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ABSTRACT 

 

This study examines the degree to which net payments from federal crop insurance products 

impact cash rents paid for farmland. A spatial panel model is employed to control for spatial 

dependence and heterogeneity in cash rental rates.  Results show that producers factor a 

statistically significant proportion of the value received from crop insurance into cash rents.  

However, the directly measurable rate is lower than found in previous studies.   This result 

likely reflects the complexity in the relationship between losses and crop insurance rates, and 

the aggregation across producers in both measured rent and estimates of the net value of crop 

insurance to a producer.  Further, the indirect effects of crop insurance and the ancillary 

impacts of a producer’s risk profile are difficult to identify independently due to the highly 

variable nature of crop insurance payments, and the smoothed nature of cash rental values.  

Nonetheless, even as the model removes much of the variation in the data, this analysis shows 

crop insurance is an important factor in a producer’s expected revenue, as cash rents are 

positively affected in counties that receive consistent and positive net value. 
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CHAPTER 1 - INTRODUCTION 

1.1 - Purpose and Contribution 

Low interest rates coupled with large commodity price increases resulted in record high 

agricultural land values around 2014 before receding slightly over the past two years.  Cash 

rents and crop insurance subsidies closely tracked the increase and decline in land values, 

growing to record levels in 2014 before decreasing through 2016.  The growth in Federal crop 

insurance, specifically the growth in premium subsidies, has exposed federal crop insurance to 

increased public scrutiny.  For this reason, understanding the impacts of crop insurance on cash 

rents is vital as the program and producers move forward.  This thesis seeks to quantify the 

impacts of crop insurance on cash rents. 

The discussion of farmland values in literature is extensive and continues to grow (Benirschka & 

Binkley, 1994; PIantinga et al., 2002; Patton & McErlean, 2003; Huang et al., 2006; Livanis et al., 

2006; Woodard, 2010; Baylis et al., 2011).  This thesis contributes to that discussion by 

analyzing impacts of crop insurance on cash rents using county level panel data.  Datasets with 

locational information have contributed to the growth of interest in spatial econometric 

methods.  Identification strategies find both spatial structure (spatial heterogeneity) and spatial 

interactions (spatial autocorrelation) in the data used in this analysis.  Therefore, the spatial 

model used incorporates relationships that exist through time and locations, and provides a 

more efficient estimate of the impacts of crop insurance on cash rents. 

The analysis in this study examines 985 counties that fall within the 12 state Midwestern region 

of the United States.  The United States Department of Agriculture (USDA) Economic Research 
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Service separates these 12 states into three different farm resource regions based on their 

specialization in production of farm commodities.  These regions are the Corn Belt (Iowa, 

Illinois, Indiana, Ohio, and Missouri), the Lake States (Minnesota, Wisconsin, and Michigan), and 

the Northern Plains (North Dakota, South Dakota, Nebraska, and Kansas).  These 12 states 

constituted $62.2 billion of the $99.3 billion (62.6%) in total liability in the crop insurance 

program in 2016 (RMA, 2017). 

Critical input for this analysis originated from the iFarm Crop Insurance Decision Tool that the 

farmdoc team at the University of Illinois developed and maintains.  Among other things, the 

iFarm Crop Insurance Decision tool uses a variety of different historical and current factors to 

calculate the long run expected “net cost of crop insurance” (net cost) to a producer.  

Differences in net costs arise due to mis-ratings, which producers can exploit in their crop 

insurance selection process.   

This study employs a similar variable to net cost as a measurement of benefit to producers.  Net 

value of crop insurance (net value) is calculated as compensation for damage or loss 

(indemnity) plus the portion of premium paid by the federal government (subsidy) minus the 

total premium.  Dividing this value by total acres insured returns a per acre measure of the net 

value in any given year.  When insurance is rated fairly, net cost equals the amount of subsidy.   

Crop insurance impacts cash rents through two different mechanisms.  First, producers may 

rebalance risk when purchasing crop insurance.  Variation of returns represents one of the 

largest risks to producers when cash rents are negotiated.  Crop insurance reduces variation of 

returns and therefore the producer’s risk.  Assuming that a producer has a certain risk 
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tolerance, reduction in risk from crop insurance may result in risk being shifted to other areas 

of their operation to restore risk to its preferred level.  Second, due to discernable patterns of 

net value, producers potentially factor net values into cash rents. This thesis focuses on that 

effect. 

The results suggest that higher net value of crop insurance is associated with higher cash rental 

rates.  In other words, as producers experience consistent excess benefits of crop insurance, 

they are willing to factor these benefits into cash rental rates.  The consistency of payments 

plays a critical role in determining the portion of each dollar factored into rental rates.  Because 

cash rents are sticky (Carson & Langemeier, 2017), producers require that net value from the 

crop insurance program be consistent before they factor expected net value into cash rents. As 

net value does become consistent through time and producer’s expectations of the crop 

insurance program change, producers factor a statistically significant proportion of net value 

into rental rates.  However, the economic significance of net value’s impact presents a different 

story.  Producers factor as much as $0.01 of each additional $1.00 in net value into cash rents, 

depending on the consistency of the payments.  These findings represent a significantly smaller 

proportion in comparison to other forms of government payments, such as direct payments 

(Van Herck et al, 2013).  
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1.2 - Overview 

This thesis is organized into six sections.  Following this introduction, Chapter 2 provides 

background on the history and complexity of the federal crop insurance program.  Chapter 3 

reviews previous literature focused on farmland valuation and cash rents.  Specifically, Chapter 

3 traces the progression of the literature towards hedonic price models in farmland value 

analysis.   Chapter 4 introduces the theory behind the model design and selection and discusses 

the data used in this analysis.  Chapter 5 reports the results and discusses the potential 

implications.  Finally, chapter 6 completes this thesis with a conclusion and discussion. 
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CHAPTER 2 - BACKGROUND 

Agricultural economists have studied the effects of government programs on farmland values 

dating back to the mid-1960s (Herdt & Cochrane, 1966).  Similar to previous federal agriculture 

programs, crop insurance faces public scrutiny.  The scrutiny has intensified as public subsidies 

for crop insurance have grown over the past decade.  Crop insurance subsidies, farm real estate 

prices, and cash rents have each more than doubled during the past two decades across the 

Midwest.  As a result, many suspect crop insurance plays a causal role in the increase in land 

values and cash rents.  Figures 1-4 show trends in land values, cash rents, and crop insurance 

subsidies.  Subsidies for federal crop insurance in the 2016 crop year were $6.89 billion of the 

$9.08 billion in total premium, while producers paid the remainder (RMA, 2017).   As of 2016, 

farm real estate in the United States is valued at over $2.4 trillion, representing over 80% of all 

farm assets (USDA, 2017).   

Figures 1-3 display trends in land values, cash rents, and year-over-year changes in land values.  

On average, the Corn Belt experienced the largest increases, gaining over $4,000 per/acre in 

value between 2000 and 2016.  Northern Plains land values experienced the widest range of 

percent changes during the same period, from increases of 26.89% in 2012 to decreases of 

5.94% in 2016.  As expected, rent values follow a similar path to farmland values, experiencing 

the rapid rise followed by a slow decline.  Myriad factors affect farmland values though, 

whereas expected income is the main driver of cash rents.  

The capitalization rate of farmland is a common measure of the relative price of farmland.  

Calculated by dividing yearly rent by total value, the capitalization rate measures the amount 
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buyers pay for current earnings to farmland.  Schnitkey (2016) shows strong correlation 

between capitalization rates and the U.S.  ten-year treasury yield.  Intuitively this is 

understandable, as raising interest rates increases financing costs while also offering an 

investment alternative.   

Cash rent leasing agreements continue to increase in popularity across the Midwest.  Data from 

the Illinois Farm Business Farm Management (FBFM) Association show cash rented farmland 

increased from 40% to 43% of total farmland between 2010 and 2015 (FBM, 2016).  Producers 

benefit most from cash rent leasing agreements during favorable growing seasons when 

realized revenue exceeds the expected revenue amount.   However, because cash rents are 

fixed costs, producers bear all the risk during inferior growing seasons. 

Producers consider an array of factors when establishing rental agreements with property 

owners.  These factors include land productivity, the variability of those crop returns, field size 

and shape, drainage, ease of access, market access, local market prices, potential for wildlife 

damage, field perimeter characteristics, competition for rented cropland in a region, and crop 

insurance (Ward, 2015).   

2.1 - Crop Insurance: History and Performance 

Agriculture production is an inherently risky business whereby producers face a variety of 

production impediments ranging from adverse weather and pests to natural disasters such as 

fire (Goodwin & Smith, 1995).  The frequency of adverse events coupled with their severity led 

directly to the creation of a federal crop insurance program in the 1930s.   Enacted in 1938, the 

Crop Insurance Act was a direct response to the Dust Bowl and Great Depression.  The initial 
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crop insurance program insured only yields.  High premiums and low participation rates 

hindered the growth of the program to such an extent that Congress discontinued federal crop 

insurance in 1943 before reenacting it in 1945.   

Low participation rates continued to plague the program though until the Crop Insurance Act of 

1980.  This act introduced premium subsidies and expanded the availability of crop insurance to 

additional crops and regions of the country.  Congress initially capped premium subsidies at 

30% of the premium at the 65% coverage level.  While participation levels increased, the need 

for congress to issue ad hoc disaster payments after adverse events persisted.  As disaster relief 

payments became annualized and larger, incentives to participate in the voluntary federal crop 

insurance program were further diminished (Goodwin & Smith, 1995).   

Beginning in the early 1990’s, proponents of crop insurance criticized the “annual” ad hoc 

disaster relief programs.  They placed blame directly on ad hoc payments for competing with 

Federal Crop insurance, and lobbied for change.  Congress responded with the Federal Crop 

Insurance Reform Act of 1994.  One of the many changes, this Act required producers 

participate in the federal crop insurance program to be eligible for other federal agriculture 

programs such as deficiency payments and certain loan programs.   

Catastrophic (CAT) crop insurance originated with the 1994 Act.  CAT crop insurance offers a 

minimal cost alternative for producers who want the minimal amount of coverage while 

remaining eligible for federal benefits.  The federal government completely subsidizes 

premiums for CAT, while producers pay a onetime service fee for each crop they grow, in each 
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county grown.  CAT coverage compensates producers for crop yield losses that exceed 50% of 

historical yield at a rate of 55% of the projected season average market price.   

Following the 1994 Act, participation in the Federal crop insurance program increased 

drastically, with enrolled acres more than doubling from roughly 100 million in 1994 to over 

220 million in 1995.  As the program grew, the Risk Management Agency (RMA) was created to 

administer Federal Crop Insurance Corporation (FCIC) programs and other non-insurance-

related risk management and education programs that help support U.S. agriculture. 

In 2000, Congress raised the subsidy rates and made several changes to RMA, including 

allowing them to enter into contracts or partnerships with private entities that developed and 

maintained crop insurance products.  The public-private partnerships expanded the number 

and quality of crop insurance products offered to producers.   

The price of premiums encompasses the most important factor when deciding whether to 

participate in crop insurance (Sherrick et al., 2003).  However, price is only one facet of the 

selection process.  Individual producer characteristics, such as risk tolerance, also influence a 

producer’s decision.  Kirwan (2014) finds that farm operators that purchase crop insurance tend 

to be younger and more highly educated than operators who forgo crop insurance.  Farms with 

crop insurance also tend to have higher revenues and leverage compared to their counterparts.  

While leverage refers to financed debt, cash rental agreements represent a significant financial 

obligation not recorded on farm balance sheets.  Accordingly, Sherrick et al (2003) find that 

among many factors, cash rental obligations play an important role in the crop insurance 

selection process.   
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Currently, crop insurance protects over 297 million acres of farmland with an insured liability of 

over $99 billion (RMA, 2017).  The two categories of crop insurance used today are yield and 

revenue insurance.  Revenue insurance combines the production guarantee of yield-based 

policies and a price guarantee to create an instrument that protects against revenue loss from 

deficient yields, price declines, or both.  RMA introduced revenue insurance in 1996 to corn and 

soybean producers in Nebraska and Iowa.  Revenue insurance quickly became a favorite of 

producers and RMA expanded its availability to the rest of the country by 2003.   Of the 2.07 

million crop insurance policies sold in 2016, revenue-based policies accounted for 74% (1.54 

million).   

Table 1 displays the subsidy rates schedule for federal crop insurance as of 2016. Other than for 

catastrophic crop insurance, coverage levels play an important role in determining subsidy 

rates.  Tables 2 – 4 display descriptive statistics of the federal crop insurance program, sorted 

first by year, and then by the states analyzed in this thesis. The tables show that premiums, 

subsidies, and indemnity payments all trended upwards the past two decades before shrinking 

slightly the past few years. The price-level effect of commodities explains much of the increase 

in size of all three. The cost of insurance closely tracked commodity prices upwards as corn, 

wheat, and soybean prices soared in the mid-to-late 2000’s. Because subsidies are calculated as 

a proportion of total premiums, subsidies grew as premiums grew.  

2.2 - Federal Crop Insurance Subsidies 

Economists agree that increasing the subsidy rates for crop insurance led directly to the growth 

of the program, but they disagree about why and if subsidies are needed (Zulauf, 2016).  While 
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proponents of crop insurance endorse its effectiveness at reducing variation in agricultural 

returns, opponents rally against subsidizing a program plagued by systemic risk, moral hazard, 

and adverse selection.  Proponents of the subsidy point out the need for widespread 

enrollment in the program to achieve a functioning insurance market.  Insurance markets 

function best when non-systemic risks are spread across a pool of risk averse individuals 

(Goodwin & Smith, 1995).  Diversifying away all risk in crop insurance markets remains difficult 

though, as adverse events, like droughts, are often not correlated across insured units.  For 

example, if a drought adversely affects one field, it most likely affects neighboring fields as well.  

Systemic risk is the remaining risk that cannot be diversified away.  While private markets 

currently offer products for idiosyncratic risks such as hail or crop fire, up to 50% of the total 

risk in crop production is systemic risk (Zulauf et al., 2013). The scale of the systemic risk issue 

makes establishing a successful private insurance market for multi-peril crop insurance difficult.  

Subsidies therefore help maximize the number of farms to spread the risk across by increasing 

participation in the program. 

Opponents argue that asymmetric information exists between the party who establishes the 

premiums and the producers who purchase the insurance.  In crop insurance markets, 

asymmetric information can lead to a tendency for only high-risk producers to purchase crop 

insurance.  Economists define this scenario as adverse selection.  Previous literature notes the 

cost of crop insurance as the main participation inhibitor of the program in the first five 

decades of its existence.  Adverse selection had a significant impact on the actuarially 

soundness of premium rates for this period (Miranda, 1991).   Low-risk producers avoided 

purchasing crop insurance due to its high cost, only to cause insurance premiums to rise.  The 
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remaining two types of producers who purchased crop insurance were extremely risk-averse 

and high-risk producers.  Insuring high-risk producers kept premiums high, which further 

prevented low-risk producers from enrolling in the program.   

The federal government requires crop insurance participation to be eligible for other federal 

programs and utilizes subsidies to invoke low-risk producers to participate in the program, but 

adverse selection remains.  Makki and Samwaru (2001) find informational asymmetries in the 

crop insurance market lead to federal crop insurance overcharging high-risk producers and 

undercharging low-risk producers for comparable insurance contracts.  Drain tile, irrigation, and 

other unaccounted for growing practices further enhance producers’ ability to distinguish their 

individual risk compared to others.  Crop insurance products that address these different 

growing practices may further reduce adverse selection in crop insurance. 

A lack of desire may also exist among producers to guard themselves against risk once insured 

against its consequences, otherwise referred to as moral hazard.  Hölmstrom (1979) more 

formally defines moral hazard as the situation that arises when individuals engage in risk 

sharing under conditions such that their privately taken actions affect the probability 

distribution of the outcome.  Once producers purchase crop insurance, they may alter their risk 

tolerance in other areas of their operation as a form of risk rebalancing.  A 1996 study by 

Goodwin and Smith finds that Kansas wheat producers who purchase crop insurance use less 

fertilizer and chemicals than those who do not purchase crop insurance.  The premium rates 

generated for these producers are subsequently inefficient once these producers alter their 

production practices.   
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Two alternatives to crop insurance subsidies include diversification of risk through international 

reinsurance markets, or using weather derivatives as primary crop insurance instruments.  

Currently, the United States federal government acts as a reinsurer to companies offering crop 

insurance products to producers.   Due to the size of international reinsurance markets, the 

possibility exists to diversify away systemic risk that exists in domestic crop insurance markets.  

Vedenov and Barnett (2004) analyze the use of weather derivatives as primary crop insurance 

instruments with results that vary widely based on product and region combinations.  

Furthermore, the complexity of the combinations of weather variables impedes the 

commercialization of this proposed solution.   

Crop insurance subsidies remain a highly-debated aspect of the Farm Bill (Zulauf, 2016).  

However, one point of agreement is that government payments can affect farmland values 

(Shoemaker, 1989; Goodwin and Ortalo- Magné, 1992; Veeman et al, 1993; Nickerson et al, 

2012).  The proportion of government payments that producers capitalize into farmland values 

varies depending on the delivery method of the government payment.  Using computable 

general equilibrium modeling, Shoemaker et al (1990) find long-run equilibrium cropland values 

would be 15% to 20% lower in the absence of government payments from farm programs.  

Goodwin and Ortalo-Magné (1992) construct a subsidy equivalent variable for three regions: 

United States, France, and Canada.  They find a 1.0% increase of the subsidy equivalent results 

in a 0.38% increase in farmland values.  Veeman et al (1993) looks at the proposal to remove all 

government subsidies paid directly to producers and finds land values would decrease by an 

average of 19%.  Interestingly, the projected reduction in farmland values varies widely by 

region.  For example, Ontario farmland value projections show a decline of 12.2% while 
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Saskatchewans projected decline was 29.9%.  Alternatively, Langemeier (2013) finds that 

indemnity payments from subsidized yield-protection crop insurance have no significant effect 

on cash rents or land values.   

Economists argue in favor of policies that do not link payments to output or factors of 

production, however these policies are difficult to achieve in practice (Hennessy, 1998).  

Established during the Uruguay Round Reform of 1974, the World Trade Organization (WTO) 

requires agricultural support programs to producers do not influence the type or quantity of 

production (decoupled).  Direct payments to producers is one form of a decoupled agricultural 

program.  In 1996, direct payments replaced previous price support programs and brought US 

agriculture into compliance with WTO rules for agriculture.  Intended only to help producers 

transition to commodity markets driven purely by supply and demand, the 2002 Farm Bill 

solidified the permanence of direct payments with the creation of the Direct and Counter-

cyclical Payment Program (DCP).  DCP remained for a decade until the 2012 Farm Bill, when 

support ceased for direct payments to producers amid an era of historically high farm incomes.   

The lump sum principle from utility maximization theory illustrates why economists favor direct 

payments to producers.  With direct payments, a producer allocates their additional resources 

in a way that maximizes their specific utility.  Because each producer maximizes their utility in a 

different manner, money transferred to producers via direct payments maximizes the sum total 

utility of all producers.   With crop insurance subsidies, producers never explicitly control the 

money that goes towards subsidizing their crop insurance.  They implicitly receive the dollar 

amount of their subsidy via a reduction in premium rates, and the government transfers that 

money directly to crop insurance companies.  If RMA rates crop insurance fairly, the value of 
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the subsidy represents the expected net value to a producer in any given year.  To verify if this 

condition exists, an analysis of the historical loss performance of crop insurance follows.  

2.3 - Loss Ratios 

A common method used to analyze loss performance of crop insurance is to calculate loss 

ratios.  Loss ratios measure the amount of money paid to producers via indemnity payments 

compared to the total premium.  Note, total premium is the sum of producer paid premium and 

government paid premium subsidies.  The Farm Bill requires the Federal Crop Insurance 

Program have a loss ratio objective of not greater than 1.0, or the actuarially fair premium rate.  

A loss ratio greater than one therefore implies the producer received more than the producer 

paid premium plus the subsidy.  Loss ratios in crop insurance tend to vary drastically through 

time, but cluster spatially in any given year, due to the spatial nature of large-scale weather 

phenomena, such as droughts.   

Loss ratios over a period are either average loss ratios (ALR) or total loss ratios (TLR). ALRs are a 

simple average of yearly loss ratios for the period, while TLRs are calculated by dividing the sum 

totals of indemnities and premiums from the entire period.  The different calculations account 

for differences in the scale of the crop insurance program through time.  For example, we can 

consider the same county in the Midwest twenty years apart.  Inflation aside, a loss ratio of 1.5 

in 1995 would not require nearly the size indemnity payout as a loss ratio of 1.5 in 2016.  This 

results from both the participation rate and the average level of coverage increases.   A simple 

average of loss ratios from 1995 through 2016 therefore gives disproportionate weight to 

earlier years when the program was significantly smaller.  Additionally, adverse selection played 
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a greater role in crop insurance prior to subsidy rate increases.  Older loss ratios therefore may 

reflect the difficulty in rating high-risk producers only, and may not be useful in rating insurance 

products today.   

Figures 5 and 6 display ALRs and TLRs, respectively, for the period 1995-2016 in the Midwest.  

Dependent on the loss ratio used, the two pictures illustrate similar loss experiences for some 

counties and vastly different loss experiences for others. For example, both maps show 

Northcentral Illinois on average experienced loss ratios below one for the period, while areas 

such as Northwest Minnesota experienced ALRs greater than one for the period. However, 

counties in Northwest Minnesota paid more in total premium than indemnity payments paid 

out over that period though as illustrated by the TLRs. Analysis of the data shows that crop 

insurance grew drastically over the period of 1995-2016 in Northwest Minnesota, with many 

loss ratios below one occurring later in the period.  

For comparison, Figures 7 – 12 show ALR and TLR for corn, soybeans, and wheat individually.  

Corn, soybeans, and wheat represent the majority of acres insured by federal crop insurance in 

the Midwest.  These maps illustrate that a wide variation in loss experience exists among 

different crops, even within same counties.  Barnard et al (1997) find similar effects from the 

commodity support program payments on cropland values.  Barnard et al find the effects vary 

spatially based on program differences and the agronomic flexibility producers have to grow 

alternative crops.  These effects result in cash rents that are more responsive to government 

payments in certain areas.  
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The ALR and TLR maps reveal often the highest (lowest) loss ratios occur near state borders.  

The observation of high loss ratios near state borders perhaps reflects historical difficulties 

rating crop insurance products using statewide parameters.  Risk characteristics for the entire 

state perhaps do not accurately apply to fringe counties, as arbitrary state lines were often 

established using natural features such as rivers.   

Yearly loss ratio maps for the period 1995-2016 are attached in Appendix A as A1 – A22. These 

maps illustrate how losses are largely regional in any given year. As discussed previously, the 

spatial nature of losses in any given year represents a significant obstacle for private insurance 

companies whose business model relies on the diversification of risk.  A18 displays the effects 

of the drought of 2012 that affected many of the Midwest counties.  Federal crop insurance 

paid out over $13.4 billion in indemnity payments to producers in 2012 alone in the 985 

counties in this analysis.  Conversely, the same 985 counties received just over $1.09 billion in 

indemnity payments in 2016, as displayed in A22.  Table 2 provides a year-by-year reference of 

average premiums, subsidies, and indemnity payments.  
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2.4 – Tables and Figures 
Figure 1: 

 
Figure 2:  
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Figure 3: 

 

Figure 4: 
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Table 1: 

 

  

CAT 50 55 60 65 70 75 80 85

Basic and Optional Units 100 67 64 64 59 59 55 48 38

Enterprise Units - 80 80 80 80 80 77 68 53

Area Yield Plans - - - - - 59 59 55 55

Area Revenue Plans - - - - - 59 55 55 49

Whole Farm Units - 80 80 80 80 80 80 71 56

Subsidy Rate (%) for Crop Insurance Premiums

Notes: CAT = Catastrophic Insurance, "-" = not applicable

Insurance Plan
--------------------------------------------- Coverage Level (%) -------------------------------------------

Source: RMA
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Table 2: 

  

Average
Standard 

Deviation
Average

Standard 

Deviation
Average

Standard 

Deviation

1995 $10.02 $8.93 $3.93 $3.00 $11.47 $22.27

1996 $13.25 $15.12 $5.02 $4.32 $13.75 $27.98

1997 $12.9 $16.39 $4.79 $4.73 $6.99 $19.67

1998 $13.47 $16.97 $4.96 $5.12 $10.41 $31.33

1999 $13.68 $13.88 $7.25 $7.41 $11.7 $28.06

2000 $13.93 $10.09 $6.41 $5.06 $11.06 $20.63

2001 $15.28 $9.59 $8.56 $5.26 $13.97 $23.33

2002 $15.13 $9.09 $8.44 $5.19 $23.35 $36.59

2003 $17.6 $9.15 $9.8 $5.37 $19 $20.59

2004 $21.9 $8.75 $12.27 $5.12 $18.77 $21.45

2005 $19.89 $6.92 $11.14 $4.06 $10.7 $14.5

2006 $23.1 $9.95 $12.9 $5.68 $12.01 $16.52

2007 $34.82 $11.44 $19.47 $6.5 $19.43 $25.74

2008 $52.61 $12.54 $29.16 $6.88 $53.8 $41.77

2009 $43.09 $11.11 $25.45 $6.6 $17.48 $19.32

2010 $35.77 $11.1 $21.57 $7.07 $19.87 $27.44

2011 $55.66 $15.28 $33.97 $9.88 $39.14 $46.55

2012 $48.9 $12.54 $30.32 $8.63 $105.43 $100.82

2013 $50.32 $12.6 $30.58 $9.1 $49.59 $46.5

2014 $42.41 $13.44 $25.76 $9.56 $35.53 $35.14

2015 $41.28 $14.53 $25.42 $10.42 $25.12 $34.53

2016 $38.65 $18.28 $24.14 $12.99 $8.55 $9.86

Premium/Acre
Indemnity 

Payments/Acre
Subsidy/Acre

Source: RMA SOB



21 
 

Table 3: 
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Table 4: 
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Figure 5: 

 
Figure 6: 
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Figure 7: 

 
Figure 8: 
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Figure 9: 

 
Figure 10: 
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Figure 11: 

 
Figure 12: 
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CHAPTER 3 – LITERATURE REVIEW 

3.1 - Historical Land Value Theory 

There exists a very developed discussion about farmland values and many of those insights 

apply to cash rents paid for farmland. Soil quality, drainage, and proximity to markets 

constitute a few of the factors that affect farmland values and cash rents alike.  Schnitkey and 

Sherrick (2011) explore the relationship between cash rents and farmland values more 

thoroughly, and the two values are highly correlated.  Subsequently, a comprehensive historical 

analysis is warranted. 

Ricardo (1821) established the earliest theory of the value of land.  “Ricardian Rent Theory” 

postulates that rent equals the surplus in production realized on superior soil in comparison to 

production on inferior soils.  In his example, Ricardo imagines a newly settled country with a 

small population.  Figure 13 below illustrates the hypothetical situation. The initial settlers 

begin farming only the highest quality of land, Type A, which yields the largest quantity of 

production, 80.  As the countries’ population grows, increase in demand raises the price to a 

point where farming inferior land, Type B, is economically feasible to cultivate and farm.  

Ricardo determined rent to be the difference in production on Type A land versus Type B.  

Figure 13 illustrates that rent equals 20 units of production.  Furthermore, residents will bring 

additional land into production until the lowest quality land’s marginal revenue equals the 

marginal cost of production.  The land with highest production therefore generates the highest 

rent.    

A German landowner Johann Heinrich von Thünen in the mid-19th century disagreed with 

Ricardo’s theory on how rent is determined.  Assuming all soils are uniform in productivity 
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potential, Von Thunen argued that proximity to market is the most vital determinant of rent.  

Producers produce highly perishable commodities, such as milk and vegetables, on land in the 

immediate vicinity of the market city.  Land use then transitions rapidly to grain production as 

one travels further away from central markets or ports.  Before railroads revolutionized the 

transportation of goods, transportation of agricultural commodities required horses or other 

animals.  Von Thunen drew a major conclusion from the farmer’s dilemma that arose due to the 

highly inefficient modes of transportation.  Highly perishable commodities aside, the further 

away from market a farmer lives, the larger the share of cargo devoted simply to animal feed.  

Hence, the share of cargo consumed is deemed the cost of transportation, and Von Thunen was 

able to derive a formula for calculating rental values:  

𝑅𝑒𝑛𝑡 = 𝑌𝑖𝑒𝑙𝑑 ∗ (𝑃𝑟𝑖𝑐𝑒 − 𝐶𝑜𝑠𝑡) − 𝑌𝑖𝑒𝑙𝑑 ∗ 𝐹𝑟𝑒𝑖𝑔ℎ𝑡𝑅𝑎𝑡𝑒 ∗ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

where FreightRate and Distance costs are smallest on land nearest to markets which equates to 

higher rental rates.  Even in modern markets, cost basis formulas for elevators resemble Von 

Thunen’s calculation above.  Although different, both Ricardo and Von Thunen’s formulas 

represent ways of calculating the profitability of a parcel of land. 

3.2 - Supply and Demand Models 

Ricardo’s farmland price model resembles a supply and demand model, but he never 

introduces scarcity of land into his equation.  Instead, he assumes that when commodity prices 

rise, producers bring an inferior class of soils into production.  Recognizing that the supply of 

farmland was somewhat inelastic and much of the arable land in America was already being 

farmed, researchers in the 1960’s began to analyze farmland values using simultaneous supply 
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and demand models to explain farmland values and cash rent prices.  Herdt and Cochrane 

(1966) link the divergence in trends of farmland prices and farm income to technological 

advances and supply pressure due to urban demand.  Tweeten and Martin’s (1966) five-

equation model finds growing farm sizes and demand for nonfarm land use were the largest 

contributors to land price increases from 1923 to 1966.   Floyd (1965) finds that government 

price-support programs, which restrict supply through either acreage or production limitations, 

result in a windfall gain for everyone in the form of increased land values. These models fit 

historical data quite well, yet Pope et al (1979) finds simultaneous equations hold very little 

predictive power when using current data. 

3.3 - Net Present Value Models 

Economists have used net present value models extensively in the past to value farmland.  The 

present value model: 

 𝑁𝑃𝑉 = ∑
𝐶𝑎𝑠ℎ 𝐹𝑙𝑜𝑤𝑡

(1+𝑖)𝑡
− 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑎𝑠ℎ 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑇

𝑡=1  

where cash flow represents the return in time t, and i equals the assumed discount rate.   

Farmland as an asset generates income and therefore can be valued as the discounted sum of 

all future residual returns.   In the most basic application, Melichar (1979) uses current returns 

to farmland, expected growth in returns to farmland, and a discount rate in a basic analysis of 

farmland values.  However, Melichar overlooks how both costs and returns fluctuate through 

time, which results in imprecise estimates from the model.  Phipps (1984) uses a Granger 

causality test to confirm the unidirectional relationship between farmland returns and farmland 

prices.  That is, the residual returns to farmland affect the value of farmland, but the value of 
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farmland has no effect on residual returns.  Alston (1986) uses a present value model to 

examine the effects of inflation and real growth in net rental income on farmland prices.  They 

find that “the direct evidence from U.S. data suggests that most of the growth of U.S. farmland 

prices can be accounted for by growth of rental income to land."  

In the mid-1980s, advancements in econometrics allowed researchers to overcome two 

significant problems when trying to use time series analysis: nonstationarity of time series and 

incomplete data on information of market participants.  Shiller (1984) uses these methods to 

analyze NYSE returns, which Falk (1991) replicates using Iowa land values.  Both find 

inconsistencies compared to previous results from net present value models.  Specifically, Falk 

finds that land values tend to overreact to changes in cash rent values; when cash rents rise, 

land values rise by too much, and land values fall by too much when cash rents drop.   

While Falk (1991) argues against present value models, recent literature suggests these models 

still merit some reputability.  Weersink et al (1999) uses a net present value model but includes 

an additional source of income: government payments.  By allowing the discount rate to vary 

for both income sources, they find producers capitalize government payments into land values 

at a much smaller proportion than farm production returns.  They propose uncertainty around 

the longevity of government programs as a potential explanation for this.  Goodwin et al (2004) 

further this research using a present value model to examine how government payments are 

capitalized in to land values differently contingent on the program they are administered 

through.  However, Goodwin et al (2003) questions the results of all previous literature, 

including his own, that uses present value models to evaluate farmland values.  While the 

standard model assumes that land values are determined by long-run expected returns to land, 
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expected returns are inherently unobservable.  Furthermore, even if one fixes expected 

returns, the variation in government payments from year to year induces an identification 

problem unless one assumes individuals accurately predict the variation. 

3.4 - Hedonic Models 

Lancaster (1966) outlines hedonic pricing models in his consumer theory analysis of the 

economics of characteristics.  Early research methods valued farmland based on each parcel’s 

unique characteristics.  However, hedonic pricing model posit farmland prices equal the sum of 

values derived from parcel characteristics.  These characteristics may include soil quality, 

capital improvements, water supply, location to markets, and potential for future development 

(Bastian et al., 2002).  These characteristics are inseparable and contribute to value in 

conjunction with each other.  The heterogeneity across parcels differentiates the hedonic 

model from the classic supply and demand model, which assumes homogeneity of 

characteristics.   

Articles that use hedonic price models to analyze farmland values (Chicoine, 1981; Veeman et 

al., 1993; Stewart & Libby, 1998; Barnard et al., 2001; Henderson & Moore, 2003; among 

others) outnumber those that analyze cash rent paid for farmland.  These classic models may in 

fact do a poor job in their analysis of cash rents.  Where proximity to urban areas and other 

long-term factors greatly affects farmland values, factors that affect potential income, such as 

soil productivity and commodity prices, have greater influence on cash rents (Hanson, 2012).   
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3.5 - Income Approach 

Ricardo defined residual rent as the difference between revenue and costs; however, his 

approach focuses on soils as the main indicator of rents.  The income approach explains rent as 

a function of residual rent, whereas the hedonic approach explains residual rent as a function of 

inherent parcel characteristics (Woodard, 2010).  Featherstone and Baker (1988) derive residual 

rents from actual returns to corn and soybean farms in Tippecanoe County, Indiana from 1960 

through 1985.  For every dollar of residual rent in year t, cash rents increase $0.08 in year t+1 

and $0.60 in the long-run.  Helmers (2004) explains why the inclusion of an inflation factor in 

the calculation of the real interest rate is critical to the derivation of the correct discount factor. 

Helmers finds that without this adjustment to the discount factor, the income approach attains 

a biased valuation of farmland.  
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3.6 - Figure 
 
Figure 13: 
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CHAPTER 4 – MODEL AND DATA 

4.1 – Theoretical Framework 

Supply and demand determines the price paid for any particular parcel of land in the 

marketplace.  When land is homogeneous, supply and demand models apply directly, however, 

land is heterogeneous.  Therefore, this analysis uses a hedonic price model to quantify how the 

quantity and quality of a property’s characteristics determine its price in the market.  Hedonic 

models use a revealed price method to find the price of individual characteristics that 

constitute a good. The hedonic price model below: 

𝑅 = 𝑅(𝑧) 

      𝑧 = (𝑧1, 𝑧2 , … , 𝑧𝑖) 

Where R is cash rent paid in a county, and z is a vector of characteristics that describe that 

county.  A partial derivate of the hedonic function with respect to characteristic 𝑧𝑖, yields the 

price for characteristic  𝑧𝑖: 

𝑝 𝑧𝑖( 𝑧𝑖) =  
𝜕𝑅

𝜕 𝑧𝑖
 

Note, the marginal price function of  𝑧𝑖 does not have to be a constant.   

Because of the vast amount of quality real estate data available, most literature using spatial 

hedonic fixed effect models focuses on the real estate sector.  These models reduce 

misspecification that is present due to omitted, time‐invariant explanatory variables (Osland, 

2013).  More specifically, Can and Megbolugbe (1997) find that spatial hedonic fixed effects 
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models reduce the extent of the prediction error, remove most of the systematic error, and 

produce better predictors of housing prices.   

Spatial Autocorrelation 

The First Law of Geography states: “Everything is related to everything else, but closer things 

more so” (Tobler, 1979).  The concept Tobler references is spatial autocorrelation.  Spatial 

autocorrelation, otherwise known as spatial dependence, is defined as the correlation between 

the distribution of a variable and its location (Anselin & Bera, 1998).  Previous research focused 

on farmland valuation and farmland rental prices finds spatial correlation (Anselin, 1992; Du et 

al., 2007; Du et al., 2008; Huang et al., 2006; Soto, 2004).   

Spatial autocorrelation and temporal autocorrelation are similar.  However, temporal 

autocorrelation relates directionally one way, as events in period t+1 cannot affect period t.  

Spatial autocorrelation relates in any proximity direction as different regions affect each other, 

therefore requiring an entirely different framework to account for spatial relationships.   

Formally, if 𝑦𝑖 and 𝑦𝑗 are realizations of a random variable 𝑦, indexed by spatial locations, then 

we have spatial autocorrelation if: 

   𝐶𝑜𝑣(𝑦𝑖𝑡, 𝑦𝑗𝑡) = 𝐸(𝑦𝑖𝑡, 𝑦𝑗𝑡) − 𝐸(𝑦𝑖𝑡)𝐸(𝑦𝑗𝑡) ≠ 0    

where i and j are individual counties at time t, and 𝑦𝑖𝑡 and 𝑦𝑗𝑡 are corresponding random 

variables.   

Spatial autocorrelation can be both positive and negative, although negative autocorrelation is 

rare.  Positive spatial autocorrelation implies the values of geographical neighbors tend to move 
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together simultaneously.  If present, spatial autocorrelation indicates the probability of a value 

taken on by any of the model’s error term entries might affect the probability of a value taken 

on by one of the remaining error term entries.  Failure to account for this relationship in the 

model violates the assumption of randomly distributed error terms.   

Griffith (1987) ascertains the need for a measurement of spatial autocorrelation to index the 

nature and degree to which the data violate the fundamental statistical assumption, and 

describe the overall pattern across a geographic landscape.  Moran (1950) developed the most 

commonly used measurement of spatial autocorrelation known as the Moran’s-I test.  The 

Moran’s-I statistic for spatial autocorrelation is: 

𝐼 =  
𝑁

∑𝑖𝑡∑𝑗𝑡𝑊
∗
∑𝑖𝑡∑𝑗𝑡𝑊(𝑌𝑖𝑡 − �̅�)(𝑌𝑗𝑡 − �̅�) 

∑𝑖𝑡(𝑌𝑖𝑡 − �̅�)
 

where N is the number of spatial units indexed by i and j, Y is the dependent variable, t is the 

index of time, and W is a weight matrix defining the relationship between observations.  

Moran’s-I values range -1<I<1, where positive values indicate clustering, and negative values 

indicate dispersion.  The null hypothesis is that there is no spatial autocorrelation, and the 

Moran’s statistic is asymptotically standard normal, so is interpreted in the same way as a p-

value (Viton, 2010).The greater in absolute value the Moran’s-I value is, the stronger indication 

there is of spatial relationships in the data.   

An equivalent of Moran’s-I for panel data has yet to be developed for broad analysis.  Baltagi et 

al (2003) propose lagrange multiplier (LM) tests to verify the presence of random effects and 
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serial or cross-sectional correlation in panel data models.  This analysis uses joint, marginal and 

conditional tests for all combinations of random effects and spatial correlation.   

First, the joint hypothesis (Joint LM) of no spatial or serial error correlation and no random 

region effects is tested.  The marginal LM test1 (𝐿𝑀1) for spatial error correlation assuming no 

serial correlation or random region effects is then used.  Similarly, a marginal LM test for no 

serial correlation (𝐿𝑀2)  assuming no spatial error correlation or random region effects is used.  

Finally, one-dimensional conditional tests are used.  The first (𝐿𝑀λ) tests for no serial 

correlation assume the presence of spatial error correlation and random region effects.  

Likewise, the second (𝐿𝑀𝜎) tests for zero random region effects assuming the presence of both 

serial and spatial error correlation.   

Table 5 below presents the null and alternative hypotheses, along with results.  P-values near 

zero for all tests reveal the presence of serial correlation, spatial error correlation, and random 

regional effects.  This discovery reveals the use of a spatial model is required to ensure 

obtained estimators are efficient.   

Weight Matrix 

A spatial weight matrix W is defined as the formal expression of spatial relationships among 

observations (Anselin & Bera, 1998).  The weight matrix is an NxN positive matrix in which the 

rows and columns correspond to the cross-sectional observations (Anselin et al., 2008).  Weight 

matrices vary in their structure and format.  The most basic weight matrix is a binary matrix 

where a value of 1 represents a neighbor, with 0 for everyone else.  The diagonals each equal 0 

                                                           
1 This is the original marginal LM test developed by Anselin (1988). 
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as well, as units cannot be neighbors with themselves.  One feature of neighbors is that they do 

not vary over time.  Unless the weights are based on a formal theoretical model for social or 

spatial interaction, their specifications are often ad hoc (Anselin et al., 2008). 

This study uses a great circle distance weight matrix at the smallest distance possible while 

simultaneously not creating “island” counties that have no neighbors.  No known previous 

literature models information flow between counties about cash rental values and other 

agricultural information, but the general consensus is that information flow does exist.  For 

example, a producer will not pay two vastly different rental rates for a uniform parcel of 

farmland divided in half by an arbitrary county border, ceteris peribus.   

Spatial software such as Geoda expedites the neighbor identification process.  In the data used 

in this analysis, Geoda identifies 90 kilometers as the minimum distance that creates zero island 

counties.  The resulting weight matrix takes the form: 

 𝑤𝑖𝑗
∗ = {

0 𝑖𝑓 𝑖 = 𝑗

1 𝑑𝑖𝑗
2⁄  𝑖𝑓 𝑑𝑖𝑗 ≤ 90   

0 𝑖𝑓 𝑑𝑖𝑗 > 90

 

    and 

 W = 𝑤𝑖𝑗
∗ ∑𝑤𝑖𝑗

∗

𝑗

⁄    
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Where 𝑤𝑖𝑗
∗  is an element of the unstandardized weight matrix, 𝑤𝑖𝑗 is an element of the row-

standardized weight matrix W, and 𝑑𝑖𝑗 is the great circle distance between centroids of region i 

and j.2 

The weight matrix W must be row standardized due to the variation in number of neighbors by 

county.  Row standardization subjects each county to the same total spatial influence from 

surrounding counties, regardless of the number of neighbors they have.  The process of row 

standardization involves dividing each neighbor weight for a specific feature by the sum of all 

neighbor weights for that feature.  Each row standardized weight can then be interpreted as 

the fraction of all spatial influence on 𝑐𝑜𝑢𝑛𝑡𝑦𝑖  attributable to 𝑐𝑜𝑢𝑛𝑡𝑦𝑗 .  The resulting weight 

matrix W applies not only to cross-sectional data, but to panel data as well, given the spatial 

attributes remain constant through time.  Using the subscript to designate the matrix 

dimension, with W𝑁 as the weights for the cross-sectional dimension, the full NT ×NT weights 

matrix then becomes:  

𝑊 = 𝐼𝑇 ⊗𝑊𝑁  

with N as the number of observations in the cross-sectional matrix, T as the number of periods, 

and 𝐼𝑇 as an identity matrix of dimension T (Anselin et al., 2008). 

While time series analysis uses time lag operators to incorporate information about neighbor 

observations, spatial panel models use spatial lags.  The need for spatial lags arises from the 

irregular nature of spatial relationships in which the number of neighbors may vary drastically 

across a dataset.  In essence, a spatial lag operator constructs a new variable that consists of 

                                                           
2 No time dimension t is included as the weight matrix W is constant through time. 
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the weighted average of the neighboring observations, with the weights as specified in W 

(Anselin et al., 2008).  Spatial lags therefore can be applied to the dependent variable, the 

independent variables, or the error term to control for spatial relationships.   

Spatial Hausman Test 

Previous literature progressed from supply and demand models, to net present value models, 

to hedonic models most recently.  These models do not explicitly account for the relationships 

that exist when neighboring counties affect each other’s rents.  Therefore, a spatial model is 

required to account for these relationships.  Spatial panel data offers the ability to isolate 

specific effects that may be due to spatial or temporal attributes.   

As with classic panel regression models, spatial panel models are either random or fixed.  A 

spatial Hausman test is employed to determine whether a random or fixed effect estimator 

should be used.  This test determines between two estimators differing in efficiency.  The 

alternative hypothesis of the spatial Hausman test finds misspecification the two estimators 

yield divergent results (Pace, 2008).  The Hausman test statistic takes the form 

𝐻 = 𝑁𝑇(𝜃𝐹𝐺𝐿𝑆 − 𝜃𝑊)
𝑇(Σ̂𝑊 − Σ̂𝐹𝐺𝐿𝑆)

−1(𝜃𝐹𝐺𝐿𝑆 − 𝜃𝑊) 

where 𝜃𝐹𝐺𝐿𝑆  and 𝜃𝑊 are, respectively, the spatial GLS and within estimators, and Σ̂𝑊 and Σ̂𝐹𝐺𝐿𝑆 

the corresponding estimates of the coefficients’ variance covariance matrices.  H is 

asymptotically distributed 𝑋2 with k degrees of freedom where k is the number of regressors in 

the model (Millo & Piras, 2012).  
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In the case of this analysis, the spatial Hausman test determines whether the data support a 

random or fixed effects model.   

𝐻0: 𝑋
2 ≥ 0.05 

𝐻𝑎:  𝑋
2
< 0.05 

where an insignificant p-value implies the random effects model is safe to use.  Table 6 below 

displays the 𝑋2 statistics from the spatial Hausman tests on the different regressions.  Each 

regression returns a statistically significant p-value, allowing us to reject the null hypothesis in 

favor of the spatial fixed effects model. 

4.2 – Spatial Autoregressive Fixed Effect Model 

Spatial lag and spatial error models are the two most commonly used spatial-temporal models.  

Three different types of spatial interaction effects can be distinguished in these models: 

endogenous interaction effects among the dependent variable, exogenous interaction effects 

among the independent variables over space, and interaction effects among the error terms 

over space (Elhorst, 2011).  Spatial error models control for interaction effects among the error 

terms over space, while spatial lag models control for the other two.  When there are no strong 

a priori theoretical reasons to believe that interdependences between spatial units arises either 

due to the spatial lags of the dependent variables or due to spatially autoregressive error terms, 

the standard approach is to model the system with both effects included (Anselin, 2002).  The 

spatial autoregressive (SARAR) fixed effect model combines the two models and controls for 

interaction effects among the error terms over space and endogenous interaction effects 

among the dependent variable. 
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First, consider a general static panel model that includes a spatial lag of the dependent variable 

and spatial autoregressive disturbances: 

𝑦 = λ(𝐼𝑇⊗W)𝑦 +  𝑋𝛽 +  𝑢 

where 𝑦 is an NT x 1 vector of observations on the dependent variable, X is a NT x k matrix of 

observations on the non-stochastic exogenous regressors, 𝐼𝑇 an identity matrix of dimension 

T, W is the NT x NT spatial weights matrix of known constants whose diagonal elements are set 

to zero, and λ the corresponding spatial parameter.  The disturbance vector u is the sum of two 

terms 

𝑢 = (ι𝑇 ⊗ 𝐼𝑁)𝜇 + 𝜀 

where ι𝑇  is a T × 1 vector of ones, 𝐼𝑁 an N x N identity matrix, 𝜇 is a vector of time invariant 

individual specific effects (not spatially autocorrelated), and 𝜀 a vector of spatially 

autocorrelated innovations.  To further allow innovations to be correlated over time, the 

innovations vector follows an error component structure  

𝜀 =  (ι𝑇 ⊗ 𝐼𝑁)𝜇 + 𝑣 

where 𝜌 is the corresponding spatial autoregressive parameter, 𝜇 is the vector of cross-

sectional specific effects, 𝑣 a vector of innovations that vary both over cross-sectional units and 

time periods, ι𝑇  is a vector of ones and 𝐼𝑁 an N × N identity matrix 

As in the classical panel data literature, the individual effects can be treated as fixed or random.  

Fixed effect models control for all time-invariant latent variables that influence the dependent 

variable, whether these variables are known or unknown.  The spatial Hausman test applied to 
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the models in this analysis determined the spatial fixed effect model provided the most 

efficient estimates. 

A SARAR fixed effects model can be written in stacked form as  

𝑦𝑖𝑡 =  λ(𝐼𝑇⊗W)𝑦𝑖𝑡 + (ι𝑇 ⊗ 𝐼𝑁)𝜇𝑖𝑡 +  𝑋𝛽 + 𝑢𝑖𝑡 

The presence of the spatial lag introduces a form of endogeneity that violates the assumption 

of standard regression models (i.e., the regressors are uncorrelated with the error term).  

Elhorst (2003) transforms the variables in the equation above by eliminating the time invariant 

individual effects and uses the transformed variables to maximize the likelihood function.  The 

transformation is obtained by subtracting the average for each cross-section over time.  As a 

consequence, the fixed effects and the constant term (as well as other variables that do not 

vary over time) are wiped out from the model.  The error term estimation strategy from the 

cross-sectional spatial error model is then extended to the panel context. 

𝑢𝑖𝑡 = 𝜌(I𝑇 ⊗W)𝑢𝑖𝑡 + 𝜀 

The resulting model of cash rents for county i at time t is: 

         𝐶𝑎𝑠ℎ𝑅𝑒𝑛𝑡𝑖𝑡 =  𝜌𝑊(𝐶𝑎𝑠ℎ𝑅𝑒𝑛𝑡𝑖𝑡) + 𝛽0 + 𝛽1𝑁𝑒𝑡𝑉𝑎𝑙𝑢𝑒𝑖𝑡 + 𝛽2𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑟𝑛𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑖𝑡 +

                                   𝛽3𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑆𝑜𝑦𝑏𝑒𝑎𝑛𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑖𝑡 + 𝑢𝑖𝑡 + 𝑧𝑡 + 𝑠𝑖  

where 𝜌𝑊(𝐶𝑎𝑠ℎ𝑅𝑒𝑛𝑡𝑖𝑡) is a spatial lag of the dependent variable in county i at time t, 

𝑁𝑒𝑡𝑉𝑎𝑙𝑢𝑒𝑖𝑡 is the one, three, and five year lagged moving averages of net value from crop 

insurance in county i at time t, 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑟𝑛𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑖𝑡 is the revenue expected from one 

acre of production of corn in county i at time t, 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑆𝑜𝑦𝑏𝑒𝑎𝑛𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑖𝑡 is the expected 
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revenue from one acre of production of soybeans in county i at time t, 𝑧𝑡 is a 1 x T matrix of the 

year fixed effect estimates, and 𝑠𝑖 is a 1 x N matrix of the county fixed effect estimates.  

Figure 14 below displays the map of the county fixed effect estimates.  The county fixed effects 

matrix 𝑠𝑖 can be treated as a dependent variable in a cross-sectional regression to determine 

the impacts that time invariant variables have on cash rents.  As figure 14 shows, spatial 

relationships exist among the county fixed effect estimates. To account for these relationships, 

a cross-sectional version of the previously defined SARAR model is used. The resulting cross-

sectional model is: 

              𝐹𝐸𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠𝑖 =  𝜌𝑊(𝐹𝐸𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠𝑖) + 𝛽0 + 𝛽1𝑆𝑜𝑖𝑙𝑖 + 𝛽2𝐶𝑜𝑟𝑛𝑆𝑡𝐷𝑒𝑣𝑖 +

                                          𝛽3𝑆𝑜𝑦𝑏𝑒𝑎𝑛𝑆𝑡𝐷𝑒𝑣𝑖 + 𝛽4𝐺𝐷𝐷𝑖 + 𝑢𝑖𝑡  

where 𝜌𝑊(𝐹𝐸𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠𝑖) is a spatial lag of the fixed effect estimates, 𝑆𝑜𝑖𝑙𝑖 is a productivity 

measure of soils in county i, 𝐶𝑜𝑟𝑛𝑆𝑡𝐷𝑒𝑣𝑖  is the standard deviation of detrended corn yields in 

county i, 𝑆𝑜𝑦𝑏𝑒𝑎𝑛𝑆𝑡𝐷𝑒𝑣𝑖  is the standard deviation of detrended soybean yields in county i, 

𝐺𝐷𝐷𝑖  is the average GDDs in county i, and 𝑢𝑖  is the previously defined SARAR error term that 

controls for spatial error autocorrelation.  
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4.3 – Data 

Cash rent paid for non-irrigated land is the dependent variable used in this thesis.  The National 

Agricultural Statistics Service (NASS) conducts hundreds of surveys annually, one of which 

collects data on cash rent paid for non-irrigated land.  NASS compiles these data using surveys 

administered on farms and ranches that rent land on a cash basis.  Excluded from the cash rent 

value is land rented for a share of the crop, rent determined by animal production, land rented 

free of charge, or land that includes buildings such as barns. 

NASS records provide panel data of cash rental values for the period 2008-2016.  Panel data are 

ideal for this study, as Elhorst (2011) states panel data are generally more informative and 

contain more variation and less collinearity among the variables.  A regulation change in 2014 

required NASS to survey producers about land values on a biannual basis, which created a gap 

in the data between 2014 and 2016.3  

One limitation in the analysis arises from an unbalanced panel due to incomplete data.  Due to 

the spatial nature of the question examined in this thesis, analysis of only counties with a 

complete eight-year rent data results in an “island” problem.  Islands occur in spatial models 

when individuals possess zero neighbors.  Some spatial computational routines cannot be 

completed when islands exist in the data, and most econometricians consider it best practice to 

avoid islands in spatial models.  To circumvent this error, spatially interpolated values are used 

in lieu of missing values to create an artificially balanced panel data set.  Table 7 below breaks 

                                                           
3. For comparison in the analysis, 2015 rental values are imputed using a simple average of 2014 and 2016 

rental values. Small differences exist in coefficient magnitudes when comparing regression results that 
include and exclude the 2015 imputed cash rents. 
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out imputed missing values by state.  LeSage and Pace (2004) suggest replacing the unobserved 

data with expected values conditional on the observed data. The spatial interpolation used the 

simple average of the five nearest neighbor counties in that year to complete the dataset.4  This 

represents a simplified method of kriging, which is an optimal linear prediction method applied 

to random processes in space.   

After missing values were imputed, complete data existed for 985 of the 1,017 counties in the 

Midwest.  Figure 16 below displays cash rent values for those 985 counties in 2016.  Highest 

rent values are located in the counties in southern Minnesota through Iowa and into central 

Illinois.  Figure 17 below displays a map of detrended yields of corn, which bears a strong 

resemblance to the graph of cash rent.  One could argue in favor of Ricardo’s cash rent theory 

based on these two graphs alone.   

An additional concern relates to the construction of the aggregated data set employed in this 

analysis.  Spatial analyses often use arbitrary regions such as census tracts or counties. 

Statistical literature often criticizes this method as yielding invalid inference, the so-called 

ecological fallacy problem (Anselin, 2003).  Broadly, the ecological fallacy problem refers to the 

inconsistency that arises from micro-interpretations based off macro-analysis. In the context of 

this analysis, data are aggregated based off arbitrary county lines and results are then 

interpreted as producer-level. Different aggregation methods applied to data help determine 

the sensitivity of the results to the ecological fallacy problem. This is impractical in the case of 

                                                           
4 Boehmke and Schilling (2015) recommend the Expectation Maximization (EM) approach to address the missing 
data problem in spatial panel models. That approach applied to this analysis produced inconsistent and illogical 
rent values, which resulted in inefficient estimators.  
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this analysis though as data on multiple variables were collected in an aggregated form. 

Therefore, this thesis interprets macro-analysis results as producer-level with caution. 

Explanatory Variables 

The variable of interest in this thesis is the net value of crop insurance to the producer on a per 

acre basis.  The net value of crop insurance variable is calculated as 

𝑁𝑒𝑡 𝑉𝑎𝑙𝑢𝑒/𝐴𝑐𝑟𝑒𝑖𝑡 =
(𝐼𝑛𝑑𝑒𝑚𝑛𝑖𝑡𝑦𝑖𝑡 + 𝑆𝑢𝑏𝑠𝑖𝑑𝑦𝑖𝑡 − 𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑖𝑡)

𝐴𝑐𝑟𝑒𝑠𝑖𝑡
 

where each net value per acre equals the ratio in each county i at time t, of indemnity plus 

subsidy minus premium, all divided by acres.  RMA’s Summary of Business data contain county 

level crop insurance premiums, indemnities, and subsidies from the 1980’s to current.  This 

analysis only references RMA Summary of Business data from 1995 through 2016, as premium 

rating, products offered, and subsidy rates changed drastically after the 1994 Act.  As illustrated 

by Figure 15 and the yearly net value maps in Appendix B, net values vary widely across space 

and time, but also cluster spatially.  Analysis of this variation reveals the effect of net value of 

crop insurance on rental values.   

Previous agricultural land value literature uses a plethora of different variables in hedonic price 

models (Palmquist & Danielson, 1989; Chicoine, 1989; Drescher et al., 2001; Bastian et al., 

2002; Patton & McErlean, 2003; Huang et al, 2006; Guiling et al., 2007; Baylis et al., 2011).  This 

thesis includes several of these variables for analysis and comparison against previous 

literature.  These variables are classified as either time variant or time invariant.  As previously 

discussed, the fixed effect models by design cannot include time invariant variables.  The time 
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invariant variables included in this analysis are used in robustness checks with random effects 

models and in cross-sectional regressions.  

Time Variant Variables 

Farmland values are established by an array of factors, both related to production of farm 

commodities and not. However, producers establish cash rents for farmland mainly off factors 

that influence income expectations. To control for income expectations, expected revenue from 

corn and soybeans are calculated from trend yields and crop insurance harvest prices from the 

prior growing season.  Crop insurance harvest prices provide the best commodity price 

estimate for expected revenues the following year given cash rents are often negotiated in the 

fall (Woodard, 2012).  Expected revenue therefore equals the harvest price multiplied times the 

trend yield for both corn and soybeans.  

Time Invariant Variables 

Soil productivity is widely recognized as an important driver of rental values.  Soil productivity 

measures how soil profiles either promote or impede yield potential.  States in the Midwest 

often use indexes unique to individual states, with no conventional conversion method to 

standardize across space.  For example, Illinois uses a Productivity Index where values range 

from 47 to 147, while Iowa uses a Corn Suitability Index that ranges from 0 to 100.  While both 

score on a 100-point scale, soil attributes are valued differently in each case.  However, the 

Natural Resources Conservation Service (NRCS) derived the National Commodity Crop 

Productivity Index (NCCPI), which is a county level measure of soil productivity.  The NCCPI 

values the natural relationships of soil, landscape, and climate factors, and the responsiveness 
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of commodity crops to those factors on a 0 to 1 scale.  For the purpose of this study, the NCCPI 

remains static through time, although literature suggests erosion affects soil productivity 

through time (Williams et al., 1983) 

Trend yields provide an expected production value for any given county, which affects expected 

revenue, but the variance of that yield is also an important consideration.  Barry et al (2000) 

show cash rental rates include a risk premium based upon the historical variance of yields.  

Under cash rent arrangements, producers bear 100% of the yield risk, versus sharecropping 

arrangements, where yield risk is divided proportionally between landlord and producer.  This 

thesis employs a standard deviation of yield to control for the effect of yield variance on cash 

rental rates.   

Detrended yields are used to calculate standard deviations for corn and soybeans.  Detrended 

yield values are used to account for the increase in yields through time for corn and soybeans.  

Uncorrected yield data results in an average yield that is biased downwards and standard 

deviation of yield that is biased upwards.  The detrended yield calculation for each county i at 

time t is: 

𝑑𝑒𝑡𝑟𝑒𝑛𝑑𝑒𝑑𝑦𝑖𝑒𝑙𝑑𝑖𝑡 = 𝑦𝑖𝑒𝑙𝑑𝑖𝑡 + 𝛽𝑖 ∗ (2016 − 𝑡) 

where 𝛽𝑖 is the slope coefficient of yields for county i for the period 1980 through 2016, and t is 

the corresponding year of the yield value. 𝑑𝑒𝑡𝑟𝑒𝑛𝑑𝑒𝑑𝑦𝑖𝑒𝑙𝑑𝑖 is a simple average of detrended 

yield values for county i. We calculate standard deviation of detrended yields 𝜎𝑖 with the 

detrended yield values.  
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Weather is another important factor in crop production and therefore impacts cash rents. 

Weather is the day-to-day variability of solar radiation, air temperature, humidity, and 

precipitation across the landscape (Hollinger, 2009).  These are all key atmospheric variables 

that affect crop yields.  Climate is the long-term average of these variables over a crop’s 

growing season.  In the absence of weather extremes, climate determines the realized yields for 

any given county.  To control for the effect of different climate patterns on cash rents in the 

Midwest, this analysis uses a measurement of heat units.   

Physiologically, below or above certain temperatures, crops cease growth development.  To 

quantify the amount of heat available to crops, a measure of heat units, growing degree days 

(GDDs), is used.  Using county level PRISM weather data, GDDs are calculated as 

𝐺𝐷𝐷𝑠 =∑
(𝑇𝑚𝑎𝑥 − 𝑇min )

2
− 𝑇base  

where 𝑇𝑚𝑎𝑥 is the daily maximum air temperature, 𝑇𝑚𝑖𝑛 is the daily minimum air temperature,  

𝑇𝑏𝑎𝑠𝑒 is the temperature below which crop growth ceases, and the daily GDDs are constrained 

to greater than or equal to zero.  While base temperatures vary by crop (Yang et al., 1995), the 

most common base temperature used in GDD calculations, and by this analysis, is 50℉.  GDDs 

in this analysis are the county average from 2008-2016. 

Table 9 below displays the relationships among all variables.  High collinearity exists among 

many of the variables, especially the net values of crop insurance, which complicates the 

interpretation of this table.  However, interesting insights are garnered from the net value 

correlations.  First, the correlation between rent and the smaller net values ranges from none 

to very weak.  This result occurs due to the spatial variation of large net value payments in the 
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short run.  A weak negative correlation emerges though as net values are averaged over a 

longer period.  Second, each net value variable is strongly correlated with the others, other 

than the one-year net value.   The one-year net value exhibits only a moderate correlation with 

other net value variables, implying net values from one year of data are only slightly related to 

long-term averages.   
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4.4 – Tables and Figures 

Table 5: 

 

 

Number of Years 

of Average 

Previous Net Value

1 Year 3 Year 5 Year

37,052 37,183 37,227
(0.00) (0.00) (0.00)

127.91 127.42 127.54
(0.00) (0.00) (0.00)

143.85 144.73 144.78
(0.00) (0.00) (0.00)

67.68 67.85 68.18
(0.00) (0.00) (0.00)

126.89 126.41 126.52
(0.00) (0.00) (0.00)

Lagrange Multiplier Tests for Random Effects and Spatial Autocorrelation

p-values in parentheses

𝐻0 :       = 𝜎 
2 = 0

𝐻𝑎 :       = 𝜎 
2 ≠ 0

𝐻0 :   = 0 (assuming  = 𝜎 
2 = 0)

𝐻𝑎 :   ≠ 0 (assuming  = 𝜎 
2 = 0)

𝐻0 : 𝜎 
2 = 0 (assuming  =  = 0)

𝐻𝑎 : 𝜎 
2 ≠ 0 (assuming  =  = 0)

𝐻0 :  𝜎 = 0 (assuming  =  ≠ 0)
   

𝐻𝑎 :  𝜎 ≠ 0 (assuming  =  ≠ 0)

   
𝐻0 :   = 0 (assuming 𝜎 

2 =  ≠ 0)

𝐻𝑎 :   ≠ 0 (assuming 𝜎 
2 =  ≠ 0)

   

   

Joint LM
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Table 6: 

Hausman Test for Spatial Models 

 

Number of Years of 
Average Previous Net 

Value 

Chi-Squared p-value 

 

 
1 Year 243.32 0.00 

 

 
3 Year 266.14 0.00 

 

 
5 Year 313.3 0.00 

 
 

 

Table 7: 

 

 
 
 
 
 
 
 
 
 
 
 

Potential NASS Total Missing Values % missing

All 985 Counties 8865 8013 852 9.61%

Illinois 873 819 54 6.19%

Indiana 828 726 102 12.32%

Iowa 891 889 2 0.22%

Kansas 837 743 94 11.23%

Michigan 621 491 130 20.93%

Minnesota 747 708 39 5.22%

Missouri 900 784 116 12.89%

Nebraska 684 597 87 12.72%

North Dakota 477 469 8 1.68%

Ohio 774 681 93 12.02%

South Dakota 594 542 52 8.75%

Wisconsin 630 564 66 10.48%
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Figure 14: 

 
Figure 15: 
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Figure 16: 

 
Figure 17: 
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Table 8: 

Variable Mean StDev Min Max 

RENT 112.98 66.16 7.9 385 

1 YEAR NV 22.62 54.43 -45.13 705.37 

3 YEAR NV 18.06 29.58 -39.34 360.96 

5 YEAR NV 16.15 22.17 -30.48 282.28 

EXPECTED CORN 
REVENUE 

684.87 272.67 165.53 1585.22 

EXPECTED SOY 
REVENUE 

462.31 184.45 145.58 2293.11 

GDD 3139.3 707.9 1557.9 5012.7 

SOIL 0.505 0.178 0.114 0.912 

CORN YIELD AVE 148.28 40.86 43.22 220.07 

CORN YIELD 
STDEV 

19.17 6.98 7.49 49.15 

SOY YIELD AVE 43.15 14.71 15.79 70.52 

SOY YIELD STDEV 5.48 2.19 1.75 12.58 
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Table 9: 
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CHAPTER 5 - RESULTS 

Table 10 below displays results from the SARAR fixed effects model.  Cash rent in each county is 

the dependent variable against which all independent variables are regressed.  Results confirm 

expected coefficient signs for all statistically significant variables.  Analogous to Ifft, Wu, and 

Kuethe’s (2014) results, the consistency of net value that producers receive influences both the 

coefficient magnitude and significance level.  

The results in this analysis are interpreted with caution. The endogeneity remaining in the 

model and the ecological fallacy problem, which warns against the interpretation of aggregate 

data at the producer level, complicate the interpretation of results. Because producers 

determine cash rents and crop insurance coverage in a joint evaluation with other production 

decisions, even using a spatial panel fixed effect model likely does not eliminate all 

endogeneity.   

Table 10 shows there is strong evidence that crop insurance affects cash rents.  As the moving 

averages over which net value is calculated increase in length, the coefficients both grow and 

migrate from statistical insignificance to statistical significance. The one-year lag and three-year 

lag of net value are positive but statistically insignificant, while net value is statistically 

significant at the 95% confidence level for the five-year lagged average of net value.   

Interpreting the coefficients of net value, the consistency of receiving net value from crop 

insurance has a significant impact on the degree to which producers factor the net value into 

cash rents.  The one-year and three-year lagged averages of net value reveals that producers 

who receive consistent net value from crop insurance over a period of one to three years do 
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not factor a statistically significant amount of net value into cash rents.  However, as the 

consistency of net value increases, producers do factor a statistically significant proportion into 

cash rents.  A producer who receives one dollar of net value from crop insurance consistently 

for five years factors 0.96 cents directly into cash rents, after all other adjustments.   

These results agree with Langemeier (2013). However, they contrast previous analysis of 

government payments to producers.  Van Herck et al. (2013) found that producers factor up to 

$0.25 of each additional dollar of direct payments from the government into cash rents.  The 

results from this thesis indicate that producers only factor $0.01 of every dollar of net value 

from crop insurance into cash rents.  

One concern with the interpretation of the net value coefficients is that some counties 

consistently experienced negative net values of crop insurance. Figure 15 shows the five-year 

lagged average of net values in 2016, and multiplying the coefficients found in the regressions 

below times the five-year lagged average of net value, we find that, ceteris peribus, some 

counties paid less for cash rents due to crop insurance. However, this interpretation is illogical. 

Counties supposedly paying less for cash rents feasibly stems from endogeneity that remains in 

the model. 

Additionally, the economic significance of the net value results is difficult to directly assess.  The 

average rent in 2016 for the 985 counties in this analysis was $112.98.  Using the largest five-

year average net value of $282.28, cash rents were only $2.70 higher per acre due to crop 

insurance in that county.  The $16.15 average five-year lagged average of net value equates to 
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cash rents per acre that are higher by $0.16 due to crop insurance. For comparison, the 2016 

crop insurance base price for corn was $3.86 per bushel. 

Coefficients for expected revenue from corn were both positive and statistically significant at 

the 99.9% confidence level, regardless of the length over which net value was calculated.  This 

affirms income as a significant factor considered when producers and farmland owners 

negotiate cash rents.  While not directly comparable, producers factor a larger proportion of 

expected corn revenue into cash rents in comparison to the five-year lagged average of net 

value. However, these variables are difficult to disentangle, as producers perhaps factor net 

value from crop insurance into expected revenue from corn. 

Expected revenue from soybeans was positive as well, but statistically insignificant.  This 

potentially results from the strong degree of correlation between expected revenue from corn 

and soybeans confounding the results. Table 9 shows a correlation coefficient of 0.81 between 

these variables.  The additional results tables (Tables 13-18), most often, either expected 

revenue from corn or expected revenue from soybeans has a statistically significant impact on 

cash rents, but rarely both.  

Table 10 also contains the spatial coefficients from each regression.  The spatial error 

coefficients reflect the latent spatial dependence in the data. These coefficients measure the 

average influence on observations by their neighboring observations.  The positive and highly 

significant spatial lag coefficients signify that cash rents of each county positively influence cash 

rents in neighboring counties. Practically, cash rents paid for farmland near county borders are 
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highly influenced by cash rents paid for nearby farmland, regardless of which county that 

farmland is located within.  

Table 11 displays the marginal effects from each regression.  Direct effects are the average 

effect of changes to an explanatory variable in 𝑐𝑜𝑢𝑛𝑡𝑦𝑖  on cash rent values in each of 𝑐𝑜𝑢𝑛𝑡𝑦𝑖’s 

neighbors. For example, if the average five-year net value of crop insurance increased by $1.00 

in 𝑐𝑜𝑢𝑛𝑡𝑦𝑖, cash rents in 𝑐𝑜𝑢𝑛𝑡𝑦𝑖’s neighbors, on average, would increase $0.018. Conversely, 

indirect effects are the average impact on cash rents in 𝑐𝑜𝑢𝑛𝑡𝑦𝑖  if all values for an explanatory 

variable increased by one in each of 𝑐𝑜𝑢𝑛𝑡𝑦𝑖 ’s neighbors. Therefore, an increase of net value by 

$1.00 in each of 𝑐𝑜𝑢𝑛𝑡𝑦𝑖 ’s neighbors would raise cash rents in 𝑐𝑜𝑢𝑛𝑡𝑦𝑖  by $0.083.   

Similar to the point estimate coefficients, the only statistically significant marginal effects for 

net value are those averaged over five years. Marginal effects for expected corn revenue are 

each statistically significant while none are for expected soybean revenue. The magnitude of 

the indirect effects tends to be larger than the magnitude of the direct effects. This indicates 

cash rent increases in 𝑐𝑜𝑢𝑛𝑡𝑦𝑖 ’s neighbor counties due to consistent net value has a larger 

effect than the effect on 𝑐𝑜𝑢𝑛𝑡𝑦𝑖’s  neighbors if 𝑐𝑜𝑢𝑛𝑡𝑦𝑖  experienced an additional dollar in 

consistent net value. 

The remaining independent variables are time invariant and so can only be regressed against 

the fixed effect estimates from the SARAR fixed effect model.  Table 12 displays the results 

from these cross-sectional regressions below.  Soil has a positive and statistically significant 

impact on cash rents in each regression.  Producers therefore pay significantly higher cash rents 

for soils with higher productivity indexes. Standard deviation of yield for corn is insignificant, 
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but for soybeans was statistically significant and negative.  This affirms that producers 

significantly discount farmland where soybean yields are riskier because they bear all risk in a 

cash rental agreement.   

To measure the effect of weather, average growing degree days (GDDs) is included in the time 

invariant variables, as long term weather patterns are most often assumed when rents are 

established. The results found GDDs have a statistically significant and negative impact on cash 

rents. This reflects the fact that excessive or minimal amounts of GDDs can harm plant growth, 

which results in lower yields, and is therefore factored into rents.  

For robustness checks, a SARAR random effects model and non-spatial panel model are applied 

to the data in this analysis. Tables 13 and 14 report the results from the robustness checks. Net 

value coefficients in each of the three regions follow a familiar pattern to results from the 

SARAR panel fixed effects model. 

Consistency of net value again determines the magnitude and statistical significance of 

coefficients.  In both the SARAR fixed and random effects models, only the five-year average 

was statistically significant, reaffirming the length over which net value is measured is an 

important factor to consider. In the SARAR random effects model, the net value coefficients are 

very similar to the SARAR fixed effect model.  The five-year net value coefficient was 0.0096 in 

the SARAR fixed effect model compared to 0.0101 in the SARAR random effects model.   

The non-spatial fixed effects model found net value coefficients significantly larger in 

magnitude though. The three and five-year moving averages of net value were both statistically 

significant and 0.1155 and 0.3325, respectively. This represents a significant increase in 
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magnitude in comparison to the SARAR fixed effects model. Not accounting for spatial 

relationships in the data would therefore results in a vastly different conclusion in this analysis. 

Again, these models are inefficient in comparison to the SARAR fixed effects model, as the LM 

and Spatial Hausman tests found, and are only reported for comparison.  

Because producer experiences with crop insurance are highly related within regions, additional 

robustness checks are included in this analysis. First, a SARAR fixed effect model is used to 

analyze the three ERS regions in this analysis (Corn Belt, Lake States, and Northern Plains) 

separately. Additionally, because the data for Iowa are nearly 100% complete, an additional 

SARAR fixed effect model is used on Iowa alone as a robustness check.  

Tables 15-17 report the results from the regional regressions below.  The results from the 

Northern Plains closely resemble the results from all 985 counties.  Expected corn revenue has 

a positive and statistically significant effect on cash rents while expected soybean revenue does 

not.  Net value also has a positive and statistically significant impact on cash rents, but only 

when a five-year moving average is used.  The magnitude of the five-year net value coefficient 

is 0.0298, which is slightly larger than the results from the complete sample.  

Similar to the results from the Northern Plains regressions, the coefficients for expected 

revenue in the Lake States from corn were positive and statistically significant for corn, but 

statistically insignificant with mixed signs for soybeans.  Net value was negative in the one-year 

moving average, but statistically insignificant.  This result may reflect the volatility in payments 

from year to year.  The three and five-year net values were statistically significant and 

comparable in magnitude to the five-year coefficient from the Northern Plains.  
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The results from the Corn Belt regressions find that expected revenue from both corn and 

soybeans has a positive and statistically significant impact on cash rents.  The net value 

coefficients are positive, but statistically insignificant in each regression.  This region had the 

most complete data set of all three regions in this analysis, which may indicate RMA is able to 

rate this region more accurately.   

The results from the Iowa regression appear to reaffirm this, as coefficients for expected 

revenue from corn and soybeans are similar to the previous regressions, but the net value 

coefficients are not.  In the Iowa analysis, all net value coefficients are positive, but only the 

one-year moving average is statistically significant.  However, the previous regressions show 

that the moving averages greater in length most accurately reflect the true nature of the 

situation. 
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5.1 – Tables and Figures 
 
Table 10: 

SARAR Fixed Effects Panel Model 
       

Midwest - 985 Counties 

Number of Years of 
Average Previous Net 

Value 

1 Year   3 Year   5 Year   

 
      

Net Value 0.0011  0.0039  0.0096 * 

 (0.0014)  (0.0029)  (0.0043)  

Expected Revenue - 
Corn 

0.0156 *** 0.0157 *** 0.0158 *** 

 
(0.0019)  (0.0019)  (0.0019) 

 

Expected Revenue - 
Soybeans 

0.0034  0.0033  0.0031  

 
(0.0027)  (0.0027)  (0.0027) 

 

       

Spatial Error -0.624 *** -0.624 *** -0.624 *** 

Coefficient 0.0239  0.0239  0.0239  

       

Spatial Lag 0.911 *** 0.911 *** 0.911 *** 

Coefficient 0.0057  0.0057  0.0057  

 
      

              
 

0.98175  0.98175  0.98176  
Observations 7880  7880  7880  

Counties 985  985  985  
              

*P<0.05, **p<0.01, ***p<0.001; Standard errors in parentheses 

 

 

 

𝑟2 
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Table 12: 
 

SARAR Regressions on Fixed Effect Estimates 
       

Midwest - 985 Counties 

Number of Years of 
Average Previous Net Value 

1 Year   3 Year   5 Year   

 
      

Soil 51.57 *** 51.66 *** 51.57 *** 
 (4.2616)  (4.2603)  (4.2616)  

StDev - Corn 0.0976  0.0953  0.0976  
 

(0.0771) 

 

(0.0771) 

 

(0.0771) 

 

StDev - Soybeans -0.6222 ** -0.6210 ** -0.6222 ** 
 (0.2257)  (0.2258)  (0.2257)  

GDD -0.0025 ** -0.0025 ** -0.0025 ** 
 (0.0009)  (0.0009)  (0.0009)  

 
 

     

Spatial Error -0.5050 *** -0.5066 *** -0.5090 *** 

Coefficient (0.1080)  (0.1078)  (0.1071)  

       

Spatial Lag 0.4372 *** 0.4388 *** 0.4420 *** 

Coefficient (0.0838)  (0.0835)  (0.0828)  

 
      

              

AIC 7611.5  7611.8  7612.7  
Observations 985  985  985  

Counties 985  985  985  
              

*P<0.05, **p<0.01, ***p<0.001; Standard errors in parentheses 
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Table 13: 
 

SARAR Random Effects Panel Model        

Midwest - 985 Counties 

Number of Years of 
Average Previous Net 

Value 

1 Year   3 Year   5 Year   

 
      

Net Value 0.0016  0.0008  0.0101 * 

 0.0017  0.0076  0.0050  

Soil 42.40 *** 94.25 *** 42.74 *** 

 2.5480 
 

7.4270 
 

2.5539 
 

Expected Revenue - Corn 0.0208 *** 0.0476 *** 0.0209 *** 

 
0.0020 

 
0.0047 

 
0.0020 

 

Expected Revenue - 
Soybeans 

0.0056 * 0.0123 ** 0.0055 * 

 
0.0028 

 
0.0037 

 
0.0027 

 

GDD -0.0021 ** 0.0068  -0.0021 ** 

 
0.0008  0.0029  0.0008  

Corn StDev 0.174 ** -0.011  0.164 ** 

 
0.0618  0.0939  0.0621  

Soybeans StDev -0.61 ** -0.35 * -0.60 ** 

 0.1912  0.2741  0.1912  

       

Time Fixed Effects YES  YES  YES  

State Fixed Effects YES  YES  YES  

       

Spatial Error -0.474 *** -0.564 *** -0.470 *** 

Coefficient 0.0273  0.0248  0.0272  

       

Spatial Lag 0.879 *** 0.947 *** 0.879 *** 

Coefficient 0.0070  0.0043  0.0069  

 
      

              
 

0.81549  0.80573  0.81581  
Observations 7880  7880  7880  

Counties 985  985  985  
              

 

𝑟2 
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Table 14: 
 

Panel Fixed Effects Model - Non-Spatial        

Midwest - 985 Counties 

Number of Years of 
Average Previous Net 

Value 

1 Year   3 Year   5 Year   

 
      

Net Value 0.0019  0.1155 *** 0.3325 *** 
 0.0050  0.0099  0.0127  

Expected Revenue - 
Corn 

-0.0089 *** -0.0016  -0.0009  

 
0.0022  0.0022  0.0021  

Expected Revenue - 
Soybeans 

0.1324 *** 0.1105 *** 0.1065 *** 

 
0.0044  0.0047  0.0043  

       

Spatial Error 
No 

 
No 

 
No 

 

Coefficient    

       

Spatial Lag 
No 

 
No 

 
No 

 

Coefficient    

 
      

              

 0.28542  0.29917  0.35003  
Observations 7880  7880  7880  

Counties 985  985  985  
              

*P<0.05, **p<0.01, ***p<0.001; Standard errors in parentheses 

 

 

 

 

𝑟2 
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Table 15: 
 

SARAR Fixed Effects Panel Model 
       

Northern Plains -  288 Counties 

Number of Years of 
Average Previous Net 

Value 

1 Year   3 Year   5 Year   

 
      

Net Value 0.0002  0.0065  0.0298 ** 

 (0.0030)  (0.0063)  (0.0095)  

Expected Revenue - 
Corn 

0.0092 ** 0.0092 *** 0.0095 *** 

 
(0.0028)  (0.0028)  (0.0028) 

 

Expected Revenue - 
Soybeans 

0.0035  0.0032  0.0024  

 
(0.0042)  (0.0042)  (0.0042) 

 

       

Spatial Error -0.366 *** -0.366 *** -0.363 *** 

Coefficient 0.0542  0.0542  0.0544  

       

Spatial Lag 0.917 *** 0.917 *** 0.914 *** 

Coefficient 0.0111  0.0111  0.0115  

 
      

              

 

0.98153  0.98153  0.98155  
Observations 2304  2304  2304  

Counties 288  288  288  
              

*P<0.05, **p<0.01, ***p<0.001; Standard errors in parentheses 

 

 

 

𝑟2 



71 
 

 

Table 16:  
 

SARAR Fixed Effects Panel Model        

Lake States -  223 Counties 

Number of Years of 
Average Previous Net 

Value 

1 Year   3 Year   5 Year   

 
      

Net Value -0.0012  0.0256 ** 0.0268 * 

 (0.0068)  (0.0093)  (0.0125)  

Expected Revenue - 
Corn 

0.1122 *** 0.0496 *** 0.0488 *** 

 
(0.0133)  (0.0068)  (0.0067) 

 

Expected Revenue - 
Soybeans 

0.0059  -0.0040  -0.0041  

 
(0.0061)  (0.0047)  (0.0047) 

 

       

Spatial Error -0.224 ** -0.219 ** 0.227 ** 

Coefficient 0.0712  0.0743  0.0738  

       

Spatial Lag 0.838 *** 0.817 *** 0.820 *** 

Coefficient 0.0235  0.0256  0.0251  

 
      

              
 

0.91793  0.97485  0.97483  
Observations 1784  1784  1784  

Counties 223  223  223  
              

*P<0.05, **p<0.01, ***p<0.001; Standard errors in parentheses 

 
 
 
 
 
 

𝑟2 
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 Table 17: 
 

SARAR Fixed Effects Panel Model        

Corn Belt -  474 Counties 

Number of Years of 
Average Previous Net 

Value 

1 Year   3 Year   5 Year   

 
      

Net Value 0.0037  0.0046  0.0012  

 (0.0024)  (0.0047)  (0.0069)  

Expected Revenue - 
Corn 

0.0202 *** 0.0193 *** 0.0192 *** 

 
(0.0047)  (0.0047)  (0.0047) 

 

Expected Revenue - 
Soybeans 

0.0348 *** 0.0363 *** 0.0352 *** 

 
(0.0089)  (0.0090)  (0.0089) 

 

       

Spatial Error -0.627 *** -0.627 *** -0.627 *** 

Coefficient 0.0306  0.0306  0.0306  

       

Spatial Lag 0.875 *** 0.875 *** 0.875 *** 

Coefficient 0.0100  0.0100  0.0099  

 
      

              
 

0.97366  0.97366  0.97366  
Observations 3792  3792  3792  

Counties 474  474  474  
              

*P<0.05, **p<0.01, ***p<0.001; Standard errors in parentheses 

 

 

𝑟2 
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Table 18: 
 

SARAR Fixed Effects Panel Model        

Iowa -  99 Counties 

Number of Years of 
Average Previous Net 

Value 

1 Year   3 Year   5 Year   

 
      

Net Value 0.0233 * 0.0214  0.0048  

 0.0094  0.0186  0.0285  

Expected Revenue - 
Corn 

0.0866 *** 0.0807 *** 0.0749 *** 

 
0.0226  0.0226  0.0225 

 

Expected Revenue - 
Soybeans 

0.0205  0.0320  0.0302  

 
0.0514  0.0513  0.0515 

 

       

Spatial Error -0.402 ** -0.407 ** -0.399 ** 

Coefficient 0.1359  0.1346  0.1351  

       

Spatial Lag 0.803 *** 0.812 *** 0.813 *** 

Coefficient 0.0441  0.0424  0.0426  

 
      

              

 0.98153  0.98153  0.98155  
Observations 792  792  792  

Counties 99  99  99  
              

*P<0.05, **p<0.01, ***p<0.001; Standard errors in parentheses 

 

 

𝑟2 
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CHAPTER 6 – CONCLUSION 

Crop insurance has changed drastically over the past 70 years.  RMA and other agencies 

continue to improve the performance of products offered to producers, driven largely by the 

increased quantity and quality of data.  Demand from the public and the agricultural industry 

for better performance from crop insurance products will continue to drive innovation in the 

Federal crop insurance program.  However, the rating system is a slowly healing mechanism 

that has developed spatially correlated patterns of over-payments and under-payments. While 

crop insurance should pay out the subsidy per acre on average, net value from crop insurance is 

often a significantly different value, even when averaged through time and space.  For now, the 

variation in net value from crop insurance across counties, states, and regions provide excellent 

opportunities for analysis. This study confirms that producers factor a proportion of crop 

insurance into cash rents as the consistency of net value of crop insurance increases.  However, 

the magnitude to which producers factor a proportion of net value into cash rents contrasts 

previous analyses of different forms of government payments.   

Given the complexity of the data and the way in which the data were aggregated, the true 

impact of the net value of crop insurance on cash rents is difficult to disentangle. Thus, one 

must avoid the fallacy of the inverse when interpreting the results in this analysis. Simply 

because the economic significance of the results is difficult to directly assess, it does not imply 

the elimination of the Federal crop insurance program would not have significant economic 

consequences.  The determination of crop insurance premiums, how cash rents are established, 

and whether a producer elects to purchase crop insurance are so intertwined that the modeling 

approach used in this analysis likely diminishes the results.  
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The inclusion of much more granular data would immensely aid a future study of this nature.   

Nuances, such as preventive plant or specific products, may exist in the crop insurance program 

that producers exploit more or less frequently than other aspects of the program.  While not 

currently feasible, the reconciliation of data on farmland values and attributes, producer 

characteristics, and parcel-specific crop insurance loss history would paint a more vivid picture 

of the impact of crop insurance on cash rents.  Big data will undoubtedly serve a larger role in 

the success or failure of the Federal crop insurance program moving forward.   

The findings in this thesis provide valuable insight to policy planners in the future Farm Bill 

debates.  The balance between large enough subsidy rates to maintain widespread 

participation while simultaneously facing scrutiny over the scale of the federal crop insurance 

program will continue to challenge lawmakers.  As margins for producers tighten due to 

depressed commodity prices, producers may either embrace crop insurance as a valuable risk 

management tool or opt to forgo the purchase of crop insurance altogether.  While subsidies 

have helped lower the cost of crop insurance for producers, producers operating on low risk 

farmland are the most likely candidates to first opt out of crop insurance.  This move would 

only exacerbate the problems of adverse selection and moral hazard that historically plagued 

crop insurance.   

Government support for agriculture remains an important factor in the evolution of the 

agricultural industry.  Economies of scale and scope continue to drive consolidation while 

simultaneously promoting efficiencies.  Technology and precision agriculture aid in the 

migration towards increasingly efficient operations, but at an ever-increasing cost to producers.   

Federal farm programs enhance a producer’s ability to address inefficiencies through capital 
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investments.  While moral hazard historically has plagued the crop insurance program, the 

program also encourages capital investments that improve efficiencies.  As cash rent leasing 

agreements continue to grow in popularity, crop insurance’s role as a revenue safety net will 

also continue to grow.   

The identification strategy used in this analysis performs best with RMA data. However, tools 

such as iFarm’s crop insurance decision tool may prove more useful in predicting future year’s 

net values.  The iFarm net cost values represent the expected long run averages plus/minus 

some effect of the most recent events, and are more responsive to rating changes.  Further 

study of the effect of the net value of crop insurance is needed as producers learn from their 

own experiences with crop insurance. 

The research question and subsequent results outlined in this analysis represent a small 

fraction of the research that focuses on the impacts government payments can have farmland 

values.  As government payments to producers change and are refined, how producers respond 

to these programs will undoubtedly present future researchers with both identification 

challenges and analysis opportunities. The ability to quantify the impacts of any form of 

government payments to producers is valued by producers, lenders, investors, and anyone else 

with a stake in agriculture.    
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APPENDIX A: CROP INSURANCE LOSS RATIO MAPS 
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APPENDIX B: NET VALUE FROM CROP INSURANCE MAPS 
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