iii)).

Since the relation in (3.14) holds, there exists 0 ≤ ζ ≤ 1 such that∑
i∈R∗∩F

h′i (x̃) = ζ ·
∑
i∈F̃1

h′i (x̃) + (1− ζ) ·
∑
i∈F̃2

h′i (x̃) . (3.16)
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Thus, we have

0 =
∑
i∈R∗

h′i (x̃)

=
∑

i∈R∗−F

h′i (x̃) +
∑

i∈R∗∩F

h′i (x̃)

=
∑

i∈R∗−F

h′i (x̃) + ζ ·
∑
i∈F̃1

h′i (x̃) + (1− ζ) ·
∑
i∈F̃2

h′i (x̃) .

Thus x̃ is an optimum of function∑
i∈R∗−F

hi + ζ ·
∑
i∈F̃1

hi + (1− ζ) ·
∑
i∈F̃2

hi.

Since constant scaling does not change optima, it follows that x̃ is an optimum

of function

χ

 ∑
i∈R∗−F

hi + ζ
∑
i∈F̃1

hi + (1− ζ)
∑
i∈F̃2

hi

 , (3.17)

where

χ =
1

|R∗ −F|+ ζ|F̃1|+ (1− ζ) |F̃2|
.

Since |R∗| = n− 2f and |F̃1| = f − φ+ |R∗ ∩ F| = |F̃2|, we have

|R∗ −F|+ ζ|F̃1|+ (1− ζ) |F̃2| = |R∗ −F|+ |F̃1| since |F̃1| = |F̃2|

= |R∗ −F|+ f − φ+ |R∗ ∩ F|

= |R∗| − |R∗ ∩ F|+ f − φ+ |R∗ ∩ F|

= |R∗|+ f − φ = n− 2f + f − φ

= n− φ− f = |N | − f.

We know that either ζ ≥ 1
2

or 1 − ζ ≥ 1
2
; by symmetry, without loss of

generality, assume ζ ≥ 1
2
. In addition, we know

| (R∗ −F) ∪ F̃1| = |R∗ −F|+ |F̃1|

= |R∗| − |R∗ ∩ F|+ f − φ+ |R∗ ∩ F|

= |N | − f.
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Recall that R∗ ∪ F̄1 ∪ F̄2 = V . Thus, in function (3.17), which is a weighted

sum of |N | local cost functions corresponding to agents in N = V − F , at

least |N | − f local cost functions corresponding to i ∈ (R∗ −F) ∪ F̃1 have

weights that are lower bounded by 1
2(|N |−f)

.

Similarly, when 1 − ζ ≥ 1
2
, at least |N | − f cost functions corresponding

to i ∈ (R∗ −F) ∪ F̃2 have weight lower bounded by 1
2(|N |−f)

.

Recall that H (·) = F (·) + G (·). The global objective of the non-faulty

agents in Algorithm 2 is characterized as follows. To simplify notation, let

[a, b] , Cov (∪i∈NXi).

Theorem 14. For given N and F , there exists a convex and differentiable

function H (·) defined over any finite interval [c, d] ⊇ Cov (∪i∈NXi) such

that the derivative function of H (·) is H (·), i.e., H′ (x) = H (x) for each

x ∈ [c, d] where Cov (∪i∈NXi) ⊆ [c, d].

The proof of Theorem 14 is presented in [61]. Theorem 14 says that asso-

ciated with H (·), there is a function that is convex, differentiable, and has

H (·) as its derivative function. The finite interval requirement in Theorem

14 is placed for detailed technical issue in calculus.

Remark 2. The correctness of Algorithm 2 implies that H (xo) = 0 and

xo ∈ Cov (∪i∈NXi), where the latter claim follows from Proposition 1, proved

in Section 3.4. Essentially, Algorithm 2 outputs an optimum of the following

constrained convex optimization problem, where Cov (∪i∈NXi) ⊆ [c, d]:

min H (x) (3.18)

s.t. x ∈ [c, d].

3.5.2 Algorithm 3

Unlike Algorithm 2, Algorithm 3 presented below does not require the agents

to exchange their local cost functions in their entirety. Instead, agents ex-

change gradients of their local cost functions via Byzantine broadcast. In-

deed, Algorithm 3 can be viewed as an implementation of Algorithm 2 using

(centralized) gradient descent method on the optimization problem stated
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in (3.18). The main challenge here is that the Byzantine agents can behave

arbitrarily – there is no restriction on the local cost functions (if any) kept by

the faulty agents. To overcome this difficulty, “admissibility check” primitive

is incorporated.

Recall that the gradient of each admissible function is bounded by L, i.e.,

|h′(x)| ≤ L for x ∈ R. Let {λ[t]}∞t=0 be a sequence of diminishing (non-

increasing and λ[t] → 0) stepsizes chosen beforehand such that λ[t] > 0 for

each t,
∑∞

t=0 λ[t] = ∞ and
∑∞

t=0 λ
2[t] < ∞. In the initialization steps of

Algorithm 3, it is sufficient to require that every agent has identical initial

estimate.

Algorithm 3: for agent j and t ≥ 1:

1 Initialization (i): Choose vj ∈ Xj = argminx∈R hj(x);
2 Initialization (ii): Perform exact Byzantine consensus (such as [49])

with vj as the input of agent j to the consensus algorithm.
3 Initialization (iii): Set xj[0] to the output of the above consensus

algorithm.

4 Compute h′j (xj[t− 1]), and perform Byzantine broadcast (such as
[66]) of h′j (xj[t− 1]) to all the agents.

5 for i ∈ V do
6 receive a gradient from agent i, denoted by gi[t− 1]
7 end
8 for each j ∈ V do
9 check for admissibility of the sequence (t, gi[t− 1])

10 end
11 Let R[t− 1] be the multiset of admissible gradients
{g1[t− 1], · · · , gn[t− 1]} obtained in steps 4-6.

12 if there are > f positive gradients in R[t− 1] then
13 remove f largest gradients from R[t− 1]
14 else
15 remove all positive gradients from R[t− 1]
16 end
17 if there are > f negative gradients in R[t− 1] then
18 remove f smallest gradients from R[t− 1]
19 else
20 remove all negative gradients from R[t− 1]
21 end
22 Let R∗[t− 1] be the set of agents corresponding to all the remaining

gradients. xj[t]← xj[t− 1]− λ[t− 1]
∑

i∈R∗[t−1] gi[t− 1].
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In Algorithm 3, agent j keeps a record of the sequence (t, xj[t]), and a

record of the sequence (t, gi[t− 1]) for each agent i. For each t ≥ 1, agent j

checks each received gradient gi[t− 1] for admissibility as follows:

• If no gradient is received from agent i in iteration t via a Byzantine

broadcast from i, then the gradient gi[t − 1] for agent i is deemed

inadmissible.

• If there exists an iteration 1 ≤ t0 < t such that at least one of the

following conditions is true, then the gradient received from agent i is

deemed inadmissible.

1. xj[t0 − 1] ≤ xj[t− 1] and gi[t0 − 1] > gi[t− 1]

2. xj[t0 − 1] ≥ xj[t− 1] and gi[t0 − 1] < gi[t− 1]

3. |gi[t− 1]| > L

If the gradient received from any agent i is deemed inadmissible, then it

must be the case that agent i is faulty. In that case, agent i is isolated

(i.e., removed from the system). This reduces the total number of agents

n by 1, and the maximum number of faulty agents f is also reduced by 1.

Algorithm 3 is restarted (from Step 4) using the new parameters n and f .2

The gradients received from any non-faulty agent i ∈ N will never be found

to be inadmissible.

Note that due to the restart mechanism above, the algorithm progresses to

step 10 only when all the received gradients are deemed admissible. By per-

forming initialization steps (i) and (ii), it holds that xj[0] ∈ Cov (∪j∈NXj) –

the constraint in (3.18) is satisfied initially. The above claim follows trivially

from validity condition imposed on a correct Byzantine consensus algorithm.

Indeed, the contraint in (3.18) is satisfied throughout the execution of Algo-

rithm 3.

Proposition 3. In Algorithm 3, xi[t] = xj[t] and

xi[t] ∈ [a− nλ[0]L, b+ nλ[0]L]

for all i, j ∈ N and for all t.

2It is also possible to continue executing the algorithm further, but for brevity, we take
the approach of eliminating the faulty agent, and restarting.
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Proposition 3 is proved in [61]. Henceforth, we drop the subscript j of xj[t]

for each j ∈ N and t. Similarly, we drop the time index [0] of λ[0].

As an implementation of Algorithm 2, the admissibility check in step 1 of

Algorithm 3 is necessary. Non-faulty agents in the system know that each

non-faulty local function is admissible. As a result of this, in Algorithm 2,

each faulty agent is forced to broadcast an admissible function. Similarly, in

Algorithm 3, using admissibility check, each faulty agent is forced to behave

as if its local function is admissible.

Theorem 15. For any i ∈ F , let {gi[t−1])}∞t=1 be the sequence of admissible

gradients generated in Algorithm 3, where gi[t− 1] is the gradient at x[t− 1].

Then there exists a function g(x) defined over [c, d], which contains points

a− nλL and b+ nλL as interior points, such that (i) g′(x[t− 1]) = gi[t− 1],

and (ii) g(x) is convex, L–Lipschitz, and differentiable.

The proof of Theorem 15 is presented in [61]. It is easy to see that there

exists an admissible function ḡ such that the restriction of ḡ to [c, d] equals

g, i.e., ḡ|[c,d] = g. For ease of further reference, we term the functions con-

structed in Theorem 15 as local virtual functions. Therefore, hereafter we

can assume that all agents, including faulty agents, behave correctly and

consistently with an admissible local cost function.

Recall that [a, b] = Cov (∪i∈NXi). By Proposition 3, we know that the

local estimate of each non-faulty agent i is trapped within the closed interval

[a − nλL, b + nλL] for all iterations, i.e., xi[t] ∈ [a − nλL, b + nλL] for all

i ∈ N and all t. Therefore, Algorithm 3 is essentially trying to find an (exact

or approximate) optimum of the following constrained convex optimization

problem, which is a variant of (3.18):

min H (x)

s.t. x ∈ [a− nLλ, b+ nLλ].

Theorem 14 and equation (3.5) in Algorithm 2 together imply that the xo

output of Algorithm 2 is an optimum of function H (·) defined in Theorem

14. Also, it should be easy to see that the total gradient
∑

i∈R∗[t−1] gi[t− 1]

used in computing xj[t] is identical to F (xj[t − 1]) + G(xj[t − 1]), which is

the gradient of H at xj[t − 1]. In other words, the agents are distributedly

using the gradient method for convex optimization of global cost function H,
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which is convex and continuous. Following the convergence analysis of the

gradient method in Theorem 3.2.2 in [67] and Theorem 41 in [68], we can

show that the limit of {x[t]}∞t=0 exists and limt→∞ x[t] = x∗, where x∗ is an

optimum of function H.

3.6 Suboptimal Algorithm

Algorithms 2 and 3 both use the costly Byzantine broadcast as subroutines.

In contrast, in Algorithm 4, each agent optimizes its local cost function lo-

cally and exchanges the local optima, using an arbitrary Byzantine consensus

algorithm. In addition, the correctness proof of Algorithm 4 does not require

each hi to be differentiable. However, Algorithm 4 is not an optimal algo-

rithm. It only solves (3.2) with β = 1
2|N | and γ = dn

2
e − φ, instead of the

optimal γ∗ = |N | − f achieved by Algorithms 2 and 3.

Algorithm 4: For agent j ∈ N
1 Choose vj ∈ Xj = argminx∈R hj(x);
2 Send vj to all agents, and receive messages from all agents. Agent j

should receive a value from each agent i ∈ V – let us denote the value
received from agent i as wij. If no value is, in fact, received from agent
i, then wij is set to be a predefined default value.

3 Sort wij in a non-increasing order, breaking tie arbitrarily, and set
xj[0] to be the median of this order. (We choose xj[0] to be the wij
whose rank is dn

2
e.)

4 Perform exact Byzantine consensus algorithm with xj[0] as the input
of agent j to the consensus algorithm.

5 Set x̃ to be the output of the above consensus algorithm, and output x̃.

Theorem 16. When n > 3f , Algorithm 4 solves (3.2) with β = 1
2|N | and

γ = dn
2
e − φ.

Proof. LetWj denote the multiset obtained by agent j, i.e., Wj = {w1j, . . . , wnj}.
For each x ∈ R, define W+

j (x) and W−
j (x) as follows:

W+
j (x) = {i : i ∈ N and wij ≥ x},

W−
j (x) = {i : i ∈ N and wij ≤ x}.
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Note that W+
j (x) ∪W−

j (x) = N for each x ∈ R, and that wij = vi for each

i ∈ N . It should also be noted that W+
j (x) and W−

j (x) are not necessarily

disjoint.

Recall that φ = |F|. For each j, since xj[0] is chosen to be the median of

the non-increasing order over Wj, we have

|W+
j (xj[0])| = |{i : i ∈ N and wij ≥ xj[0]}|

≥ dn
2
e − φ,

and

|W−
j (xj[0])| = |{i : i ∈ N and wij ≤ xj[0]}|

≥ n− dn
2
e − φ+ 1

≥ dn
2
e − φ.

Let i0 ∈ N and j0 ∈ N be the agents such that xi0 [0] ≤ xj[0] for each j ∈ N
and xj0 [0] ≥ xj[0] for each j ∈ N . Since x̃ is the output of a correct exact

consensus algorithm, by validity, we have xi0 [0] ≤ x̃ ≤ xj0 [0]. Thus

{i : i ∈ N , wii0 ≤ xi0 [0]} ⊆ {i : i ∈ N , wii0 ≤ x̃}

= {i : i ∈ N , vi ≤ x̃},

and

{i : i ∈ N , wij0 ≥ xj0 [0]} ⊆ {i : i ∈ N , wij0 ≥ x̃}

= {i : i ∈ N , vi ≥ x̃}.

Consequently, we have

|{i : i ∈ N , vi ≤ x̃}| ≥ |{i : i ∈ N , wii0 ≤ xi0 [0]}|

= |W−
i0

(xi0 [0])| ≥ dn
2
e − φ, (3.19)
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and

|{i : i ∈ N , vi ≥ x̃}| ≥ |{i : i ∈ N , wij0 ≥ xj0 [0]}|

= |W+
j0

(xj0 [0])| ≥ dn
2
e − φ. (3.20)

Recall that vj ∈ Xj = argminx∈R hj(x). Thus, hi(x̃) ≥ 0 for each i ∈ {i :

i ∈ N , vi ≤ x̃}, and hi(x̃) ≤ 0 for each i ∈ {i : i ∈ N , vi ≥ x̃}. Define

A(x̃), B(x̃) and C(x̃) as follows:

A(x̃) , {i : i ∈ N , h′i(x̃) > 0},

B(x̃) , {i : i ∈ N , h′i(x̃) < 0},

C(x̃) , {i : i ∈ N , h′i(x̃) = 0}.

We now consider two cases: (i) A(x̃) = Ø or B(x̃) = Ø, and (ii) A(x̃) 6= Ø

and B(x̃) 6= Ø.

Case (i): Suppose A(x̃) = Ø or B(x̃) = Ø.

If B(x̃) = Ø, then hi(x̃) = 0 for each i ∈ {i : i ∈ N , vi ≥ x̃}. Then x̃ is an

optimum of function

1

|{i : i ∈ N , vi ≥ x̃}|
∑

j∈{i: i∈N , vi≥x̃}

hj(x). (3.21)

As |{i : i ∈ N , vi ≥ x̃}| ≤ |N | and by (3.19), it holds that

|{i : i ∈ N , vi ≥ x̃}| ≥ dn
2
e − φ.

Thus, in (3.21) at least dn
2
e−φ non-faulty functions are assigned coefficients

bounded below by 1
|N | .

Similarly, we can show the case when A(x̃) = Ø.

Case (ii): Suppose A(x̃) 6= Ø and B(x̃) 6= Ø.

When A(x̃) 6= Ø and B(x̃) 6= Ø,∑
i∈A(x̃)

h′i(x̃) > 0 and
∑
i∈B(x̃)

h′i(x̃) < 0.
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Then there exists 0 ≤ ζ ≤ 1 such that

0 = ζ

 ∑
i∈A(x̃)

h′i(x̃)

+ (1− ζ)

 ∑
i∈B(x̃)

h′i(x̃)

 .

In addition, by definition of C(x̃), we have

ζ

 ∑
i∈A(x̃)

h′i(x̃)

+ (1− ζ)

 ∑
i∈B(x̃)

h′i(x̃)

+
∑
i∈C(x̃)

h′i(x̃)

= 0 +
∑
i∈C(x̃)

h′i(x̃) = 0 + 0 = 0.

Thus x̃ is an optimum of function

χ

ζ ∑
i∈A(x̃)

hi + (1− ζ)
∑
i∈B(x̃)

hi +
∑
i∈C(x̃)

hi

 , (3.22)

where

χ =
1

ζ|A(x̃)|+ (1− ζ) |B(x̃)|+ |C(x̃)|
.

Since 0 ≤ ζ ≤ 1, either ζ ≥ 1
2

or 1 − ζ ≥ 1
2
. Without loss of generality,

assume ζ ≥ 1
2
. We have

ζ|A(x̃)|+ (1− γ) |B(x̃)|+ |C(x̃)| ≤ |A(x̃)|+ |B(x̃)|+ |C(x̃)|

= |A(x̃) ∪B(x̃) ∪ C(x̃)| = |N |.

In addition, since A(x̃) ∪ C(x̃) ⊇ {i : i ∈ N and vi ≤ x̃} and B(x̃) ∪ C(x̃) ⊇
{i : i ∈ N and vi ≥ x̃}, by definition of x̃, we have |A(x̃) ∪ C(x̃)| ≥ dn

2
e − φ

and |B(x̃) ∪ C(x̃)| ≥ dn
2
e − φ. Then in (3.22), at least dn

2
e − φ non-faulty

functions are assigned with weights at least 1
2|N | . Similar result holds when

1− ζ ≥ 1
2
.

Cases (i) and (ii) together prove the theorem.
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3.7 Consensus-Based Gradient Method

In this section, we present an iterative algorithm for problem (3.2). The algo-

rithm satisfies the requirement in (3.2) in the limit as the number of iterations

→∞. The proposed iterative algorithm, named synchronous Byzantine gra-

dient method (SBG), is presented below. The pseudo-code describes the steps

that should be performed by each agent j ∈ V . A Byzantine faulty agent

may deviate from the specification arbitrarily. Algorithm SBG combines fea-

tures of iterative Byzantine consensus algorithms [49, 34] with elements of

gradient-based optimization [69, 67]. We will show that the SBG algorithm

solves (3.2) with
(

1
2(|N |−f)

, |N | − f
)

–admissible weight vector α.

Algorithm SBG uses a trimming function Trim analogous to that used in

previous Byzantine consensus algorithms.

Trim (D)

Input: Multi-set D of real-valued scalars, with |D| ≥ 2f + 1.

Sort the elements in D in a non-decreasing order (breaking ties arbitrarily),

and remove the smallest f values and the largest f values. % Denote the

minimum and the maximum of the remaining |D|− 2f values as ys and yl, respec-

tively.%

Return 1
2

(ys + yl).

Each agent j maintains a state variable xj. We denote the value of xj

at the end of t iterations of SBG as xj[t], with the initial value being xj[0].

The initial value may be chosen by each agent arbitrarily. Let h′j (xj[t− 1])

denote the gradient of agent j’s local cost function hj(·) at xj[t− 1].

The step sizes are known to all agents a priori, and satisfy the following

constraints: λ[t− 1] ≥ λ[t] for t ≥ 1,
∑∞

t=1 λ[t− 1] =∞ and
∑∞

t=1 λ
2[t− 1] <

∞.

As seen above, each agent j maintains minimal state (namely, xj) across

iterations. Since the Trim function is applied to the state variables and gra-

dients separately, it is possible that the values received from different sets of

agents are removed in each of those trimming operations. While the algo-

rithm structure above resembles the prior algorithms for Byzantine consen-
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Algorithm 5: SBG for agent j in iteration t ≥ 1

1 Send the 2-tuple (xj[t− 1], h′j (xj[t− 1])) to all the other agents;

2 Receive 2-tuples from all the other agents, with the first element of
each tuple being a state variable, and the second element being a
gradient. If such a tuple is not received from some agent, assume a
default value for the tuple. % Define: Dxj [t− 1] , multi-set containing

xj [t− 1] and state variables received from other agents; Dgj [t− 1] ,
multi-set containing h′j (xj [t− 1]) and gradients received from other

agents.%

3 x̃j[t− 1] ← Trim(Dxj [t− 1]), g̃j[t− 1] ← Trim(Dgj [t− 1]).

4 Update state as follows.

xj[t]← x̃j[t− 1]− λ[t− 1]g̃j[t− 1]. (3.23)

sus, the key difficulty in proving the desired (β, γ)-admissibility result arises

due to the possibility that the Byzantine agents send different (erroneous)

gradients to different non-faulty agents. Unlike the failure-free version of

distributed optimization, the Byzantine faulty agents can effectively tam-

per with the global cost function being optimized. Thus, proving the lower

bounds on β and γ requires us to show that the impact of the faulty behav-

ior can be bounded. To delineate the impact of the faulty behavior, we now

define a family C of “valid” global cost functions.

C ,
{
p : p =

∑
i∈N

αihi,

where α is
(

1
2(|N |−f)

, |N | − f
)

–admissible

}
(3.24)

Each p ∈ C is said to be a valid function (a valid global objective). Note that

each p ∈ C is a convex combination of local cost functions of the non-faulty

agents in N with ( 1
2(|N |−f)

, |N | − f)–admissible weight vector α.

As seen later in Lemma 5, despite the adversarial behavior of the faulty

agents, it is guaranteed that the effective gradient g̃j[t− 1] obtained in Step

4 has an important correspondence to a time-dependent (i.e., varying with

iteration index t) valid cost function in C.

Now let us define set Y to be the union of optimal solutions for all the
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valid functions in C, i.e.,

Y ,
⋃
p(·)∈C

argmin
x∈R

p(x). (3.25)

Lemma 4 identifies an important property of set Y that is crucial in our

convergence analysis. We will show that, as t → ∞, for each agent j, its

state variable xj[t] becomes trapped in set Y .

Lemma 4. Set Y is convex and closed.

Lemma 4 is proved in Section 3.9.3. As stated in Section 3.3, the argument

x of the cost functions hj is assumed to be a scalar in R. In general, we would

like to allow a vector argument for the cost functions (i.e., x ∈ Rk, k ≥ 2).

However, set Y analogously defined for the case of vector arguments is not

necessarily convex, making it difficult to extend our proof technique to vector

arguments. In fact, the case of vector arguments remains an open problem

presently.

We use the following metric for convergence analysis.

Definition 14. For any x ∈ R, the distance between x and set Y is defined

as follows:

Dist (x, Y ) , inf
y∈Y
|x− y| .

Since Y is convex (Lemma 4), the function Dist (·, Y ) is also convex. The-

orem 17 states our main result, which summarizes the convergence behavior

of algorithm SBG.

Theorem 17. Algorithm SBG achieves the following properties:

(i) Consensus: limt→∞ (xi[t]− xj[t]) = 0 for all i, j ∈ N , and

(ii) Optimality: lim t→∞ Dist (xi[t], Y ) = 0 for each i ∈ N .

Interpretation of Theorem 17:

Consensus: Property (i) in the above theorem implies consensus, since

the state variables of all non-faulty agents become identical in the limit.

However, property (i) does not imply that xj[t] for each j ∈ N itself has

a limit. In fact, the value of the state variable xj[t] may change with t

indefinitely. However, as property (i) states, in the limiting behavior, the
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state variables of all the non-faulty agents change in unison, maintaining

consensus. This lack of a limit for each individual xj[t] is a direct result of

the simple structure of algorithm SBG, which allows a faulty agent to send

different gradients to different agents. If we were to require a Byzantine

broadcast of (xj[t−1], h′j(xj[t−1])) in Step 1 of algorithm SBG at each agent

j, then such duplicitous behavior by faulty agents can be precluded, as we

have shown elsewhere [61]. The modified algorithm has a higher cost (due to

use of Byzantine broadcast); however, it can ensure that xj[t], j ∈ N has a

limit as t→∞, in addition to ensuring consensus. Despite the fact that the

limit of xj[t] may not exist, the property (i) is useful in practice – if we were

to terminate the algorithm after a sufficiently large number of iterations,

then property (i) guarantees that the states of all non-faulty agents will be

close to each other, thus achieving approximate consensus.

Optimality: Property (ii) in the above theorem makes guarantees about

the “goodness” of the state of non-faulty agents as t → ∞. In particu-

lar, observe that Dist (x, Y ) = 0 if and only if x ∈ Y . Thus, property (ii)

guarantees that, for sufficiently large t, state xj[t] for any non-faulty agent

j approximately equals an optimum of a valid function in C. That is, xj[t]

approximately equals a solution of problem (3.2) with a
(

1
2(|N |−f)

, |N | − f
)

–

admissible weight vector α. Thus, Theorems 12 and 17 together imply that

algorithm SBG achieves optimal fault-tolerance in the sense that an opti-

mal number (i.e., |N | − f) of local cost functions of non-faulty agents are

guaranteed to be represented in the global cost function that is optimized.

However, as the discussion of property (i) would suggest, this global cost

function is time-varying. Secondly, when |N | − f weights are non-zero, if

the weight distribution were to be uniform, then each weight would be 1
|N |−f .

The fact that the α vector achieved by algorithm SBG is
(

1
2(|N |−f)

, |N | − f
)

–

admissible implies that at least |N |−f weights are ≥ 1
2(|N |−f)

, which is within

a factor of 2 of the uniform weight 1
|N |−f .

3.7.1 Correctness of Theorem 17

In this section, we present some key results that are useful in proving Theo-

rem 17.
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Recall that in Step 4 of algorithm SBG, each agent j applies the trimming

function to compute the effective gradient g̃j[t − 1]. Lemma 5 establishes a

correspondence between this effective gradient and a valid function in C.

Lemma 5. For each non-faulty agent j ∈ N and each iteration t ≥ 1, there

exists a valid function pjt =
∑

i∈N bji[t]hi ∈ C such that the effective gradient

g̃j[t− 1] computed in Step 4 of algorithm SBG can be expressed as

g̃j[t− 1] =
∑
i∈N

bji[t]h
′
i(xi[t− 1]). (3.26)

For agent j ∈ N , the weights (bji[t]’s) in the interpolation on the right side

of (3.26) correspond to the weights used to obtain a valid global cost function

pjt(x) ∈ C. Note that the vector formed by weights bji[t] is
(

1
2(|N |−f)

, |N | − f
)

–

admissible. It is also important to note that h′i(xi[t−1]) for each i ∈ N used

in (3.26) is the gradient of agent i’s local cost function hi(·) computed at

agent i’s own state variable xi[t−1]. Thus, the effective gradient g̃j[t−1] is a

linear interpolation of gradients of local cost functions at potentially different

argument values. Despite this apparent discrepancy, algorithm SBG approx-

imates the behavior of a gradient-based distributed optimization algorithm.

Intuitively, the reason for this behavior is that the agents are guaranteed to

eventually arrive at a consensus – thus, eventually, the gradients at different

non-faulty agents are computed at approximately equal arguments. However,

the weights bji[t] in Lemma 5 are time-dependent, due to the potentially in-

correct behavior by faulty agents (i.e., the weights correspond to potentially

different functions in C in different iterations). More importantly, at differ-

ent agents in N , the weights corresponding to the effective gradients in a

given iteration t can be different (i.e., for two different agents k, j ∈ N , valid

functions pkt and pjt may be different). Despite this difference, consensus is

achieved due to the fact that set Y is convex (Lemma 4) and the decreasing

step sizes λ[t− 1] used in algorithm SBG.

The next proposition will be used in proving Lemma 5.

Proposition 4. Let a, b, c, d ∈ R such that b < a, b ≤ c ≤ 1
2

(a+ b) , 1
2

(a+ b) <

a ≤ d, and there exists 0 ≤ ξ ≤ 1, for which 1
2

(a+ b) = ξc+ (1− ξ)d holds.

Then 1
2
≤ ξ ≤ 1.

Since b ≤ c ≤ 1
2

(a+ b) < a ≤ d, if the weighted average of c and d equals
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1
2

(a+ b), then the weight assigned to d cannot be more than 1
2
. The above

proposition can be shown via the preceding argument. Thus the proof is

omitted. Now we prove Lemma 5.

Proof of Lemma 5. Recall that in Trim(Dgj [t−1]), the largest f values and

the smallest f values were removed. Let gi[t− 1] be the gradient in Dgj [t− 1]

received from agent i at iteration t, and let ĝj[t − 1] and ǧj[t − 1] be the

maximum and the minimum of the remaining |Dgj [t − 1]| − 2f = n − 2f

values. In addition, denote by R2
j [t− 1] the identifiers of the n− 2f agents

from whom the remaining gradients were received.

Denote by Lj[t−1] and Sj[t−1] the set of agents from whom the largest f

gradient values and the smallest f gradient values were received in iteration

t. Let i∗, j∗ ∈ R2
j [t−1] such that gi∗ [t−1] = ǧj[t−1] and gj∗ [t−1] = ĝj[t−1].

In addition, let φ , |F|, and let L∗j [t − 1] ⊆ Lj[t − 1] − F and S∗j [t − 1] ⊆
Sj[t− 1]−F such that

|L∗j [t− 1]| = |S∗j [t− 1]| = f − φ+ |R2
j [t− 1] ∩ F|. (3.27)

We consider two cases: (i) ĝj[t − 1] > ǧj[t − 1] and (ii) ĝj[t − 1] = ǧj[t − 1],

separately.

Case (i): Suppose ĝj[t − 1] > ǧj[t − 1]. By definitions of L∗j [t − 1] and

S∗j [t− 1], we have

1

f − φ+ |R2
j [t− 1] ∩ F|

∑
i∈S∗j [t−1]

gi[t− 1] ≤ g̃j[t− 1]

≤ 1

f − φ+ |R2
j [t− 1] ∩ F|

∑
i∈L∗j [t−1]

gi[t− 1].

So, there exists 0 ≤ ξ ≤ 1 such that

g̃j[t− 1] =
ξ

f − φ+ |R2
j [t− 1] ∩ F|

∑
i∈S∗j [t−1]

gi[t− 1]

+
1− ξ

f − φ+ |R2
j [t− 1] ∩ F|

∑
i∈L∗j [t−1]

gi[t− 1]. (3.28)

Without loss of generality, assume ξ ≥ 1
2
.

Let k ∈ R2
j [t − 1] − F . Suppose gk[t − 1] ≤ g̃j[t − 1]. Since |Lj[t − 1] ∪
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{j∗}| = f + 1, there exists a non-faulty agent j′k ∈ Lj[t − 1] ∪ {j∗}. Thus,

gj′k [t− 1] ≥ ĝj[t− 1] > g̃j[t− 1], and there exists 0 ≤ ξk ≤ 1 such that

g̃j[t− 1] = ξkgk[t− 1] + (1− ξk)gj′k [t− 1]. (3.29)

In addition, we know g̃j[t−1] = 1
2

(ĝj[t− 1] + ǧj[t− 1]). Let a = ĝj[t−1], b =

ǧj[t − 1], c = gk[t − 1], and d = gj′k [t − 1]. By Proposition 4, we know that
1
2
≤ ξk ≤ 1.

Similarly, when gk[t − 1] > g̃j[t − 1], there also exists 1
2
≤ ξk ≤ 1. In

particular, since |Sj[t − 1] ∪ {i∗}| = f + 1, there exists a non-faulty agent

j′k ∈ Sj[t− 1] ∪ {i∗}. Thus, gj′k [t− 1] ≤ ǧj[t− 1] < g̃j[t− 1]; the existence of

the desired ξk is implied by Proposition 4.

Since

|N | − f = n− φ− f = n− 2f + f − φ

=
∣∣R2

j [t− 1]
∣∣+ f − φ

=
∣∣R2

j [t− 1]−F
∣∣+
∣∣R2

j [t− 1] ∩ F
∣∣+ f − φ,

we get

(|N | − f) g̃j[t− 1]

=
(
|R2

j [t− 1]−F|
)
g̃j[t− 1]

+
(
f − φ+ |R2

j [t− 1] ∩ F|
)
g̃j[t− 1]

=
∑

k∈R2
j [t−1]−F

g̃j[t− 1]

+
(
f − φ+ |R2

j [t− 1] ∩ F|
)
g̃j[t− 1]

=
∑

k∈R2
j [t−1]−F

(
ξkgk[t− 1] + (1− ξk)gj′k [t− 1]

)
by (3.29)

+ ξ
∑

i∈S∗j [t−1]

gi[t− 1] + (1− ξ)
∑

i∈L∗j [t−1]

gi[t− 1] by (3.28)

=
∑

k∈R2
j [t−1]−F

(
ξk h

′
k(xk[t− 1]) + (1− ξk)h′j′k(xj′k [t− 1])

)
+ ξ

∑
i∈S∗j [t−1]

h′i(xi[t− 1]) + (1− ξ)
∑

i∈L∗j [t−1]

h′i(xi[t− 1]), (3.30)

where the last equality is true because for each non-faulty agent i ∈ N , we
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have gi[t− 1] = h′i(xi[t− 1]).

Now, we define function q as follows:

q ,
1

|N | − f
∑

k∈R2
j [t−1]−F

(
ξk hk + (1− ξk)hj′k

)
+

ξ

|N | − f
∑

i∈S∗j [t−1]

hi +
1− ξ
|N | − f

∑
i∈L∗j [t−1]

hi. (3.31)

For each k ∈ R2
j [t − 1] − F , it holds that ξk

|N |−f ≥
1

2(|N |−f)
. For each i ∈

S∗j [t− 1], it holds that ξ
|N |−f ≥

1
2(|N |−f)

. In addition, we have

|
(
R2
j [t− 1]−F

)
∪ S∗j [t− 1]|

= |R2
j [t− 1]| − |R2

j [t− 1] ∩ F|+ |S∗j [t− 1]|

= n− 2f − |R2
j [t− 1] ∩ F|+ f − φ+ |R2

j [t− 1] ∩ F|

= n− φ− f = |N | − f.

Thus, in (3.31), at least |N | − f non-faulty agents corresponding to agents

k ∈
(
R2
j [t− 1]−F

)
∪ S∗j [t− 1] are assigned with weights lower bounded by

1
2(|N |−f)

.

Similarly, the case 0 ≤ ξ < 1
2

can be proved.

Case (ii): Suppose ĝj[t − 1] = ǧj[t − 1]. Let k ∈ R2
j [t − 1] − F . Since

ĝj[t − 1] ≥ gk[t − 1] ≥ ǧj[t − 1] and ĝj[t − 1] = ǧj[t − 1], it holds that

ĝj[t− 1] = gk[t− 1] = ǧj[t− 1]. Consequently,

g̃j[t− 1] =
1

2
(ĝj[t− 1] + ǧj[t− 1]) = gk[t− 1]. (3.32)

Similar to (3.30), we can rewrite g̃j[t− 1] as follows:

(|N | − f) g̃j[t− 1] =
∑

k∈R2
j [t−1]−F

h′k(xk[t− 1])

+ ξ
∑

i∈S∗j [t−1]

h′i(xi[t− 1]) + (1− ξ)
∑

i∈L∗j [t−1]

h′i(xi[t− 1]).
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Define function q as follows:

q =
1

|N | − f
∑

k∈R2
j [t−1]−F

hk +
ξ

|N | − f
∑

i∈S∗j [t−1]

hi

+
1− ξ
|N | − f

∑
i∈L∗j [t−1]

hi. (3.33)

In function q defined in (3.33), for each k ∈ R2
j [t − 1] − F , it holds that

1
|N |−f ≥

1
2(|N |−f)

. For each i ∈ S∗j [t − 1], it holds that ξ
|N |−f ≥

1
2(|N |−f)

. In

addition, we have

|
(
R2
j [t− 1]−F

)
∪ S∗j [t− 1]| = |N | − f.

Thus, in (3.33), at least |N | − f non-faulty agents corresponding to

(
R2
j [t− 1]−F

)
∪ S∗j [t− 1]

are assigned with weights lower bounded by 1
2(|N |−f)

.

Case (i) and Case (ii) together prove the lemma.

By a similar argument as in proving Lemma 5, we can obtain the result

below for x̃j[t− 1] computed in Step 4 of algorithm SBG.

Corollary 4. For each non-faulty agent j ∈ N and t ≥ 1, there exists

a
(

1
2(|N |−f)

, |N | − f
)

–admissible weight vector aj[t] (whose i-th element is

aji[t]) such that x̃j[t−1] computed in Step 4 of algorithm SBG can be expressed

as

x̃j[t− 1] =
∑
i∈N

aji[t]xi[t− 1]. (3.34)

Note that weights bji[t] and aji[t] in (3.26) and (3.34), respectively, are not

necessarily identical, because the state variables and gradients are trimmed

independently in Step 4 of algorithm SBG.

Asymptotic Consensus

Recall that λ[t] ≤ λ[t− 1] and limt→∞ λ[t] = 0. The following proposition is

used in proving consensus.
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Proposition 5. Let 0 ≤ b < 1. Define `(t) =
∑t−1

r=0 λ[r]bt−r. Then limt→∞ `(t) =

0. Additionally, if λ[t] = 1
t

for t ≥ 1 and λ[0] = 1 3, then `(t) = O(1
t
).

The results in Proposition 5 is very standard and well-known. The proof

of Proposition 5 is presented in Section 3.9.4 for completeness.

Denote M(t) , maxi∈N xi[t] and m(t) , mini∈N xi[t]. Asymptotic consen-

sus among non-faulty agents in Theorem 17 is immediately implied by the

following lemma.

Lemma 6. Under algorithm SBG, limt→∞ (M [t]−m[t]) = 0. Additionally,

if λ[t] = 1
t

for t ≥ 1 and λ[0] = 1, then (M [t]−m[t]) = O(1
t
).

Proof. Let i, j ∈ N such that xi[t] = M [t], and xj[t] = m[t]. For t ≥ 1, by

(3.23), we have

M [t]−m[t] = xi[t]− xj[t]

= (x̃i[t− 1]− x̃j[t− 1])

+ λ[t− 1] (g̃j[t− 1]− g̃i[t− 1]) . (3.35)

We bound the first term in the right hand side of (3.35) as follows. The

second term can be bounded similarly.

By Corollary 4, we have

x̃i[t− 1]− x̃j[t− 1]

=
∑
k∈N

aik[t]xk[t− 1]−
∑
k∈N

ajk[t]xk[t− 1]. (3.36)

Define Ki and Kj as follows:

Ki ,
{
k ∈ N : aik[t] ≥

1

2 (|N | − f)

}
, and

Kj ,
{
k ∈ N : ajk[t] ≥

1

2 (|N | − f)

}
. (3.37)

By Corollary 4, both ai[t] and aj[t] are
(

1
2(|N |−f)

, |N | − f
)

–admissible. Thus,

3As it can be seen from the proof of Proposition 5, λ[0] can be chosen to be any positive
constant.
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|Ki| ≥ |N | − f and |Kj| ≥ |N | − f . Consequently,

|Ki ∩ Kj| ≥ |N | − f + |N | − f − |N |

= |N | − 2f ≥ 2f + 1− 2f = 1.

Let k∗ ∈ Ki ∩ Kj. We can bound (3.36) as follows:

x̃i[t− 1]− x̃j[t− 1]

=
∑
k∈N

aik[t]xk[t− 1]−
∑
k∈N

ajk[t]xk[t− 1]

=
∑

k∈N ,k 6=k∗
aik[t]xk[t− 1]−

∑
k∈N ,k 6=k∗

ajk[t]xk[t− 1]

+ (aik∗ [t]−min{aik∗ [t], ajk∗ [t]})xk∗ [t− 1]

− (ajk∗ [t]−min{aik∗ [t], ajk∗ [t]})xk∗ [t− 1]

≤
∑

k∈N ,k 6=k∗
aik[t]M [t− 1]−

∑
k∈N ,k 6=k∗

ajk[t]m[t− 1]

+ (aik∗ [t]−min{aik∗ [t], ajk∗ [t]})M [t− 1]

− (ajk∗ [t]−min{aik∗ [t], ajk∗ [t]})m[t− 1]

≤ (1−min{aik∗ [t], ajk∗ [t]}) (M [t− 1]−m[t− 1])

≤
(

1− 1

2 (|N | − f)

)
(M [t− 1]−m[t− 1]) , (3.38)

where the last inequality follows from the fact that k∗ ∈ Ki ∩ Kj and

min{aik∗ [t], ajk∗ [t]} ≥ 1
2(|N |−f)

.

Since |h′k(x)| ≤ L for any x and k ∈ N , it follows that

max
k∈N

max
x∈R

h′k(x) ≤ L, and min
k∈N

min
x∈R

h′k(x) ≥ −L.

Similar to (3.38), we get

g̃j[t− 1]− g̃i[t− 1] ≤ 2L

(
1− 1

2 (|N | − f)

)
. (3.39)
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By (3.35), (3.38) and (3.39), we get

M [t]−m[t] ≤
(

1− 1

2 (|N | − f)

)
(M [t− 1]−m[t− 1])

+ 2Lλ[t− 1]

(
1− 1

2 (|N | − f)

)
≤
(

1− 1

2 (|N | − f)

)t
(M [0]−m[0])

+ 2L
t−1∑
r=0

λ[r]

(
1− 1

2 (|N | − f)

)t−r
. (3.40)

Therefore, by Proposition 5, we conclude that

lim
t→∞

(M [t]−m[t]) = 0.

The first term on the right-hand side of (3.40) goes to 0 exponentially fast.

For the special step sizes λ[t] = 1
t

for t ≥ 1 and λ[0] = 1, the second

term on the right-hand side of (3.40) goes to 0 sublinearly. In particular,

M [t]−m[t] = O(1
t
) due to Proposition 5.

Our next lemma (Lemma 7) says that the cumulative disagreement be-

tween two non-faulty agents is finite. Lemma 7 is proved in Section 3.9.5.

Lemma 7. Under algorithm SBG, it holds that
∑∞

t=0 λ[t] (M [t]−m[t]) <∞.

The above results establish asymptotic consensus behavior of SBG.

Convergence Analysis

In this section, we prove that xj[t], where j ∈ N , is asymptotically in Y , i.e.,

limt→∞D (xj[t], Y ) = 0.

Recall that lemma 6 says that limt→∞ (xj[t]− xi[t]) = 0 for any j, i ∈ N
– asymptotic consensus among the non-faulty agents is achieved. Thus, for

sufficiently large t, (3.23) approximately equals

xj[t] ≈ xj[t− 1]− λ[t− 1]pjt (xj[t− 1]) ,∀ j ∈ N , (3.41)

where pjt(·) is the valid function identified in Lemma 5. (This approximation

is presented and proved formally later in this section.) For a non-faulty
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agent j, one typical trajectory of xj is as follows: (1) xj first approaches set

Y (defined in (3.25)), and (2) then bounces back and forth around set Y

before completely being trapped in Y .

The existence of disagreement in finite time (discussed above) complicates

the convergence analysis significantly.

To show the optimality of xj for j ∈ N , we use the auxiliary sequence

{z[t]}∞t=0 defined as follows.

Definition 15. Let {z[t]}∞t=0 be an estimate sequence such that

z[t] = xjt [t], where jt ∈ argmax
j∈N

Dist (xj[t], Y ) . (3.42)

To show limt→∞Dist (xj[t], Y ) = 0, ∀ j ∈ N , it is enough to show

lim
t→∞

Dist (z[t], Y ) = 0,

observing that 0 ≤ Dist (xj[t], Y ) ≤ Dist (z[t], Y ) for each j ∈ N .

Proposition 6. If limt→∞Dist (z[t], Y ) = 0, then for each non-faulty agent

i in N , the sequence {Dist (xi[t], Y )}∞t=0 converges and

lim
t→∞

Dist (xi[t], Y ) = 0.

Proposition 6 is proved in Section 3.9.6.

Our convergence analysis ofDist (z[t], Y ) uses the notion of resilient points,

stated next.

Definition 16. Given sequences {x[t]}∞t=0 and {g[t]}∞t=0, and a set of stepsizes

{λ[t]}∞t=0 we say x[t] is a resilient point with respect to gradient g[t] if one of

the following items is true:

* x[t] ∈ Y and (x[t]− λ[t]g[t]) /∈ Y,
* x[t] > maxY and (x[t]− λ[t]g[t]) < minY,

* x[t] < minY and (x[t]− λ[t]g[t]) > maxY.

Lemma 8. The sequence {Dist (z[t], Y )}∞t=0 converges.

The following auxiliary lemmas and proposition are used in proving Lemma

8. Their proofs can be found in Section 3.9.6.
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Corollary 5. Under SBG, λ[t] (M [t]−m[t])→ 0 as t→∞, and

∞∑
τ=t

λ[τ ] (M [τ ]−m[τ ])→ 0, as t→∞.

To show {Dist (z[t], Y )}∞t=0 is convergent, we will use the well-known “al-

most supermartingale” convergence theorem in [70], which can also be found

as Lemma 11 in Section 2.2 [71]. We present a deterministic version of the

theorem in the next lemma.

Lemma 9. [70] Let {at}∞t=0, {bt}∞t=0, and {ct}∞t=0 be non-negative sequences.

Suppose that

at+1 ≤ at − bt + ct for all t ≥ 0,

and
∑∞

t=0 ct <∞. Then
∑∞

t=0 bt <∞ and the sequence {at}∞t=0 converges to

a non-negative value.

With these auxiliary lemmas and proposition, Lemma 8 can be proved as

follows.

Proof of Lemma 8. Recall that {z[t]}∞t=0 is a sequence of estimates defined

in Definition 15, and that there is a sequence of agents {jt}∞t=0 associated with

the sequence {z[t]}∞t=0. We first derive an iterative relation for Dist (z[t], Y ).

For t ≥ 0, define

j′t+1 ∈ argmax
i∈N

Dist
(
xi[t]− λ[t]g̃jt+1 [t], Y

)
. (3.43)

We get

Dist (z[t+ 1], Y ) = Dist
(
xjt+1 [t+ 1], Y

)
= Dist

(
x̃jt+1 [t]− λ[t]g̃jt+1 [t], Y

)
(a)
= Dist

(∑
i∈N

ajt+1i[t+ 1]xi[t]− λ[t]g̃jt+1 [t], Y

)

= Dist

(∑
i∈N

ajt+1i[t+ 1]
(
xi[t]− λ[t]g̃jt+1 [t]

)
, Y

)
(b)

≤
∑
i∈N

ajt+1i[t+ 1]Dist
(
xi[t]− λ[t]g̃jt+1 [t], Y

)
≤ max

i∈N
Dist

(
xi[t]− λ[t]g̃jt+1 [t], Y

)
, (3.44)
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where equality (a) follows from Corollary 4; and inequality (b) is true because

of the convexity of Dist (·, Y ). By (3.43) and (3.44), we get

Dist (z[t+ 1], Y ) ≤ Dist
(
xj′t+1

[t]− λ[t]g̃jt+1 [t], Y
)

(a)
= Dist

(
xj′t+1

[t]− λ[t]
∑
k∈N

bjt+1k[t+ 1]h′k(xk[t]), Y

)

= inf
y∈Y

∣∣∣∣∣xj′t+1
[t]− λ[t]

∑
k∈N

bjt+1k[t+ 1]h′k(xk[t])− y

∣∣∣∣∣
= inf

y∈Y

∣∣∣xj′t+1
[t]− λ[t]

∑
k∈N

bjt+1k[t+ 1]h′k(xj′t+1
[t])− y

+ λ[t]
∑
k∈N

bjt+1k[t+ 1]
(
h′k(xj′t+1

[t])− h′k(xk[t])
) ∣∣∣

≤ inf
y∈Y

∣∣∣xj′t+1
[t]− λ[t]p′t+1(xj′t+1

[t])− y
∣∣∣

+ λ[t]L(M [t]−m[t]), (3.45)

where equality (a) holds due to Lemma 5; and the last inequality follows

from the fact that h′k(·) is L–Lipschitz continuous for each k ∈ N and

|xj′t+1
[t]− xk[t]| ≤M [t]−m[t]

– recalling that pt+1 , p
jt+1

t+1 , which is a valid global objective defined in (3.24)

and Lemma 5.

Recall that j′t+1 is defined as (3.43). Note that for each t ≥ 0, there exists

a non-faulty agent j′t+1 such that (3.45) holds, and there exists a sequence of

agents {j′t+1}∞t=0. Let {x[t]}∞t=0 be a sequence of estimates such that

x[t] = xj′t+1
[t]. (3.46)

Let {g[t]}∞t=0 be a sequence of gradients such that

g[t] = p′t(xj′t+1
[t]). (3.47)

To get an iterative relation of Dist (z[t], Y ), we consider two cases: Case

1: x[t] = xj′t+1
[t] is a resilient point with respect to the gradient g[t] =

p′t(xj′t+1
[t]), and Case 2: x[t] = xj′t+1

[t] is a not resilient point with respect to

the gradient g[t] = p′t(xj′t+1
[t]).
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Case 1: Suppose x[t] = xj′t+1
[t] is a resilient point with respect to the gradi-

ent g[t] = p′t(xj′t+1
[t]), where resilient points are defined in Definition 16. By

Definition 16, we can bound (3.45) further as follows:

Dist (z[t+ 1], Y ) ≤ inf
y∈Y

∣∣∣xj′t+1
[t]− λ[t]p′t+1(xj′t+1

[t])− y
∣∣∣

+ Lλ[t] (M [t]−m[t]) by (3.45)

≤ Lλ[t] + Lλ[t] (M [t]−m[t]) , (3.48)

where the last inequality holds because x[t] is a resilient point and the ab-

solute value of the gradient of the valid function pt(·) is bounded above by

L.

Case 2: Suppose x[t] = xj′t+1
[t] is not a resilient point with respect to the

gradient g[t] = p′t(xj′t+1
[t]). Then from Definition 16, we know that

B1: if xj′t+1
[t] ∈ Y , then xj′t+1

[t]− λ[t]p′t(xj′t+1
[t]) ∈ Y ,

B2: if xj′t+1
[t] < minY , then xj′t+1

[t]− λ[t]p′t(xj′t+1
[t]) ≤ max Y ,

B3: if xj′t+1
[t] > max Y , then xj′t+1

[t]− λ[t]p′t(xj′t+1
[t]) ≥ min Y .

Note that it does not impact the analysis at all whether x[t+ 1] is resilient

or not.

We consider two subcases:

Subcase 1: x[t]− λ[t]g[t] = xj′t+1
[t]− λ[t]p′t(xj′t+1

[t]) ∈ Y ;

Subcase 2: x[t]− λ[t]g[t] = xj′t+1
[t]− λ[t]p′t(xj′t+1

[t]) /∈ Y .

Subcase 1 can possibly appear in each of B1, B2, and B3. In contrast,

Subcase 2 can only appear in B2 and B3.

Subcase 1: Suppose x[t] − λ[t]g[t] = xj′t+1
[t] − λ[t]p′t(xj′t+1

[t]) ∈ Y . Then

it holds that

Dist (z[t+ 1], Y )

≤ inf
y∈Y

∣∣∣xj′t+1
[t]− λ[t]p′t(xj′t+1

[t])− y
∣∣∣+ Lλ[t] (M [t]−m[t]) as per (3.45)

≤ 0 + Lλ[t] (M [t]−m[t]) (3.49)

≤ Dist (z[t], Y ) + Lλ[t] (M [t]−m[t]) . (3.50)

Subcase 2: Suppose x[t] − λ[t]g[t] = xj′t+1
[t] − λ[t]p′t(xj′t+1

[t]) /∈ Y =
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[minY,maxY ]. As commented earlier, either B2 holds or B3 holds. In

addition, from the assumption of Subcase 2, B2 and B3 can be further

refined as follows.

B2′: if xj′t+1
[t] < minY , then xj′t+1

[t]− λ[t]p′t(xj′t+1
[t]) < min Y ,

B3′: if xj′t+1
[t] > max Y , then xj′t+1

[t]− λ[t]p′t(xj′t+1
[t]) > max Y .

Suppose B2′ is true. As xj′t+1
[t] < minY , and p′t(xj′t+1

[t]) is the gradient of

the valid function pt(·) at point xj′t+1
[t], from the definition of set Y , we know

that

p′t(xj′t+1
[t]) < 0. (3.51)

In addition, since xj′t+1
[t] − λ[t]p′t(xj′t+1

[t]) < minY, it holds that for any

y ∈ Y ∣∣∣xj′t+1
[t]− λ[t]p′t(xj′t+1

[t])− y
∣∣∣

= y − xj′t+1
[t] + λ[t]p′t(xj′t+1

[t])

=
∣∣∣y − xj′t+1

[t]
∣∣∣+ λ[t]p′t(xj′t+1

[t])

=
∣∣∣y − xj′t+1

[t]
∣∣∣− λ[t]

∣∣∣p′t(xj′t+1
[t])
∣∣∣ by (3.51) (3.52)

Similarly, we can show that (3.52) still holds for the case when B3′ is true.

Henceforth, we refer to (3.52) as the relation that holds for both B2′ and

B3′, i.e., holds under Subcase 2.
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Thus, under Subcase 2, we can bound (3.45) as follows:

Dist (z[t+ 1], Y ) ≤ inf
y∈Y

∣∣∣xj′t+1
[t]− λ[t]p′t(xj′t+1

[t])− y
∣∣∣

+ Lλ[t] (M [t]−m[t]) as per (3.45)

= inf
y∈Y

∣∣∣y − xj′t+1
[t]
∣∣∣− λ[t]

∣∣∣p′t(xj′t+1
[t])
∣∣∣

+ Lλ[t] (M [t]−m[t]) by (3.52)

= Dist
(
xj′t+1

[t], Y
)
− λ[t]

∣∣∣p′t(xj′t+1
[t])
∣∣∣

+ Lλ[t] (M [t]−m[t]) by Definition 14

≤ Dist (z[t], Y )− λ[t]
∣∣∣p′t(xj′t+1

[t])
∣∣∣

+ Lλ[t] (M [t]−m[t]) by Definition 15 (3.53)

≤ Dist (z[t], Y ) + Lλ[t] (M [t]−m[t]) . (3.54)

Combining the above analysis for Subcase 1 and Subcase 2, by (3.50) and

(3.54), for Case 2, we obtain the following iteration relation:

Dist (z[t+ 1], Y ) ≤ Dist (z[t], Y ) + Lλ[t] (M [t]−m[t]) . (3.55)

Therefore, for both Case 1 and Case 2, by (3.48) and (3.55), we obtain the

following iterative relation:

Dist (z[t+ 1], Y ) ≤ max {λ[t]L, Dist (z[t], Y )}

+ Lλ[t] (M [t]−m[t]) . (3.56)

With this iterative relation, we next show that Dist (z[t], Y ) is convergent.

Recall from (4.41) and (3.47) that x[t] = xj′t+1
[t] and g[t] = p′t(xj′t+1

[t]). We

consider two cases, separately: Case (i) where there are infinitely many points

in {x[t]}∞t=0 that are resilient with respect to {g[t]}∞t=0, and Case (ii) where

there are finitely many points in {x[t]}∞t=0 that are resilient with respect to

{g[t]}∞t=0.

Case (i): Suppose there are infinitely many points in {x[t]}∞t=0 that are

resilient with respect to {g[t]}∞t=0.

Let {ti}∞i=0 be the maximal sequence of such indices. Since x[ti] is a resilient
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point with respect to g[ti] for each i, then for each ti, by (3.48), we get

Dist (z[ti + 1], Y ) ≤ λ[ti]L+ λ[ti]L (M [ti]−m[ti]) , (3.57)

and for each t 6= ti ∀i, by (3.55), we get

Dist (z[t+ 1], Y ) ≤ Dist (z[t], Y ) + λ[t]L (M [t]−m[t]) . (3.58)

Taking limit sup on both sides of (3.57), we get

lim sup
i→∞

Dist (z[ti + 1], Y )

≤ lim sup
i→∞

λ[ti]L+ lim sup
i→∞

λ[ti]L (M [ti]−m[ti])

= 0 + 0 = 0 by Corollary 5. (3.59)

In addition, because distance is non-negative, it is true that

lim inf
i→∞

Dist (z[ti + 1], Y ) ≥ 0.

Thus, the limit of Dist (z[ti + 1], Y ) exists, and

lim
i→∞

Dist (z[ti + 1], Y ) = 0. (3.60)

For each τ > t0 and τ /∈ {ti}∞i=0, there exists ti(τ) such that ti(τ) < τ < ti(τ)+1.

Repeatedly applying (3.58), we get

Dist (z[τ + 1], Y )

≤ Dist
(
z[ti(τ) + 1], Y

)
+

τ∑
r=ti(τ)+1

λ[r]L (M [r]−m[r])

≤ λ[ti(τ)]L+ λ[ti(τ)]
(
M [ti(τ)]−m[ti(τ)]

)
L

+
τ∑

r=ti(τ)+1

λ[r] (M [r]−m[r])L by (3.57)

= λ[ti(τ)]L+
τ∑

r=ti(τ)

λ[r] (M [r]−m[r])L

≤ λ[ti(τ)]L+
∞∑

r=ti(τ)

λ[r] (M [r]−m[r])L. (3.61)
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Taking limit sup on both sides of (3.61), we get

lim sup
τ→∞

Dist (z[τ + 1], Y )

≤ lim
τ→∞

λ[ti(τ)]L+ lim
τ→∞

∞∑
r=ti(τ)

λ[r] (M [r]−m[r])L

= 0 + 0 = 0 by Corollary 5. (3.62)

To apply Corollary 5 here we need to show that ti(τ) →∞ as τ →∞. This

is true since there are infinitely many resilient points.

From (3.60), we know that ∀ ε > 0,∃ i0 such that for all j ≥ i0, the following

holds:

sup{Dist (z[tj + 1], Y ) , tj ∈ {ti}∞i=0, j ≥ i0}

= |sup{Dist (z[tj + 1], Y ) , tj ∈ {ti}∞i=0, j ≥ i0} − 0|

< ε. (3.63)

From (3.62), we know that ∀ ε > 0,∃ τ ∗, τ ∗ /∈ {ti}∞i=0 such that for all τ ≥
τ ∗, τ /∈ {ti}∞i=0, the following holds:

sup{Dist (z[τ + 1], Y ) , τ ≥ τ ∗, τ /∈ {ti}∞i=0}

= |sup{Dist (z[τ + 1], Y ) , τ ≥ τ ∗, τ /∈ {ti}∞i=0} − 0|

< ε. (3.64)

Let t∗ = max{ti0 , τ ∗}. Then for ε > 0 and t ≥ t∗, we have

sup{Dist (z[t+ 1], Y ) , t ≥ t∗}

≤ sup
{
{Dist (z[t+ 1], Y ) , t ∈ {ti}∞i=0, t ≥ ti0}

∪ {Dist (z[t+ 1], Y ) , t /∈ {ti}∞i=0, t ≥ τ ∗}
}

= max
{

sup{Dist (z[t+ 1], Y ) , t ∈ {ti}∞i=0, t ≥ ti0},

sup{Dist (z[t+ 1], Y ) , t /∈ {ti}∞i=0, t ≥ τ ∗}
}

< max{ε, ε} = ε by (3.63) and (3.64).

Thus, we have

lim sup
t→∞

Dist (z[t], Y ) = lim sup
t→∞

Dist (z[t+ 1], Y ) = 0.
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Therefore, the limit of Dist (z[t], Y ) exists, and

lim
t→∞

Dist (z[t], Y ) = 0. (3.65)

Case (ii): Suppose there are finitely many points in {x[t]}∞t=0 that are re-

silient with respect to {g[t]}∞t=0.

By the assumption in case (ii), we know that there exists a time index m0

such that for all t ≥ m0, each x[t] is not a resilient point with respect to g[t].

Thus, for t ≥ m0, (3.55) is applicable. Thus,

Dist (z[t+ 1], Y ) ≤ Dist (z[t], Y ) + λ[t]L (M [t]−m[t]) . (3.66)

Define {ar}∞r=0, {br}∞r=0, and {cr}∞r=0 as follows:

ar = Dist (z[m0 + r], Y ) ,

br = 0,

cr = λ[m0 + r]L (M [m0 + r]−m[m0 + r]) .

By Lemmas 7 and 9, we know the limit of Dist (z[t], Y ) exists. Let c ≥ 0 be

a nonnegative constant such that

lim
t→∞

Dist (z[t], Y ) = c. (3.67)

By (3.66), for each t ≥ m0, we have

Dist (z[t+ 1], Y ) ≤ Dist (z[t], Y ) + λ[t]L (M [t]−m[t])

≤ Dist (z[m0], Y ) +
t∑

r=m0

λ[r]L (M [r]−m[r])

≤ Dist (z[m0], Y ) +
∞∑

r=m0

λ[r]L (M [r]−m[r]) . (3.68)

By Lemma 7, we know there exists some constant C such that

∞∑
r=m0

λ[r]L (M [r]−m[r]) ≤
∞∑
r=0

λ[r]L (M [r]−m[r]) ≤ C.

In addition, Dist (z[m0], Y ) ∈ R. Thus, by (3.68), we know forDist (z[t+ 1], Y )
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is bounded for each t ≥ m0. In particular, for each t ≥ m0,

Dist (z[t+ 1], Y ) ≤ Dist (z[m0], Y ) + C ∈ R.

Thus, c, defined in (3.67), is finite, i.e., c <∞.

The convexity of Y is crucial in establishing (3.56). Up to the disagreement

adjustment term (i.e., Lλ[t] (M [t]−m[t]) in (3.56)), the iterative relation

(3.56) is analogous to the basic evolution in the standard centralized gradient-

based method [69]. Although the basic evolution relation has been obtained

for failure-free distributed algorithms [3, 4, 5, 8], since our effective objective

function is time-dependent (pjt(·) in (3.41)), their analysis does not apply to

our problem.

Furthermore, we can show that the distance becomes 0 asymptotically, as

stated in Lemma 10.

Lemma 10. The sequence {Dist (z[t], Y )}∞t=0 converges to 0, i.e.,

lim
t→∞

Dist (z[t], Y ) = 0.

Lemma 10 is proved by contradiction. The following proposition is used

in our proof. It says that if Dist (z[t], Y ) does not converge to 0, then there

exists at least one cumulative point lies outside set Y .

Proposition 7. If there exists c > 0 such that limt→∞Dist (z[t], Y ) = c,

then at least one of the following two statements is true.

(A.1) There exists a subsequence {z[tk]}∞k=0 such that z[tk] < minY for all

k ≥ 0.

(A.2) There exists a subsequence {z[t′k]}∞k=0 such that z[t′k] > maxY for all

k ≥ 0.

In addition, at least one of (minY − c) or (maxY + c) is an accumulation

point of {z[t]}∞t=0.

Proof. Since limt→∞Dist (z[t], Y ) = c > 0, there exists m such that z[t] /∈ Y
for t ≥ m. Otherwise, there exists a subsequence {z[tk]}∞k=0 such that z[tk] ∈
Y for each k ≥ 0. By definition of Dist (·, Y ), we have, Dist (z[tk], Y ) = 0

for each k ≥ 0. Then

c = lim
t→∞

Dist (z[tk], Y ) = 0,
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contradicting the assumption that c > 0.

Since z[t] /∈ Y for t ≥ m, at least one of the following two statements is

true.

(A.1) There exists a subsequence {z[tk]}∞k=0 such that z[tk] < minY for all

k ≥ 0.

(A.2) There exists a subsequence {z[t′k]}∞k=0 such that z[t′k] > maxY for all

k ≥ 0.

By symmetry, without loss of generality, assume (A.1) is true. Then, for

each y ∈ Y and each k ≥ 0, we have

z[tk] < minY ≤ y. (3.69)

Thus,

|z[tk]− y| = y − z[tk].

Minimizing over y ∈ Y , we have

Dist (z[tk], Y ) = min
y∈Y
|z[tk]− y|

= min
y∈Y

(y − z[tk]) = minY − z[tk].

Thus,

z[tk] = minY −Dist (z[tk], Y ) . (3.70)

Recall that the limit of Dist (z[t], Y ) exists and limt→∞Dist (z[t], Y ) = c,

and note that {Dist (z[tk], Y )}∞k=0 is a subsequence of {Dist (z[t], Y )}∞t=0.

Thus, the limit of Dist (z[tk], Y ) exists, and

lim
k→∞

Dist (z[tk], Y ) = lim
t→∞

Dist (z[t], Y ) = c.

This, together with equation (3.69), implies that the limit of z[tk] exists, and

lim
k→∞

z[tk] = lim
k→∞

(minY −Dist (z[tk], Y ))

= minY − lim
k→∞

Dist (z[tk], Y )

= minY − c. (3.71)
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Thus, (minY − c) is an accumulation point of {z[t]}∞t=0.

Similarly, if (A.2) is true, i.e., there exists a subsequence {z[t′k]}∞k=0 such

that z[t′k] > maxY for all k ≥ 0, and we can show that (maxY + c) is an

accumulation point of {z[t]}∞t=0.

Therefore, Proposition 7 has been proved.

Now we prove Lemma 10.

Proof of Lemma 10. Recall from (4.41) and (3.47) that x[t] = xj′t+1
[t] and

g[t] = p′t(xj′t+1
[t]). In addition, we know that if there are infinitely many

points in {x[t]}∞t=0 that are resilient with respect to {g[t]}∞t=0 (Case (i) in

the proof of Lemma 8), (3.65) holds, i.e., limt→∞Dist (z[t], Y ) = 0. Thus,

to prove Lemma 10, it is enough to consider the case when there are only

finitely many points in {x[t]}∞t=0 that are resilient with respect to {g[t]}∞t=0

(Case (ii) in the proof of Lemma 8).

In all subcases, we assume that ti 6= tj when i 6= j – recalling that ti and

tj are defined in Case (ii) in the proof of Lemma 8.

Case (ii.a): Suppose there are infinitely many time indices t ≥ m0 such

that

x[t]− λ[t]g[t] = xj′t+1
[t]− λ[t]p′t(xj′t+1

[t]) ∈ Y.

Let {uk}∞k=0 be the maximal sequence of such indices. By (3.49), we have

Dist (z[uk + 1], Y ) ≤ 0 + Lλ[uk] (M [uk]−m[uk]) . (3.72)

By Lemma 8, we know that the limit of Dist (z[t], Y ) exists. Thus, take limit

on both sides of (3.72), we get

lim
k→∞

Dist (z[uk + 1], Y )

≤ 0 + L lim
k→∞

(λ[uk] (M [uk]−m[uk]))

= 0 + 0 = 0 by Corollary 5.

On the other hand, by Lemma 8, it holds that limt→∞Dist (z[t], Y ) = c ≥ 0.

Thus,

c = lim
t→∞

Dist (z[t], Y ) = lim
k→∞

Dist (z[uk], Y ) = 0,
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proving the theorem.

Case (ii.b): Suppose there are only finitely many time indices t ≥ m0 such

that

x[t]− λ[t]g[t] = xj′t+1
[t]− λ[t]p′t(xj′t+1

[t]) ∈ Y.

Then, there exists t′ ≥ m0 such that for each t ≥ t′ ≥ m0, x[t] is not a

resilient point with respect to g[t], and

x[t]− λ[t]g[t] = xj′t+1
[t]− λ[t]p′t(xj′t+1

[t]) /∈ Y.

Thus, for each t ≥ t′ ≥ m0, (3.53) holds, i.e.,

Dist (z[t+ 1], Y ) ≤ Dist (z[t], Y )− λ[t]
∣∣∣p′t(xj′t+1

[t])
∣∣∣

+ Lλ[t] (M [t]−m[t]) .

Recall that 0 ≤ c <∞ is a nonnegative constant such that

lim
t→∞

Dist (z[t], Y ) = c.

Next we show that c = 0. We prove this by contradiction. Suppose c > 0.

By Proposition 7, we know that either (A.1) is true or (A.2) is true.

(A.1) There exists a subsequence {z[tk]}∞k=0 such that z[tk] < minY for all

k ≥ 0.

(A.2) There exists a subsequence {z[t′k]}∞k=0 such that z[t′k] > maxY for all

k ≥ 0.

We also know that either (minY −c) or (maxY +c) is an accumulation point

of {z[t]}∞t=0.

Let a = minY , b = maxY and ε = c
2
. It can be seen from the proof of

proposition 7 that there exists m such that z[t] /∈ Y for t ≥ m. We consider

three scenarios: (A.1) is true but (A.2) is not true; (A.2) is true but (A.1) is

not true; both (A.1) and (A.2) are true.

Suppose (A.1) holds but (A.2) does not hold. There exists a subse-

quence {z[tk]}∞k=0 such that z[tk] < minY for all k ≥ 0; and there does not

exist a subsequence {z[t′k]}∞k=0 such that z[t′k] > maxY for all k ≥ 0. Recall

that z[t] /∈ Y for t ≥ m. Then there exists m1 ≥ m such that z[t] < minY
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for t ≥ m1 ≥ m. From the proof of Claim (1), we know

lim
t→∞

z[t] = minY − c. (3.73)

Since (3.73) holds, there exists m∗1 ≥ m1 ≥ m such that for all t ≥ m∗1 ≥
m1 ≥ m, the following holds:

|z[t]− (a− c) | ≤ ε =
c

2
⇐⇒ a− 3c

2
≤ z[t] ≤ a− c

2
. (3.74)

Since c > 0, we have a− c
2
< a. Then, for each p(·) ∈ C, p′(a− c

2
) < 0. Thus,

ρ∗ , sup
p(·)∈C

p′(a− c

2
) ≤ 0.

Let h′i1(a −
c
2
), · · · , h′i|N|(a −

c
2
) be a non-increasing order of h′j(a − c

2
), for

j ∈ N . Define function q as follows:

q =

(
1− |N | − f − 1

2(|N | − f)

)
hi1 +

1

2(|N | − f)

|N |−f∑
j=2

hij .

It can be easily seen that q(·) ∈ C is a valid function and

ρ∗ = sup
p(·)∈C

p′(a− c

2
) = q′(a− c

2
) < 0.

By (3.53), we have, for each t ≥ t′ ≥ m0,

Dist (z[t+ 1], Y ) ≤ Dist (z[t], Y )− λ[t]
∣∣∣p′t(xj′t+1

[t])
∣∣∣+ Lλ[t] (M [t]−m[t])

≤ Dist (z[t], Y )− λ[t] |p′t(z[t])|+ 2Lλ[t] (M [t]−m[t]) .
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Then, for each t ≥ t̃1 = max{m∗1, t′}, we have

Dist (z[t+ 1], Y ) ≤ Dist (z[t], Y )− λ[t] |p′t(z[t])|

+ 2Lλ[t] (M [t]−m[t])

≤ Dist
(
z[t̃1], Y

)
−

t∑
r=t̃1

(λ[r] |p′r(z[r])|)

+ 2L
t∑

r=t̃1

λ[r] (M [r]−m[r])

(a)

≤ Dist
(
z[t̃1], Y

)
−

t∑
r=t̃1

(λ[r]|ρ∗|)

+ 2L
t∑

r=t̃1

λ[r] (M [r]−m[r]) . (3.75)

By (3.74), we know z[r] ≤ a− c
2

for each r ≥ t̃1 = max{m∗1, t′}. Then,

p′r(z[r]) ≤ p′r(a−
c

2
) ≤ q′(a− c

2
) = ρ∗ < 0.

Then, − |p′r(z[r])| ≤ −|ρ∗|, and inequality (a) holds.

Taking limit on both sides of (3.75), we obtain

lim
t→∞

Dist (z[t+ 1], Y ) ≤ Dist
(
z[t̃1], Y

)
−
∞∑
r=t̃1

(λ[r]|ρ∗|)

+ 2L
∞∑
r=t̃1

λ[r] (M [r]−m[r]) .

≤ Dist
(
z[t̃1], Y

)
−

 ∞∑
r=t̃1

λ[r]

 |ρ∗|
+ 2C by Lemma 7

(a)

≤ Dist
(
z[t̃1], Y

)
−∞+ 2C

= −∞,

where inequality (a) is true since |ρ∗| > 0 and
∑∞

t=0 λ[t] =∞. On the other

hand, we know limt→∞Dist (z[t], Y ) = c ∈ R. A contradiction is proved.
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Thus,

lim
t→∞

max
j∈N

Dist (xj[t], Y ) = lim
t→∞

Dist (z[t], Y ) = c = 0.

Similarly, we can show the case when (A.2) holds but (A.1) does not hold,

and the case when both (A.1) and (A.2) hold.

The proof of the Lemma 10 is complete.

Lemma 10 is then used to establish that the distance of xj[t] from Y

converges to 0 as well, proving the optimality of xj[t] (for j ∈ N ) stated in

Theorem 17.

3.8 Discussion

In this chapter, we introduced the problem of multi-agent optimization in

the presence of Byzantine agents, and characterized the fundamental limits

of the output quality of any algorithms. By exploiting Byzantine broadcast,

Algorithms 2 and 3 essentially solve a centralized optimization problem where

there are n cost component functions, among which up to f of them are

injected by the system adversary. A much simpler distributed algorithm

that achieves the optimal fault-tolerance with only local communication is

proposed. As a trade-off, the simpler algorithm achieves somewhat weaker

convergence property than the convergence achieved by the algorithms in

Section 3.5. In particular, while the algorithms in Section 3.5 ensure that

the estimates at non-faulty agents have a limit, the simpler algorithm in

Section 3.7 only ensures consensus among the non-faulty agents, but does

not necessarily ensure that the estimates have a limit.

Many extensions of these results are possible.

When the underlying communication channel is a broadcast channel (over

which all transmissions are received correctly and identically by all agents),

the results presented in this report can be proved for n ≥ 2f + 1.

We have also obtained a comparable set of results for the scenario when

the cost functions are redundant in some manner (e.g., cost function of agent

3 may equal a convex combination of cost functions of agents 1 and 2), or

the optimal sets of the local cost functions are guaranteed to overlap. These

results can be found in our report [61].
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We so far focus on the unconstrained version of the optimization problem in

(3.2). However, we can also generalize our results to the constrained version

of problem (3.2) [64]. In particular, let X ⊆ R such that X 6= Ø, and X is

convex and closed. Then the constrained version of (3.2) is stated below in

(3.76). Observe that the output is now constrained to be in set X .

output xo such that (3.76)

there exists weight vector α for which

xo ∈ argmin
x∈X

1

|N |
∑
i∈N

αihi(x),∑
i∈N

αi = 1, and ∀i, αi ≥ 0.

The algorithm SBG can be adapted to solve (3.76) with a simple modification

of the state update in (3.23), by projecting x̃j[t− 1]− λ[t− 1]g̃j[t− 1] on to

set X . This projection guarantees that xj[t] is within the constraint set X .

However, compared to the original algorithm, such a projection introduces a

projection error at each iteration. Specifically, the update of xj can be written

as follows, where ei[t − 1] denotes the projection error, and ProjectionX

denotes projection on to X .

xj[t] = ProjectionX (x̃j[t− 1]− λ[t− 1]g̃j[t− 1])

= x̃j[t− 1]− λ[t− 1]g̃j[t− 1] + ei[t− 1]. (3.77)

The projection error ei[t] can be shown to approach 0 as t→∞, and Theorem

17 holds true for the modified algorithm as well [64]. A complete algorithm

description and analysis is presented in [64].

When agents crash, we can improve on the
(

1
2(|N |−f |) , |N | − f

)
-admissibility

achieved in case of Byzantine faults. The algorithm SBG is modified in this

case to perform no trimming at all, since the agents do not tamper with mes-

sages. For the modified algorithm, we have shown [63] that all the non-faulty

agents (agents in N ) produce an output that equals an optimum of a global

cost function of the form

c

(∑
i∈N

hi(x) +
∑
i∈F

αihi(x)

)
, (3.78)
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where F is the set of faulty agents (that crash at some point during the exe-

cution), 0 ≤ αi ≤ 1 for each i ∈ F and c is a normalization constant such that

c
(
|N |+

∑
i∈F αi

)
= 1. Note that in (3.78), all the local functions associated

with non-faulty agents have equal weights. A finite-time interpretation of

the above results is also of practical interest.

We have only considered synchronous systems so far. In an asynchronous

system as well, when there are up to f Byzantine faults, algorithm SBG

can be modified to achieve fault-tolerant optimization. For instance, algo-

rithm SBG may be combined with the reliable broadcast algorithm in [72].

Alternatively, we can require n > 5f , and combine SBG with the simpler

asynchronous iterative Byzantine consensus algorithm in [73]. The two ap-

proaches will achieve a trade-off between communication cost and optimiza-

tion performance.

Open Problems

Incomplete networks In this chapter, we assumed that the underlying

communication network is a completely connected. We have also explored

SBG-like algorithms [64] for incomplete networks. However, our present ap-

proach is not believed to be optimal in general in incomplete network topolo-

gies. In particular, as seen previously, algorithm SBG achieves optimal fault

tolerance, while also ensuring weights (αi’s) are bounded below by an ad-

equately large constant (particularly, 1
2(|N |−f)

). Obtaining equally strong

results for incomplete networks remains an open problem.

Vector arguments Algorithm SBG assumes that the domain for the ar-

gument of the cost functions is R (or, in case of constrained optimization in

(3.76) with X = R). In general, we would like to solve problem (3.2) for

vector (i.e., multidimensional) arguments in Rk for k ≥ 2 as well. In recent

work, the problem of Byzantine vector consensus has been solved [74, 75].

However, a solution for Byzantine vector consensus by itself is not adequate

to be able to solve the optimization problem of interest here. The difficulty

lies in the geometry of the set of optima, when the argument is a higher

dimensional vector. In particular, unlike the one-dimensional case where set

Y defined in (3.25) is convex, it is not necessarily convex when the argument

is higher dimensional.

93



Additionally, Theorem 12 can be extended to d-dimensional inputs to show

that no more than |N | − df weights can be non-zero.

Non-smooth cost functions In our work, we assumed continuously dif-

ferentiable cost functions. In general, the cost functions may be non-smooth,

and the optimization algorithm would need to use subgradients instead of

gradients. For the failure-free case, distributed subgradient optimization al-

gorithms indeed exist [3, 4]; however, design and analysis of fault-tolerant

optimization algorithms for non-smooth cost functions remain open.

3.9 Proofs

3.9.1 Proof of Theorem 12

Proof. Let A be an arbitrary algorithm that minimizes (3.2).

Recall that we assume n ≥ 3f + 1. Let h1, . . . , hn be defined as follows,

where a = f + 1. For each x ∈ R,

• hi(x) = (x− i)2, for 1 ≤ i ≤ f .

In this case, the optimum for hi(x) is at x = i.

• hi(x) = (x− a)2, for f + 1 ≤ i ≤ n.

In this case, the optimum for hi(x) is at x = a.

Note that the functions defined above satisfy the admissibility conditions

specified in Section 3.3 except for the “bounded gradient” condition. How-

ever, the “bounded gradient” condition can be easily enforced by carefully

modifying the functions values (and correspondingly gradient values) for x

that are far enough away the respective optima.

From a non-faulty agent j’s perspective, any subset of up to f agents may

be faulty. Suppose that the faulty agents, aside from choosing their cost

functions as specified above, do not behave incorrectly. That is, all agents

follow the pre-specified algorithm A correctly.

Let us consider any non-faulty agent j where f + 1 ≤ j ≤ n − f . Let xo

be the output of A. Consider two possible cases:
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Case 1: In this case, suppose that agents 1 through n − φ are non-faulty,

and agents n − φ + 1 through n are faulty. For the local cost functions

(specified above) for the non-faulty agents in this case, the optima are in the

interval [1, a]. Then by Proposition 1, for the output xo it must be true that

xo ∈ [1, a].

Case 2: In Case 2, suppose that agents f + 1 through n are non-faulty, and

agents 1 through f are faulty. For the local cost functions (specified above)

for the non-faulty agents in this case, the optimum must be in {a}. Then by

Proposition 1, it holds that xo ∈ {a}, i.e., xo = a.

Since the non-faulty agent j does not know the actual faulty agents, it

cannot distinguish between the above two cases, so it must choose identical

output in both cases. Therefore, the output must be in [1, a] ∩ {a}; that is,

the output at non-faulty agent j must equal a = f + 1.

Now suppose that Case 1 holds, i.e., agents n−φ+ 1 through n are faulty.

By the above argument, the output at non-faulty agent j must be a. Now,

by the requirements of (3.2), there exists a collection of weights αi’s such

that xo = a is an optimum of objective

n−φ∑
i=1

αihi. (3.79)

Thus,
∑n−φ

i=1 αi h
′
i(a) = 0, where h′i(x) denotes the derivative of function hi

at x.

Recall that a = f + 1. By construction of h1(x), . . . , hn−φ(x), we know

h′i (a) = 0 for f + 1 ≤ i ≤ n− φ and h′i (a) > 0 for 1 ≤ i ≤ f . Thus

0 =

n−φ∑
i=1

αih
′
i(a) =

f∑
i=1

αih
′
i(a).

For 1 ≤ i ≤ f , since h′i(a) > 0 and αi ≥ 0 it holds that αih
′
i(a) ≥ 0, where

equality holds if and only if αi = 0. Thus,
∑f

i=1 αih
′
i(a) = 0 implies that

αih
′
i(a) = 0 for 1 ≤ i ≤ f . Then αi = 0 for 1 ≤ i ≤ f .

Since there are |N | non-faulty agents (1 through n−φ), and weight αi = 0

for 1 ≤ i ≤ f , at most |N | − f of the weights of the non-faulty agents in

Case 1 are non-zero. Thus, regardless of the value of parameter β in (3.2)

(where β > 0), the parameter γ cannot be larger than |N | − f .
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3.9.2 Proof of Proposition 2

Proof. We first show that F (x) is a non-decreasing function.

Choose any x ∈ R, and choose any y ≥ x. Let Sy and Sx be sets such that∑
i∈A(y)−Sy h

′
i (y) and

∑
i∈A(x)−Sx h

′
i (x) are minimized, respectively.

Since hi (·) is convex, h′i (·) is non-decreasing. By definition of A (·) we

have A (x) ⊆ A (y), i.e., A (·) is non-decreasing. In addition, 0 ≤ |A (·) | ≤ n.

Similarly, we can show that B(y) ⊆ B(x) and 0 ≤ |B (·) | ≤ n.

F (y)− F (x) =
∑

i∈A(y)−Sy

h′i (y)−
∑

i∈A(x)−Sx

h′i (x)

=
∑

i∈A(y)−Sy−Sx

h′i (y) +
∑

i∈Sx∩A(y)−Sy

h′i (y)

−

 ∑
i∈A(x)−Sx−Sy

h′i (x) +
∑

i∈Sy∩A(x)−Sx

h′i (x)


=

∑
i∈A(y)−Sy−Sx

h′i (y)−
∑

i∈A(x)−Sx−Sy

h′i (x) +
∑

i∈Sx∩A(y)−Sy

h′i (y)−
∑

i∈Sy∩A(x)−Sx

h′i (x)

(a)

≥
∑

i∈A(x)−Sy−Sx

h′i (y)−
∑

i∈A(x)−Sx−Sy

h′i (x) +
∑

i∈Sx∩A(y)−Sy

h′i (y)−
∑

i∈Sy∩A(x)−Sx

h′i (x)

(b)
=

∑
i∈A(x)−Sy−Sx

h′i (y)−
∑

i∈A(x)−Sx−Sy

h′i (x) +
∑

i∈Sx−Sy

h′i (y)−
∑

i∈Sy∩A(x)−Sx

h′i (x)

(c)

≥
∑

i∈Sx−Sy

h′i (y)−
∑

i∈Sy∩A(x)−Sx

h′i (x) . (3.80)

Inequality (a) follows from the fact that A(x) ⊆ A(y) and h′i(y) > 0 for each

i ∈ A(y); equality (b) is true since Sx ⊆ A (x) ⊆ A (y); and inequality (c)

holds because that h′i (·) is non-decreasing.

Now consider two cases: (i) |Sx| < f and (ii) |Sx| = f .

Case (i): Suppose |Sx| < f . In this case, we have Sx = A(x), and∑
i∈Sx−Sy

h′i (y)−
∑

i∈Sy∩A(x)−Sx

h′i (x) =
∑

i∈Sx−Sy

h′i (y)−
∑
i∈Ø

h′i (x)

=
∑

i∈Sx−Sy

h′i (y) ≥ 0. (3.81)

Case (ii): Suppose |Sx| = f . Because Sx ⊆ A (x) ⊆ A (y), if |Sx| = f , we
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have |A (y) | ≥ f . Then, by definition of Sy, it holds that |Sy| = f . Now,

|Sx − Sy| = |Sx − Sx ∩ Sy| = |Sx| − |Sx ∩ Sy|

= f − |Sx ∩ Sy| = |Sy| − |Sx ∩ Sy|

= |Sy − Sx ∩ Sy| ≥ |Sy ∩ A (x)− Sx ∩ Sy|

≥ |Sy ∩ A (x)− Sx|.

Thus, |Sx − Sy| ≥ |Sy ∩ A (x)− Sx|.
By definition of Sx, for each i ∈ Sx − Sy and j ∈ Sy ∩A (x)− Sx, at point

x, we have h′i(x) ≥ h′j(x), i.e., h′i(x) ≥ maxj∈Sy∩A(x)−Sx h
′
j (x). We have∑

i∈Sx−Sy

h′i (y)−
∑

i∈Sy∩A(x)−Sx

h′i (x)

≥
∑

i∈Sx−Sy

h′i (x)−
∑

i∈Sy∩A(x)−Sx

h′i (x) (3.82)

≥
∑

i∈Sx−Sy

max
j∈Sy∩A(x)−Sx

h′j (x)−
∑

i∈Sy∩A(x)−Sx

h′i (x)

(a)

≥
∑

i∈Sy∩A(x)−Sx

max
j∈Sy∩A(x)−Sx

h′j (x)−
∑

i∈Sy∩A(x)−Sx

h′i (x)

≥ 0, (3.83)

where inequality (3.82) holds due to the fact that h′i (·) is non-decreasing and

that y ≥ x, and (a) holds because |Sx−Sy| ≥ |Sy∩A (x)−Sx| and for j ∈ Sy,
h′j(x) > 0.

Therefore, from (3.80), (3.81) and (3.83), we have that

F (y)− F (x) ≥ 0, for all y ≥ x,

i.e., F is non-decreasing.

The monotonicity of G (·) can be shown similarly [61] with the modification

that Sy and Sx are the sets such that
∑

i∈B(y)−Sy h
′
i (y) and

∑
i∈B(x)−Sx h

′
i (x)

are maximized, respectively, for any y ≥ x.

Next show that F (x) is continuous. We will use the previously proven fact

that F is non-decreasing.

Recall that each hi(x) is continuously differentiable, i.e., h′i(x) is continu-
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ous. Then, for every ε > 0 there exists a δ > 0 such that for all x ∈ (c−δ, c+δ)
the following holds for all i ∈ N ,

|h′i(x)− h′i(c)| < ε. (3.84)

To show F (x) is continuous, we need to show that

|x− c| < δ ⇒ |F (x)− F (c)| < ε. (3.85)

Suppose |x− c| < δ holds for some δ > 0, then c− δ < x < c + δ. Let Sc+δ

and Sc be the subsets of A (c+ δ) and A (c), where |Sc+δ| ≤ f and |Sc| ≤
f , such that

∑
i∈A(c+δ)−Sc+δ h

′
i (c+ δ) and

∑
i∈A(c)−Sc h

′
i (c) are minimized,
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respectively. Note that A(c) ⊆ A(c+ δ). We have

F (x)− F (c)
(a)

≤ F (c+ δ)− F (c)

=
∑

i∈A(c+δ)−Sc+δ

h′i (c+ δ)−
∑

i∈A(c)−Sc

h′i (c)

=
∑

i∈A(c+δ)−Sc+δ−Sc

h′i (c+ δ) +
∑

i∈A(c+δ)∩Sc−Sc+δ

h′i (c+ δ)

−

 ∑
i∈A(c)−Sc+δ−Sc

h′i (c) +
∑

i∈Sc+δ∩A(c)−Sc

h′i (c)


(b)
=

∑
i∈A(c+δ)−Sc+δ−Sc

h′i (c+ δ) +
∑

i∈Sc−Sc+δ

h′i (c+ δ)

−

 ∑
i∈A(c)−Sc+δ−Sc

h′i (c) +
∑

i∈Sc+δ∩A(c)−Sc

h′i (c)


=

∑
i∈A(c+δ)−Sc+δ−Sc

h′i (c+ δ)−
∑

i∈A(c)−Sc+δ−Sc

h′i (c)

+
∑

i∈Sc−Sc+δ

h′i (c+ δ)−
∑

i∈Sc+δ∩A(c)−Sc

h′i (c)

(c)

≤
∑

i∈A(c+δ)−Sc+δ−Sc

h′i (c+ δ)−
∑

i∈A(c+δ)−Sc+δ−Sc

h′i (c)

+
∑

i∈Sc−Sc+δ

h′i (c+ δ)−
∑

i∈Sc+δ−Sc

h′i (c)

(d)

≤
∑

i∈A(c+δ)−Sc+δ−Sc

h′i (c+ δ)−
∑

i∈A(c+δ)−Sc+δ−Sc

h′i (c)

+
∑

i∈Sc+δ−Sc

h′i (c+ δ)−
∑

i∈Sc+δ−Sc

h′i (c) , (3.86)

where (a) holds due to monotonicity of F ; equality (b) is true since Sc ⊆
A(c) ⊆ A(c+ δ); inequality (c) follows from the fact that h′i (c) ≤ 0 for each

i /∈ A (c) and A (c) ⊆ A (c+ δ); and inequality (d) holds because, as shown

next, ∑
i∈Sc−Sc+δ

h′i (c+ δ) ≤
∑

i∈Sc+δ−Sc

h′i (c+ δ) . (3.87)
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Now, observing that |Sc| ≤ |Sc+δ|, we get

|Sc − Sc+δ| = |Sc − Sc ∩ Sc+δ| = |Sc| − |Sc ∩ Sc+δ|

≤ |Sc+δ| − |Sc ∩ Sc+δ| = |Sc+δ − Sc|.

In addition, by definition of Sc, for each i ∈ Sc − Sc+δ and j ∈ Sc+δ − Sc,
h′i (c+ δ) ≤ h′j (c+ δ). Then,∑

i∈Sc−Sc+δ

h′i (c+ δ) ≤
∑

i∈Sc−Sc+δ

min
j∈Sc+δ−Sc

h′j (c+ δ)

(a)

≤
∑

i∈Sc+δ−Sc

min
j∈Sc+δ−Sc

h′j (c+ δ)

≤
∑

i∈Sc+δ−Sc

h′i (c+ δ) ,

where inequality (a) is true because

|Sc − Sc+δ| ≤ |Sc+δ − Sc|

and

min
j∈Sc+δ−Sc

h′j (c+ δ) > 0.

This proves (3.87). Then we have

F (x)− F (c)

≤
∑

i∈A(c+δ)−Sc+δ−Sc

h′i (c+ δ)−
∑

i∈A(c+δ)−Sc+δ−Sc

h′i (c)

+

 ∑
i∈Sc+δ−Sc

h′i (c+ δ)−
∑

i∈Sc+δ−Sc

h′i (c)

 by (3.86)

(a)
=

∑
i∈A(c+δ)−Sc

(h′i (c+ δ)− h′i (c))

(b)
< |A (c+ δ)− Sc| ε

< nε.

Equality (a) follows because (A (c+ δ)−Sc+δ−Sc)∪(Sc+δ−Sc) = A (c+ δ)−
Sc and sets A (c+ δ) − Sc+δ − Sc and Sc+δ − Sc are disjoint. Inequality (b)
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follows from (3.84).

By an analogous argument, we can also show that for any x ∈ (c−δ, c+δ),

F (x)− F (c) > −nε.

For completeness, we present the proof as follows.

Let Sc−δ and Sc be the subsets of A (c− δ) and A (c), where |Sc−δ| ≤ f

and |Sc| ≤ f , such that
∑

i∈A(c−δ)−Sc−δ h
′
i (c− δ) and

∑
i∈A(c)−Sc h

′
i (c) are

minimized, respectively.

F (x)− F (c) ≥ F (c− δ)− F (c)

=
∑

i∈A(c−δ)−Sc−δ

h′i (c− δ)−
∑

i∈A(c)−Sc

h′i (c)

=
∑

i∈A(c−δ)−Sc−δ−Sc

h′i (c− δ) +
∑

i∈Sc∩A(c−δ)−Sc−δ

h′i (c− δ)

−

 ∑
i∈A(c)−Sc−δ−Sc

h′i (c) +
∑

i∈Sc−δ∩A(c)−Sc

h′i (c)


=

∑
i∈A(c−δ)−Sc−δ−Sc

h′i (c− δ)−
∑

i∈A(c)−Sc−δ−Sc

h′i (c)

+
∑

i∈Sc∩A(c−δ)−Sc−δ

h′i (c− δ)−
∑

i∈Sc−δ∩A(c)−Sc

h′i (c)

(a)

≥
∑

i∈A(c)−Sc−δ−Sc

h′i (c− δ)−
∑

i∈A(c)−Sc−δ−Sc

h′i (c)

+
∑

i∈Sc−Sc−δ

h′i (c− δ)−
∑

i∈Sc−δ∩A(c)−Sc

h′i (c)

(b)
=

∑
i∈A(c)−Sc−δ−Sc

h′i (c− δ)−
∑

i∈A(c)−Sc−δ−Sc

h′i (c)

+
∑

i∈Sc−Sc−δ

h′i (c− δ)−
∑

i∈Sc−δ−Sc

h′i (c)

=
∑

i∈A(c)−Sc−δ−Sc

(h′i (c− δ)− h′i (c))

+
∑

i∈Sc−Sc−δ

h′i (c− δ)−
∑

i∈Sc−δ−Sc

h′i (c) .

Inequality (a) follows from the fact that h′i (c− δ) ≤ 0 for each i /∈ A (c− δ)
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and A (c− δ) ⊆ A(c). Equality (b) is true because that Sc−δ ⊆ A(c − δ) ⊆
A(c). Now, observing that |Sc−δ| ≤ |Sc|, we get

|Sc − Sc−δ| = |Sc| − |Sc ∩ Sc−δ|

≥ |Sc−δ| − |Sc ∩ Sc−δ| = |Sc−δ − Sc|. (3.88)

In addition, we have∑
i∈Sc−Sc−δ

h′i (c− δ)−
∑

i∈Sc−δ−Sc

h′i (c)

(a)

≥
∑

i∈Sc−Sc−δ

h′i (c− δ)−
∑

i∈Sc−δ−Sc

min
j∈Sc−Sc−δ

h′j (c)

(b)

≥
∑

i∈Sc−Sc−δ

h′i (c− δ)−
∑

i∈Sc−Sc−δ

min
j∈Sc−Sc−δ

h′j (c)

≥
∑

i∈Sc−Sc−δ

h′i (c− δ)−
∑

i∈Sc−Sc−δ

h′i (c)

=
∑

i∈Sc−Sc−δ

(h′i (c− δ)− h′i (c)) . (3.89)

Inequality (a) holds due to the fact that for each i ∈ Sc−δ − Sc, h
′
i(c) ≤

minj∈Sc−Sc−δ h
′
j (c). Inequality (b) follows from (3.88) and the fact that

minj∈Sc−Sc−δ h
′
j (c) > 0. Thus

F (x)− F (c) ≥
∑

i∈A(c)−Sc−δ−Sc

(h′i (c− δ)− h′i (c))

+

 ∑
i∈Sc−Sc−δ

h′i (c− δ)−
∑

i∈Sc−δ−Sc

h′i (c)


≥

∑
i∈A(c)−Sc−δ−Sc

(h′i (c− δ)− h′i (c))

+
∑

i∈Sc−Sc−δ

(h′i (c− δ)− h′i (c)) from (3.89)

=
∑

i∈A(c)−Sc−δ

(h′i (c− δ)− h′i (c))

> −nε from (3.84).
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Then we have, for any ε0 = nε > 0, there exists δ > 0 such that

|x− c| < δ ⇒ |F (x)− F (c)| < ε0.

Therefore, F (·) is continuous.

Continuity of G(·) can be proved similarly.

3.9.3 Proof of Lemma 4

Proof that set Y is convex

We first prove that set Y is convex. Let x1, x2 ∈ Y such that x1 6= x2.

By definition of Y , there exist valid functions p1 =
∑

i∈N αihi ∈ C and

p2 =
∑

i∈N βihi ∈ C such that x1 ∈ argmin p1(x) and x2 ∈ argmin p2(x),

respectively. In addition, let p = 1
|N |
∑

i∈N hi. By definition of valid function

in (3.24), it holds that p ∈ C. Note that it is possible that p1 = p2, and that

pi = p for i = 1 or i = 2.

Given 0 ≤ α ≤ 1, let xα = αx1 + (1− α)x2. We consider two cases:

(i) xα ∈ argmin p1(x)∪argmin p2(x)∪argmin p(x), and (ii) xα /∈ argmin p1(x)∪
argmin p2(x) ∪ argmin p(x).

When xα ∈ argmin p1(x) ∪ argmin p2(x) ∪ argmin p(x), by definition of

Y , we have

xα ∈ argmin p1(x) ∪ argmin p2(x) ∪ argmin p(x) ⊆ Y.

Now we consider the case when xα /∈ argmin p1(x) ∪ argmin p2(x) ∪
argmin p(x).

Without loss of generality, assume that x1 < x2. By definition of xα, we

have x1 < xα < x2. By the fact that argminx∈R p1(x) and argminx∈R p2(x) are

convex, it holds that max (argmin p1(x)) < xα < min (argmin p2(x)), which

imply that p′1(xα) > 0 and p′2(xα) < 0.

There are two possibilities for p′(xα) (the gradient of p(xα)): p′(xα) < 0 or

p′(xα) > 0. Note that p′(xα) 6= 0 because xα 6∈ argmin p(x).

When p′(xα) < 0, there exists 0 ≤ ζ ≤ 1 such that

ζ p′1(xα) + (1− ζ) p′(xα) = 0.
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By definition of functions p1 and p, we have

0 = ζ p′1(xα) + (1− ζ) p′(xα)

=
∑
i∈N

(
αiζ + (1− ζ)

1

|N |

)
h′i(xα).

Thus, xα is an optimum of function

∑
i∈N

(
αiζ + (1− ζ)

1

|N |

)
hi. (3.90)

Let I be the collection of indices defined by

I , { i : i ∈ N , and αiζ + (1− ζ)
1

|N |
≥ 1

2(|N | − f)
}.

Next we show that |I| ≥ |N | − f . Let I1 defined by

I1 , { i : i ∈ N , and αi ≥
1

2(|N | − f)
}.

Since p1 ∈ C, then |I1| ≥ |N | − f . In addition, since n > 3f and |N | =

n − |F| > 2f , we have |N | < 2(|N | − f). Thus, for each j ∈ I1, we have

αjζ + (1− ζ) 1
|N | >

1
2(|N |−f)

, i.e., j ∈ I. Thus, I1 ⊆ I.

Since |I1| ≥ |N | − f , we have |I| ≥ |N | − f . So function (3.90) is a valid

function in C. Thus, xα ∈ Y .

Similarly, we can show that the above result holds when p′(xα) > 0. There-

fore, set Y is convex.

Proof that Set Y is closed

To show that Y is closed, we need the following proposition.

For each x ∈ R, let h′i1(x)(x), · · · , h′i|N|(x)(x) be a non-increasing order of

h′j(x), for j ∈ N , i.e., h′i1(x)(x) ≥ · · · ≥ h′i|N|(x)(x). Note that associated

with the gradient order, there is a corresponding list of non-faulty agents

{i1(x), i2(x), . . . , i|N |(x)}, in which the relative ranks of non-faulty agents
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vary with x. For each x, define r(x) to be

r(x) ,

(
1− |N | − f − 1

2(|N | − f)

)
h′i1(x)(x)

+
1

2(|N | − f)

|N |−f∑
j=2

h′ij(x)(x). (3.91)

At each x ∈ R, function r(x) is the largest gradient value among all the valid

functions in C.

Proposition 8. Function r is continuous and non-decreasing.

Proof. Recall that {i1(x), i2(x), . . . , i|N |(x)} is the list of non-faulty agents

that corresponds to the non-increasing gradient order h′i1(x)(x), · · · , h′i|N|(x)(x).

By definition, function

(
1− |N | − f − 1

2(|N | − f)

)
hi1(x)(·) +

1

2(|N | − f)

|N |−f∑
j=2

hij(x)(·)

is contained in C. Since at each x ∈ R, r(x) is the largest gradient among

gradients of all valid functions in C, for any y (which may equal x) we have

r(y) ≥
(

1− |N | − f − 1

2(|N | − f)

)
h′i1(x)(y) +

1

2(|N | − f)

|N |−f∑
j=2

h′ij(x)(y). (3.92)

Now, suppose y ≥ x ∈ R. Since h′i(·) is non-decreasing, we have

r(y) ≥
(

1− |N | − f − 1

2(|N | − f)

)
h′i1(x)(y) +

1

2(|N | − f)

|N |−f∑
j=2

h′ij(x)(y) by (3.92)

≥
(

1− |N | − f − 1

2(|N | − f)

)
h′i1(x)(x) +

1

2(|N | − f)

|N |−f∑
j=2

h′ij(x)(x)

= r(x) by (3.91)

Thus, function r(·) is non-decreasing.

Next we show that function r(·) is continuous.

For each i ∈ V , since hi(·) is differentiable, it follows that h′i(·) is continu-
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ous. That is, for each i ∈ V and ∀ ε > 0, ∃ δ > 0 such that

|x− c| < δ =⇒ |h′i(x)− h′i(c)| ≤ ε. (3.93)

Assume c ≤ x < c+ δ. Then

|r(x)− r(c)| = r(x)− r(c) by monotonicity of r(·)

=

(
1− |N | − f − 1

2(|N | − f)

)
h′i1(x)(x) +

1

2(|N | − f)

|N |−f∑
j=2

h′ij(x)(x)

−
(

1− |N | − f − 1

2(|N | − f)

)
h′i1(c)(c)−

1

2(|N | − f)

|N |−f∑
j=2

h′ij(c)(c)

≤
(

1− |N | − f − 1

2(|N | − f)

)
h′i1(x)(x) +

1

2(|N | − f)

|N |−f∑
j=2

h′ij(x)(x)

−
(

1− |N | − f − 1

2(|N | − f)

)
h′i1(x)(c)−

1

2(|N | − f)

|N |−f∑
j=2

h′ij(x)(c) by (3.92)

≤
(

1− |N | − f − 1

2(|N | − f)

)(
h′i1(x)(x)− h′i1(x)(c)

)
+

1

2(|N | − f)

|N |−f∑
j=2

(
h′ij(x)(x)− h′i1(x)(c)

)

<

(
1− |N | − f − 1

2(|N | − f)

)
ε+

1

2(|N | − f)

|N |−f∑
j=2

ε by (3.93)

=

((
1− |N | − f − 1

2(|N | − f)

)
+

1

2(|N | − f)
· (|N | − f − 1)

)
ε

= ε. (3.94)

Similarly, we can show that when c− δ < x ≤ c, |r(x)− r(c)| < ε.

Thus, function r(·) is continuous.

The proof of Proposition 8 is complete.
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Proof that Y is closed

With the auxiliary function r at hand, we can show the closedness of set Y

as follows.

Recall that Y is convex. To show Y is closed, it is enough to show that Y

is bounded and both min Y and max Y exist.

It can be easily seen that r(x) is negative for “sufficiently” small x, and

positive for “sufficiently” large x. By Proposition 8, we know that there

exists x0 ∈ R such that

0 = r(x0) =

(
1− |N | − f − 1

2(|N | − f)

)
h′i1(x0)(x0)

+
1

2(|N | − f)

|N |−f∑
j=2

h′ij(x0)(x0).

Define function q as follows:

q ,

(
1− |N | − f − 1

2(|N | − f)

)
hi1(x0) +

1

2(|N | − f)

|N |−f∑
j=2

hij(x0). (3.95)

By definition of function q, we know that q′(x0) = r(x0) = 0, and that

q ∈ C is a valid function. Note that due to the possibility of existence of

ties in the top |N | − f rankings of the order h′i1(x)(x), · · · , h′i|N|(x)(x), for

a given x, there may be multiple orders over h′i(x0),∀i ∈ N of the top

|N |− f elements. Let O be the collection of all such orders. Note that there

is a one-to-one correspondence of an order and a valid function defined in

(3.95). We denote qo as the valid function associated with an order o. Let

a = mino∈Omin (argmin qo(x)) , which is well-defined since argmin qo(x) is

compact, and |O| is finite.

By definition a ∈ Y . Next we show that a = min Y . Suppose, on the

contrary, that there exists ã < a such that ã ∈ Y . Since ã ∈ Y , there exists

q̃ =
∑

i∈N αihi ∈ C such that ã ∈ argmin q̃(x). That is, q̃′(ã) = 0. Then, we
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have

0 = q′(ã) =
∑
i∈N

αih
′
i(ã)

≤
(

1− |N | − f − 1

2(|N | − f)

)
h′i1(ã)(ã)

+
1

2(|N | − f)

|N |−f∑
j=2

h′ij(ã)(ã)

= r(ã).

From the definition of a and the assumption that ã < a, we get ã < x0.

Then, by monotonicity of r(·), we have

r(ã) ≤ r(x0).

Thus, r(ã) = 0 = r(x0). In addition, we have

0 = r(ã) ≤
(

1− |N | − f − 1

2(|N | − f)

)
h′i1(ã)(x0)

+
1

2(|N | − f)

|N |−f∑
j=2

h′ij(ã)(x0)

≤
(

1− |N | − f − 1

2(|N | − f)

)
h′i1(x0)(x0)

+
1

2(|N | − f)

|N |−f∑
j=2

h′ij(x0)(x0) ≤ 0,

which implies that i1(ã), · · · , i|N |−f (ã) is an order in O. Thus, ã ≥ a =

mino∈Omin (argmin qo(x)), contradicting the assumption that ã < a.

Thus, a = minY , i.e., min Y exists. Similarly, we can show that max Y

also exists. Therefore, set Y is closed.
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3.9.4 Proof of Proposition 5

Proof of Proposition 5. For any t ≥ 1, we have

`(t) =
t−1∑
r=0

λ[r]bt−r =

d t
2
e∑

r=0

λ[r]bt−r +
t−1∑

r=d t
2
e+1

λ[r]bt−r

≤
d t
2
e∑

r=0

λ[0]bt−r + λ[d t
2
e]

t−1∑
r=d t

2
e+1

bt−r

≤ λ[0]
bt−d

t
2
e

1− b
+
bλ[d t

2
e]

1− b

≤ λ[0]
b
t
2
−1

1− b
+
bλ[d t

2
e]

1− b
. (3.96)

Thus, we get

lim sup
t→∞

`(t) ≤ lim
t→∞

(
λ[0]

b
t
2
−1

1− b
+
bλ[d t

2
e]

1− b

)
= λ[0]

1

1− b
lim
t→∞

b
t
2
−1 +

b

1− b
lim
t→∞

λ[d t
2
e]

(a)
= 0 + 0 = 0.

Equality (a) holds because 0 ≤ b < 1 and limt→∞ λ[d t
2
e] = 0. On the

other hand, by definition of `(t) we know `(t) ≥ 0 for each t ≥ 1. Thus,

lim inft→∞ `(t) ≥ 0.

Therefore, the limit of `(t) exists and limt→∞ `(t) = 0.

Consider step sizes λ[t] = 1
t

for t ≥ 1 and λ[0] = 1. It immediately follows

from (3.96) that

`(t) ≤ λ[0]
b
t
2
−1

1− b
+
bλ[d t

2
e]

1− b
= λ[0]

b
t
2
−1

1− b
+

b

1− b
1

d t
2
e

Thus, `(t) = O(1
t
).
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3.9.5 Proof of Lemma 7

Proof of Lemma 7. To show Lemma 7, it is enough to show that

∞∑
t=1

λ[t] (M [t]−m[t]) <∞.

We have

∞∑
t=1

λ[t] (M [t]−m[t])

≤ (M [0]−m[0])
∞∑
t=1

λ[t]

(
1− 1

2 (|N | − f)

)t
+ 2L

∞∑
t=1

t−1∑
r=0

((
1− 1

2 (|N | − f)

)t−r
λ[r]λ[t]

)
by (3.40)

(a)

≤ (M [0]−m[0])
∞∑
t=1

λ[t]

(
1− 1

2 (|N | − f)

)t
+ L

∞∑
t=1

λ2[t]
t−1∑
r=0

(
1− 1

2 (|N | − f)

)t−r
+ L

∞∑
t=1

t−1∑
r=0

((
1− 1

2 (|N | − f)

)t−r
λ2[r]

)
. (3.97)

Inequality (a) holds because λ[t]λ[r] ≤ λ2[t]+λ2[r]
2

. It is easy to see that

∞∑
t=1

(
1− 1

2 (|N | − f)

)t
≤ 2 (|N | − f) . (3.98)

We bound the terms in the right hand side of (3.97) separately.

The first term of (3.97): Since λ[t] ≤ λ[0] for t ≥ 1, we have

(M [0]−m[0])
∞∑
t=1

λ[t]

(
1− 1

2 (|N | − f)

)t
≤ (M [0]−m[0])λ[0]

∞∑
t=1

(
1− 1

2 (|N | − f)

)t
(b)

≤ (M [0]−m[0])λ[0]2 (|N | − f) <∞, (3.99)
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where inequality (b) follows from (3.98).

The second term of (3.97):

L
∞∑
t=1

λ2[t]
t−1∑
r=0

(
1− 1

2 (|N | − f)

)t−r
= L

∞∑
t=1

λ2[t]
t∑

r=1

(
1− 1

2 (|N | − f)

)r
≤ L

∞∑
t=1

λ2[t]
∞∑
r=0

(
1− 1

2 (|N | − f)

)r
= 2 (|N | − f)L

∞∑
t=1

λ2[t] by (3.98)

<∞. (3.100)

The last inequality follows from the fact that
∑∞

t=1 λ
2[t] ≤

∑∞
t=0 λ

2[t] < ∞
(by assumption about λ[t] in Section 3.7).

The third term of (3.97): For any fixed T , we get

L
T∑
t=1

t−1∑
r=0

((
1− 1

2 (|N | − f)

)t−r
λ2[r]

)

= L
T−1∑
r=0

λ2[r]
T−r∑
t=1

(
1− 1

2 (|N | − f)

)t
≤ L

T−1∑
r=0

λ2[r]
∞∑
t=0

(
1− 1

2 (|N | − f)

)t
= 2 (|N | − f)L

T−1∑
r=0

λ2[r] by (3.98).

Let T →∞, we get

L

∞∑
t=1

t−1∑
r=0

((
1− 1

2 (|N | − f)

)t−r
λ2[r]

)

≤ 2 (|N | − f)L
∞∑
r=0

λ2[r] < ∞. (3.101)
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We get

∞∑
t=1

λ[t] (M [t]−m[t])

≤ (M [0]−m[0])
∞∑
t=1

λ[t]

(
1− 1

2 (|N | − f)

)t
+ L

∞∑
t=1

λ2[t]
t−1∑
r=0

(
1− 1

2 (|N | − f)

)t−r
+ L

∞∑
t=1

t−1∑
r=0

(
1− 1

2 (|N | − f)

)t−r
λ2[r] by (3.97)

<∞+∞+∞ =∞ by (3.99), (3.100) and (3.101),

proving the lemma.

3.9.6 Proof of Lemma 8

Proof of Corollary 5. By Lemma 7, we have
∑∞

t=0 λ[t] (M [t]−m[t]) <∞.

Thus, limt→∞ λ[t] (M [t]−m[t]) = 0 holds trivially.

Now we prove that limt→∞
∑∞

τ=t λ[τ ] (M [τ ]−m[τ ]) = 0.

Let F =
∑∞

τ=0 λ[τ ](M [τ ]−m[τ ]), and let {Ft}∞t=0 be a sequence such that

for each t,

Ft =
t−1∑
τ=0

λ[τ ](M [τ ]−m[τ ]).

Since M [τ ]−m[τ ] ≥ 0 for each τ ≥ 0, by construction, it holds that Ft ≤ Ft+1

and that Ft ≤ F for each t ≥ 1. Thus, by monotone convergence theorem,

we know that

lim
t→∞

Ft = F.

Now, let Rt , F − Ft =
∑∞

τ=t λ[τ ](M [τ ] − m[τ ]). By Lemma 7, we know

that F < ∞. Thus the sequence Rt is well-defined. In addition, since the

sequence Ft converges, then the sequence Rt also converges. So, we get

lim
t→∞

∞∑
τ=t

λ[τ ](M [τ ]−m[τ ]) = lim
t→∞

Rt = F − lim
t→∞

Ft = 0,

proving that limt→∞
∑∞

τ=t λ[τ ] (M [τ ]−m[τ ]) = 0.
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Proof of Proposition 6. For each i ∈ N , by Definition 15, we have

Dist (xi[t], Y ) ≤ max
j∈N

Dist (xj[t], Y ) = Dist (z[t], Y ) .

By proposition assumption, we get

0 ≤ lim sup
t→∞

Dist (xi[t], Y ) ≤ lim sup
t→∞

Dist (z[t], Y ) = 0.

Therefore, for each i ∈ N , {Dist (xi[t], Y )}∞t=0 converges and

lim
t→∞

Dist (xi[t], Y ) = 0.
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CHAPTER 4

CONSENSUS-BASED DISTRIBUTED
HYPOTHESIS TESTING

4.1 Introduction

The traditional decentralized detection framework consists of a collection of

spatially distributed sensors and a fusion center [76, 77, 78]. The sensors

independently collect noisy observations of the environment state, and send

only summary of the private observations to the fusion center, where a final

decision is made. In the case when the sensors directly send all the private

observations, the detection problem can be solved using a centralized scheme.

The above framework does not scale well, since each sensor needs to be con-

nected to the fusion center and full reliability of the fusion center is required,

which may not be practical as the system scales.

Distributed hypothesis testing in the absence of fusion center is considered

in [79, 80, 81]. In particular, Gale and Kariv [79] studied the distributed

hypothesis testing problem in the context of social learning, where the fully

Bayesian belief update rule is studied. The Bayesian update rule is imprac-

tical in many applications due to memory and computation constraints of

each agent.

To avoid the complexity of Bayesian learning, a non-Bayesian learning

framework that combines local Bayesian learning with distributed consensus

was proposed by Jadbabaie et al. [11], and has attracted much attention

[82, 83, 84, 85, 86, 87, 88, 89]. Jadbabaie et al. [11] considered the general

setting where external signals are observed during each iteration of the algo-

rithm execution. Specifically, the “belief” of each agent is repeatedly updated

as the arithmetic mean of its local Bayesian update and the “beliefs” of its

neighbors – combining iterative consensus algorithm with local Bayesian up-

date. Note that the “belief” in [11] is not the exact belief, instead, it is only

an approximate. Henceforth, in this chapter, to avoid confusion, we refer to
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the approximation “belief” as score. It is shown [11] that, under this learn-

ing rule, each agent learns the true state almost surely. The publication of

[11] has inspired significant efforts in designing and analyzing non-Bayesian

learning rules with a particular focus on refining the fusion strategies and an-

alyzing the (asymptotic and/or finite time) convergence rates of the refined

algorithms [82, 83, 84, 85, 86, 87, 88, 89]. In this chapter we are particularly

interested in the log-linear form of the update rule, in which, essentially, each

agent updates its score as the geometric average of the local Bayesian up-

date and its neighbors’ scores [84, 82, 83, 85, 86, 87, 88, 89]. The log-linear

form (geometric averaging) update rule is shown to converge exponentially

fast [82, 85]. Taking an axiomatic approach, the geometric averaging fusion

is proved to be optimal [89]. An optimization-based interpretation of this

rule is presented in [85], using dual averaging method with properly chosen

proximal functions. Finite-time convergence rates are investigated indepen-

dently in [83, 86, 88]. Both [83] and [87] consider time-varying networks,

with slightly different network models. Specifically, [83] assumes that the

union of all consecutive B networks is strongly connected, while [87] consid-

ers random networks. In this chapter, we consider static networks for ease

of exposition, although we believe that our results can be easily generalized

to time-varying networks.

The prior work implicitly assumes that the networked agents are reliable

in the sense that they correctly follow the specified learning rules. However,

in some practical multi-agent networks, this assumption may not hold. For

example, in social networks, it is possible that some agents are adversarial,

and try to prevent the true state from being learned by the good agents.

Thus, this chapter focuses on the fault-tolerant version the non-Bayesian

framework proposed in [11]. In particular, we assume that an unknown

subset of agents may suffer Byzantine faults.

The existing non-Bayesian learning algorithms [82, 86, 89, 83, 84, 85, 88, 87]

are not robust to Byzantine agents, since the malicious messages sent by the

Byzantine agents are indiscriminately utilized in the local score updates. On

the other hand, the incorporation of Byzantine consensus is non-trivial, since

(i) the effective communication networks are dependent on the random local

observations, making it non-trivial to adapt analysis of previous algorithms to

our setting; and (ii) the problem of identifying tight topological conditions for
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reaching Byzantine multi-dimensional consensus iteratively is open, making it

challenging to identify the minimal detectability condition on the networked

agents to learn the true environmental state.

Contributions: Our contributions are two-fold.

• We first propose an update rule wherein each agent iteratively updates

its local scores as (up to normalization) the product of (1) the likeli-

hood of the cumulative private signals and (2) the weighted geometric

average of the scores of its incoming neighbors and itself (using iterative

Byzantine multi-dimensional consensus). In contrast to the existing al-

gorithms [83, 86], where only the current private signal is used in the

update, our proposed algorithm relies on the cumulative private signals.

Under reasonable assumptions on the underlying network structure and

the global identifiability of the network, we show that all the non-faulty

agents asymptotically agree on the true state almost surely.

• The local computation complexity per agent of the first learning rule

is high due to the adoption of multi-dimensional consensus primitives.

More importantly, the network identifiability condition used for that

learning rule scales poorly in the number of possible states m. Thus,

we propose a modification of our first learning rule, whose complexity

per iteration per agent is O(m2n log n), where n is the number of agents

in the network. We show that this improved learning rule works under

a much weaker global identifiability condition, which is independent

of m. We cast the general m–ary hypothesis testing problem into a

collection of binary hypothesis testing sub-problems.

Outline: The rest of the chapter is organized as follows. Section 4.2

presents the problem formulation. Section 4.3 briefly reviews existing re-

sults on vector Byzantine consensus, and matrix representation of the state

evolution. Our first algorithm and its correctness analysis are presented in

Section 4.4. The improved learning rule and its correctness analysis are sum-

marized in Section 4.5. Section 4.6 demonstrates the above learning rule in

the special case when f = 0, and presents a finite-time analysis. Section 4.7

concludes the chapter and discusses possible extensions.
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4.2 Problem Formulation

Network Model: Our network model is similar to the model used in

[48, 34]. We consider a synchronous system. A collection of n agents

(also referred as nodes) are connected by a directed network G(V , E), where

V = {1, . . . , n} and E is the collection of directed edges. For each i ∈ V , let

Ii denote the set of incoming neighbors of agent i. In any execution, up to

f agents suffer Byzantine faults. For a given execution, let F denote the set

of Byzantine agents, and N denote the set of non-faulty agents. Through-

out this chapter, we assume that f satisfies the condition implicitly imposed

by the given topology conditions mentioned later. We assume that each

non-faulty agent knows f , but does not know the actual number of faulty

agents |F|. Possible misbehavior of faulty agents includes sending incorrect

and mismatching (or inconsistent) messages. The Byzantine agents are also

assumed to have complete knowledge of the system, including the network

topology, underlying running algorithm, the states or even the entire history.

The faulty agents may collaborate with each other adaptively [29]. Note that

|F| ≤ f and |N | ≥ n− f since at most f agents may fail.

Throughout this chapter, we use the terms agent and node interchangeably.

Observation Model: Our observation model is identical to the model used

in [11, 86, 87]. Let Θ = {θ1, θ2, . . . , θm} denote a set of m environmental

states, which we call hypotheses. In the t-th iteration, each agent indepen-

dently obtains a private signal about the environmental state θ∗, which is

initially unknown to every agent in the network. Each agent i knows the

structure of its private signal, which is represented by a collection of param-

eterized marginal distributions Di = {`i(wi|θ)| θ ∈ Θ, wi ∈ Si}, where `i(·|θ)
is the distribution of private signal when θ is the true state, and Si is the finite

private signal space. For each θ ∈ Θ, and each i ∈ V , the support of `i(·|θ) is

the whole signal space, i.e., `i(wi|θ) > 0, ∀wi ∈ Si and ∀ θ ∈ Θ. Let sit be the

private signal observed by agent i in iteration t, and let st = {s1
t , s

2
t , . . . , s

n
t }

be the signal profile at time t (i.e., signals observed by the agents in iteration

t). Given an environmental state θ, the signal profile st is generated accord-

ing to the joint distribution `1(s1
t |θ)× `2(s2

t |θ)× · · · × `n(snt |θ). In addition,

let si1,t be the signal history up to time t for agent i = 1, · · · , n, and let

s1,t = {s1
1,t, s

2
1,t, . . . , s

n
1,t} be the signal profile history up to time t.
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4.3 Byzantine Consensus

In this section, we briefly review relevant exsting results on Byzantine con-

sensus. Byzantine consensus has attracted significant attention [32, 39, 75,

33, 34, 53, 74]. While the past work mostly focuses on scalar inputs, the

more general vector (or multi-dimensional) inputs have been studied recently

[74, 75, 53]. Complete communication networks are considered in [74, 75],

where tight conditions on the number of agents are identified. Incomplete

communication networks are studied in [53]. Closer to the non-Bayesian

learning problem is the class of iterative approximate Byzantine consensus

algorithms, where each agent is only allowed to exchange information about

its state with its neighbors. In particular, our learning algorithms build upon

the Byz-Iter algorithm proposed in [53] and a simple algorithm proposed in

[34] for iterative Byzantine consensus with vector inputs and scalar inputs,

respectively, in incomplete networks. A matrix representation of the non-

faulty agents’ states evolution under Byz-Iter algorithm is provided by [53],

which also captures the dynamics of the simple algorithm with scalar inputs

in [34]. To make this chapter self-contained, in this section, we briefly review

the algorithm Byz-Iter and its matrix representation.

4.3.1 Algorithm Byz-Iter [53]

Algorithm Byz-Iter is based on Tverberg’s Theorem [90].

Theorem 18. [90] Let f be a nonnegative integer. Let Y be a multiset

containing vectors from Rm such that |Y | ≥ (m + 1)f + 1. There exists a

partition Y1, Y2, · · · , Yf+1 of Y such that Yi is nonempty for 1 ≤ i ≤ f+1, and

the intersection of the convex hulls of Yi’s are nonempty, i.e., ∩f+1
i=1 Conv(Yi) 6=

Ø, where Conv(Yi) is the convex hull of Yi for i = 1, · · · , f + 1.

The proper partition in Theorem 18, and the points in ∩f+1
i=1 Conv(Yi), are

referred as Tverberg partition of Y and Tverberg points of Y , respectively.

For convenience of presenting our algorithm in Section 4.4, we present Byz-

Iter (described in Algorithm 7) below using One-Iter (described in Algorithm

6) as a primitive. The parameter xi passed to One-Iter at agent i, and yi

returned by One-Iter are both m-dimensional vectors. Let vi be the state of

agent i that will be iteratively updated, with vit being the state at the end
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of iteration t and vi0 being the input of agent i. In each iteration t ≥ 1, a

non-faulty agent performs the steps inOne-Iter. In particular, in the message

receiving step, if a message is not received from some neighbor, that neighbor

must be faulty, as the system is synchronous. In this case, the missing

message values are set to some default value. Faulty agents may deviate

from the algorithm specification arbitrarily. In Byz-Iter, the value returned

by One-Iter at agent i is assigned to vit.

Algorithm 6: Algorithm One-Iter with input xi at agent i

1 Zi ← Ø;
2 Transmit xi on all outgoing links;

3 Receive messages on all incoming links. % These message values form a

multiset Ri of size |Ii|.%
4 for every C ⊆ Ri ∪ {xi} such that |C| = (m+ 1)f + 1 do
5 add to Zi a Tverberg point of multiset C
6 end

7 Compute yi as follows: yi ← 1
1+|Zi|

(
xi +

∑
z∈Zi z

)
;

8 Return yi;

Algorithm 7: Algorithm Byz-Iter [53]: t-th iteration at agent i

1 vit ← One-Iter(vit−1);

Remark 3. Note that for each agent i ∈ N , the computation complexity per

iteration is

Ω

((
|Ri ∪ {xi}|

(m+ 1)f + 1

))
= Ω

((
|Ii|+ 1

(m+ 1)f + 1

))
.

In the worst case, ||Ii|+ 1| = n, and

Ω

((
|Ii|+ 1

(m+ 1)f + 1

))
= Ω

((
n

(m+ 1)f + 1

))
= Ω

((n
e

)(m+1)f+1
)
.

Since our first learning rule is based on Algorithm Byz-Iter, the computation

complexity of our first proposed algorithm is also high. Nevertheless, our

first learning rule contains our main algorithmic ideas. More importantly,

this learning rule can be improved such that the computation complexity per
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iteration per agent is O(m2n log n). Specifically, the improved learning rule

adopts the scalar Byzantine consensus instead of the m–dimensional consen-

sus.

4.3.2 Correctness of Algorithm Byz-Iter

We briefly summarize the aspects of correctness proof of Algorithm 7 from

[53] that are necessary for our subsequent discussion. By using the Tver-

berg points in the update of vit above, effectively, the extreme message values

(that may potentially be sent by faulty agents) are trimmed away. Informally

speaking, trimming certain messages can be viewed as ignoring (or removing)

incoming links that carry the outliers. [53] shows that the effective commu-

nication network thus obtained can be characterized by a “reduced graph”

of G(V , E), defined below. It is important to note that the non-faulty agents

do not know the identity of the faulty agents.

Definition 17 (m–dimensional reduced graph). An m–dimensional reduced

graph H(N , EF) of G(V , E) is obtained by (i) removing all faulty nodes F ,

and all the links incident on the faulty nodes F ; and (ii) for each non-faulty

node (nodes in N ), removing up to mf additional incoming links.

Definition 18. A source component in any given m–dimensional reduced

graph is a strongly connected component (of that reduced graph), which does

not have any incoming links from outside that component.

It turns out that the effective communication network is potentially time-

varying (partly) due to time-varying behavior of faulty nodes. Assumption 1

below states a condition that is sufficient for reaching approximate Byzantine

vector consensus using Algorithm 6 [53].

Assumption 1. Every m–dimensional reduced graph of G(V , E) contains a

unique source component.

Let Cm be the set of all the m–dimensional reduced graph of G(V , E).

Define χm , |Cm|. Since G(V , E) is finite, we have χm < ∞. Let Hm ∈ Cm
be an m–dimensional reduced graph of G(V , E) with source component SHm .

Define

γm , min
Hm∈Cm

|SHm|, (4.1)
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i.e., γm is the minimum source component size among all the m–dimensional

reduced graphs. Note that γm ≥ 1 if Assumption 1 holds for a given m.

Theorem 19. [53] Suppose Assumption 1 holds for a given m ≥ 1. Under

Algorithm Byz-Iter, all the non-faulty agents (agents in N ) reach consensus

asymptotically, i.e., limt→∞ |vit − vjt | = 0,∀ i, j ∈ N .

The proof of Theorem 19 relies crucially on a matrix representation of the

state evolution.

4.3.3 Matrix Representation [53]

Let |F| = φ (thus, 0 ≤ φ ≤ f). Without loss of generality, assume that agents

1 through n− φ are non-faulty, and agents n− φ+ 1 to n are Byzantine.

Lemma 11. [53] Suppose Assumption 1 holds for a given m ≥ 1. The state

updates performed by the non-faulty agents in the t–th iteration (t ≥ 1) can

be expressed as

vit =

n−φ∑
j=1

Aij[t]v
j
t−1, (4.2)

where A[t] ∈ R(n−φ)×(n−φ) is a row stochastic matrix for which there exists

an m–dimensional reduced graph Hm[t] with adjacency matrix Hm[t] such

that A[t] ≥ βmHm[t], where 0 < βm ≤ 1 is a constant that depends only on

G(V , E).

Let Φ(t, r) , A[t] · · ·A[r] for 1 ≤ r ≤ t+ 1. By convention, Φ(t, t) = A[t]

and Φ(t, t + 1) = I. Note that Φ(t, r) is a backward product. Using prior

work on coefficients of ergodicity [47], under Assumption 1, it has been shown

[53] that

lim
t≥r, t→∞

Φ(t, r) = 1π(r), (4.3)

where π(r) ∈ Rn−φ is a row stochastic vector, and 1 is the column vector with

each entry being 1. Recall that χm is the total number of m–dimensional

reduced graphs of G(V , E), and βm is defined in Lemma 11, and φ , |F|.
The convergence rate in (4.3) is exponential.
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Theorem 20. [53] For all t ≥ r ≥ 1, it holds that |Φij(t, r)− πj(r)| ≤
(1− βνm)d

t−r+1
ν
e, where ν , χm(n− φ).

Recall that γm is defined in (4.1). The next lemma is a consequence of the

results in [53].

Lemma 12. [53] For any r ≥ 1, there exists a reduced graph H[r] with

source component Sr such that πi(r) ≥ β
χm(n−φ)
m for each i ∈ Sr. In addition,

|Sr| ≥ γm.

4.3.4 Tight Topological Condition for Scalar Iterative
Byzantine Consensus

The above analysis shows that Assumption 1 is sufficient for achieving Byzan-

tine consensus iteratively. For the special case when m = 1,(i.e., the inputs

provided at individual non-faulty agents are scalars) it has been shown [34]

that Assumption 1 is also necessary.

Theorem 21. [34] For scalar inputs, iterative approximate Byzantine con-

sensus is achievable among non-faulty agents if and only if every 1-dimensional

reduced graph of G(V , E) contains only one source component.

Moreover, the following simple algorithm (Algorithm 8) works under As-

sumption 1 when m = 1.

Algorithm 8: Algorithm Scalar Byzantine Consensus: iteration t ≥ 1
[34]

1 Transmit vi[t− 1] on all outgoing links;

2 Receive messages on all incoming links. % These message values wj [t]

for each j ∈ Ii form a multiset Ri[t] of size |Ii|. %

3 Sort the received values wj[t] for each j ∈ Ii in a non-decreasing order;

4 Remove the largest f values and the smallest f values. % Denote the

set of indices of incoming neighbors whose values have not been removed at

iteration t by I∗i [t].%

5 Update vi as follows: vi[t]←
∑
j∈I∗

i
[t] wj [t]+v

i[t−1]

1+|I∗i [t]| ;

In addition, it has been show that the dynamic of the non-faulty agents

states admits the same matrix representation as in Subsection 4.3.3 with the
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reduced graph being the 1–dimensional reduced graph defined in Definition

17.

With the above background on Byzantine vector consensus, we are now

ready to present our first algorithm and its analysis.

4.4 Byzantine Fault-Tolerant Non-Bayesian Learning

(BFL)

In this section, we present our first learning rule, named Byzantine Fault-

Tolerant Non-Bayesian Learning (BFL). In BFL, each agent i maintains a

stochastic score vector µi ∈ Rm. Since no signals are observed before the

execution of an algorithm, the score µi is often initially set to be uniform over

the set Θ, i.e., (µi0(θ1), µi0(θ1), . . . , µi0(θm))
T

=
(

1
m
, . . . , 1

m

)T
. Recall that θ∗ is

the true environmental state. We say the networked agents collaboratively

learn θ∗ if for every non-faulty agent i ∈ N ,

lim
t→∞

µit(θ
∗) = 1, and lim

t→∞
µit(θ) = 0 for θ 6= θ∗ a.s. (4.4)

where a.s. denotes almost surely.

BFL is a modified version of the geometric averaging update rule that has

been investigated in previous work [83, 84, 86, 88]. In particular, we modify

the averaging rule to take into account Byzantine faults. More importantly,

in each iteration, we use the likelihood of the cumulative local observations

(instead of the likelihood of the current observation only) to update the local

scores.

For t ≥ 1, the steps to be performed by agent i in the t–th iteration

are listed below, where log on vector is performed element-wise. Note that

faulty agents can deviate from the algorithm specification. The algorithm

below uses One-Iter presented in the previous section as a primitive. Recall

that si1,t is the cumulative local observations up to iteration t. Since the

observations are i.i.d., it holds that `i(s
i
1,t|θ) =

∏t
r=1 `i(s

i
r|θ). So `i(s

i
1,t|θ)

can be computed iteratively in Algorithm 9.

The main differences between Algorithm 9 and the algorithms in [83, 84,

86, 88] are that (i) our algorithm uses a Byzantine consensus iteration as

a primitive (in line 1), and (ii) `i(s
i
1,t|θ) used in line 5 is the likelihood for
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Algorithm 9: BFL: Iteration t ≥ 1 at agent i

1 ηit ← One-Iter(log µit−1);
2 Observe sit;
3 for θ ∈ Θ do
4 `i(s

i
1,t|θ)← `i(s

i
t|θ) `i(si1,t−1|θ);

5 µit(θ)←
`i(s

i
1,t|θ) exp(ηit(θ))∑m

p=1 `i(s
i
1,t|θp) exp(ηit(θp))

;

6 end

observations from iteration 1 to t (the previous algorithms instead use `i(s
i
t|θ)

here). Observe that the consensus step is being performed on log of the scores,

with the result being stored as ηit (in line 1) and used in line 4 to compute

the new scores.

Recalling the matrix representation of the Byz-Iter algorithm as per Lemma

11, we can write the following equivalent representation of line 1 of Algorithm

9:

ηit(θ) =

n−φ∑
j=1

Aij[t] log µjt−1(θ) = log

n−φ∏
j=1

µjt−1(θ)Aij [t], ∀θ ∈ Θ, (4.5)

where A[t] is a row stochastic matrix whose properties are specified in Lemma

11. Note that µit(θ) is random for each i ∈ N and t ≥ 1, as it is updated

according to local random observations. Since the consensus is performed

over log µit ∈ Rm, the update matrix A[t] is also random. In particular, for

each t ≥ 1, matrix A[t] is dependent on all the cumulative observations over

the network up to iteration t. This dependency makes it non-trivial to adapt

analysis from previous algorithms to our setting. In addition, adopting the

local cumulative observation likelihood makes the analysis with Byzantine

faults easier.

4.4.1 Identifiability

In the absence of agent failures [11], for the networked agents to detect the

true hypothesis θ∗, it is sufficient to assume that G(V , E) is strongly con-

nected, and that θ∗ is globally identifiable. That is, for any θ 6= θ∗, there ex-

ists a node j ∈ V such that the Kullback-Leiber divergence between the true

marginal `j(·|θ∗) and the marginal `j(·|θ), denoted by D (`j(·|θ∗)||`j(·|θ)), is
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nonzero; equivalently, ∑
j∈V

D (`j(·|θ∗)||`j(·|θ)) 6= 0, (4.6)

where D (`j(·|θ∗)||`j(·|θ)) is defined as

D (`j(·|θ∗)||`j(·|θ)) ,
∑
wj∈Sj

`j(wj|θ∗) log
`j(wj|θ∗)
`j(wj|θ)

. (4.7)

Since θ∗ may change from execution to execution, (4.6) is required to hold

for any choice of θ∗. Intuitively speaking, if any pair of states θ1 and θ2

can be distinguished by at least one agent in the network, then sufficient

exchange of local scores over strongly connected network will enable every

agent distinguish θ1 and θ2. However, in the presence of Byzantine agents, a

stronger global identifiability condition is required. The following assumption

builds upon Assumption 1.

Assumption 2. Suppose that Assumption 1 holds for m = |Θ|. For any

θ 6= θ∗, and for any m–dimensional reduced graph H of G(V , E) with SH
denoting the unique source component, the following holds:∑

j∈SH

D (`j(·|θ∗) ‖ `j(·|θ)) 6= 0. (4.8)

In contrast to (4.6), where the summation is taken over all the agents in the

network, in (4.8), the summation is taken over agents in the source compo-

nent only. Intuitively, the condition imposed by Assumption 2 is that all the

agents in the source component can detect the true state θ∗ collaboratively.

If iterative consensus is achieved, the accurate score can be propagated from

the source component to every other non-faulty agent in the network.

Remark 4. We will show later that when Assumption 2 holds, the BFL

algorithm enables all the non-faulty agents concentrate their scores on the

true state θ∗ almost surely. That is, Assumption 2 is a sufficient condition

for a consensus-based non-Bayesian learning algorithm to exist. However,

Assumption 2 is not necessary, observing that Assumption 1 (upon which

Assumption 2 builds) is not necessary for m-dimensional Byzantine consen-

sus algorithms to exist. As illustrated by our second learning rule (described
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later), the adoption of m-dimensional Byzantine consensus primitives is not

necessary.

4.4.2 Convergence Results

Our proof parallels the structure of a proof in [83], but with some key differ-

ences to take into account our update rule for the score vector.

For any θ1, θ2 ∈ Θ, and any i ∈ V , define ψi
t(θ1, θ2) and Lt(θ1, θ2) as

follows:

ψi
t(θ1, θ2) , log

µit(θ1)

µit(θ2)
, Lit(θ1, θ2) , log

`i(s
i
t|θ1)

`i(sit|θ2)
. (4.9)

To show that Algorithm 9 solves (4.4), we will show that ψi
t(θ, θ

∗)
a.s.−−→ −∞

for θ 6= θ∗, which implies that µit(θ)
a.s.−−→ 0 for all θ 6= θ∗ and for all i ∈ N ,

i.e., all non-faulty agents asymptotically concentrate their scores on the true

hypothesis θ∗. We do this by investigating the dynamics of scores, which is

represented compactly in a matrix form.

For each θ 6= θ∗, and each i ∈ N = {1, 2, · · · , n− φ}, we have

ψi
t(θ, θ

∗) = log
µit(θ)

µit(θ
∗)

(a)
= log

n−φ∏
j=1

(
µjt−1(θ)

µjt−1(θ∗)

)Aij [t]

×
`i(s

i
1,t|θ)

`i(si1,t|θ∗)


=

n−φ∑
j=1

Aij[t] log
µjt−1(θ)

µjt−1(θ∗)
+ log

`i(s
i
1,t|θ)

`i(si1,t|θ∗)

=

n−φ∑
j=1

Aij[t]ψ
j
t−1(θ, θ∗) +

t∑
r=1

Lir(θ, θ∗), (4.10)

where equality (a) follows from (4.5) and the update of µi in Algorithm 9, and

the last equality follows from (4.9) and the fact that the local observations

are i.i.d. for each agent.

Let ψt(θ, θ
∗) ∈ Rn−φ be the vector that stacks ψi

t(θ, θ
∗), with the i–th entry

being ψi
t(θ, θ

∗) for all i ∈ N . The evolution of ψ(θ, θ∗) can be compactly
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written as

ψt(θ, θ
∗) = A[t]ψt−1(θ, θ∗) +

t∑
r=1

Lr(θ, θ∗). (4.11)

Expanding (4.11), we get

ψt(θ, θ
∗) = Φ(t, 1)ψ0(θ, θ∗) +

t∑
r=1

Φ(t, r + 1)
r∑

k=1

Lk(θ, θ∗). (4.12)

For each θ ∈ Θ and i ∈ V , define Hi(θ, θ
∗) ∈ Rn−φ as

Hi(θ, θ
∗) ,

∑
wi∈Si

`i(wi|θ∗) log
`i(wi | θ)
`i(wi | θ∗)

= −D(`i(·|θ∗) ‖ `i(·|θ)) by (4.7)

≤ 0. (4.13)

Let H ∈ C be an arbitrary reduced graph with source component SH. Define

C0 and C1 as

−C0 , min
i∈V

min
θ1,θ2∈Θ;θ1 6=θ2

min
wi∈Si

(
log

`i(wi|θ1)

`i(wi|θ2)

)
, (4.14)

C1 , min
H∈C

min
θ,θ∗∈Θ;θ 6=θ∗

∑
i∈SH

D(`i(·|θ∗) ‖ `i(·|θ)). (4.15)

The constant C0 serves as a universal upper bound on | log `i(wi|θ1)
`i(wi|θ2)

| for all

choices of θ1 and θ2, and for all signals. Intuitively, the constant C1 is the

minimal detection capability of the source component under Assumption 2.

Due to |Θ| = m <∞ and |Si| <∞ for each i ∈ N , we know that C0 <∞.

Besides, it is easy to see that −C0 ≤ 0 (thus, C0 ≥ 0). In addition, under

Assumption 2, we have C1 > 0.

Now we present a key lemma for our main theorem.

Lemma 13. Under Assumption 2, for any θ 6= θ∗, it holds that

1

t2

t∑
r=1

(
n−φ∑
j=1

[
Φij(t, r + 1)

r∑
k=1

Ljk(θ, θ
∗)

]
− r

n−φ∑
j=1

πj(r + 1)Hj(θ, θ
∗)

)
a.s.−−→ 0.

(4.16)
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Proof. The proof of Lemma 13 is significantly different from the analogous

lemma in [83].

By (4.9), we have

∣∣Lir(θ, θ∗)∣∣ =

∣∣∣∣log
`i(s

i
t|θ)

`i(sit|θ∗)

∣∣∣∣ ≤ max
i∈V

max
θ1,θ2∈Θ;θ1 6=θ2

max
wi∈Si

∣∣∣∣log
`i(wi|θ1)

`i(wi|θ2)

∣∣∣∣ .
Note that maxi∈V maxθ1,θ2∈Θ;θ1 6=θ2 maxwi∈Si

∣∣∣log `i(wi|θ1)
`i(wi|θ2)

∣∣∣ is symmetric in θ1

and θ2. Thus,

∣∣Lir(θ, θ∗)∣∣ ≤ max
i∈V

max
θ1,θ2∈Θ;θ1 6=θ2

max
wi∈Si

∣∣∣∣log
`i(wi|θ1)

`i(wi|θ2)

∣∣∣∣
= max

i∈V
max

θ1,θ2∈Θ;θ1 6=θ2
max
wi∈Si

log
`i(wi|θ1)

`i(wi|θ2)

= max
i∈V

max
θ1,θ2∈Θ;θ1 6=θ2

max
wi∈Si

− log
`i(wi|θ2)

`i(wi|θ1)

= −min
i∈V

min
θ1,θ2∈Θ;θ1 6=θ2

min
wi∈Si

log
`i(wi|θ2)

`i(wi|θ1)
= −(−C0) = C0 <∞.

(4.17)

Thus, adding and subtracting 1
t2

∑t
r=1

∑n−φ
j=1 πj(r + 1)

∑r
k=1 L

j
k(θ, θ

∗) from

the first term on the right hand side of (4.27), we can get

1

t2

t∑
r=1

(
n−φ∑
j=1

[
Φij(t, r + 1)

r∑
k=1

Ljk(θ, θ
∗)

]
− πj(r + 1)r

n−φ∑
j=1

Hj(θ, θ
∗)

)

=
1

t2

t∑
r=1

n−φ∑
j=1

[
(Φij(t, r + 1)− πj(r + 1))

r∑
k=1

Ljk(θ, θ
∗)

]

+
1

t2

t∑
r=1

n−φ∑
j=1

[
πj(r + 1)

(
r∑

k=1

Ljk(θ, θ
∗)− rHj(θ, θ

∗)

)]
. (4.18)
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For the first term of the right-hand side of (4.18), we have

1

t2

∣∣∣∣∣
t∑

r=1

n−φ∑
j=1

(Φij(t, r + 1)− πj(r + 1))
r∑

k=1

Ljk(θ, θ
∗)

∣∣∣∣∣
≤ 1

t2

t∑
r=1

n−φ∑
j=1

|Φij(t, r + 1)− πj(r + 1)|
r∑

k=1

∣∣Ljk(θ, θ∗)∣∣
≤ 1

t2

t∑
r=1

n−φ∑
j=1

|Φij(t, r + 1)− πj(r + 1)| rC0 by (4.17)

≤ 1

t2

t∑
r=1

n−φ∑
j=1

(1− βν)d
t−r
ν
erC0 by Theorem 20

≤ 1

t2
(t(n− φ)C0)

t∑
r=1

(1− βν)d
t−r
ν
e

≤ (n− φ)C0

(1− βν)(1− (1− βν) 1
ν )t

, (4.19)

where, with a bit abuse of notation, β is used to represent βm.

Thus, for every sample path, we have

1

t2

t∑
r=1

n−φ∑
j=1

(Φij(t, r + 1)− πj(r + 1))
r∑

k=1

Ljk(θ, θ
∗)→ 0. (4.20)

For the second term of the right hand side of (4.18), we will show that

1

t2

t∑
r=1

n−φ∑
j=1

πj(r + 1)

(
r∑

k=1

Ljk(θ, θ
∗)− rHj(θ, θ

∗)

)
a.s.−−→ 0, (4.21)

i.e., almost surely for any ε > 0 there exists sufficiently large t(ε) such that

∀ t ≥ t(ε),

1

t2

∣∣∣∣∣
t∑

r=1

n−φ∑
j=1

πj(r + 1)

(
r∑

k=1

Ljk(θ, θ
∗)− rHj(θ, θ

∗)

)∣∣∣∣∣ ≤ ε. (4.22)

We prove this by dividing r into two ranges r ∈ {1, · · · ,
√
t} and r ∈ {

√
t+
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1, · · · , t}, i.e.,

1

t2

t∑
r=1

n−φ∑
j=1

πj(r + 1)

(
r∑

k=1

Ljk(θ, θ
∗)− rHj(θ, θ

∗)

)

=
1

t2

√
t∑

r=1

n−φ∑
j=1

πj(r + 1)

(
r∑

k=1

Ljk(θ, θ
∗)− rHj(θ, θ

∗)

)

+
1

t2

t∑
r=
√
t+1

n−φ∑
j=1

πj(r + 1)

(
r∑

k=1

Ljk(θ, θ
∗)− rHj(θ, θ

∗)

)
. (4.23)

For the first term of the right hand side of (4.23), we have

1

t2

∣∣∣∣∣∣
√
t∑

r=1

n−φ∑
j=1

πj(r + 1)

(
r∑

k=1

Ljk(θ, θ
∗)− rHj(θ, θ

∗)

)∣∣∣∣∣∣
≤ 1

t2

√
t∑

r=1

n−φ∑
j=1

πj(r + 1) (2rC0) by (4.13) and (4.17)

=
1

t2
(2C0)

√
t∑

r=1

r

≤ C0

(
1

t
+

1

t
3
2

)
.

Thus, there exists t1(ε) such that for all t ≥ t1(ε), it holds that

1

t2

∣∣∣∣∣∣
√
t∑

r=1

n−φ∑
j=1

πj(r + 1)

(
r∑

k=1

Ljk(θ, θ
∗)− rHj(θ, θ

∗)

)∣∣∣∣∣∣ ≤ ε

2
.

For the second term of the right hand side of (4.23), we have

1

t2

t∑
r=
√
t+1

n−φ∑
j=1

πj(r + 1)

(
r∑

k=1

Ljk(θ, θ
∗)− rHj(θ, θ

∗)

)

=
1

t

t∑
r=
√
t+1

n−φ∑
j=1

πj(r + 1)
r

t

(
1

r

r∑
k=1

Ljk(θ, θ
∗)−Hj(θ, θ

∗)

)
.
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Since Ljk(θ, θ∗)’s are i.i.d., from Strong LLN, we know that

1

r

r∑
k=1

Ljk(θ, θ
∗)−Hj(θ, θ

∗)
a.s.−−→ 0. (4.24)

That is, with probability 1, the sample path converges. Now, focus on each

convergent sample path. For sufficiently large t1(ε), it holds that for any

r ≥ t1(ε), ∣∣∣∣∣1r
r∑

k=1

Ljk(θ, θ
∗)−Hj(θ, θ

∗)

∣∣∣∣∣ ≤ ε

2
.

Recall that r ≥
√
t. Thus, we know that there exists sufficiently large t2(ε)

such that ∀ t ≥ t2(ε), r ≥
√
t is large enough and∣∣∣∣∣1r

r∑
k=1

Ljk(θ, θ
∗)−Hj(θ, θ

∗)

∣∣∣∣∣ ≤ ε

2
.

Then, we have ∀ t ≥ t2(ε),

1

t2

∣∣∣∣∣∣
t∑

r=
√
t+1

n−φ∑
j=1

πj(r + 1)

(
r∑

k=1

Ljk(θ, θ
∗)− rHj(θ, θ

∗)

)∣∣∣∣∣∣
≤ 1

t

t∑
r=
√
t+1

n−φ∑
j=1

πj(r + 1)
r

t

∣∣∣∣∣1r
r∑

k=1

Ljk(θ, θ
∗)−Hj(θ, θ

∗)

∣∣∣∣∣
≤ 1

t

t∑
r=
√
t+1

n−φ∑
j=1

πj(r + 1)
r

t

ε

2

=
1

t

t∑
r=
√
t+1

r

t

ε

2
=
ε

2

1

t2

t∑
r=
√
t+1

r

=
ε

2

1

t2

 t∑
r=1

r −

√
t∑

r=1

r

 =
ε

4

1

t2

(
t2 −
√
t
)
≤ ε

2
.

Therefore, for any ε > 0, there exists max{t1(ε), t2(ε)}, such that for any

t ≥ max{t1(ε), t2(ε)},

1

t2

∣∣∣∣∣
t∑

r=1

n−φ∑
j=1

πj(r + 1)

(
r∑

k=1

Ljk(θ, θ
∗)− rHj(θ, θ

∗)

)∣∣∣∣∣ ≤ ε,
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for every convergent sample path. In addition, from (4.24), we know a sample

path is convergent with probability 1. Thus, by the definition of convergence,

(4.22) holds almost surely.

Equations (4.18), (4.20), (4.21) together prove Lemma 13.

Theorem 22. When Assumption 2 holds, each non-faulty agent i ∈ N will

concentrate its score on the true hypothesis θ∗ almost surely, i.e., µit(θ)
a.s.−−→ 0

for all θ 6= θ∗.

Proof. Consider any θ 6= θ∗. Recall from (4.12) that

ψt(θ, θ
∗) = Φ(t, 1)ψ0(θ, θ∗) +

t∑
r=1

Φ(t, r + 1)
r∑

k=1

Lk(θ, θ∗)

=
t∑

r=1

Φ(t, r + 1)
r∑

k=1

Lk(θ, θ∗).

The last equality holds as µi0 is uniform, and ψi
0(θ, θ∗) = 0 for each i ∈ N .

Since the supports of `i(·|θ) and `i(·|θ∗) are the whole signal space Si for each

agent i ∈ N , it holds that
∣∣∣ `i(wi|θ)`i(wi|θ∗)

∣∣∣ <∞ for each wi ∈ Si, and

0 ≥ Hi(θ, θ
∗) ≥ min

wi∈Si

(
log

`i(wi|θ)
`i(wi|θ∗)

)
≥ − C0 > −∞. (4.25)

By (4.25), we know that |
∑n−φ

j=1 πj(r + 1)Hj(θ, θ
∗)| ≤ C0 < ∞. Due to

the finiteness of
∑n−φ

j=1 πj(r + 1)Hj(θ, θ
∗), we are able to add and subtract

r1
∑n−φ

j=1 πj(r+1)Hj(θ, θ
∗) from (4.12), where 1 is a n−φ dimensional vector

with each entry being 1.

We get

ψt(θ, θ
∗) =

t∑
r=1

(
Φ(t, r + 1)

r∑
k=1

Lk(θ, θ∗)− r1
n−φ∑
j=1

πj(r + 1)Hj(θ, θ
∗)

)

+
t∑

r=1

r1

n−φ∑
j=1

πj(r + 1)Hj(θ, θ
∗). (4.26)
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For each i ∈ N , we have

ψi
t(θ, θ

∗) =
t∑

r=1

(
n−φ∑
j=1

Φij(t, r + 1)
r∑

k=1

Ljk(θ, θ
∗)− r

n−φ∑
j=1

πj(r + 1)Hj(θ, θ
∗)

)

+
t∑

r=1

r

n−φ∑
j=1

πj(r + 1)Hj(θ, θ
∗). (4.27)

To show limt→∞ µ
i
t(θ)

a.s.−−→ 0 for θ 6= θ∗, it is enough to show ψi
t(θ, θ

∗)
a.s.−−→

−∞. Our convergence proof has similar structure as the analysis in [83].

From Lemma 13, we know that

1

t2

t∑
r=1

(
n−φ∑
j=1

[
Φij(t, r + 1)

r∑
k=1

Ljk(θ, θ
∗)

]
− r

n−φ∑
j=1

πj(r + 1)Hj(θ, θ
∗)

)
a.s.−−→ 0.

(4.28)

Next we show that the second term of the right-hand side of (4.27) decreases

quadratically in t.

t∑
r=1

r

n−φ∑
j=1

πj(r + 1)Hj(θ, θ
∗) ≤

t∑
r=1

r
∑
j∈Sr

πj(r + 1)Hj(θ, θ
∗) by (4.13)

≤
t∑

r=1

rβχ(n−φ)
∑
j∈Sr

Hj(θ, θ
∗) by Lemma 12

≤ −
t∑

r=1

rβχ(n−φ)C1 by (4.15) and (4.13)

≤ −t
2

2
βχ(n−φ)C1. (4.29)

Therefore, by (4.27), (4.28) and (4.29), almost surely, the following holds:

lim
t→∞

1

t2
ψit(θ, θ

∗) ≤ −1

2
βχ(n−φ)C1.

Therefore, we have ψit(θ, θ
∗)

a.s.−−→ −∞ and µit(θ)
a.s.−−→ 0 for i ∈ N and θ 6= θ∗,

proving Theorem 22.
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4.5 Improved BFL

To reduce the computation complexity per iteration in general, and to iden-

tify an improved global identifiability of the network for any consensus-based

learning rule of interest to learn the true state, we propose a modification of

the above learning rule, which works under much weaker network topology

and global identifiability condition.

We decompose the m-ary hypothesis testing problem into m(m − 1) (or-

dered) binary hypothesis testing problems. For each pair of hypotheses θ1

and θ2, each non-faulty agent updates the likelihood ratio of θ1 over θ2 as

follows. Let rit(θ1, θ2) be the “log likelihood ratio” of θ1 over θ2 kept by agent

i at the end of iteration t. Our improved learning rule applies consensus

procedures to log likelihood ratio, i.e., rit(θ1, θ2), which is a scalar. For Algo-

rithm 10, we only require scalar iterative Byzantine (approximate) consensus

among the non-faulty agents to be achievable.

Assumption 3. Suppose that every 1-dimensional reduced graph of G(V , E)

contains only one source component. For any θ 6= θ∗, and for any 1-dimensional

reduced graph H1 of G(V , E) with SH1 denoting the unique source component,

the following holds: ∑
j∈SH1

D (`j(·|θ∗) ‖ `j(·|θ)) 6= 0. (4.30)

For each iteration, the computation complexity per agent (non-faulty) can

be calculated as follows. The cost-dominant procedure in each iteration is

sorting the received log likelihood ratios, which takes O(n log n) operations.

In total, we have m(m− 1) order pairs of hypotheses. Thus, the total com-

putation per agent per iteration is O(m2n log n).

Theorem 23. Suppose Assumption 3 holds. Under Algorithm 10, for any

θ 6= θ∗, the following holds:

rit(θ
∗, θ)

a.s.−−→ +∞, and rit(θ, θ
∗)

a.s.−−→ −∞.

Proof. By [38], we know that for each pair of hypotheses θ1 and θ2, there
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Algorithm 10: Pairwise Learning

1 Initialization: for θ1, θ2 ∈ Θ, and θ1 6= θ2 do
2 ri0(θ1, θ2)← 0;
3 end
4 while t ≥ 1 do
5 for θ1, θ2 ∈ Θ, and θ1 6= θ2 do
6 Transmit current score vector rit−1(θ1, θ2) on all outgoing edges;

7 Wait until a private signal sit is observed and log likelihood

ratios r̃jt−1(θ1, θ2) are received from all incoming neighbors Ii;
8 Sort the received log likelihood ratios r̃jt−1(θ1, θ2) in a

non-decreasing order, and remove the smallest f values and the
largest f values. % Denote the set of indices of incoming neighbors

whose ratios have not been removed at iteration t by I∗i [t].%

9 rit(θ1, θ2)←
∑
j∈I∗

i
[t] r̃

j
t−1(θ1,θ2)+rit−1(θ1,θ2)

|I∗[t]|+1
+ log

`i(s
i
1,t|θ1)

`i(si1,t|θ2)
.

10 end

11 end

exists a row-stochastic matrix M1,2[t] ∈ R(n−φ)×(n−φ) such that

rit(θ1, θ2) =

n−φ∑
j=1

M1,2
ij [t]rjt−1(θ1, θ2) + log

`i(s
i
1,t | θ1)

`i(si1,t | θ2)
. (4.31)

Note that matrix M1,2 depends on the choice of hypotheses θ1 and θ2.

For a given pair of hypotheses θ1 and θ2, let rt(θ1, θ2) ∈ Rn−φ be the vector

that stacks rit(θ1, θ2). The evolution of r(θ1, θ2) can be compactly written as

rt(θ1, θ2) = M1,2[t]rt−1(θ1, θ2) +
t∑

r=1

Lr(θ1, θ2)

=
t∑

r=1

Φ1,2(t, r + 1)
r∑

k=1

Lk(θ1, θ2), (4.32)

where Φ1,2(t, r+ 1) ,M1,2[t]M1,2[t− 1] · · ·M1,2[r+ 1] for r ≤ t, Φ1,2(t, t) ,

M1,2[t] and Φ1,2(t, t + 1) , I. We do the analysis for each pair of θ1 and θ2

separately.

The remaining proof is identical to the proof of Theorem 22, and is omitted.

Proposition 9. Suppose there exists θ̃ ∈ Θ such that for any θ 6= θ̃, it holds
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that rit(θ̃, θ)
a.s.−−→ +∞, and rit(θ, θ̃)

a.s.−−→ −∞. Then θ̃ = θ∗.

Proof. We prove this proposition by contradiction. Suppose there exists

θ̃ 6= θ∗ ∈ Θ such that for any θ 6= θ̃, it holds that rit(θ̃, θ)
a.s.−−→ +∞, and

rit(θ, θ̃)
a.s.−−→ −∞. Then we know that rit(θ̃, θ

∗)
a.s.−−→ +∞ and rit(θ

∗, θ̃)
a.s.−−→ −∞,

contradicting Theorem 23. Thus, Proposition 9 is true.

4.6 BFL in the Absence of Byzantine Agents

In this section, we present BFL for the special case in the absence of Byzan-

tine agents, i.e., f = 0, named Failure-free BFL. Since f = 0, all the agents

in the network are cooperative, and no trimming is needed. Indeed, the BFL

for f = 0 is a simple modification of the algorithm proposed in [83].

Algorithm 11: Failure-free BFL

1 Transmit current score vector µit−1 on all outgoing edges;

2 Wait until a private signal sit is observed and score vectors are received
from all incoming neighbors Ii;

3 for θ ∈ Θ do

4 µit(θ)←
`i(s

i
1,t|θ)

∏
j∈Ii∪{i}

µjt−1(θ)
1

|Ii|+1

∑m
p=1 `i(s

i
1,t|θ)

∏
j∈Ii∪{i}

µjt−1(θ)
1

|Ii|+1
.

5 end

For each time t ≥ 1, we define a matrix that follows the structure of

G(V , E) as follows:

Aij ,

 1
|Ii|+1

, j ∈ Ii ∪ {i}

0, otherwise.
(4.33)

Thus, the dynamic of ψit(θ, θ
∗) (defined in (4.9)) under Algorithm 11 can be
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written as

ψit(θ, θ
∗) = log

µit(θ)

µit(θ
∗)

= log
`i(s

i
1,t|θ)

∏
j∈Ii∪{i} µ

j
t−1(θ)

1
|Ii|+1

`i(si1,t|θ∗)
∏

j∈Ii∪{i} µ
j
t−1(θ∗)

1
|Ii|+1

= log
∏

j∈Ii∪{i}

[
µjt−1(θ)

µjt−1(θ∗)

] 1
|Ii|+1

+ log
`i(s

i
1,t | θ)

`i(si1,t | θ∗)

= log
∏

j∈Ii∪{i}

[
µjt−1(θ)

µjt−1(θ∗)

] 1
|Ii|+1

+
t∑

r=1

log
`i(s

i
r | θ)

`i(sir | θ∗)

=
n∑
j=1

Aijψ
i
t−1(θ, θ∗) +

t∑
r=1

Lir(θ, θ∗) by (4.9) and (4.33).

Recall that ψt(θ, θ
∗) ∈ Rn−φ is the vector that stacks ψit−1(θ, θ∗) with the

i–th entry being ψit−1(θ, θ∗) for all i ∈ N . Since f = 0, i.e., the network is

free of failures, it holds that

0 ≤ φ = |F| ≤ f = 0.

Thus, ψt(θ, θ
∗) ∈ Rn. Similar to (4.12), the evolution of ψt(θ, θ

∗) can be

compactly written as follows:

ψt(θ, θ
∗) = Atψ0(θ, θ∗) +

t∑
r=1

At−r
r∑

k=1

Lk(θ, θ∗)

=
t∑

r=1

At−r
r∑

k=1

Lk(θ, θ∗). (4.34)

The last equality holds from the fact that ψ0(θ, θ∗) = 0.

As mentioned before, the non-Bayesian learning rules [83, 84, 86, 88] are

consensus-based learning algorithms, wherein agents are required to reach a

common decision asymptotically.

Assumption 4. The underlying communication network G(V , E) is strongly

connected.

It is easy to see that G(V , E) itself is the only reduced graph of G(V , E),

and that Assumption 4 is the special case of Assumption 1 when f = 0.
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Thus,

χm = 1, and νm = χm(n− φ) = n.

Note that both χm and νm are independent of m when f = 0. Henceforth in

this section, we drop the subscripts of χm and νm for ease of notation.

Similar to (4.3), for any r ≥ 1, we get

lim
t≥r, t→∞

At−r = 1π.

Since A is time-invariant, the product limit limt≥r, t→∞At−r is also indepen-

dent of r.

It is easy to see that

A ≥ 1

n
H,

where H is the adjacency matrix of the communication graph G(V , E), and

that

πj ≥
1

nn
, ∀ j = 1, · · · , n. (4.35)

The following corollary is a direct consequence of Theorem 20, and its

proof is omitted.

Corollary 6. For all t ≥ r ≥ 1, it holds that |[At−r]ij − πj| ≤ (1− 1
nn

)d
t−r
n
e,

where [At−r]ij is the i, j–th entry of matrix At−r.

In addition, when f = 0, Assumption 2 becomes

Assumption 5. Suppose that Assumption 4 holds. For any θ 6= θ∗, the

following holds

m∑
j=1

D (`j(·|θ∗) ‖ `j(·|θ)) 6= 0. (4.36)

As an immediate consequence of Theorem 22, we have the following corol-

lary.

Corollary 7. When Assumption 5 holds, each agent i will concentrate its

score on the true hypothesis θ∗ almost surely, i.e., µit(θ)
a.s.−−→ 0 for all θ 6= θ∗.

Since Corollary 7 is the special case of Theorem 22 for f = 0, the proof of

Corollary 7 is omitted.
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4.6.1 Finite-Time Analysis of Failure-Free BFL

In this subsection, we present the convergence rate on the score vectors that

is achievable in finite time with high probability. Note that this convergence

rate is not the convergence rate of the real belief vectors. Our proof is similar

to the proof presented in [83, 88].

Lemma 14. Let λ ,
(
1− ( 1

n
)n
) 1
n , and let θ 6= θ∗, and consider ψit(θ, θ

∗) as

defined in (4.9). Then, for each agent i we have

E
[
ψit(θ, θ

∗)
]
≤ nC0

(1− 1
nn

)(1− λ)
t− C1

2nn
t2.

Proof. By (4.34), we have ψit(θ, θ
∗) =

∑t
r=1

∑n
j=1[At−r]ij

∑r
k=1 L

j
k(θ, θ

∗).

Taking expectation of ψit(θ, θ
∗) with respect to `i(· | θ∗), we get

E∗
[
ψi
t(θ, θ

∗)
]

= E∗
[

t∑
r=1

n∑
j=1

[At−r]ij

r∑
k=1

Ljk(θ, θ
∗)

]

=
t∑

r=1

n∑
j=1

[At−r]ij

r∑
k=1

E∗
[
Ljk(θ, θ

∗)
]

=
t∑

r=1

n∑
j=1

[At−r]ijrHj(θ, θ
∗) by (4.13)

=
t∑

r=1

n∑
j=1

(
[At−r]ij − πj

)
rHj(θ, θ

∗) +
t∑

r=1

n∑
j=1

πjrHj(θ, θ
∗).

(4.37)
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For the first term on the right-hand side of (4.37), we have

t∑
r=1

n∑
j=1

(
[At−r]ij − πj

)
rHj(θ, θ

∗)

≤
t∑

r=1

n∑
j=1

∣∣[At−r]ij − πj
∣∣ r |Hj(θ, θ

∗)|

≤
t∑

r=1

n∑
j=1

[
1− 1

nn

]d t−r
n
e

rC0 by Corollary 6, and (4.14)

= nC0

t∑
r=1

[
1− 1

nn

]d t−r
n
e

r

≤ nC0

(1− 1
nn

)(1− λ)
t. (4.38)

Since G(V , E) is the only source component, C1 (defined in (4.15)) becomes

C1 = min
θ,θ∗∈Θ;θ 6=θ∗

n∑
i=1

D(`i(·|θ∗) ‖ `i(·|θ)).

Thus, for the second term on the right-hand side of (4.37), we get

t∑
r=1

n∑
j=1

πjrHj(θ, θ
∗) ≤

t∑
r=1

n∑
j=1

1

nn
rHj(θ, θ

∗) by (4.35) and (4.13)

=
1

nn

t∑
r=1

r
n∑
j=1

Hj(θ, θ
∗)

≤ − 1

nn

t∑
r=1

rC1

≤ − C1

2nn
t2. (4.39)

By (4.38) and (4.39), (4.37) becomes

E∗
[
ψi
t(θ, θ

∗)
]

=
t∑

r=1

n∑
j=1

(
[At−r]ij − πj

)
rHj(θ, θ

∗) +
t∑

r=1

n∑
j=1

πjrHj(θ, θ
∗)

≤ nC0

(1− 1
nn

)(1− λ)
t− C1

2nn
t2, (4.40)

proving the lemma.
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Similar to [83, 88], we also use McDiarmid’s inequality.

Theorem 24 (McDiarmid’s inequality). Let X1, · · · , Xt be independent ran-

dom variables with sample space X and consider the mapping H : X t → R.

If for r = 1, · · · , t, and every sample x1, · · · , xt, x′r ∈ X , the function H

satisfies

|H(x1, · · · , xr, · · · , xt)−H(x1, · · · , x′r, · · · , xt)| ≤ cr,

then for all ε > 0,

P [|H(x1, · · · , xt)− E[H(x1, · · · , xt)]| ≥ ε] ≤ exp

{
−2ε2∑t
r=1 c

2
r

}
.

Theorem 25. Under Assumption 5, for any ρ ∈ (0, 1), there exists an integer

T (ρ) such that with probability at least 1 − ρ, for all t ≥ T (ρ) and for all

θ 6= θ∗, we have

µit(θ) ≤ exp

(
nC0

(1− 1
nn

)(1− λ)
t− C1

4nn
t2
)
,

where C0 and C1 are defined in (4.14) and (4.15) respectively, and T (ρ) =
64C2

0n
2n

3C2
1

log 1
ρ
.

Proof. Since µit(θ
∗) ∈ (0, 1], we have

µit(θ) ≤
µit(θ)

µit(θ
∗)

= exp
(
ψit(θ, θ

∗)
)
. (4.41)

Thus, we have

P
(
µit(θ) ≥ exp

(
nC0

(1− 1
nn

)(1− λ)
t− C1

4nn
t2
))

(4.42)

≤ P
(
ψit(θ, θ

∗) ≥ nC0

(1− 1
nn

)(1− λ)
t− C1

4nn
t2
)

due to (4.41)

≤ P
(
ψit(θ, θ

∗)− E∗
[
ψit(θ, θ

∗)
]
≥ C1

4nn
t2
)
. due to (4.40)

Note that ψit(θ, θ
∗) is a function of the random vector s1, · · · , st. Let S̄ ,

S1×· · ·×Sn−φ be the joint signal space of all the good agents. Let s̄1, · · · , s̄t
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be a sample path of length t; and let p ∈ {1, · · · , t}. We use

max
sp∈S̄

ψit(θ, θ
∗)

to denote the maximum value of ψit(θ, θ
∗) that is obtained by maximizing

ψit(θ, θ
∗) over all the possible realization of the p–th signal vector, i.e., S̄,

while keeping all the other elements of the sample path fixed. Similarly, we

denote

min
sp∈S̄

ψit(θ, θ
∗)

as the minimum value of ψit(θ, θ
∗) that is obtained by minimizing ψit(θ, θ

∗)

over all the possible realization of the p–th signal vector, i.e., S̄, while keeping

all the other elements of the sample path fixed. We consider the difference

between maxsp∈S̄ ψ
i
t(θ, θ

∗) and minsp∈S̄ ψ
i
t(θ, θ

∗) for the given sample path

s̄1, · · · , s̄t w. r. t. the p-th element. In particular, we have

max
sp∈S̄

ψit(θ, θ
∗)−min

sp∈S̄
ψit(θ, θ

∗)

= max
sp∈S̄

t∑
r=1

n∑
j=1

[At−r]ij

r∑
k=1

Ljk(θ, θ
∗)−min

sp∈S̄

t∑
r=1

n∑
j=1

[At−r]ij

r∑
k=1

Ljk(θ, θ
∗) by (4.34)

= max
sp∈S̄

t∑
r=p

n∑
j=1

[At−r]ijLjp(θ, θ∗)−min
sp∈S̄

t∑
r=p

n∑
j=1

[At−r]ijLjp(θ, θ∗)

≤
t∑

r=p

n∑
j=1

[At−r]ijC0 +
t∑

r=p

n∑
j=1

[At−r]ijC0

= 2C0(t− p+ 1) , cp.

By McDiarmid’s inequality (Theorem 24), we obtain that

P
(
ψ∗t (θ, θ

∗)− E∗ [ψ∗t (θ, θ
∗)] ≥ C1

4nn
t2
)
≤ exp

(
−

2
C2

1

16n2n t
4∑t

p=1(2C0(t− p+ 1))2

)

≤ exp

(
− 3C2

1

64C2
0n

2n
t

)
, (4.43)

where the last inequality follows from the fact that

t(t+ 1)(2t+ 1) ≤ 4t3 ∀ t ≥ 2,
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which can be shown by induction.

From Equations (4.41), (4.42), and (4.43), it follows that for a given con-

fidence level ρ, in order to have

P
(
µit(θ) ≥ exp

(
nC0

(1− 1
nn

)(1− λ)
t− C1

4nn
t2
))
≤ ρ,

we require that

t ≥ T (ρ) =
64C2

0n
2n

3C2
1

log
1

ρ
.

Remark 5. The above finite-time analysis is not directly applicable for the

general case when f > 0, due to the fact that the local scores are dependent

on all the observations collected so far as well as all the future observations.

4.7 Conclusion

This chapter addresses the problem of consensus-based non-Bayesian learn-

ing over multi-agent networks when an unknown subset of agents may be

adversarial (Byzantine). We propose two learning rules, and characterize the

tight network identifiability condition for any consensus-based learning rule

of interest to exist. In our first update rule, each agent updates its local

scores as (up to normalization) the product of (1) the likelihood of the cu-

mulative private signals and (2) the weighted geometric average of the scores

of its incoming neighbors and itself. Under reasonable assumptions on the

underlying network structure and the global identifiability of the network,

we show that all the non-faulty agents asymptotically agree on the true state

almost surely. In general when agents may be adversarial, the network iden-

tifiability condition specified for the above learning rule scales poorly in m.

In addition, the computation complexity per agent per iteration of this learn-

ing rule is forbiddingly high. Thus, we propose a modification of our first

learning rule, whose complexity per iteration per agent is O(m2n log n). We

show that this improved learning rule works under a much weaker global

identifiability condition that is independent of m.

We so far focus on a synchronous system and static network; our results

may be generalizable to asynchronous as well as time varying networks.
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Throughout this chapter, we assume that consensus among non-faulty

agents needs to be achieved. Although this is necessary for the family of

consensus-based algorithms (by definition), this is not the case for the non-

faulty agents to collaboratively learn the true state in general. Indeed, there

is a tradeoff between the capability of the network to reach consensus and

the tight condition of the network detectability. For instance, if the network

is disconnected, then information cannot be propagated across the connected

components. Thus, the non-faulty agents in each connected component have

to be able to learn the true state. We leave investigating the above tradeoff

as future work.
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CHAPTER 5

DISTRIBUTED STATISTICAL MACHINE
LEARNING IN ADVERSARIAL SETTINGS:

BYZANTINE GRADIENT DESCENT

5.1 Introduction

In many machine learning tasks, we are interested in efficiently training an

accurate prediction model from observed data samples. As the data volume

and model complexity continue to grow, such tasks consume a large and still

increasing amount of computation resources. Distributed machine learning

has emerged as an attractive solution to large-scale problems and received in-

tensive attention [14, 15, 16, 17, 18, 19]. In this setting, the data samples and

computation are distributed across multiple machines, which collaboratively

learn a model by communicating with each other.

Many efficient distributed machine learning algorithms [14, 15] and system

implementations [16, 17, 18, 19] have been proposed and studied. Prior work

mostly focuses on the traditional “training within cloud” framework where

the model training process is carried out within the cloud infrastructures.

In this framework, distributed machine learning is secured via system ar-

chitectures, hardware devices, and monitoring [20, 21, 22]. This framework

faces significant privacy risk, as the data has to be collected from owners and

stored within the clouds. Although a variety of privacy-preserving solutions

have been developed [23, 24], privacy breaches still occur frequently, with

recent examples including iCloud leaks of celebrity photos [25] and PRISM

surveillance program [26].

To address privacy concerns, a new machine learning paradigm called Fed-

erated Learning was proposed by Google researchers [27, 28]. It aims at learn-

ing an accurate model without collecting data from owners and storing the

data in the cloud. The training data is kept locally on the owners’ computing

devices, which are recruited to participate directly in the model training pro-

cess and hence function as working machines. Google has been intensively
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testing this new paradigm in their recent projects such as Gboard [28], the

Google Keyboard. Compared to “training within cloud”, Federated Learning

has lower privacy risk, but inevitably becomes less secured. In particular, it

faces the following three key challenges:

• Security: The devices of the recruited data owners can be easily re-

programmed and completely controlled by external attackers, and thus

behave adversarially.

• Small local datasets versus high model complexity: While the total

number of data samples over all data owners may be large, each indi-

vidual owner may keep only a small amount of data, which by itself is

insufficient for learning a complex model.

• Communication constraints: Data transmission between the recruited

devices and the cloud may suffer from high latency and low-throughout.

Communication between them is therefore a scarce resource, whose

usage should be minimized.

In this chapter, we address the above challenges by developing a new it-

erative distributed machine learning algorithm that is able to (1) tolerate

Byzantine failures, (2) accurately learn a highly complex model with low lo-

cal data volume, and (3) converge exponentially fast using logarithmic com-

munication rounds.

5.1.1 Learning Goals

To formally study the distributed machine learning problem in adversarial

settings, we consider a standard statistical learning setup, where the data is

generated probabilistically from an unknown distribution and the true model

is parameterized by a vector. More specifically, let X ∈ X be the input data

generated according to some distribution µ. Let Θ ⊂ Rd be the set of all

choices of model parameters. We consider a loss function f : X × Θ → R,

where f(x, θ) measures the risk induced by a realization x of the data under

the model parameter choice θ. A classical example is linear regression, where

x = (w, y) ∈ Rd×R is the feature-response pair and f(x, θ) = 1
2

(〈w, θ〉 − y)2

is the usual squared loss.
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We are interested in learning the model choice θ∗ that minimizes the pop-

ulation risk, i.e.,

θ∗ ∈ arg min
θ∈Θ

F (θ) , E [f(X, θ)] , (5.1)

assuming that E [f(X, θ)] is well defined over Θ.1 The model choice θ∗ is

optimal in the sense that it minimizes the average risk to pay if the model

chosen is used for prediction in the future with a fresh random data sample.

When µ—the distribution of X—is known, which is rarely the case in prac-

tice, the population risk can be evaluated exactly, and θ∗ can be computed

by solving the minimization problem in (5.1). We instead assume that µ is

unknown, in which case the population risk function F (·) = E [f(X, ·)] can

only be approximated using the observed data samples generated from µ.

In particular, we assume that there exist N independently and identically

distributed data samples Xi
i.i.d.∼ µ for i = 1, . . . , N . Note that estimating θ∗

using finitely many data samples will always have a statistical error due to

the randomness in the data, even in the centralized, failure-free setting. Our

results account for this effect.

5.1.2 System Model

We are interested in distributed solutions of the above statistical learning

problem. Specifically, the system of interest consists of a parameter server2

and m working machines. In the example of Federated Learning, the param-

eter server represents the cloud, and the m working machines correspond to

m data owners’ computing devices.

We assume that the N data samples are distributed evenly across the m

working machines. In particular, each working machine i keeps a subset

Si of the data, where Si ∩ Sj = ∅ and |Si| = N/m. We further assume

that the parameter server can communicate with all working machines in

1For example, if E [|f(X, θ)|] is finite for every θ ∈ Θ, the population risk E [f(X, θ)] is
well defined.

2Note that, due to communication bandwidth constraints, practical systems use mul-
tiple networked parameter servers. In this chapter, for ease of explanation, we assume
there is only one parameter server in the system. Fortunately, as can be seen from our
algorithm descriptions and our detailed correctness analysis, the proposed algorithm also
works for the aforementioned more practical setting.
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synchronous communication rounds, and leave the asynchronous setting as

future directions.

Among the m working machines, we assume that up to q of them can

suffer Byzantine failures and thus behave maliciously; for example, they may

be reprogrammed and completely controlled by the system attacker. In a

given execution, the set of Byzantine machines can even change between

communication rounds. Byzantine machines are assumed to have complete

knowledge of the system, including the total number of working machines m,

all N data samples over the whole system, the programs that the working

machines are supposed to run, and the program run by the parameter server.

Moreover, Byzantine machines can collaborate with each other [91]. The only

constraint is that these machines cannot corrupt the local data — but they

can lie when communicating with the server. This arbitrary behavior of

Byzantine machines creates unspecified dependency across communication

rounds — a key challenge in our algorithm design and convergence analysis.

In this chapter, we use rounds and iterations interchangeably.

5.1.3 Existing Distributed Machine Learning Algorithms

Existing algorithms for distributed machine learning can be roughly catego-

rized into three classes according to their communication costs.

SGD: On one end of the spectrum lies the Stochastic Gradient Descent

(SGD) algorithm. Using this algorithm, the parameter server receives, in

each iteration, a gradient computed at a single data sample from one working

machine, and uses it to perform one gradient descent step. Even when F is

strongly convex, the convergence rate of SGD is only O(1/t) with t iterations.

This is much slower than the exponential (geometric) convergence of standard

gradient descent. Therefore, SGD requires a large number of communication

rounds, which could be costly. Indeed, it has been demonstrated in [28] that

SGD has 10-100 times higher communication cost than standard gradient

descent, and is therefore inadequate for scenarios with scarce communication

bandwidth.

One-Shot Aggregation: On the other end of the spectrum, using a

One-Short Aggregation method, each working machine computes an esti-

mate of the model parameter using only its local data and reports it to
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the server, which then aggregates all the estimates reported to obtain a final

estimate [92, 93]. One-short aggregation method only needs a single round

of communication from the working machines to the parameter server, and

thus is communication-efficient. However, it requires N/m � d so that a

coarse parameter estimate can be obtained at each machine. This algorithm

is therefore not applicable in scenarios where local data is small in size but

the model to learn is of high dimension.

BGD: Batch Gradient Descent (BGD) lies in between the above two ex-

tremes. At each iteration, the parameter server sends the current model

parameter estimate to all working machines. Each working machine com-

putes the gradient based on all locally available data, and then sends the

gradient back to the parameter server. The parameter server averages the

received gradients and performs a gradient descent step. When F is strongly

convex, BGD converges exponentially fast, and hence requires only a few

rounds of communication. BGD also works in the scenarios with limited

local data, i.e., N/m� d, making it an ideal candidate in Federated Learn-

ing. However, it is prone to Byzantine failures. A single Byzantine failure at

a working machine can completely skew the average value of the gradients

received by the parameter server, and thus foils the algorithm.

5.1.4 Contributions

In this chapter, we propose a Byzantine gradient descent method. Specif-

ically, the parameter server aggregates the local gradients reported by the

working machines in three steps: (1) it partitions all the received local gra-

dients into k batches and computes the mean for each batch, (2) it computes

the geometric median of the k batch means, and (3) it performs a gradient

descent step using the geometric median.

We prove that the proposed algorithm can tolerate q Byzantine failures

up to 2(1 + ε)q ≤ m for an arbitrarily small but fixed constant ε > 0, is

applicable even in the scarce local data regime where N/m � d, and only

requires log(N) communication rounds. However, as q increases, the esti-

mation error also increases. In particular, the error in estimating the target

model parameter θ∗ converges exponentially fast to max{
√
dq/N,

√
d/N},

whereas the idealized estimation error rate in the centralized and failure-free
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Table 5.1: Comparison of our proposed Byzantine gradient descent
algorithm with several existing distributed machine learning algorithms.
In [94], the focus is to estimate the minimizer of the average cost over a
given deterministic dataset; almost sure convergence is proved without an
explicit characterization of convergence speed nor the estimation errors.

Byzantine
Failures

Convergence
speed

Estimation
error

One-shot 0 No iteration
√
d/N

SGD 0 1/t ?

BGD 0 exp(−t)
√
d/N

Robust
one-shot [95]

2q + 1 ≤ m No iteration
√
dm/N

Byzantine
SGD [94]

2q + 2 < m * *

Byzantine GD
(This chapter)

2(1 + ε)q ≤ m exp(−t)
√
d(q ∨ 1)/N

setting is
√
d/N . The total computational complexity of our algorithm is

of O((N/m)d logN) at each working machine and O(md+ qd log3N) at the

parameter server, and the total communication cost is of O(md logN). We

provide a comparison with existing distributed machine learning algorithms

in Table 5.1, where q ∨ 1 , max{1, q}.
Notably, our algorithm does not assume that at each iteration fresh sam-

ples are drawn, or that the data is split into multiple chunks beforehand

and the gradient is computed using a new chunk at each round. This poses

a significant challenge in our convergence proof: there exists complicated

probabilistic dependency among the iterates and the aggregated gradients.

Even worse, such dependency cannot be specified due to the arbitrary be-

havior of the Byzantine machines. We overcome this challenge by proving

that the geometric median of means of gradients uniformly converges to the

true gradient function ∇F (θ).

5.2 Related Work

The present chapter intersects with two main areas of research: statistical

machine learning and distributed computing. Most related to our work is
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a very interesting recent arXiv preprint [94] that we became aware of when

preparing this chapter. It also studies distributed machine learning in adver-

sarial settings, but the setup is different from ours. In particular, their focus

is solving an optimization problem, where all m working machines have ac-

cess to a common dataset {xi}Ni=1 and the goal is to collectively compute the

minimizer θ̂ of the average cost Q(θ) = (1/N)
∑N

i=1 f(xi, θ). Importantly, the

dataset {xi}Ni=1 are assumed to be deterministic. In contrast, we adopt the

standard statistical learning framework, where each working machine only

has access to its own data samples, which are assumed to be generated from

some unknown distribution µ, and the goal is to estimate the optimal model

parameter θ∗ that minimizes the true prediction error EX∼µ[f(X, θ)] — as

mentioned, characterizing the statistical estimation accuracy is a main focus

of ours. Our algorithmic approaches and main results are also significantly

different; see Table 5.1 for a comparison.

Our work is also closely related to the literature on robust parameter es-

timation using geometric median. It is shown in [96] that geometric median

has a breakdown point of 0.5, that is, given a collection of n vectors in Rd,

at least b(n + 1)/2c/n number of points needs to be corrupted in order to

arbitrarily perturb the geometric median. A more quantitative robustness

result is recently derived in [97, Lemma 2.1]. The geometric median has

been applied to distributed machine learning under the one-shot aggregation

framework [95], under the restrictive assumption that the number of data

available in each working machine satisfies N/m � d. While we also ap-

ply geometric median-of-mean as a sub-routine, our problem setup, overall

algorithms and main results are completely different.

On the technical front, a crucial step in our convergence proof is to show

the geometric median of means of n i.i.d. random gradients converges to

the underlying gradient function ∇F (θ) uniformly over θ. Our proof builds

on several ideas from the empirical process theory, which guarantees uni-

form convergence of the empirical risk function (1/n)
∑n

i=1 f(Xi, ·) to the

population risk F (·). However, what we need is the uniform convergence of

empirical gradient function (1/n)
∑n

i=1∇f(Xi, ·), as well as its geometric me-

dian version, to the population gradient function ∇F (·). To this end, we use

concentration inequalities to first establish point-wise convergence and then

boost it to uniform convergence via the celebrated ε-net argument. Similar

ideas have been used recently in the work [98], which studies the stationary
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points of the empirical risk function.

5.3 Algorithms and Summary of Main Results

In this section, we present our distributed statistical machine learning algo-

rithm, named Byzantine Gradient Descent Method, and briefly summarize

our main results on the performance of our algorithm.

The main algorithm design idea is to exploit the statistical properties of

the N training data samples. Recall that they are generated from some com-

mon but unknown distribution µ. Informally speaking, this implies that the

local datasets Sj’s share some similarity, and the locally computed gradients

reported by these good machines may also be “similar”. Based on this obser-

vation, in each iteration of our algorithm, the parameter server first groups

the received gradients into batches and computes the averages in each batch

in order to amplify the “similarity” of the averaged gradients in batches; and

then the parameter server computes the geometric median of the averaged

gradients to cripple the interruption of Byzantine machines.

5.3.1 Algorithms

Recall that our fundamental goal is to learn the optimal model choice θ∗

defined in (5.1). We make the following standard assumption [14] so that the

minimization problem in (5.1) can be solved efficiently (exponentially fast)

in the ideal case when the population risk function F is known exactly, i.e.,

the distribution µ is known.

Assumption 6. The population risk function F : Θ → R is L-strongly

convex, and differentiable over Θ with M-Lipschitz gradient. That is, for all

θ, θ′ ∈ Θ,

F (θ′) ≥ F (θ) + 〈∇F (θ), θ′ − θ〉+
L

2
‖θ′ − θ‖2,

and

‖∇F (θ)−∇F (θ′)‖ ≤M‖θ − θ′‖.
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Under Assumption 6, it is well-known [69] that using the standard gradient

descent update

θt = θt−1 − η ×∇F (θt−1), (5.2)

where η is some fixed stepsize, θt approaches the optimal θ∗ exponentially

fast. In particular, choosing the stepsize η = L/(2M2), it holds that

‖θt − θ∗‖ ≤

(
1−

(
L

2M

)2
) t

2

‖θ0 − θ∗‖.

Nevertheless, when the distribution µ is unknown, assumed in this chap-

ter, the population gradient ∇F can only be approximated using sample

gradients, if they exist. Recall that each working machine j (can possibly be

Byzantine) keeps a very small set of data Sj with |Sj| = N/m. Define the

local empirical risk function, denoted by f̄ (j) : Θ→ R, as follows:

f̄ (j)(θ) ,
1

|Sj|
∑
i∈Sj

f(Xi, θ), ∀ θ ∈ Θ. (5.3)

Notice that f̄ (j)(·) is a function of data samples Sj stored at machine j.

Hence f̄ (j)(·) is random. Although Byzantine machines can send arbitrarily

malicious messages to the parameter server, they are not able to corrupt the

local stored data. Thus, the local risk function gj(·) is well-defined for all j,

including the Byzantine machines. With a bit abuse of notation, we let

f̄(θ) ,
(
f̄ (1)(θ), . . . , f̄ (m)(θ)

)
be the vector that stacks the values of the m local functions evaluated at

θ. For any x ∈ X , we assume that f(x, .) : Θ → R is differentiable over Θ.

When there is no confusion, we write ∇θf(x, θ) – the gradient of function

f(x, ·) evaluated at θ – simply as ∇f(x, θ).

It is well-known that the average of the local gradients can be viewed as an

approximation of the population gradient ∇F (·). In particular, for a fixed θ,

1

m

m∑
j=1

∇f̄ (j)(θ) =
1

N

N∑
i=1

∇f(Xi, θ)
a.s.−−→ ∇F (θ), as N →∞. (5.4)
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Batch Gradient Descent relies on this observation. However, this method is

sensitive to Byzantine failures as we explain in the sequel.

Batch Gradient Descent We describe the Batch Gradient Descent (BGD)

in Algorithm 12. We initialize θ0 to be some arbitrary value in Θ for sim-

plicity. In practice, there are standard guides in choosing the initial point

[99]. In round t ≥ 1, the parameter server sends the current model parameter

estimator θt−1 to all working machines. Each working machine j computes

the gradient ∇f̄ (j)(θt−1) and sends ∇f̄ (j)(θt−1) back to the parameter server.

Note that q Byzantine machines may not follow the codes in Algorithm 12

– though their local gradients are also well-defined. Instead of the true local

gradients, Byzantine machines can report arbitrarily malicious messages or

no message to the server. If the server does not receive any message from a

working machine, then that machine must be Byzantine faulty. In that case,

the server sets g
(j)
t (θt−1) to some arbitrary value. Precisely, let Bt denote the

set of Byzantine machines at round t. The message received from machine

j, denoted by g
(j)
t (θt−1), can be described as

g
(j)
t (θt−1) =

∇f̄ (j)(θt−1) if j /∈ Bt
? o.w. ,

(5.5)

where, with a bit of abuse of notation, ? denotes the arbitrary message whose

value may be different across Byzantine machines, iterations, executions, etc.

In step 3, the parameter server averages the received g
(j)
t (θt−1) and updates

θt using a gradient descent step.

Under Assumption 6, when there are no Byzantine machines, it is well-

known that BGD converges exponentially fast. However, a single Byzantine

failure can completely skew the average value of the gradients received by the

parameter server, and thus foils the algorithm. This is because a Byzantine

machine is assumed to have complete knowledge of the system, including the

gradients reported by other machines.

Robust Gradient Aggregation Instead of taking the average of the received

gradients g
(1)
t (θt−1), · · · , g(m)

t (θt−1), we propose a robust way to aggregate the

collected gradients. Our aggregation rule is based on the notion of geometric

median.

Geometric median, also known as spatial median or L1 median, is a gen-
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Algorithm 12: Standard Gradient Descent: Synchronous iteration t ≥
1

1 Parameter server:
2 Initialize: Let θ0 be an arbitrary point in Θ;

1: Broadcast the current model parameter estimator θt−1 to all working
machines;

2: Wait to receive all the gradients reported by the m machines; Let
g

(j)
t (θt−1) denote the value received from machine j.

If no message from machine j is received, set g
(j)
t (θt−1) to be some

arbitrary value;

3: Update: θt ← θt−1 − η ×
(

1
m

∑m
j=1 g

(j)
t (θt−1)

)
;

Working machine j:

1: Compute the gradient ∇f̄ (j)(θt−1);
2: Send ∇f̄ (j)(θt−1) back to the parameter server;

eralization of median in one-dimension to multiple dimensions, and has been

widely used in robust statistics [100, 101, 102, 103]. Let {y1, . . . , yn} ⊆ Rd

be a multi-set of size n. The geometric median of {y1, . . . , yn}, denoted by

med{y1, . . . , yn}, is defined as

med{y1, . . . , yn} , argmin
y∈Rd

n∑
i=1

‖y − yi‖. (5.6)

Geometric median is NOT required to lie in {y1, . . . , yn}, and is unique unless

all the points in {y1, . . . , yn} lie on a line. Note that if the `2 norm in (5.6)

is replaced by the squared `2 norm, i.e., ‖ · ‖2, then the minimizer is exactly

the average.

In one dimension, median has the following nice robustness property: if

strictly more than bn/2c points are in [−r, r] for some r ∈ R, then the median

must be in [−r, r]. Likewise, in multiple dimensions, geometric median has

the following robust property.

Lemma 15. [97, Lemma 2.1] Let z1, z2, . . . , zn denote n points in a Hilbert

space. Let z∗ denote their geometric median. For any α ∈ (0, 1/2) and given
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r ∈ R, if
∑n

i=1 1{‖zi‖2≤r} ≥ (1− α)n, then ‖z∗‖2 ≤ Cαr, where

Cα =
1− α√
1− 2α

. (5.7)

The above lemma shows that as long as there are sufficiently many points

(majority in terms of fraction) inside the Euclidean ball of radius r centered

at origin, then the geometric median must lie in the Euclidean ball blowed

up by a constant factor only. Intuitively, geometric median can be viewed as

an aggregated center of a set based on majority vote.

Let gt(θt−1) =
(
g

(1)
t (θt−1), . . . , g

(m)
t (θt−1)

)
be the m-dimensional vector

that stacks the gradients received by the parameter server at iteration t. Let

k be an integer which divides m and let b = m/k denote the batch size.

In our proposed robust gradient aggregation, the parameter server first di-

vides m working machines into k batches, then takes the average of local

gradients in each batch, and finally takes the geometric median of those k

bath means. With the aggregated gradient, the parameter server performs a

gradient descent update. Notice that when the number of batches k = 1,

Algorithm 13: Byzantine Gradient Descent: Synchronous iteration
t ≥ 1

1 Parameter server:
2 Initialize: Let θ0 be an arbitrary point in Θ; group the m machines

into k batches, with the `-th batch being {(`− 1)b+ 1, . . . , `b} for
1 ≤ ` ≤ k.

1: Broadcast the current model · · ·
2: Wait to receive all the gradients · · ·
3: Robust Gradient Aggregation

Ak(gt(θt−1))← med

{
1

b

b∑
j=1

g
(j)
t (θt−1), · · · , 1

b

n∑
j=n−b+1

g
(j)
t (θt−1)

}
.

(5.8)

4: Update: θt ← θt−1 − η ×Ak
(
gt(θt−1)

)
;

Working machine j:

1: Compute the gradient ∇f̄ (j)(θt−1);
2: Send ∇f̄ (j)(θt−1) back to the parameter server;

the geometric median of means reduces to the average, i.e., A1{gt(θt−1)} =
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1
m

∑m
j=1 g

(j)
t (θt−1). When k = m, the median of means reduces to the ge-

ometric median Am{gt(θt−1)} = med{g(1)
t (θt−1), . . . , g

(m)
t (θt−1)}. Hence, the

geometric median of means can be viewed as an interpolation between the

mean and the geometric median. We assume q is known to the parameter

server, who can choose the number of batches accordingly. We will discuss

the choice of k after the statement of our main theorem. Informally, when q

is small, the parameter server chooses a relatively small k – still larger than

q. Small k is preferred since, based on the current analysis, it will lead to

smaller estimation error guarantee. As q increases, the parameter server is

forced to choose a larger k to prevent the system from being “controlled” by

Byzantine machines. Since k ≤ m, naturally there is an upper bound on q

that can be tolerated.

Our correctness proof of Algorithm 13 relies on the key intermediate result

that the aggregated gradient, as a function of θ defined in (5.8) for every θ,

converges uniformly to the true gradient function ∇F (θ).

5.3.2 Summary of Main Results

For ease of presentation, we present an informal statement of our main the-

orem. The precise statement and its proof are given in Section 5.4.3.

Theorem 26 (Informal). Suppose some mild technical assumptions hold and

2(1 + ε)q ≤ k ≤ m for any arbitrary but fixed constant ε > 0. Fix any

constant α ∈ (1/2(1 + ε), 1/2) and any δ > 0 such that δ ≤ α − q/k and

log(1/δ) = O(d). There exist universal constants c1, c2 > 0 such that if

N/k ≥ c1C
2
αd log(N/k), then with probability at least

1− exp(−kD((α− q/k)‖δ)),

the iterates {θt} given by Algorithm 13 with η = L/(2M2) satisfy

‖θt − θ∗‖ ≤

(
1

2
+

1

2

√
1− L2

4M2

)t

‖θ0 − θ∗‖+ c2Cα

√
dk

N
, ∀t ≥ 1. (5.9)

where D(δ′‖δ) = δ′ log δ′

δ
+ (1− δ′) log 1−δ′

1−δ denotes the binary divergence. In

particular, lim supt→∞ ‖θt − θ∗‖ ≤ c2Cα
√
dk/N .

Intuitively, the technical assumptions mentioned in Theorem 26 are placed
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on the sample gradients ∇f(Xi, θ) such that, with high probability, those

sample gradients ∇f(Xi, θ), as functions of θ, are good approximation of the

population gradient ∇F (θ).

As can be seen later, δ can be viewed as the expected fraction of batches

that are “statistically bad”; the larger the batch sample size, i.e., N/k, the

smaller δ. Since q/k is upper bounded by constant 1/2(1+ ε) – recalling that

ε is a fixed constant, for sufficiently large N/k, we will have δ ≤ α− q/k. In

addition to the “statistically bad” batches, up to q/k fraction of the batches

may contain Byzantine machines. In total, we might expect δ + q/k ≤ α

fraction of bad batches. Intuitively speaking, the Theorem 26 says that as

long as the total fraction of bad batches is less than 1/2, we are able to show

with high probability, our Byzantine Gradient Descent algorithm converges

exponentially fast.

Notice that if we drop the assumption log(1/δ) = O(d), our results still

hold; however, both of the two terms on the right-hand side of (5.9) may be

functions of δ. Additionally, the sample size at each batch, N/k, needed for

(5.9) to hold also depend on δ. This “dependency” is characterized explicitly

in the formal statement of our main theorem – Theorem 29.

Remark 6. In this remark, we discuss the choice of k.

• In the failure-free case with q = 0, k can be chosen to be 1 and thus the

geometric median of means reduces to simple averaging. The asymp-

totic estimation error rate is
√
d/N , which is the optimal estimation

error rate even in the centralized setting.

For q ≥ 1, we can also choose k to be 2(1 + ε)q for an arbitrarily small

but fixed constant ε > 0.

• Based on our analysis, the number of batches k in our Byzantine gra-

dient algorithm provides a trade-off between the statistical estimation

error and the Byzantine failures: With a larger k, our algorithm can

tolerate more Byzantine failures, but the estimation error gets larger.

However, this trade-off may be due to our analysis only. Thus, it may

not be fundamental.

• In terms of the probability mentioned in Theorem 26, it is not imme-

diately clear how does this probability vary with k. To see this, con-

sider the scenario when N, d, α and q are fixed: The smaller k, the
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larger N/k, the latter further implies a smaller δ. Because α − q/k is

lower bounded by a constant that is independent of k, D((α − q/k)‖δ)
is roughly increasing in k. Thus, it is not immediately clear whether

k · D((α − q/k)‖δ) is increasing in k or decreasing in k or neither

increasing nor decreasing.

Our algorithm is both computation and communication efficient. Under

the choice of k in Remark 6, the computation and communication cost of our

proposed algorithm can be summarized as follows. For estimation error con-

verging to c2

√
dq/N , O(logN) communication rounds are sufficient. In each

round, every working machine computes a gradient based on N/m local data

samples, which takes O(Nd/m) time steps. The parameter server computes

the geometric median of means of gradients, which takes O(md+qd log3(N)),

as the geometric median can be computed in O(qd log3(N)) [104]. In terms

of communication cost, in each round, every working machine transmits a

d-dimensional vector to the parameter server.

Application to Linear Regression

We illustrate our general results by applying them to the classical linear

regression problem. Let Xi = (wi, yi) ∈ Rd × R denote the input data and

define the risk function f(Xi, θ) = 1
2

(〈wi, θ〉 − yi)2 . For simplicity, we assume

that yi is indeed generated from a linear model:

yi = 〈wi, θ∗〉+ ζi,

where θ∗ is an unknown true model parameter, wi ∼ N(0, I) is the covariate

vector whose covariance matrix is assumed to be identity, and ζi ∼ N(0, 1)

is i.i.d. additive Gaussian noise independent of wi’s. Intuitively, the inner

product 〈wi, θ∗〉 can be viewed as some “measurement” of θ∗ – the signal;

and ζi is the additive noise.

The population risk minimization problem (5.1) is simply

min
θ

1

2
‖θ − θ∗‖2

2 +
1

2
,
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where

F (θ) , E [f(X, θ)] = E
[

1

2
(〈w, θ〉 − y)2

]
= E

[
1

2
(〈w, θ〉 − 〈w, θ∗〉 − ζ)2

]
=

1

2
‖θ − θ∗‖2

2 +
1

2
,

for which θ∗ is indeed the unique minimum. If the function F (·) can be com-

puted exactly, then θ∗ can be read from its expression directly. The standard

gradient descent method for minimizing F (·) is also straightforward. The

population gradient is ∇θF (θ) = θ− θ∗. It is easy to see that the population

risk ∇F (θ) is M -Lipschitz continuous with M = 1, and L-strongly convex

with L = 1. Hence, Assumption 6 is satisfied with M = L = 1; and the

stepsize η = L/(2M2) = 1/2.

In practice, unfortunately, since we do not know exactly the distribution

of the random input X, we can neither read θ∗ from the expression F (·) nor

compute the population gradient ∇F (θ) exactly. We are only able to approx-

imate the population risk F (·) or the population gradient ∇F (θ). Our focus

is the gradient approximation. In particular, for a given random sample,

the associated random gradient is given by ∇f(X, θ) = w〈w, θ − θ∗〉 − wζ,
where w ∼ N (0, I) and ζ ∼ N (0, 1) that is independent of w. We will show

later that those sample gradients satisfy the “mild technical assumptions”

mentioned in Theorem 26. Thus, according to Theorem 26, our Byzantine

Gradient Descent method can robustly solve the linear regression problem

exponentially fast with high probability – formally stated the following corol-

lary.

Corollary 8 (Linear regression). Under the aforementioned least-squares

model for linear regression, assume Θ ⊂ {θ : ‖θ − θ∗‖ ≤ r
√
d} for r > 0

such that log r = O(d log(N/k)). Suppose that 2(1 + ε)q ≤ k ≤ m. Fix any

α ∈ (q/k, 1/2) and any δ > 0 such that δ ≤ α − q/k and log(1/δ) = O(d),

there exist universal constants c1, c2 > 0 such that if N/k ≥ c1C
2
αd log(N/k).

Then with probability at least 1− exp(−kD((α− q/k) ‖δ)), the iterates {θt}
given by Algorithm 13 with η = 1/2 satisfy

‖θt − θ∗‖ ≤

(
1

2
+

√
3

4

)t

‖θ0 − θ∗‖+ c2Cα

√
dk

N
, ∀t ≥ 1.
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Note that in Corollary 8, we assume the “searching space” Θ belongs to

some range, which may grow with d and N/k. This assumption is rather

mild since in practice; we typically do have some prior knowledge about the

range of θ∗.

5.4 Main Results and Proofs

In this section, we present our main results and their proofs.

Recall that in Algorithm 13, the machines are grouped into k batches

beforehand. For each batch of machines 1 ≤ ` ≤ k, we define a function

Z` : Θ → Rd to be the difference between the average of the batch sample

gradient functions and the population gradient, i.e., ∀ θ ∈ Θ

Z`(θ) ,
1

b

`b∑
j=(`−1)b+1

∇f̄ (j)(θ)−∇F (θ)

=
k

N

`b∑
j=(`−1)b+1

∑
i∈Sj

∇f(Xi, θ)−∇F (θ), (5.10)

where the last equality follows from (5.3) and the fact that batch size b = m/k

and local data size |Sj| = N/m. It is easy to see that the functions Z`(·)’s are

independently and identically distributed. For any given positive precision

parameters ξ1 and ξ2 specified later, and α ∈ (0, 1/2), define a good event

Eα,ξ1,ξ2 ,

{
k∑
`=1

1{∀θ: Cα‖Z`(θ)‖≤ξ2‖θ−θ∗‖+ξ1} ≥ k(1− α) + q

}
. (5.11)

Informally speaking, on event Eα,ξ1,ξ2 , in at least k(1 − α) + q batches, the

average of the batch sample gradient functions is uniformly close to the pop-

ulation gradient function.

We show our convergence results of Algorithm 13 in two steps. The first

step is “deterministic”, showing that our Byzantine gradient descent algo-

rithm converges exponentially fast on good event Eα,ξ1,ξ2 . The second part is

“stochastic”, proving that this good event Eα,ξ1,ξ2 happens with high proba-

bility.
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5.4.1 Convergence of Byzantine Gradient Descent on Eα,ξ1,ξ2
We consider a fixed execution. Let Bt denote the set of Byzantine machines

at iteration t of the given execution, which could vary across iterations t.

Define a vector of functions gt(·) with respect to Bt as:

gt(θ) = (g
(1)
t (θ), . . . , g

(m)
t (θ)), ∀ θ

such that ∀ θ,

g
(j)
t (θ) =

∇f̄ (j)(θ) if j /∈ Bt
? o.w. ,

where ? is arbitrary3. That is, g
(j)
t (·) is the true gradient function f̄ (j)(·) if

machine j is not Byzantine at iteration t, and arbitrary otherwise. It is easy

to see that the definition of gt(·) is consistent with the definition of gt(θt−1)

in (5.5). Define Z̃t
`(·) for each θ as

Z̃`(θ) ,
1

b

`b∑
j=(`−1)b+1

g
(j)
t (θ)−∇F (θ). (5.12)

By definition of g
(j)
t (·), for any `-th batch such that

{b(`− 1) + 1, . . . , b`} ∩ Bt = ∅,

i.e., it does not contain any Byzantine machine at iteration t, it holds that

Z̃`(θ) = Z`(θ), ∀θ.

Lemma 16. On event Eα,ξ1,ξ2, for every iteration t ≥ 1, we have

‖Ak (gt(θ))−∇F (θ)‖ ≤ ξ2‖θ − θ∗‖+ ξ1, ∀θ ∈ Θ.

Proof. By definition of Ak in (5.8), for any fixed θ,

Ak(gt(θ)) = med

{
1

b

b∑
j=1

g
(j)
t (θ),

1

b

2b∑
j=b+1

g
(j)
t (θ), · · · , 1

b

m∑
j=m−b+1

g
(j)
t (θ)

}
3By “arbitrary” we mean that g

(j)
t (·) may not even be a function, and cannot be

specified.
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Since geometric median is invariant with translation, it follows that

Ak(gt(θ))−∇F (θ) = med
{
Z̃1(θ), · · · , Z̃m(θ)

}
.

On event Eα,ξ1,ξ2 , at least k(1 − α) + q of the k batches {Z` : 1 ≤ ` ≤ k}
satisfy Cα‖Z`(θ)‖ ≤ ξ2‖θ − θ∗‖+ ξ1 uniformly. Moreover, for Byzantine-free

batch `, it holds that Z̃`(·) = Z`(·). Hence, at least k(1−α) of the k received

batches {Z̃` : 1 ≤ ` ≤ k} satisfy Cα‖Z̃`(θ)‖ ≤ ξ2‖θ− θ∗‖+ ξ1 uniformly. The

conclusion readily follows from Lemma 15.

Convergence of Approximate Gradient Descent

Next, we show a convergence result of an approximate gradient descent,

which might be of independent interest. For any θ ∈ Θ, define a new θ′ as

θ′ = θ − η ×∇F (θ). (5.13)

We remark that the above update is one step of population gradient descent

given in (5.2).

Lemma 17. Suppose Assumption 6 holds. If we choose the step size η =

L/(2M2), then θ′ defined in (5.13) satisfies that

‖θ′ − θ∗‖ ≤
√

1− L2/(4M2)‖θ − θ∗‖. (5.14)

The proof of Lemma 17 is rather standard, and is presented in Section 5.5.1

for completeness. Suppose that for each t ≥ 1, we have access to gradient

function Gt(·), which satisfy the uniform deviation bound:

‖Gt(θ)−∇F (θ)‖ ≤ ξ1 + ξ2‖θ − θ∗‖, ∀θ, (5.15)

for two positive precision parameters ξ1, ξ2 that are independent of t. Then

we perform the following approximate gradient descent as a surrogate for

population gradient descent:

θt = θt−1 − η ×Gt(θt−1). (5.16)
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The following lemma establishes the convergence of the approximate gradient

descent.

Lemma 18. Suppose Assumption 6 holds, and choose η = L/(2M2). If

(5.15) holds for each t ≥ 1 and

ρ , 1−
√

1− L2/(4M2)− ξ2L/(2M
2) > 0,

then the iterates {θt} in (5.16) satisfy

‖θt − θ∗‖ ≤ (1− ρ)t ‖θ0 − θ∗‖+ ηξ1/ρ.

Remark 7. As it can be seen later, the precision parameter ξ2 can be chosen

to be a function of N/k such that ξ2 → 0 as N/k → ∞. Thus, there exists

ξ2 for ρ defined in Lemma 18 to be positive.

Proof of Lemma 18. Fix any t ≥ 1, we have

‖θt − θ∗‖ = ‖θt−1 − ηGt(θt−1)− θ∗‖

= ‖θt−1 − η∇F (θt−1)− θ∗ + η (∇F (θt−1)−Gt(θt−1))‖

≤‖θt−1 − η∇F (θt−1)− θ∗‖+ η ‖∇F (θt−1)−Gt(θt−1)‖ .

It follows from Lemma 17 that

‖θt−1 − η∇F (θt−1)− θ∗‖ ≤
√

1− L2/(4M2) ‖θt−1 − θ∗‖

and from (5.15) that

‖∇F (θt−1)−Gt(θt−1)‖ ≤ ξ1 + ξ2‖θt−1 − θ∗‖.

Hence,

‖θt − θ∗‖ ≤
(√

1− L2/(4M2) + ηξ2

)
‖θt−1 − θ∗‖2 + ηξ1.

A standard telescoping argument then yields that

‖θt − θ∗‖ ≤ (1− ρ)t ‖θ0 − θ∗‖+ ηξ1

t−1∑
τ=0

(1− ρ)τ

≤ (1− ρ)t ‖θ0 − θ∗‖+ ηξ1/ρ,
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where ρ = 1−
√

1− L2/(4M2)− ξ2L/(2M
2), and η = L/(2M2).

Convergence of Byzantine Gradient Descent on Good Event Eα,ξ1,ξ2

With Lemma 16 and the convergence of the approximate gradient descent

(Lemma 18), we show that Algorithm 13 converges exponentially fast on

good event Eα,ξ1,ξ2 .

Theorem 27. Suppose event Eα,ξ1,ξ2 holds and iterates {θt} are given by

Algorithm 13 with η = L/(2M2). If ρ = 1−
√

1− L2/(4M2)−ξ2L/(2M
2) > 0

as defined in Lemma 18, then

‖θt − θ∗‖ ≤ (1− ρ)t‖θ0 − θ∗‖+ ηξ1/ρ. (5.17)

Proof. In Algorithm 13, at iteration t, the parameter server updates the

model parameter θt−1 using the approximate gradient Ak (gt(θt−1)) – the

value of the approximate gradient function Ak (gt(·)) evaluated at θt−1. From

Lemma 16, we know that on event Eα,ξ1,ξ2

‖Ak (gt(θ))−∇F (θ)‖ ≤ ξ2‖θ − θ∗‖+ ξ1, ∀θ ∈ Θ.

The conclusion then follows from Lemma 18 by setting Gt(θ) to beAk (gt(θ)).

5.4.2 Bound Probability of Good Event Eα,ξ1,ξ2
Recall that for each batch ` for 1 ≤ ` ≤ k, Z` is defined in (5.10) w.r.t. the

data samples collectively kept by the machines in this batch. Thus, function

Z` is random. The following lemma gives a lower bound to the probability

of good event Eα,ξ1,ξ2 .

Lemma 19. Suppose for all 1 ≤ ` ≤ k, Z` satisfies

P {∀θ : Cα‖Z`(θ)‖ ≤ ξ2‖θ − θ∗‖+ ξ1} ≥ 1− δ (5.18)

for any α ∈ (q/k, 1/2) and 0 < δ ≤ α− q/k. Then

P {Eα,ξ1,ξ2} ≥ 1− e−kD(α−q/k‖δ). (5.19)
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Proof. Let T ∼ Binom(k, 1− δ). By assumption (5.18), the random variable

k∑
`=1

1{∀θ:Cα‖Z`(θ)‖2≤ξ2‖θ−θ∗‖+ξ1}

first-order stochastically dominates T , i.e.,

P

{
k∑
`=1

1{∀θ:Cα‖Z`(θ)‖2≤ξ2‖θ−θ∗‖+ξ1} ≥ k(1− α) + q

}
≥ P {T ≥ k(1− α) + q} .

(5.20)

By Chernoff’s bound for binomial distributions, the following holds:

P {T ≥ k(1− α) + q} ≥ 1− e−kD(α−q/k‖δ). (5.21)

Combining (5.20) and (5.21) together, we conclude (5.19).

It remains to show the uniform convergence of Z` as required by (5.18).

To this end, we need to impose a few technical assumptions that are rather

standard [105]. Recall that gradient ∇f(X, θ) is random as the input X

is random. We assume gradient ∇f(X, θ∗) is sub-exponential. The defini-

tion and some related concentration properties of sub-exponential random

variables are presented in Section 5.5.3 for completeness.

Assumption 7. There exist positive constants σ1 and α1 such that for any

unit vector v ∈ B, 〈∇f(X, θ∗), v〉 is sub-exponential with scaling parameters

σ1 and α1, i.e.,

sup
v∈B

E [exp (λ〈∇f(X, θ∗), v〉)] ≤ eσ
2
1λ

2/2, ∀|λ| ≤ 1

α1

,

where B denotes the unit sphere {θ : ‖θ‖2 = 1}.

Intuitively speaking, Assumption 7 is placed to ensure that, with high

probability, using the true sample gradient for individual batches, we are able

to “identify” the optimal model θ∗. That is, with Assumption 7, we are able

to bound the deviation of (1/n)
∑n

i=1∇f(Xi, θ
∗) from its mean ∇F (θ∗) = 0,

as shown in the following lemma.
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Lemma 20. Suppose Assumption 7 holds. For any δ ∈ (0, 1) and any posi-

tive integer n, let

∆1(n, d, δ, σ1) =
√

2σ1

√
d log 6 + log(3/δ)

n
. (5.22)

If ∆1(n, d, δ, σ1) ≤ σ2
1/α1, then

P

{∥∥∥∥∥ 1

n

n∑
i=1

∇f(Xi, θ
∗)−∇F (θ∗)

∥∥∥∥∥ ≥ 2∆1(n, d, δ, σ1)

}
≤ δ

3
.

Remark 8. By definition of ∆1(n, d, δ, σ1), for fixed δ and σ1, if d = o(n),

∆1(n, d, δ, σ1) is a non-increasing function of n. In particular,

∆1(n, d, δ, σ1) =
√

2σ1

√
d log 6 + log(3/δ)

n
→ 0 as n→∞.

Thus, there exists n for ∆1(n, d, δ, σ1) ≤ σ2
1/α1 to hold.

With a little abuse of notation, we write ∆1(n, d, δ, σ1) as ∆1 or ∆1(n) for

short when its meaning is clear from the context.

Proof of Lemma 20. Let V = {v1, . . . , vN1/2
} denote an 1

2
-cover of unit sphere

B. It is shown in [105, Lemma 5.2, Lemma 5.3] that logN1/2 ≤ d log 6, and∥∥∥∥∥ 1

n

n∑
i=1

∇f(Xi, θ
∗)−∇F (θ∗)

∥∥∥∥∥ ≤ 2 sup
v∈V

{
1

n

n∑
i=1

〈∇f(Xi, θ
∗)−∇F (θ∗), v〉

}
.

Note that since∇F (θ∗) = 0, it holds that∇f(Xi, θ
∗)−∇F (θ∗) = ∇f(Xi, θ

∗).

By Assumption 7 and the condition that ∆1 ≤ σ2
1/α1, it follows from concen-

tration inequalities for sub-exponential random variables given in Theorem

30 that, for v ∈ V

P

{
1

n

n∑
i=1

〈∇f(Xi, θ
∗)−∇F (θ∗), v〉 ≥ ∆1

}
≤ exp

(
−n∆2

1/(2σ
2
1)
)
.

Recall that in V contains at most 6d vectors. In view of the union bound, it
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further yields that

P

{
2 sup
v∈V

{
1

n

n∑
i=1

〈∇f(Xi, θ
∗)−∇F (θ∗), v〉

}
≥ 2∆1

}

≤
∑
v∈V

P

{
2

{
1

n

n∑
i=1

〈∇f(Xi, θ
∗)−∇F (θ∗), v〉

}
≥ 2∆1

}
≤ 6d exp

(
−n∆2

1/(2σ
2
1)
)

= exp
(
−n∆2

1/(2σ
2
1) + d log 6

)
.

Therefore,

P

{∥∥∥∥∥ 1

n

n∑
i=1

∇f(Xi, θ
∗)−∇F (θ∗)

∥∥∥∥∥ ≥ 2∆1

}

≤ P

{
2 sup
v∈V

{
1

n

n∑
i=1

〈∇f(Xi, θ
∗)−∇F (θ∗), v〉

}
≥ 2∆1

}
≤ exp

(
−n∆2

1/(2σ
2
1) + d log 6

)
.

The proof is complete.

In addition to the “identifiability” of the optimal θ∗ using sample gradients

∇f(X, θ∗), similar to the smoothness requirements of the population gradient

∇F (·) stated in Assumption 6, some smoothness properties (in stochastic

sense) of the sample gradients ∇f(X, ·) are also desired. Next, we define

gradient difference

h(x, θ) , ∇f(x, θ)−∇f(x, θ∗), (5.23)

which characterizes the deviation of random gradient∇f(x, θ) from∇f(x, θ∗).

Note that

E [h(X, θ)] = ∇F (θ)−∇F (θ∗) (5.24)

for each θ. The following assumptions ensure that for every θ, h(x, θ) nor-

malized by ‖θ − θ∗‖ is also sub-exponential.

Assumption 8. There exist positive constants σ2 and α2 such that for any

θ ∈ Θ with θ 6= θ∗ and unit vector v ∈ B, 〈h(X, θ)−E [h(X, θ)] , v〉/‖θ− θ∗‖

168



is sub-exponential with scaling parameters (σ2, α2), i.e.,

sup
θ∈Θ,v∈B

E
[
exp

(
λ〈h(X, θ)− E [h(X, θ)] , v〉

‖θ − θ∗‖

)]
≤ eσ

2
2λ

2/2, ∀|λ| ≤ 1

α2

.

The following lemma bounds the deviation of (1/n)
∑n

i=1 h(Xi, θ) from

E [h(X, θ)] for every θ ∈ Θ under Assumption 8. Its proof is similar to that

of Lemma 20 and thus is omitted.

Lemma 21. Suppose Assumption 8 holds and fix any θ ∈ Θ. Let

∆′1(n, d, δ, σ2) =
√

2σ2

√
d log 6 + log(3/δ)

n
. (5.25)

If ∆′1(n, d, δ, σ2) ≤ σ2
2/α2, then

P

{∥∥∥∥∥ 1

n

n∑
i=1

h(Xi, θ)− E [h(X, θ)]

∥∥∥∥∥ > 2∆′1(n, d, δ, σ2)‖θ − θ∗‖

}
≤ δ

3
.

Remark 9. Similar to ∆1(n, d, δ, σ2), there also exists n for ∆′1(n, d, δ, σ2) ≤
σ2

2/α2 to hold.

For ease of notation, we write ∆′1(n, d, δ, σ2) as ∆′1 or ∆′1(n) for short.

Assumption 7 and Assumption 8 can be potentially relaxed at an expense

of looser concentration bounds. Note that Assumption 8, roughly speak-

ing, only imposes some smoothness condition w. r. t. the optimal model

θ∗. To mimic the Lipschitz continuity of the sample gradients (in stochas-

tic sense), we impose the following assumption, which holds automatically if

we strengthen Assumption 8 by replacing θ∗ with an arbitrary θ′ such that

θ 6= θ′. In general, Assumption 9 is strictly weaker than the strengthened

version of Assumption 8.

Assumption 9. For any δ ∈ (0, 1), there exists an M ′ = M ′(n, δ) that is

non-increasing in n such that

P
{

sup
θ,θ′∈Θ:θ 6=θ′

‖ 1
n

∑n
i=1 (∇f(Xi, θ)−∇f(Xi, θ

′)) ‖
‖θ − θ′‖

≤M ′
}
≥ 1− δ

3
.

Assumption 7–Assumption 9 of the sample gradients can be viewed as the

corresponding stochastic version of Assumption 6 of the population gradient.
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The following lemma verifies that Assumption 7–Assumption 9 are satisfied

with appropriate parameters in the aforementioned linear regression example.

Lemma 22. Under the linear regression model, the sample gradient function

∇f(X, ·) satisfies

(1) Assumption 7 with σ1 =
√

2 and α1 =
√

2,

(2) Assumption 8 with σ2 =
√

8 and α2 = 8,

(3) and Assumption 9 with M ′(δ) = d+ 2
√
d log(4/δ) + 2 log(4/δ).

The proof of Lemma 22 can be found in Section 5.5.2.

Define ∆2 as follows.

∆2(n) = σ2

√
2

n

√
d log 18 + d log

M ∨M ′

σ2

+
1

2
d log

n

d
+ log

(
6σ2

2r
√
n

α2σ1δ

)
.

(5.26)

With Assumption 7–Assumption 9, we apply the celebrated ε-net argument

to prove the averaged random gradients (1/n)
∑n

i=1∇f(Xi, θ) uniformly con-

verges to ∇F (θ).

Proposition 10. Suppose Assumption 7 – Assumption 9 hold, and Θ ⊂ {θ :

‖θ − θ∗‖ ≤ r
√
d} for some positive parameter r. For any δ ∈ (0, 1) and

any integer n, recall ∆1 defined in (5.22) and define ∆2 as in (5.26). If

∆1 ≤ σ2
1/α1 and ∆2 ≤ σ2

2/α2, then

P

{
∀θ ∈ Θ :

∥∥∥∥∥ 1

n

n∑
i=1

∇f(Xi, θ)−∇F (θ)

∥∥∥∥∥ ≤ 8∆2‖θ − θ∗‖+ 4∆1

}
≥ 1− δ.

Proof. The proof is based on the classical ε-net argument. Let

τ =
α2σ1

2σ2
2

√
d

n
and `∗ = dr

√
d/τe.

Henceforth, for ease of exposition, we assume `∗ is an integer. For integers

1 ≤ ` ≤ `∗, define

Θ` , {θ : ‖θ − θ∗‖ ≤ τ`} .

For a given `, let θ1, . . . , θNε` be an ε`-cover of Θ`, where ε` is given by

ε` =
σ2τ`

M ∨M ′

√
d

n
,
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where M∨M ′ = max{M,M ′}. By [105, Lemma 5.2], logNε` ≤ d log(3τ`/ε`).

Fix any θ ∈ Θ`. There exists a 1 ≤ j` ≤ Nε` such that ‖θ − θj`‖2 ≤ ε`. By

triangle’s inequality,∥∥∥∥∥ 1

n

n∑
i=1

∇f(Xi, θ)−∇F (θ)

∥∥∥∥∥ ≤ ‖∇F (θ)−∇F (θj`)‖

+

∥∥∥∥∥ 1

n

n∑
i=1

(∇f(Xi, θ)−∇f(Xi, θj`))

∥∥∥∥∥
+

∥∥∥∥∥ 1

n

n∑
i=1

∇f(Xi, θj`)−∇F (θj`)

∥∥∥∥∥ . (5.27)

In view of Assumption 6,

‖∇F (θ)−∇F (θj`)‖ ≤M‖θ − θj`‖ ≤Mε`, (5.28)

where the last inequality holds because by the construction of ε-net, and the

fact that for a given θ, θj` is chosen in such a way that ‖θ − θj`‖ ≤ ε`.

Define event

E1 =

{
sup

θ,θ′∈Θ:θ 6=θ′

‖ 1
n

∑n
i=1 (∇f(Xi, θ)−∇f(Xi, θ

′)) ‖
‖θ − θ′‖

≤M ′
}
.

By Assumption 9, we have P {E1} ≥ 1− δ/3. On event E1, it holds that

sup
θ∈Θ

∥∥∥∥∥ 1

n

n∑
i=1

(∇f(Xi, θ)−∇f(Xi, θj`))

∥∥∥∥∥ ≤M ′ε`. (5.29)

By triangle’s inequality again,∥∥∥∥∥ 1

n

n∑
i=1

(∇f(Xi, θj`)−∇F (θj`))

∥∥∥∥∥ ≤
∥∥∥∥∥ 1

n

n∑
i=1

(∇f(Xi, θ
∗)−∇F (θ∗))

∥∥∥∥∥
+

∥∥∥∥∥ 1

n

n∑
i=1

(∇f(Xi, θj`)−∇f(Xi, θ
∗))− (∇F (θj`)−∇F (θ∗))

∥∥∥∥∥
≤

∥∥∥∥∥ 1

n

n∑
i=1

(∇f(Xi, θ
∗)−∇F (θ∗))

∥∥∥∥∥+

∥∥∥∥∥ 1

n

n∑
i=1

h(Xi, θj`)− E [h(X, θj`)]

∥∥∥∥∥ ,
(5.30)
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where function h(x, ·) is defined in (5.23). Define event

E2 =

{∥∥∥∥∥ 1

n

n∑
i=1

∇f(Xi, θ
∗)−∇F (θ∗)

∥∥∥∥∥ ≤ 2∆1

}

and event

F` =

{
sup

1≤j≤Nε

∥∥∥∥∥ 1

n

n∑
i=1

h(Xi, θj)− E [h(X, θj)]

∥∥∥∥∥ ≤ 2τ`∆2

}
,

where ∆2 is defined in (5.26) and satisfies

∆2 =
√

2σ2

√
d log 6 + d log(3τ`/ε`) + log(3`∗/δ)

n
. (5.31)

In (5.26), note that ∆2 is independent of `, due to the choice of ε` made

earlier. It is easy to check that (5.26) and (5.31).

Since ∆1 ≤ σ2
1/α1, it follows from Lemma 20 that P {E2} ≥ 1− δ/3. Simi-

larly, since ∆2 ≤ σ2
2/α2, by Lemma 21, P {F`} ≥ 1− δ/(3`∗). In particular,

P {F c` } = P

{
sup

1≤j≤Nε`

∥∥∥∥∥ 1

n

n∑
i=1

h(Xi, θj)− E [h(X, θj)]

∥∥∥∥∥ > 2τ`∆2

}

= P

{
∃1≤j≤Nε`

∥∥∥∥∥ 1

n

n∑
i=1

h(Xi, θj)− E [h(X, θj)]

∥∥∥∥∥ > 2τ`∆2

}

≤
Nε∑̀
j=1

P

{∥∥∥∥∥ 1

n

n∑
i=1

h(Xi, θj)− E [h(X, θj)]

∥∥∥∥∥ > 2τ`∆2

}
. (5.32)

For each 1 ≤ j ≤ Nε` , by Lemma 21, since θj ∈ Θ`, it holds that ‖θj − θ∗‖ ≤
τ`. Thus, we have

P

{∥∥∥∥∥ 1

n

n∑
i=1

h(Xi, θj)− E [h(X, θj)]

∥∥∥∥∥ > 2τ`∆2

}

≤ P

{∥∥∥∥∥ 1

n

n∑
i=1

h(Xi, θj)− E [h(X, θj)]

∥∥∥∥∥ > 2∆2‖θj − θ∗‖

}

≤ δ

3`∗
1(

3τ`
ε`

)d , (5.33)

where the last inequality holds due to the choice of ∆2(n) in (5.31). With
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(5.33), we bound (5.32) as follows:

P {F c` } ≤
Nε∑̀
j=1

P

{∥∥∥∥∥ 1

n

n∑
i=1

h(Xi, θj)− E [h(X, θj)]

∥∥∥∥∥ > 2τ`∆2

}

≤ δ

3`∗
1(

3τ`
ε`

)d |Nε` |

=
δ

3`∗
1(

3τ`
ε`

)d (3τ`

ε`

)d
=

δ

3`∗
.

Therefore, we have P {F`} ≥ 1− δ/(3`∗).
In conclusion, by combining (5.27), (5.28), (5.29) and (5.30), it follows

that on event E1 ∩ E2 ∩ F`,

sup
θ∈Θ`

∥∥∥∥∥ 1

n

n∑
i=1

∇f(Xi, θ)−∇F (θ)

∥∥∥∥∥ ≤ (M+M ′)ε`+2∆1+2∆2τ` ≤ 4∆2τ`+2∆1,

where the last inequality holds due to (M ∨M ′)ε` ≤ ∆2τ`. Let

E = E1 ∩ E2 ∩
(
∩`∗`=1F`

)
.

It follows from the union bound, P {E} ≥ 1 − δ. Moreover, suppose event E
holds. Then for all θ ∈ Θ`∗ , there exists an 1 ≤ ` ≤ `∗ such that (`− 1)τ <

‖θ − θ∗‖ ≤ `τ . If ` ≥ 2, then∥∥∥∥∥ 1

n

n∑
i=1

∇f(Xi, θ)−∇F (θ)

∥∥∥∥∥ ≤ 4∆2τ`+ 2∆1 ≤ 8∆2‖θ − θ∗‖+ 2∆1.

If ` = 1, then∥∥∥∥∥ 1

n

n∑
i=1

∇f(Xi, θ)−∇F (θ)

∥∥∥∥∥ ≤ 4∆2τ + 2∆1 ≤ 4∆1,

where the last inequality follows from our choice of τ and the assumption

that ∆2 ≤ σ2
2/α2 and ∆1 ≥ σ1

√
d/n. In conclusion, on event E ,

sup
θ∈Θ`∗

∥∥∥∥∥ 1

n

n∑
i=1

∇f(Xi, θ)−∇F (θ)

∥∥∥∥∥ ≤ 4∆1 + 8∆2‖θ − θ∗‖.
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The proposition follows by the assumption that Θ ⊂ Θ`∗ .

Theorem 28. Suppose Assumption 7 – Assumption 9 hold, and Θ ⊂ {θ :

‖θ − θ∗‖ ≤ r
√
d} for some positive parameter r. For any δ ∈ (0, 1) and any

integer n, define ∆1(n) and ∆2(n) as in (5.22) and (5.26), respectively. If

∆1(N/k) ≤ σ2
1/α1 and ∆2(N/k) ≤ σ2

2/α2, then for every 1 ≤ ` ≤ k,

P {∀θ ∈ Θ : Cα‖Z`(θ)‖ ≤ ξ2‖θ − θ∗‖+ ξ1} ≥ 1− δ,

where ξ1 = 4Cα ×∆1(N/k) and ξ2 = 8Cα ×∆2(N/k).

Proof. Recall that Z` is defined in (5.10). Note that for each 1 ≤ ` ≤ k, Z` has

the same distribution as the average of N/k i.i.d. random gradients f(Xi, θ)

subtracted by ∇F (θ). Hence, Theorem 28 readily follows from Proposition

10.

Remark 10. Suppose σ1, α1, σ2, α2 are all of Θ(1), log(M∨M ′) = O(log d),

log(1/δ) = O(d) and log r = O(d log(N/k)). In this case, Theorem 28 implies

that if N/k & C2
αd log(N/k), then

ξ1 . Cα
√
kd/N and ξ2 . Cα

√
kd log(N/k)/N.

In particular, those assumptions are indeed satisfied under the linear regres-

sion model as shown in Lemma 22.

5.4.3 Main Theorem

By combining Theorem 27, Lemma 19, and Theorem 28, we prove the main

theorem.

Theorem 29. Suppose Assumption 6 – Assumption 9 hold, and Θ ⊂ {θ :

‖θ− θ∗‖ ≤ r
√
d} for some positive parameter r. Assume 2(1 + ε)q ≤ k ≤ m.

Fix any constant α ∈ (q/k, 1/2) and any δ > 0 such that δ ≤ α− q/k. If

∆1(N/k) ≤ σ2
1/α1, ∆2(N/k) ≤ σ2

2/α2

and ρ = 1−
√

1− L2/(4M2)− ξ2L/(2M
2) > 0
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for ξ2 = 8Cα ×∆2(N/k), then with probability at least

1− exp(−kD(α− q/k‖δ)),

the iterates {θt} given by Algorithm 13 with η = L/(2M2) satisfy

‖θt − θ∗‖ ≤ (1− ρ)t ‖θ0 − θ∗‖+ ηξ1/ρ, ∀t ≥ 1,

where ξ1 = 4Cα ×∆1(N/k).

Under certain conditions, we are able to further bound ξ1 and ξ2. Next we

present a formal statement of Theorem 26; it readily follows from Theorem

29 as a corollary.

Corollary 9. Suppose that Assumption 6 – Assumption 9 hold such that L,

M , σ1, α1, σ2, α2 are all of Θ(1), d = o( N/k
logN/k

) and logM ′ = O(log d).

Assume that Θ ⊂ {θ : ‖θ − θ∗‖ ≤ r
√
d} for some positive parameter r such

that log(r) = O(d log(N/k)), and 2(1 + ε)q ≤ k ≤ m. Fix any α ∈ (q/k, 1/2)

and any δ > 0 such that δ ≤ α − q/k and log(1/δ) = O(d). There exist

universal positive constants c1, c2 such that if N/k ≥ c1C
2
αd log(N/k), then

with probability at least 1− exp(−kD(α− q/k‖δ)), the iterates {θt} given by

Algorithm 13 with η = L/(2M2) satisfy

‖θt − θ∗‖ ≤

(
1

2
+

1

2

√
1− L2

4M2

)t

‖θ0 − θ∗‖+ c2

√
dk

N
, ∀t ≥ 1.

Proof. Recall from (5.22) that

∆1(N/k, d, δ, σ1) =
√

2σ1

√
d log 6 + log(3/δ)

N/k
.

When σ1 = Θ(1) and log(1/δ) = O(d), it holds that ∆1(N/k) = Θ
(√

kd/N
)

.

Similarly, we have ∆2(N/k) = Θ

(√
kd log(N/k)

N

)
. Both ∆1 and ∆2 go to zero

as N/k goes to infinity. Hence, there exists an universal positive constant

c1 such that for all N/k ≥ c1C
2
αd log(N/k), it holds that ∆1(N/k) ≤ σ2

1/α1,

175



∆2(N/k) ≤ σ2
2/α2, and

∆2(N/k) ≤ M2

4CαL

(
1−

√
1− L2/(4M2)

)
. (5.34)

So, for ξ2 = 4Cα ×∆2(N/k),

ρ = 1−
√

1− L2/(4M2)− ξ2L/(2M
2) ≥ 1

2
− 1

2

√
1− L2/(4M2) > 0.

Recall that η = L/(2M2). The term ηξ1/ρ can be bounded as follows:

ηξ1/ρ =
L/(2M2)4Cα∆1(N/k)

ρ
≤ L/(2M2)4Cα∆1(N/k)

1
2
− 1

2

√
1− L2/(4M2)

≤ c2

√
dk

N
,

where c2 is some universal constant.

Hence, the conclusion readily follows from Theorem 29.

5.5 Additional Proofs

5.5.1 Proof of Lemma 17

Proof.

‖θ′ − θ∗‖2 = ‖θ − θ∗ − η∇F (θ)‖2 by (5.13)

= ‖θ − θ∗ − η (∇F (θ)−∇F (θ∗))‖2 since ∇F (θ∗) = 0

= ‖θ − θ∗‖2 + η2 ‖∇F (θ)−∇F (θ∗)‖2

− 2η 〈θ − θ∗,∇F (θ)−∇F (θ∗)〉 .

By Assumption 6, we have

‖∇F (θ)−∇F (θ∗)‖ ≤M‖θ − θ∗‖,

and

F (θ) ≥ F (θ∗) + 〈∇F (θ∗), θ − θ∗〉+
L

2
‖θ − θ∗‖2,

and

F (θ∗) ≥ F (θ) + 〈∇F (θ), θ∗ − θ〉 .
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Summing up the last two displayed equations yields that

0 ≥ 〈∇F (θ)−∇F (θ∗), θ∗ − θ〉+
L

2
‖θ − θ∗‖2.

Therefore,

‖θ′ − θ∗‖2 ≤
(
1 + η2M2 − ηL

)
‖θ − θ∗‖2 .

The conclusion follows by the choosing η = L/2M2.

5.5.2 Proofs for Linear Regression Example

Proof of Lemma 22. We first check Assumption 7

Recall that ∇f(X, θ) = w〈w, θ − θ∗〉 − wζ, where w ∼ N (0, I) and ζ ∼
N (0, 1) is independent of w. Hence, ∇f(X, θ∗) = −wζ. It follows that for

any v in unit sphere B,

〈∇f(X, θ∗), v〉 = −ζ 〈w, v〉 .

Because w ∼ N (0, I) and are independent of ζ, it holds that 〈w, v〉 ∼ N (0, 1)

and is independent of ζ. Thus, to compute E [exp (−λζ 〈w, v〉)], we can use

the standard conditioning argument. In particular, for λ2 < 1,

E [exp (λ 〈∇f(X, θ∗), v〉)] = E [exp (−λζ 〈w, v〉)]

= E [E [exp (−λy 〈w, v〉) |ζ = y]] , (5.35)

where the expectation of E [exp (−λy 〈w, v〉) |ζ = y] is taken over the condi-

tional distribution of 〈w, v〉 conditioning on ζ being y. Since 〈w, v〉 and ζ are

independent of each other, the conditional distribution of 〈w, v〉 w. r. t. ζ is

the same as the unconditional distribution of 〈w, v〉, which is a Gaussian dis-

tribution. Thus, we can apply the moment generating function of Gaussian

distribution to get

E [exp (−λy 〈w, v〉) |ζ = y] = exp
(
λ2y2/2

)
.
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Then, the right-hand side of (5.35) becomes

E [exp (λ 〈∇f(X, θ∗), v〉)] = E [E [exp (−λy 〈w, v〉) |ζ = y]]

= E
[
exp

(
λ2ζ2/2

)]
(a)
= (1− λ2)−1/2, (5.36)

where equality (a) follows from the moment generating function of χ2 distri-

bution, i.e.,

E
[
exp

(
tζ2
)]

= (1− 2t)−1/2 for t < 1/2.

Using the fact that 1− λ2 ≥ e−2λ2 for λ2 ≤ 1/2, it follows that

E [exp (λ 〈∇f(X, θ), v〉)] ≤ eλ
2

, ∀|λ| ≤ 1√
2
.

Thus Assumption 7 holds with σ1 =
√

2 and α1 =
√

2.

Next, we verify Assumption 9. Note that ∇2f(X, θ) = ww> and hence

it suffices to show that

P

{∥∥∥∥∥ 1

n

n∑
i=1

∇2f(Xi, θ)

∥∥∥∥∥ ≤M ′

}
= P

{∥∥∥∥∥ 1

n

n∑
i=1

wiw
>
i

∥∥∥∥∥ ≤M ′

}
≥ 1− δ

3
,

for some M ′ depending on n, d, and δ.

Let W = [w1, w2, . . . , wn] denote the d×n matrix whose columns are given

by wi’s. Then
∑n

i=1 wiw
>
i = WW>. Also, the spectral norm of WW> equals

‖W‖2. Therefore,

P

{∥∥∥∥∥ 1

n

n∑
i=1

wiw
>
i

∥∥∥∥∥ ≤M ′

}
= P

{
‖W‖ ≤

√
nM ′

}
.

Note that W is an d× n matrix with i.i.d. standard Gaussian entries. Stan-

dard Gaussian matrix concentration inequality (see, e.g., [105, Corollary

5.35]) states that for every t ≥ 0,

P
{
‖W‖ ≤

√
n+
√
d+ t

}
≥ 1− exp(−t2/2).
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Plugging t =
√

2 log(4/δ) and setting

M ′ =
1

n

(√
n+
√
d+

√
2 log(4/δ)

)2

complete the proof.

Finally, we verify Assumption 8. Recall that the gradient difference h(X, θ)

is given by h(X, θ) = w〈w, θ − θ∗〉, and E [h(X, θ)] = θ − θ∗. It follows that

for any vector v in unit sphere B,

〈h(X, θ)− E [h(X, θ)] , v〉 = 〈w, θ − θ∗〉〈w, v〉 − 〈θ − θ∗, v〉.

For a fixed θ ∈ Θ with θ 6= θ∗ and let τ = ‖θ − θ∗‖ > 0. Then we have the

following orthogonal decomposition: θ−θ∗ =
√
γv+

√
ηv⊥, where γ+η = τ 2,

and v⊥ denote an vector perpendicular to v. It follows that

〈w, θ − θ∗〉〈w, v〉 − 〈θ − θ∗, v〉 =
√
γ〈w, v〉2 −√γ +

√
η〈w, v⊥〉〈w, v〉.

It is easy to see that random variables 〈w, v⊥〉 ∼ N (0, 1) and 〈w, v〉 ∼ N (0, 1)

are jointly Gaussian. In addition, we have

E [〈w, v⊥〉〈w, v〉] = E
[
v>⊥ww

>v
]

= v>⊥E
[
ww>

]
v = v>⊥Iv = 0.

Thus, 〈w, v⊥〉 ∼ N (0, 1) and 〈w, v〉 ∼ N (0, 1) are mutually independent.

For any λ with λ
√
γ < 1/4 and λ2η < 1/4,

E [exp (λ〈h(X, θ)− E [h(X, θ)] , v〉)]

= E
[
exp

(
λ
√
γ
(
〈w, v〉2 − 1

)
+ λ
√
η〈w, v⊥〉〈w, v〉

)]
≤
√
E
[
e2λ
√
γ(〈w,v〉2−1)

]
E
[
e2λ
√
η〈w,v⊥〉〈w,v〉

]
= e−λ

√
γ
√

E
[
e2λ
√
γ(〈w,v〉2)

]√
E
[
e2λ
√
η〈w,v⊥〉〈w,v〉

]
= e−λ

√
γ (1− 4λ

√
γ)−1/4 (1− 4λ2η

)−1/4
,

where the first inequality holds due to Cauchy-Schwartz’s inequality, and the

last equality follows by plugging in the moment generating functions for χ2

distributions as well as using the conditioning argument that is similar to

the derivation of (5.35).
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Using the fact that e−t/
√

1− 2t ≤ e2t2 for |t| ≤ 1/4 and 1 − t ≥ e−4t for

0 ≤ t ≤ 1/2 , it follows that for λ2 ≤ 1/(64τ 2),

E [exp (λ〈h(X, θ)− E [h(X, θ)] , v〉)] ≤ exp
(
4λ2(γ + η)

)
≤ exp

(
4λ2τ 2

)
.

Hence, Assumption 8 holds with σ2 =
√

8 and α2 = 8.

5.5.3 Concentration Inequality for Sub-exponential Random
Variables

Definition 19 (Sub-exponential). Random variable X with mean µ is sub-

exponential if ∃ ν > 0 and α > 0 such that

E [exp (λ(X − µ))] ≤ exp

(
ν2λ2

2

)
, ∀|λ| ≤ 1

α
.

Theorem 30. If X1, . . . , Xn are independent random variables where Xi’s

are sub-exponential with scaling parameters (νi, αi) and mean µi, then
∑n

i=1Xi

is sub-exponential with scaling parameters (ν∗, α∗), where ν2
∗ =

∑n
i=1 ν

2
i and

α∗ = max1≤i≤nαi. Moreover,

P

{
n∑
i=1

(Xi − µi) ≥ t

}
≤

exp (−t2/(2ν2
∗)) if 0 ≤ t ≤ ν2

∗/α∗

exp (−t/(2α∗)) o.w.
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CHAPTER 6

SUMMARY AND FUTURE DIRECTIONS

6.1 Dissertation Summary

There are many different descriptions of distributed systems, such as the

swarm of drones, datacenters, manufactory plants, etc. In this dissertation,

both peer to peer model (multi-agent network) and client-server model were

explored. Our goal is to develop, via the concrete problems such as reaching

consensus, multi-agent optimization, distributed hypothesis testing, and sta-

tistical learning, approaches for charactering the fundamental limits of the

system’s performance in the presence of malicious components, and to design

efficient algorithms with optimal or near optimal performance.

We started the dissertation with investigating the consensus problem (Chap-

ter 2), where a collection of networked processes/agents interact with each

other using simple coordination rules to aggregate, in a distributed fashion,

the scattered information.

Reaching consensus The existing work assume either local communica-

tion or full message forwarding. We addressed the impact of the number

of hops allowed in a transmission on the computability of reaching consen-

sus. Specifically, we assumed that in each iteration the processors can only

communicate with other processors that are up to ` hops away, where ` is a

positive integer. For a given `, we identified a necessary and sufficient condi-

tion on the network structure for the existence of correct iterative algorithms

that achieve asymptotic consensus in the presence of Byzantine agents. Our

results bridged the above two lines of literature. In particular, our tight con-

dition generalized the tight condition identified in existing work for ` = 1,

i.e., local communication. For ` ≥ `∗, where `∗ is the length of a longest

cycle-free path in the given network, our condition is equivalent to the tight
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conditions obtained for full message forwarding communication.

Following the consensus chapter, we studied two lines of research: Consensus-

based multi-agent optimization (Chapter 3) and consensus-based distributed

hypothesis testing (Chapter 4). In both of these chapters, we mainly focused

on the family of algorithms in which the agents/processes interact with each

other using the simple coordination rules that are similar to the one discussed

in Chapter 2.

Consensus-Based Multi-Agent Optimization We first showed that

when there exists an unknown agent that may be compromised and behave

maliciously, it is impossible to minimize

1

|N |
∑
i∈N

hi,

where N is the unknown set of good agents. One important implication of

the above impossibility result is, it is impossible to solve the “empirical risk

minimization” problem exactly, when the training data samples are scattered

over the entire network. Specifically, it is impossible to assign equal weights

to the data collected by all the good agents.

In this dissertation, we characterized the performance degradation caused

by the existence of malicious agents, and designed efficient algorithms that

can achieve the optimal (the best possible) performance.

Consensus-Based Distributed Hypothesis Testing Bayesian learning

approaches have been well-studied. However, these methods may only work

when all the networked agents are failure-free – cooperative. This is because

when some of the agents become adversarial and behave arbitrarily, the prob-

lem itself may not be described as a fully probabilistic problem. As a result

of this, Bayesian approaches in the presence of Byzantine agents may not

even be “well-defined”.

We followed the non-Bayesian learning framework proposed by Jadbabaie

et al. [11] (which is originally proposed for the failure-free setting) that com-

bines local Bayesian learning with consensus. This dissertation addressed

the problem of developing distributed learning algorithms that are robust to
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adversarial attacks. We proposed the first Byzantine-resilient learning algo-

rithm [12], and characterized tight network identifiability condition in [13]

– the extended version of [12]. At first glance, our learning rule is counter-

intuitive: by applying the cumulative likelihood, the “old information” con-

tained in the previous signals is used again and again in updating local pseudo

beliefs. It turns out that this learning rule enables us to deal with the de-

pendence between the pseudo beliefs and the effective message propagation,

which is rather crucial in our adversarial attacks setting.

In the subsequent chapter (Chapter 5), observing the trends in collabora-

tive machine learning (mobile + cloud computing), we explored the problem

of performing distributed machine learning in the adversarial setting. One

key distinction of the distributed system assumed in Chapter 5 from the one

discussed in Chapters 2, 3 and 4 is the existence of a parameter server used

for the inter-agent coordination.

Distributed Statistical Machine Learning in Adversarial Settings

In the distributed machine learning, we assumed the system consists of a

parameter server and a collection of working clients – a typical distributed

machine learning model. Due to the existence of a “centralized ” server,

working clients do not have to run consensus iterates for sharing the infor-

mation.

We focused on the security problem faced by Google’s Federated Learning

– a new distributed machine learning paradigm initialized by Google. We

developed a new iterative distributed machine learning algorithm that is

able to (1) tolerate Byzantine failures, (2) accurately learn a highly complex

model with low local data volume, and (3) converge exponentially fast using

logarithmic communication rounds.

6.2 Future Directions

Implementation In addition to extending and generalizing the results

contained in this dissertation, we also would like to explore and improve the

practical performance of the adversary-resilient algorithms proposed here.

183



For example, for the statistical machine learning problem, we would like to

test its real performance and modify our algorithms accordingly.

Game-Theoretic Model This dissertation mainly focuses on the Byzan-

tine fault model, where some unknown subset of agents may be malicious

and behave arbitrarily. The goal of the malicious agents is to create more

obstacles for the system to achieve the system’s goal. One direction that we

would like to explore is the game-theoretic setup. For example, we might

have two groups of agents located in the same multi-agent network. One

group of agents mimics the roles of the Byzantine agents in the dissertation:

they may be located arbitrarily in the network and can collaborate with each

other. The good agents do not know the identity of the other agents, but

need to collaborate with the good agents to solve some optimization problem.

The bad agents may want to interrupt the collaboration to have the good

agents output a bad estimator.
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