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ABSTRACT

The degrees of freedom problem is ubiquitous within motor control arising

out of the redundancy inherent in motor systems and raises the question of

how control actions are determined when there exist infinitely many ways

to perform a task. Speech production is a complex motor control task and

suffers from this problem, but it has not drawn the research attention that

reaching movements or walking gaits have. Motivated by the use of dimen-

sionality reduction algorithms in learning muscle synergies and perceptual

primitives that reflect the structure in biological systems, an approach to

learning sensory-motor synergies via dynamic factor analysis for control of

a simulated vocal tract is presented here. This framework is shown to mir-

ror the articulatory phonology model of speech production and evidence is

provided that articulatory gestures arise from learning an optimal encod-

ing of vocal tract dynamics. Broad phonetic categories are discovered within

the low-dimensional factor space indicating that sensory-motor synergies will

enable application of reinforcement learning to the problem of speech acqui-

sition.
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CHAPTER 1

INTRODUCTION

1.1 Background

The central question motivating this work is how can we design intelligent

systems? In the seminal paper [1], Turing proposes that creating a machine

that can think may be accomplished by developing a logical inference system

in which definitions and propositions are programmed into the machine that

it can use to evaluate statements about the world. The first wave of artificial

intelligence was motivated by this line of thinking and the physical symbol

system hypothesis [2] which fleshes out Turing’s idea of intelligence as the

manipulation of symbols and emphasizes the importance of the connection

of symbols to physical systems. This approach, sometimes referred to as

good old fashioned artificial intelligence or GOFAI, enabled the creation of

so-called expert systems which were developed by encoding the knowledge of

human experts into logical processing systems. However, it has fallen out of

favor due partially to the heavy reliance on expert knowledge and the amount

of time required to construct a system.

In its place, statistical learning theory and machine learning have flour-

ished. Instead of relying on human experts to develop logical rules, these

systems are trained and learn from large amounts of data. In fact, this

approach was also encouraged by Turing in his 1950 paper [1], where he

discusses the potential for constructing a machine that can be taught via

reinforcement and punishment. In the final paragraph he offers this piece of

advice:

”It can also be maintained that it is best to provide the machine

with the best sense organs that money can buy, and then teach

it to learn and understand English. This process could follow the

normal teaching of a child. Things would be pointed out and
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named, etc.”

This advice to incorporate sense organs into the learning of symbols has

been, if not overlooked, misinterpreted. Research in artificial intelligence has

become segmented into subdisciplines separating perception from cognition

from action. The field of computer vision has made great advances in object

recognition, but struggles in scene understanding. Natural language process-

ing on the other hand has advanced voice recognition to the point where

people can regularly use it for transcription, but struggles with answering

simple questions or responding to basic commands because the systems lack

understanding. Control theory has enabled the use of robotic systems for

manufacturing operations, but they have been primarily confined to perform-

ing repetitive tasks in highly controlled environments. It is possible that the

deficiencies in each subfield will be resolved by better technology and more

advanced learning algorithms. But according to the philosophy of embodied

cognition, this approach is not sufficient. Alternatively, it suggests that in-

telligent systems must have a means of interacting with and learning from

the world. Therefore, the artificial systems must be capable of influencing

the external world through motor function and be able to access information

about the world through sensory systems.

So, following Turing’s advice and ascribing to the theory of embodied cog-

nition, I chose to pursue development of a system that can learn to produce

speech. Speech is produced via coordination of articulatory muscles which

vary the shape of the vocal tract and the flow of air through it. This is a

very complex motor control task due to the non-linear relationship between

muscle activations, vocal tract shape, and acoustic output. Making this task

even more difficult is the high number of degrees of freedom required to ade-

quately characterize the process. In the Praat articulatory synthesis model,

a somewhat sophisticated simulator of the vocal tract, 29 different articula-

tory muscles control the shape of the vocal tract represented by 89 different

acoustic tube sections [3]. A one dimensional acoustic signal is generated by

simulating airflow through this model, but unfortunately, it is very difficult

to obtain meaningful information from this raw signal. Instead, it is com-

mon to transform the signal into a time-frequency representation. This new

representation is often represented by many more degrees of freedom. The

point of this example is to show that speech production requires dealing with
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very high dimensional signals.

Reinforcement learning (RL) is typically used to approach problems where

developing controllers for complex dynamical systems is desired, but the com-

putational demands of this approach increase exponentially with the number

of degrees of freedom of the system. This phenomenon is known as the curse

of dimensionality. To deal with this curse we to look to biology for inspi-

ration. Bernstein, one of the first scientists to study human motion and

coordiantion, posited that complex motor control is aided by the use of so

called muscle-synergies. Essentially, synergies are coordinated responses of

muscles that can be superimposed on one another and concatenated together

to produce more complex motions. They can be thought of as the funda-

mental building blocks of motion. But if such synergies do exist, where do

they come from?

Interestingly, similar questions arise in the study of perceptual processing

systems where the responses of individual neurons to stimuli reveal charac-

teristic patterns of activation. The range of stimuli that elicits a response

from an individual neuron is referred to as a receptive field. Barlow originally

hypothesized that perceptual processing systems evolve based on a principle

of optimal encoding. More recently, many studies have shown that vari-

ous unsupervised dimensionality reduction (DR) methods, which attempt to

learn optimal encoding schemes, yield filters similar to the receptive fields in

human visual and auditory processing systems. Other researchers have used

these same methods to look for evidence of muscle synergies with mixed re-

sults. One problem with using DR methods to look for muscle synergies is

that there is no real ground truth to reference as in the case of perceptual

systems and receptive fields. This is problematic because the argument can

be made that although one can apply DR methods to motion recordings or

electromyograph (EMG) signals and find low dimensional representations of

the signals, the resulting synergies may be more reflective of the task being

performed than of the underlying functional units of control.

To address this problem and separate out these different effects it has been

suggested that synergies composed of both observations of a system and the

inputs that control the system be learned instead. These new sensory-motor

synergies should efficiently encode the dynamics of the system and provide

a means for efficiently exploring the control space. This may be a way of

lifting the curse of dimensionality and enabling learning of complex motor
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control tasks such as speech production.

This is a compelling idea, but how does this relate to our current under-

standing of speech production? First of all, speech is inherently symbolic.

Sentences are composed of words which are composed of syllables which are

composed of phonemes. According to the theory of articulatory phonology,

all of these symbols are constructed from lower level symbols called gestures.

Gestures are described as the coordinated movements of articulators accom-

panied by the activations of articulatory muscles recruited to produce those

movements. Gestures, like synergies, are weighted by activation levels and

combined with one another in what are referred to as gesture scores to pro-

duce the higher level speech symbols. So, within this framework, gestures

are analogous to sensory-motor synergies and gestures scores analogous to

the synergy activations over time. This reasoning led me to believe that de-

veloping a system that learns to control a vocal tract by using sensory-motor

synergies would be fruitful.

1.2 Description of Research

In this thesis I describe one approach to learning vocal tract sensory-motor

synergies and develop methods for evaluating the resulting model. I use

the Praat articulatory synthesizer as a basis for this work because it models

the human vocal tract in a biologically plausible way, incorporates dynamic

movement of the articulators, and is open source [3]. I then modify this

software to enable complete control of the simulator and recording of all

relevant states of the model. By randomly articulating the model, I then

generate a database of articulatory muscle activations, vocal tract area func-

tions, and acoustic signals that is used to learn synergies. Motivated by the

success of Todorov and Ghahramaniin in learning of sensory-motor primtives

for control of a simulated arm, I chose to use a similar dimensionality reduc-

tion algorithm called dynamic factor analysis (DFA) to learn the vocal tract

sensory-motor synergies. I evaluate the usefulness of the learned synergies by

analyzing the learned patterns of coordination and by analyzing the factor

trajectories in the lower-dimensional factor space with respect to separation

between phonemic classes.
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CHAPTER 2

LITERATURE REVIEW

In this chapter I review previous research in the fields of vocal tract modeling,

redundancy resolution, and speech learning as it pertains to the problem of

learning to control a realistic vocal-tract simulator to produce speech. I also

provide motivation for approaching this problem as learning of vocal tract

sensory-motor synergies.

2.1 Vocal Tract Modeling

As the goal is to develop low-level sensory-motor control primitives for speech

production, it is vital to understand and adequately characterize the system

that we aim to control. If we were to stop an individual on the street and ask

them the question “How is speech produced?” most people would find it dif-

ficult to come up with an answer. That is because speech comes so naturally

to humans that most of us don’t bother to give it much thought. However,

speech production is far from simple and, in fact, has a rich academic history.

2.1.1 The Speech Signal

The human vocal tract is a hollow flexible passage through which air flows

to produce speech. The lungs connect to the trachea which is a cartilaginous

tube and is sometimes referred to as the windpipe. The trachea connects in-

turn to the larynx, colloquially referred to as the voice box, which contains

two mucous membranes called the vocal folds or vocal cords. This area of

the vocal tract is called the glottis. The glottis also describes the opening be-

tween the vocal folds. These membranes can be tensioned by muscles in the

glottis to enable vibration of the vocal cords, or relaxed to allow air to pass

unrestricted through the glottis. Located at the end of larynx is the epiglottis
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which is a flap of elastic cartilage covered in a mucous membrane that closes

off the lower vocal tract from the upper vocal tract and acts as a valve divert-

ing liquids to esophagus to prevent aspiration. The pharynx lies between the

epiglottis and the velum. The velum, or soft palate, is a muscular structure

at the back of the mouth that can close off air from flowing through the nasal

cavity when raised. Other than the velum, the nasal cavity is an unarticu-

lated structure that terminates at the nostrils. The shape of the oral cavity

however, is determined by the position of the tongue, jaw, and lips. The

walls of the vocal tract are made up of cartilage, bone, mucous membranes,

and muscles which have differing stiffness characteristics and may deflect as

air passes through the tract. Fant [4] and Rabiner and Schafer [5]provide a

more thorough overview of the physical elements of speech production than

is presented here.

Speech sounds are produced when air from the lungs is forced through the

vocal tract resulting in changes in the air pressure at the lips and nose. This

results in an acoustic wave being radiated into the environment. Various

speech sounds are produced by altering the shape of the vocal tract in a

process referred to as articulation. The articulators are elements of the vocal

tract that can be moved to change the shape of the tract and include the

tongue, lips, jaw, velum. A variety of articulatory models relating positions

or activations of the articulators to the shape of the vocal tract have been

proposed. One of the earliest models, proposed by Coker uses five variables

to parameterize articulation, namely tongue body height, anterior-posterior

position of the tongue body, tongue tip height, mouth opening, and pha-

ryngeal opening. A sixth parameter is also used to alter the static nominal

tract length of 17 cm [6]. Modulation of the air flow through the tract by

the lungs and diaphragm also plays vital role, and is sometimes considered

in articulatory models.

The speech signal is composed of sequences of speech sounds, also known as

phones. A phoneme is a useful concept that represents a category of similar

phones, allowing for classification of speech sounds into discrete categories [5].

This enables transcription of the speech signal into a sequence of phonemes

represented as symbols. They are often called the building blocks of spoken

language. Now it is important to point out that phonemes are a theoretical

construct used to aid in the analysis and understanding of the speech signal

and not an exact speech sound. In other words there exists a certain amount
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of ambiguity or underspecification in the definition of a phoneme whereas a

phone can be considered one realization of a specific phoneme out of infinitely

many possible realizations of that same phoneme.

The field of linguistics is devoted to the study of language and the sci-

ence’s practitioners, linguists, have traditionally studied the connection be-

tween speech sounds and meaning. The two fields of linguistics that are most

relevant to this research are phonetics and phonology. Phonetics is defined

as the study of the physical properties of speech sound production and per-

ception and phonology is defined as the study of sounds as abstract elements

in the speaker’s mind that distinguish meaning. In other words phonetics is

concerned with the production of phones and phonology is concerned with

the categorization and organization of phonemes.

Speech sounds can be classified into three broad classes according to the

mode of excitation: voiced sounds, unvoiced sounds or fricatives, and plosives

[5, 7]. Voiced sounds are produced when air is forced past the tensioned vocal

folds producing a periodic excitation of the vocal tract. Fricatives or unvoiced

sounds are produced by constricting air flow at some point along the vocal

tract causing turbulent air flow. This produces broad-spectrum noise that

excites the vocal tract. Plosives are produced when airflow is stopped, by

making a complete closure of the vocal tract, and then released. Pressure is

allowed to build up during this closure and when release creates a burst of

turbulent air flow.

As mentioned above, articulation changes the shape of the vocal tract and

subsequently the sound produced. The raw acoustic waveform can provide

some indication of a change in sound, but only enables general observations

on the periodicity and amplitude of the speech signal. The spectral content

of the speech signal has proven to be much more useful. Articulation changes

the resonant frequencies of the vocal tract, which can easily be seen by per-

forming a frequency decomposition of the speech signal using the Fourier

transform. The change in resonance of the vocal tract is analogous to the

change in pitch produced by musical instruments such pipe organs or any

woodwinds when a different note is played. In phonetics, these resonances

are referred to as the formants and are represented by the symbol fi where i

refers to the ith formant ordered by increasing frequency. However, since the

shape of the vocal tract is changing over time to produce sequences of phones,

a time varying representation of the spectrum is needed. The most common

7



approach is to employ the use of the spectrogram, which is mathematically

described by the amplitude spectrum given by the short time Fourier trans-

form (STFT) as shown in equation 2.41. More details on this technique can

be found later in this chapter.

Using these different means of characterization, linguists have identified

many different categories of phonemes and have developed a written repre-

sentation of these sounds called the International Phonentic Alphabet (IPA)

which contains over 500 distinct phonemes [8]. However, individual languages

only utilize a subsets of these phonemes to represent meaning. For example,

American English is comprised of 42 different phonemes [5]. These phonemes

are broken down into three broad phonetic categories: vowels, consonants,

dipthongs, and semivowels. Vowels are produced by voiced excitation of a

fixed shape vocal tract. Different vowels are produced primarily by differ-

ing positions of the tongue, but position of the jaw, lips, and velum have a

small effect as well. The difference between the vowels is most easily seen

by viewing vowel pronunciations in the (f1, f2) plane. This reveals the exis-

tence of the so-called“vowel triangle”, which shows the relationship between

jaw opening and tongue position to f1 and f2 respectively [5]. A dipthong

is defined as a gliding monosyllabic speech item that starts at or near the

articulatory position for one vowel and moves to or towards a position for

another. Semivowels are difficult to characterize, but can best be defined as

transitional, vowel-like sounds that are highly context dependent.

Consonants are a broad category of sounds that are produced by partial

or full closure of the vocal tract and can be broken down into 4 categories in

English. Nasal are voiced consonants produced by closing off the vocal tract

completely at some point in the oral cavity while lowering the velum and

allowing air to pass through the nasal cavity. The location where the oral

cavity is closed affects the resonant properties of the vocal tract producing

different nasals. Fricatives are produced through constriction of the vocal

tract as described above and can be either voiced or unvoiced. Each voiced

fricative has an unvoiced counterpart that only varies in voicing not in ar-

ticulation. Stops or plosives are produced by closing off and subsequently

opening the vocal tract, releasing a transient burst of turbulent air. Stops

can be voiced or unvoiced differing only in the presence or absence of vocal

cord vibration. And finally, affricates are a concatenation of a stop and a

fricative.
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2.1.2 The Physics of Speech Production

Although speech production may seem straight forward, the vocal tract is

an extremely complex non-linear time varying aero-dynamical system that

is very difficult to model accurately. However, there are a few assumptions

that can be made to greatly simplify the model. The standard approach

is to model the vocal tract as a lossless acoustic tube of nonuniform slowly

time-varying cross-sectional area A(x, t) where air flowing through the tract

is assumed to travel as a plane-wave along a single dimension x. Portnoff

and Sondhi [9, 10] have shown that under these assumptions that applying

Newton’s second law and the principle of the conservation of mass to this

model yields the following two equations

−
∂p

∂x
=

ρ

A(x, t)

∂u

∂t
(2.1)

−
∂u

∂x
=
A(x, t)

ρc2
∂p

∂t
(2.2)

where p(x, t) is the pressure, u(x, t) is the volume velocity, ρ is the air density,

and c is the speed of sound for the given air density. Differentiating 2.1 and

2.2 with respect to space and time respectively and eliminating ∂2u
∂x∂t

and ∂u
∂t

from the system of equations results in the Webster equation for pressure

∂2p

∂x2
+

1

A(x, t)

∂p

∂x

∂A(x, t)

∂x
=

1

c2
∂2p

∂t2
(2.3)

which is a differential equation that describes the relationship between the

vocal tract area function and pressure along the tract over time. Closed form

solutions are generally not possible and only exist in trivial cases, but numer-

ical solutions can be computed given appropriate boundary conditions. One

approach is to discretize the Webster equation by breaking up the vocal tract

into n concatenated tubes each with a constant area function. The first and

second order derivatives can then be approximated as first backward differ-

ences and second central differences respectively yielding a finite difference

equation.

However, this does not account for losses due to wall displacement, viscous

air flow at the walls, and heat conduction in the walls. To incorporate the

effects into the model, a frequency domain representation is obtained by
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assuming a time invariant tube and modeling the glottal boundary condition

as a complex volume velocity source given by

u(0, t) = UG(w)e
jwt (2.4)

Additionally assuming that the equations governing the losses are linear time

invariant yields

p(x, t) = P (x, w)ejwt (2.5)

u(x, t) = U(x, w)ejwt (2.6)

and Equations 2.1 and 2.2 can be rewritten as

−
dP

dx
= Z(x, w)U(x, w) (2.7)

−
dU

dx
= Y (x, w)P (x, w) (2.8)

where Z(x, w) and Y (x, w) are defined as the acoustic impedance and ad-

mittance per unit length respectively. The Webster equation can then be

rewritten as a function of frequency and reformulated in terms of volume

velocity.
d2U

dx2
=

1

Y (x, w)

dU

dx

dY

dx
− Y (x, w)Z(x, w)U(x, w) (2.9)

Porntoff assumes uniform displacement of the vocal tract wall at a given po-

sition and models the relationship between displacement ξ(x, t) and pressure

as a simple mass-spring-damper system

p(x, t) =M
∂2ξ(x, t)

∂t2
+ b

∂ξ(x, t)

∂t
+ k(x)ξ(x, t) (2.10)

where M is the unit length wall mass, b is the damping coefficient, and k

is the spring constant [9]. The impedance and admittance contributions of

these three losses is reviewed in Rabiner and Schafer [5] and Levinson [7], but

we will not review it here. The resulting lossy version of Webster’s equation

can then be computed. However this method is somewhat computationally

expensive and requires measurement of physical constants of vocal tract tis-

sue. In [10], Sondhi proposes an alternate formulation with impedance and

admittance equations that avoids these difficulties and approximates Port-

noff’s formulation with reasonable accuracy.
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Solving either Webster’s equation or the lossy Webster equation then comes

down to solving a boundary value problem. Dunn et al. [11] has shown that

the glottal boundary condition can be approximated as a constant volume

source with an asymmetric triangular waveform with amplitude V .

Ug(w) =
V

w2
(2.11)

Assuming the relationship between sinusoidal steady-state pressure and vol-

ume velocity given by

P (L,w) = Zr(w)U(L,w) (2.12)

whre Zr is the radiation impedance at the lips approximated by a piston in

an infinite plane baffle give as

Zr(w) = jwLr/(1 + jwLr/R) (2.13)

where Lr and R are constants [5, 7].

This methodology is useful and was very important in the early days of

speech research, but many of the assumptions that were made limit this ap-

proach. One of the problems is that the cross-sectional area function A(x, t)

is only quasi-stationary, not stationary [7]. This is meant to indicate that

although the area function changes with time, for many speech sounds it

changes slowly in comparison to the pressure change over time or

∣

∣

∣

∣

∂A

∂t

∣

∣

∣

∣

≪

∣

∣

∣

∣

∂p

∂t

∣

∣

∣

∣

(2.14)

This model turns out to approximate vowel production well, but has diffi-

culty approximating other speech sounds [5]. Another assumption made by

this model, that the air flow is described by plane waves, may be overly sim-

plistic. If 2 dimensional wave propagation is considered instead and viscous

and convective effects are considered, the 2 dimensional Reynolds averaged,

Navier-Stokes equations for slightly compressible flow is arrived at instead of

the Webster equation. These equations can also be solved numerically and

may represent the physical system more accurately [7]. Other improvements

to the vocal tract model include consideration of nasal coupling, dynamic

modeling of the vocal folds, and variable length tracts.
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2.1.3 The Source Filter Model and Linear Prediction

The source filter model of speech production is an electrical analogue to

the acoustic model reviewed in the previous section. OShaughnessy [12]

provides a review of this topic which is covered briefly here. The primary

assumption of this model is that the vocal tract can be decomposed into

3 main components, each one modeled independently: a glottal source, a

vocal tract filter, and an acoustic impedance at the lips. The glottal source

is typically modeled as a periodic pulse train for voiced sounds and a white

noise source for frication. The vocal tract filter is modeled as a time varying

digital filter with a transfer function of the form

H(z) = G

∑N
l=0 blz

−l

1−
∑M

k=1 akz
−k

(2.15)

where G is a gain term, N is the number of zeros, M is the number of

poles, and the bl’s and ak’s are scalar coefficients that vary with time. If we

remove all zeros from this mode, as is commonly done, by letting b1 = 1 and

bl = 0 ∀ l 6= 1 then 2.15 becomes

H(z) =
G

1−
∑M

k=1 akz
−k

(2.16)

The source filter model has a strong connection to linear prediction based

models of the form

s(n) =

M
∑

k=1

aks(n− k) +G

N
∑

l=1

blu(n− l) (2.17)

which has an equivalent transfer function to the general source-filter model

of speech 2.15. In words, the general linear prediction model uses a linear

combination of past values of the signal s(n− k) and a linear combination of

past values of the input u(n− l) to predict future values of the signal s(n).

This is sometimes referred to as the autoregressive moving average model or

ARMA. In practice, it is difficult to estimate the zeros so the moving average

portion of the equation is removed leaving an all pole model

s(n) =

M
∑

k=1

aks(n− k) + e(n) (2.18)

12



where the error term e(n) is assumed to be Gu(n), giving the same transfer

function as Equation 2.16. This model is therefore referred to simply as

autoregressive or AR and the coefficients ak of the all pole model are referred

to as linear predictor coefficients or LPCs.

Many methods exist to solve this model, including the autocorrelation,

covariance, and lattice methods which all involve the use of what are called

the partial correlation coefficients (PARCORs) given by

ki = −
Ai+1 −Ai

Ai+1 + Ai

(2.19)

where Ai is the area of the ith tube in the discretized vocal tract [5]. This

indicates that there is a relationship between the LPC model and the vocal

tract model. In fact, it has been shown that the LPC model is equivalent to

the discretized concatenated tube models derived from the lossless Webster

equation, Equation 2.3 [13]. Additionally, the resonances or formants of the

vocal tract are simply the the poles of 2.16.

2.2 Redundancy and Redundancy Resolution

At the core of problems within perception and motor control is the need to

reduce the redundancy of the sensory and control signals. Dimensionality

reduction methods are mathematical techniques designed to perform this

task. These methods are used heavily in the study of perceptual processing

where neural filters called primitives have been shown to respond to distinct

areas of the perceptual space called receptive fields. These primitives are

thought to have developed to reduce the dimensionality of perceptual signals

and optimally encode the information contained within the signals. The

motor equivalence problem in motor control is the dual to the perceptual

processing problem. It points out the difficulty in selecting the appropriate

control actions to perform a motor task when there are many, often infinitely

many, ways of performing the task. A relatively unexplored approach to

dealing with the motor equivalence problem is to combine perceptual and

motor features to develop hybrid synergies. I review all of these concepts here

to motivate my approach to developing vocal tract sensory-motor synergies

and to place it in the context of previous work.
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2.2.1 Dimensionality Reduction Methods

Dimensionality reduction (DR) methods are used in a variety of disciplines

when it is desired to more compactly represent data than in its raw high-

dimensional form. Often this is desired to reduce computational demands

and memory requirements of analyzing the data or using it in various algo-

rithms. Some common application areas include image processing, economics

research, and speech recognition, but it is generally useful in signal process-

ing and statistical analysis. DR methods all rely on the assumption that

high-dimensional data has a lower intrinsic dimensionality, meaning that if

redundancy exists in the data it can therefore be represented using fewer

parameters. The number of parameters required to completely represent the

data is called the intrinsic dimensionality [14]. DR can be applied in cases

where the intrinsic dimensionality is still high if the contribution of some di-

mensions to the data is relatively small, meaning that the reconstruction er-

ror is also very small. These techniques are mostly performed using different

matrix factorization algorithms and therefore the data must be represented

in matrix form. Let Y be a D × n matrix formed by n row datavectors

yj(j ∈ 1, 2, . . . n) of dimensionality D [15]. The intrinsic dimensionality of

the dataset is d and is assumed to be d < D or sometimes d << D. Di-

mensionality reduction techniques take advantage of this assumption and

represent Y instead as a matrix decomposition or matrix multiplication.

2.2.1.1 Principle Component Analysis

The most commonly used DR method is Principle Component Analysis

(PCA) which is also known as the Karhunen-Loéve transform in the signal

processing domain. It was first discovered by Karl Pearson in 1901 [16]. PCA

is a mathematical transformation that attempts to linearly project a dataset

onto an orthogonal coordinate space where the variance of the projected data

along each successive principle axis is decreasing. The PCA model can be

represented as a matrix multiplication

Z = W⊤Y (2.20)

where Z is a d × n dimensional matrix with row vectors zj(j ∈ 1, 2, . . . n)

each of dimensionality d, Y is defined as above, and W is the D× d feature
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matrix [17]. The matrix Z exists on a d dimensional manifold embedded in

a D dimensional space and is sometimes referred to as the weight or score

matrix.

PCA requires that the data Y first be centered; i.e., have a zero column

wise mean. In addition, this method is not scale invariant, and therefore the

rows of Y are often scaled by the square root of the variance, especially in

cases where the features have different units. The first principle component is

then found by minimizing the Rayleigh quotient wk = argmax
(w⊤

k Y)(w⊤

k Y)⊤

w⊤

k wk

where k ∈ 1, 2, . . . d [15]. Successive principle components are found in the

same manner, with Y being replaced with Yk = Y −
k−1
∑

s=1

Ywkw
⊤
k for the

kth component. This can also be thought of as attempting to decorrelate the

columns of the weight matrix Z.

The solution to this minimization is found by setting the columns of

W = Nd, which is the matrix containing the first d eigenvectors of the

autocovariance matrix Σ = YY⊤ corresponding to the d largest eigenvalues

Λd. The eigendecomposition is shown below for clarity.

ΣNd = ΛdNd (2.21)

where Λd and Nd are the diagonal matrix containing the d largest eigen-

values, and the D × d matrix with columns containing the corresponding

d eigenvectors respectively. Alternatively, the feature matrix W can also

be found by equating it to d right singular vectors from the singular value

decomposition (SVD) of Y [17]. This SVD method is often preferred as al-

gorithms exist to more efficiently perform SVD. The dimensionality of the

data Y is reduced by allowing d < D when performing PCA. By keeping the

principle components corresponding to the largest d eigenvalues or singular

values, this method will minimize the mean square error of reconstructing Y

from the score and feature matrices, Z and W [18].

2.2.1.2 Factor Analysis

Factor analysis (FA) is another dimensionality reduction technique that is

more commonly used within the social sciences. It was originally developed

by Charles Spearman during his study of human intelligence [19]. FA is

a statistical method that attempts to find a small number of uncorrelated
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unobserved variables that explain the correlations between a larger number

of correlated observed variables [20]. Mathematically, the concept behind

FA is that a D dimensional random variable can be represented by a linear

combination of d < D dimensional hidden or latent random variables called

common factors in addition to D error terms known as unique or special

factors. More explicitly

yi = ai1x1 + ai2x2 + · · · aikxk + γi (2.22)

for each i ∈ 1, 2, . . .D. In vector form this becomes

y = Ax+ γ (2.23)

where x is a d dimensional random variable represented as a column vector

containing the common factors, y is a D dimensional random variable repre-

sented as a column vector of observed variables, each row of A contains the

factor loadings for each observed random variable in y, and γ is a D dimen-

sional random variable represented as a column vector and containing the

unique factors [17]. Intuitively, one can think of the common factors as the

underlying hidden states that produce the observations y which is corrupted

by noise γ.

Factor analysis can be used as a means of testing a hypothesis regarding

the relationship of hidden variables to the observed variables as is done in

confirmatory factor analysis (CFA), or it can be used to discover the under-

lying latent structure of a set of random variables, as in exploratory factor

analysis (EFA). In EFA, the linear weightings of the common factors, or fac-

tor loadings, are unknown, while in CFA the factor loadings are assumed to

be known. In the context of unsupervised dimensionality reduction, EFA is

the technique used because the goal is to discover structure in the system

not to test for a hypothesized structure.

In order to fit this factor model, samples of the system are required. It is

often convenient to the represent samples of the model in Equation 2.23 in

matrix form

Y = AX+ Γ (2.24)

where each random variable in 2.23 has been replaced by a matrix with each

column consisting of a sample of that random variable. For n samples of the
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system, Y and Γ are D × n matricies, X is a d × n matrix, and A is , as

defined as before, a D × d matrix [18].

There are a number of assumptions that have to be made about the struc-

ture of our model in order to find a solution to the EFA problem outlined by

many [17, 18, 20]. As with PCA, we assume that the data is zero mean or

has been mean centered; i.e., the row mean E[y] = 0. We also assumed that

E[x] = 0 and E[γ] = 0. In addition, we assume that the unique factors are

uncorrelated E[γγ⊤] = Ψ where Ψ is diagonal. This really just reiterates the

basic idea of FA, that the common factors and factor loadings capture all of

the covariances of the variables in y. Another important assumption is that

the common factors are uncorrelated with the unique factors E[xγ⊤] = 0.

Finally, it is often assumed that the common factors are uncorrelated and

have unit variance E[xx⊤] = Id, but this constraint can be relaxed to allow

correlations between common factors.

Even with all of these assumptions, the FA model is under-constrained. To

make this indeterminacy clear, we first compute the covariance matrix from

both sides of Equation 2.23

Σ = E[yy⊤] = YY⊤ = (Af + γ)(Af + γ)⊤ = AA⊤ +Ψ (2.25)

where the earlier assumptions regarding the unique and common factors en-

able the simplification [17]. Note that often times the sample covariance

matrix S is used in place of the covariance matrix Σ. If a solution to 2.25

is found to be A and Ψ then A∗ = AT and Ψ is also a solution if T is

orthogonal because [17, 20]

A∗A∗⊤ = (AT)(AT)⊤

= ATT⊤A⊤

= AA⊤

Therefore, solutions to the EFA problem are not unique. In order to find a

unique solution, most solution methods add further restrictions onA [17, 20].

After finding this initial solution, a ”rotation method” is then applied, whose

goal is to find the best rotation matrix T. These different methods quantify

best by minimizing different cost functions which may be appropriate for

different applications. Some of the most common methods include varimax,
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quartimax, and promax, but there are many, some of which even relax the

orthogonality constraint on T, e.g. oblimax [17, 21, 22].

Often, it is desirable to have some measure that describes how well the FA

model describes the data. One way of quantifying this goodness of fit is by

looking at the variance of each variable yi that is described by the common

factors x. This is referred to as the communality h2i and can be found by

looking at the diagonal elements of Equation 2.25.

Var(yi) = σii =

d
∑

k=1

a2ik + ψii = h2i + ψii

where ψii is the variance of the ith unique factor γi known as the unique

variance [18, 20]. It contains the variance not accounted for by the common

factors in yi.

The FA model has the interesting property of scale equivariance unlike

PCA. If we have a factor model y = Ayx+ γy then then model for z = Cy

where C is a diagonal scaling matrix is

z = Cy = C(Ayx + γy) = CAyx+Cγy = Azx+Cγy

meaning that the same common factors describe the scaled z [17, 20, 18].

The new factor loadings Az = CAy are merely a scaled version of the factor

loadings for y. The unique variances Ψz = E[Cγyγ
⊤
y C

⊤] = CΨyC
⊤ are

also just re-scaled. This means that the choice between using either the

covariance or the correlation is less important than in PCA because one can

always obtain the alternate formulation by simple scaling.

In order to obtain an initial solution, a variety of methods can be used.

One of the early approaches, called the centroid method, takes the ratio of

the sum of each column of the the correlation matrix to the sum of all of the

elements in the correlation matrix to estimate each factor loading [23, 22].

This technique is crude and lacks a strong statistical foundation, but was de-

vised to be computable by hand before computers were widely used and often

gives feasible results. Unfortunately, this method and similar methods gave

factor analysis a bad name and led to it be ignored by many mathematicians

and statisticians as a valid tool for latent variable discovery. Other solu-

tion methods, however, rest on solid theoretical ground including Bayesian
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approaches [24], cannonical correlation analysis, and maximum likelihood es-

timation (MLE) ofA andΨ assuming multivariate normality of x and γ [25].

The MLE method is solved using an iterative Expectation-Maximization pro-

cedure.

Another older method that is still commonly used today is called the princi-

ple factors method, not to be confused with the principle component method.

The only input for this method is either the sample covariance matrix S or

sample correlation matrix R.

First, an estimate of each communality ĥ2i is obtained. Each estimate is

found by first performing a multiple regression for each variable yi regressed

on the other D − 1 variables yj(j 6= i). The coefficient of determination

R2
i , also known as the squared multiple correlation coefficient, is obtained

for each regression. The communality is then estimated to be either siiR
2
i

or sii max
j∈(1...D)

|rij| if using the covariance matrix or either R2
i or max

j∈(1...D)
|rij| if

using the correlation matrix. If R is invertible it can be shown that R2
i can

be found from R meaning that only Y is required to find this initial estimate

of the communalities [18, 20].

Next we define the reduced covariance matrix as S − Ψ̂ which is just S

with the diagonal elements replaced by ĥ2i . A d rank eigendecomposition of

the reduced covariance is then

S− Ψ̂ = NdΛdN
⊤

d (2.26)

where Λd is a diagonal matrix containing the first d largest eigenvalues in

decreasing order and Nd contains the corresponding eigenvectors in each

column. Equation 2.26 can be rewritten as

S− Ψ̂ = NdΛ
1/2
d Λ

1/2
d N⊤

d = ÂÂ⊤

with Â = NdΛ
1/2
d . The communalities can then be re-estimated to be the

diagonals of the rank d decomposition of the reduced covariance matrix and

the process can be repeated until some convergence criteria is met [18, 20].

Essentially, the principle factor method estimates the factor model by per-

forming PCA on the reduced covariance matrix S−Ψ̂ and iterating [17]. This

method has little more theoretical justification than the centroid method, but

it is one of the more common approaches. Note that as this method relies on
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spectral decomposition and therefore scale equivariance does not hold and

will give different solutions if the covariance matrix is chosen instead of the

correlation matrix [20].

With a slight tweak, the principal factor method becomes the principle

component method of factor analysis. By replacing the estimate of the com-

munalities with zeros, the reduced covariance matrix becomes the covariance

matrix S − Ψ̂ = S and the factor analysis solution reduces to the principle

component solution. However, this solution is problematic as the assump-

tion that Ψ = 0 is in general not true and leads to some of the FA model

assumptions not being satisfied [20, 17].

The PCA projection, Equation 2.20, repeated here Z = W⊤Y, can be

rearranged to better compare the two techniques. First, since W is or-

thogonal, Y = WZ. W can then be decomposed into two submatricies

W = (Wd|WD−d) containing the eigenvectors corresponding to the d largest

eigenvalues and the remainingD−d eigenvalues respectively of the covariance

matrix Σ. Decomposing Y in a similar fashion as W gives Z =







Zd

ZD−d







resulting in

Y = (Wd|WD−d)







Zd

ZD−d






= WdZd +WD−dZD−d

which can be transformed into the factor model

Y = WdΛ
1/2
d Λ

−1/2
d Zd +WD−dZD−d = AX+ Γ

where A = WdΛ
1/2
d , X = Λ

−1/2
d Zd, and Γ = WD−dZD−d. Now we can check

if the FA model assumptions are fulfilled by this solution.

E[xx⊤] = XX⊤

= Λ
−1/2
d ZdZ

⊤

d Λ
−1/2
d

= Λ
−1/2
d ΛdΛ

−1/2
d

= I

where the key is that since W contains the eigenvectors of YY⊤ in its
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columns the equation below is just an eigendecomposition

YY⊤ = WZZ⊤W⊤

meaning that ZdZ
⊤
d = Λd. The second assumption is also fulfilled

E[xγ⊤] = XΓ = Λ
−1/2
d ZdZ

⊤

D−dW
⊤

D−d = 0 (2.27)

However, the final assumption

E[γγ⊤] = ΓΓ⊤ = WD−dZD−dZ
⊤

D−dW
⊤

D−d = WD−dΛD−dW
⊤

D−d 6= Ψ

because although ΛD−d is diagonal it has, in general, non-uniform values

along the diagonal meaning thatΨ will not be diagonal indicating correlation

between unique factors [20, 17].

2.2.1.3 Independent Component Analysis

Independent Component Analysis (ICA) refers to a collection of techniques

for finding a linear transformation of multivariate data into new features that,

as the name implies, are statistically independent from each other. The first

ICA technique was developed by Jutten as part of his PhD thesis and by

Jutten and Hrault in the late 1980’s and early 1990’s [26, 27]. The following

discussion of ICA was condensed from the review paper by Hyvrinen [28].

There are two basic formulations that are referred to as the noiseless and

noisy cases respectively

Y = AX (2.28)

Y = AX+ Γ (2.29)

where Y is the D × n data matrix as defined throughout this section, A is

the D× d mixing matrix, X is a d× n matrix of representing n samples of d

latent variables and is sometimes called the source matrix, and Γ is a d× n

matrix representing n samples of a d dimensional noise vector. Looking back

at Equations 2.20 and 2.24, it is easy to see the resemblance of ICA to both

PCA and FA.

To make the distinction clear between ICA and these other classical meth-
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ods it is important to remember the difference between independence and

correlation. Two variables are said to be uncorrelated when

E[xy] = E[x]E[y]

The condition for independence is stronger requiring the two variables’ joint

probability density to factor into the product of their marginal densities

f xy(i, j) = f x(i)f y(j)

PCA and FA are both second order techniques, meaning that they rely

solely on second order statistics, such as the correlation or covariance (as-

suming the data has been centered). The major difference between these

methods and ICA is that it relies on higher order statistics, e.g. the fourth

moment, kurtosis, as a measure of independence. Although the PCA and FA

methods do not technically make any distributional assumptions, since they

are minimizing correlations, they are only finding independent components

if all of the latent variables are Gaussian. Therefore, if we are truly inter-

ested in finding independent latent variables then PCA and FA may not be

adequate. In fact, if latent variables are mixed non-linearly Y = f(X), linear

ICA will only be capable of providing an approximate fit, but that will not

be covered in this review.

Often some form of data preprocessing is required before performing ICA.

The most common requirement among the different ICA techniques is that

the data must be whitened

Yw = QY (2.30)

where Yw is the whitened data and Q is square D dimensional whitening

matrix that results in the covariance matrix of the whitened random variable

being an identity matrix E[ywy
⊤
w ] = I. This is commonly accomplished using

PCA or eigendecompostition

Qpca = Λ−1/2N⊤ (2.31)

where Λ and N are the diagonal matrix of decreasing eigenvalues and the

corresponding eigenvectors or the covariance matrix Σ = YY⊤ respectively

as defined in Equation 2.21. Combining Equation 2.30 with Equation 2.29
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then gives

Yw = GX (2.32)

where G = QA and G is an orthogonal matrix because the covariance of the

whitened data can be written as

Σ = E[ywy
⊤

w ] = GE[yy⊤]G⊤ = GG⊤ = I (2.33)

as was the desired effect of whitening. This whitening actually makes the

problem of finding a solution to the ICA problem easier, because obtaining

an arbitrary matrix A to satisfy 2.29 now becomes the easier problem of

finding an orthogonal matrix G.

Now, up to this point we have just considered ICA a matrix decomposition

method that produces optimally independent components. To reduce the

dimensionality of a matrix as well, the data preprocessing step normally

involves excluding a number of principle components as is done in PCA.

Qpca = Λ
−1/2
d N⊤

d

This is somewhat justified if it is assumed that the noise is low and therefore

energy of Y is concentrated in the subspace spanned by the first d principle

components.

As mentioned earlier, ICA refers to a collection of techniques where the

techniques differ based on the specific objective function they choose opti-

mize and the optimization method used to arrive at a solution. Options for

objective function include log likelihood, network entropy or infomax, mu-

tual information or KL divergence, negentropy, general contrast functions,

kurtosis and other measures of non-Guassianity, and many more. The solu-

tion methods are all incremental and typically are presented as an update

function of the inverse of the mixing matrix sometimes referred to as the un-

mixing matrix W = A−1. One of the earlier algorithms performs a gradient

ascent on an infomax objective function leading to the update rule

∆W ∝ [W⊤]−1 − 2 tanh(Wy)y⊤ (2.34)

A very commonly used ICA method is called FastICA and is based on a batch

style fixed point iteration optimization method for general contrast functions
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giving the following update equation

w(k) = E[xg(w(k − 1)⊤x)]− E[g
′

(w(k − 1)⊤x)]w(k − 1) (2.35)

where g() is the derivative of a nonquadradic nonlinearity function used in

the contrast function, g
′

() is its second derivative, and w is normalized after

each update.

Note that this section was meant to provide a cursory look at ICA as it

relates to the problem of dimensionality reduction. For a more comprehensive

look at this collection of techniques, see the review by Hyvrinen [28].

2.2.1.4 Non-Negative Matrix Factorization

Non-Negative Matrix Factorization (NMF) is a newer dimensionality reduc-

tion technique, compared to PCA and FA, developed in 1999 by Lee and

Seung [29]. As its name hints, NMF is a matrix factorization method that

can be applied to exclusively non-negative data represented as aD×n matrix

Y. Of course, PCA and FA can be applied to non-negative data, but will

give negative values in the feature/loading and score/factor matrices which

can be difficult to interpret. NMF is unique because it imposes positivity

constraints on every element of the decomposing matrices. This constraint

has been shown to produce features that can have semantic meaning [29].

The current reasoning for why NMF finds semantically meaningful features

is that the model’s positivity constraint mirrors the human interpretation

that objects are composed of separate parts.

Y = WH (2.36)

where for d features W is a D × d matrix and H is a d× n matrix.

Depending on what is cost function or distance metric is chosen, differ-

ent solutions arise that are detailed in the 2001 paper [30] and discussed

below. The most common NMF solution methods are iterative and utilize

multiplicative update rules, meaning that the current estimate is multiplied

by some factor to generate the new estimate. If we choose to minimize the

squared Euclidian distance metric ‖V−WH‖2, the least squares error, sub-

ject to the non-negativity constraints Wik, Hkj > 0 ∀ i, j, k, then the update
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equations become

H
′

kj ← Hkj
(W⊤Y)kj

(W⊤WH)kj
W

′

ik ←Wik
(YH⊤)ik

(WHH⊤)ik
(2.37)

for i ∈ (1 . . .D), j ∈ (1 . . . d), k ∈ (1 . . . n) where the kj subscript of Hkj

indicates the element of H in the kth row and jth column, Wik is defined

similarly, and the prime
′

indicates the updated estimate. This Euclidian

distance is non-increasing under these rules and is invariant if and only if W

andH are at a stationary point of the distance, which occurs whenY = WH.

If instead we choose to minimize a slightly modified form of the Kullback-

Leibler (KL) divergence that we will refer to simply as the Divergence

D(X‖WH) =
∑

ij

(

Xij log
Xij

(WH)ij
−Xij + (WH)ij

)

(2.38)

subject to the non-negativity constraints Wik, Hkj > 0 ∀ i, j, k, we end up

with a different set up of update equations

H
′

kj ← Hkj

∑

aWakXaj/(WH)aj
∑

aWak
W

′

ik ←Wik

∑

bHkbXib/(WH)ib
∑

bHkb
(2.39)

where the matricies are defined as above. This Divergence is non-increasing

under these rules and is invariant if and only if W and H are at a stationary

point of the divergence, which occurs when Y = WH.

2.2.2 Perceptual Primitives and Receptive Fields

The previous discussion of dimensionality reduction was motivated by an idea

expressed by the neuroscientist Horace Barlow in 1961 [31]. Barlow studied

visual processing and his observations on the structure and organization of

sensory neurons led him to ask if there is an underlying principle that ex-

plains why different sensory processing neurons respond to different ranges

of stimuli. At this time, the idea that reduction in dimensionality is an im-

portant characteristic of sensory processing was gaining popularity. Barlow

provided the interesting hypothesis that receptive fields were optimized to

reduce the dimensionality of the incoming sensory information by extracting

signals of high relative entropy. The term receptive field, originally coined
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by Sherrington, is used here to describes a region of the sensory space that

elicits a response by a specific neuron.

But, reduced dimensionality is not an intrinsically desirable characteristic.

It is possible that a high dimensionality is required to represent the range of

stimuli adequately and reducing the dimensionality of that signal would dis-

card useful information. Dimensionality reduction is really only useful when

the intrinsic dimensionality of the signal is lower than that of the signal it-

self. Therefore, what Barlow’s hypothesis indirectly implies is that there is

structure in our sensory observations, and, consequently, structure in the

world. It is this structure in the world that our sensory processing systems

have adapted to reflect in order to efficiently process information. By taking

advantage of the statistical regularities in the sensory signals, the dimension-

ality of the observations are reduced, simplifying computational demands in

the process. There is a growing body of evidence that suggests Barlow’s

intuition was correct and bolsters this structured world interpretation. We

will review some of that evidence here, focusing on results from the visual

and auditory sensory domains.

2.2.2.1 Visual Primitives

Neuroscientists Hubel and Wiesel investigated the receptive fields of neurons

in the visual processing stream of cats. In a string of experiments, they

recorded electrical signals from neurons in the primary visual cortex (V1)

of cats as they projected different simple black and white patterns on the

cats’ retinas [32, 33]. These experiments revealed that certain cells were

sensitive to specific orientations of lines and gratings within a specific region

of the visual space. They deemed neurons with this behavior simple cells.

They also discovered neurons that responded to oriented lines and gratings

similarly as simple cells, but exhibited some invariance as to the location

of the stimulus on the retina or visual space. In other words, these other

neurons were sensitive to oriented patterns not just in one location of the

visual space, but within a range of locations. They deemed these cells with

spatial invariant properties complex cells. Later research helped to show that

complex cells are aggregators of responses from simple cells responding to the

same orientated lines at different locations in the visual space, enabling their

spatial invariance properties [34].
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Simple and complex cells have also been shown to be sensitive to specific

spatial frequencies [35]. Simple cells however, still exhibit the property of lo-

calization, meaning that they can not be simply considered spatial frequency

detectors and represented via a 2-D Fourier transform. However, the Gabor

filter has been shown to be a good approximation of simple cell receptive

fields [35]. A 2D Gabor filter is simply the multiplication of a Gaussian ker-

nel with sinusoidal plane wave. One can consider simple cells a type of visual

primitive. Each simple cell’s receptive field can be considered a feature or

basis, and in the linear case, a column of the feature matrix as in Equation

2.20.

In fact, many computer vision systems use Gabor filters and similar edge

filters to generate features that are used in object detection, character recog-

nition, and movement tracking algorithms. But what is truly remarkable is

that experiments that apply dimensionality reduction techniques to images

of natural environments produce features that resemble the receptive fields of

simple cells. To apply dimensionality reduction to h×w dimensional images,

one can apply a vectorization operation vec() to each image I which succes-

sively stacks the columns of the image into a h · w × 1 vector. The inverse

of the the vectorization operaiton vec−1() can later be used to reconstruct a

vectorized matrix.

Bell and Sejnowski utilized a natural gradient method of infomax ICA to

develop a set of visual features from image patches from pictures of natural

scenes of trees and leaves [36]. These image patches were first vectorized and

then placed in the columns of Y as in Equation 2.29. Olshausen and Field

took a slightly different approach and developed a linear decomposition to

maximize sparsity of the basis [37]. Interestingly, both of these approaches

result in filters that resemble the receptive fields of cells in the visual cortex.

One reason for that may be that the sparsity constraint is very closely related

to the independence constraint [38].

For some computer vision applications it sometimes makes sense to develop

larger scale features from an entire image instead of image patches. For ex-

ample, for the task of face recognition, computer scientists have developed

”face” features by performing dimensionality reduction on entire images of

faces, where each face image is vectorized and becomes a column in Y. Turk

and Pentland first proposed this concept and developed what they called

the eigenfaces [39]. They framed the problem in the context of information
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theory, where the goal was to find an efficient code to extract the infor-

mation from a facial image that would enable facial recognition. However,

at the time, ICA was a very new technique and the infomax method had

not yet been created. They instead used PCA to construct their eigenfaces,

which generates uncorrelated components that approximate independence

using second order statistics. The name eigenfaces is apt as they are co-

mosed of the columns of the feature matrix in Equation 2.20 which contain

the eigenvectors of the correlation matrix. Turk and Pentland were able to

use these eigenfaces to perform face classification and face detection in a con-

strained setting. The eigenfaces can be visualized by performing an inverse

vectorization operation on each column of the feature matrix in Equation

2.20.

kth eigenface = vec−1(wk)

The eigenfaces are somewhat face-like in appearance, but have both positive

and negative components which make them difficult to interpret.

The NMF algorithm was actually created to address this problem of com-

ponent interpretation [29]. Lee and Seung cite psychological and physiologi-

cal evidence pointing to a parts based representation in the brain as motiva-

tion for developing features that are more efficient and more easily interpreted

than the holistic ”face” features of eigenface and similar approaches [40].

They hypothesized that in order to produce more interpretable components

for data that is inherently non-negative, the basis must be entirely additive

and not rely on inter-feature cancellation, leading to the non-negativity con-

straints of NMF [29]. The NMF algorithm does produce more component

based face features. In fact, it picks up on facial features that we have names

for, such as noses, eyes, lips, beards, etc. and represents these each as indi-

vidual components. There is some evidence to indicate that cells in the visual

cortex may have receptive fields that are somewhat component based [40].

It is possible that these cells exist at a higher level of the visual processing

hierarchy and are aggregating inputs from other cells earlier in the chain of

processing such as simple cells or complex cells.

These higher level ”face” features are interesting, but have limited use

because they are not invariant to translation, scale, or angle of the face to

the camera. One way of adding invariance is through use of a hierarchy, which

is the approach taken by Coates et al [41]. They used K-means clustering
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to construct what they call simple cells. It is important to point out that

K-means is a technique that gives very similar results to that of PCA [42].

In fact, K-means can be thought of as a sparse PCA that maximizes the

same least squares objective function but with the addition of a categorical

constraint. So, although we have only covered PCA, the simple cells produced

using k-means can be thought of as behaving similarly. The output of the

simple cells is fed into an agglomerative clustering algorithm which acts as

a means for performing max-pooling. Pooling refers to a general technique

of condensing multiple signals or responses into a single signal. Max-pooling

specifically assigns the output of a polling unit to be the maximum value of

all the input signals. Coates et al. call these max-pooling units complex-cells,

because the pooling groups are chosen in such a way to enable the outputs

to be invariant to translations of features [41]. To build a deeper hierarchy,

Coates et al. alternatingly stacks layers of complex cells and simple cells on

top of each other.

They applied this approach to the problem of learning a hierarchy of im-

age features. First, they collected their training data: a set of 52 million

32 × 32 pixel image patches by randomly sampling YouTube videos. They

then used these images to train a 4 layer feature hierarchy of alternating

simple and complex cells [41]. As the training data was sampled randomly

from YouTube and no supervision was used, the images are of partial views

of objects and clutter, unlike the previously discussed NMF and eigenface

experiments which rely on images cropped to have centered faces [39, 29].

However, Coates et al. estimate the the most commonly occurring object

category is a human face, but that it well-framed images of faces account for

less than 0.1% of the image patches. So, it is somewhat surprising that a

number of the second tier simple cell receptive fields resemble partial views

of faces. In addition, there are a number of second tier complex cells that

also resemble faces and are maximally activated when the network is passed

images of faces at various angles and scales.

The lower level features are also interesting. The simple cells resemble

edge and spot detectors much like biological simple cells. And some of the

lower level complex cell pooling units are comprised of simple cells with very

similar structure, often containing edge-like filters at various translations.

What these results demonstrate is that through hierarchical unsupervised

learning, it is possible to develop features that exhibit some properties of
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invariance similar to those of neurons found in the visual processing stream.

2.2.2.2 Auditory Primitives

The field of auditory and, more specifically, speech processing was primarily

advanced by the telecommunications industry during the creation of the tele-

phone network. In fact, the study of auditory signals led to the development

of many of the tool used in signal processing today [7]. Consequently, de-

velopment of auditory primitives precedes that of visual features. There are

some significant differences between auditory signals and visual signals. Un-

like visual signals, which are very high dimensional vectors or matrices, raw

audio signals are normally 1 or 2 dimensional time indexed signals. In addi-

tion, while time can be somewhat ignored when developing visual primitives,

it is an absolutely essential component in characterizing auditory signals.

Audio signals can be thought of as being composed of sums of pure sin

waves of different amplitudes through the use of a Fourier decomposition.

One of the most common approaches is to decompose the audio signal into

a time-frequency representation via a short time Fourier transform (STFT).

The STFT was first introduced by Gabor in 1946 [43] and consists of applying

the DFT successively to a windowed version of the time domain signal as

below

x̂τ = FN(xτ ⊗w) (2.40)

where x̂τ = [f(τ − (N −1)/2) · · · f(τ +(N −1)/2)]⊤ is the length N segment

of the signal centered at sample τ , FN
(k,n) = exp 2πikn

N
is the kth, nth element

of the N ×N discrete Fourier transform (DFT) matrix corresponding to the

kth frequency , x̂τ = [x̂(τ, 1) · · · x̂(τ + N, 1)]⊤ is the DFT of the N sample

signal segment centered at sample τ at discrete frequencies k/N , and w is a

window function that is used to reduce artifacts induced by truncating the

signal. The STFT is finally given by combining the column vectors x̂τ into

a matrix

X̂ = [x̂τ1 , x̂τ2, · · · ] (2.41)

where the overlap l = τj − τi for j = i+ 1. determines the spacing between

window centers. See [5, 44] for a more thorough overview.

The transform can be thought of as applying a Fourier transform to suc-

cessive overlapping segments of a signal. This is often referred to as a sliding
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window. This approach enables building a time indexed frequency-amplitude

decomposition and allows us to see how the spectrum of a signal varies over

time. The STFT, and similar transforms, have proven to be extremely valu-

able tools in understanding audio signals including speech and music.

The spectrogram, which is used heavily in phonetics, is either the magni-

tude or power of the STFT and is typically plotted on a log scaled frequency

axis. One interesting limitation of the STFT is that there is a trade-off

between time resolution and frequency resolution of the transform in ac-

cordance with the Heisenberg uncertainty principle, meaning that the we

cannot precisely identify the frequency of a signal at a specific time [43].

This is related to the window width N ; as we decrease N the STFT time

resolution improves, but the STFT frequency resolution decreases. A similar

time-frequency representation called the wavelet transform was designed to

overcome the uncertainty problem by using narrower windows for transform-

ing higher frequencies and wider windows for lower frequencies.

One of the reasons for for viewing audio signals in the time-frequency plane

is that the human ear has been shown to perform a similar harmonic decom-

position. This decomposition is performed by the cochlea, which is a hollow

fluid filled spiraled shell containing something called the basilar membrane

which resonates with incoming sounds. The basilar membrane is lined by

the Organ of Corti, which is peppered with groups of hair cells called ste-

rocilia that convert mechanical movement of the fluid into electrical signals.

In other words the stereocilia are transducers. When a sound wave hits the

ear drum it cause the membrane to oscillate. That oscillation is relayed to

the cochlea through a linkage of 3 bones causing displacement of the fluid

within the cochlea. Due to the mechanical characteristics of the cochlea, the

basilar membrane resonates at different locations along it corresponding to

different frequencies, thereby performing a harmonic analysis. The changing

resonant frequency along membrane can be described using a place-frequency

mapping.The inner ear is very complicated and has been studied extensively.

In fact, the cochleogram is a time-frequency transform that utilizes a linear

model of the basilar membrane and a leaky integrator model of stereocilia

activations to produce a power spectrum representation similar to that of

a spectrogram [45]. This representation is not as commonly employed due

to its increased computation requirements, but advocates of this technique

argue that it is more physiologically faithful and doesn’t introduce disconti-
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nuity artifacts that windowing approaches suffer from. Other features that

emulate the response of the cochlea include gammatone filterbanks, correlo-

grams, and the weft. A variety of additional transform methods and audio

features have been engineered over the years including the discrete cosine

transform (DCT), which is a variation of the Fourier transform that has only

real values, and the Mel-frequency cepstral coefficients (MFCCs), which is

the DCT of the log power spectrum of the signal.

However, another approach to developing features is to use the data to

create a new basis. This approach is motivated by Barlow’s hypothesis that

sensory processing systems have evolved to represent precepts optimally with

respect to the statistics of the environment [31]. This can be done through

LPC [5], as discussed earlier in Section 2.1.3, or by applying dimensionality

reduction techniques. Although much of the work in learning perceptual

primitives has focused on the visual domain, similar approaches have been

taken in the auditory domain. To apply a dimensionality reduction method,

the audio signal must first be placed into a matrix. This is accomplished

using the sliding window method as we did for the STFT. For a single channel

system with signal f(t) a window of width N can be taken specifying the

length of the primitive. The data matrix Y is then constructed by setting

successive lengthN signal samples fτ = [f(τ+1) · · ·f(τ+N)]⊤ as the columns

[44]. Then, techniques such as PCA, ICA, and NMF can be applied.

Initial data based approaches focused on learning features using artificial

neural networks with Hebbian based learning rules. These methods have

been described as very similar to PCA [46]. When PCA is applied to speech

sounds, it produces a collection of approximate sinusoids of varying frequency.

Interestingly, this PCA basis derived from speech sounds very closely resem-

bles the DCT components [44], which are just frequency localized sinusoids

[47]. And, it has been shown that the DCT is asymptotically equivalent to

PCA applied to time coherent data [48].

But, the PCA approach suffers from the inability to localize events in time

similar to that of the DFT. One way of dealing with this is to develop a time

localized basis functions using ICA which relies on higher order statistics to

ensure independence between the features. In fact, when applied to speech

sounds ICA produces frequency and phase localized sinusoids [44, 49, 46].

In addition the ICA features enable a much more sparse encoding of sounds

compared to PCA [44]. In other words, a fewer number of ICA bases is
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required to achieve the same reproduction accuracy as is with PCA. This

evidence supports Barlow’s initial hypothesis that sensory processing systems

have evolved to encode common precepts optimally in a statistical sense.

An even stronger case for this hypothesis was made by Lewicki who applied

ICA to different collections of natural sounds [49]. He found that ICA ap-

plied to sounds of animal vocalizations resulted in features similar to those of

a Fourier transform. When applied to non-biological environmental sounds,

the resulting features resembled a wavelet transformation. But, he found

that when applied to an ensemble of both sets of sounds, the algorithm pro-

duced features that even more closely match biological data. Specifically the

features from the ensemble of sounds exhibit a sublinear power law relation-

ship of filter sharpness versus center frequency that resemble the distribution

of tuning frequencies along the length of the cochlea. In addition, Lewicki

points out that ICA applied to human speech produces results very similar to

those of the ensemble. This may imply that speech evolved to encode com-

munications optimally with respect to existing perceptual processing ability.

These dimensionality reduction approaches produce interesting and effi-

cient primitives for low-level encoding of auditory signals, but it is often

useful to obtain primitives on a longer time scale with more invariant proper-

ties. In order to develop higher level features, a hierarchy can be constructed.

Lee et al. took an unsupervised deep learning approach to creating higher

level features [50]. They trained a convolutional deep belief net (CDBN) on

whitened spectrograms of speech samples from the TIMIT database. CDBNs

are formed by successively training restricted Boltzmann machines (RBMs)

and stacking them on top of each other. Some of the low level features learned

by the CDBN were shown to correspond to individual phones. Interestingly,

when the first layer features were used to perform a phone recognition task

they underperformed the use of standard MFCCs significantly. However,

when the first layer features were combined with MFCCs an improvement

of 0.7% was achieved. The accuracy of phone classification using the higher

level features however, was not reported. Lee et al. also used the features to

perform gender classification. Interestingly, the training of a classifier using

the high level features proved to be the most accurate method compared to

use of MFCCs, low level features, and combined low and high level features.

This suggests that the high level features learned invariance that preserves

gender information.
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2.2.3 The Motor Equivalence Problem

Consider the seemingly simple action of striking a chisel with a hammer. At

first glance there is nothing particularly outstanding about this movement;

it is a task that most humans are capable of. However, when one takes into

account the complex and highly redundant structure of the human motor

system this gesture can be seen as truly spectacular. Nikolai Bernstein was

one of the first people to study coordinaiton of motion. In fact, many of the

first movements that he studied were of industrial workers performing their

jobs, including the action of hammering [51]. He observed that there is a

great deal of redundancy in the motor system, meaning that humans have

many more degrees of freedom (DOFs) than are required to perform a motor

task.

This redundancy arises at several levels. A motor unit consists of an alpha

motor neuron which innervates a number of muscle fibers within an individual

muscle [52]. Motor neuron cell bodies are clustered in columns within the

spinal cord making up motor pools. Each muscle pool exclusively contains all

of the motor neurons that innervate a single muscle. The force that a muscle

exerts is affected by both the rate at which individual motor neurons fire ,

rate coding, and the number of motor units that are being recruited. So,

there is a redundancy at the motor level as there are many more motor units

than necessary to exert a specific force from a muscle. One way that we know

of that the nervous system uses to reduce this redundancy is via the motor

neuron size principle. The size principle states that motor units are recruited

in order of smaller motor units to larger motor units as the strength of the

input to the motor pools increase. However, additional redundancy exists at

the joint level where multiple muscles affect the torque about different limb

joints. Redundancy also exists at the limb level. For example the positioning

of the hand in 3-D space requires 6 DOFs, but the human arm has 7 DOF.

Another level of redundancy exists at the level of the limb trajectory. In

the task of hammering it can be seen that there are many different joint

trajectories that result in the nail being struck.

The problem of how to coordinate muscle activations for performing spe-

cific task given that they system is highly redundant is known as the motor

equivalence problem or the degrees of freedom problem. Stated more suc-

cinctly the motor equivalence problem is the idea that there are many motor
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actions available that will achieve a single motor goal. In many cases there

is actually an infinite number of solutions to a given task. From a control

theory perspective this is an extremely challenging problem. Yet, humans

can not only hammer chisels, but they can build houses, perform gymnastics,

and produce speech. Many different theories have been put forth to address

this problem and include ideas from neuroscience and the study of motor

control as well as models adopted from the domains of control theory and

robotics.

2.2.3.1 Motor Primitives

The term motor primitives refers to the general idea that motor actions and

motions are composed of fundamental building blocks. This hypothesizes

that the entire repertoire of motor actions is spanned by these motor primi-

tives and specific transformations of them [53]. These primitives take many

forms, may be part of a complex motor control hierarchy, and may capture

coordination at the neural, joint, kinematic, and/or dynamic levels of move-

ment.

Bernstein pioneered the concept of motor or muscle synergies as one po-

tential solution to the motor equivalence problem [51]. A synergy is generally

used to describe a weighted co-activation of muscles [54, 55]. For a system

with D muscles and N primitives this can be represented as a vector matrix

product

m = cw (2.42)

where m is a D-dimensional vector representing the muscle activations, c is

an N -dimensional vector of synergy weightings, and w is a D-dimensional

synergy or co-activation of muscles [55]. However, the term synergy has

taken on a number of meanings within the motor control domain. Most

uses of muscle synergy refer to either time-invariant also known as spatial

synergies

m(t) = c(t)w (2.43)

which allow the weightings to vary over time but describe a static co-activation
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of muscles, or time-varying synergies also known as spatiotemporal synergies

m(t) =

N
∑

i=1

ciw(t− toi)δ(t− toi) (2.44)

which capture temporal regularities in muscle co-activations as well.The func-

tion δ(t − tio) in Equation 2.44 is the dirac delta function which indicates

that spatiotemporal synergies may be combined asynchronously in time.

The first indication that synergies or motor primitives could describe the

method by which the CNS overcomes the motor equivelence problem was

provided by Bernstein [51]. In his pioneering work in the study of human

movements, he recognized that rhythmical motions in particular, such as

hammering or walking, could be represented to within 1-3mm or 1% of the

total movement as a Fourier series of only 3 to 4 terms. Each term of a Fourier

series has only two variables, an amplitude and a phase shift meaning that it

is possible to represent these complex coordinated movements that Bernstein

studied with only 6 to 8 parameters. This is, in effect, a massive reduction

in dimensionality. To Bernstein, the fact that there exists such a high degree

of structure in these motions points to the existence of a highly structured

internal physiology that produces these motions.

A number of studies have provided evidence for Bernstein’s intuition by

showing that microstimulation of spinal cord premotor neural circuits gen-

erate balanced contractions in muscle groups[56, 57, 58] indicating that low

dimensional representations may help to generate complex movements. One

commonly cited study measured position dependent force fields generated by

stimulation of individual spinal circuits in frog hind limbs [59]. They showed

that the force fields generated by stimulating individual spinal circuits sum

vectorially when stimulating them simultaneously. This was expected for

non-redundant configurations of the leg, but it was surprising that this held

for redundant configurations where many possible force field combinations

could have produce the summed force. These results suggest that spinal syn-

ergies or motor primitives could be responsible for part of this coordination

that Bernstein first observed.

The concept of neural timing circuits in the spinal cord called central

pattern generators (CPGs) has similarities to spatiotemporal synergies and

Bernstein’s early work in that CPGs produce rhythmic coordinated muscle
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activations [60, 61]. CPGs are hypothesized to be capable of oscillating inde-

pendently of afferent sensory inputs or efferent rhythmic stimulation. They

do require some sort of efferent activation and allow for top-down modula-

tion. These neural circuits may aid in a variety of rhythmic motor control

processes such as respiration, walking, swimming, flying. Most evidence sup-

porting the idea of CPGs comes from either studies of fictive motor patterns

in which neural circuits in extracted spinal tissue are stimulated and their fir-

ing patterns observed, or from studies using deafferented animals [62, 63, 64].

Some other evidence for the existence of synergies comes from studies in

electrophysiology where electromyographical (EMG) signals are decomposed

into lower dimensional spaces using dimensionality reduction techniques such

as Principle Component Analysis (PCA) [65], Independent Component Anal-

ysis (ICA)[66], or non-Negative Matrix Factorization (NMF) [67]. Other

approaches have applied dimensionality reduction techniques to discovery

of kinematic primitives in walking, reaching, grasping, tounge motion, etc.

[68, 69, 70]. These methods do not consider how redundancy at the neural

level is resolved as they rely on analysis of the motion of the actuated system.

The use of some type of motor synergy by the CNS (Central Nervous

System) to perform coordinated movements could greatly reduce the com-

putation for the planning and or execution of motion [71]. If it is possible

to perform all desired motions with a number of synergies significantly lower

than the number of muscles, then a great deal of redundancy in performing

a task has been reduced making it less difficult to find a weighting of the

synergies. It is important to note that although spatiotemporal synergies

require the CNS to select a weighting as well as individual activation times

tio they have the potential to reduce redundancy at the limb and muscular

level, as with spatial synergies, and at the trajectory level.

Another formulation of motor primitives coming from the robotics do-

main is Dynamic Movement Primitives [72, 73] which model coordination

as coupled multi-dimensional non-linear dynamical equations with point or

limit-cycle attractors and adjustable attractor landscape.

τ v̇ = K(g − x)−Dv −K(g − x0)s+Kf(s) (2.45)
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τ ẋ = v (2.46)

τ ṡ = −αs (2.47)

where x and v are the position and velocity of the system, x0 and g refer

to the starting and goal states, K and D are analogous to a spring constant

and a damping coefficient, τ is a time scaling factor, α is a predefined time

constant, and f(s) is a non-linear forcing function. This formulation has a

number of interesting properties including the ability to modulate primitives

to change the scale, speed, phase, and initial and final state of the movement.

These modulations endow the primitives with the ability to generalize to new

tasks or variations within a given task. For example, a set of DMPs, each one

representing a joint of the robot arm, can represent the collective movement

of all joints in a robotic arm. This motion can be modified by changing the

goal parameter g and the time scaling factor τ of the DMP to produce a

similar movement in a different location within the robots workspace at a

different speed. DMPs can be learned from demonstration; i.e., a human can

demonstrate a motion to the robot by moving the robot’s arm. From this

motion a set of DMP parameters, all θi’s in Equation 2.2.3.1 can be found

using simple regression methods such as [74]

f(s) =

∑

i φi(s)θis
∑

i φi(s)
(2.48)

φi(s) = exp(−hi(s− ci)
2) (2.49)

or via locally weighted regression [73]

ftarget(s) =
τ v̇ −K(g − x) +Dv +K(g − x0)s

K
(2.50)

θ = argmin
θ

∑

s

(ftarget(s)− f(s))
2 (2.51)

DMP’s are well known within the robotics community and have, for exam-

ple, enabled robotic systems to play table tennis [75] and perform a tennis

backhand and forehand swing [73]. However, in the original formulation [72]
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there is not a clear way of combining and superimposing primitives in an

analogous fashion to 2.44. In fact, most uses of the DMP framework learn ei-

ther a single primitive or a collection of primitives that may be concatenated

to perform longer actions. A recent probabilistic reformulation of DMPs is

more amenable to performing superposition in time of primitives via joint

primitive distributions [76].

2.2.3.2 Equillibrium Point Hypothesis

The equillibrium point hypothesis (EPH) describes another means by which

redundancy in the human motor system may be reduced. Originally devel-

oped by Feldman, it is a physiologically motivated model of muscle control

proposing that through the combined effects of muscle dynamics and spinal

reflex arcs, the CNS is able to control and coordinate movement simply by

setting muscle threshold lengths [77]. A threshold length is considered to

be the length beyond which a muscle begins exerting an opposing force [78].

The equillibrium point is the state acheived where the forces exerted by the

individual muscles and the inertial and external forces are balanced. In ad-

dition, the system is required to have a zero state velocity to be considered

an equillibrium point. Essentially, this all means that the local feedback is

performing a type of inverse dynamics, allowing the CNS to simply command

muscle lengths.

Shadmehr provides a concise yet rigorous introduction to the EPH in [78].

The basic equation of motion for a general mechanical system can be written

as

θ̈ = I(θ)−1(fc(θ̇, θ,u(t))− fm(θ̇, θ − fg(θ)) (2.52)

where I is the system’s inertia matrix, θ is the state, fc is the force exerted by

the muscles on the system, fm contains the centripetal and Corriolis forces,

and fg is the gravitational force [78, 79]. The equillibrium point of this system

is defined as the the point where the state θ and state velocity θ̇ are zero,

which only occurs if fc − fm − fg is zero.

The inverse dynamics solution to tracking a desired trajectory θd(t) is to

simply solve Equation 2.52 for the muscle force fc = f̂m+ f̂g + Îθ̈d, where the

hat symbol x̂ refers to the system’s estimate of x. However, due to model

and environmental uncertainties as well as un-modeled external forces, this
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force may not produce the desired motion exactly. To compensate for this

uncertainty and to track the desired state more accurately we can incorporate

a feedback component into this inverse dynamics model

fc = f̂m + f̂g + Îθ̈d −B(θ̇ − θ̇d)−K(θ̈ − θ̈d) (2.53)

where B and K are positive definite gain matricies.

Equation 2.53 implies that the CNS has an internal dynamics model that

it uses to track desired trajectories. What the equillibrium point hypothesis

posits is that the feedback portion of 2.53 is designed in such a way so

that the internal inverse dynamics model is not necessary. The dynamics of

the muscles and the low-level spinal reflexes are captured by the feedback

components in this model. However, there has been much debate about

what is the appropriate form of fc [77, 80, 81]. One common feature of

fc assuming a static system is that it is approximately exponential with

respect to some linear difference in the desired and observed trajectories.

However, Gomi and Kawato demonstrated that a static fc is not adequate

for describing human reaching movements and argued that this implied the

CNS must be doing some form of inverse dynamics [82]. However, Gribble et

al. [83] demonstrated that a dynamic model incorporating delayed feedback

and velocity dependent muscle force, could potentially address the concerns

of Gomi and Kawato, while having similar static behavior as earlier models.

The EPH could be one way that the CNS simplifies motor control tasks by

reducing the dimensionality at the joint level, by providing a means by which

joint trajectories or synergies can be tracked without the need to perform in-

verse dynamics. Granted, redundancy still exists at the limb and trajectory

levels. However, the EPH formulation does not preclude the use of some

higher level redundancy resolution strategy. In fact, Mussa-Ivaldi has pro-

posed a way by which state and time dependent muscle synergies could be

integrated into the EPH framework [84].

2.2.3.3 Operational Space Control and the Uncontrolled Manifold
Hypothesis

In order to resolve redundancy at the limb and trajectory levels additional

constraints are required. Operation space control, also known as task space
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control, is a method developed in robotics used to track robotic end effec-

tor trajectories or honor end effector constraints while taking into account

the robot’s dynamics [85]. The key idea in operational space control is to

transform movements in the task space into an internal space where stable

controllers, such as inverse dynamics controllers, can be used to perform the

task [86]. For the task of finding n joint velocities q̇ in a serial robotic ma-

nipulator from m = 6 end effector velocities ẋ one can utilize the m × n

manipulator Jacobian J [87] which is defined as

ẋ = J(q)q̇ (2.54)

In redundant systems, where the number of task constraints is less than

the manipulator degrees of freedom, m < n, there is an ambiguity in the

transformation J. This ambiguity or unconstrained region of the internal

space is referred to as the null space within robotics and engineering and

is known as the uncontrolled manifold within the motor control literature

[87, 88, 86]. In the velocity operational space problem, this null space is

represented by the second term in the below equation

q̇ = J+ẋ + (I+ J+J)b (2.55)

where J+ = JT (JJT ) is the right pseudoinverse of J, I is the n× n identity

matrix, and b ∈ ℜn is an arbitrary vector [87]. Movement of the system

in the null space does not affect the performance of the task. For example,

consider the task of positioning the end effector of a 3 DOF planar revolute

manipulator at a position in the plane. Because there are only two con-

straints imposed by the task, positioning in 2-D, and the manipulator has 3

DOF, there are an infinite number of positions by which the manipulator can

achieve the goal. In other words this system is redundant. The uncontrolled

manifold, in this case, is the space of joint movements that do not affect the

position of the end effector.

There is an increasing consensus within the the field of motor control that

humans plan their motions in task space [89]. Some evidence for this comes

from studies of response times, which have been shown to be a function of

spatial task parameters [90]. On the neurophysiological level, cells within the

motor and premotor cortex have been shown to exhibit farily uniform tuning
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to spatial parameters such as end effector motions or forces applied to the

end effector [91, 92, 93].

Choices for how to resolve this ambiguity include not performing any con-

trol in the nullspace by forcing b = 0, minimal intervention, energy mini-

mization, avoidance of joint limits, maximizing comfort, task specific opti-

mization. The idea of minimal intervention arises from the observations of

human movements in reaching and force control tasks [94, 95]. These studies

have revealed that variation in the uncontrolled manifold is much higher than

variation in task relavent portion of the internal space [96, 97]. Latash et al.

provides a fairly comprehensive review of the applicaiton of the the uncon-

trolled manifold concept to analysis of human movements in [89]. In other

words, the CNS allows inconsistency in arm movements from trial to trial

that do not affect the performance of the task. This implies that the CNS

is prioritizing stabilizing with respect to a task and allowing the orthogo-

nal space, the uncontrolled manifold, to vary, potentially absorbing variation

from disturbances and errors in the task space.

Another question that arises when developing an operational space con-

troller is, which variables should be transformed from task-space into joint-

space? Roboticists have developed a variety of operational space controllers

for task space variables including end effector positions, velocities, accelera-

tions, and forces [98, 85].

2.2.3.4 Optimal Control

The framework of optimal control provides a systematic means for coordinat-

ing movements and reducing DOFs by allowing one to optimize performance

of a task with respect to a cost function. Research has shown that humans

behave near optimally in a number of reaching and force balancing tasks if

the correct cost is chosen [99, 100, 101]. A cost is typically defined as an

integral of an instantaneous cost over a period of time and is typically a

function of end effector states, internal state variables, model dynamics, and

motor torques or muscle activations [102].The optimal action and movement

is then found by minimizing the total cost. This process can be thought of as

adding additional constraints to the task, thereby reducing the redundancy

in the system in a principled manner.

Many different costs have been proposed for describing human movements
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which rely on different model assumptions. Kinematic costs are functions

of end effector and joint positions, velocities, accellerations, and their higher

order derivatives whereas dynamic costs consider the link masses and inertias,

end effector forces, and joint torques required to perform specified movements

[103, 102]. A commonly chosen kinematic cost is that of minimum jerk,

or minimizaiton of the first derivative of task space acceleration, which is

motivated by the the observation that end effector veocities vary smoothly

in most reaching movements [100, 101]. Other common choices for costs

include minimum torque change, energy, time, and variance [104].

One major difference between kinematic and dynamic costs is in how they

separate the movement planning and movement execution phases [103, 102].

Kinematic based costs give solutions that are trajectories in either joint or

task space, and rely on some base controller, such as an inverse dynamics

controller, to track the desired trajectory. This method completely separates

the planning and execution stages and the can be thought of as a hierarchical

approach to motor control. Alternatively, solutions to dynamic cost optimal

control problems take the form of trajectories within the joint torque or

muscle force space and therefore no distinction can be made between the

planning and execution of a movement.

In general, there is no agreement on what type of cost the human motor

system is optimizing. But, some experiments attempt to draw conclusion

about the correct cost by using the fact that these two categories of costs

predict differing behaviors under visual and force field perturbations during

movement [103]. When the visual feedback is altered artificially, and the

perturbation decays to zero at the start of and by the end of the movement,

the dynamic cost is unvaried and predicts that the task can be executed with

the same set of motor commands as generated without the altered feedback.

Whereas in the kinematic cost case, the cost increases and the generated

trajectory is altered to bring the desired and observed visual position into

consensus. If an artificial force field is imposed on the system the kinematic

cost solution predicts an increased cost but maintains the original optimal

kinematic trajectory, whereas in the dynamic cost case a new path is found

that will minimize the cost in the presence of this force field perturbation.The

primary reason for these predicted differences is the separation of planning

from execution in kinematic solutions versus the integrated solution in dy-

namic solutions.
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Researchers have taken advantage of these differing predictions and have

found evidence for the hierarchical plan and execute strategy implied by the

kinematic cost model in both the case of visual-feedback alteration [103, 105]

and force field perturbation [106, 107, 108]. This would seem to resolve the

question between kinematic and dynamic costs, but studies of more complex

movements indicate that knowledge of arm dynamics is vital to planning.

One interesting observation is that when executing reaching movements in

which an obstacle is present, humans tend to configure their arms to be

optimally inertially stable when passing near the object [109].

Todorov has proposed a alternate categorization of optimal control ap-

proaches to motor control by instead differentiating between open-loop and

closed-loop control laws [104]. Optimization models that rely on open-loop

controllers plan the optimal muscle activation, joint torques, or limb tra-

jectories whereas models with closed-loop controllers additionally take into

account motor noise, sensory uncertainty, and delayed feedback. The major

advantage of the closed-loop optimization approach is that instead of yielding

a desired movement, as with open-loop optimization where the movement is

executed using some base-level pre-determined feedback controller such as

an inverse dynamics controller, the system finds a feedback controller that is

optimal in the presence of delayed feedback and noise. This is a somewhat

subtle distinction, but the difference is important.

Todorov has shown that optimal feedback control is an incredibly powerful

tool and that it has the potential to subsume and unite many of the con-

flicting theories of optimal motor control [94]. Through the lens of optimal

feedback control phenomenon such as Fitts’ law, the scaling of movement

duration with amplitude and desired accuracy, the uncontrolled manifold

and the minimal intervention principle, and smooth end effector trajectories

can all be explained [104, 94]. See Todorov [104] for a fairly comprehensive

review of optimal control applied to modeling of human motor control.

However appropriate optimal control may be for describing human move-

ments it does not offer an adequate explanation of how these skills may be

acquired. Instead, it presupposes that a model of the musculo-skeletal system

is available, a family of control laws is specified, and requires a description

of the task in the form of a cost function [104]. It is unlikely that this is how

the CNS solves the motor skill learning and redundancy resolution problem.

There exists, however, an approximate form of optimal control called rein-
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forcement learning (RL) or approximate dynamic programming that assumes

no knowledge of a system model and relies on repeated interaction with the

environment in order to find an optimal movement. Although, RL fails to

provide a bulletproof solution for learning optimal movements. One major

issue with RL is problematic enough that it has been give its own name, the

curse of dimensionality, which states that the amount of time required to

find an optimal solution is exponentially related to the number of states and

actions [110]. In the case of human motor control the state space consists

of the estimated positions, velocities, accelerations, and jerks of each joint

and the end effector, the individual muscle activations and joint torques, and

complex perceptual signals such as vision and audition. In addition to the

massive dimensionality of the state, the fact that this is a continuous system

and the length of a desired action is variable and not available a priori further

complicates the problem. Another problem with the optimal control or RL

formulation is that each new task, or new cost function, requires solution of

another optimization problem. This is impractical as it does not allow for

transfer of knowledge about one task to performing of a new yet similar task

sometimes referred to as multi-task learning. It does not have any means of

performing generalization.

2.2.4 Hybrid Perceptual-Motor Primitives

One critique of motor primitive and muscle synergy based models is that al-

though primitives can be found from sets of muscle activations or movement

recordings and used to explain a large portion of the variance of recordings

for a given task, that is not proof that these primitives are components of an

underlying control architecture, and not merely an artifact of the structure

imposed by the task itself. In other words, many researchers infer existence of

a control system that recruits motor primitives to perform a variety of tasks

from the observation that the output of the system during performance of

a single task has statistical regularities. This is flawed logic. If movement

is indeed controlled by combining motor synergy activations, the synergies

themselves are being recruited in a coordinated manner, implying that the

structure observed in the movement itself is due to the structure of both the

synergies and the controller for the given task. Therefore it is not possible
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to separate out the contributions of the controller and the underlying syner-

gies from the learned motor primitives. It is also possible that there are no

underlying synergies and these experiments are merely picking up on regu-

larities in the controller for a specific task. This is a fundamental problem

for neuroscientists and physiologists hoping to draw conclusions about motor

control in biological systems. In addition, the criteria of reproducing a large

portion of the variance does not necessarily lead to discovery of synergies

that if recruited would produce the desired action, because there is no link

between actions and observations. Combining perceptual and motor features

to produce some form of hybrid synergies could make this link and provide

more robust evidence for the existence of synergies.

2.2.4.1 Functional Synergies

One way of dealing with this issue is to create what are called functional

synergies, which are synergies that include both EMG signals and task re-

lated variables. That is, dimensionality reduction is applied to the combined

set of EMG signals and task variables. Chvatal et al. used the functional

synergy approach to discover synergies for a human postural balancing task

[111]. In the experiment, participants stood on an platform that was then

tilted randomly causing the participants to react in order to maintain bal-

ance. EMG signals of various postural muscles were measured along with the

contact forces between the subject’s feet and the platform. Functional syn-

ergies were computed for each participant from the collected EMG and force

data. These synergies were then used to reconstruct the measurements from

a second postural experiment where subjects were taking a step at the time

of perturbation. Interestingly, the functional synergies explained the second

experiments quite well, although one extra synergy was added in order to

obtain better reconstruction of the EMG signal. This line of investigation

is promising as it affords a means to test the motor primitive control hy-

pothesis that other approaches do not. Alessandro et al. provides a fairly

comprehensive review of different synergy based motor control approaches in

neuroscience as well as robotics and advocates for including both input and

output variables in primitive formulations [112].
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2.2.4.2 Sensory-Motor Primitives

A similar argument is made by Todorov and Ghahramani in [113] and is

reviewed here. They pose the question of ”How can good motor primitives

be constructed from first principles?” Whereby good they mean primitives

that reduce the dimensionality and complexity of the state space, but still

ensure that the a solution is achievable. It is possible that by reducing the

dimensionality of the system that the desired task becomes unachievable

or the system becomes uncontrollable. Their main insight is that the only

safe assumption to make is that all tasks will be performed with the same

physical system. Therefore, primitives should be constructed from the input

and output of the system so as to reflect the structure of that system. They

refer to primitives constructed in this way as sensory-motor primitives.

Todorov and Ghahramani approach the formation of sensory-motor primi-

tives from a control and estimation perspective. Let us define a discrete time

system with two column vectors ut and yt as the l andm dimensional column

vectors representing the input and output of the system at time t respectively.

We also assume a general model of the underlying system dynamics given

by ẋ = f(x,u) where sensory observation are given by y = s(x,u). Then

given a history of input and output behavior from this system we can form

the vectors

pt = [u⊤

t−p,y
⊤

t−p, · · · ,u
⊤

t−1,y
⊤

t−1]
⊤ (2.56)

ft = [y⊤

t ,u
⊤

t+1,y
⊤

t+1, · · · ,u
⊤

t+f ,y
⊤

t+f ]
⊤ (2.57)

where p and f are the past and future horizons in discrete time steps. Todorov

and Ghahramani propose using the sample data to fit a probabilistic latent

variable model of the form

P (ft,ut|pt) =

∫

P (ft,ut|h)P (h|pt)dh (2.58)

where h is the n dimensional latent variable that is discovered by the un-

supervised primitive learning algorithm and the integral is over all possible

values of the vector. Selection of the control input ut proceeds as follows. At
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each time step the low-level controller computes

hpast = E[h|pt] =

∫

hP (h|pt)dh

which is then sent to the high-level task-specific controller

g = G(hpast)

which returns the control increment on the hidden state

hdesired = hpast + g (2.59)

from which the control action is computed by

ut = E[u|hdesired] (2.60)

=

∫

uP (u|h = hdesired)du

=

∫

u

∫

f

P (f ,u|h = hdesired)dfdu

where the step from line 2 to line 3 is accomplished by marginalizing over

f . Note that the probabilities used to arrive at values for hpast and ut are

from the probabilistic model in Equation 2.58 composed of a high-level task-

specific controller and a low-level task common controller.

Todorov and Ghahramani claim that the model will have some desirable

properties. Namely, the hidden state h will capture the information about

past inputs and observations that is most statistically useful in predicting

the future. This enables learning of the high-level controller G using RL on a

lower-dimensional space. Also, the transformation 2.60 can be thought of as

a set of control synergies because it relates the internal desired state hdesired

to the control input ut. They say that these synergies form a compact rep-

resentation of the statistics of the sensory-motor dynamics and capture the

so called modes of the system. They also point out that the data generated

prior to fitting the model can generated by applying either a random con-

trol or a controller and that the model will incorporate the behavior of the

controller into itself.

To fit this probabilistic model, they suggest using what they call, a factor

analysis generalized to include both inputs it = pt and outputs ot = [ut, ft].
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The model is given by

ht = Bit +w (2.61)

ot = Cht + v (2.62)

where w and v are zero mean Gaussian noise random vectors. They then go

on to present an expectation maximization solution to fitting the modified

factor analysis model that relies on the use of a Kalman filter in the E-step.

It is not immediately apparent how this model is related to factor analysis.

Equation 2.62 resembles the standard factor analysis form as shown in Equa-

tion 2.23 with C as the factor loading matrix, ht as the common factors, and

v as the unique factors. In Section 3.2 I will discuss the relationship of this

model to a technique called dynamic factor analysis in more detail.

As a demonstration of this approach, Todorov and Ghahramani apply this

method to data obtained from a simulation of a biologically inspired 2 joint

arm. The primitives that they obtain seem to discover the concept of a joint

as demonstrated by the inverse activations of primitives for sets of opposing

agonist-antagonist muscles. Intuitively, the model discovers structure in the

dynamics of the system. This structure inherently reduces the dimensionality

of the space that the system can explore. Therefore, a reduced dimensionality

representation of this system could conceivably still allow control over the

entire space of accessible states. This is an exciting result that leads me to

believe that this method has merit. In addition, Todorov and Ghahramani

provides some evidence that these primitives can be utilized in speeding

up RL for control of a system. The lower dimensional representation helps

overcome the curse of dimensionality that is encountered during RL.

2.2.4.3 Dynamic Movement Primitives and Perceptual Coupling

The earlier discussed method of Dynamic Movement Primitives can be tweaked

to allow modification of a movement based on feedback. The idea is that in-

dividual executions of a DMP should generate similar sensory traces. If one

assumes that a given motion or range of similar motions has a characteristic

set of sensory traces, Fdes, associated with it, then one can devise a way to

use this information as either feedback or a predictor of task failure. Pastor

refers to the combination of a DMP and a set of characteristic sensory traces
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as and associated skill memory or ASM [114].

The characteristic sensory traces, Fdes are found by recording the sensory

observations over the course of execution of a DMP and performing some

sort of averaging. Fdes can then used to modifiy the original DMP dynamics

shown in Equation 2.2.3.1 via a perceptual coupling term allowing the system

to compensate for deviations from the characteristic sensory traces.

τ v̇ = K(g − x)−Dv −K(g − x0)s+Kf(s) + ζ (2.63)

ζ = Ksensor(F − Fdes) (2.64)

One problem with this approach is that the mapping from sensory errors

to desired changes in the motion Ksensor must be specified. However, it is

possible to learn this mapping via RL [115]. This approach enabled Kober

et al. to teach a robot to perform the ball-in-a cup task with variable initial

conditions of the ball position. In general, this the approach of including

sensory features in the representation of motor primitives is promising.

2.3 Learning Modular Representations for Speech

Production

In [116] Gick and Stavness make a call to action, urging researchers to tackle

the problem of modularizing speech. They believe that the concepts of mus-

cle synergies can be extended beyond the area of limb control to the domain

of speech and articulatory control. They describe a lack of fundamental

research in this domain and cite the relative complexity of vocal tract ar-

ticulation as a primary reason. However, there is some work that is worth

reviewing. The theory of articulatory phonolgy falls in line well with this

modularity hypothesis and introduces the concept of articulatory gestures

which can be thought of as sensory-motor synergies. Also, some recent work

discussed how articulatory primitives were learned from electromagnetic ar-

ticulographic recordings providing evidence for the existence of articulatory

gestures. A number of neural network based models for control of simulated

vocal tracts have been developed that assume modular neural architectures.

These systems are also trained via interaction with the simulated vocal tract
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and are reviewed as well.

2.3.0.1 Articulatory Gestures

The concept of articulatory gestures comes from the articulatory phonology

framework of Browman and Goldstein [117]. In this framework gestures are

posited to be the underlying atomic units of speech production and can be

combined and concatenated to produce speech segments and syllables. A ges-

ture essentially specifies the location of a constriction within the vocal tract.

These gestures are thought to be dynamical systems that can be combined

and concatenated to produced complex coordinated motions. The task dy-

namic model of interarticulator speech coordination rests on the framework

of articulatory phonology and models gestures as point attractor dynamical

systems [118]. In is worth noting that this is very similar to the dynamic

movement primitive approach used in robotics [72, 73]. The articulatory

synthesizer TADA implements the task dynamic model with a physical vocal

tract model [118]. In the TADA environment, a gesture connects tract vari-

ables to model articulator variables. In other words a gesture is composed

of a desired constriction and the articulator activations used to create that

constriction. So essentially, it is the motion plan for how to produce a desired

constriction.

Accompanying each gesture is an activation level that specifies the strength

of the gesture. A second layer of coordination called a gestural score is used

to describe how gestures can be combined to produce segments and words.

The articulatory phonology framework and task dynamics model aligns with

the hypothesis that synergies are the fundamental units of motor control

and exist as a means for simplifying control of complex dynamical systems.

However, these approaches give little thought to the origin of these gestures.

For example, in the TADA simulator all gestures are hand specified and

require an intimate understanding of phonetics to construct.

2.3.0.2 Articulatory Primitives

The work of Ramanarayanan et al. begins to address these concerns in which

they use a variant of NMF called convolutive NMF with sparseness con-

straints (cNMFsc) to discover articulatory movement primtives from electro-
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magnetic articulographic (EMA) recordings [119]. They point out one of the

common issues with learning of synergies and movement primitives is that

it is difficult to quantitatively evaluate the result. First they seek to answer

the question “If we are presented with a set of waveforms or movement tra-

jectories that have been generated by a compositional structure, then can

we design and validate algorithms that can recover this compositional struc-

ture?” This is a fundamental question that underlies all of the synergy and

primitive research.

They offer a very unique approach to answering this question by applying

their algorithm to movements of the TADA vocal tract simulator and com-

paring the learned primitive activations to the ground truth gesture scores

of the TADA model. As one might imagine, the activations of the primitives

can not be directly compared to the gesture scores. Instead, they first fit a

LPC model to both the activation trajectories and the ground truth gesture

scores. They then compare the information content, of the learned primitives

activations to the gestures scores of the task dynamics model using a canon-

ical correlation analysis on the LPC weights of each. This reveals a strong

similarity between some of the learned primitives and the TADA gestures.

Although not conclusive, this approach is principled and adds rigor to their

analysis.

They also perform the same analysis with the primitives learned from the

EMA data with similar results. In addition, they generate phonetic labels to

accompany the EMA data and investigate the activation of various primitives

with respect to the phoneme being produced. This analysis reveals some

selectivity of bases based on vowels and consonants, but the results are fairly

ambiguous [119]. It is also important to point out that this EMA data was

obtained from individuals that have already learned to speak. What this

means is that the primitives learned from this data are going to be reflective

of the language of the speakers. If we assume that these primitives are passed

down via genetics then this approach is likely fine, but if we instead assume

that primitives are learned by each individual throughout their childhood

then this does not address that problem. Overall, this study outlined a more

rigorous approach to evaluation of primitives learned from biological data

and added to the evidence for the existence of articulatory synergies.
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2.3.0.3 The DIVA Model

DIVA is a neurobiologically inspired vocal tract articulatory control system

[120, 121]. It was developed with the motivating question of “How do infants

learn the motor skills necessary to produce speech?” DIVA is composed of

of blocks artificial neural networks, referred to as maps, connected to each

other in complex architecture that enables learning to produce speech via an

artiulatory vocal tract simulator. These maps correspond to neural structures

theorized to exist in the brain from fMRI based studies.

The architecture of the DIVA model is fixed, but the synaptic weights

of each map and between maps is learned via interaction with the simu-

lator during two stages. During the babbling stage the sensory-to-motor

inverse models of desired auditory and proprioceptive signals to articulatory

commands are learned. In the imitation stage, the model is presented with

example phonemes, syllables, and words from the target language and learns

a mapping from perception to auditory targets (formants). It then learns

feedback and feedforward control of the model for tracking of these auditory

targets.

The name DIVA is an acronym for directions into velocities of articulators,

which describes the primary map of direction of vocal tract proprioceptive

signals to velocities of the model articulators. The vocal tract simulator that

is used is an extension of Maeda’s model modified to include 10 articulators

instead of the original eight [122]. DIVA is able to learn to a control a

vocal tract to produce synthetic speech and has been used to study may

different speech production phenomena. Overall, the results of this system

are encouraging, but from the perspective of artificial intelligence it is not

terribly satisfying due to the amount of prior knowledge that is required

to construct the system. Ideally one would like to be able to outline an

architecture and learning process that can be applied to a variety of motor

control tasks.

2.3.0.4 A Connectionist Model

Plaut and Kello present connectionist model for learning of speech produc-

tion [123]. Their model has similarities with the DIVA model, but differs in

a number of dimensions. First of all, the model was not designed to corre-
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late as closely with brain structures although the network architecture was

motivated by research in speech learning. This model is also based on some-

thing called a simplified recurrent neural network, endowing the system with

a memory of sorts. The vocal tract model that is used is not a physics based

simulation involving an acoustic tube and articulators. Instead it is a set

of equations that relate articulatory variables such as constriction locations

and voicing to acoustic variables such as formants and frication. This sim-

plification was made to reduce the computational load needed to train the

underlying networks. Similar to the DIVA model, this model relies on inter-

action with the simulator to learn the network mappings and involves both

babbling and imitation stages. The model is trained with 3.5 million different

babbling and imitation presentations. The resulting model is able to repro-

duce perceived utterances very accurately with a 3.5% error rate. Overall

this approach appears to be somewhat more general than the DIVA model

in that the architecture is more flexible. However, this more general archi-

tecture requires a large amount of training. If a true articulatory synthesizer

had been utilized instead the computational demands would increase dras-

tically. However, neural network models are capable of being trained much

more efficiently than they were in 1999 using GPU hardware and therefore

may make extending of this approach more feasible.

2.3.0.5 Reinforcement-Gated Self-Organizing Maps

Warlaumont et al. is motivated by by better understanding how infants learn

to phonate, or produce speech sounds [124]. Instead of viewing the problem

as one of imitation of human speech sounds they see RL as having an integral

role in learning to phonate. Then the focus becomes on determining what

behaviors should be reinforced. The vocal tract model used is the articulatory

syntheis module from the Praat software suite [125, 3], see Section 3.1.1.1

for a description of the model. They perform a number of learning trials

with reinforcement being a function of formant frequencies and similarity to

various vowel sounds.

Their model consists of a 25 neuron neural network where each neuron is

connected to the same 20 muscles of the model [124]. This network is trained

via what the authors call a reinforcement-gated self-organizing map. Essen-

tially, the the model is the same as a self-organizing map, but the synaptic

54



weights are only updated when the sound produced via the network articu-

lating the model is deemed to be good by the reinforcing function; i.e., the

learning is gated by the reinforcement. This method was developed because

there is no statistical regularity in the randomized articulator commands.

The model is able to learn to produce phonated sounds very reliable using

this method. Note that for the learning, the lungs articulator was biased

to produce air flow through the tract greatly increasing the likelihood of

phonation. In addition, the model learns to produce different vowel sounds

depending on whether the reinforcement function rewards Korean or English

vowels.

This approach of using reinforcement to gate learning of a self-organizing

map is interesting. However, if the self-organizing map was allowed access to

sensory observations as well as articulatory commands may have enabled a

similar result.
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CHAPTER 3

VOCAL TRACT SENSORY-MOTOR

SYNERGIES

The main objective of this work is to answer the question “How can we de-

sign a system that can autonomously learn to articulate a simulated vocal

tract in order to produce speech?” This is a very difficult question; therefore,

we restrict ourselves to answering a smaller, more tractable question, namely

“How can we learn low-level vocal tract controllers that simplify the problem

of learning higher level controllers for speech production?” To investigate

this, I first use a vocal tract model to generate a collection of articulation

commands, vocal tract area functions, and simulated speech sounds. I then

apply a sensory-motor synergies discovery algorithm, similar to that intro-

duced by Todorov and Ghahramani [113], to the VT simulation data and

human speech signals. The structure of the resulting resulting synergies is

then discussed. I also show that it is possible to use these sensory-motor

synergies to drive articulation of the vocal-tract simulator.

3.1 Vocal Tract Model

In order to answer the questions laid out in this thesis, a database of vocal

tract area functions, articulatory muscle activations, and acoustic features is

required. This is difficult information to obtain from human subjects because

it requires measuring of the articulator positions and of the muscle activa-

tions. Measurement of the articulator positions, area function, can be taken

using a technique called electromagnetic articulography in which sensor coils

placed inside and along the vocal tract pick up on changes in the electro-

magnetic field generated by induction coils that are mounted to a persons

head. This is an invasive technique and has very limited spatial resolution,

but very good temporal resolution around 500 Hz citeWrench2000. An alter-

native technique is to use real-time magnetic resonance imaging which has
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improved spatial resolution, but reduced temporal resolution [126].

In addition to area function or articulator position measurements, we re-

quire articulator muscle activation measurements in order to develop and

evaluate sensory-motor synergies. Muscle activity can be recorded using

electromyography EMG. For example, Schultz and Wand [127] measure six

EMG signals from electrodes placed on the face and along the outside of the

throat. They were then able to develop a speech recognition system based

only on EMG activity that achieved a 10% error rate on a 100 vocabulary

system. This bolsters the argument for including articulatory activations in

our analysis. However, we are interested in obtaining the activations of in-

dividual muscles for the ultimate purpose of control the vocal tract. Since

there are a large number of muscles that articulate the vocal tract, many of

which are very small and difficult to measure externally, it is not feasible to

use this method.

In addition to the difficulty in obtaining vocal tract articulatory data from

human subjects, we are not interested in observing the coordinated vocal

tract movements of people who have already learned to speak. Instead, we

are interested in developing a method by which a system can learn to produce

speech with little prior knowledge. Therefore, we require a simulation of the

human vocal tract.

3.1.1 Model Characteristics and Comparison

There are a number of vocal tract simulators from which to choose, but most

are not suitable for this research. A vocal tract simulator was chosen based

on the following criteria:

• Model

– Biologically faithful

– Dynamic

– Low-level control of articulators

• Software

– Open source

– Well supported
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These requirements all stem from the dual goal of better understanding

speech learning and developing a system that can learn to produce speech

with little prior knowledge. The model should be biologically faithful and

therefore more complex than most early vocal tract models in order to cap-

ture phenomenon beyond the simple production of vowels. And since we are

interested in better understanding human speech learning the model should

be similar to the human vocal apparatus. The human vocal tract is a dy-

namical system. Many models, however, avoid the incorporation of dynamics

into their system and instead relate articulator activations directly to vocal

tract configurations kinematically.

The model also needs to allow low-level control of the articulators such as

muscle activation as opposed to some high-level specification of articulation

such as the place of constriction and openness. This is necessary because

we are interested in learning about how coordination of high DOF systems

can be learned. The simulator should be open source to enable random

articulation of the vocal tract, recording of simulation trials, and feedback

control of the vocal tract which will require modification of the source code.

The software should also be supported by an active community of developers

and users to allow for reproduction of the results by other researchers and

aid in troubleshooting. Overall, the simulator should be suitable for research

in articulation and not have been designed just for speech synthesis.

After an initial search for simulators using the above criteria, I narrowed

down the potential models to TADA and Praat. TADA is an appealing

option due to the use of gestures in controlling the vocal tract. The problem

is that it relies on hand specified hard coded gestures and we are interested in

developing a system that can learn gestures with little direction. Therefore,

TADA is unsuitable for this research.

3.1.1.1 Praat

Praat is a software suite that is used by linguists for analyzing, synthesizing,

and manipulating speech [3]. Most importantly for this work, Praat contains

an articulatory synthesis module. The Praat model is, at its base, an acoustic

tube model [128, 125, 128, 129]. Every part of the vocal tract, including the

lungs and glottis, is modeled as a tube with walls that can be thought of as
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adjustable mass-spring systems following the template

m
d2y

dt2
= tension force+ collision force+ coupling force

+ damping force+ air pressure force (3.1)

where m represents the wall mass and y represents the displacement of the

wall from the midline of the tract.

The tension force is the force exerted by the spring to reach its equilibrium

length and is modeled as a third order non-linear spring

tension force = k(1)(yeq − y) + k(3)(yeq − y)
3 (3.2)

where k(1) and k(3) are the linear and cubic spring constants respectively and

yeq is the equillibrium length of the spring. The stiffness, damping, and equi-

llibrium lengths of these springs are adjusted in relation to the the activation

of 29 different muscles which take on values in the range of 0-1. Although

the assumption is made to model the individual muscles as constant stiffness

with variable equillibrium length, some of the tube sections are modeled as

variable stiffness mass-spring-damper systems. This is because many of the

walls of the vocal tract are actually composed of muscles with fibers running

tangential to the tract which behave as variable stiffness non-linear springs

along the direction perpendicular to the stretch of the muscle.

The collision force approximates the force of two walls coming together.

This is also modeled as a non-linear third order spring. However, to ensure

that the physical laws of the aerodynamic simulation are obeyed a minimum

tube width is introduced to ensure the cross-sectional area is never zero along

the tract even at a wall collision. The coupling force represents the force that

adjacent tubes exert on each other. Adjacent tubes are connected by third

order non-linear springs. This force is very important in the modeling of the

glottis. The damping force captures the effect of internal friction in the tissue

of the tube walls. It is proportional to the negative of the wall velocity

damping force = −(Bopen +Bclosed)
dy

dt
(3.3)

where Bopen is the damping of the spring and Bclosed is the damping of the

compressed walls when the walls are in contact. These damping coefficients
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are dynamic and depend on the spring constants, wall mass, and tissue prop-

erties. The air pressure force is the force exerted by the air pressure in

the tract that forces the walls apart or together depending on the internal

pressure relative to atmospheric pressure.

air pressure force = Pδxδz (3.4)

where P is the average pressure in a tube section, δx is the length of a wall

section, and δz is the tube depth, making δxδz the area of the wall.

The sublaryngeal system is modeled as a sequence of 17 or optionally 29

tubes. Different tube sections are divided into a number of parallel subdivi-

sions in order to better model the viscous resistance of the air particle flow

along the tract walls. These tubes are all articulated by the single lungs artic-

ulator that approximates the combination of the diaphragm and abdominal

muscles. This grouping of muscles is necessary due to the simplicity of the

lung model.

The larynx is modeled as 2 or optionally 11 tubes with adjacent tube

sections coupled to each other. The 2 tube model represents the glottis and

is very similar to Ishizaka and Flanagan’s two mass model [130]. The 11 tube

model extends this approach to modeling of the conus elasticus ligament. The

two glottis tubes are also subdivided similar to the lungs in order to better

represent the internal geometry of the glottis. This intercartilagenous glottis

modeling enables simulation of some aspects of breathiness and whispering.

The nasal cavity is modeled as 14 tube sections which are also subdivided

to better model viscous friction. Only the first segment representing the

velum is articulated.

The pharyngeal and oral cavities are modeled as 27 tube sections and the

dimensions of which are based on the model developed by Mermelstein [131].

However, Boersma reworks the model so that the original articulators such

as jaw angle and tongue tip height are determined by the activations of 11

different muscles instead [125].

The aerodynamic equations are derived in [125]. He starts by deriving

the equations for the continuity of mass flow for tube sections with vary-

ing length. He then derives the equations of motion from Newton’s law

incorporating modeling of the Bernoulli effect and viscous resistance. Next

he applies a small pressure approximation to the equations of state relating
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pressure to air density. Turbulence within the tract is also taken into account

as both a resistive loss and as additive noise in the tube pressure proportional

to the velocity squared. Boundary conditions are then laid out for each of

the four possible tube terminations: closed boundary, open to atmosphere,

two tube intersection, and tube branching. The resulting equations are then

discretized to produce difference equations.

The Praat articulatory synthesis model meets all of the requirements laid

out at the beginning of this section. It is one of the most biologically faithful

simulators available excluding finite element approaches which are much more

computationally demanding [132]. It takes into account the dynamics of the

vocal tract walls and relies on muscles to articulate the tract as opposed to

synergistic combinations of muscles like gestures. It is also open source and

is actively supported by a community of researchers including the original

developer. For these reasons I have chosen Praat as the simulator for this

research.

3.1.2 Software Modifications

As discussed earlier, the articulatory synthesizer is one of many components

available within Praat. Praat was designed to be primarily interacted with

via a user interface, but it does support control of the system via a scripting

language. Unfortunately, for the articulatory synthesizer this scripting lan-

guage only allows open loop control of the vocal tract. In order to run a trial

with the simulator one has to create what is called an artword which consists

of the articulatory activation targets over the length of the trial. This script-

ing interface also only allows recording of the synthesized speech signals and

does not enable saving of the articulator activations and area functions at

each timestep. Therefore it is necessary to modify the software to perform

the desired experiments.

All of the Praat software is written in C and is platform independent. The

source code is available on github under the repository name praat doing

phonetics by computer.[3] After looking through the source code, it was clear

that the best approach was to extract the code for the simulator from Praat

and to turn the articulatory synthesizer into a stand alone piece of software

that could be modified to meet my needs. The software itself is not well
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commented and utilizes a number of macros to enable object oriented style

functionality while still using C instead of C++. In addition, even though

arrays are indexed starting at zero in C, in this software, arrays are instead

indexed starting at 1 and the first element is not used. These programming

oddities make reading and understanding the code very difficult.

In order to save time in working with this software I decided that it needed

to be ported over to C++ and restructured to enable programmatic control as

opposed to GUI based control. This was a tedious process, but was necessary

to enable quick modifications to the control of the vocal tract and access

to logging of all relevant signals. I chose to use the X-Code development

environment within OSX to make these changes.

3.2 Sensory-Motor Synergy Model

I chose to approach the problem of learning low-level controllers for a simu-

lated vocal tract by learning sensory-motor synergies. I use a model similar

to the one outlined by Todorov and Ghahramani [113] as reviewed in Section

2.2.4.2. I will first discuss the motivation for choosing this model and then

show how it is related to dynamic factor analysis.

3.2.1 Motivation

As should be clear from the review of motor synergies, there is not conclusive

evidence to support their existence in biological systems. The majority of

research on motor synergies shows that recordings of EMG activity or joint

positions during performance of a task can be reproduced by a small num-

ber of time varying synergies. Although the synergies may be capable of

reproducing the original signals to within some percentage of variance, this

approach does not ensure that a control system recruiting those synergies

would be capable of performing the task adequately.

Moreover, the synergy hypothesis posits that the synergies may be re-

cruited for a range of tasks and not specific to a single task with some minor

variations. This task generalization property of the synergies could be very

useful in transfer learning, enabling use of prior learned skill knowledge to

speed up learning of a new skill. The problem is that the majority of motor
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synergy studies focus on discovering synergies from recorded performances of

a single constrained task. It is possible that these discovered synergies only

correspond to a small range of movements necessary to perform one specific

task. In other words, the structure in the task itself could be the source

of the structure that the synergies are discovering, and not a reflection of

the underlying control system structure. As discussed in Section 2.2.4.1,

functional synergies, synergies that include task related variables and motor

observations, provide a possible way around the task generalization prob-

lem. But, the functional synergy approach does not resolve the issue of

ensuring adequate task performance using the synergies. Studies involving

in vivo stimulation of premotor neural circuits in the spinal cord, although,

do provide evidence for a neural basis for synergies. Despite all of the above

concerns, collectively, the evidence for the synergy hypothesis suggests that

it is plausible and merits further investigation.

Philosophically the sensory-motor synergy approach could be considered

an extension of Barlow’s original optimal sensory encoding hypothesis to

include motor commands in addition to sensory signals [31]. In essence,

what the optimal encoding principle assumes is that there is structure within

the natural world and that humans have developed the ability to process

information generated by interacting with this world in an optimal manner.

Barlow hypothesized, and others have shown, that dimensionality reduction

is a useful framework in understanding this process. Optimal encoding results

in the structure of the world being reflected in the human nervous system.

I think that this insight can be extended to better understand the problem

of motor control. Analogously, structure or redundancy is present in our

physical body and in the daily tasks that we perform. Our motor system

has developed a means of optimally performing these tasks via learning.

And similar to perceptual systems, the structure in the world, our physical

bodies, and the tasks we perform would then be reflected in our motor control

system. Given that assumption, a natural way of representing these abilities

is through the use of motor synergies derived using dimensionality reduction.

But, as we know from control theory and the study of human motor con-

trol, feedback is essential for most tasks. Therefore it is logical that a con-

nection from action to perception should be included in our model. Todorov

and Ghahramani’s sensory-motor primitive approach makes this connection

through the use of a latent variable model, where the hidden state is a linear
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combination of sensory observations and motor commands over a discrete

number of samples in the past [113]. In this model, future sensory obser-

vations and motor commands are predicted enabling control of the high di-

mensional system via control of the low-dimensional latent state. This model

produces sensory-motor synergies and is found using unsupervised learning

by applying expectation maximization as in the paper, or by applying a di-

mensionality reduction method to samples of both sensory observations and

muscle activations as I propose.

This sensory-motor synergy approach enables application of RL techniques

to systems with large state spaces because it reduces the dimensionality of

the state space relieving issues caused by the curse of dimensionality and

speeds up the time to finding an optimal policy. Because the method by

which state space is reduced preserves the modes of the system, the main

dynamics of the system are captured.

The sensory-motor synergy approach is particularly well suited to the prob-

lem of learning speech production. One reason for this is that speech is very

structured indicating that dimensionality reduction methods may be appro-

priate to apply. This is reflected within the articulatory phonology frame-

work’s definition of gestures, which can be naturally represented within the

sensory-motor synergy framework. In the context of speech sensory-motor

synergies, the lower dimensional latent space, or factor space, provides an

interesting means of defining gesture scores. Gestures may be represented as

a subset of the factor space or as a distribution over the space. To enable the

system to produce common speech sounds, a second layer of sensory-motor

synergies could be added. Todorov and Ghahramani’s model lends itself to

building of such a hierarchy, where the first level hidden state x and low-level

control signal g become part of the observable state at the next level. Au-

tonomous construction of this hierarchy poses an interesting challenge that

will be investigated as this research progresses, but it is conceivable that

this approach may lead to the system learning a phonemic representation of

speech comprised of combinations of gestures.

In summation, applying sensory-motor synergies to the problem of learning

to produce speech is well motivated. The evidence that biological systems

rely on a similar structures combined with the Barlowian principle of op-

timally encoding via dimensionality reduction, plus the need for feedback

in motor control, and the natural decomposition of speech into synergistic
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units produced by gestures all indicate that sensory-motor synergy approach

is worth exploring.

3.2.2 Dynamic Factor Analysis

Todorov and Ghahramani describe their model, given in Equations 2.61 and

2.62, as a generalized form of factor analysis [113]. As discussed earlier,

while this model bears resemblance to factor analysis, it is unclear how it

could be considered a generalized form of factor analysis. The authors pro-

vide little discussion of the model derivation and make no reference to other

works on which the model is based. In order to place the sensory-motor

synergy approach in the context of the existing literature, I began looking

for similar techniques. The sensory-motor primitive model reminded me of

an autoregressive style process where the future observations are predicted

by a number of past observations. In fact, this is very similar to a vector

autoregressive (VAR) model

yt = BY−p
t +wt (3.5)

where yt is the m dimensional observation at time t, B is a matrix, Y−p
t is a

vector of p past observations, and wt is a error term. This led me to discover

a technique called dynamic factor analysis (DFA) which has the same base

form as factor analysis but allows the common factors to change over time

according to a first order autoregressive process influenced by noise [133].

xt = Axt−1 +Bvt−1 (3.6)

yt = Cxt +Dwt (3.7)

where xt and yt represent the k dimensional common factors and the m

dimensional observations at time t respectively, and v and w are zero-mean

Gaussian noise vectors with covariances Q and R respectively. In addition,

it is assumed w and v are mutually uncorrelated. On the face of it, the

DFA model does not appear to be the same as the model presented in [113].

However, following Deistler and Hannan [134], the two noise processes in

Equations 3.6 and 3.7 can be represented as a higher dimensional orthogonal
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white noise process ǫt yielding

xt = Axt−1 +B∗ǫt−1 (3.8)

yt = Cxt +D∗ǫt (3.9)

Then, following the derivation in [135], we can define vectors past and future

observations and future errors

yp−
t = [y⊤

t−1,y
⊤

t−2, . . . ]
⊤ (3.10)

yf
t = [y⊤

t ,y
⊤

t+1, . . . ]
⊤ (3.11)

Eft = [ǫ⊤t , ǫ
⊤

t+1, . . . ]
⊤ (3.12)

We then perform some algebraic manipulation, taking advantage of the the

common error vector ǫ between the equations and the recursive definition of

xt. Note that it is assumed that D∗ is invertible. This results in the following

formulation

xt = Kyp−
t (3.13)

Yf
t = Oxt + EEft (3.14)

where

O = [C⊤,A⊤C⊤,A2⊤C⊤, . . . ]⊤ (3.15)

K = [B∗D∗−1, (A−B∗D∗−1C)B∗D∗−1, (A−BD∗−1C)2B∗D∗−1, . . . ]

(3.16)

E =















D∗ 0 · · · 0

CB∗ D∗ . . . 0

CAB∗ . . .
. . . 0

... · · · CB∗ D∗















(3.17)

Interestingly, we observe that O is actually the observability matrix for the

modified state space Equations 3.8 and 3.9. When implementing this method,

we do not actually have infinite future and past observation vectors yf
t and

yp−
t , so they are truncated to f samples and p samples of y respectively. This

truncation implies that we are assuming the term (A−B∗D∗−1C)pxt−p = 0.

In this new formulation of DFA, we can see that Equations 3.13 and 3.14
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very closely resemble the Equations 2.61 and 2.62 proposed by Todorov and

Ghahramani [113] which are repeated here for convenience.

ht = Bit +w

ot = Cht + v

Notice the similarity between the definition past and future history vectors pt

and ft in Equations 2.56 and 2.57, also repeated here, with the concatenated

past and future observations yp−
t and yf

t in Equations 3.10 and 3.11.

pt = [u⊤

t−p,y
⊤

t−p, · · · ,u
⊤

t−1,y
⊤

t−1]
⊤

ft = [y⊤

t ,u
⊤

t+1,y
⊤

t+1, · · · ,u
⊤

t+f ,y
⊤

t+f ]
⊤

One obvious difference though, is the absence of a noise term in Equation

3.13 in coparision to Equation 2.61. So, although these models are very

similar they do not appear to be completely equivalent. I’m not sure how

to interpret the implications of this model difference, but intuitively, the

presence of a noise term in the projection from past observations to the

hidden state implies that some error occurs. This error could be a result of

the dimensionality reduction as in Todorov and Ghahramani’s formulation,

from the truncation of the past history vector as in the DFA model, or simply

because the model does not adequately represent the process.

One solution to the DFA problem that presents itself in the concatenated

form is to find an estimate for the matrix F = OK as in yf
t = Fyp−

t + E

using least squares regression [135]. To perform this regression multiple, n,

samples of the observation histories are combined into matricies

Yf = [yf
t1 ,y

f
t2 , · · · ,y

f
tn ] (3.18)

Yp− = [yp−
t1 ,y

p−
t2 , · · · ,y

p−
tn ] (3.19)

Once the estimate F̃ is obtained we need to obtain estimates for O and K.

This can be accomplished by performing singular value decomposition on the

scaled estimate

Γp−F̃Γf = USV⊤ (3.20)

where Γp− = Cov(Yp−) and Γf = Cov(Yf). This scaling is performed to

determine the weights of the individual features. However, if desired Γf
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and Γp− can be made to be identity matrices while maintaining theoretical

convergence guarantees of the DFA model. Alternatively, the features can

be scaled by dividing by the square root of their individual variances. This

method will cause the scaled features to all have unit variance and may be

useful when features have different units or very different variances. Scaling

is an important step that can change the results of the subspace model quite

drastically. This is because the least squares regression will give more weight

to larger signals and errors, meaning that higher variance features will be

better reconstructed with respect to their variance and lower variance signals

may not be well characterized.

Note that as with standard factor analysis, it is assumed that the observa-

tions are zero mean. If they are not, the observations can be mean centered

by computing the mean and subtracting it from the observations before the

analysis. Estimates of the concatenated DFA model matricies can then be

found as

Õ = Γf−1/2

UkS
1/2
k (3.21)

K̃ = S
1/2
k V⊤

k Γ
p−−1/2

(3.22)

where the subscript k is the number of latent variables and indicates the kth

order reduced dimensionality SVD factorization [135]. We refer to this as

the subspace DFA solution or SDFA. Kapetanios and Marcellino show that

this approach will discover the true factors asymptotically with the number

of samples [135]. They also prove several other properties of this estimator.

It is important to point out that increasing the number of latent variables

from k to j only appends j − k rows to K̃ and j − k columns to Õ and does

not change the first k rows and columns of the respective matrices. This is

because the SDFA method uses the right-singular-vectors and left-singular-

vectors corresponding to the k largest singular values of F̂ to create K̃ and Õ

respectively. To find synergies using the SDFA model we can simply take the

ith row of K̃ to obtain the input synergy k̃i and the corresponding column of

Õ to obtain the output synergy õi. The ith input and output synergies can

also be represented in matrix form by reshaping the vector synergies enabling

visualization of the mappings over the time histories. That transformation
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is given as

Ki = reshape(k̃i, m, p) (3.23)

Oi = reshape(õi, m, f) (3.24)

where reshape(a, m, n) is a function that forms an m × n matrix from the

mṅ length vector a. Note that when the term synergy is used in the context

of SDFA, it can refer to either the vector or matrix form, but the matrix

form will primarily be utilized because it facilitates interpretation.

An alternative approach to solving the original DFA problem, Equations

3.6 and 3.7, is to apply maximum likelihood estimation (MLE). If desired,

the concatenated form could then be obtained through equaitons 3.15-3.17.

The two most popular methods of MLE for a DFA model are scoring and

expectation-maximization (EM) [136, 137]. Scoring is essentially Newtons

method applied to MLE. And EM attempts to maximize the log likelihood

by instead maximizing the expected log likelihood of the model given the

observations and the previous guess at the parameter values. This method

is guaranteed to provide a better or equal estimate to the parameters at

each iteration, but is susceptible to becoming trapped in local maximums.

Both EM and scoring require an estimate of the internal state xt that we

do not have. To get around this, a Kalman filter can be used. However,

the Kalman filter requires knowledge of the model. So, to perform MLE

one must first make a guess at the parameter values, run the Kalman filter,

and then update the parameter values using the state sequence given by the

Kalman filter. This process is repeated until the likelihood is determined to

have converged.

The DFA model is particularly popular within economics where techniques

have been developed to handle very large datasets [138, 139]. In addition,

one can slightly modify the DFA model, Equations 3.6 and 3.7, to allow

for correlation in errors over time and/or to include what economists call

explanatory variables which affect the observation but not the state [138].

It is worth taking another look at the probabilistic model that Todorov

and Ghahramani [113] propose shown in Equation 2.58 and repeated here for

convenience

P (ft,ut|pt) =

∫

P (ft,ut|h)P (h|pt)dh
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In order to arrive at this expression we apply the definition of conditional

probability

P (ft,ut|pt) =
P (ft,ut,pt)

P (pt)

then marginalizing over h

P (ft,ut|pt) =

∫

P (ft,ut,pt,h)

P (pt)
dh

and applying the conditional probability definition two more times

P (ft,ut|pt) =

∫

P (ft,ut|pt,h)P (pt,h)

P (pt)
dh

=

∫

P (ft,ut|pt,h)P (h|pt)dh

we arrive at a very similar expression. But, in order to obtain the exact same

expression, we have to make the following assumption

P (ft,ut|pt,h) = P (ft,ut|h) (3.25)

meaning that (ft,ut) are conditionally independent from pt given h.

Now, it is important to point out that the SDFA method still fits within the

probabilistic framework outlined by Todorov and Ghahramani even though

it lacks the error term in the input equation. In particular, since we assume

that the noise in both models is zero mean, the expectations used to compute

the hidden state and the control signal simplify to

hpast = E[h|pt] = Bpt xt = E[x|Yp−
t ] = KYp−

t (3.26)

ut = E[u|hdesired] = Cutht ut = E[u|xdesired] = Outxdesired (3.27)

where the subscript in Cut and Out denotes taking the rows of C and O

corresponding to the prediction of the future control ut, and xdesired is the

output of the low-level controller similar to Equation 2.59.
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3.3 Experiments

From the previous section, it is clear that the SDFA method and Todorov and

Ghahramani’s method are very similar. Due to the ease of implementation

of the SVD solution for the SDFA method, I have chosen to use it over

Todorov and Ghahramani’s method. We will now explore the use of the

SDFA method in developing synergies for a few different data types. First,

I will outline the method used to evaluate the quality of the various learned

synergies. I will then discuss the application of SDFA to spectrogram features

of human speech and then to data obtained from random stimulation of the

vocal-tract model, including tract area function, articulatory activations, and

sound spectrogram features. After reviewing these results, I will discuss how

the vocal tract can be controlled using the derived sensory-motor synergies.

3.3.1 Evaluation Method

In general, it is difficult to evaluate the results of a synergy learning algo-

rithm. One common approach is to look at the learned synergy weights and

to make observations on what each synergy most corresponds to, such as

movement around a particular joint or movement of a limb away from or

towards the body. This type of analysis can provide insight into what the

model has learned, but it is very open-ended and results will vary with the

individual researcher interpreting the weights.

A more quantitative approach in studies looking at muscle synergies, is to

look at the squared multiple correlation coefficient, R2. It is often used to

judge the goodness of fit of a set of synergies in representing a signal [66, 55].

For n-dimensional time varying signals, n multiple correlation coefficients are

computed. In order to arrive at a goodness of fit measure for the entire signal,

these coefficients must be combined in some way. Commonly, the mean and

variance of the coefficients is computed and is considered to be representative

of the ability of the primitives or synergies to reconstruct the signal. But, it

is not always clear how to weight the different quantities as they may have

different units or may have differing importance in reconstruction of a signal.

This is true in the case of speech and vocal-tract synergies.

Although I look at both the synergy weights and R2 values, the primary

approach I chose to evaluate the learned synergies is based on class separabil-
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ity within the factor space xt. This metric is motivated by the goal of finding

a lower dimensional space that affords creation of symbols, phonemes and

broad phonetic categories, and enables control of the vocal tract for produc-

ing instances of these symbols. To meet these goals the factor space should

have the following essential properties 1:

• Localization - different phones appear in different areas of the factor

space

• Continuity - slight variation of a phone should result in slight variation

of the location in the factor space.

Together localization and continuity of the factor space imply that phonemes

can be represented as classes of trajectories through the factor space. They

also imply that similar phonemes should be clustered together in the factor

space producing higher level classes of similar phones.

The broad idea behind the analysis method is to evaluate the synergy learn-

ing algorithm by using the learned synergies to analyze different phone classes

in the factor space with respect to continuity and localization. If the factor

space has both of these properties then the algorithm has accomplished the

desired goal of dimensionality reduction while preserving meaningful struc-

ture within the signals. It would then be a good candidate for simplified

control of the vocal tract and would indicate that this space could be useful

for recognition as well.

As I am ultimately interested in speech production, I chose various speech

sounds as the individual classes selecting four vowels and four fricatives so

that separability between these two different phoneme classes could be ob-

served as well. For the experiment involving human speech I produced five

samples of each of the eight sounds each lasting 1 second. For the experi-

ments involving the vocal tract model I specified the articulations manually

to produce each of the eight sounds with the vocal tract producing one sample

of each sound for 0.5-0.8 seconds each.

To specify the correct articulation to produce each sound, I first attempted

to select the vocal tract model articulators that corresponded to the descrip-

tion of the desired articulation. Due to the large number of articulators,

1In these definitions, I use the term phone to refer to the instantaneous combination

of the articulatory activations, vocal tract area function, and the acoustic signal being

produced.
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29, this was difficult, and therefore involved some trial and error to achieve

the correct vocal tract shape and produce the correct sound. Vowels and

fricatives that can be produced with relatively static vocal tract shape were

chosen to enable localization of each of the sounds within the factor space.

The main exceptions are the movement of the vocal folds produced during

voicing and some small transient movements of the lower vocal tract due to

increased pressure produced during creation of constrictions for frication.

The name, IPA number, IPA symbol, and a snapshot of the vocal tract

area function using the Praat model for each of the eight sounds is shown in

Figures 3.1-3.8.

Fricatives
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Figure 3.1: Voiceless alveolar sibilant s - as in pass
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Figure 3.2: Voiceless palato-alveolar sibilant S - as in ship
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Figure 3.3: Voiceless velar fricative x - as in yech
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Figure 3.4: Voiceless uvular fricative X - not found in english

Vowels
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Figure 3.5: Close front unrounded vowel i - as in free
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Figure 3.6: Open front unrounded vowel a - as in cat

Tube Section # (Does not correspond exactly to tube length)
0 10 20 30 40 50 60 70

A
re

a
 c

m
2

-10

-8

-6

-4

-2

0

2

4

6

8

10

Vocal Tract Area Function: IPA 305

Scaling:
Blue - 1:1
Red - 1:20
Green - 5:1

Lungs Bronchi

Trachea

Pharynx Oral Cavity

Glottis

Nasal Cavity

Figure 3.7: Open back unrounded vowel A - as in hot
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Figure 3.8: Close back unrounded vowel W - as in goose with California
accent

3.3.2 Human Speech Synergies

This first experiment was somewhat motivated by the work of Poritz in dis-

covery of broad phonetic categories [140]. Recall that broad phonetic cat-

egories are categories of phones derived from features of the speech signal

including voiced vs unvoiced speech, frication, plosion, etc. One possible set

of classes is vowels, consonants, dipthongs, and semivowels. Poritz applied an

autoregressive hidden markov model (AR-HMM) to LPC features obtained

from readings of short paragraphs. He discovered that the different states of

the HMM corresponded to broad phonetic categories, and that the transition

matrix discovered some basic phonotactic rules.

I was interested in determining if the SDFAmethod could similarly discover

broad phonetic categories. I first recorded 30 seconds of my own speech at

9000 Hz. I read at a moderate pace from a New Yorker Magazine article,

getting through 77 words. I chose to use the log magnitude squared spectrum

of the speech signal as observation features. I obtained this representation

by first generating a spectrogram of the speech signal shown in Figure 3.9.

The spectrogram was generated using a custom MATLAB function using a
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Figure 3.9: Five second sample spectrogram of speech recorded at 9,000 Hz
using a Hamming window of length 20 ms and no overlap between
successive windows.

Hamming window. Let x(t) represent the speech signal. Then the STFT X̂

is obtained using Equations 2.40 and 2.41. Then the spectrogram is defined

as

Z = log10(|X̂|
2) (3.28)

and we denote the column of Z with window centered at time t as zt.

In order to form the actual observation variable used in the SDFA analysis,

we actually subsample the vector zt. This is done to reduce the number of

frequency bins and to reduce the computation time for finding the synergies.

To stay consistent with our early notation in the SDFA section, Section 3.2,

we will define the subsampled log magnitude squared frequency vector as our

observation vector yt. We then must collect pairs of observation histories to

form Y−p and Yf . This can either be done by randomly sampling n pairs of

histories or by taking each possible history pair.

There are somewhat large number of parameters to this model, and it is

difficult to say how each affects the generation of synergies and specifically

the localization and continuity properties of the factor space that are of
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primary interest. However, during initial experimentation it was determined

that the choice of observation history lengths f and p has a great effect on

the formation of the synergies. Therefore I have chosen to display the results

from three configurations where only the values of f and p are varied in order

to illustrate the effect these parameters have. For each of the configurations

I let f = p for simplicity. The parameters used when recording the speech

along with the parameters used to generate the spectrogram are listed below

and are common across all 3 configurations.

Common Configuration

• Signal

– Length: t = 30 s

– Sample rate: fs = 9, 000 Hz

• Spectrogram

– Window length: 20 ms or N = 180 samples

– Overlap: l = 0

– Number of frequencies: fn = 119

SDFA Configuration 1

• Number of synergies: k = 8

• Observation lengths: p = f = 2 samp. OR pt = ft = 0.04 s

• Number of observations: n = 1, 496

• Normalization: Remove mean of each feature and divide individual

features by their corresponding standard deviations

Figures 3.10 and 3.11 show the weights of the input and output synergies,

composed by the K̃ and Õ matrices respectively. The input synergies appear

very noisy and it is difficult to see any pattern across the frequency bins or

time. The output synergies are a bit more interesting, with nearby frequency

bins having very similar weights at each time. In other words, the weights
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Figure 3.10: SDFA Configuration 1: Visualization of the input mapping K̃
where each subplot is the ith reshaped input synergy Ki as in Equation
3.23. The synergy weights are unitless due to the normalization.

of each synergy are fairly smooth with respect to frequency. In addition,

individual output synergies appear to be discovering some low level features

of the spectrogram. For example, synergy 1 is capturing a broadband ampli-

tude decrease while synergy 2 emphasizes the lower frequency components.

Subsequent synergy weights vary along the frequency axis more quickly and

are more difficult to interpret, but may be capturing some sort of harmon-

ics. The multiple correlation coefficient mean and standard deviation for this

configuration is R2 = 0.7091± 0.0812.

Figures 3.12 and 3.13 both show scatter plots of the latent variable xt

for the eight different IPA phonemes shown in Figures 3.1 - 3.8. For each

phoneme, five examples are plotted. Referring back to the earlier definition

of localization, it is apparent In Figure 3.12 that this projection in the factor

space exhibits the property as different IPA phonemes appear in different

areas of the space. Looking more closely, see Figure 3.13, it can be observed

that two distinct classes of sounds, or broad phonetic categories, emerge

namely vowels and fricatives, indicated by ∗ and ▽ marks respectively. At

the bottom of the figure there is an intermingling of the two sound classes
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Figure 3.11: SDFA Configuration 1: Visualization of the output mapping Õ
where each subplot is the ith reshaped output synergy Oi as in Equation
3.24. The synergy weights are unitless due to the normalization.

that represent datapoints corresponding to moments of silence in the sample

sounds. So, the factor space exhibits the desired continuity property as well.

It is difficult to show the full shape of this eight dimensional feature space

on paper. However, by plotting the latent variables as points in a three

dimensional space with each of the axes corresponding to a synergy we begin

to see that the localization and continuity properties hold for more than

just synergies 2 and 3. In addition, for some of the classes that overlapped

in Figure 3.12, such as IPA #304 and #316, their is increased separation

between in Figures 3.14 and 3.15. This means that the space could be useful

for phoneme recognition purposes in addition to control.

81



F
a
c
to

r 
3

-6

-4

-2

0

2

4

6

8

Factor 2
-6 -5 -4 -3 -2 -1 0 1 2 3 4

Factor Space Scatter Plot

IPA # 132
IPA # 134
IPA # 140
IPA # 142
IPA # 301
IPA # 304
IPA # 305
IPA # 316

Figure 3.12: SDFA Configuration 1: Scatter plot of the latent variable xt

over synergy 2 vs. 3 for the eight IPA phonemes. Data points from
fricatives and vowels are marked with ▽ and ∗ respectively.
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Figure 3.13: SDFA Configuration 1: Scatter plot of the latent variable xt

over synergy 2 vs. 3 for the eight IPA phonemes. Data points from
fricatives and vowels are marked with ▽ and ∗ respectively. Clustering of
vowels and fricatives within the space is indicated along with a third
category corresponding to silence.
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Figure 3.14: SDFA Configuration 1: Scatter plot of the latent variable xt

over synergies 4 vs. 5 for the eight IPA phonemes. Data points from
fricatives and vowels are marked with ▽ and ∗ respectively.
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Figure 3.15: SDFA Configuration 1: Scatter plot of the latent variable xt

over synergies 4, 5, and 6 for the eight IPA phonemes. Data points from
fricatives and vowels are marked with ▽ and ∗ respectively.

83



SDFA Configuration 2

• Number of synergies: k = 8

• Observation lengths: p = f = 6 samp. OR pt = ft = 0.12 s

• Number of observations: n = 1, 488

• Normalization: Remove mean of each feature and divide individual

features by their corresponding standard deviations

Figures 3.16 and 3.17 show the weights of the input and output syner-

gies, composed by the K̃ and Õ matrices respectively. The input syner-

gies are again unstructured and very noisy. The increased future history,

however, results in output synergies with increased structure. For exam-

ple, synergy 1 captures the onset of a broadband sound around 0.14 seconds

into the future. And synergy 3 shows a coordinated high frequency ampli-

tude increase and a low frequency amplitude decrease. Some of the other

output synergies indicate more complex responses with combinations of low

frequency, high frequency, and broadband activity over time. The multiple

correlation coefficient mean and standard deviation for this configuration is

R2 = 0.6851± 0.0649.

Figures 3.18 and 3.19 both show scatter plots of the latent variable xt

for the eight different IPA phonemes shown in Figures 3.1 - 3.8. For each

phoneme, five examples are plotted. While the individual IPA phoneme

classes are somewhat localized within the space there is a good deal of over-

lap between classes especially with the vowels. There is some degree of

continuity evidenced by the clustering of fricatives to the right of the graph

and vowels to the left. However, this separation is not very distinct. There

also does not appear to be a third cluster corresponding to silence as there

was for configuration 1. Plotting of the latent variable over some of the other

synergies does show slightly better localization, see Figure 3.20, but still has

substantial overlap between IPA phoneme classes.
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Figure 3.16: SDFA Configuration 2: Visualization of the input mapping K̃
where each subplot is the ith reshaped input synergy Ki as in Equation
3.23. The synergy weights are unitless due to the normalization.
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Figure 3.17: SDFA Configuration 2: Visualization of the output mapping Õ
where each subplot is the ith reshaped output synergy Oi as in Equation
3.24. The synergy weights are unitless due to the normalization.
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Figure 3.18: SDFA Configuration 2: Scatter plot of the latent variable xt

over synergies 1 and 2 for the eight IPA phonemes. Data points from
fricatives and vowels are marked with ▽ and ∗ respectively.
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Figure 3.19: SDFA Configuration 2: Scatter plot of the latent variable xt

over synergies 1 and 2 for the eight IPA phonemes. Data points from
fricatives and vowels are marked with ▽ and ∗ respectively. Minor
clustering of vowels and fricatives within the space is indicated.
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Figure 3.20: SDFA Configuration 2: Scatter plot of the latent variable xt

over synergies 4, 5, and 6 for the eight IPA phonemes. Data points from
fricatives and vowels are marked with ▽ and ∗ respectively.

SDFA Configuration 3

• Number of synergies: k = 8

• Observation lengths: p = f = 12 samp. OR pt = ft = 0.24 s

• Number of observations: n = 1, 476

• Normalization: Remove mean of each feature and divide individual

features by their corresponding standard deviations

Figures 3.21 and 3.22 show the weights of the input and output synergies,

composed by the K̃ and Õ matrices respectively. Although a longer past

history is used than in configuration 1, the input synergies are still very

noisy. The increased future history, however, results in output synergies

with a great deal of structure. For example, synergy 1 captures the onset

of a broadband sound around 0.4 seconds into the future. And synergy

8 shows a low frequency amplitude increase around 0.4 seconds into the

future. Some of the other output synergies indicate more complex responses

with combinations of low frequency, high frequency, and broadband activity

over time. The multiple correlation coefficient mean and standard deviation

for this configuration is R2 = 0.7239± 0.1122.
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Figure 3.21: SDFA Configuration 3: Visualization of the input mapping K̃
where each subplot is the ith reshaped input synergy Ki as in Equation
3.23. The synergy weights are unitless due to the normalization.
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Figure 3.22: SDFA Configuration 3: Visualization of the output mapping Õ
where each subplot is the ith reshaped output synergy Oi as in Equation
3.24. The synergy weights are unitless due to the normalization.
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Figure 3.23: SDFA Configuration 3: Scatter plot of the latent variable xt

over synergies 1, 2, and 3 for the eight IPA phonemes. Data points from
fricatives and vowels are marked with ▽ and ∗ respectively.

Figures 3.23 and 3.24 both show scatter plots of the latent variable xt

for the eight different IPA phonemes shown in Figures 3.1 - 3.8. For each

phoneme, five examples are plotted. It is difficult to separate the individual

IPA phoneme classes within this space, meaning that the space does not

exhibit localization very strongly. There still does appear to be some degree

of continuity. Vowels tend to appear more on the right side of the figure and

consonants on the left. The separation between these broad phonetic classes

is minor and there is a great deal of overlap. There also does not appear to

be a third cluster corresponding to silence as there was for configuration 1.

Plotting of the latent variable over the other synergies does not reveal any

more obvious separations either, see Figure 3.25.
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Figure 3.24: SDFA Configuration 3: Scatter plot of the latent variable xt

over synergies 1, 2, and 3 for the eight IPA phonemes. Data points from
fricatives and vowels are marked with ▽ and ∗ respectively. Minor
clustering of vowels and fricatives within the space is indicated.
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Figure 3.25: SDFA Configuration 3: Scatter plot of the latent variable xt

over synergies 4, 5, and 6 for the eight IPA phonemes. Data points from
fricatives and vowels are marked with ▽ and ∗ respectively.
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Figure 3.26: Textured SDFA Configuration: Visualization of the input
mapping K̃ where each subplot is the ith reshaped input synergy Ki as in
Equation 3.23. The synergy weights are unitless due to the normalization.

DFT Window Length

Although I primarily was interested in investigating the effect of the history

lengths f and p on the synergies I came across an interesting observation

when initially selecting the DFT window length for generating the spectro-

gram. The input mapping exhibited very little structure in configurations 1,

2, and 3 which all used the same window length of 20 ms. However, if the

window length is decreased the input mapping begins to obtain some struc-

ture. This effect is particularly evident with a long past history. Modifying

configuration 1 by decreasing the window length to 5 ms and letting p = 116

and f = 4 results in the input mapping shown in Figure 3.26. The input

synergies, while still random, show some degree of continuity over time and

frequency. Also note how the different synergies are selective for different

spatial frequencies.

These figures look very similar to multi-dimensional Brownian noise or

what some refer to as Gaussian random fields. I am not sure what to make

of this observation at this time, but this is certainly an intriguing result. A

potential future line of investigation may be to relate this to the concept of
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time-frequency reassignment which utilizes the spatial-temporal derivatives

of the spectrogram and the phase of the DFT to improve the resolution of

the magnitude spectrum [141].

3.3.3 Vocal Tract Synergies

The results from the human speech experiment are encouraging and indicate

that this approach may be useful in developing a system that can learn

to produce speech. The next step is therefore to apply this method to data

obtained from the vocal tract simulator. The question is what features should

be used. We know that the shape of the vocal tract by in large determines

the sound that is produced. So it may be interesting to use the vocal tract

area function and some acoustic component as features. And based on our

review of integrated perceptual and motor primitives in Section 2.2.4, it

may be worthwhile to include a motor component in our feature set as well.

Therefore, in the following three sets of experiments, synergies will be learned

from:

1. vocal tract area functions

2. vocal tract area functions and articulatory activations

3. vocal tract area functions, articulatory activations, and spectrograms

The sample data for these experiments was created by randomly articu-

lating the vocal tract and recording the changing area function, articulatory

activations, and audio signal. There are many ways one could choose to gen-

erate these random articulations. For example, one could simply randomly

choose a new activation for each articulator at a set time step. However,

since the articulators themselves are dynamical systems they will not instan-

taneously move to the new equillibrium position. Different articulators will

respond to changes in the activation levels at different rates. Therefore, in

order to sample the dynamics adequately, it follows that the time between

articulatory activation changes should vary.

From the earlier discussion of sensory-motor primitives, see Section 2.2.4.2,

we expect the synergies to learn something about the controller being used to

generate the observations in addition to the dynamics of the system. So if the

time between changes in articulatory activations varied, but all articulation
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activations are changed at the same times, the model may learn that the vocal

tract shape will change rather drastically and then settle into an equillibrium

before changing again. Ultimately, we desire to use synergies to control

the vocal tract to produce speech, and since speech is produced by fluid

movement of the articulators this step response type behavior should be

avoided. Additionally, that randomization method may make it more difficult

for the model to learn the individual effects of each articulator. So, it follows

that articulatory activations should be allowed to change at different times

from one another. It also implies that changes in articulation should be

somewhat smooth to avoid jerky movement of the tract.

Therefore the following method for generation of random articulatory ac-

tivations was developed and used. See Figure 3.27 for an illustration of this

process for a single articulator. A starting activation ai is chosen for the

articulator from a standard uniform random distribution Uni[0, 1]. Then the

time in seconds to hit the next activation for that articulator tj is chosen

from a Gaussian distribution N (0.1, 0.25). The activation aj at this new

time tj is then chosen from the same standard uniform distribution. The

activations between these two points is then interpolated linearly such that

ak =
aj−ai
tj−ti

tk where i < k < j. This process is repeated until the length of

the trial is reached. This is performed for each of the 29 actuators.

A total of 200 × 0.5 sec trials were run using the below simulation pa-

rameters. Note that the vocal tract area function and articulator values are

sampled at a lower rate than the pressure wave at the lips. This is because

the pressure wave is preprocessed into spectrogram features before being ap-

pended to the vocal tract features and must therefore have a higher sample

rate to capture signal accurately.

Common Configuration

• Simulation Parameters

– Simulation rate: 8, 000 Hz with 70 × oversampling = 560, 000 Hz

– Trial Length: t = 0.5 s

– Vocal Tract Sample Rate: fs = 50 Hz

– Sound Sample Rate: Fs = 8, 000 Hz
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Figure 3.27: An example of what a random articulation for a single
articulator may look like.

• Spectrogram Parameters

– Window length: 20 ms or N = 160 samp.

– Overlap: l = 0

– Number of frequencies: fn = 117

In the input and output mappings related to vocal tract area function, it

is useful to note what part of the vocal tract the tube section #’s correspond

to. Tubes 6-22 correspond to the lungs, 23-28 the bronchi, 29-34 the trachea,

35-36 the glottis, 37-63 the pharynx and oral cavity, and 64-77 the nasal

cavity. In the Figures 3.1 - 3.8 the nasal cavity area function is plotted above

the mouth instead of afterwards because although it is represented by tubes

64-77 in the software it is actually parallel to the oral cavity branching off at

the velum at tube 50.

One other important factor that affects the performance of the SDFA al-

gorithm is the choice of a scaling method. Initially I experimented with no

scaling, but because the lungs have such a large variance in comparison to

the rest of the vocal tract, they dominated the weighting of the synergies

causing the rest of the vocal tract to be poorly represented. Therefore I
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chose to use the individual feature variance scaling method, which consists

of dividing each feature by its standard deviation. This remedied the prob-

lems with large variances, but introduced a problem with very small variance

features. The nasal cavity features have a variance of around 1 × 10−7 due

to the stiffness passage’s walls, which is quite small in comparison to the the

rest of the vocal tract. The next smallest variance of any tubes are those

that represent the glottis with a variance of 1.5 × 10−5 or about two orders

of magnitude larger. The issue is that now the nasal cavity features are

given essentially equal weighting as the rest of the tract even though they

are essentially unactuated as the only direct articulator is the velum. In

addition, the nasal tract consist of the same number of tubes as the oral

cavity whose importance is decreased due to the scaling of the nasal cavity

areas. This distorts the synergies leads to worse results in terms of continuity

and localization.This is a problem that warrants further investigation, but

the approach I have taken is to set a minimum variance threshold, beyond

which features are removed from the analysis. I have chosen that value to

be 1 × 10−6 which removes the nasal cavity sections from the analysis, but

keeps the glottal sections.

3.3.3.1 Vocal Tract Area Function Synergies

This experiment consists of applying the SDFA synergy learning algorithm to

the vocal tract area function and evaluating the results in a similar manner

as was done with human speech. In addition, as I am ultimately interested

in control of the vocal tract using learned sensory-motor synergies, this ex-

periment serves as a baseline for two subsequent experiments in which artic-

ulatory activations and acoustic features are added to the feature set. I have

chosen to only show the results from the long configuration with f = p = 12

because the results from the tests with shorter histories are not well behaved.

I think that there is a numerical issue that arises for the shorter histories dur-

ing the least squares regression. This does not appear to be a result of having

too few samples. The factor scatter plots from these tests show some of the

fricatives being very far away from the rest of the phonemes and the weights

of the input and output mappings are somewhat large in comparison to the

more well behaved configurations.
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Long Configuration

• Number of synergies: k = 8

• Observation lengths: p = f = 12 samp. OR pt = ft = 0.24 s

• Number of observations: n = 200

• Normalization: Remove mean of each feature and divide individual

features by their corresponding standard deviations

Figures 3.28 and 3.29 show the weigths of the input and output synergies,

composed by the K̃ and Õ matrices respectively. The input synergies are

mostly unstructured as was the case with the speech experiments. However,

it is important to note that the tube sections 0-5 and 65-88 have zero weight.

Tubes 0-5 and 78-88 have zero weight because they are not used by the

model in the specific configuration I have chosen to run these simulations.

Tubes 65-77, the nasal cavity, have zero weight because although they are

used in the simulation the variance of those tube sections is below the chosen

threshold to be included in the analysis.

The output synergies, however, have some interesting structure. Synergy 1,

for example, captures an increase in lung area. Synergy 2 captures a decrease

in oral cavity area. Synergy 3 captures an increase in pharyngeal area. Upon

closer inspection, in each of the synergies, clear patterns emerge showing

differences between areas of the vocal tract that are actuated differently.

For example, for the glottis each of the synergies shows distinctly different

patterns with respect to the neighboring tube sections. Synergy 7 captures a

large decrease in glottal size. The multiple correlation coefficient mean and

standard deviation for this configuration is R2 = 0.5582± 0.6125.

The results of the output mappings are encouraging, but it is difficult to

say anything definitive about what the algorithm has learned from simply

looking at these mappings. However, the factor scatter plots, Figures 3.30

and 3.31, show that the model exhibits some localization. There is not a clear

separation between vowels or fricatives but there is some grouping within the

vowels indicating a low level of continuity. These plots are notably not as

dense as the the similar plots from the human speech experiments. This is

partially because there is only one test sample per IPA phoneme compared

to the five for each phoneme for the human speech tests.
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Figure 3.28: Area Function Long Configuration: Visualization of the input
mapping K̃ where each subplot is the ith reshaped input synergy Ki as in
Equation 3.23. The synergy weights are unitless due to the normalization.
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Figure 3.29: Area Function Long Configuration: Visualization of the output
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Equation 3.24. The synergy weights are unitless due to the normalization.
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3.3.3.2 Vocal Tract Area Function and Articulation Synergies

This experiment is setup in a very similar fashion to the vocal tract area

function synergies, with the exception being that articulator activations are

included in the features provided to the SDFA algorithm. The articulations

seem to partially resolve the issue with the shorter history configurations not

being well behaved. The factor scatter plots for the short histories, f = p = 3,

exhibit the same problem with some of the fricatives being very far away from

the rest of the phonemes. However, this is resolved for the medium length

case with f = p = 6. Only the results for the long configuration, f = p = 12,

are shown because they adequately illustrate the improvement from the pure

area function synergies and enable closer comparison.

Long Configuration

• Number of synergies: k = 8

• Observation lengths: p = f = 12 samp. OR pt = ft = 0.24 s

• Number of observations: n = 200

• Normalization: Remove mean of each feature and divide individual

features by their corresponding standard deviations

Figures 3.32 and 3.33 show the weights of the input and output synergies,

composed by the K̃ and Õ matrices respectively. The input synergies are

mostly unstructured as was the case with the speech and vocal tract area

function experiments. As with the pure area function synergies, tube sections

0-5 and 78-88 have zero weight because they are not used by the simulator,

and the nasal cavity tubes 65-77 have zero weight because their variance is

lower than the threshold.

The output synergies again, are more revealing. Synergy 1, for example,

shows that the pharynx area increases as the oral cavity area decreases. In

concert with these area function changes, articulators 15, 16, and 25 increase

activations. These articulators correspond to the masseter, styloglossus, and

genioglossus muscles. From our knowledge of the vocal tract model, we

know that the masseter muscle closes the jaw, the styloglossus moves the

tounge upward, and the genioglossus moves the tongue forward in the oral
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cavity. The model has discovered that increasing these three articulator

activations will decrease the area function in the oral cavity and increase the

area function in the pharynx. This is remarkable. Todorov Ghahramani’s

experiments indicated that sensory-motor primtives could be learned for low

dimensional dynamic systems, but this result indicates that it is possible with

much higher dimensional systems using a different solution method [113].

The other synergies can be analyzed in a similar fashion and reveal equally

interesting results. Synergy 2 has captured very strongly the connection

between the lungs articulator, articulator 0, and the area function of the

lungs. Simultaneously it identifies the relationship between the styloglossus

and constriction in the oral cavity. It is important to point out that synergy

2 is capturing the coordination of the lungs and of the oral cavity in the same

synergy. So as the volume of the lungs is increasing the area oral cavity area

is decreasing and then increasing again. This type of coordination is exactly

what we set out to discover. Synergy 6 identifies the connection between

activation of the levator palatini and closing off the nasal cavity with the

velum. The multiple correlation coefficient mean and standard deviation for

this configuration is R2 = 0.4809± 0.5133.

The factor scatter plots, Figures 3.34 and 3.35, show that the model ex-

hibits very strong localization evidenced by the separation between phones.

In addition, the trajectories of the factors are fairly smooth, indicating that

small changes in the vocal tract and articulation result in small changes in

the factor space, meaning that continuity is also observed. The combination

of these two properties implies that grouping along broad phonetic categories

should be observed. This is indeed the case, as can be seen by the grouping

of vowels and fricatives in the factor scatter plots.

So, the addition of articulator activation features to area function features

results in a model that has both continuity and localization which leads to

the grouping of like phones into broad phonetic categories. This indicates

that the the combination of sensory and motor features in forming of syn-

ergies may create a model that better captures the dynamics of the system

important for control.
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Figure 3.32: Area Function and Articulator Activation Long Configuration:
Visualization of the input mapping K̃ where each subplot is the ith

reshaped input synergy Ki as in Equation 3.23. The synergy weights are
unitless due to the normalization.

3.3.3.3 Vocal Tract Area Function, Articulation, and Spectrogram
Synergies

The results of the vocal tract area function and articulation synergies exper-

iment showed that the addition of motor features to sensory features enables

the synergy learning algorithm to better identify broad phonetic categories.

However, the area function is not the only sensory channel we have access

to. The results of the human speech synergy experiments showed that acous-

tic features can be used to identify broad phonetic categories in structured

speech. Therefore, including acoustic features in the model may lead to im-

proved localization and continuity. This experiment tests this hypothesis by

performing SDFA with vocal tract area function, articulatory activations,

and spectrogram features. Two configurations, with medium and long his-

tory lengths, are evaluated.
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Figure 3.33: Area Function and Articulator Activation Long Configuration:
Visualization of the output mapping Õ where each subplot is the ith

reshaped output synergy Oi as in Equation 3.24. The synergy weights are
unitless due to the normalization.
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Medium Configuration

• Number of synergies: k = 8

• Observation lengths: p = f = 6 samp. OR pt = ft = 0.12 s

• Number of observations: n = 200

• Normalization: Remove mean of each feature and divide individual

features by their corresponding standard deviations

Figures 3.36 and 3.37 show the weights of the input and output synergies,

composed by the K̃ and Õ matrices respectively. The input synergies are

mostly unstructured as was the case with the other experiments. As with

the other vocal tract synergies, tube sections 0-5 and 78-88 have zero weight

because they are not used by the simulator, and the nasal cavity tubes 65-77

have zero weight because their variance is lower than the threshold.

The output synergies are much more structured, but are somewhat less

interesting than the synergies without spectrogram features. The first two

synergies show very little activation for the area and articulatory features,
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Figure 3.36: Area Function, Articulator Activation, and Spectrogram
Medium Configuration: Visualization of the input mapping K̃ where each
subplot is the ith reshaped input synergy Ki as in Equation 3.23. The
synergy weights are unitless due to the normalization.

and decreasing broadband spectrogram features for both synergies. The fol-

lowing synergies are more interesting. Synergy 3 shows increasing area of the

glottis and the pharynx accompanied by a slight decrease in mylohyloid acti-

vation which would cause the jaw to close slightly. The spectral features for

synergy 3 start with broadband activation followed by a broadband decrease

and then increase. It is notable that this broadband coordination over time

is observed for each of the synergies shown, but unlike the human speech

synergies, there does not appear to be much of a pattern along the frequency

axis. This may be a numerical issue caused by having too few samples with

actual sound being produced. Since the samples are generated via random

articulation, and there is no biasing given to increase the chance of sounds

being produced the majority of the trials produce little to no sound. This

means that the spectral space is not being well sampled even though the

vocal tract dynamics may be. This could be addressed by biasing the lungs

articulator to force air out of the vocal tract, but that was not attempted

in this experiment. The multiple correlation coefficient mean and standard

deviation for this configuration is R2 = 0.6869± 0.4182.
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Figure 3.37: Area Function, Articulator Activation, and Spectrogram
Medium Configuration: Visualization of the output mapping Õ where each
subplot is the ith reshaped output synergy Oi as in Equation 3.24. The
synergy weights are unitless due to the normalization.

The factor scatter plots, figures 3.38 and 3.39, clearly exhibit both localiza-

tion and continuity. In Figure 3.38 separation between vowels and fricatives

is evident. IPA 301 does appear closer to the cluster of fricatives than the

vowels, but it does not overlap with either. Looking at the factors 4,5, and

6 in Figure 3.39 reveals slightly different groupings. IPA 142 and 301 are

grouped with the other vowels and fricatives respectively. Looking more

closely at output synergies 5 and 6 in Figure 3.37, we can see that these

factors are associated with opening of the jaw. This explains the alternative

grouping because for all of the fricatives but IPA 142, the jaw is fairly closed,

and for all the vowels but 301 the jaw is fairly open. What the model has

identified is a natural grouping of phonemes produced with an open or a

closed mouth.
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Figure 3.38: Area Function, Articulator Activation, and Spectrogram
Medium Configuration: Scatter plot of the latent variable xt over synergies
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Figure 3.39: Area Function, Articulator Activation, and Spectrogram
Medium Configuration: Scatter plot of the latent variable xt over synergies
4, 5, and 6 for the eight IPA phonemes. Data points from fricatives and
vowels are marked with ▽ and ∗ respectively.
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Figure 3.40: Area Function, Articulator Activation, and Spectrogram Long
Configuration: Visualization of the input mapping K̃ where each subplot is
the ith reshaped input synergy Ki as in Equation 3.23. The synergy weights
are unitless due to the normalization.

Long Configuration

• Number of synergies: k = 8

• Observation lengths: p = f = 12 samp. OR pt = ft = 0.24 s

• Number of observations: n = 200

• Normalization: Remove mean of each feature and divide individual

features by their corresponding standard deviations

Figures 3.40 and 3.41 show the weights of the input and output synergies,

composed by the K̃ and Õ matrices respectively. The input synergies are

mostly unstructured as was the case with the other experiments. As with

the other vocal tract synergies, tube sections 0-5 and 78-88 have zero weight

because they are not used by the simulator, and the nasal cavity tubes 65-77

have zero weight because their variance is lower than the threshold.

This long configuration yields similar output mappings as the medium

configuration. The first three output synergies are rather uninteresting with
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Figure 3.41: Area Function, Articulator Activation, and Spectrogram Long
Configuration: Visualization of the output mapping Õ where each subplot
is the ith reshaped output synergy Oi as in Equation 3.24. The synergy
weights are unitless due to the normalization.

respect to the area function and articulation features. As with the medium

configuration, the spectrogram features vary with time, but exhibit little

structure along the frequency axis. Synergy 4 captures the relationship be-

tween the muscles articulating the jaw, the masseter and the mylohyoid, and

decrease in oral cavity area. In coordination with the jaw closing, synergy

4 captures an increase in lung volume controlled by the decreasing of the

lung articulator. Synergy 5 identifies the control of the velum via the levator

palatini. Synergy 6 discovers that the oral cavity area can be increased by

increasing the activation of the mylohyoid muscle.

So it appears that the addition of spectrogram features has somewhat

decreased the structure in the output synergies, but that the algorithm is

still able to identify relationships between articulators and area functions. It

does not, however, seem to be able to identify any real connection to acoustic

features. The multiple correlation coefficient mean and standard deviation

for this configuration is R2 = 0.6569± 0.3989.

The factor scatter plots, Figures 3.42 - 3.44, for the long configuration ex-

hibit both continuity and localization to some extent. Localization is stronger
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Figure 3.42: Area Function, Articulator Activation, and Spectrogram Long
Configuration: Scatter plot of the latent variable xt over synergies 1, 2, and
3 for the eight IPA phonemes. Data points from fricatives and vowels are
marked with ▽ and ∗ respectively.

in the for the first three factors than it is for factors 6 and 7 as can be seen

by the degree of overlap between phoneme classes. However, broad phonetic

categories do still arise and are evident across factors 1, 2, and 3 as well as

factors 6 and 7.
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3.3.4 Controlling the Vocal Tract with Synergies

Recall that a goal of developing vocal tract sensory-motor synergies is to

enable bypassing of the curse of dimensionality in the task of learning to pro-

duce speech. The analysis of the learned vocal tract synergies revealed that

these synergies capture coordination between muscles and tract shape which

reflect the dynamics of the vocal tract model. The analysis also revealed that

the learned synergies exhibit properties indicating that the factor space is a

good low-dimensional approximation of the vocal tract model where control

can be performed. In order to demonstrate that it is possible to use this

synergy learning model to generate articulator outputs to the vocal tract, I

implemented a simple controller based on the vocal tract area function and

articulation synergies in Section 3.3.3.2.

The simulator is first initialized with an articulation which sets the initial

shape of the vocal tract. Since no past history exists yet, it must be initialized

somehow. I chose to initialize the past history by assuming that the initial

state of the vocal tract model was held for the last p time steps. Therefore the

columns of Y p−
o are filled with the same initial vector yto which has been mean

centered and scaled appropriately. The hidden factors xo are then computed

using Equation 3.26. This is the low-dimensional representation of the vocal

tract state. This state can then be fed to a controller that generates xdesired.

For this simple demonstration the state is simply passed through without

any modification.

xdesired = G(xt) = xt (3.29)

The outputs are then generated according to Equation 3.27. The control

ut is then rescaled and the mean is added back in to generate the actual

articulator commands. These commands are then sent to the model which

simulates the next timestep of the simulation generating a new observation

vector yt1 . The past history vector is then updated by removing the last

column of Y p−
o shifting the other p− 1 columns to the right and inserting yt1

in the first column to yield Y p−
1 . This process is repeated for the length of

the trial.

I refer to this whole process as vocal tract sensory-motor synergy based

control, because articulator outputs are being generated using the synergies

and feedback from the model. However, the term control is used somewhat

loosely here as no specific behavior is desired. It is more accurate to think
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of the behavior of this system as a quasi step response.

I implemented this approach in C++ as part of the revised Praat simulator

software. The computation of articulator outputs consists of matrix addition,

subtraction, multiplication, and element wise division. I chose to use the

open source GNU Scientific Library to perform these operations because it

is fast and compatible with other software in the Language Acquisition and

Robotics Laboratory. I have tested this approach with the vocal tract area

function and articulation synergy long configuration, p = f = 12. This

produces what can be described as oscillating movements of the vocal tract,

with some intializations producing voiced sounds. This approach can also be

used to control the vocal tract with individual synergies by setting all but

one of the factors xt to zero. Again, some of these tests produced voicing.

Earlier on in my research I experimented with different methods for ran-

dom articulation of the vocal tract as well as different versions of scaling in

the SDFA algorithm. One of these early configurations used a randomized

stimulation method that tended to create more drastic changes in articulator

activations at the end of each trial. I was also experimenting with scaling

only to account for a difference in the units of the features. Articulatory

activations take on values between zero and one and tube areas are in units

of cm3. So I simply scaled the areas by the mean of area function standard

deviations and the articulatory activations by the mean of their standard

deviations. I also let f = p = 13 and restricted the analysis to 50 trials. This

early configuration did not prove as useful for discriminating between IPA

phonemes, but when used to control the vocal tract, it produced much more

vowel like vocalizations. I think this is likely due to the fact that the scaling

method weights features that have larger dynamic ranges more importantly

in computation of the synergies. This created a biasing of the lungs which

drive vocalization.

These results are all intriguing, but it is difficult to draw any conclusions.

More research is needed in this area in order to determine how to use these

synergies for true control. When designing a system that learns to speak,

RL could be utilized to find a controller G(xt). The synergies could enable

learning by using reduced dimensionality state xt instead of the original state

yt.
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CHAPTER 4

CONCLUSION

This research brings us one step closer to developing a system that learns to

produce speech. Due to the complexity and high dimensionality of the vocal

tract standard reinforcement learning approaches can not be used to enable

this learning. Yet, we know that biological systems have found a way to

circumvent the curse of dimensionality. The study of perceputal processing

provides the clue that optimal encoding via dimensionality reduction plays a

key role. Research on motor control has indicated that use of muscle synergies

may greatly simplify the control of complex dynamical systems.

There is also some evidence to support the idea that combining sensory and

motor features is necessary to accurately characterize the system dynamics

and may enable more efficient learning strategies. This hybrid synergy con-

cept also aligns well with the concept of gestures in the articulatory phonology

framework providing motivation for approaching the problem of learning to

produce speech by first finding vocal tract sensory-motor synergies. In the

SDFA formulation we can think of the input and output primitives as ges-

tures because they represent the coordination of articulators and vocal tract

shape. Points within the factor space correspond to vocal tract configura-

tions. Trajectories within the factor space then can be considered analogous

to gestural scores because they capture the combination and activation of

the underlying synergies over time. Symbols, such as phonemes, can also be

defined within this factor space as clusters of similar trajectories.

But, there is no guarantee that the SDFA algorithm will learn a model that

is consistent with the hypothesis of synergies being analogous to gestures

and factor trajectories analogous gestural scores. Therefore I set out to

evaluate this hypothesis by performing a number of experiments using the

SDFA algorithm and the vocal tract simulator. I primarily used two different

methods of evaluating the quality of the learned synergies. I first analyze the

patterns of coordination in the input and output synergies. Then I use the
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learned synergies to analyze utterances of eight different phoneme by looking

at the trajectories of the different symbols within the factor space. From

this test, I determine if the factor space exhibits localization and continuity

properties, which are important for making control feasible within the factor

space, and for the formation of symbols as clusters of trajectories.

Before committing to the SDFA algorithm I first wanted to determine if it

was a good candidate for learning primitives, as it had not been used for this

purpose before. The early experiments by Poritz [140] showed that broad

phonetic categories could be discovered by use of an autoregressive HMM on

spectral features from recordings of human speech. The rationale was that

if the SDFA method was capable of discovering similar categories, then it

would indicate that the SDFA algorithm was worth further investigating.

I chose to apply the SDFA algorithm to spectrograms of human speech.

The results of these experiments were very encouraging, especially for the

short history configuration. Analysis of the different phonemes in the fac-

tor space revealed the discovery of three broad phonetic categories corre-

sponding to vowels, fricatives, and silence. The space also clearly exhibits

localization and continuity. Interestingly, the input primitives displayed lit-

tle structure. This is somewhat surprising considering the fact that only

the input primitives and not the output primitives are used to generate the

factor scores. The output primitives show much more structure, with dif-

ferent primitives capturing broadband activity, low frequency components,

high frequency components, and some harmonic components.

These results showed that the SDFA method is a good candidate for re-

ducing the dimensionality of the system in a smart way. They also showed

that the factor space can be used to define symbols. Overall, the results in-

dicated that the SDFA method could be used to learn useful primitives from

very high dimensional features. However, this experiment suffers from the

same issue that most synergy studies do; the data upon which the synergies

were trained is highly structured due to the task that is being performed,

i.e. speaking English. Human speech is very structured and takes years of

learning and practice to produce. The task of learning synergies for speech

production is more difficult because it is less constrained.

In the vocal tract synergy learning experiments the system is required

to learn from random excitation of the vocal tract model instead of from

observations of speech being produced. I was interested in determining the
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effect of combining sensory and motor features in synergy learning. I started

out by applying the SDFA algorithm to learning vocal tract area function

synergies. The learned output synergies captured a great deal of structure,

identifying segments of the tract that move in concert. In addition, the

factor space does exhibit some degree of localization and continuity although

there is overlap between phoneme classes and no apparent broad phonetic

categories. However, when the articulatory activations are included with the

area functions, the resulting synergies are much more interesting. The output

synergies capture the relationship between various articulatory muscles and

tract shape. The factor space also exhibits strong localization and continuity

with little overlap between phonemes. Broad phonetic categories emerge

naturally in the factor space as well. So we can conclude that use of combined

sensory-motor features enabled learning of synergies better suited to the task

of speech production. In addition, the inclusion of articulator activations

opened up the possiblity for using these synergies for performing control of

the vocal tract.

Adding spectrogram features to the area function and articulatory acti-

vation features resulted in output synergies that still capture relationships

between tract shape and articulatory muscles, but little correspondence with

the spectral features. This is likely due to having too few samples where any

sound is actually produced. This could be remedied by biasing the lungs

articulatory muscle to cause air to exit the tract. However, it is not clear

that it is necessary to include an acoustic features in the primitives at all.

Taken together, all of these results indicate that sensory-motor synergies

offer a promising approach for learning to control a vocal tract to produce

speech. As hypothesized, the area function and articulatory activation syner-

gies capture coordinations between vocal tract shapes and articulatory mus-

cles, closely resembling the concept of gestures in the articulatory phonology

framework. This research extends that framework by showing that it is pos-

sible that these gestures are not preprogrammed or innate and instead that

they can be learned learned through interaction with the world. The fact

that the factor space exhibits strong localization and continuity in combi-

nation with the natural formation of broad phonetic categories within the

space indicate that this model may be useful for performing control and for

constructing symbols.

This is a somewhat unique result because very few studies have looked at
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learning vocal tract synergies, and those that have rely on recordings of vocal

tract shape during speech production. As pointed out earlier, human speech

is highly structured so it is not surprising that primitives would emerge from

this analysis. The problem is that there is no way to tell whether the structure

that these synergies discovered reflects the structure in the underlying control

units recruited for producing speech or whether they reflect the structure in

the language.

In this research, synergies were discovered from random articulation of the

vocal tract, meaning that the synergies constitute a compact representation

of the vocal tract dynamics. Based on our understanding of dimensionality

reduction, we can say that the individual synergies actually represent differ-

ent modes of the vocal tract. One interesting aspect of these results is that

the learned synergies generate a space where different phonemes show up

as distinct and broad phonetic categories can be defined. This implies that

phonemes and broad phonetic categories aren’t just the result of an arbitrary

taxonomy imposed by language, but actually represent physically different

modes of the human vocal tract.

4.1 Future Work

The research presented in this thesis is a first step in developing a system that

can learn to produce speech with little prior knowledge. I have laid out the

motivation for approaching this as a dimensionality reduction problem and

provided evidence that a vocal tract sensory-motor primitive representation

may enable bypassing of the curse of dimensionality in reinforcement learning.

Therefore, the next step is to validate this approach by using these synergies

to perform reinforcement learning for producing speech. Although there

is no textbook solution for how to implement this. Many decisions about

what type of reinforcement learning to use, the appropriate cost functions,

how to integrate the primitives into a RL framework, etc. must be made.

Also, in order to produce a variety of sounds it is likely that some form of a

hierarchical controller will be required. It is possible that forming a second

layer of synergies incorporating acoustics and the activations of the lower-

level primitives may be useful. The probabilistic formulation of DMPs may

be useful in forming this second layer of synergies.
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One problem that may arise is that the initial sensory-motor synergies

may not be adequate for producing some sounds. It is possible that this

would require creation of a new synergy. However, this raises a great deal of

questions. How would this new synergy be learned? Would this affect the

production of other sounds that have already been learned via reinforcement

learning? This would essentially require development of an online synergy

learning algorithm as opposed to the current batch based method. It would

also require the development of an adaptive basis reinforcement learning

method.

Another way of addressing this issue is to learn many different sets of

synergies that approximate the dynamics of the vocal tract around different

tract configurations, essentially creating a number of different locally lin-

ear models. This may enable better speech production while still keeping

the dimensionality of the controller low. It does add the complications of

determining how to initially learn these various models and how to choose

which model is necessary for a given task, but I think it is worth further

investigating.

In regards to the synergy learning algorithm, I am interested in trying out

the expectation maximization approach to solving the DFA model. This may

help shed some light as to why the output synergies are structured, but the

input primitives are noisy. It may also be worthwhile to look at developing

sensory-motor synergy learning algorithms that use a dynamic form of ICA

or NMF instead of factor analysis.

I am also interested in extending this approach to other problem domains

such as robotics, autonomous construction, and general motor control. More

broadly I think this approach could be useful in the task of transfer learning.

If we are interested in reusing aspects of learned behaviors, it makes a lot of

sense to use synergies to develop more modular controllers. Synergies could

also offer a way to make RL more understandable and make the connection

between symbolic processing and action, that is difficult to do with standard

RL techniques.
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