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ABSTRACT

We propose a new family of algorithms for bounding/approximating the op-

timal solution of rank aggregation problems based on weighted Kendall dis-

tances. The algorithms represent linear programming relaxations of integer

programs that involve variables reflecting partial orders of three or more

candidates. Our simulation results indicate that the linear programs give

near-optimal performance for a number of important voting parameters, and

outperform methods based on PageRank and Weighted Bipartite Matching.

Finally, we illustrate the performance of the aggregation method on a set of

test genes pertaining to the Bardet-Biedl syndrome, schizophrenia, and HIV

and show that the combinatorial method matches or outperforms state-of-the

art algorithms such as ToppGene.
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CHAPTER 1

INTRODUCTION

The problem of rank aggregation may be simply stated as follows: a set of

voters or agents is presented with a list of candidates that have to be ranked

according to some criteria. The aggregate ranking is chosen to best reflect the

ordering provided by the voters. Due to the fact that large volume datasets

in social science, search engines, and biology are ordinal data, frequently

obtained from multiple sources and using different ranking functions, rank

aggregation has found many applications in web metasearch engines, social

sciences, spam control and other applications [9, 6].

One of the best known methods for rank aggregation is distance based ag-

gregation, where the problem is cast as the computation of the median of a

set of full rankings (permutations). The distance measure used for computing

the median is the Kendall distance, which has also found many applications

outside of social choice theory and computer science – for example, in rank

modulation coding for flash memories [2]. The Kendall distance counts the

number of pairwise disagreements between two permutations ([17], [16]), and

can be computed efficiently. On the other hand, computing the aggregate

ranking under the Kendall distance is known to be NP hard [3]. To over-

come this computational bottleneck, a number of algorithms for approximate

aggregation were put forward, including PageRank (PR), Weighted Bipar-

tite Graph Matching (WBGM), and relaxed Integer Programming (IP) (in

particular, linear programing (LP) methods) [9, 6].

PR methods for rank aggregation mimic the principles used for ranking

webpages by Google, and they reduce to computing equilibrium probabili-

ties of Markov chains. WBGM algorithms utilize the fact that the Kendall

distance may be approximated up to a multiplicative constant by the `1 norm

of permutations. The close connection between transitive tournaments and

rankings was the basis for developing IP aggregation methods [21].

It is well known that the Kendall distance is not suitable for many practical

1



applications in which human subjects are involved, since the Kendall distance

does not account for the fact that one inevitably pays more attention to the

top of a list than to the remainder of the list. To overcome this problem,

in our recent work we introduced the notion of a weighted Kendall distance,

where higher weights are assigned to adjacent swaps at the top of a list. This

ensures that in an aggregate, strong showings of candidates are emphasized

compared to their weaker showings. In a companion paper [11], we presented

extensions of the PR and WBGM methods for weighted Kendall distances.

In what follows, we present a novel combinatorial optimization framework for

computing the weighted Kendall aggregate with near-optimal performance.

The algorithm is based on a new representation of permutations using partial

orderings of three or more candidates as constraints. The method is of espe-

cially simple form when the weights are monotonically decreasing functions,

and we therefore focus our attention to this case. Decreasing weights are

suitable for capturing the importance of the top of a list, as they ensure that

changes at the top are costlier than changes at the bottom.

The thesis is organized as follows. In Chapter 2, we present an alternative

formulation for acyclic polytopes. In Chapter 3, we derive a closed form

expression for linearly decreasing weighted Kendall distances, describe a cor-

responding IP aggregation method, and its LP relaxation. We also describe

how this approach may be viewed as a special scoring procedure on rank-

ings. Chapter 3 also contains extensions of the aforementioned results to

the case of polynomially decreasing weight functions. In Chapter 4, we show

the applications of the aforementioned aggregation algorithm for identifying

relevant genes that might cause particular diseases. Conclusions based on

the results of the thesis are discussed in Chapter 5.
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CHAPTER 2

A NEW EQUIVALENT FORMULATION
FOR ACYCLIC POLYTOPES

In this chapter, we present an alternative formulation for acyclic polytopes

in n-dimensional space which was primarily formulated based on the relative

relation between every pair of the objects. In this chapter, we propose a new

polytope by applying new variables. The new variables store the relations

between every set of triplets of the objects in the rankings. Later, we propose

a new mapping of the aforementioned polytope to acyclic polytope.

2.1 Background

We consider the problem of rank aggregation involving n candidates and

m voters. For simplicity, the set of candidates is chosen as {1, . . . , n}, and

denoted by [n]. A vote is a ranking of the candidates with no ties, and

hence a permutation in Sn, the symmetric group of order n!. We write each

permutation σ ∈ Sn as σ(1) · · ·σ(n), where σ(i) represents the candidate

with rank i. Note that σ−1(i) is the rank of candidate i, where σ−1 denotes

the inverse of σ.

Suppose that the voters are numbered from 1 to m. Voters are allowed to

cast the same vote, and the multiset of the voters’ permutations (rankings)

is denoted by Σ.

In distance-based rank aggregation, the goal is to find a ranking, called the

aggregate ranking, that is as “close” as possible to all the votes simultane-

ously. Closeness is measured via a chosen distance function over Sn. For a

given distance d, the aggregate ranking π is formally evaluated according to

π∗ = arg min
π∈Sn

∑
σ∈Σ

d(π, σ). (2.1)

The most commonly used distance for the purpose of rank aggregation is
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the Kendall distance, although other distances, such as the Cayley distance,

Spearman’s footrule, and Spearman’s rank correlation have found relevant

applications [8]. The Kendall distance between two permutations π and σ,

denoted by dK(π, σ), is the number of disagreements between π and σ, i.e.,

the number of ordered pairs (i, j) such that π ranks i higher than j, and σ

ranks j higher than i. Formally, the distance may be defined as

dK(π, σ) =
∣∣{(i, j) : π−1(i) < π−1(j), σ−1(j) < σ−1(i)}

∣∣ .
The solution of (2) for the Kendall distance is known as the Kemeny aggre-

gate.

For σ ∈ Sn, and i, j ∈ [n], let

σij =

{
1, if σ−1(i) < σ−1(j),

0, otherwise.
(2.2)

Let P be the set of points x = (xij) satisfying

xij + xji = 1, for distinct i, j ∈ [n], (2.3)

xij + xjk + xki ≤ 2, for distinct i, j, k ∈ [n], (2.4)

xij ∈ {0, 1}, for distinct i, j ∈ [n], (2.5)

xii = 0, for i ∈ [n]. (2.6)

Note that there is a one-to-one correspondence between points x ∈ P and

permutations π ∈ Sn, since π−1(i) < π−1(j) if and only if xij = 1.

Using (2.2) and the definition of the Kendall distance, for each x ∈ P , one

can write ∑
σ∈Σ

dK(x, σ) =
∑
σ∈Σ

∑
i,j

xijσji =
∑
i,j

cijxij, (2.7)

where cij =
∑
σ∈Σ

σji.

From (2.7) and the fact that the constraints (2.3)-(2.5) define a permuta-

tion, we find that a Kemeny aggregate is a solution of the integer programing
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(IP) problem

min
x

∑
σ∈Σ

∑
i,j

cijxij

subject to xij ∈ P.

This formulation was independently proposed in [6], while relaxations of the

IP method were shown to provide good approximations to the exact solution

in [18].

In what follows, we describe how to generalize this simple idea for a broad

class of weighted Kendall distance measures. Weighted Kendall distances

were introduced by the authors in [11], and may be defined as follows. An

adjacent transposition in a permutation is a swap of two elements ranked

consecutively. Endow the set of adjacent transpositions A with a weight

function ρ : A → R+, i.e., assign to each adjacent transposition (i i + 1) a

non-negative weight ρi.

The weighted Kendall distance under ρ, applied to two permutations π

and σ, equals the smallest cost of any sequence of adjacent transpositions

needed to transform π into σ. For example, let ρ1 = 2 and ρ2 = 1. The

weighted Kendall distance between 132 and 213 equals ρ2 +ρ1 = 3, since one

may first swap candidates 2 and 3 with weight ρ2, and then swap candidates

2 and 1 with weight ρ1.

In many applications, the top of a ranking is more important than the

bottom, and thus it is reasonable to require that changes to the top of a

ranking induce a larger distance than similar changes applied to the bottom

of a ranking. Unfortunately, the classical Kendall distance does not take into

account positional significance of candidates in a ranking, as any adjacent

transposition contributes one point to the total distance. Weighted distances

can overcome this problem, since they do not require uniform weights for

adjacent swaps.

2.2 Problem Reformulation

In what follows, we describe an alternative formulation for P that will be

useful in our subsequent analysis.

Let Ta,b,c = {(abc), (acb), (bac), (bca), (cba), (cab)}. In addition, let Q be

the set of points (x,w), with x = (xij), i, j ∈ [n], and w = (wijk), with

5



i, j, k ∈ [n], satisfying∑
(rst)∈Ti,j,k

wrst = 1, for distinct i, j, k ∈ [n], (2.8)

wijk + wikj + wkij = xij, for distinct i, j, k ∈ [n], (2.9)

xij, wijk ∈ {0, 1}, for distinct i, j, k ∈ [n], (2.10)

wijk = 0, for i, j, k not distinct. (2.11)

Note that there is a one-to-one correspondence between points (x,w) ∈ Q
and permutations π ∈ Sn, where xij = 1 if and only if π−1(i) < π−1(j), and

wijk = 1 if and only if π−1(i) < π−1(j) < π−1(k).

Define Q̄ similarly to Q, by replacing the integrality condition (2.10) with

0 ≤ wijk ≤ 1. In other words, let Q̄ be the convex hull of Q. Clearly, Q̄ is a

polytope. Also, define P̄ by replacing (2.5) with 0 ≤ xij ≤ 1 in the definition

of P . Finally, let Qp = {x : (x,w) ∈ Q} and Q̄p = {x : (x,w) ∈ Q̄}.

Theorem 1 The sets P and Qp are identical.

Proof: We first show that x ∈ Qp implies x ∈ P . For x ∈ Qp and distinct

i, j, k ∈ [n], one has

xij + xji =
∑

(rst)∈Ti,j,k
wrst = 1,

where the first equality follows from (2.9) and the second equality follows

from (2.8). This proves (2.3).

To prove (2.4), for distinct i, j, k ∈ [n], one may write

xij + xjk + xki = wijk + wikj + wkij + wjki + wjik

+ wijk + wkij + wkji + wjki

= 1 + wkji + wkij + wjki ≤ 2,

where the first equality follows from (2.9), while the other two equalities

follow from (2.8).

From (2.8) and (2.9), one has xij ≤ 1, and from (2.9) and (2.10), it follows

that xij is a non-negative integer. Hence, xij is either 0 or 1, proving (2.5).

To complete the proof of the claim that Qp ⊂ P , observe that (2.6) follows

from (2.9) and (2.11).
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Suppose next that x ∈ P . For i, j, k ∈ [n], let wijk = xijxjk. We show that

x ∈ Qp by proving that (x,w) ∈ Q. It is clear that (2.10) is satisfied.

When i = j or j = k, the proof of (2.11) follows from (2.6). If i = k 6= j,

then (2.11) follows from (2.3).

To see that (2.9) holds, note that, for distinct i, j, k ∈ [n],

xij = xijxjk + xikxkj + xkixij = wijk + wikj + wkij.

The first equality can be verified by considering all possible choices for

(xij, xjk, xki), i.e. by observing that

(xij, xjk, xki) ∈
{

(0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 1, 0), (1, 0, 1)
}
,

since (xij, xjk, xki) = (0, 0, 0) and (xij, xjk, xki) = (1, 1, 1) are excluded by

(2.4). As a result, (2.8) follows from (2.3) and (2.9).

Theorem 2 The sets P̄ and Q̄p are identical.

Proof (Sketch): Each triple (r, s, t) appears in the definition of Q̄p as part of

the following constraints: ∑
(ijl)∈Tr,s,t

wijl = 1,

wijl + wilj + wlij = xij, ∀(ijl) ∈ Tr,s,t. (2.12)

Similarly, each triple (r, s, t) appears in the definition of P̄p as part of the

following constraints:

xrs + xst + xtr ≤ 2,

xsr + xts + xrt ≤ 2,

xij + xji = 1 ∀(ijl) ∈ Tr,s,t. (2.13)

Consider the tuples (xrs, xst, xtr, xsr, xts, xrt) as restricted by 2.12 and 2.13,

and denote them by P̄ rst and Q̄rst
p , respectively.

We first show that x̂ ∈ Q̄rst
p implies x̂ ∈ P̄ rst. Note that Q̄rst

p is the convex

hull of the points

(1, 1, 0, 0, 0, 1), (0, 1, 1, 1, 0, 0), (1, 0, 1, 0, 1, 0),
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(0, 0, 1, 1, 1, 0), (1, 0, 0, 0, 1, 1), (0, 1, 0, 1, 0, 1).

It is easy to check that these points belong to P̄ rst as well, which completes

the claim.

Next, we show that x̂ ∈ P̄ rst implies x̂ ∈ Q̄rst
p . Assume that there exists a

x̂ ∈ P̄ rst such that x̂ /∈ Q̄rst
p . Since x̂ /∈ Q̄rst

p , there exists a facet of Q̄rst
p which

serves as a separating hyperplane between x̂ and the interior of the polytope.

Moreover, this facet is also a separating hyperplane for at least one vertex of

the unit cube which does not belong to the convex hull [14]. Note that the

vertices of the unit cube that do not belong to the convex hull are

(1, 1, 1, ∗, ∗, ∗), (∗, ∗, ∗, 1, 1, 1), (1, ∗, ∗, 1, ∗, ∗), (0, ∗, ∗, 0, ∗, ∗),

(∗, 1, ∗, ∗, 1, ∗), (∗, 0, ∗, ∗, 0, ∗), (∗, ∗, 1, ∗, ∗, 1), (∗, ∗, 0, ∗, ∗, 0);

the symbol “∗” stands for either 1 or 0.

The facet xrs + xst + xtr = 2 is a separating hyperplane for (1, 1, 1, ∗, ∗, ∗).
The three vertices of the facet are (1, 1, 0, 0, 0, 1), (0, 1, 1, 1, 0, 0) and (1, 0, 1, 0, 1, 0),

and for all points in the polytope not incident with the facet we have xrs +

xst + xtr < 2. Since x̂ is assumed not to belong to Q̄rst
p , it must hold that

x̂rs + x̂st + x̂tr > 2. But this contradicts the assumption that x̂ ∈ P̄ rst.

The proof follows by considering all other vertices of the unit cube.
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CHAPTER 3

WEIGHTED KENDALL RANK
AGGREGATION: LINEAR

PROGRAMMING APPROACH

In this chapter, we present a novel aggregation algorithm for calculating

the median of rankings using weighted Kendall distance as a metric. The

algorithms is based on Integer Programming in which the relaxed version

is converted to Linear Programming. The algorithms have been given for

two forms of weights: the first one for monotonic linear weights and the

second one for monotonic second-degree polynomial case. At the end, the

performance of the algorithm is compared with other methods.

3.1 Weighted Rank Aggregation

3.1.1 Linear Weighted Distances

While an efficient algorithm for computing the weighted Kendall distance

with an arbitrary weight function ρ is not known, a polynomial-time algo-

rithm exists if the weight function is decreasing, i.e., if ρi ≥ ρi+1.

Consider the following linear weight function:

ρi = 1 +
ε

n− 2
(n− 1− i), (3.1)

where ε ≥ 0. This function assigns weight 1 + ε to a swap involving the

first and the second candidate, and weight 1 to a swap involving the last and

the next to last candidate. The weights decrease linearly between these two

points. Note that with this choice, swapping candidates at the top induces

a larger distance between permutations. We subsequently make use of the

following weight functions as well,

ρi = 1 +
ε

n− 2
(n− 1− i)k, (3.2)
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where k is a positive integer, and ε > 0.

Let I(π, σ) denote the set of ordered pairs (a, b) for which π−1(a) < π−1(b)

and σ−1(b) < σ−1(a).

Lemma 1 For permutations π, σ ∈ Sn, and the weight function ρ of (4.1),

we have

dρ(π, σ) =
∑
i,j

πijσji

(
1 +

ε

n− 2

∑
k

πikσjk

)
. (3.3)

Proof: It was shown in [11] that the minimum weight sequence of adjacent

transpositions that converts π to σ is obtained as follows: for ` = 1, . . . , n,

find σ(`) in π and move it to position ` in π using adjacent transpositions.

It then follows that the transposition that swaps (i, j) ∈ I(π, σ) has weight

ρs, where

s = π−1(i) +
∣∣{k : σ−1(k) < σ−1(j), π−1(i) < π−1(k)

}∣∣ .
It is not hard to show that s can also be written as

s = n− 1−
∣∣{k : π−1(i) < π−1(k), σ−1(j) < σ−1(k)

}∣∣ .
Using (2.2), we have s = n− 1−

∑
k πikσjk. The lemma follows from (4.1).

The objective function of the rank aggregation problem (2.1), with weights

given by (4.1), equals∑
σ∈Σ

dρ(x, σ) =
∑
σ∈Σ

∑
i,j

xijσji

(
1 +

ε

n− 2

∑
k

xikσjk

)
=
∑
i,j

xij
∑
σ∈Σ

σji +
ε

n− 2

∑
i,j,k

xijxik
∑
σ∈Σ

σjiσjk.
(3.4)

Let dijk denote the number of voters who prefer i to j, and j to k. Note

that
∑

σ∈Σ σjiσjk = djik + djki. Hence, for x ∈ P ,∑
σ∈Σ

dρ(x, σ) =
∑
i,j

cijxij +
ε

n− 2

∑
i,j,k

(djik + djki)xijxik.

The objective function consequently reduces to

min
x∈P

∑
i,j

cijxij +
ε

n− 2

∑
i,j,k

(djik + djki)xijxik. (3.5)
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Theorem 1 implies that x ∈ P if and only if x ∈ Qp. Hence, one can

replace x ∈ P in (3.5) with (x,w) ∈ Q. For every (x,w) ∈ Q and i, j, k ∈ [n],

it is straightforward to see that xijxik = wijk + wikj. Hence, we may rewrite

(3.5) as

min
(x,w)∈Q

∑
i,j

cijxij +
ε

n− 2

∑
i,j,k

(djik + djki) (wijk + wikj) . (3.6)

Since cij = djik + djki + dkji, and

xij =
1

n− 2

∑
k

(wijk + wikj + wkij) ,

it is apparent that (3.6) is equivalent to

min
w∈W

1

n− 2

∑
i,j,k

αijkwijk, (3.7)

where W = {w : (x,w) ∈ Q} and

αijk = dikj + (1 + ε)djik + (2 + ε)dkij

+ (2 + ε)djki + (3 + ε)dkji.

The coefficients on the right side of the above equation have an interesting

interpretation. For each permutation (rst) of {i, j, k}, the coefficient of drst

equals the weighted Kendall distance between the permutations (rst) and

(ijk), based on the weight function (4.1) and for n = 3. In other words,

αijk =
∑

(rst)∈Ti,j,k

dρ(rst, ijk) drst,

which for ε = 1 reduces to

αijk = dikj + 2djik + 3dkij + 3djki + 4dkji.
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3.1.2 The Dual Problem

The dual of the problem (4.1) can be written as

max
λ

∑
i<j<k

λ{i,j,k}

s.t. for all distinct i, j, k ∈ [n] :

λ{i,j,k} + νijk + νikj + νjki

− νijhij(k) − νikhik(j) − νjkhjk(i) ≤ αijk,

The brackets in the subscript of λ indicate that λ{i,j,k} = λ{i,k,j} = · · · , i.e.,

that the order of i, j, and k does not matter. Here, hij(k) is the element that

(circularly) precedes k in the vector (1, · · · , i−1, i+1, · · · , j−1, j+1, · · · , n).

For example, h25(4) = 3 and h12(3) = n.

There does not seem to be a clear interpretation of the dual problem.

However, if we let the ν variables equal to zero, we obtain the following

problem:

max
∑
i<j<k

λ{i,j,k} (3.8)

s.t. λ{i,j,k} ≤ min{αrst : (rst) ∈ Ti,j,k}, ∀ i < j < k.

The optimal value of the latter problem has a clear interpretation as a lower

bound: for each set of distinct values {i, j, k} at least one of the w’s is one,

and thus at least a value of min {αijk, αikj, αkij, αjik, αjki, αkji} is contributed

to the total sum.

3.2 Quadratic Weight Functions

In Section 3.1, we derived a linear programming relaxation of the rank ag-

gregation problem with the linear weight function

ρi = 1 +
ε

n− 2
(n− 1− i).

A similar approach can be used for weight functions of the more general form

of (3.2), with k a positive integer. For simplicity, we illustrate the general
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problem on the quadratic weight function

ρi = 1 +
ε

n− 2
(n− 1− i)2. (3.9)

For the quadratic weight function ρ, the distance between rankings π and

σ is

dρ(π, σ) =
∑
i,j

πijσji

(
1 +

ε

n− 2

(∑
k

πikσjk
)2
)
. (3.10)

Hence, for x ∈ P ,∑
σ∈Σ

dρ(x, σ) =
∑
σ∈Σ

∑
i,j

xijσji

(
1 +

ε

n− 2

(∑
k

xikσjk
)2
)

=
∑
σ∈Σ

∑
i,j

xijσji +
∑
σ∈Σ

∑
i,j,k

ε

n− 2
xikxijσjkσji

+
∑
σ∈Σ

∑
i,j,k

∑
l 6=k

ε

n− 2
xikxilxijσjkσjlσji.

Let R be the set of points (x,w), with x = (xij) and w = (wijkl), satisfying∑
(rstu)∈Ti,j,k,l

wrstu = 1, for distinct i, j, k, l ∈ [n],∑
(rstu)∈T i>j

i,j,k,l

wrstu = xij, for distinct i, j, k ∈ [n],

wijkl ∈ {0, 1}, for distinct i, j, k, l ∈ [n],

wijkl = 0, for i, j, k, l not distinct,

where Ti,j,k,l denotes the set of permutations of {i, j, k, l} and T i>ji,j,k,l denotes

the set of permutations of {i, j, k, l} in which i appears before j. Note that

there is a one-to-one correspondence between points (x,w) ∈ R and permu-

tations π ∈ Sn, where xij = 1 if and only if π−1(i) < π−1(j) and wijkl = 1 if

and only if π−1(i) < π−1(j) < π−1(k) < π−1(l).

Similar to Theorem 1, one can show that P = {x : (x,w) ∈ R}. Fur-

thermore, it is straightforward to show that xikxij and xikxijxil are linear

in wrstu, r, s, t, u ∈ [n]. Let eijkl be the number of permutations σ ∈ Σ with

σ−1(i) < σ−1(j) < σ−1(k) < σ−1(l). The rank aggregation problem with

quadratic weight function is equivalent to

arg min
(x,w)∈R

∑
i,j,k,l

βijklwijkl, (3.11)
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Figure 3.1: m=10.

where βijkl, for i, j, k, l ∈ [n], are linear combinations of erstu, r, s, t, u ∈ [n].

Note that the objective function of (3.11) is linear. Furthermore, if we replace

the integrality condition wijkl ∈ {0, 1}, for i, j, k, l ∈ [n], with 0 ≤ wijkl ≤
1, for i, j, k, l ∈ [n], we obtain a linear programming relaxation for the rank

aggregation problem with a quadratic weight function.

3.3 Simulations

We evaluate the performance of the bound (3.8), the IP approximation (4.1)

and relaxed IP bound (when condition (2.10) is replaced with 0 ≤ wijk ≤
1). Moreover, we considered the WBM and Markov chain (PR) methods,

adapted for the weighted Kendall distance measures in [10]. We compared

the averages of the objective function based on the weighted Kendall distance

given in section 3.1 (here ε = 1). The average value refers to

1

m

∑
σ∈Σ

dρ(π̂, σ),
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Figure 3.2: m=50.

where π̂ represents a solution found by a particular algorithm. The mini-

mum of the average value is attained by the optimal solution. Note that in

relaxed IP and for the bound (3.8), the solutions do not necessarily represent

permutations. In these cases, we use a lower bound on the average value of

the optimal solution based on the weighted Kendall distance.

We generated different sets of votes with varying number of candidates.

The votes were chosen in an iid manner and generated uniformly. The num-

ber of candidates varies from n = 3 to n = 10. For m = 10, 50 the results

obtained by the aforementioned algorithms are depicted in Figures 3.1 and

3.2. More precisely, Figures 3.1 and 3.2 illustrate the average value of so-

lutions obtained by IP approximation, bipartite matching, and the Markov

chain method. They also illustrate lower bounds on the optimal average

value obtained from (3.8), and from the relaxed integer programming ap-

proach. For each data point, we created 500 samples of votes.

To find the solution for the IP approximation, we used a branch and bound

method. Notice that the curves for the integer programming approximation

and the relaxed integer program match very well. This means that integer

programming approximations are quite successful in finding the correct opti-
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mal solution based on the weighted Kendall distance. Integer programming

approximations outperform bipartite matching and Markov chain techniques.

The bound (3.8) remains below the other curves, as expected. Surprisingly, it

does not exhibit large deviations from the optimal average value. This is in-

teresting, since the bound (3.8) is attained with much smaller computational

cost.

16



CHAPTER 4

GENE PRIORITIZATION VIA WEIGHTED
KENDALL RANK AGGREGATION

It is known that humans have roughly 25, 000 genes, some of which – when

mutated – may lead to a host of diseases, conditions and abnormal pheno-

types. Despite decades of intense research focus, the underlying gene aber-

rations that lead to even the most frequently encountered diseases are not

completely known. Usually, the main impediment to identifying disease genes

is the time-consuming and costly process of testing a working hypothesis,

further exacerbated by alternative splicing and by the fact that typically,

multiple genes have to be jointly mutated to trigger the onset of a disease.

Even for experiments involving only up to three genes, one would have to

test as many as 4× 1012 combinations of genes in order to check if they are

linked to a given disease. This is clearly an infeasible experimental endeavor

which will remain difficult to accomplish for decades to come.

One approach to mitigate the problem is to preprocess available biologi-

cal side-information about genes and then reduce the set of test genes ac-

cordingly. The problem of identifying a small subset of genes likely to be

causally linked with a disease is known as the gene prioritization problem,

and the algorithmic solutions for solving the problem are classified as prior-

itization algorithms. Prioritization algorithms are typically based on using

experimentally confirmed disease genes and identifying different qualitative

evidence that associates the disease genes with target test genes. For this

purpose, linkage analysis, sequence similarity, functional annotation, marker

and pedigree analysis are all combined. The evidence obtained establishes

the ranking of candidate genes based on the extent of their relationship – or

similarity – to the training set of disease genes.

In the past few years, a number of sophisticated computational gene pri-

oritization tools were proposed in [1, 5, 7, 15]. Most of these methods are

statistical and quantitative in nature. Although offering significant improve-

ments over random search methods, most such methods suffer from the fact
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that they tacitly or implicitly rely on the assumptions that a) a test gene

has to be close to the training genes under all similarity criterion; in other

words, the top-ranked genes have to be highly ranked in all individual lists

reflecting different criteria for comparison; and b) no distinction is to be made

about the accuracy of ranking genes in any part of the list; in other words,

the aggregate ranking has to be uniformly accurate at the top, middle and

bottom of the list. Clearly, neither of the two aforementioned assumptions is

justified in the gene prioritization process: there are many instances where

genes similar only under a few criteria (such as sequence similarity or linkage

distance) are involved in the same disease pathways. Given that the goal

of prioritization is to produce a list of genes to be experimentally tested in

a wet lab, only highly relevant candidate genes are to be considered, and

consequently, such genes have to be ranked with higher accuracy than other

genes on the list. Furthermore, aggregation of rankings based on statistical

methods is often highly sensitive to outliers and ranking errors.

To overcome the above issues of classical prioritization approaches, we

employ a combinatorial median approach to ordinal data fusion using the

weighted Kendall τ distance, first introduced by the authors in [12]. The

aggregation approach is henceforth referred to as the generalized Kemeny

approach. The ranking obtained using the weighted Kendall τ distance is

more influenced by top positions in the rankings obtained from different cri-

teria so it is robust to negative outliers – i.e., a small number of low rankings

of some candidate gene. These properties are useful for gene prioritization,

as weighted Kendall τ distance does not penalize genes for not being sim-

ilar to training genes under every possible similarity criteria, and it allows

for fusing weak orders in which several candidate genes may be ranked the

same, which helps in resolving frequent scoring ambiguities. Although fun-

damental results from social choice theory and political sciences have shown

that there exists no “optimal” rank aggregation method that is consistent,

fair, and impossible-to-manipulate [22], the Kemeny method is one of the

few aggregation solutions that provably offers a large number of performance

guarantees. The properties of the generalized Kemeny method were investi-

gated in our companion papers [12, 19].

We apply the generalized Kemeny approach to lists of rankings generated

by Endeavour and ToppGene [1, 5], using criteria such as sequence similar-

ity, CisReg modules, expression profiles, transcription factor binding sites,
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annotation in different databases, pathways, etc. Our sets of test genes

pertain to the Bardet-Biedl syndrome (a genetic condition affecting cellular

cilia and causing obesity, retinal failure and sometimes mental retardation),

schizophrenia, and HIV (Human Immunodeficiency Virus) infections. De-

spite the fact that generalized Kemeny aggregation is purely combinatorial

in nature and hence discards all quantitative information in data, i.e., it does

not make use of the p-values but only the underlying rankings of genes, it

usually outperforms Endeavour [1] and matches/outperforms ToppGene [5].

In many instances, it produces ties in the rankings, potentially indicative of

insufficient evidence to accurately discern the most similar genes (note that

ToppGene and Endeavour always produce complete linear orders).

4.1 Aggregation Algorithm for Weak Orders

In the same way as Chapter 3, assume that one is given a set of n genes,

ranked according to N different similarity criteria. For simplicity, one may

assume that the genes are indexed by the positive integers [n] = {1, 2, . . . , n}.
Each ranking without ties may be viewed as a permutation over [n], i.e., an

element of the symmetric group Sn. Similarly, a ranking with ties may be

viewed as an ordered set partition, i.e., an ordered partition of the set [n]

into classes, where all genes in the same class are considered to have the same

rank. As an example, for n = 6, σ = (1, 5, 4, 3, 2, 6) is a ranking without ties,

while σ = ({2, 3}, {1}, {4, 5, 6}) = (2− 3, 1, 4− 5− 6) is a ranking with ties.

In the latter case, genes indexed by 2 and 3 share the first position, i.e. they

are the top ranked genes. Usually, we represent ranking with ties through

their median scores, defined as the average position of an element within a

part. For the previous example, 2 and 3 have a median score of 1.5, given

that they occupy the 1st and 2nd position, and (1 + 2)/2 = 1.5.

For a linearly decreasing weight function of the form

ρi = 1 +
ε

n− 2
(n− 1− i),

with ε ≥ 0, it can be shown that the LP relaxation of the corresponding
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aggregation problem equals

min
w∈W

1

n− 2

∑
i,j,k

αijkwijk, (4.1)

where W represents the set of points w = (wijk), with i, j, k ∈ [n], satisfying∑
(r,s,t)∈Ti,j,k

wrst = 1, for distinct i, j, k ∈ [n],

wijk + wikj + wkij = xij, for distinct i, j, k ∈ [n],

xij, wijk ∈ [0, 1], for distinct i, j, k ∈ [n],

wijk = 0, for i, j, k not distinct.

Here, the variables xij have the same interpretation as in the classical Ke-

meny aggregation framework, Tr,s,t ≡ S3 = {(r, s, t), (r, t, s), (s, r, t), (s, t, r),
(t, r, s), (t, s, r)}, and

αijk =
∑

(r,s,t)∈Ti,j,k

dρ((r, s, t), (i, j, k)) drst,

where drst denotes the number of σ ∈ Σ that rank r higher than s higher

than t. Note that for the given linear choice of the weight ρ, it suffices to use

Tr,s,t on triples of variables only. Furthermore, this definition easily extends

to rankings with ties, by replacing Tr,s,t with

T (∗)
r,s,t = {(r, s, t), (r, t, s), (s, r, t), (s, t, r), (t, r, s), (t, s, r)}

∪ {(r, s− t), (s, r − t), (t, r − s)}

∪ {(r − s, t), (r − t, s), (s− t, r), (r − s− t)},

and defining dρ(π1, π2), for π1, π2 ∈ T (∗)
r,s,t, as the shortest path between π1

and π2 in the graph shown in Figure 4.1.

As a final remark, we observe that the LP program for weighted aggre-

gation with ties of lists of n genes involves O(n3) constraints and O(n2)

variables. Still, the constraints are sparse, which allows for efficient compu-

tational savings.
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Figure 4.1: A graph for the weighted Kendall distance between rankings
with ties, involving three elements. The weights of the edges have to satisfy
certain symmetry constraints, as described in [9,13]. The weights in our
example are chosen to illustrate this symmetry property. To avoid
confusion between the numerical values of the weight and the identity of
candidates, we used the set {a, b, c} to represent the candidates.

4.2 Former Prioritization Methods

One of the earliest gene prioritization software package is Endeavour [1].

For different criteria, Endeavour ranks the candidate test genes based on

their similarity to a set of known training genes. For each similarity criteria,

Endeavour first calculates the average p-value with respect to the training

genes, i.e., the probability of obtaining a test statistic as extreme as the

one observed, under suitably chosen null hypotheses (the method which En-

deavour uses to calculate the p-values is beyond the scope of this thesis).

It subsequently ranks the test genes from lowest to highest p-values. The

rankings are aggregated via the Q-statistic, calculated from all rank ratios

ri, i = 1, . . . , N, using the joint cumulative distribution of an N – dimen-

sional order statistic,

Q(r1, r2, ..., rN) = N !

∫ r1

0

∫ r2

s1

. . .

∫ rN

sN−1

dsNdsN−1 . . . ds1.

Here, the indices i refer to data sources, where N is the total number of data

sources. Also, r0 = 0.
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ToppGene, a more recent software described in [5], also ranks candidate

genes according to average p-values for different criteria, but the choice of

criteria and the aggregation method differ from those proposed in Endeavour.

The main difference is that ToppGene employs Human and Mouse pheno-

types as one of the criterion, because direct comparison of human and mouse

phenotypes provides vital information for identifying disease genes [4]. Topp-

Gene aggregates rankings via Fisher’s inverse chi-square method, which ag-

gregates the p-values of different criteria, pi, i = 1, . . . , N , into−2
∑N

i=1 log pi.

Assuming that the p-values pi, i = 1, . . . , N, come from independent tests and

that the null hypotheses are all true, one has −2
∑N

i=1 log pi → χ2(2n), where

χ2(2n) denotes a χ2 distribution with 2n degrees for freedom. Despite the

fact that the p-values of gene prioritization criteria may not be independent,

ToppGene currently appears to be the state-of-the-art prioritization method

in terms of accuracy.

One of the most recently developed prioritization methods, NetworkPri-

oritizer [15], uses distances between genes in regulatory networks as addi-

tional criteria, and performs combinatorial aggregation based on Weighted

Borda Fuse (WBF), Weighted AddScore Fuse (WASF), and MaxRank Fuse.

However, these methods have the same drawbacks as the classical aggrega-

tion methods and differ substantially from the generalized Kemeny approach

pursued in this thesis.

4.3 Results for Disease Related Gene Identification

We tested the generalized Kemeny method on three diseases, and compared

the overall rankings with those of ToppGene and Endeavour. For each dis-

ease, we obtained a list of phenotype genes on OMIM (Online Mendelian

Inheritance in Man) [13], some of which are labeled as “training genes” and

some as “test genes”. For example, OMIM lists 14 genes known to be in-

volved in the Bardet-Biedl syndrome, 11 of which are listed as “training

genes” in Table 4.1, and 3 genes, colored in red – TTC8, CEP290, MKS1–

are part of the 12 “test genes”. These phenotype test genes are expected to

be ranked high in the overall aggregate, since there is strong evidence that

they are similar to the training genes. The rest of the test genes are selected

from GeneCards (www.genecards.org) [20] such that they are not known to
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be related to the disease. Although the sets of training and test genes are

identical for Endeavour and ToppGene, the criteria used by Endeavour and

ToppGene are different. For fairness of comparison, we took the intersection

of Endeavour and ToppGene criteria. From the ToppGene suite, we used

GO: Molecular Function, GO: Biological Process, GO: Cellular Component,

Domain, Pathway, Pubmed, Interaction, Transcription Factor Binding Site,

Gene Family. From the Endeavour suite, we used GeneOntology, Interpro,

Kegg, Motif, and Text.

We performed generalized Kemeny aggregation with ties via the LP method

of Chapter 2; the results are shown in Tables 4.1-4.3. The first two columns

label the gene symbols with numbers, and those “Gene numbers” are used

throughout columns 4-6. Note that column 3 simply indexes the ranking

from 1 to 12, and the numbers are not gene numbers. Columns 4-6 contain

rankings of genes according to ToppGene, generalized Kemeny, and Endeav-

our, respectively. In the case of the Bardet-Biedl syndrome, the generalized

Kemeny method matches the performance of ToppGene, as it ranked the

three phenotype genes at the top, and it outperforms Endeavour. A similar

result is true for schizophrenia. The HIV results are interesting in that both

ToppGene and Endeavour placed the three phenotype genes between the 2nd

and 6th position, whereas the generalized Kemeny approach ranked all three

phenotype genes at the top, tied along with 3 other non-phenotype genes.
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Table 4.1: Results for training genes CCDC28B, BBS5, ARL6, BBS7,
BBS12, TMEM67, TRIM32, BBS1, BBS10, BBS4, BBS2, implicated with
the Bardet-Biedl syndrome.

Gene
#

HGNC
Symbol

Rank
#

ToppGene Generalized
Kemeny

Endeavour

1 TTC8 1 1 1 1
2 CEP290 2 2 3 2
3 MKS1 3 3 2 9
4 APP 4 4 5 3
5 ASPM 5 5 4 7
6 IL10 6 6 10 - 11 8
7 MYOD1 7 7 5
8 BDNF 8 8 7 11
9 SRY 9 9 9 12
10 CD4 10 10 12 10
11 SDHD 11 11 8 4
12 ZBTB7A 12 12 6 6

Table 4.2: Results for training genes MTHFR, CHI3L1, DISC1, SYN2,
DRD3, DTNBP1, HTR2A, RTN4R, APOL4, implicated with
schizophrenia.

Gene
#

HGNC
Symbol

Rank
#

ToppGene Generalized
Kemeny

Endeavour

1 AKT1 1 1 1 1
2 HCN4 2 2 2 4
3 DAO 3 3 3 6
4 ADCY3 4 4 4 5
5 EPO 5 5 5 - 6 12
6 SOX3 6 6 7
7 LRAT 7 7 7 3
8 FGG 8 8 8 9
9 FGD3 9 9 9 2
10 NNT 10 10 10 8
11 ACLY 11 11 11 11
12 ICOS 12 12 12 10
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Table 4.3: Results for training genes CX3CR1, TLR3, HLA-C, CXCL12,
IFNG, IL4R, CCL2, implicated with HIV.

Gene
#

HGNC
Symbol

Rank
#

ToppGene Generalized
Kemeny

Endeavour

1 CXCR4 1 1 1 - 2 - 3 - 4 - 5
- 6

1

2 IL10 2 2 3
3 OSM 3 3 2
4 CRH 4 4 5
5 CD209 5 5 6
6 KIR3DL1 6 6 7
7 HFE 7 7 7 9
8 APC 8 8 10 8
9 RHO 9 9 8 - 9 11
10 SLC18A2 10 10 4
11 ABO 11 11 11 10
12 MCM6 12 12 12 12
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CHAPTER 5

CONCLUSION

In this thesis, we presented novel algorithms for aggregation of rankings using

Integer Programming. While older methods store the orders of the pairs as

variables, in this work we considered the order of the triplets of the objects

to be stored in variables. The method that we used calculates the median

of rankings which employs weighted Kendall distance as the metric. The

algorithm is based on LP and we observed that the relaxed IP method shows

close approximation to the actual integer programming. The applications of

the aggregation method for gene prioritization showed better performance for

identifying genes related to certain diseases in comparison with other ranking

methods which were used in TopGene and Endeavor.

In this work, we presented algorithms for two types of weight functions

and this might be generalized to newer forms of weight functions in the

future. Furthermore, the data formats that we considered in this work were

permutations. In the future, the results of this thesis can potentially be

extended to more general ranking formats like weak orders and partial orders.
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