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Abstract

A near-wall plasma and material surface form a volatile region involving surface erosion, impurity

ionization, and redeposition, creating a far-from-equilibrium system of mutually interacting plasma

and impurity species. As impurity recycling is expected to play a major role in the long-term

performance of plasma-facing components in magnetic fusion devices, modeling of the plasma-

surface interface is required to predict the behavior of both the material surface and the near-wall

plasma. In this work, a method of simulating plasma-material interactions by dynamically coupling

a continuum Boltzmann plasma model to a Monte-Carlo surface model is presented. The model

is based on a multi-species Boltzmann solver for the plasma using finite difference methods. Von

Neumann stability analysis of the Runge-Kutta time discretization with upwind-biased numerical

schemes are detailed up to fourth-order accuracy, and the errors associated with each scheme are

quantified. A modification to the classical binary-collision approximation code TRIDYN is utilized

to model the surface, which was treated as a boundary condition to the plasma model.

The Boltzmann solver calculates the ion energy-angle distribution and density of ions striking

the surface that are needed as input to the BCA code, and density estimation is used to reconstruct

a velocity distribution to be passed back to the Boltzmann solver. Both plasma ions and impurities

are treated as Boltzmann kinetic species, allowing high resolution even at very disparate densities,

particle fluxes, drift velocities, and energy fluxes. The plasma model is shown to be capable of

resolving features of Landau damping with matching theoretical and calculated damping rates of

0.1534, and the two-stream instability is shown to have an energy peak at 18 tωp. Convergence of

the plasma sheath problem is established utilizing the fourth-order upwind finite difference method.

Numerical density estimation techniques are applied to construct velocity distributions from dis-

crete data samples provided by TRIDYN, and a sputtered particle sample size of 1000 is shown

to constrain the mean integrated squared error of the density-estimated velocity distribution to
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O(10−1). As a proof-of-concept of the coupling method, an example calculation of a helium plasma

facing a beryllium wall is reported in both unmagnetized and magnetized conditions, recording the

evolution of the phase spaces of ions, neutrals, and material impurities in the near-wall region at

nominal ITER conditions.

ii



To my parents, for everything.

ii



Acknowledgements

The list of people I should thank for helping me get this far would be of comparable length to this

thesis, so for the sake of brevity I will only name a few.

I would first like to thank my parents, Martin and Nancy, for encouraging and supporting every

interest I have ever had to the best of their abilities. Their patience, support, and love is the only

reason I am here today. I also need to thank my brother, Noah, for being my confidant, and for

pushing me forward when I need encouragement. I am lucky to have such a supportive and close-

knit extended family; they are far too numerous to include, but I am indebted to and thankful for

all of them.

My advisor, Professor Davide Curreli, is an amazing teacher and mentor. He has consistently

pushed me to improve every aspect of my work, and his continued belief and trust does not go

unnoticed. I appreciate the opportunity and guidance he has given me more than I can express in

words. I would also like to thank Professor Rizwan Uddin for his input as a part of this Master’s

committee. Special thanks goes to my colleague Rinat, for all of his help on the work that went

into this thesis.

It would be remiss of me to ignore my friends: Jim and Kelley, for blatantly ignoring my

asocial tendencies and for being better friends than I ever thought I deserved; Gianluca, for being

my (second) brother; Rachael and Ryland, for being a part of my life; and to all graduate students

that I share my time with, for keeping me sane (and for the steady supply of coffee).

This thesis would not have been possible without funding through the Scientific Discovery

through Advanced Computing (SciDAC) project on Plasma-Surface Interactions, under Award

No. DE-SC00-08875.

iii



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Plasma-Material Interactions in Magnetic Fusion Devices . . . . . . . . . . . . . . . 1
1.2 Plasma and Surface Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2 A Boltzmann-Poisson Model of the Plasma–Material Interface . . . . 7
2.1 Transport Equation for Plasma-Material System . . . . . . . . . . . . . . . . . . . . 7
2.2 Kinetic Plasma Collision Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Region II - Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Electronic Stopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Nuclear Stopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 Interaction Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Chapter 3 Discretization of the Boltzmann-Poisson problem using Continuum
Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1 Finite Difference Treatment of the Boltzmann Equation . . . . . . . . . . . . . . . . 21

3.1.1 Spatial Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 Time discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.3 Operator Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.1 First Order Upwind Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Second Order Upwind Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.3 Third Order Upwind Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.4 Fourth Order Upwind Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.5 Stability Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.1 1D Advection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 2D Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Numerical Test of a Vlasov-Poisson Plasma . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.1 Landau Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.2 Two-Stream Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

iv



3.5 Plasma Sheath Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5.1 Near-Wall Plasma Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5.2 Source Terms and the Collision Integral . . . . . . . . . . . . . . . . . . . . . 54
3.5.3 Numerical Results and Convergence Analysis . . . . . . . . . . . . . . . . . . 55

Chapter 4 Modeling of Plasma-Material Interactions by Dynamically Coupling
Boltzmann and BCA Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.1 Estimation of Density Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.1 Density Estimation of a Random Sample . . . . . . . . . . . . . . . . . . . . 61
4.1.2 Gaussian Mixture Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.1.3 Kernel Density Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.1.4 Discrepancy Measurements: MISE and Relative Entropy . . . . . . . . . . . . 66

4.2 Multivariate Density Estimation and Error Analysis . . . . . . . . . . . . . . . . . . 67
4.2.1 Density Estimation: Python implementations . . . . . . . . . . . . . . . . . . 67
4.2.2 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2.3 Computational Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Application to TRIDYN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.1 TRIDYN Surface Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.2 Method Selection Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.3 TRIDYN Density Estimate Error Calculation . . . . . . . . . . . . . . . . . . 78
4.3.4 Method Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 Boltzmann-BCA Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4.1 TRIDYN Input from Boltzmann Model . . . . . . . . . . . . . . . . . . . . . 82
4.4.2 Boltzmann Input from TRIDYN . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Coupled Boltzmann-BCA Simulations of Plasma-Material Interactions . . . . . . . . 84
4.5.1 1D1V Unmagnetized Sheath . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.5.2 1D3V Magnetized Sheath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.5.3 Computing Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Chapter 5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Appendix A Fourth Order Runge-Kutta Amplification Factors . . . . . . . . . . 94
A.1 Second Order Upwind Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
A.2 Third Order Upwind Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.3 Fourth Order Upwind Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

v



List of Tables

2.1 Expansion of screening function for different potentials.[45] . . . . . . . . . . . . . . 19

3.1 Maximum value of α for stability of selected numerical schemes. . . . . . . . . . . . . 32
3.2 Dissipation, dispersion, and total errors of the finite difference upwind schemes with

∆x = 64 after one rotation (See Figure 3.5). . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Dissipation, dispersion, and total errors of the finite difference upwind schemes with

∆x = 64 after 500 rotations (See Figure 3.6). . . . . . . . . . . . . . . . . . . . . . . 43
3.4 Error measurements of numerical methods. . . . . . . . . . . . . . . . . . . . . . . . 43
3.5 Total error for the first, second, third, and fourth-order upwind schemes with in-

creasing resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.6 Simulation parameters for the near-wall plasma sheath test. . . . . . . . . . . . . . . 54

4.1 Possible kernels for kernel density estimation. Expressions courtesy of [70]. . . . . . 64
4.2 Kernel and bandwidth selection factor A(K), generalized for d dimensions. cd is the

volume of a sphere in d dimensions (c1 = 2,c2 = π, c3 = 4π/3). [70] . . . . . . . . . . 66

vi



List of Figures

2.1 Simple diagram of plasma-material interaction system. Region I contains the plasma
and region II is the plasma-facing surface composed of a dense lattice of atoms. . . . 8

2.2 Diagram describing the scattering of incident particle A by surface atom B, where
b is the impact parameter and θA is the scattering angle. Figure courtesy of [26]. . . 16

3.1 Forward Euler amplification factor for a range of CFL values for the first-, second-,
third-, and fourth-order upwind schemes. . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 4th-Order Runge-Kutta amplification factor for a range of CFL values for the first-,
second-, third-, and fourth-order upwind schemes. . . . . . . . . . . . . . . . . . . . . 34

3.3 Forward Euler phase error for a range of CFL values for the first-, second-, third-,
and fourth-order upwind schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 4th-Order Runge-Kutta phase error for a range of CFL values for the first-, second-,
third-, and fourth-order upwind schemes. . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Initial conditions of the one-dimensional numerical tests: step function (a) and
Maxwellian distribution (b). Numerical solutions for the step (c) and Maxwellian
(d) functions after one rotation through periodic boundary conditions. ∆x = 64. In
(c) and (d), the solid line is the initial condition. . . . . . . . . . . . . . . . . . . . . 39

3.6 Numerical solutions for the Maxwellian distribution after 500 rotations through pe-
riodic boundary conditions. ∆x = 64 (a) and ∆x = 128 (b). The solid line is the
initial condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.7 Two dimensional Maxwellian distribution in a rotational velocity field. The initial
condition is shown as a line contour (right color scale), and the distribution after
one full rotation is shown as a filled contour (bottom color scale). . . . . . . . . . . 42

3.8 Field energy as a function of time. Note the characteristic recurrence effect at
t ≈ 130, caused by filamentation of the phase space. . . . . . . . . . . . . . . . . . . 47

3.9 Field energy as a function of time. The recurrence times calculated from Eq. 3.28
are labeled with vertical lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.10 Field energy as a function of time for nonlinear Landau damping. . . . . . . . . . . 49
3.11 The evolution of the distribution function in phase space with a strong initial density

perturbation, γ = 0.5. The perturbation quickly drives the system into a nonlin-
ear regime, and the phasespace holes characteristic of nonlinear Landau damping
begin forming between 15 and 30 ωp. The distribution becomes ”smeared” as the
filamentation becomes too fine to resolve. . . . . . . . . . . . . . . . . . . . . . . . . 50

3.12 Snapshots of the phase space evolution of the two-stream instability. The phase
space hole forms within the first 18ωp, at which time the electrostatic energy peaks. 51

vii



3.13 Field energy as a function of time for the two-stream instability for a highly refined
grid, Nx = 2560 (a) and and a less refined grid, Nx = 640 (b). The steep increase
in energy occurs at t = 18ω−1

p the same time as in previous work [58]. The energy
damps out to a constant value as the instability stabilizes after t ≈ 100ωp. In (b),
a less refined grid was used in order to illustrate the effect of increasing the Poisson
solver from 2nd to 4th order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.14 Ionization and charge exchange cross sections for He. . . . . . . . . . . . . . . . . . . 55
3.15 The 1D1V velocity distribution shown with a grid resolution of Nx = 1000. The

grounded wall at x = 0 acts as a sink, while the BGK operator both acts as an ion
source and drives the system toward thermal equilibrium. . . . . . . . . . . . . . . . 57

3.16 The electrostatic potential, φ, at the center of the domain (x = L/2 = 1cm) (a) and
the plasma potential across the domain at t = 1µs (b). . . . . . . . . . . . . . . . . 58

3.17 Convergence analysis of the plasma sheath equilibrium test. The plot shows the
integral of the electrostatic energy in the simulation domain at t = 1µs. As the
grid size is decreased, the sheath becomes better resolved. The energy reaching an
asymptotic limit as the sheath becomes more accurate is evidence of the convergence
of the numerical scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.18 IVDF evolution from wall (x = 0) to plasma bulk. The BGK collision operator
extends the low-energy tail of the accelerating distributions in the presheath. . . . . 59

4.1 Illustration of how density estimation is performed with the Gaussian Mixture Model
(a) and Kernel Density estimation (b). Fitting was performed on 100 data samples
drawn from a bimodal Gaussian distribution. In (a), the dotted lines are the two
Gaussian profiles predicted by the GMM estimator. In (b), a Gaussian kernel is fit
around each data point. In both cases the solid line is the estimated PDF, which is
the summed contribution of each component. . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Density estimation in one dimension using kernel density estimation (blue and green
lines) and Gaussian mixtures (red lines). The gray filled plots are the exact probabil-
ity density functions from which random samples were drawn. The accuracy of the
resulting density estimates are determined by comparison to the true distributions. 68

4.3 Two-dimensional density estimation example. 100 samples were drawn from a Gaus-
sian distribution (a) and used to construct density estimates using a Gaussian kernel
(b), an Epanechnikov kernel (b), and the Gaussian mixture model (c). . . . . . . . 69

4.4 Integrated squared error for the univariate density estimates as a function of sample
size. The true distributions correspond to those shown in figure 4.2. . . . . . . . . . 71

4.5 Integrated squared error (a) and Kullback-Leibler divergence (b) for the density
estimates as a function of sample size. Samples were drawn and estimates were
fitted in one through three dimensions. The solid lines are the one-dimensional
calculations, the dashed lines are two-dimensional, and the dotted lines are three-
dimensional. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6 Computational time for the density estimates as a function of sample size. Samples
were drawn from the standard Gaussian distribution in one (a), two (b), and three
(b) dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.7 Integrated squared error compared to the bootstrapped mean integrated squared
error in three dimensions. The solid line is the M̂ISE estimate, and the dotted lines
are the ISE shown in figure 4.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

viii



4.8 M̂ISE calculated with TRIDYN sputtering data of He incident on W with a 60
degree angle of incidence. Sample sizes range from 10 to 10,000. . . . . . . . . . . . 79

4.9 Two dimensional slices of the density estimated velocity distributions with (a) a
Gaussian KDE, (b) an Epanechnikov KDE, and (c) a Gaussian Mixture model. The
left column shows Vx-Vy data (X-Y axes), the middle column is the Vx-Vz slice, and
the rightmost column is the Vy-Vz slice. A sample size of 1000 was used. . . . . . . 80

4.10 Example of three-dimensional density estimation. TRIDYN provides a finite set of
particles (a), which is used to construct a continuous PDF estimate (b). The density
estimation was performed with the KernelDensity model using an Epanechnikov
kernel. Mayavi was used to visualize 3D data in (b) [89]. . . . . . . . . . . . . . . . 81

4.11 Phase space plots of each species. From the top: He ions, He neutrals, Be ions, and
Be neutrals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.12 Detail of phase space near the material wall. A portion of the impurity distribution
is ionized close enough to the wall to be pulled back by the sheath. . . . . . . . . . . 86

4.13 Velocity distribution evolution of He+ from the plasma bulk to the material wall. . . 87
4.14 (a) Density and (b) Energy flux over time for each species. . . . . . . . . . . . . . . 87
4.15 Phase space of He ions (a), He neutrals (b), Be ions (c), and Be neutrals (d) in a

1D3V magnetized plasma after 30 ns. In each, the top figure is the X − Vx plane,
the middle is the X − Vy plane, and the last is the X − Vz plane. . . . . . . . . . . 90

4.16 Power flux to the walls of He ions (left) and Be ions (right). . . . . . . . . . . . . . 91

ix



Chapter 1

Introduction

1.1 Plasma-Material Interactions in Magnetic Fusion Devices

A fusion device capable of generating more power than it consumes has numerous potential benefits

over current power sources: it avoids the pollution and ecological problems of fossil fuels along with

the radiation and public perception issues with nuclear fission devices. Indeed, the concept is of

such importance that creating a commercially viable fusion reactor has been listed as one of the

grand engineering challenges of the 21st century. According to the EU roadmap for fusion energy,

heat exhaust through the interaction of the fusion plasma and the surrounding materials is listed

as the leading challenge toward obtaining a fusion reactor. A tokamak - which is the most widely

researched candidate for a commercial fusion reactor - confines a plasma that is hotter than the

surface of the sun, causing enormous temperature and density gradients that will force a portion of

the plasma to interact with the wall. Plasma-facing components (PFCs) of a magnetically confined

fusion device are required to withstand such intense heat loads over a time scale of months to years

without requiring extensive maintenance. Structural integrity is not the only concern, however - it

has been shown that the response of materials under ion bombardment can influence the stability

and structure of the plasma itself. Plasma impacting a surface will cause sputtering, and sputtered

particles that enter the plasma bulk are capable of cooling the plasma. Furthermore, the plasma-

material interaction (PMI) process can affect hydrogen retention and wall erosion, affecting both

plasma stability and PFC lifetime [1, 2].

Three coupled regions are considered in the study of PMI in magnetic fusion devices: (1) the

plasma edge and scrape-off layer (SOL) region, (2) the near-surface region including the plasma

sheath and the first surface layers, and (3) the material bulk [3], which together form a dynamically

evolving environment involving a multitude of coupled phenomena between the plasma and the
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material wall. The plasma sheath which forms near a surface acts as the boundary between the

bulk plasma and the material and determines the energy-angle distribution of particles impacting

the wall, which is directly related to the erosion of the material surface: sputtering, retention,

and other surface modification processes depend on the energy, angle, flux, and species of particles

impacting the surface. Impurity transport further influences the near-wall region through collisions

with plasma species. For many divertor conditions approximately ∼5% of sputtered material enters

the plasma bulk, while the remaining ∼95% of the material that is sputtered from the wall will

be ionized close to the surface and recycled, creating a new surface layer with thermo-mechanical

properties that differ from the original ordered lattice [4]. The near-wall plasma thus forms a far-

from-equilibrium system in which the surface is continuously eroded, redeposited, and reconstituted.

Significant research effort has been made to find sheath conditions which optimize the longevity of

a plasma-facing component (PFC) while being compatible with bulk plasma properties [5].

1.2 Plasma and Surface Modeling

Modeling plasma-material interactions is limited by the largely disparate time- and length-scales

which, due to their strong coupling must be considered simultaneously. Relevant plasma processes

occur over mm of length and µs in time, while surface interactions take place on the order of

an Angstrom and ns time-scales. Accurately simulating PMI is thus not only a matter of im-

plementing the necessary physics, but also developing techniques for integrating physical models

that necessarily operate on different scales. The multiscale modeling approach addresses this issue

by utilizing a separate model for each region: kinetic plasma simulations may be used to predict

the ion energy-angle distribution (IEAD) striking the surface, while atomistic models treat surface

modification (sputtering, reflection, defect formation).

Kinetic Plasma Simulation Methods

Kinetic descriptions of the near-wall plasma have been achieved previously with both particle-in-

cells (PICs) and continuum Boltzmann methods. PIC codes use a statistical approach to describe

the phase space by tracking a finite number of macroparticles, Np. These methods are currently

the most widely used kinetic plasma codes, and they have been developed for fusion applications
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in magnetized conditions in the divertor region of tokamaks [6, 7, 8]. VPIC is a three-dimensional

PIC code that has been used to model laser-plasma interaction for inertial confinement fusion [9].

Gyrokinetic PIC codes, which track the guiding centers of particles rather than the full orbit, have

also been applied to fusion applications [10].

While PIC models are well-established and have been shown to be scalable, they are inherently

subject to numerical noise that can obscure features of the near-wall plasma. The noise can be

controlled by increasing Np, but it will be diminished only by a factor of
√
Np. In contrast,

continuum kinetic solvers directly discretize the Boltzmann equation (or its collisionless form,

the Vlasov equation) in phase space with a numerical mesh. They are more computationally

expensive than equivalent PIC models and are subject to the Courant-Friedrichs-Lewy (CFL)

stability condtion, which describes an upper limit on the number of gridpoints data can move

in a single iteration, but they have two key benefits: they avoid the numerical noise problem

of PIC methods, and they have the possibility of using high-order schemes, which can achieve

greater accuracy on a coarse mesh than a low-order scheme on a fine mesh and can thus reduce

computational cost.

Several Eulerian schemes have been studied with the Boltzmann-Poisson system. The dis-

continuous Galerkin scheme, which is a finite element approach, has shown good agreement with

established fluid plasma models [11]. The semi-Lagrangian method has been widely used, but such

methods include a problem of sharp oscillations around steep gradients that must be filtered [12].

Previous applications of the semi-Lagrangian method are also restricted to second-order in space

due to their treatment of integrated masses and interpolation of densities [13, 14]. However, high-

order semi-Lagrangian schemes have also been achieved by combining the method with a weighted

essentially non-oscillatory (WENO) reconstruction [15]. Another Eulerian method is the finite

difference approach, which has previously been combined with the semi-Lagrangian method with

accurate results [16]. When treated with a WENO scheme, finite differences have been shown to

achieve machine-precision accuracy of Landau damping [15].
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Sputtering and Erosion Models

The erosion process itself is traditionally modeled using either Molecular Dynamics (MD) or binary

collision approximation (BCA) methods. The advantage of BCA over MD is mainly computational,

since the ion-material interaction is reduced from a multi-body problem to a Monte Carlo sequence

of binary collisions, allowing faster computations and straightforward parallelization. Despite the

lower physics content of BCA with respect to MD, such family of codes has been successful in

describing sputtering processes. The ACAT code, which models atomic collisions in amorphous

targets with a BCA-based method, has been used to calculate sputtering yield and angular dis-

tributions of sputtered particles, obtaining good agreement with experimental measurements [17].

TRIDYN is a BCA code that models ballistic effects on amorphous multi-component targets, in-

cluding dynamic composition and surface thermal relaxation [18]. Density functional theory (DFT)

models such as SIESTA [19] can calculate interaction forces between surface particles, which may

be used in cases where the simple interaction potentials utilized in the MD and BCA codes are

insufficient.

Impurity Transport and Surface Response

To treat the material reponse of the PMI system, a wide variety of methods have been developed

to focus on each individual phenomena occuring at the surface interface. Codes that treat each

phenomenon include the REDEP/WBC code package for erosion and redeposition,[20] UEDGE-

BOUT codes for fluid edge parameters,[21] and HEIGHTS for multi-physics transient response,[22]

which are all reviewed in addition to other notable codes by Brooks et al. [23]. Kirschner et al.

developed the 3D ERO code, which is a Monte Carlo tracker of the sputtered impurities in a given

background. The code requires as an input the plasma background, the sheath model, and the

surface erosion data (calculated for example using a BCA or MD code) though it does not consider

any modification to the plasma background due to the material impurities [24].
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1.3 Thesis Objectives

A robust model of PMI must be able to incorporate a kinetic description of the plasma, surface

response, and impurity transport. As the majority of impurities are expected to be ionized a short

distance from the wall and return to the surface, tracking impurities through the near-wall plasma

and including collisional effects such as ionization and charge exchange is also required. This thesis

is thus aimed at developing a method of coupling a multi-species finite-difference Boltzmann solver

for the plasma, providing a fully-kinetic description of all the species in partially-ionized conditions,

and a material code based on a BCA including dynamic composition, fractal-TRIDYN. The goals

of the thesis are thus threefold:

1. Develop a continuum model of the near-wall Boltzmann-Poisson plasma

2. Couple the continuum model to a Monte-Carlo description of the plasma-facing surface

3. Ensure the statistical validity of the coupling approach in order to prepare the model for

future applications

Combined, the Boltzmann-BCA method will be able to provide a kinetic description of both

plasma and impurities, allowing for the analysis of their coupled effects on sheath structure, material

response, and recycling.

1.4 Thesis Overview

With these goals in mind, the theory of both the plasma and surface from the standpoint of the

Boltzmann transport equation is first developed to provide a definition of the near-wall plasma and

to establish the necessary exchange of information between the two regions. The finite difference

approach to solving the Boltzmann equation for plasmas, including a method of quantifying the

accuracy of different finite difference methods, is established in Chapter 3. A convergence analysis

of the finite difference method applied to a near-wall plasma is applied in order to ensure that the

ion velocity distributions at the material surface are accurately constructed. Chapter 4 describes

the method of dynamically coupling the multi-species Boltzmann-Poisson plasma treated with
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finite differences to the BCA model describing the plasma-facing surface. Included are examples

of calculation under divertor-relevant conditions, intended as a proof-of-concept of the coupling

approach. The model is capable of providing a dynamical kinetic description of the near-wall

physics, including the sheath and presheath structure, the distribution functions of eroded material,

and the redeposition processes occurring during plasma bombardment.
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Chapter 2

A Boltzmann-Poisson Model of the
Plasma–Material Interface

This chapter establishes a two-region Boltzmann-Poisson model of the interface layer between a

plasma and a material surface, either solid or liquid. Impacting ions and surface response are

considered as boundary conditions between the regions. An overview of the kinetic treatment of

plasmas is included with electric fields considered self-consistently through the Poisson equation,

which allows systems far from equilibrium to be considered. Particle collisions in the plasma are

treated with a BGK collision operator; collisions within the material surface are handled with

a dedicated operator handling ion-matter interaction in a binary-collision approximation (BCA).

Material surface response to plasma bombardment is considered through the concept of stopping

power.

2.1 Transport Equation for Plasma-Material System

Consider a volume of phase space (~x,~v) populated with N particles of species s in which the

density of particles is sufficiently large that in an infinitesimally small region, Ns(∆~x,∆~v) >> 1.

In this region, the average distribution of particles in space and velocity at time t may be described

by the distribution function, fs(~x,~v, t). The evolution of such a distribution function over the

configuration space and through time t is governed by the Boltzmann equation [25]:

∂fs
∂t

+
~p

ms
· ∇~xfs + ~Fs · ∇~vfs =

(∂fs
∂t

)
coll

(2.1)

where ~p = (px, py, pz) is the three-dimensional momentum vector, ms is mass, and ~Fs denotes the

forces acting on each species. The form of ~Fs must be prescribed depending on the dynamics of the

particles. As both plasma and surface particles primarily experience electromagnetic interactions,
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they are governed by the Newton-Lorentz force,

~F = qs(~E + ~v × ~B) (2.2)

with electric field ~E and magnetic field ~B, which are described by the Maxwell equations.

The right-hand side of equation 2.1 describes collisions affecting the considered species. In

this thesis, the operator will treated to describe collisional processes occurring at the plasma-

material interface. Boltzmann considered collisions under the assumption of molecular chaos, which

describes the interaction between two previously-uncorrelated particles with an integral over phase

space:

(∂f
∂t

)
coll

=

∫ ∫
vr

(dσ(vr)

dΩ

)
(f ′1f

′
2 − f1f2)dΩd3~v1d

3~v2 ~x ∈ [I, II] (2.3)

where vr is the relative velocity, |v1−v2| and dσ(vr)
dΩ is the differential cross section of the collision.

Note that the collision integral in this form encompasses elastic collisions, |v1− v2| = |v′1− v′2|. Eq.

2.3 is valid for both plasmas and for particles traveling through surfaces under the assumption that

collisions are binary events, which is known as the binary collision approximation [26]. Combined,

Equations 2.1 - 2.3 create a kinetic description of a plasma-material system (figure 2.1).

Figure 2.1: Simple diagram of plasma-material interaction system. Region I contains the plasma
and region II is the plasma-facing surface composed of a dense lattice of atoms.
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2.2 Kinetic Plasma Collision Model

Long-Range Interaction

In the non-relativistic, non-magnetic limit, the Boltzmann-Maxwell system shown in equations 2.1

may be simplified to a Boltzmann-Poisson system in which the electric field is calculated by taking

the derivative of the potential φ, ~E = −~∇φ, and φ is obtained from Poisson’s equation:

ε0∇2φ = −
∑
s

qsns (2.4)

thus treating long-range Coulomb interactions self-consistently [27]. In equation 2.4, ns is the

number density of species s,

ns =

∫
fs(~x,~v)d~v (2.5)

and the sum takes place over all charged species.

In the most general case Poisson’s equation requires kinetic treatment of all ionic species and

electrons, but simplifications can be made to treat ions or electrons exclusively. On the short

timescale of electron motion, ions may be considered a stationary background density that enforces

quasineutrality. If ions must be considered instead, the problem may be reduced by considering

the electrons as a fluid. The forces acting on electrons in dynamic equilibrium without a magnetic

field are then reduced to pressure and electric forces:

~Fpressure = −kTe~∇ne

~Felectric = qne~∇φ

(2.6)

Integrating yields the Boltzmann relation, ne(φ2) = ne(φ1)eq(φ2−φ1)/kTe , and the Poisson equa-

tion is transformed into the nonlinear problem:

∇2φ =
q

ε0

(
n0 exp

qφ

kTe
− ni

)
(2.7)
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Short-Range Collisions

In Vlasov’s description of a plasma, particles interact only through the self-consistently generated

electric field through Poisson’s equation and other collisional contributions are ignored. Particle-

based interaction such as elastic scattering events, electron-impact collisions, and charge exchange

between ions and neutrals are incorporated explicitly through equation 2.3. The integral can

be simplified under the assumption that the net result of molecular collisions in a plasma is the

thermalization of non-equilibrium distribution functions, which is known as the Bhatnagar-Gross-

Krook (BGK) model [28]. The BGK collision operator takes the form,

(∂fs
∂t

)
coll

= νbgk(f0 − f(~x,~v, t)) (2.8)

where νbgk is the collision frequency and f0 is the Maxwellian distribution. The BGK model solves

the linearized kinetic equation by assuming perturbations are small, and particle distributions are

driven back toward Maxwellian conditions on timescales of ν−1
bgk. Since νbgk is a constant, there is no

single value that will accurately account for all collisional processes. However, order of magnitude

estimates are possible by considering the most prevalent physical processes in the plasma system

under consideration by means of an effective collision frequency [29].

2.3 Region II - Surface

Under ion bombardment, ions moving through a solid are constantly subject to multiple physical

processes that cause them to disperse their energy by interacting with atoms through both electronic

processes, such as excitation, and nuclear collisions. Both types of interaction create collision

cascades, and the effect on the surface can be dramatic: sputtering, backscattering, trapping of

incident particles, adsorption and desorption, secondary electron emission, and changes in surface

morphology all potentially occur under irradiation of a surface, which can all have an affect on the

material’s behavior and structural integrity [30].

Sputtering occurs when a surface atom gains enough backward momentum to overcome the

surface binding energy of the lattice, Eb, and is ejected back into the incident plasma, with the

number of surface atoms sputtered per incident particle is defined as the sputtering yield, SY .
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SY is fundamentally linked to the ion energy-angle distribution (IEAD) at the wall, for which a

detailed description does not exist [8]. The dependence of surface morphology on the IEAD has lead

to the development of multiple approaches to treating ion-surface interactions. The collection by

Behrisch concerning sputtering of single-element solids and Lieberman’s text on material processing

contain background information on the underlying physics of surface irradiation [30, 31]. Bringa

and Johnson wrote about surface modification physics with a focus on astrophysical applications

[32]. Johnson also wrote an extensive overview of atomic and molecular collisions that details the

many approximations and empirical formulae that have been developed to describe stopping power

[26]. The text compiled by Giannuzzi and Stevie, Introduction to Focused Ion Beams, has a chapter

dedicated to ion-surface interactions that provides a description of the ion range in solids along

with an overview of BCA modeling [33].

Computational and analytical approaches toward ion-surface interactions have also been de-

scribed. Eckstein’s book on computational methods details both BCA and classical dynamics

(MD) simulations [34]. Christel takes an analytical approach using a form of Eq. 2.1, allowing for

a calculation of ion and recoil range distributions [35]. Notably, Christel’s analysis is possible due

to previous empirical and analytical descriptions of stopping power and ion ranges developed by

Lindhard and Scharff, which was later developed into the Lindhard-Scharff-Schiott (LSS) theory

[36, 37].

As described by Bringa et al., stopping power is defined as the energy dissipated along an ion’s

path as it travels through a surface lattice. This process can be understood by describing the rate

of change of the energy: [32]

dE

dt
= ~v · ~F

dE

dt
= −dx

dt
F
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The stopping power can then be defined as a force acting on particles:

−dE
dx

= F (2.9)

Energy dissipation occurs as an ion impacts a surface by both collide with surface atoms and

electronically interacting through long- and short-range forces. Bohr concluded that this loss of

energy could thus be split into two separate definitions: nuclear stopping power to describe ions

colliding with lattice atoms, and electronic stopping to treat the ion’s interaction with the electron

gas [38]. Johnson described this energy loss in terms of stopping cross sections, S(E) [26]. Using

the definition of the mean free path, λ = (Nσ)−1, where N is the density of the medium and σ is

the generic collision cross section, stopping power can be defined further. In an inelastic collision,

for example, one can define the electronic energy loss per unit length:

(dE
dx

)
e

=
∑
c

Qc(Nσc) (2.10)

In this case, Qf is the internal energy loss of some electronic collision process c. The elastic stopping

power can be similarly described in terms of transferring energy to nuclei in a nuclear collision:

(dE
dx

)
n

=

∫ ∞
0

T (N dσ
dT dT ) (2.11)

The subscripts in Eqs. 2.10 and 2.11 refer to electronic and nuclear stopping, respectively. Com-

bining the definition of stopping as energy dissipation with Eqs. 2.10 and 2.11, the total stopping

power S(E) can be split into electronic and nuclear stopping:

S(E) = Sn(E) + Se(E) (2.12)

and the energy loss can then be defined:

(dE
dx

)
= N(Se + Sn) (2.13)

Described in this way, the problem of ion-surface interactions is simplified into describing elec-
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tronic and nuclear stopping processes independently. Nuclear stopping events in this approximation

are defined by a sequence of binary collisions governed by the collision integral, Eq. 2.3. Due to the

complexity of the ion-surface interaction process, stopping power is frequently described by empir-

ical fits to data, as described by Ziegler [39]. The stopping power and collision integral (Eqs. 2.9

and 2.3, respectively), and more specifically their treatment with the binary collision approximation

(BCA), are reviewed in the following sections.

2.3.1 Electronic Stopping

The concept of electronic stopping was developed to describe the interaction of ions with the

electron gas as it travels through a surface lattice. Electronic interaction occurs through both local

and nonlocal processes, where local energy loss is caused by electronic excitations and nonlocal

losses are continuous effects on a moving atom due to electronic interaction with the lattice. Fermi

and Teller first derived velocity-dependent stopping, inferring that a free electron gas will act

analoguous to a viscous medium for moving ions [40]. This estimation allows electronic stopping to

be treated as a frictional force. However, low energy incident ions will experience different forces

than high energy ions. Experimental data exists for high energy electronic stopping which allows

for accurate empirical fits, but little data exists for low energy collisions. Theoretically the local

density approximation will reduce to Newtonian motion through a viscous fluid at the low energy

limit, which is the reasoning behind the fits used today [34]. Based on Eq. 2.10, the cross section

can be described by any electron-particle collision. Johnson used this to make the observation that

at ion velocities that are larger than the mean orbital velocity of the electron, the collision is simply

described by a Rutherford cross section [26]:

σf =
2π

mev2
(ZAe

2

Qf
)2dQf (2.14)

This would result in the following electronic stopping cross section:

Se =
2π

mev2
(ZAe

2)2
∑
j

Njln( 2mev2

(Qj)min
) (2.15)

For a more general estimation of the cross section, Bethe and Born provided a quantum me-
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chanical calculation of the cross section:

σf =
2π(ZAe

2)2

mev2
ZB

dQf
Q2
f

|Ff (Q)|2 (2.16)

Where Q = ∆~p/2me and Ff (Q) is the interaction matrix element of the surface atom considered

in the collision. This leads to the common Bethe formula, which is described in detail by Ziegler

[41]:

Se =
4πe4Z2

1Z2

mv2
× [ln(

2mv2

Φ
) + ln(

1

1− β2
)− β2 − C

Z2
] (2.17)

In this equation, β = v/c, m is the electron mass, and c is the velocity of light in a vacuum. C

and Z2 are constant corrections to the mean excitation potential Φ:

ln(Φ) =
∑
n

fnln(En) (2.18)

Here, En and fn are energy transitions and oscillator strengths of the target atom. A description

of Φ for all elements was developed using wave functions and has been shown to be in good

agreement with experimental data [42].

Low energy collisions can be more difficult to describe without empirical data. BCA collisions,

which were assumed for the bulk of this analysis, give inaccurate results at low energy. In this

regime collisions such as charge exchange begin playing a larger role, and at particularly low

collision energies multibody effects must be taken into account. Lindhard and Scharff used the

assumption mentioned previously, that Newtonian motion occurs at low energies, to provide a

continuous electronic energy loss description of ion-solid interactions at low energy: [36]

Se(E) = 1.212
Z

7/6
a Zb

(Z
2/3
a + Z

2/3
b )3/2

(2.19)

The values Za and Zb are the atomic numbers of the interacting ions and surface, respectively.

The constant term was determined from experimental fits to data. With the energy cross section

for electronic stopping, an approximate frictional force on impacting ions can be developed:
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~F = −N · Se(E)v̂ (2.20)

where v̂ is the velocity unit vector.

Alternatively, electronic stopping has also been modeled with the local density approximation,

which treats ion-target interactions as a density-averaged free electron gas. As described by Ziegler,

electronic stopping in this approximation is described by the volume integral [41]:

Se =

∫
I(v, ρ)|Z∗1 (v)|2ρd3~x (2.21)

where I(v, ρ) is the interaction function, v is the velocity, ρ is the free electron gas density, and

Z∗1 is the effective charge of the ion with atomic number Z1. The interaction function was described

by Lindhard under the simplifications that the lattice is comprised of an nonrelativistic electron

gas of uniform density, where electrons can be described by plane waves. Ions traveling through

the lattice under this model are treated as a perturbation of the electron gas. This study lead to

the following description of the interaction function [43]:

I =
4πe2

mv2

i

πω2
0

∫ ∞
0

dk

k

∫ kv

−kv
ωdω

[ 1

εl(k, ω)
− 1
]

(2.22)

with a longitudinal dielectric constant εl:

εl(k, ω) = 1 +
2m2ω2

0

~2k2

∑
n

f(En)

N
(2.23)

In Eqs. 2.22 and 2.23, Calculations of I(v, ρ) are detailed extensively by Ziegler et al.. However,

for the purposes of this work the description by Eq. 2.19-2.20 will be used.

2.3.2 Nuclear Stopping

Nuclear stopping, Sn(E), is a general term describing atomic collisions between impacting ions and

the surface lattice. As explained by Ziegler, at energies above 200 keV/amu nuclear stopping is a

small contribution to the total energy lost. At lower energies the distance of closest approach of an

incident ion A is close enough to the target atom, B, that the interaction takes place within a single
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unit cell. This interaction is shown in Figure 2.2. In this regime only two particles interact with

each other at any given time, making the BCA model a valid approximation. Treating collisions

as a sequence of independent binary events is precisely the motivation behind the collision integral

shown in Eq. 2.3, which makes the integral a natural choice to model nuclear collisions.

Figure 2.2: Diagram describing the scattering of incident particle A by surface atom B, where b is
the impact parameter and θA is the scattering angle. Figure courtesy of [26].

From Fig. 2.2 the differential cross section can be described. In the center-of-mass system, the

energy is described as

Ec =
mB

mA +mB
E (2.24)

and by momentum and energy conservation, the asymptotic scattering angles can be found:

tan(θA) =
sin(ϑ)

mA
mB

+ cos(ϑ)
(2.25)

Φ =
π − ϑ

2
(2.26)

The recoil energy of the target atom can be described:
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T = γEsin2(
ϑ

2
) (2.27)

where γ is the reduced energy factor:

γ =
4mAmB

(mA +mB)2
(2.28)

The term ϑ is known as the asymptotic scattering angle, which can be found as a function of

the impact parameter b.

ϑ = π − 2p

∫ R−1min

0

d( 1
R)√

1− V (r)
Ec
− b2

R2
min

(2.29)

Finally, the differential cross section can be calculated in terms of the scattering angle:

dσ

dω
=
∣∣∣ 2πbdb

2πsin(ϑ)dϑ

∣∣∣ (2.30)

To convert from center-of-mass coordinates back into the lab frame, a transformation is applied:

dσ

dΩ
=
dσ

dω

((m1
m2

+ cos(ϑ))2 + sin(ϑ))3/2

1 + m1
m2
cos(ϑ)

(2.31)

Exact calculation of Eq. 2.31 depends very strongly on the interaction potential, V (r).

2.3.3 Interaction Potentials

Fundamentally, the interaction potential describes the behavior of both short- and long-rage inter-

actions. By far the simplest form of the potential is the pair potential, which considers interaction

between two particles at a time. These are only a small subset of interaction potentials and are

only valid for a dense, monatomic surface, while molecules will not be described accurately. A non-

exhaustive but extensive summary of interaction potentials, including the pair potentials shown

here, was compiled by Graves and Pascal [44].

Under the pair interaction assumption, the interaction potential is simply a sum of the two

interaction possibilities previously discussed, namely electronic and nuclear repulsion [26]:
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Vj(R) =
ZAZBe

2

R
+ (εj(R)− εj) (2.32)

where εj(R) is the averaged electronic energy, the first term covers the nuclear interaction, and

εj is the total electronic energy of the two atoms. In the short-range limit, which is necessary for

BCA to be accurate, nuclear repulsion is dominant. In this case the potential takes the form of a

screened Coulomb potential:

V (r) =
Z1Z2e

2

4πε0r
φ(
r

a
) (2.33)

where φ is the screening function, which can be chosen to suit the problem being solved. In φ,

a is the screening length, which is described by Eckstein [34]:

a =
(9π2

128

)(1/3)
aBZ

−1/3
12 (2.34)

where aB is the Bohr radius. The screening function can be approximated as [45]:

φ(
r

a
) =

n∑
i=1

cie
−di r

a

n∑
i=1

ci = φ(0) = 1

(2.35)

The Moliere, Kr-C, and ZBL potentials[46] are all widely used to approximate Eq. 2.35. The

coefficients of these potentials are tabulated in Table 2.1.

The screening length is often approximated in different ways. The most well-known are Firsov’s:

aF = 0.88534aB(Z
1/2
1 + Z

1/2
2 )−2/3 (2.36)

Lindhard’s:

aF = 0.88534aB(Z
2/3
1 + Z

2/3
2 )−1/2 (2.37)

and Robinson’s, which is used in the case that ZA = ZB and is measured in angstroms:
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aR = 0.0750 (2.38)

Empirical fits are often used for the screening function and thus the interaction potentials, and

extensive tabulated data has been compiled [34, 44].

It should be noted that BCA models fail at very low energies, O(10eV ). The distance of closest

approach becomes large enough at such low energies that it can be in a neighboring unit cell, at

which point it would be interacting with different particles. At this point many-body collisions

become relevant, breaking the main tenant of BCA.

Table 2.1: Expansion of screening function for different potentials.[45]

n Kr-C Moliere ZBL

c1 0.190945 0.35 0.02817
c2 0.473674 0.55 0.28022
c3 0.335381 0.10 0.50986
c4 - - 0.18175
d1 0.278544 0.3 0.20162
d2 0.637174 1.2 0.40290
d3 1.919249 6.0 0.94229
d4 - - 3.1998
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Chapter 3

Discretization of the
Boltzmann-Poisson problem using
Continuum Methods

The following chapter develops a continuum method of solving the Boltzmann equation based on

an upwind finite-volume discretization of the phase space with a high-order Strang splitting of the

Vlasov operator. First the finite difference approach to solving derivatives will be reviewed, focusing

on upwind-biased methods due to their frequent use in computational fluid dynamics and other

hyperbolic problems [47]. Then the methods are applied to the Boltzmann equation derived in the

previous chapter by means of operator splitting, which transforms the hyperbolic portion of the

integro-differential problem into a system of one-dimensional wave equations that can individually

be solved using finite differences.

Numerical solutions to partial differential equations naturally introduce error and stability

concerns to the problem. Discretizing a continuous domain into a finite grid can coarsely sample

a solution, while the finite difference method introduces error on the treatment of derivatives. In

order to verify that finite differences are capable of accurately solving the Boltzmann equation, it is

necessary to both understand the limits of the method and quantify any errors that are introduced.

With this in mind, von Neumann analysis is performed in section 3.2 to ensure that the presented

numerical schemes will remain stable, and a method of quantifying the errors that propagate

through the numerical approximation is described in section 3.3. The analysis establishes a direct

comparison of numerical schemes, which provides a quantitative understanding of the errors one

can expect in the solution of a partial differential equation.

Finally, verification tests of the Vlasov-Poisson system solved with the upwind-biased finite

difference approach are presented, verifying the method’s capability of resolving well-known features

in a plasma. The tests include linear and non-linear Landau damping, two-stream instability, and

a steady-state plasma sheath formation. In particular, the last test is performed in order to prove

that the method is able to robustly converge to steady state.
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3.1 Finite Difference Treatment of the Boltzmann Equation

Numerically integrating Eqs. 3.14 and 3.15 require discretizing the phase space, (~x,~v). Discretiza-

tion in its simplest form is splitting each dimension, including time, into a structured grid with

uniform spacing: [∆x,∆v,∆t]. The spatial and velocity dimensions, which are treated identically

with finite differences, are targeted first.

3.1.1 Spatial Discretization

A scalar distribution, u, that is discretized will be divided among Nx uniformly-spaced gridpoits,

uj , uj+1, ..., ujNx
, where each j corresponds to a spatial grid location, xj . Finite difference methods

provide a way of approximating the derivative of the discretized distribution u through Taylor

series expansions. The first-order derivative ∂u
∂x can be Taylor expanded about a point, xj :

u(xj + ∆x) = u(xj) + ∆xu′(xj) +
(∆x)2

2 !
u′′(xj) +O(∆x3)

And rearranging to solve for the first derivative gives the form:

u′(xj) =
u(xj + ∆x)

∆x
− ∆x

2 !
u′′(xj) +O(∆x3)

Similarly, if the point is evaluated around xj −∆x, the derivative is approximated as:

u′(xj) =
u(xj −∆x)

∆x
+

∆x

2 !
u′′(xj)−O(∆x3)

The simplest finite difference methods are those for which only the first term in the Taylor

expansion is retained. With a grid spacing of ∆x, the first derivative for each case becomes

(∂u
∂x

)
j
≈ uj+1 − uj

∆x(∂u
∂x

)
j
≈ uj − uj−1

∆x

(3.1)

which are the forward difference and backward difference schemes, respecitvely. Since the

scheme retains only the first term in the Taylor expansion, both schemes are first-order accurate in

space. A higher-order approximation can be derived by subtracting the Taylor expansions of the
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forward- and backward-cases:

u(xj+1)− u(xj−1) = 2∆xu′(xj) + 2
(∆x)3

3 !
u′′′(xj) +O(∆x5) (3.2)

which, when rearranged to solve for the first derivative and retaining only the lowest-order

terms, yields the central difference scheme:

(∂u
∂x

)
i

=
u(xi+1)− u(xi−1)

2∆x
(3.3)

This scheme is second-order accurate. To approximate the second derivative, consider Eq. 3.3

centered about ∆x/2 rather than ∆x. Applying the same derivative again then yields the form

(∂2u

∂x2

)
j

=
u(xj+1)− 2u(xj) + u(xj−1)

∆x2
(3.4)

The forward-difference approximation of the second derivative is similarly found:

(∂2u

∂x2

)
j

=
u(xj+2)− 2u(xj+1) + u(xj)

∆x2
(3.5)

Note that central difference methods have no inherent directionality; each gridpoint is influenced

by the value of the field next to it, whereas the forward- and backward- schemes have a biased

directional dependence. For problems which are inherently directional, such as the one-way wave

equation describing the linear advection of a scalar field with flow speed c, ∂u
∂t = −c∂u∂x , it is

convenient to exploit the directionality of the problem by applying an upwind-biased numerical

scheme. Upwind schemes are widely used in computational fluid dynamics (CFD), and it has been

found that the highest potential accuracy per gridpoint of a finite differencing stencil is possible

with upwind-biased methods [48]. They will thus be the focus of the present work.

The first-order upwind scheme is simply the forward or backward difference scheme, depending

on the local flow direction:

∂unj
∂t

= −c
unj − unj−1

∆x
〈c > 0〉

∂unj
∂t

= −c
unj+1 − unj

∆x
〈c < 0〉

(3.6)
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The method remains first order accurate in this form, but it is easily extended into higher order,

which can be accomplished either through including increasingly more terms of the Taylor series or

by calculating a polynomial fit of the derivative. The second-order upwind method takes the form:

∂unj
∂t

= −c
3unj − 4unj−1 + unj−2

2∆x
〈c > 0〉

∂unj
∂t

= −c
−unj+2 + 4unj+1 − 3unj

2∆x
〈c < 0〉

(3.7)

the third-order scheme is:

∂unj
∂t

= −c
2unj+1 + 3unj − 6unj−1 + unj−2

6∆x
〈c > 0〉

∂unj
∂t

= −c
−unj+2 + 6unj+1 − 3unj − 2unj−1

6∆x
〈c < 0〉

(3.8)

and the fourth-order scheme is:

∂unj
∂t

= −c
3unj+1 + 10unj − 18unj−1 + 6unj−2 − unj−3

12∆x
〈c > 0〉

∂unj
∂t

= −c
uj+3 − 6unj+2 + 18unj+1 − 10unj − 3unj−1

12∆x
〈c < 0〉

(3.9)

Higher order schemes retain higher spatial accuracy by including increasingly more terms in

the expansion. However, it is not necessarily sufficient to select the highest order scheme one can

find; while the magnitude of errors in a solution will decrease as the order of the approximation

increases, the behavior of the numerical solution can also change, as illustrated in Sections 3.2 and

3.3.

3.1.2 Time discretization

The time derivative can also be discretized with Taylor expansions. To first order, ∂u
∂t can be

approximated by the Euler method, which is analoguous to the space discretization in Eq. 3.1:

(∂u
∂t

)
n+1
≈ un+1 − un

∆t
(3.10)

If this equation is applied to find future time levels in terms of the current time level, this is

known as an explicit scheme. In this case the advection equation will take the form:
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un+1 = un + ∆tF (tn, xn) (3.11)

where F (tn, xn) designates a discretization of the spatial derivative. This is the simplest ap-

proach, but it includes a stability condition on ∆t. It is also possible to solve the equation implicitly,

which involves a more expensive calculation per time iteration but has the benefit of having no

constraint on ∆t:

un+1 = un + ∆tF (tn+1, xn+1) (3.12)

However, this work will focus exclusively on explicit methods.

Higher order time approximations can be used to achieve greater temporal accuracy and stability

than the forward Euler scheme, the most common example of which are the set of Runge-Kutta

algorithms [49]. The four step, fourth-order scheme (RK4) is defined as:

u(1) = un + ∆t
2 R

(n)

u(2) = un + ∆t
2 R

(1)

u(3) = un + ∆tR(2)

un+1 = un + ∆t
2 (R(n) + 2R(1) + 2R(2) +R(3))

(3.13)

Higher order extensions require increasingly more steps to calculate, creating a more costly

tradeoff between computational complexity and accuracy; for example, the RK5 scheme provides

fifth-order time accuracy but requires six calculations to solve for a single timestep.

3.1.3 Operator Splitting

To solve Eq. 2.1 with the finite difference methods, it must first be converted from a multidi-

mensional partial differential equation to a problem that can be described by one-dimensional

finite differences. By making the assumption that the electromagnetic field is held constant while

integrating over a single timestep, the force ~F becomes time-independent during space- or velocity-

differentiation [50]. The Boltzmann equation then involves two constant-coefficient differential

operators, which allows operator splitting to be applied:
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∂fs
∂t

+ ~v · ∂fs
∂~x

= 0 (3.14)

∂fs
∂t

+ ~a · ∂fs
∂~v

=
(∂fs
∂t

)
C

(3.15)

However, direct operator splitting is only first order accurate in time [51]. Strang splitting can

be applied to increase the accuracy, which further splits the advection equations into half-timesteps

[52]. In one spatial dimension and one velocity dimension (1D1V), Strang splitting of Eqs. 3.14

and 3.15 is represented as:

F (∆x, ∆t
2 )F (∆v,∆t)F (∆x, ∆t

2 ) (3.16)

where F denotes a general numerical routine. Since the force ~F is found by solving for the

electric field, the splitting algorithm developed by Cheng and Knorr can be used, whereby the

Poisson equation is solved after the first spatial half-step [12]. The Laplacian operator in the

one-dimensional Poisson equation can be treated simply with Eq. 3.4.

φ(xj+1)− 2φ(xj) + φ(xj−1)

∆x2
=
−ρ
ε0

(3.17)

Poisson’s equation can be cast into matrix form, A~x = ~b, where ~x stores the values of φ at

each spatial location, ~b contains the charge density information, and the matrix A contains the

coefficients of the numerical stencil:

A =



1 −2 1 0 . . . 0

0 1 −2 1 . . . 0

0 0 1 −2 . . . 0

...
...

...
...

. . .
...

0 0 0 0 . . . 1


(3.18)

As described, Poisson’s equation is solved by inverting the matrix, ~x = A−1~b, and the electric

field is then found from the gradient of the potential, ~E = −~∇φ, to which any of the finite
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difference approximations defined above can be applied. The Poisson solver’s order of accuracy can

be increased by replacing the 2nd order scheme in A with a higher-order method.

Eq. 3.16 is only valid for a case with no magnetic fields, however; in the electromagnetic case

the problem is extended into 1D3V. By taking advantage of the cross product in the Lorentz force,

Eq. 2.2:

~v × ~B =


vyBz − vzBy

vzBx − vxBz

vxBy − vyBx


the differential operator can be written as:

(~v × ~B) · ~∇v = (vyBz − vzBy) ∂
∂vx

+ (vzBx − vxBz) ∂
∂vy

+ (vxBy − vyBx) ∂
∂vz

Since the coefficient of ∂vi does not include vi, the equation remains a constant coefficient

problem and Strang splitting can be applied in an extended form:

F (∆x, ∆t
2 )F (∆vx,

∆t
2 )F (∆vy,

∆t
2 )F (∆vz,∆t)F (∆vy,

∆t
2 )F (∆vx,

∆t
2 )F (∆x, ∆t

2 ) (3.19)

In both 1D1V and 1D3V, and indeed up to the full 3D3V phase space, the Boltzmann-Poisson

system is thus reduced to a sequence of one-dimensional advection equations that may be individ-

ually solved with finite difference methods.

3.2 Stability Analysis

Finite difference schemes are subject to a stability condition based on the relationship between

the flow speed and the discretization in space and time. Error is introduced into finite differences

through both the truncation of higher-order terms in the numerical stencil and the discretization

of space. ”Stability” in this sense refers to the behavior of the errors as a numerical solution is

marched through time. The solution is unstable if errors become amplified as a solution proceeds.

Von Neumann stability analysis can be used to find the stability condition for a given numerical

26



scheme in terms of the Courant-Friedrichs-Lewy (CFL) value, α = c∆t
∆x . The method expands the

scalar distribution into its Fourier components, fnj = f̃neikj∆x, which allows error to be described

in terms of the amplitude and phase behavior in Fourier space. If errors are damped or remain

constant as the solution proceeds, the scheme is considered stable; the scheme will be unstable if

the error amplifies. Thus the stability condition requires that every Fourier component remains

bounded over time, which provides an upper limit on the amplification factor, f̃n+1

f̃n
= λ:

|λ| ≤ 1

where |λ| is defined as:

|λ| =
√

(Re(λ))2 + (Im(λ))2 (3.20)

An amplification factor less than one suggests that waves are dissipated as the scalar field f

propagates, and the scheme will remain stable. Conversely, if |λ| > 1 errors are amplified over each

timestep and the solution will not converge. Calculating the behavior of the amplitude with respect

to α thus enables the stability of a numerical scheme to be controlled by refining or relaxing ∆t

and ∆x as necessary. The relative phase error of a scheme, which describes how the Fourier modes

propagate relative to the solution, can also be calculated from von Neumann’s analysis:

φ

φe
=

tan−1( Im(λ)
Re(λ) )

−βα
(3.21)

where β = k∆x is the phase angle.

For steady state solutions the stability limit is sufficient - waves are stationary, and as long

as stability is ensured the accuracy of the solution depends entirely on the spatial resolution. For

unsteady solutions or for simulations which require many timesteps to reach steady state, however,

understanding the behavior of waves in a solution is vital [53]. An additional factor that needs

consideration is whether or not the λ and φ
φe

depend heavily on the CFL value. If they do, a

nonuniform flow field or a variable grid size can allow errors of varying magnitude and type to

propagate throughout the simulation domain inconsistently. Von Neumann analysis is therefore

beneficial not only for finding a stability condition, but also for predicting whether a solution will
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exhibit dissipation and dispersion.

To perform the von Neumann stability analysis on a numerical scheme using the RK4 time

discretization, the four step method is first converted into a single-step discretization. In this form

the scalar field is converted into a Fourier component in Eq. 3.6 and the amplification factor

is found. The von Neumann analysis of the Runge-Kutta algorithm, including the conversion

to a single-step method and the form of the amplification factors, were previously found by Zha

[53]. The forward Euler method is already in a single-step form and can be analyzed directly.

Table 3.1 contains the CFL condition for each numerical scheme, while Figures 3.1-3.4 display the

amplification factor and relative phase differences as a function of CFL numbers.

3.2.1 First Order Upwind Scheme

The forward Euler, first-order upwind scheme takes the form:

fn+1
j = fnj − α(fnj − fnj−1)

Von Neumann analysis is applied by substituting fnj = f̃neikj∆x and simplifying to find the

amplification factor:

f̃n+1eikj∆x = f̃neikj∆x − α(f̃neikj∆x − f̃neikj∆xe−ik∆x

f̃n+1 = f̃n − α(f̃n − f̃ne−ik∆x)

f̃n+1 = f̃n[1− α(1− eik∆x)]

The amplification factor is defined as the term modifying the Fourier component f̃n:

λ = 1− α(1− cos k∆x+ i sin k∆x)

which is the amplification factor of the first-order upwind, forward Euler scheme, and is plotted

in Figure 3.1a.

The RK4-first-order upwind scheme converted into a single-step process becomes:
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fn+1
j = fnj − α(unj − unj−1)− α2

2
(unj − 2unj−1 + unj−2)− α3

6
(unj − 3unj−1 + 3unj−2 − unj−3)+

α4

24
(unj − 4unj−1 + 6unj−2 − 4unj−3 + unj−4)

and with von Neumann analysis, the amplification factor takes the form:

λ = 1− α(1− cosβ + i sinβ) +
α2

2
(1− 2 cosβ + 2i sinβ + cos 2β + i sin 2β)

−α
3

6
(1− 3 cosβ + 3i sinβ + 3 cos 2β + 3i sin 2β − cos 3β + i sin 3β)

+
α4

24
(1− 4 cosβ + 4i sinβ + 6 cos 2β + 6i sin 2β − 4 cos 3β + 4i sin 3β + cos 4β + i sin 4β)

Figures 3.1a and 3.2a present the magnitude of the amplification factor as a function of β for

a range of CFL numbers for the forward Euler and RK4 schemes, and figures 3.3a and 3.4a plot

the the relative phase error. At a low CFL number the amplification factor remains close to 1,

while at higher CFL values the amplification factor drops rapidly as k∆x increases. Figure 3.4a

suggests that the phase error can be either leading and lagging, depending on the CFL condition

and frequency.

3.2.2 Second Order Upwind Scheme

Following the same method as above, von Neumann analysis of Eqs. 3.7 with both the Forward

Euler and RK4 schemes is performed for the second order upwind scheme. The Euler method

yields:

un+1
j = unj −

α

2
(3unj − 4unj−1 + unj−2)

And the amplification factor is then:

λ = 1− α

2
(3− 4 cos k∆x+ 4i sin k∆x+ cos 2k∆x− i sin 2k∆x)

For the RK4 analysis, the single-level scheme takes the form [53]:
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un+1
j = unj − α

2
(3unj − 4unj−1 + unj−2)

+
α2

8
(9unj − 24unj−1 + 22unj−2 − 8unj−3 + unj−4)

− α3

48
(27unj − 108unj−1 + 171unj−2 − 136unj−3 + 57unj−4 − 12unj−5 + unj−6)

+
α4

384
(81unj − 432unj−1 + 972unj−2 − 1200unj−3 + 886unj−4 − 400unj−5

+ 108unj−6 − 16unj−7 + unj−8)

The amplification factor is shown in the Appendix. Figures 3.1b and 3.2b show that there is no

CFL number that results in a dissipation-free solution. However, using the RK4 scheme improves

the stability of the scheme, allowing a larger CFL factor to be used. Figures 3.3b and 3.4b both

show that the second-order upwind scheme has leading phase error for most of the k∆x range

( φφe < 1). At high frequencies the errors begin to scatter.

3.2.3 Third Order Upwind Scheme

The third order upwind forward Euler method yields

un+1
j = unj −

α

6
(2unj+1 + 3unj − 6unj−1 + unj−2)

with an amplification factor of:

λ = 1− α

6
[2 cos k∆x+ 2i sin k∆x+ 3− 6 cos k∆x+ 6i sin k∆x+ cos 2k∆x− i sin 2k∆x]

The single-level scheme of the RK4-third order upwind scheme is [53]:
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fn+1
j = fnj − α

6
(2fnj+1 + 3fnj − 6fnj−1 + fnj−2)

+
α2

72

(
4fnj+2 + 12fnj+1 − 15fnj − 32fnj−1 + 42fnj−2 − 12fnj−3 + fnj−4

)
− α3

1296
(8fnj+3 + 36fnj+2 − 18fnj+1 − 177fnj + 90fnj−1 + 279fnj−2 − 318fnj−3

+ 117fnj−4 − 18fnj−5 + fnj−6)

+
α4

31104
(16fnj+4 + 96fnj+3 + 24fnj+2 − 616fnj+1 − 207fnj + 1872fnj−1 − 516fnj−2

− 2304fnj−3 + 2502fnj−4 − 1072fnj−5 + 228fnj−6 − 24fnj−7 + fnj−8)

with the amplification factor given in the Appendix. The stability condition of the third-order

upwind scheme is notably higher than either the first- or second-order schemes, at α = 1.74.

Dissipation exists for all CFL values, and as with the second-order upwind method, the dissipation

and dispersion errors are both scattered for high-frequency waves. The scheme is thus insensitive

to the CFL value.

3.2.4 Fourth Order Upwind Scheme

The Forward Euler method applied to the fourth-order upwind scheme takes the form:

un+1
j = unj −

α

12
(3unj+1 + 10unj − 18unj−1 + 6unj−2 − unj−3)

with an amplification factor of:

λ = 1− α

12
[3 cos k∆x + 3i sin k∆x+ 10− 18 cos k∆x+ 18i sin k∆x+ 6 cos 2k∆x

− 6i sin 2k∆x− cos 3k∆x+ i sin 3k∆x]

The single-level scheme of the RK4-fourth order upwind scheme is:

31



un+1
j = unj − α

12
(3unj+1 + 10unj − 18unj−1 + 6unj−2 − unj−3)

+
α2

144
(9unj+2 + 60unj+1 − 8ufnj − 324unj−1 + 438unj−2 − 236unj−3

+ 72unj−4 − 12unj−5 + unj−6)

− α3

1728
(27unj+3 + 270unj+2 + 414unj+1 − 2078unj − 1431unj−1 + 9396unj−2

− 11964unj−3 + 788unj−4 − 3267unj−5 + 894unj−6 − 162unj−7 + 18unj−8 − unj−9)

+
α4

20736
(81unj+4 + 1080unj+3 + 3456unj+2 − 6792unj+1 − 30932unj + 53496unj−1

+ 70944unj−2 − 271624unj−3 + 342198unj−4 − 253080unj−5 + 126528unj−6

− 45144unj−7 + 11724unj−8 − 2200unj−9 + 288unj−10 − 24unj−11 + unj−12)

Note that the stability condition for the fourth-order upwind scheme is lower than the third-

order method. While the magnitudes are different, the errors shown in Figures 3.1d, 3.2d,3.3d, and

3.4d exhibit behavior similar to the second-order scheme. Both include largely leading phase error,

for example.

3.2.5 Stability Discussion

Table 3.1: Maximum value of α for stability of selected numerical schemes.

Space Discretization Forward Euler RK4

First-Order Upwind 1.00 0.46
Second-Order Upwind 0.62 0.69
Third-Order Upwind 0.50 1.74
Fourth-Order Upwind 0.07 1.05

The stability condition is prohibitively restrictive for the forward Euler fourth-order scheme.

In addition, the amplification factor in the forward Euler case falls below 1.0 much faster than for

the RK4 method. The RK4 scheme creates a sharp increase in the stability condition, allowing for

high-order schemes to be used. By comparing the figures, it is evident that the magnitudes of both

the amplification factor and relative phase error are noticeably diminished using the RK4 scheme
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(a) 1st Order Upwind (b) 2nd Order Upwind

(c) 3rd Order Upwind (d) 4th Order Upwind

Figure 3.1: Forward Euler amplification factor for a range of CFL values for the first-, second-,
third-, and fourth-order upwind schemes.
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(a) 1st Order Upwind (b) 2nd Order Upwind

(c) 3rd Order Upwind (d) 4th Order Upwind

Figure 3.2: 4th-Order Runge-Kutta amplification factor for a range of CFL values for the first-,
second-, third-, and fourth-order upwind schemes.
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(a) 1st Order Upwind (b) 2nd Order Upwind

(c) 3rd Order Upwind (d) 4th Order Upwind

Figure 3.3: Forward Euler phase error for a range of CFL values for the first-, second-, third-, and
fourth-order upwind schemes.
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(a) 1st Order Upwind (b) 2nd Order Upwind

(c) 3rd Order Upwind (d) 4th Order Upwind

Figure 3.4: 4th-Order Runge-Kutta phase error for a range of CFL values for the first-, second-,
third-, and fourth-order upwind schemes.
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as well. Notably, the amplification factors and phase errors of the even-ordered schemes exhibit

similar behavior. Both second- and fourth-order upwind methods are characterized by a leading

phase error, a similar trend in amplifcation factor, and a more restrictive stability condition when

compared to the odd-ordered schemes.

The amplification factor and phase error plots also reveal beneficial behavior of upwind-biased

differencing. While dissipation and dispersion exist for all CFL factors, the types of errors that

propagate are largely insensitive to CFL [53]. For example, in Figure 3.4, the phase errors scatter at

high frequency for all higher-order schemes. This result means that time-dependent errors behave

relatively consistently across domains even with variable flow speeds and grid sizes. In order to

ensure accurate solutions utilizing upwind schemes, the exact value of the CFL factor is irrelevant

as long as the stability criteria is met at every grid point.

3.3 Error Analysis

The above discussion provides a method for discretizing solutions with Taylor expansions and for

ensuring the resulting approximations are stable, but error analysis on the numerical schemes is

necessary to ensure the accuracy of a solution. Amplification factors less than or greater than unity

cause dissipation error, the smearing of a wave’s amplitude that can damp out the maxima and

minima of a solution and spread waves across a wider area. Solutions can also exhibit dispersion

error, which is characterized by small oscillations in a numerical solution which create artificial

maxima and minima. Takacs et al. developed a method for quantifying the errors associated with

a numerical scheme by comparing the numerical solution to the analytical solution [54]. Under

Takacs’s method, the total error is defined as:

ETOT =
1

M

∑
j

(fT − fD)2 (3.22)

where M is the total number of grid points and j is the grid index. By definition, ETOT is the

sum of the dissipation and dispersion errors, EDISS and EDISP , which are calculated as shown:

EDISS = [σ(fT )− σ(fD)]2 + (f̄T − f̄D)2 (3.23)
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EDISP = 2(1− p)σ(fT )σ(fD) (3.24)

where σ describes the variance of each solution, f̄ is the mean of the solution, and p is the

correlation factor between the two solutions, which is defined as

p =

∑
(fD − f̄D)(fT − f̄T )√∑

(fD − f̄D)2
∑

(fT − f̄T )2
(3.25)

Since quantifying the error under Takacs’s method requires an analytical solution, it is con-

venient to test the efficacy of numerical methods in uniform flow fields that do not deform the

solution. The analytical solution under such flow fields is simply the initial condition itself, pro-

viding a straightforward method of quantizing numerical effects.

3.3.1 1D Advection

The accuracy of the numerical schemes discussed above applied to the problem of the one-dimensional

linear advection of a wave was analyzed with two cases: a step-function and a Maxwellian distri-

bution (figures 3.5a and 3.5b). In both cases the problem was set up with 64 uniformly spaced grid

points, and periodic boundary conditions were imposed through the use of “ghost” cells. The error

was quantified with Eqs. 3.22-3.24. The true solution, fT , was defined as the initial condition. In

order to compare directly to fT , each distribtion was simulated through one full cycle with a CFL

factor of α = 0.4. Note that the RK4 method was used for all tests.

After one period, the solutions of the step function and Maxwellian distribution are shown

in Figures 3.5c and 3.5d, respectively, and the errors are quantized in Table 3.2. The first-order

uwpind scheme is heavily dissipative, losing much of the definition of the step function and the

peak amplitude dropping by 10%. The second-order scheme decreases the disspation error by an

order of magnitude, but the dispersion error is larger. The third-order scheme further decreases

the dissipation and dispersion error by a factor of 2, and the wave more closely approximates the

step function after one cycle, with a similar result found with the fourth-order method.

A case more relevant to the Boltzmann equation is the propagation of a Maxwellian distribution,

which is shown in figure 3.5d. The errors follow a similar trend as before - as the order of the scheme
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(a) Initial step function. (b) Initial Maxwellian distribution.

(c) Step function numerical results - single
period.

(d) Maxwellian numerical results - single period.

Figure 3.5: Initial conditions of the one-dimensional numerical tests: step function (a) and
Maxwellian distribution (b). Numerical solutions for the step (c) and Maxwellian (d) functions
after one rotation through periodic boundary conditions. ∆x = 64. In (c) and (d), the solid line

is the initial condition.

increases, the total error quickly decreases. The third- and fourth-order upwind schemes remain

close approximations of the initial condition. The second-order scheme induces a leading phase

error, seen in both figures 3.5c and 3.5d, while the third-order scheme has a more symmetrical

dispersion. Additionally, finite difference methods can poorly resolve sharp gradients, as in the

edges of the step function. Indeed, Table 3.2 shows that increasing the order of the scheme only

marginally decreases the total error in the sytem for the step function, while the same schemes

decrease the total error by more than an order of magnitude in the Maxwellian distribution test.

In figure 3.6a, the same test as in figure 3.5 was extended from one to 500 cycles with the CFL

factor again held at α = 0.4. As the first-order upwind scheme is dominated by strong damping, the

result is expected: on long timescales the solution dissipates to a uniform non-zero value, and the
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Table 3.2: Dissipation, dispersion, and total errors of the finite difference upwind schemes with
∆x = 64 after one rotation (See Figure 3.5).

Step function

Numerical Scheme EDISS EDISP ETOT
First-Order Upwind 2.76e−2 3.03e−2 5.79e−2

Second-Order Upwind 8.52e−4 3.46e−2 3.54e−2
Third-Order Upwind 4.72e−4 1.39e−2 1.43e−2
Fourth-Order Upwind 1.98e−4 1.21e−2 1.23e−2

Maxwellian function

Numerical Scheme EDISS EDISP ETOT
First-Order Upwind 1.39e−2 8.26e−3 2.22e−2

Second-Order Upwind 1.25e−5 1.87e−3 1.88e−3
Third-Order Upwind 1.52e−6 9.76e−6 1.13e−5
Fourth-Order Upwind 1.54e−9 4.78e−7 4.79e−7

shape of the original distribution is lost. The second-order upwind case is dominated by dispersion

errors, causing the solution to be completely out of phase. In contrast, the third-order upwind

scheme is subject to small dispersion errors that cause local minima to appear both leading and

lagging the solution, although the magnitude of these errors are much less than the second-order

upwind case.

The similarities between even- and odd-ordered schemes are more readily apparent after 500

cycles. While the phase error is greatly diminished, the fourth-order scheme has a clear leading

error that resembles the second-order solutions in figure 3.5. Likewise, the third-order solution has

a clear dissipation error reminiscent of the first-order method.

Doubling the number of cells in the simulation creates a sharp decrease in the total error,

Figure 3.6b. In particular, the high-order schemes are significantly improved, with the third- and

fourth-order methods retaining negligible dispersion error. This is evidence of the convergence

of the numerical schemes: as ∆x and ∆t approach 0, the Taylor approximation from which the

schemes were derived approaches the true solution. Notably, the third-order upwind method yields

a smaller total error at 3.38e−2 on the coarse grid than the second-order method shows on the

refined grid, 3.06e−1. Indeed, this behavior is a defining characteristic of finite difference methods,

the implications of which are briefly discussed in Section 3.3.3.
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(a) ∆x = 64 (b) ∆x = 128

Figure 3.6: Numerical solutions for the Maxwellian distribution after 500 rotations through
periodic boundary conditions. ∆x = 64 (a) and ∆x = 128 (b). The solid line is the initial

condition.

3.3.2 2D Rotation

To verify that the errors remain consistent in multiple dimensions, a similar test was performed on

a two-dimensional Maxwellian. The x- and y-dimensions were uniformly spaced from -10 to 10 with

∆x,∆y = 128, number of timesteps Nt = 800, and timestep size ∆t = π
Nt , with open boundary

conditions in both dimensions and a CFL factor of α ≈ 0.5. Operator splitting was applied to

reduce the two-dimensional problem into two constant-coefficient wave equations, Eq. 3.14. A

rotational field was initialized with Vx = −2Y and Vy = −2X. Under this setup the conditions for

operator splitting are satisfied, and the numerical advection can be performed on each dimension

independently (Eq. 3.16). All simulations were again performed with a fourth-order Runge-Kutta

time integration. The results are shown in Figure 3.7 for the first- through fourth-order upwind

schemes. The errors calculated from Eqs. 3.22-3.24 are shown in Table 3.4.

The errors reveal a similar trend to the one-dimensional test. After one full rotation, it is

clear that the first order upwind method is the weakest of the three tests, with an error an order

of magnitude larger than the others. The second-order upwind method is again dominated by

dispersion error, while the third-order upwind scheme is again shown to preserve amplitude within

10% with negligible phase error. The fourth-order scheme performs better overall, with a reduction

in the total error by a factor of 25 compared to third-order. Phase errors are clearly visible in the
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(a) 1st Order Upwind (b) 2nd Order Upwind

(c) 3rd Order Upwind (d) 4th Order Upwind

Figure 3.7: Two dimensional Maxwellian distribution in a rotational velocity field. The initial
condition is shown as a line contour (right color scale), and the distribution after one full rotation

is shown as a filled contour (bottom color scale).
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Table 3.3: Dissipation, dispersion, and total errors of the finite difference upwind schemes with
∆x = 64 after 500 rotations (See Figure 3.6).

∆x = 64

Numerical Scheme EDISS EDISP ETOT
First-Order Upwind 1.14e−1 3.19e−16 1.14e−1

Second-Order Upwind 4.02e−2 1.57e−1 1.97e−1
Third-Order Upwind 1.26e−2 2.12e−2 3.38e−2
Fourth-Order Upwind 1.24e−4 1.32e−2 1.33e−2

∆x = 128

Numerical Scheme EDISS EDISP ETOT
First-Order Upwind 1.14e−1 4.39e−16 1.14e−1

Second-Order Upwind 5.08e−3 3.01e−1 3.06e−1
Third-Order Upwind 1.60e−3 5.69e−3 7.49e−3
Fourth-Order Upwind 3.48e−7 3.85e−4 3.86e−4

higher-order plots while the first-order scheme retains only a single maximum, as in the 1D test

case.

Table 3.4: Error measurements of numerical methods.

EDISS EDISP ETOT
First-Order Upwind 2.05e−1 1.42e−1 3.47e−1

Second-Order Upwind 5.01e−4 5.28e−2 5.32e−2
Third-Order Upwind 6.30e−5 3.19e−4 3.82e−4
Fourth-Order Upwind 6.48e−8 1.49e−5 1.50e−5

To measure the performance of the four numerical schemes in the two-dimensional case as grid

refinement increases, the total error was recorded over an increasingly small ∆x while holding the

CFL factor at a constant value of α = 0.5. The results are summarized in Table 3.3. The effect

of utilizing a high-order derivative approximation is clear: the high-order schemes have greater

accuracy on coarser grids than the lower-order methods have on a highly refined grid. For example,

the first-order upwind scheme has a total error that reached ETOT ≈ 0.1 only at the highest tested

refinement of Nx, Nv = 512, while the third-order method achieved lower error at Nx, Nv = 64.
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Table 3.5: Total error for the first, second, third, and fourth-order upwind schemes with
increasing resolution.

Nx, Ny 1st Order 2nd Order 3rd order 4th Order

64 5.10e−1 2.56e−1 1.31e−2 2.61e−3
128 3.47e−1 5.32e−2 3.82e−3 1.50e−5
256 1.99e−1 4.70e−3 6.73e−6 6.17e−8
512 9.20e−2 3.07e−4 1.06e−7 2.85e−10

3.3.3 Discussion

It is important to note that the error is always relative - doubling the spatial resolution will

improve error, but increasing the length of the simulation through time will cause the error to

increase proportionally if the solution is cyclical, as is the case for both rotational flow and periodic

boundary conditions. For a simulation that pushes distributions toward open boundaries (like in

a plasma sheath scenario), however, information will only travel from one side of the domain to

the other at maximum. This fact simplifies error control: in a domain from [−L,L], the maximum

amount of error in a simulation can be defined by the amount of error a distribution accumulates

after moving through 2L∆x spatial points, or equivalently the amount of error in a distribution

being passed through a single cycle in periodic conditions.

Another consideration that must be taken into account is the presence of steep gradients in a

distribution. As seen in Figure 3.5, the presented numerical schemes see a sharp increase in the

total error if applied to the edge of a step function. Specifically, such regions tend to facilitate

the creation of dispersion error, with artifical extrema that can be of appreciable amplitude. The

second-order upwind scheme in Fig. 3.5c exhibits an artificial minimum with an amplitude 20%

that of the true solution. If the step function represented a real quantity such as particle density

in space, the dispersion error creates a region of negative density - clearly a nonphysical result.

Error can be mitigated by increasing the order of the scheme. Finite difference methods are

beneficial in this regard: high-order schemes are relatively simple to implement, and doing so

can decrease error by several orders of magnitude in some cases. Per table 3.5, if error must be

limited to O(10−5) for the 2D rotational problem, the third-order upwind scheme can be used with

256 × 256 = 65536 total grid points. However, simply choosing the fourth-order upwind scheme
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with half the number of grid points in each dimension achieves a similar level of accuracy, and has

the added benefit of reducing the computational cost by a factor of 4. Extrapolating to a three-

dimensional, three-velocity simulation with the same number of grid points in each dimension, the

computational (and memory) cost is reduced by a factor of 64. The benefit of utilizing a high-order

method is thus both an increase in accuracy and a substantial decrease in problem size, with the

only costs being the time needed to access an additional grid point, additional ghost cells at the

boundaries to impose boundary conditions, and potentially a decrease in timestep size.

Reaching a Steady Solution

The results of the above numerical tests provide enough information to determine the conditions

necessary to achieve steady state. Tables 3.3 and 3.4 show clearly that error can be controlled

arbitrarily by increasing the spatial resolution (at the expense of significant computational cost).

Indeed, Figure 3.6 provides the key result that regardless of how much error has accumulated

in a solution, the true solution can be recovered by running the simulation with an increased

resolution. Furthermore, the true solution is recovered more efficiently with higher-order schemes.

Thus stability is the primary concern for reaching a steady solution; if it exists, steady state will

be achieved eventually with any stable numerical scheme. Once the existence of such a solution

has been found, obtaining a chosen level of accuracy is only a matter of spatial resolution.

Since the rate at which error is decreased with increasing resolution is faster by at least an

order of magnitude for a high-order method (see Table 3.3), the fourth-order upwind scheme will

be used for future simulations. The third-order method has a larger CFL factor which would allow

for larger timesteps to be used, but the error control of the higher order scheme was considered

more beneficial than including a larger timestep.

3.4 Numerical Test of a Vlasov-Poisson Plasma

With the numerical methods and their accuracies described, the finite difference method can be

applied to the Vlasov-Poisson description of a plasma. The algorithm utilizes Strang splitting

(Eq. 3.16) to convert the 1D1V Vlasov equation into sequential linear advection equations, with

the electric field solved between half-spatial steps. The fourth-order upwind scheme is used to
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discretize the phase space, while the RK4 method is used to discretize time. The Poisson equation

is solved with the second-order central-difference method described in section 3.2, and the resulting

A~x = ~b form is calculated with LU decomposition.

3.4.1 Landau Damping

Linear Landau Damping

If a collisionless electron plasma is initialized as a Maxwellian distribution with a sinusoidal per-

turbation of magnitude γ:

f(x, vx) = (1.0 + γ cos kx)

√
me

πkBTe
exp
−mev

2
x

2kBTe
(3.26)

where n is the electron density, m is the electron mass, Te is the electron temperature, and L is

the domain size, the plasma will experience Landau damping. Chen[55] described the dispersion

relation for a slightly perturbed Maxwellian electron plasma, f(~r,~v, t) = f0(~v) + f1(~r,~v, t), and

derived an expression for the damping rate for the case when kλD << 1:

Im
( ω

ωpe

)
= −
√
π
( ωp
kvth

)3
exp

( −1

2k2λ2
D

)
exp

(−3

2

)
(3.27)

where λD is the Debye length, ωpe is the electron plasma frequency, and k = 2π/L is the wavenum-

ber.

To simulate Landau damping, the Maxwellian distribution was initialized with test parameters

m = 1, ε0 = 1, qe = −1, Te = 1, and a small perturbation γ = 0.01, with boundary conditions set

as periodic in space and open in velocity inside a domain from X = [−π
k ,

π
k ] and V = [−Vth, Vth].

Note that under these parameters, ωpe = 1 and Vth =
√
Te = 1. A neutralizing background ion

density was considered. To test the validity of the finite difference solution of the Vlasov-Poisson

equation, the theoretical damping rate given by Eq. 3.27 was compared to the numerical result.

The electrostatic energy was calculated at each timestep, and by applying a linear least-squares fit

to the energy maxima over time, the exponential decay rate was found. The electrostatic energy

is defined as Enorm =
∫

1
2E

2dx.

In Figure 3.8, the damping rate of the initial linear decrease was calculated to be Im( ω
ωpe

) =
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Figure 3.8: Field energy as a function of time. Note the characteristic recurrence effect at
t ≈ 130, caused by filamentation of the phase space.

0.1533. From Eq. 3.27 with k = 0.5, the value Im( ω
ωpe

) = 0.1534 is found, achieving good

agreement. The steep jump in electrostatic energy is a well-known result of filamentation - finite

phase space discretization with periodic boundaries will create increasingly fine structures which

the velocity grid is eventually unable to resolve. Pezzi et al. described the effect as “recurrence”

and reported an expression for calculating the recurrence time [56]:

TR =
2π

kdV
(3.28)

In order to compare the theoretical recurrence time expression, TR was calculated for two values

of dV . The results are plotted in Fig. 3.9, with the theoretical values plotted as vertical lines. The

simulation shows agreement with the theoretical values.

Nonlinear Landau Damping

With large damping rates the system is quickly driven to a nonlinear state. The same initial

conditions were used as in the linear case, with the perturbation factor increased to γ = 0.5. Plots

of the phase space are shown in Fig. 3.11. With a strong perturbation factor, nonlinear effects

begin to dominate the solution. This is evident in Fig. 3.11, in which phase space holes are forming
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Figure 3.9: Field energy as a function of time. The recurrence times calculated from Eq. 3.28 are
labeled with vertical lines.

in the solution. Note again the presence of filamentation in the phase space in Figure 3.11.

The electrostatic energy also evolves differently compared to the linear case - there is a short

region of exponential decay before the energy begins to oscillate. This is presented in Fig. 3.10. The

electrostatic energy of the nonlinear Landau damping case has been numerically tested extensively

in the past, and the results from the current model shows agreement with previous simulations.

Filbet and Sonnendrucker presented a comparison of different numerical solvers in the nonlinear

damping regime [57], and Fig. 3.10 compares favorably to the high-resolution reference solution

presented in their work.

3.4.2 Two-Stream Instability

A two-stream instability is caused by the interaction of two counterstreaming beams. The instability

is characterized by the formation of phase space “holes” which trap charged particles. During the

initial formation of a hole the energy of the electric field experiences a steep increase followed by a

period of damped oscillation as the instability settles. A simulation of the two-stream instability

was initialized with the same parameters as before: m = 1, ε0 = 1, qe = −1, Te = 1, and a

small perturbation γ = 0.01. In order to ensure that error was mitigated long enough for damped
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Figure 3.10: Field energy as a function of time for nonlinear Landau damping.

oscillation to be resolved, the grid was highly refined to Nx = 2560 grid points. The velocity grid

was left at Nv = 128; the simulation is periodic in space and therefore limited heavily by the spatial

resolution rather than the velocity resolution.

The initial distribution function was modified to include two peaks: one offset by a value −V0

and the other by +V0, where V0 = 1.5Vth:

f(x, vx) = (1.0 + γ cos kx)

√
me

πkBTe

(
exp
−me(vx − v0)2

2kBTe
+ exp

−me(vx + v0)2

2kBTe

)
(3.29)

As before, the simulation was allowed to evolve with a neutralizing ion background. The phase

spaces in both the initial state and after 16ωpe are shown in Fig. 3.12. Filamentation of the phase

space is once again visible as the phase space hole forms. The two-stream instability is characterized

by a sharp initial increase in energy as the counter-flowing streams interact. Crouseilles et al.

found that with the above parameters, the energy of the instability peaks at t = 18ωp, followed by

oscillations as the particles are trapped in the resulting hole [58]. The electrostatic energy is shown

in Fig. 3.13, showing good agreement with Crouseilles’s results.
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(a) ∆t = 0ωp (b) ∆t = 15ωp

(c) ∆t = 30ωp (d) ∆t = 45ωp

(e) ∆t = 60ωp (f) ∆t = 75ωp

Figure 3.11: The evolution of the distribution function in phase space with a strong initial density
perturbation, γ = 0.5. The perturbation quickly drives the system into a nonlinear regime, and
the phasespace holes characteristic of nonlinear Landau damping begin forming between 15 and
30 ωp. The distribution becomes ”smeared” as the filamentation becomes too fine to resolve.
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(a) t = 0ωp (b) t = 8ωp

(c) t = 16ωp (d) t = 24ωp

(e) t = 32ωp (f) t = 40ωp

Figure 3.12: Snapshots of the phase space evolution of the two-stream instability. The phase
space hole forms within the first 18ωp, at which time the electrostatic energy peaks.
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(a) L2 Norm, Refined Grid (b) L2 Norm, 2nd and 4th Order Poisson Comparison

Figure 3.13: Field energy as a function of time for the two-stream instability for a highly refined
grid, Nx = 2560 (a) and and a less refined grid, Nx = 640 (b). The steep increase in energy

occurs at t = 18ω−1
p the same time as in previous work [58]. The energy damps out to a constant

value as the instability stabilizes after t ≈ 100ωp. In (b), a less refined grid was used in order to
illustrate the effect of increasing the Poisson solver from 2nd to 4th order.

3.5 Plasma Sheath Convergence Analysis

Unlike the simulations testing Landau damping and the two-stream instability, a plasma sheath is

a bounded system. As explained in section 3.3.3, such a system will exhibit only a finite amount

of errors. Additionally, stability analysis in section 3.2 concluded that the errors experienced by

upwind schemes are relatively independent of the Courant number. Combined, these two facts

ensure that a steady state solution - if it exists - will necessarily be found if the simulation is

pushed through enough time steps if the solution remains stable; the accuracy of the solution then

depends only on the spatial resolution.

A simulation of a near-wall plasma must be able to properly resolve the transition from bulk

parameters to the surface. Electrons, having a larger thermal velocity than ions at the same

temperature, will strike a material surface and thus leave the plasma faster than ions, causing a

net charge differential in a region close to the wall. The negative charge will accelerate ions toward

the wall until the net flux of charge is balanced. This charged region is the Debye sheath (DS),

and is preceded by a “presheath” (PS) region acting as a gradual transition from the quasineutral
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bulk plasma to the sheath entrance. A self-consistent near-wall plasma simulation must therefore

satisfy several key conditions:

1. Spatial scales

• Fine spatial resolution to capture steep gradients in DS, O(λD)

• Simulation box large enough to contain PS, O(100λD)

2. Temporal scales

• Timestep resolving characteristic times of species, O(10−1ω−1
ps )

• Long simulation times to reach steady state or resolve transient behavior, O(µs)

In order to demonstrate the Vlasov-Poisson algorithm’s ability to satisfy these constraints,

the model was modified to include an absorbing wall at the boundary and physical units. The

convergence of the steady state solution was analyzed by performing grid refinement.

3.5.1 Near-Wall Plasma Model

The plasma as described by Eqs. 3.14-3.16 is numerically treated with finite differences as shown

previously. However, in contrast to the Landau damping and Two Stream Instability test simula-

tions, the domain x = [0, L] is bounded with a grounded wall at x = 0, while the plasma is held

constant with bulk parameters at x = L. In principle all plasma species - ions, electrons, and neu-

trals - can be modeled together, but in order to avoid the significant computational cost of resolving

electron motion, electrons are here assumed to be a background fluid following the Boltzmann re-

lation. The Poisson equation under this assumption becomes nonlinear (Eq. 2.7) and is solved

iteratively. Additionally, in order to further relax numerical complexity, neutrals are assumed to

be a uniform background population, and the simulation is constrained to the electrostatic case in

order to reduce the problem to 1D1V.

As an example calculation, the Vlasov-Poisson model is applied to a helium plasma at divertor-

relevant conditions. The domain size, L, was chosen to be 2cm - large enough to resolve the

transition region from stationary bulk conditions to the surface. The initial plasma parameters

are summarized in Table 3.4. The fourth-order Runge Kutta and fourth-order upwind schemes are

once again utilized for the finite difference discretization.
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Table 3.6: Simulation parameters for the near-wall plasma sheath test.

Ions (He) Electrons

Mass (kg) 6.646× 10−27 9.11× 10−31

Temperature (eV) 10 10
Density (m−3) 1.0× 1019 1.0× 1019

3.5.2 Source Terms and the Collision Integral

The wall at x = 0 acts as a perfect particle sink. It follows that there must a source included

to balance flux to the walls if particle density is to be conserved and steady state reached. A

straightforward approach toward both solving the collision integral and including source terms is

the BGK collision operator (see section 2.2), which takes the form:

(∂fs
∂t

)
coll

= νbgk(fM − f(x, v, t)) (3.30)

where f(x, v, t) is the velocity distribution being modified, fM is a background or “target” distri-

bution function, and νbgk is the collision frequency. The exact forms of fM and νbgk depend on the

collisional process; for example, for electron-impact ionization νbgk is nn〈σv(Te)〉, with the density

of background neutrals nn. To a first approximation, sources and collisions can be combined into a

single collision frequency with a uniform background distribution fM . This approximation is based

on the assumption that the net result of collisions in a plasma is to cause equilibration between the

colliding species, thereby relaxing the plasma back toward Maxwellian conditions [59]. The colli-

sion operator under this assumption is often called a BGK “relaxation” term. While simplistic,

the approximation has yielded results in good agreement with both experimental data [60, 61] and

fluid models [11]. Because the goal of this section is to establish the ability of the Vlasov-Poisson

algorithm to reach steady state and converge to a solution, the simplicity is considered adequate.

Since νbgk is being treated as a net collision frequency, it can only be understood as an approx-

imation of plasma collisions. Following the method used by Coulette [60], an order of magnitude

estimate can be obtained by using realistic reaction cross sections. The cross sections for electron-

impact ionization [62] and charge exchange [63] were found and the reaction rates were calculated,
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assuming a uniform background neutral density. The cross sections are shown in Fig. 3.14.

Figure 3.14: Ionization and charge exchange cross sections for He.

The charge exchange and ionization reaction rates with these cross sections and the parameters

shown in Table 3.4 were calculated to be 〈σv〉ce = 1.5×10−12m3s−1 and 〈σv〉ion = 1.4×10−15m3s−1,

respectively. Assuming a uniform neutral background at the same initial conditions, the collision

frequency is thus νbgk = 1.5 × 107s−1, or νbgk ≈ 7.67 × 10−3ωpi. Based on these calculations, a

relaxation frequency on the order of 10−3ωpi was chosen for the sheath simulation. Note that this

value was computed with bulk conditions; because ion temperatures and densities vary through the

presheath and into the sheath, the value 7.67 × 10−3ωpi acts as an upper limit on the relaxation

frequency for the considered processes.

3.5.3 Numerical Results and Convergence Analysis

In order to verify that the method described previously will converge to a steady condition, a test

simulation of a plasma sheath was performed. The IVDF was initialized as a uniform Maxwellian

in a domain of length L = 2cm with a wall at x = 0 and bulk conditions at x = L, and initial

parameters as shown in Table 3.4. As no plasma exists inside the wall, a Dirichlet boundary

condition was imposed at x = 0 with f(x < 0,~v) = 0. The plasma was allowed to evolve through

1µs with timesteps ∆t = 10ps, which was sufficiently small so that the stabilitiy condition was

satisfied.
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Steady State

As an initial test, the simulation was performed on a relatively coarse grid (Nx = 1000; ∆x ≈ 2.7λD)

in order to verify that steady state is achieved. Note that the size of the unmagnetized Debye sheath

is on the order of the Debye length. From the parameters in Table 3.4, λD = 7.431× 10−6m; this

suggests poor resolution of the plasma sheath. The initial and final phase spaces are shown in Fig.

3.15, which illustrates the ions being accelerated toward the wall near x = 0. In order to verify

that steady state has been reached, the potential at the center of the domain as a function of time

is presented in Fig. 3.16. The theoretical floating potential, given by:

φf =
Te
2
ln
( mi

2πme(1 + Ti/Te)

)
(3.31)

yields a value of φf = 31.84. Fig. 3.16 shows that the potential in the plasma is near this value -

the drop over time is due to the slight decrease in density at x = L/2. The potential can be seen

to level off after t ≈ 0.5µs, suggesting that the system has reached a steady solution.

Convergence Test

While a steady state solution has been verified to exist, the reliability of the solution remains

unknown. Section 3.3 demonstrated that the upwind schemes are indeed convergent - that is,

as ∆x approaches zero the solution becomes exact. It follows that since the plasma sheath has

a steady state, the solution will converge to a true solution if the grid is refined sufficiently. In

order to test for the convergence of the plasma sheath solution, the spatial resolution was increased

and the electrostatic energy (see section 3.4.1) was calculated at the end of each simulation. The

result is plotted in Fig. 3.17. Note that the number of velocity grid points is held constant at

Nv = 120; refining the velocity grid has negligible effects on the convergence of the scheme because

the solution is limited most strongly by the steep spatial gradients near x = 0. As the spatial grid

is refined, the sheath becomes better resolved and the potential φ is calculated closer to the wall,

increasing the energy in the system. The energy reaches an asymptotic limit around a grid size of

Nx = 4000, corresponding to a grid size of ∆x = 0.67λD.

Using the refined grid, the features of the plasma sheath can be analyzed. Fig. 3.18 presents
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(a) t = 0s (b) t = 0.04µs

(c) t = 0.16µs (d) t = 0.36µs

(e) t = 0.52µs (f) t = 1µs

Figure 3.15: The 1D1V velocity distribution shown with a grid resolution of Nx = 1000. The
grounded wall at x = 0 acts as a sink, while the BGK operator both acts as an ion source and

drives the system toward thermal equilibrium.
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(a) Potential at x = L/2 over time (b) Potential across domain at t = 1µs

Figure 3.16: The electrostatic potential, φ, at the center of the domain (x = L/2 = 1cm) (a) and
the plasma potential across the domain at t = 1µs (b).

the evolution of the IVDF from the wall to the plasma bulk. The relaxation operator causes the

IVDF to become strongly asymmetric in the presheath, but the asymmetry is decreased through

the sheath; a similar result has been found in Coulette’s simulations [60]. The ions are accelerated

to V ≈ 2.2V th, showing agreement with the theoretical value of the the speed of ions impacting

the wall with Te = Ti [64].
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Figure 3.17: Convergence analysis of the plasma sheath equilibrium test. The plot shows the
integral of the electrostatic energy in the simulation domain at t = 1µs. As the grid size is

decreased, the sheath becomes better resolved. The energy reaching an asymptotic limit as the
sheath becomes more accurate is evidence of the convergence of the numerical scheme.

Figure 3.18: IVDF evolution from wall (x = 0) to plasma bulk. The BGK collision operator
extends the low-energy tail of the accelerating distributions in the presheath.
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Chapter 4

Modeling of Plasma-Material
Interactions by Dynamically Coupling
Boltzmann and BCA Codes

Three key physical components play a major role in plasma-surface interactions: (1) the plasma at

the near surface, (2) the material response to the plasma, and (3) the effect of the wall’s response

on the plasma. The first component may be treated with the kinetic plasma model described in

Chapter 3, which is capable of calculating velocity distributions of ions, neutrals, and electrons

up to the material wall. The surface itself is often treated as a separate problem, but the plasma

and the behavior of the material walls are coupled. Furthermore, because both impurities and

the plasma itself may be far-from-equilibrium, a kinetic description of the material’s effect on the

near-wall plasma is necesary.

A method of treating plasma-material interactions through the dynamic coupling of a Eulerian

plasma solver and a BCA surface model, fractal-TRIDYN, is presented in the following chap-

ter. The model is capable of dynamically accounting for phenomena such as material sputtering,

backscattering, and implantation with both mono-component and multi-component targets, along

with their effects on the structure of the near-wall plasma. The plasma solver calculates the IEAD

impacting the wall, while TRIDYN samples discrete particles from the provided distribution in

order to calculate the IEADs (Ion Energy-Angle Distributions) of sputtered and reflected particles.

Communication between the two models requires an accurate energy distribution at the material

surface as input to TRIDYN and numerical density estimation techniques to reconstruct continuous

distributions from the discrete data predicted by the BCA model.

This chapter first describes density estimation techniques, which are necessary for converting

the discrete data provided by the BCA code to a continuous distribution that can be used in the

Boltzmann plasma model. The coupling methodology and the statistical validity of the density

estimation techniques are analyzed first with known and tractable distributions, followed by direct

application to TRIDYN’s output, with the goal of selecting the optimal density estimate by mini-
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mizing error and computational cost. Example simulations of the coupled Boltzmann-BCA model

applied to a He plasma incident on a Be wall are reported in section 4.5, intended as proof that

the coupled codes work as intended.

4.1 Estimation of Density Functions

4.1.1 Density Estimation of a Random Sample

Given a random sample of n observations, (X1, X2, ...Xn), a probability density function (PDF) f

is the function that determines the underlying density of points, where the PDF f has the property:∫
f(x)dx = 1. Density estimation is thus the process of calculating the PDF from a finite sample

of observed data. The earliest form of a density estimate is the histogram: observations Xi are

sorted into bins, where each bin defined as [x0 +mh, x0 + (m+ 1)h] for m ∈ Z with a bin width h

and bin origin x0. The PDF f̂ under the histogram estimation may then take the form:

f̂(x) =
1

n
× number of X in bin x

width of bin x
(4.1)

Histograms are straightforward to implement, but they are necessarily discontinuous and improper

bin width selection can either completely obscure features of the underlying PDF or cause small

features to appear more significant. Additionally, while histograms may be extended into higher

dimensions, problems of the bin width and origin selection are only amplified as the number of

dimensions increases. For visualization purposes histograms remain useful, but the problems asso-

ciated with them have nevertheless driven research into alternative density estimation techniques.

Modern density estimation techniques may be split into two main approaches: parametric and

non-parametric. Parametric density estimates assume the PDF may be fitted by some parametric

family of functions, and the parameters required to match the data are found through maximization

of likelihood functions [65]. As an example, assuming that the shape of the underlying density of

observations Xi can be approximated by a finite sum of Gaussian distributions is the basis of the

Gaussian Mixture model; the shape of f is predetermined, and the mean and variance of each

Gaussian are the unknown quantities that must be iterated. Parametric density estimates were

reviewed in [66], with mixture estimation techniques summarized in [67] and [68]. In contrast,
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nonparametric estimates assume that an underlying distribution exists, but no strict form of the

PDF is forced. The histogram can accurately model any generic distribution as the number of

samples n→∞ without making any assumption about the data, and it is therefore a nonparametric

estimate. While the histogram was devised much earlier, earnest research into nonparametric

density estimation, and specifically kernel density estimation, was started in the 1950s [69]. A

widely cited overview of density estimation for both parametric and nonparametric approaches is

Silverman’s book [70], which details many of the methods presented in this section. Further detail

with applications to statistical problems is presented in [71]. A summary of divergence metrics for

density estimates is included in [72]. For further information, the reader is referred to [73, 74].

Both parametric and nonparametric density estimation are heavily researched subjects in statis-

tics, having applications in economics, archaeology, geography, and machine learning, among many

other fields [75]. Parametric methods can be both computationally simple and straightforward to

implement relative to nonparametric methods, but the latter can be applied to an arbitrary data

set without having any prior knowledge of the shape or behavior of the underlying distribution

function. Two common density estimation techniques are presented in the following sections: the

parametric Gaussian Mixture Model (GMM) and the nonparametric Kernel Density Estimation

(KDE).

4.1.2 Gaussian Mixture Model

Mixture modeling is a form of unsupervised learning in which the underlying density of a discrete

data set is approximated with fits to a series of prescribed distributions, and predictably the GMM

utilizes a series of Gaussian distributions. A benefit of the GMM model is the ability to fit to

a data set that has distinct groups; each group can be fit to a Gaussian with a separate mean

and variance, allowing the multimodality of a distribution to be captured. While the model comes

with the obvious constraint of assuming that a generic data sample will be a sum of Gaussian

distributions, the assumption is widely applicable due to the central limit theorem.

In order to construct a PDF from a data sample, the GMM is parametrized by the component

weights w, the component means µ, and the variance σ. For a sample with K components, the kth

component has an associated mean and variance of µk and σk, respectively, and the component
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weights are constructed such that
∑K

i=1wi = 1. In the one-dimensional case, the estimated PDF

(f̂) may then be constructed with:

f̂(x) =

K∑
i=1

wiN (x|µi, σi)

N (x|µi, σi) = 1
σi
√

2π
exp −(x−µi)2

2σ2
i

(4.2)

In order to estimate the values of µi and σi, GMM may be paired with an Expectation Maxim-

imization (EM) algorithm, which is an iterative process that maximizes the probability of observed

data [67, 76].

(a) Gaussian Mixture Model (b) Kernel Density Estimation (Gaussian kernel)

Figure 4.1: Illustration of how density estimation is performed with the Gaussian Mixture Model
(a) and Kernel Density estimation (b). Fitting was performed on 100 data samples drawn from a
bimodal Gaussian distribution. In (a), the dotted lines are the two Gaussian profiles predicted by

the GMM estimator. In (b), a Gaussian kernel is fit around each data point. In both cases the
solid line is the estimated PDF, which is the summed contribution of each component.

4.1.3 Kernel Density Estimation

Kernel Density estimation (KDE), also known as the Parzen-Rosenblatt window method, is a fully

nonparametric process - no assumptions are made about the data, and instead the shape of f̂

is constructed by fitting a kernel to each data point in the sample. The shape of the kernel is

variable, but the most widely used kernels are PDFs themselves and thus have the property that

their integral is equal to 1,
∫∞
−∞K(x)dx = 1. With a given kernel, f̂ can be constructed by setting
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the bandwidth h (also called the window width),

f̂ =
1

nh

n∑
i=1

K(
x−Xi

h
) (4.3)

where n is the sample size. Thus the KDE method is a sum of “bumps”, with the shape of

each bump determined by K and the width determined by h. The choice of kernel modifies the

shape of the constructed PDF, but ultimately has a minor effect on accuracy (which depends

much more strongly on the bandwidth); the choice should instead be made based on such traits as

desired smoothness (differentiability) and computational efficiency [70]. Several kernel options are

presented in table 4.1.

Table 4.1: Possible kernels for kernel density estimation. Expressions courtesy of [70].

Kernel K(x)

Gaussian 1√
2π

exp (−1
2x

2)

Epanechnikov 3
4(1− 1

5x
2) for |x| <

√
5

Tophat 1
2 for |x| < 1

Bandwidth Selection

The bandwidth is analoguous to the bin width in a histogram, and as such the density estimate

f̂ depends strongly on the value chosen for h. Choosing a bandwidth can be done from a purely

subjective standpoint - for example, one may guess and manually change the value until the distri-

bution looks desirable. However, automatic methods that use properties of the data to calculate a

bandwidth also exist. Indeed, for many applications including the present work, it is impractical

to manually refine h each time a density estimate must be calculated.

A popular choice of automatic bandwidth calculation is Silverman’s “rule of thumb” [73]. The

rule was developed from the perspective of minimizing the mean integrated square error (MISE),

which is a measure of the discrepancy between f̂ and the true PDF, f :

MISE(f̂) = E
∫

(f̂(x)− f(x))2dx (4.4)
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where E denotes the expectation. MISE acts as a global measure of accuracy on f̂ . Through

properties of the expectation, MISE can be reduced to a sum of the integrated squared bias and

integrated variance

MISE(f̂) =

∫
[E f̂(x)− f(x)]2dx+

∫
varf̂(x)dx (4.5)

Silverman minimizes this form to calculate an optimal bandwidth, hopt [70],

hopt = k
−2/5
2

[ ∫
K(x)2dx

]1/5[ ∫
f ′′(x)2dx

]−1/5
n−1/5 (4.6)

where k2 =
∫
x2K(x)dx. As the minimization procedure is most tractable in the case of the Gaus-

sian distribution, the Gaussian kernel is used for Silverman’s rule, revealing a succint expression

for hopt:

hopt = 1.06σn−1/5 (4.7)

where σ is the standard deviation of the data. Silverman’s rule has been shown to be an acceptable

choice for a wide range of density estimates, but it is not exact and can improperly resolve more

complicated distributions - a bimodal distribution may be oversmoothed by the factor 1.06, for

example. Silverman also performed the minimization procedure for other kernels and extended the

expression into arbitrary dimensions:

hopt = A(K)n−1/(d+4)σi (4.8)

where d is the number of dimensions being considered and A(K) is a parameter dependent on the

kernel being used. Suggested values of A(K) are shown in table 4.2, as computed by Silverman.

The standard deviation is computed along the ith dimension. If the multidimensional bandwidth is

treated as uniform, σ may be treated as an average deviation of the i dimensions. Some applications

of kernel density estimation allow a separate bandwidth to be applied along each dimension, but

such methods were not utilized in the present work.
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Table 4.2: Kernel and bandwidth selection factor A(K), generalized for d dimensions. cd is the
volume of a sphere in d dimensions (c1 = 2,c2 = π, c3 = 4π/3). [70]

Multivariate Kernel K(x) A(K)

Gaussian (2π)−d/2 exp (−1
2x

Tx) [4/(2d+ 1)]1/(d+4)

Epanechnikov 1
2c
−1
d (d+ 2)(1− xTx) [8d(d+2)(d+4)(2

√
π)d

(2d+1)cd
]1/(d+4)

4.1.4 Discrepancy Measurements: MISE and Relative Entropy

The value of MISE, also known as the L2 risk function, is the most widely used metric for

comparing a density estimate f̂ to the true distribution f . MISE is simply the expected value

of the integrated squared error (ISE), the latter of which can be directly calculated if the true

underlying distribution is known,

ISE(f̂) =

∫
(f̂(x)− f(x))2dx. (4.9)

As opposed to the squared error, which provides a point-wise discrepancy analysis, both MISE

and ISE are global error estimates. They are commonly used in statistical analysis due to their

tractability. In future sections, “error” will refer to ISE unless otherwise specified.

The Kullback-Leibler divergence, also known as relative entropy, is another discrepancy mea-

surement that determines how much two distributions diverge from one another. Notably, the

divergence is asymmetric and as such it is not a statistical metric, but it may be used to under-

stand how much two distributions will deviate in behavior. A divergence value of 0 indicates the

distributions behave identically. One possible interpretation of the divergence is the information

loss incurred when using a function estimate f̂ with respect to f ,

DKL(f |f̂) =

∫
f log

(f
f̂

)
dx (4.10)

In the following sections we will use both types of measurements, MISE and Kullback-Leibler

divergence (relative entropy), as quality indicators of the density estimators.
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4.2 Multivariate Density Estimation and Error Analysis

4.2.1 Density Estimation: Python implementations

All simulations utilizing density estimation techniques are performed in Python 2.7 with the

scikit-learn machine learning library [77], and plotting is performed with matplotlib [78]. In the

following tests, kernel density estimation is performed with the package sklearn.neighbors.KernelDensity,

which includes six possible kernels to choose from. The relative tolerance is defaulted to 1× 10−8

and may be set with the rtol parameter, allowing for computational speed to be greatly increased

at the expense of accuracy. While a straightforward implementation of KDE with Ne evaluations

of Np points has computational complexity of O(NeNp), the scikit-learn algorithm utilizes KD

Tree data structures in order to accelerate computation and reduce computational complexity.

Gaussian mixture estimation is performed with the sklearn.mixture.GMM package. While GMM

requires the number of fitting Gaussian distributions to be set as an input and therefore necessitates

some information about the underlying data, the process has been automated by sweeping through

several choices, with the best model being selected based on the minimization of the Akaike1

information criterion [79]. Both KernelDensity and GMM are able to perform multivariate density

estimation.

Univariate Density Estimation

Initial tests were performed in 1D by sampling from three different PDFs: a Gaussian distribution,

a bimodal Gaussian, and an inverse Gaussian (Wald), shown in figure 4.2. 100 random samples were

drawn from each distribution and density estimation was performed using the samples. Accuracy

of the resulting density estimates is thus relative to the true distributions. For the kernel density

cases, Gaussian and Epanechnikov kernels are used, with the bandwidths calculated with equation

4.6.

The Gaussian mixture estimates are predictably strong for the Gaussian and bimodal distri-

butions, closely matching the original PDF with little variation. However, both kernel density

1The Akaike information criterion provides a method for model selection based on the relative quality of different
statistical models for a given set of data.
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(a) Gaussian (b) Bimodal Gaussian (c) Wald

Figure 4.2: Density estimation in one dimension using kernel density estimation (blue and green
lines) and Gaussian mixtures (red lines). The gray filled plots are the exact probability density

functions from which random samples were drawn. The accuracy of the resulting density
estimates are determined by comparison to the true distributions.

estimates more closely resolve the tail of the Wald distribution in figure 4.2c. This is an expected

result - since GMM approximates PDFs by summing together Gaussians, long tails and steep gra-

dients (as for x < 0) are features that a standard Gaussian distribution lacks and will thus be

poorly resolved. Comparing the kernel density estimates, the Epanechnikov kernel more closely

approximates the ampitude of the distributions in all three cases, but the resulting estimates are

less smooth than the Gaussian kernel estimates.

Multivariate Density Estimation

The scikit-learn library allows density estimation to be easily extended into higher dimensions.

In figure 4.3, a two-dimensional Gaussian PDF was initialized and 100 random samples were drawn,

which were used to construct densty estimates. The bandwidths for the kernel methods were

selected with equation 4.8 and the values in table 4.2.

Results similar to those presented in figure 4.2 are seen in the two-dimensional case. Outliers

in the data sample are noticeably weighted more heavily for the kernel density estimates than for

the gaussian mixture, which causes local maxima and “bumps” to appear on the edges of the PDF.

While reliable results were provided with only 100 samples in the one-dimensional case, such a

sample size is less effective in two dimensions, as evidenced by the wide spread shown in all three

density estimates in figure 4.3. The same result was found by both Silverman and Epanechnikov

- the number of samples required to constrain the relative mean squared error to the same value
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Figure 4.3: Two-dimensional density estimation example. 100 samples were drawn from a
Gaussian distribution (a) and used to construct density estimates using a Gaussian kernel (b), an

Epanechnikov kernel (b), and the Gaussian mixture model (c).

69



increases as the dimensionality of the problem increases.

Only minor differences are noticeable between the Epanechnikov and Gaussian kernels, specifi-

cally the spread of the peak. While the values of the bandwidths used for each kernel are different,

the expressions in table 4.2 are derived using the same method of minimizing MISE for the indi-

vidual kernel. Indeed, the choice of kernel in the KDE approach will be shown to have a marginal

effect on the accuracy of an estimate in the following section.

4.2.2 Error Analysis

Univariate Case

Equation 4.9 was used to calculate the integrated squared error for the density estimation techniques

as a function of increasing sample size. Samples were drawn from Gaussian, bimodal Gaussian,

and Wald distributions (figure 4.2). The calculated errors are shown in figure 4.4. The results

correspond to the subjective appearance of the density estimates in figure 4.2: GMM performs better

than both KernelDensity estimates for the Gaussian and bimodal Gaussian distributions, and the

Wald distribution is poorly resolved by the Gaussian mixture technique. Nevertheless, figure 4.4c

shows that all three methods struggle with the Wald distribution; the lowest ISE for the Wald test

is an order of magnitude higher than the bimodal test and almost two orders of magnitude lower

than the standard Gaussian example.

Multivariate Case

The effect of dimensionality on error was also examined by calculating the ISE and Kullback-

Leibler divergence with increasing sample sizes one to three dimensions. Direct comparison between

dimensions is complicated by the fact that ISE is not a dimension-free quantity, and it further

depends strongly on the scale of the grid being used. Epanechnikov treated this issue by introducing

an ISE scaling factor,
∫
f2d~x, to construct a dimensionless quantity for comparison:

ISE(f̂) =

∫
(f̂(~x)− f(~x))2d~x∫

f(x)2d~x
(4.11)

The error tests were performed with a standard Gaussian distribution centered at x = 0, as seen
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(a) Gaussian

(b) Bimodal Gaussian

(c) Wald

Figure 4.4: Integrated squared error for the univariate density estimates as a function of sample
size. The true distributions correspond to those shown in figure 4.2.
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in figures 4.2a and 4.3a. The dimensionless ISE was used, while the Kullback-Leibler divergence

was calculated from equation 4.10. The grid sizes were kept uniform across the three tests: Nx = 60

one dimension, Nx, Ny = 60 in two dimensions, and Nx, Ny, Nz = 60 in three dimensions. The

results are reported in figure 4.5.

Increasing the dimensionality of the problem both increases amount of error in the system and

decreases the rate of convergence. For example, increasing the sample size from 10 to 100,000 in

the one-dimensional Gaussian KDE case decreases the error from 20% to 0.008% - a change of over

three orders of magnitude. In three dimensions, the same density estimate ISE decreases from 30%

to 0.3% only. The Gaussian Mixture model, which is well-suited to fitting a unimodal Gaussian,

has a less drastic decrease in convergence rate. However, while noticably better with large sample

sizes, the Gaussian mixture performs worse in all three dimensions at a low sample size than the

KDE methods; it only performs better than the KDE estimates when the sample sizes is greater

than 15, 30, and 100 in one, two, and three dimensions, respectively. The Kullback-Leibler

divergence calculations show a similar trend to the ISE.

4.2.3 Computational Considerations

Density estimation must be performed frequently to construct sputtered and reflected velocity

distributions in order to couple TRIDYN to the Boltzmann plasma model, and therefore the com-

putational efficiency of each algorithm is of practical importance. The above error tests also

recorded the computational speed of each density estimate as a function of sample size, shown in

figure 4.6. The elapsed time for density estimates increases with both the number of samples and

the dimensionality of the problem, with approximately an order of magnitude increase per dimen-

sion. Notably, the cost of the GMM model only marginally increases as the number of dimensions

increase.

The Gaussian kernel is two orders of magnitude slower than both the Epanechnikov kernel

and the GMM estimate at a sample size of 105. This is due in large part to the presence of an

exponential factor (see table 4.2), causing each call to the Gaussian kernel to cost more CPU time

than the Epanechnikov kernel.
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(a) L2 Norm (Integrated Squared Error)

(b) Kullback-Leibler Divergence

Figure 4.5: Integrated squared error (a) and Kullback-Leibler divergence (b) for the density
estimates as a function of sample size. Samples were drawn and estimates were fitted in one

through three dimensions. The solid lines are the one-dimensional calculations, the dashed lines
are two-dimensional, and the dotted lines are three-dimensional.
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(a) One Dimensional

(b) Two Dimensional

(c) Three dimensional

Figure 4.6: Computational time for the density estimates as a function of sample size. Samples
were drawn from the standard Gaussian distribution in one (a), two (b), and three (b)

dimensions.
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4.3 Application to TRIDYN

4.3.1 TRIDYN Surface Model

The specific BCA model chosen to model the surface was Fractal-TRIDYN [80, 18], a modified

version of TRIDYN that includes updated output files and a fractal description of the surface,

allowing for possible surface morphology affects to be described. While the fractal functionality

is possible, it was not used in the present work. TRIDYN is a frequently used tool for modeling

sputtering yields and distributions [81, 82, 83]. The sputtering model follows the BCA method

described in 2.3.2: ion bombardment is described by a sequence of binary collision events, with

both the initial ion and recoil atoms being tracked. Ions that do not have enough energy to

penetrate the surface are reflected. Recoil atoms have a starting energy of T − Eb, where T is

the nuclear energy transfer and Eb is the bulk binding energy, with the condition that T < Ed,

where Ed is the displacement threshold energy of the surface atoms. A particle is ”stopped” in the

bulk if its energy falls below the cutoff energy Ec. If a recoil atom gains enough energy through

a collision to overcome the surface binding energy and move past the position that designates the

surface, it is considered sputtered. This is true of both implanted ions and surface atoms, which

allows recycling to be analyzed alongside sputtering.

As described in section 2.3, surface response to ion bombardment is crucially dependent on the

interaction potential. TRIDYN uses the screened Coulomb potential:

V (R) =
ZaZbe

2

4πε0R
φ(Ra ) (4.12)

With the Kr-C screening function:

φ(ξ) = 0.191e−0.279ξ + 0.474e−0.637ξ + 0.335e−1.919ξ (4.13)

where ξ = R/a. In this case, a is the screening distance defined by Firsov, equation 2.36. With

this description the distance of closest approch for two interacting particles can be defined as Rc:

1− V (Rc)

Ec
−
( p

Rc

)2
= 0 (4.14)
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Ec is the center of mass energy, mb
ma+mb

E.

Inelastic energy loss is treated as an energy loss term separate from the collisions, which aligns

with the method of splitting stopping power into nuclear and electronic stopping outlined previously.

Specifically, the electronic stopping cross section is modeled with Lindhard and Scharff’s approach,

Eq. 2.19. TRIDYN further splits electronic stopping into local and nonlocal energy loss. The

former is considered the frictional force that slows down particles, with the energy loss defined as

∆Enl = (λ− t)nSel (4.15)

where λ is the mean free path approximated as a function of density, λ = n−1/3 and t is the

asymptotic deflection point. Local energy loss in TRIDYN is calculated using the formula developed

by Oen and Robinson [84].

As output, TRIDYN provides a discrete sample of sputtered and reflected particle energies

and angles with respect to the (vx, vy, vz) axes. The discrete data set must be converted into a

continuous three-dimensional velocity distribution to be coupled to the Boltzmann plasma solver.

As an example, density estimation is performed in the following section on sputtered particle data

calculated by TRIDYN, which was run with He incident on W at an energy of 1keV . For the

purposes of the present work, the x-direction is oriented normal to the surface. Note that the PDF

is therefore restricted to vx > 0 since sputtered particles are necessarily directed away from the

surface.

4.3.2 Method Selection Criteria

In section 4.2, the most suitable density estimate for a standard Gaussian was chosen based on the

exact ISE, the Kullback-Leibler divergence, and computational time. However, calculating the

exact error with equation 4.9 requires knowledge of the underlying distribution function. An exact

distribution of sputtered and reflected particles is unknown, making the same criteria impossible

to apply to the density estimation of TRIDYN’s output. Instead, a purely data-based estimation

of MISE may be calculated with bootstrapping [85]. An optimal model of estimating f(~v) will

thus be chosen based on two parameters: (1) bootstrapped MISE and (2) the computational

considerations shown previously.
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Bootstrapped MISE

The bootstrapping method is a technique which estimates desired properties of a sample by re-

placing the true value with its estimate. The original random sampling process is imitated by

drawing B bootstrapped samples from the original n samples (X1, X2, ...Xn) with replacement

and constructing bootstrapped density estimates f̂∗B. By the law of large numbers, as B → ∞,

B−1
∑B

j=1 f̂
∗
j → f̂ , and similarly f̂ → f as n→∞. For proof of the convergence of bootstrapping

methods, the reader is referred to [86, 87].

The process for calculating bootstrapped MISE as described by Faraway and Jhun [88] is as

follows:

1. Generate n random samples, X1, X2, ...Xn from the known distribution or physical process

that must be estimated

2. Estimate the density function of the samples, f̂

3. Draw B bootstrap samples (X∗1 , X
∗
2 , ...X

∗
n) from (X1, X2, ...Xn) with replacement

4. Generate B bootstrap estimates f̂∗B from (X∗1 , X
∗
2 , ...X

∗
n)

5. Define the bootstrapped MISE, denoted M̂ISE, as:

M̂ISE =

∑B
j=1

∫
(f̂∗j (~x)− f̂(~x))2d~x

B
∫
f̂(~x)2d~x

(4.16)

where the integral in the denominator is the normalization factor (see section 4.3).

If the density estimates used to construct f̂ and f̂∗B are convergent, the estimate of M̂ISE →

MISE, and an estimate of the error may therefore be calculated without any knowledge of the

true distribution from which the original samples were drawn.

Figure 4.7 compares the ISE as calculated in section 4.3 to the bootstrapped M̂ISE with

20 bootstrap samples drawn from the original samples. Even with a small number of bootstraps,

the M̂ISE calculation shows good agreement with the exact ISE. Note that the calculation was

sufficient with a small number of bootstrap samples because the true distribution was a Gaussian,
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Figure 4.7: Integrated squared error compared to the bootstrapped mean integrated squared error
in three dimensions. The solid line is the M̂ISE estimate, and the dotted lines are the ISE

shown in figure 4.5.

and a larger bootstrap sample may be needed to ensure that the calculation converges for a more

complicated or unknown distribution.

4.3.3 TRIDYN Density Estimate Error Calculation

In order to select an optimal method for velocity distribution estimation, density estimates were

applied to TRIDYN velocity data and the M̂ISE was calculated as a function of sample size.

Particle sputtering was simulated in TRIDYN utilizing He incident on W at a 60 degree angle

of incidence. The output file contained approximately 40,000 sputtered particles. Sample sizes

ranging from 10 to 10,000 were drawn from the sputtered data to calculate M̂ISE, and density

estimates were performed using kernel densities and the Gaussian mixture model. As the output

of TRIDYN is smooth and unimodal, 50 bootstrapped samples were considered sufficient for the

calculation. A velocity grid ranging from (−8000, 8000)m/s was used in each dimension, with a

grid size of Nx, Ny, Nz = 60. There is no restriction on the grid size for density estimation; however,

as with the finite difference methods shown in Chapter 3, increasing the grid size incurs a drastic

increase in computational cost.

The Gaussian mixture model is constrained to using a finite sum of Gaussian distributions,

and the limitations of this approach are evident in figure 4.8. The large error associated with

small sample sizes in the Gaussian mixture can be attributed to the presence of both a tail in the

data and skewness in the Vx-direction, both of which deviate from Gaussian distributions. The
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Figure 4.8: M̂ISE calculated with TRIDYN sputtering data of He incident on W with a 60
degree angle of incidence. Sample sizes range from 10 to 10,000.

KDE methods do not rely on a parametric fit and can resolve these features with a smaller sample

relative to the mixture model.

4.3.4 Method Selection

The results shown in figure 4.8 along with sections 4.4.3 and 4.4.4 provide constraints on the choice

of density estimator. In order to constrain the error to a minimum of 10%, a sample size of 100 is

needed for the KDE methods, while the Gaussian Mixture requires between 500 and 1000. Slices

of the estimated velocity distributions using each method using 1000 samples are shown in figure

4.9. However, even at this level of error, the GMM approach diverges in the location of the peak and

the spread of the data from the KernelDensity examples, which are almost indistinguishable from

each other.

Computational considerations also play a role in selecting a density estimate. Figure 4.6 shows

that the Gaussian kernel in KernelDensity is an order of magnitude slower than both the Epanech-

nikov kernel and the GMM model starting at a sample size of 100, and the discrepancy only grows

larger as n increases. Since the error between the two kernels is negligible, the Gaussian kernel

is considered a weaker choice. Computational cost of the Epanechnikov kernel and GMM vary by

a maximum of a factor of four; however, note that the cost of GMM depends on how many mix-

tures were attempted. If the number of Gaussians needed to calculate the density estimate is

known, as was the case in figure 4.6, only one call to GMM is necessary. In the case of estimating

TRIDYN’s output the number of Gaussians needed is unknown. The routine was optimized by test-
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(a) Gaussian KDE

(b) Epanechnikov KDE

(c) Gaussian Mixture

Figure 4.9: Two dimensional slices of the density estimated velocity distributions with (a) a
Gaussian KDE, (b) an Epanechnikov KDE, and (c) a Gaussian Mixture model. The left column
shows Vx-Vy data (X-Y axes), the middle column is the Vx-Vz slice, and the rightmost column is

the Vy-Vz slice. A sample size of 1000 was used.
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ing eight separate mixtures, increasing the computational time proportionally. The Epanechnikov

KernelDensity routine and GMM are therefore considered approximately equal in terms of com-

putational cost. Since the Epanechnikov kernel converges faster with sample size than GMM and is

computationally faster than the Gaussian kernel, an Epanechnikov KDE using the KernelDensity

library is considered the optimal estimator for the purposes of this work. Figure 4.10b shows one

example of three-dimensional output from TRIDYN using the Epanechnikov kernel, along with the

discrete data in figure 4.10a as comparison.

(a) Raw TRIDYN Output (b) Kernel Density Estimate

Figure 4.10: Example of three-dimensional density estimation. TRIDYN provides a finite set of
particles (a), which is used to construct a continuous PDF estimate (b). The density estimation
was performed with the KernelDensity model using an Epanechnikov kernel. Mayavi was used

to visualize 3D data in (b) [89].

4.4 Boltzmann-BCA Coupling

Coupling of the Boltzmann plasma model with a model of the material surface must solve two issues:

(1) the domain size matching, and (2) communication. The physical domain of the material module

spans over the interatomic distance (angstrom) to a maximum size of the order of the particle range

(less than a micrometer), which is still smaller than the size of one cell of the Boltzmann solver.

Hence, the BCA code effectively acts as an independent model for the calculation of the boundary

conditions of the plasma.

In the present model, charged species (electrons, plasma ions, ionized material returning toward
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the wall) are always charge-neutralized upon contact with the wall. The neutralization process

occurs at spatial scales depending on the surface binding energy, typically of the order of a few

nanometers, which is much less than the characteristic size of the Debye sheath and magnetic

presheath. As a consequence, a grounded metallic wall may be assumed to behave as an ideal

charge-neutralizer for all charged species:

f±(t, x,v) = 0 : x < 0, x > L (4.17)

where the subscript ± indicates the distribution of charged species. All the charged species (ex-

cepting electrons) coming in contact with the metallic wall and returning back to the plasma are

therefore turned into the corresponding neutral species.

In addition to sputtering, a portion of incident particles will lack sufficient energy to penetrate

the surface and will instead be reflected. The reflection process modifies both the particle number

and the energy distribution of the population. Reflection is conventionally quantified by two con-

stant coefficients, the particle reflection coefficient and the energy reflection coefficient. However,

the reflection process depends on the energy of the impacting particles, and should be described

with energy-dependent distribution rather than constant coefficients. Reflection is calculated on

the fly by the BCA module, and the proposed model therefore retains the desired energy-dependent

behavior.

4.4.1 TRIDYN Input from Boltzmann Model

TRIDYN is coupled to the Boltzmann model by using the velocity distribution of particles lost

to the wall at each timestep as the distribution of particles incident on the surface. As velocity

distributions are calculated in the present Boltzmann model, a conversion from f(~v)→ f(E, θ) is

performed.

At each timestep, the distribution of particles leaving the plasma volume and absorbed by the

wall as calculated by the Boltzmann model is passed to the BCA code, Fractal-TRIDYN. The code

runs a number of Monte Carlo particle histories (Nh) large enough to have convergence on the

distributions of the backscattered species. TRIDYN includes a built-in error estimate based on the

fluence of particles and Nh, with suggested values ranging from 104−106. A low Nh causes multiple
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problems in TRIDYN depending on the sputtering yield: if a material has a high SY, each incident

particle can erode a large portion of the simulated surface and an error flag is triggered. For the

purposes of coupling to the Boltzmann model, however, the number Nh of depends not only on

the numerics but also the physics: a material with a low SY and low Nh may result in a simulated

sputtering yield of zero, which is a misleading result: If the incident particle density is large, the

number of sputtered particles even at low sputtering yields can be substantial. A simulation with

consistently low sputtering yields and a small Nh will suggest that there are no impurities in the

system.

The results of section 4.3 also place restrictions on the number of particle histories TRIDYN

needs to run in order to achieve a valid sample size. In order for at least 1000 particle samples to

be available, the number of histories Nh is defined as Nh = 1000/SY , where SY is the sputtering

yield. Materials with low sputtering yields require more particles and thus a longer simulation in

order to obtain a sample large enough for a valid density estimate.

4.4.2 Boltzmann Input from TRIDYN

With the discrete sample of particles provided by the BCA calculation, density estimates of

the reflected and sputtered particles (f̂(~v)s and f̂(~v)r, respectively) are constructed using the

KernelDensity module of the scikit-learn library in Python. Per section 4.4, the Epanechnikov

kernel was used in future calculations. Once the estimated f̂(~v) is constructed, it will be in the form

of a PDF with a total density of 1. To ensure that the proper density of particles is being sputtered

and reflected, the output density ns,out may be calculated from the definition of sputtering yield:

ns,out = SY × nin, where nin is calculated from the distribution used as input to TRIDYN with

equation 2.5.

ns,out = SY × nin

f(~v)s,out = f̂(~v)s × ns,out
(4.18)

The final velocity distribution estimate f(~v)s,out is then passed as a boundary condition to

the Boltzmann plasma model at the location of the wall. The reflected velocity distributions are

treated identically, with SY being replaced with the reflected yield, RY .
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4.5 Coupled Boltzmann-BCA Simulations of Plasma-Material

Interactions

Here the methodology presented in the previous sections is applied to two cases: section 4.5.1 details

the study of microscopic erosion of a beryllium wall exposed to an ITER-grade helium plasma

at typical divertor conditions in unmagnetized (1D1V) conditions, and section 4.5.2 extends the

model into 1D3V to treat magnetic fields in DIII-D divertor conditions. The interest in simulating

microscopic erosion of beryllium walls exposed to high-density, high-temperature plasmas is multi-

faceted. On one side, beryllium is the candidate first-wall material of ITER. On the other side,

due to the toxicity of its nano-dust, beryllium can be experimentally simulated at ITER-relevant

conditions at only a few facilities in the world, which makes numerical studies of beryllium erosion

highly relevant. In addition, this metal can retain a large fraction of the implanted gas (up to

35-40%), which poses significant challenges not only for fuel retention, but also in understanding

the erosion mechanisms themselves since the composition of the surface layers dynamically changes

over time during plasma exposure. The plasma ions implanting below the surface are trapped

within the first surface layers, modifying the local composition and morphology and ultimately

affecting the erosion dynamics.

The two coupled codes, namely the Boltzmann solver and Fractal-TRIDYN, allow for a kinetic

treatment of the interaction, including dynamic composition changes of the wall. In order to avoid

the additional complexity of simulating the full SOL, the analysis is limited to the simulation of

the near-wall region (∼1 mm) in both cases. Plasma sheath formation and depletion between two

electrically grounded walls is simulated including four species: He+ (He ions), He-I (He neutrals),

Be+ (Be ions), Be-I (Be neutrals). The plasma is allowed to propagate within a one-dimensional, L

= 1 mm domain in physical space and within ±5vth in the velocity space, where vth is the thermal

velocity of each species: vth =
(
kbTs
Ms

) 1
2
. The values Ts and Ms are the temperature and mass,

respectively, of the species being considered.
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4.5.1 1D1V Unmagnetized Sheath

Helium ions begin with a Maxwellian distribution at nHe+ = 1019 m−3 and THe+ = 10 eV; helium

neutrals are also starting with Maxwellian distribution at same density, nHe−I = 1019 m−3, and

room temperature THe−I = 300 K. The distributions of beryllium Be+ and Be-I are initially set

equal to zero: they evolve during the simulation as determined by the Boltzmann-BCA model. The

simulation evolves for 40 nanoseconds with a timestep of 10 picoseconds. No perpendicular flux of

helium ions from the core region is assumed, so the plasma is not replenished in this simulation.

The only volumetric source generating new plasma ions is electron-impact ionization, which is

however slower than the rate at which He ions leave the domain; as expected, the total particle

density decreases over time.
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(a) 50 ps (1st column) and 10 ns (2nd column).
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Figure 4.11: Phase space plots of each species. From the top: He ions, He neutrals, Be ions, and
Be neutrals.

The beryllium wall is set only on the right boundary of the domain. The left wall is a clas-

sical perfectly-absorbing wall with no sputtering activity. During the simulation, the distribution

functions of all the species impacting on the beryllium wall are passed to Fractal-TRIDYN.

The code solves for the distribution functions of the backscattered species, and it also updates
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Be ions returning to wall

Be ions entering bulk

Figure 4.12: Detail of phase space near the material wall. A portion of the impurity distribution
is ionized close enough to the wall to be pulled back by the sheath.

the material composition. The sputtered material –both beryllium and previously-implanted helium

gas– enters the plasma domain in neutral state. The material is subsequently ionized and begins to

interact with the sheath/presheath region of the plasma. A fraction of ionized particles at higher

energy is able to overcome the sheath potential and enters into the plasma bulk. The fraction at

lower energy is slowed down first, and then accelerated back to the wall by the sheath potential.

The fraction of material ions returning to the wall contributes to self-sputtering.

Figures 4.11a and 4.11b show the phase spaces of each of the four species (He+, He-I, Be+, Be-I)

at time t = 50ps, 10ns, 20ns, 30ns. In the presence of a grounded wall, the more mobile species

(electrons) will reach the wall first and create a negative bias, causing the positively-charged ions

to accelerate in the near-wall region. This transient of formation of the plasma sheath can be seen

from the acceleration of helium ions at the left and right walls in the phase space plots (He+, top

row of each figure). Helium neutrals (He-I) are colder, so they do not move appreciably during the

simulated ion time scale. Ionization acts as the only sink of He neutrals, while the sputtering of

implanted He is a source. At time t = 50ps (early stage of the simulation), beryllium can be seen

to start sputtering from the wall and a small amount is ionizing.

As time progresses, the Be ions have begun forming and drifting away from the wall while

some of the slower ions that formed near the sheath are decelerated and pulled back to the wall, as

illustrated by the detail of the phase space reported in Fig. 4.12. The majority of the sputtered ions
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bulk

sheath entrance: 
V// = Cs

wall

Figure 4.13: Velocity distribution evolution of He+ from the plasma bulk to the material wall.

are created outside the sheath, allowing them to propagate into the plasma bulk almost undisturbed.

The evolution of the velocity distribution of He+ from the plasma bulk to the material wall is shown

in Fig. 4.13. The small peak at the center of the bulk distribution occurs because of ionization:

The He neutrals are at room temperature, so the He-I distribution is a narrow portion of the He+

distribution.
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Figure 4.14: (a) Density and (b) Energy flux over time for each species.

Fig. 4.14a presents the densities of the species. The He neutrals are shown to increase in density

over time, which is caused by the implantation and subsequent sputtering of He from the wall. The

only sink of He neutrals is ionization, and given the fact that neutrals move much more slowly than

the ions, an accumulation of He neutrals in proximity of the wall from sputtering was expected.

Be neutrals, however, decrease in density over the course of the simulation due to the decrease in

sputtering rate. As the He ion density decreases, there are fewer ions impacting the wall and thus
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fewer Be atoms being sputtered. In Fig. 4.14b, it is shown that the power flux to the wall reaches

a value of 0.7 MW/m2 during the simulated transient.

4.5.2 1D3V Magnetized Sheath

The same setup was also simulated with a magnetic field in 1D3V. The plasma was started with

Maxwellian distributions for He+ and He-I and no Be species (Be+ and Be-I) present, and the

system was evolved for 30 ns. Figure 4.15 shows the phase spaces of each species after 30 ns in

the magnetized case. The material module is again attached only to the wall at x/L = 1.0. The

fact that particles will sputter with relatively evenly distributed vy and vz velocities, along with

the fact that TRIDYN does yield sputtered particles with zero velocity, can explain the distinctive

shapes of the Vthy and Vthz distributions.

The effect of the magnetic field is substantial, as seen by comparing Fig. 4.15 to Fig. 4.11b.

Most of the v × B acceleration occurs in the vz dimension since B is almost parallel to the wall

at 86o. Additionally, the velocity of the particles incident on the walls decreases from near 3Vthx

to 2Vthx. The diminished velocity suggests that the sheath decreases in size as the magnetic angle

increases, as predicted by Stangeby [90]. There is a larger density of impurity particles in the

unmagnetized case than in the magnetized case. Due to the diminished perpendicular velocity of

impacting particles, a smaller portion of the distribution will have sufficient energy to be implanted

in the surface when compared to the unmagnetized case. The particles that cannot implant will

instead be reflected, which accounts for the increased He neutral density in the magnetic simulation.

As in the unmagnetized case, Be neutrals begin to appear as the BCA module simulates sput-

tering, and they are ionzied more frequently as they pass from the sheath region to the plasma

bulk. The magnetic field’s effects are also visible in the Be ion distribution - since He ions are

impacting the wall with lower energy, the sputtering yield decreases and fewer Be neutrals enter

the plasma. The integral of the distribution of Be ions is thus smaller in the magnetized case. Both

Be ions and neutrals are symmetric in the Vthy and Vthz dimensions, although a slight acceleration

in vz of the Be ions due to the magnetic field can be seen the magnetized case.
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Wall Erosion

In addition to the phase spaces, a description of erosion was also calculated from the velocity

distributions. The deceleration of ions in the vx direction predictably causes the particles to impact

the wall with less energy. This is quantified by the power flux, qx, which are shown in Figs. 4.16a

and 4.16b for He ions and Be ions, respectively. At the wall (x/L = 1.0), He ions have a power flux

of approximately 2.5 MW/m2 in the unmagnetized case, but is reduced to 1.25 MW/m2 in the

magnetized case. Similarly, the Be ion power flux at the wall decreases from 2 to almost 0 W/m2;

the negligible fluxes in this case are simply due to the fact that most Be ions are forming outside

the sheath and are not decelerated sufficiently to be pulled back.

4.5.3 Computing Times

The plasma model for both 1D1V and 1D3V cases was implemented in Python, with advection steps

fully vectorized using numpy. Fractal-TRIDYN is implemented in Fortran90. Both models were

run on a single core of an Intel i5 2.7 GHz CPU in the present work. Each timestep of the plasma

model required 0.02 seconds in 1D1V (Nx = 128, Nv,x = 128) and 6 seconds in 1D3V (Nx = 100,

Nv,x, Nv,y, Nv,z = 80) on average. With 2.5×104 particle histories the TRIDYN simulation utilizes

3 seconds of computational time. Kernel density estimation using the Epanechnikov kernel averaged

around 0.01 seconds in one dimension and 0.2 seconds in three dimensions, with small variations

due to the available sample size. The total computational time of the simulations presented in

sections 4.5.1 and 4.5.2 was 4 hours and 13 hours, respectively.
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(a) He Ions (b) He Neutrals

(c) Be Ions (d) Be Neutrals

Figure 4.15: Phase space of He ions (a), He neutrals (b), Be ions (c), and Be neutrals (d) in a
1D3V magnetized plasma after 30 ns. In each, the top figure is the X − Vx plane, the middle is

the X − Vy plane, and the last is the X − Vz plane.
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(a) He Ions (b) Be Ions

Figure 4.16: Power flux to the walls of He ions (left) and Be ions (right).

91



Chapter 5

Conclusions

Accurate modeling of plasma-material interactions, including the plasma sheath, material response,

and impurity transport, is a necessary step toward the development of commercial magnetic fusion

devices. This thesis focused on the developed a unified model of the plasma-material interface

composed of a kinetic near-wall plasma and a Monte-Carlo treatment of the plasma-facing surface,

with the goal of dynamically simulating the interaction of the plasma and impurities with the

material surface.

A multi-species, time-dependent, continuum Boltzmann model for the plasma was developed

in Chapter 3 based on upwind-biased finite difference schemes and the fourth-order Runge-Kutta

algorithm. Stability tests show that error remains uniform in domains with variable flow speeds

since upwind schemes are insensitive to different (stable) CFL values, and increasing the order of

the numerical method was shown to decrease error by an order of magnitude at a given level of grid

refinement. The fourth-order upwind model was used to accurately reproduce classical Landau

damping and two-stream instability features found in literature. A simplified collisional plasma

sheath model based on the Bhatnagar-Gross-Krook operator, including ionization and charge ex-

change, was used to verify the convergence of the finite difference methods.

Density estimation was utilized to construct continuous velocity distributions from the discrete

data provided by TRIDYN in Chapter 4, facilitating communication between the two codes. Based

on bootstraped calculations of the mean integrated squared error, a sample size of ∼1000 particles

was determined to be sufficient to construct statistically valid velocity distributions, which in

turn provides a constraint on the number of particle histories TRIDYN is required to run: Nh ≈

1000/SY , where SY is the sputtering yield.

As a proof of concept of the coupling method, an example simulation of the plasma-material

interface involving a helium plasma facing a beryllium wall was presented. Both sputtered impuri-
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ties and reflected plasma neutrals were shown to enter the plasma through the TRIDYN boundary,

and particle densities and power fluxes of each species were calculated. The simulation provides a

dynamic model of the the near-wall plasma and the first surface layers, which has the potential to

be extended to large-scale problems for the SOL analysis including the material behavior.

5.1 Future Work

The presented method allows for the estimation of the gross and net erosion of a dynamically-

evolving material wall exposed to a plasma, but validation is necessary to prove the predictive

capabilities of the model. The role of individual collisional processes in plasma-surface interactions

will also be analyzed. Charge exchange of both plasma and impurity species is expected to play a

major role in surface erosion and redeposition within fusion devices. Additionally, improvements

can be made to treatment of collisions; the BGK operator is appropriate for convergence analysis

and order of magnitude estimates, but the collision frequency is held constant across velocity space

and collisional effects due to velocity-dependent collisions are lost.

The coupled Boltzmann-BCA model itself should be improved in order to be competitive with

other kinetic models. While high-order upwind schemes show strong amplitude conservation and

low dispersion error, the method has some significant limitations. In particular, even at relatively

coarse grids the stability conditions are expensive, requiring the timestep in a physically-relevant

plasma sheath simulation to be as small as O(ps). This causes simulation domains larger than

O(cm) to require a prohibitive amount of time to solve. In contrast, classical particle-in-cell sim-

ulations can reach timesteps of O(ns) and do not suffer from high dimensionality as strongly

as continuum methods. One possible improvement includes utilizing an adaptive mesh with a

high level of refinement in the sheath and a coarse refinement in the plasma bulk, which would

keep computational cost low even in larger simulation domains. High-order finite element and

semi-Lagrangian methods have also been applied to Boltzmann plasmas with more competitive

computational costs than presented here, and may be an appropriate alternative to finite difference

methods to simulate the full scrape-off layer in a tokamak.
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Appendix A

Fourth Order Runge-Kutta
Amplification Factors

The amplification factors shown below were compiled from Zha and Lingamgunta [53].

A.1 Second Order Upwind Scheme

The full form of the amplification factor is found by following Eq. 3.13 and performing Von

Neumann analysis. The real part of the amplification factor is:

Re(λ) = 1− α

2
(3− 4 cosβ + cos 2β) +

α2

8
(9− 24 cosβ + 22 cos 2β − 8 cos 3β + cos 4β)

− α3

48
(27− 108 cosβ + 171 cos 2β − 136 cos 3β + 57 cos 4β − 12 cos 5β + cos 6β)

+
α4

384
(81− 432 cosβ + 972 cos 2β − 1200 cos 3β + 886 cos 4β

− 400 cos 5β + 108 cos 6β − 16 cos 7β + cos 8β)

The imaginary part is:

Im(λ) = −α
2

(4 sinβ − sin 2β) +
α2

8
(24 cosβ − 22 sin 2β + 8 sin 3β − sin 4β)

− α3

48
(108 sinβ − 171 sin 2β + 136 sin 3β − 57 sin 4β − 12 sin 5β + sin 6β)

+
α4

384
(432 sinβ − 972 sin 2β + 1200 sin 3β − 886 sin 4β + 400 sin 5β

− 108 sin 6β + 16 sin 7β − sin 8β)

94



A.2 Third Order Upwind Scheme

The amplification factor of the third order upwind scheme is similarly found, as performed by Zha

et al.. The real part of the amplification factor is:

Re(λ) = 1− α

6
(3− 4 cosβ + cos 2β) +

α2

72
(−15− 20 cosβ + 46 cos 2β − 12 cos 3β + cos 4β)

− α3

1296
(−177 + 72 cosβ + 315 cos 2β − 310 cos 3β + 117 cos 4β − 18 cos 5β + cos 6β)

+
α4

31104
(−207 + 1256 cosβ − 492 cos 2β − 2208 cos 3β + 2518 cos 4β

− 1072 cos 5β + 228 cos 6β − 24 cos 7β + cos 8β)

The imaginary part is:

Im(λ) = −α
6

(8 sinβ − sin 2β) +
α2

72
(44 cosβ − 38 sin 2β + 12 sin 3β − sin 4β)

− α3

1296
(−108 sinβ − 243 sin 2β + 326 sin 3β − 117 sin 4β + 18 sin 5β − sin 6β)

+
α4

31104
(−2488 sinβ + 540 sin 2β + 2400 sin 3β − 2486 sin 4β

+ 1072 sin 5β − 228 sin 6β + 24 sin 7β − sin 8β)

A.3 Fourth Order Upwind Scheme

Re(λ) = 1− α

6
(3− 4 cosβ + cos 2β) +

α2

72
(−15− 20 cosβ + 46 cos 2β − 12 cos 3β + cos 4β)

− α3

1296
(−177 + 72 cosβ + 315 cos 2β − 310 cos 3β + 117 cos 4β − 18 cos 5β + cos 6β)

+
α4

31104
(−207 + 1256 cosβ − 492 cos 2β − 2208 cos 3β + 2518 cos 4β

− 1072 cos 5β + 228 cos 6β − 24 cos 7β + cos 8β)

The imaginary part is:
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Im(λ) = −α
6

(8 sinβ − sin 2β) +
α2

72
(44 cosβ − 38 sin 2β + 12 sin 3β − sin 4β)

− α3

1296
(−108 sinβ − 243 sin 2β + 326 sin 3β − 117 sin 4β + 18 sin 5β − sin 6β)

+
α4

31104
(−2488 sinβ + 540 sin 2β + 2400 sin 3β − 2486 sin 4β

+ 1072 sin 5β − 228 sin 6β + 24 sin 7β − sin 8β)
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