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Abstract

We study data-driven approaches to maximize the service level of Emergency

Medical Services (EMS) in emerging economies. These systems usually op-

erate under heavy resource constraints and face significant operational chal-

lenges, making them structurally and operationally different from systems in

developed countries. In this thesis we study two specific issues - (i) modeling

human behavior, and (ii) accounting for risk metrics due to tail behavior.

First, we address the issue of ambulance abandonment that occurs when

a patient’s willingness to wait is less than the ambulance response time re-

sulting in the vehicle not being utilized. We present a maximum likelihood

estimation approach to estimate willingness to wait for different types of pa-

tients. We then use the estimate of waiting times in a greedy simulation

based optimization model to redesign the EMS network to maximize the

number of patients served within their waiting time thresholds. Computa-

tional experiments using data from an Indian metropolitan city show that our

proposed resource allocation model reduces abandonment by approximately

2 percentage points with the current ambulance fleet size, 5 percentage points

by doubling the fleet size and 6 percentage points by tripling the fleet size.

Next, we present a risk-based optimization approach to make the EMS net-

work robust to unexpected changes in demand patterns. This is motivated

by the fact that when few parts of the network face heavy-tailed demand

patterns, the demand for entire network under the resource constrained set-

ting behaves in a heavy-tailed manner. To achieve a robust location strategy

we include risk metrics, specifically the Conditional Value at Risk, that focus

on tail behavior in addition to average case performance metrics. Computa-

tional experiments show that planning with a view of minimizing risk leads

to solutions that perform well in heavy-tailed settings.
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Chapter 1

Introduction

Emergency Medical Services form a crucial component of public transporta-

tion infrastructure, and involve immediate response to critical events. The

problem of timely EMS response is important to developing countries where

high population densities and heavy traffic conditions impose strategic and

operational challenges, causing travel (and hence response) times to be high.

The critical nature of the events and limited resource availability warrants the

use of sophisticated analytical tools for the design and operation of Emer-

gency Medical Systems. Problems that have been extensively studied in

literature include ambulance base positioning, fleet allocation and dispatch

policies.

In this thesis, we focus on two problems primarily motivated by emerging

economies. The first issue is that of customer abandonment of ambulances.

The motivation to study this aspect arises due to the fact that we observe

abandonment of ambulances by patients in the system. We hypothesize that

there is a threshold for the time a patient is willing to wait for service. When

an ambulance does not respond to a patient within the patient’s waiting

threshold, the patient chooses to abandon the ambulance and resort to other

ways to reach the hospital. We refer to this phenomenon as in-service am-

bulance abandonment. Abandonment decreases the efficiency of the system

as ambulances spend time in travel without serving patients. We therefore

study policy measures to improve system efficiency.

The second question we study in this thesis is that of incorporating risk

metrics in ambulance allocation decisions. Typically, allocation decisions of

ambulance location and redeployment are made primarily based on expected

value metrics but not on other metrics that account for risk. It is, however,

well-known that in stochastic systems, it is useful to consider risk metrics in

addition to expected-value metrics. We address this as the second issue in

this thesis.
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1.1 Outline of the thesis

The thesis is structured as follows.

• In chapter 2, we describe the setting of abandonment by customers

that is faced by operators in emerging economy settings. We present

it as a question of first estimating the willingness to wait of customers,

and then that of network design by the operator to decrease the inef-

ficiencies due to customer abandonment. We begin by describing the

data set and providing summary statistics for the important variables.

Then we explain the concept of interval censored data (Huang and

Wellner, 1997) and describe models for estimation of such data. We

apply the Proportional Hazards model (Cox, 1992) to estimate patient

waiting times. Then we describe a simulation-based greedy optimiza-

tion model for the emergency medical resource allocation problem. We

perform experiments pertaining to existing resource optimization, re-

source expansion and network redesign, and demonstrate that we can

obtain the highest benefits in the system using network redesign.

• In chapter 3, we introduce the notion of optimization using risk-based

metrics. Specifically, we describe minimizing the total coverage loss

defined by a linear combination of expected value of loss and the

Conditional-Value-at-Risk of that loss to achieve a robust allocation

of ambulances across bases. We use a modified version of the data

from (Yue et al., 2012a) for this chapter. This chapter has already

been published as (Krishnan et al., 2016) ©2016 IEEE. We demon-

strate that the robust allocation has lower levels of cascading effects

resulting in higher service levels, than an allocation based on expected

loss metrics.
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Chapter 2

Network Design to Mitigate In-Service
Ambulance Abandonment

We consider a setting with novel customer behavior that, to our knowledge,

has not been studied in EMS systems. Our problem is motivated by settings

in emerging economies such as India and South Africa, where ambulance

systems are in early stages of development. These systems experience high

resource constraints on ambulance fleet sizes and heavy road traffic condi-

tions, causing travel (and consequently, response) times to be large. Patients

who call for ambulances during emergencies may typically have a limit on the

willingness to wait, which becomes apparent under these resource constraints;

and results in in-service abandonment of ambulances.

We define in-service abandonment in the EMS setting as follows. We

hypothesize that patients calling the call center have a ceiling on the amount

of time they are willing to wait for the ambulance to arrive at the scene of the

incident. If an ambulance is available and is dispatched to serve the caller,

the caller is often provided an estimated time of arrival. However, upon

arrival at the caller’s location, the ambulance may find that the caller has

left the scene by another mode of travel. This can happen when the caller’s

willingness to wait exceeds the base-to-scene travel time of the dispatched

ambulance. This leads to the vehicles that are dispatched to this call not

being used for service, and potentially, other calls being adversely affected

as the abandoned ambulance may be better employed elsewhere.

Abandonment occurs in many queueing systems, such as those in call cen-

ters, amusement parks and emergency rooms. This has been studied from

the queueing perspective, both analytically and empirically. (Gans et al.,

2003) provides a survey of the analytical research on call center modeling,

including abandonment. More recently, empirical studies with real-world

data on abandonment describe the behavior of abandoning callers. These

empirical studies have focused on abandonment in call centers (Aksin et al.,

2013, Hathaway et al., 2017, Yu et al., 2017, Aksin et al., 2017), and more
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recently, emergency departments (Dong et al., 2017, Batt and Terwiesch,

2015).

The setting here is distinctly different. First, here, there is loss in server

(ambulance) utilization despite a server being assigned, because the server

spends time being busy until it discovers the patient has abandoned. Second,

a caller’s willingness to wait is censored, as the operator cannot empirically

observe when a patient left service. In fact, an ambulance arriving at the

scene observes either that (i) the caller is waiting at the scene, indicating the

willingness to wait is greater than the call-to-scene time, or (ii) the caller is

no longer at the scene and has abandoned the ambulance, indicating that

the willingness to wait is less then the call-to-scene time.

Several questions arise in understanding and managing such systems, from

both the supplier (operator’s) perspective and the demand (caller’s) perspec-

tive. From the callers’ perspective, abandonment could be due to impatience

caused by the situation or a more fundamental lack of confidence in the sys-

tem. From the operator’s perspective, can we find strategies and policies that

take abandonment into account, and identify if the resource-constraints in

the system are the primary drivers of ambulance abandonment? If resource-

constraints were increased to the level of those in more developed countries,

would abandonment decrease?

We therefore divide this into five sets of research explorations. The first

is to understand the human behavior underlying abandonment and see what

factors may influence such behavior. Second is to estimate the callers’ willing-

ness to wait, depending on the relevant factors identified. The third question,

is to find if the operator can potentially allocate ambulances differently in

the current system to maximize the number of callers that can be served

(fraction of callers to whom ambulance is sent and is not abandoned). If

the number of ambulances at these bases were increased, what happens to

abandonment behavior? The fourth relates to understanding if ambulance

dispatch policies can designed to account for abandonment, by modifying the

typical nearest-free-ambulance dispatch policy. For example, we examine se-

lective (hypothetical) dispatch policies that do not serve customers that are

most likely to abandon. The fifth question relates to identifying the need for,

and re-designing the network formed by the ambulance configuration in the

system to decrease abandonment.
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Contributions

We use empirical data from an operator in India to identify, measure and

optimize for the phenomenon of abandonment. Historical call logs available

from the operator are used to understand the spatio-temporal processes of

call arrivals and customer behavior. We build a discrete-event simulation of

the system to evaluate the impact of measures proposed, as well as combine it

wih heuristics in a simulation-optimization framework for resource allocation

decisions.

Our first contribution is to identify the factors affecting callers’ abandon-

ment rates in the EMS system of interest. We identify key factors as the

call-to-scene travel time of the dispatched ambulance, the location of the

caller (semi-urban or urban area) and the severity of the emergency.

Second, we build a semi-parametric model of the waiting times of the

patients to estimate their willingness to wait based on the influencing factors

identified in the data. We build survival curves for each customer group to

understand their abandonment behavior and the probability of abandonment

relative to the service (call-to-scene) time.

Third, we establish that re-allocation of ambulances at the current set of

bases, provides very small improvement. With the same fleet size of ambu-

lances as currently, there is a minimal change in the percentage of calls not

served (either no ambulance was available or caller abandoned the ambu-

lance). Surprisingly, we show that this result does not change significantly

even when the fleet size is increased considerably.

Fourth, we introduce a notion of ‘selective dispatch’, where ambulances

are dispatched to callers only if the abandonment probability is less then

a threshold value. We show that given the design of the system, selective

dispatch has no benefit.

Fifth, we consider the case of a major strucural re-design of the system

by considering (approximately) every ‘street corner’ as a posible base and

choosing the best set of bases to locae ambulances at, for varying budgets.

This results in a huge combinatorial optimization problem, about two orders

of magnitude greater than allocation problems studied in the EMS literature.

To address this, we use a heuristic developed in the literature to identify bases

and allocate ambulances in a near-optimal manner. Using this approach, we

demonstrate that re-structing the base locations can decrease abandonment
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can drop by 2 percentage points with the current fleet size, by 5 percentage

points by doubling the fleet size and 6 percentage points using three times

the current fleet size (when the ambulance fleet size comparable to developed

economies).

2.1 Data Description

As this is a data-driven study we describe the data set in detail. The study

is set in a large Indian metropolitan city having a population of 7.7 million

people. There are 58 existing ambulance bases distributed across the city and

the surrounding suburbs. With a baseline allocation of one ambulance placed

at every base, the city has an ambulance-population ratio one ambulance

for every 128,000 people. To provide some context, the city of Chicago

in the United States has a total of 65 ambulances 1 for a population of

2.7 Million people 2, and hence an ambulance-population ratio in our data

set of one ambulance per 36,000 people. Hence, the ambulance-population

ratio is less than one-thirds of the that in the United States. Therefore

in this extremely resource constrained setting, it becomes very important

to understand customer responses to service, characterize abandonment and

use ambulances efficiently. We wish to see if efficiency of the EMS system

can be improved with the existing resources. If the current resources seem

inadequate, we wish to determine how many additional resources are required

to match EMS service levels of those in developed economies.

We have data on 18,525 emergency calls for the month of November 2011

from the city and surrounding semi-urban areas. Corresponding to every

call in the log, we have geographical and operational data. Geographical

data consists of the location of the caller, the city, district, sub-city dis-

trict, incident landmark and the nearest ambulance that can serve that call.

Operational data consists of the call arrival time, type of emergency, triage

information, patient characteristics, ambulance dispatch time, arrival time

of ambulance at the scene, emergency type and timestamps of various touch-

points along the way. Of all the calls recorded, 9599 unique calls needed an

ambulance to be dispatched to, and are considered for our analysis.

1https://www.cityofchicago.org/city/en/depts/cfd/provdrs/ops.html
2https://www.census.gov/quickfacts/fact/table/chicagocityillinois
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We discuss a few aspects in the data that are crucial for our analysis. Of

all the emergency calls received, 78.5% of all the calls were from urban areas.

The lower number of calls from semi-urban areas is in accordance with the

lesser population in those areas. Call-to-scene time or response time is the

time elapsed between the time when the emergency call was made and the

time when the ambulance reached the scene. We will use these two terms

interchangeably in this thesis. The average call-to-scene time in our data set

is 21.5 minutes. As shown in Figure 2.1, the average call-to-scene times in

semi-urban areas is 10 minutes higher than those in the urban areas. This

can be attributed to higher population density, more number of resources

and better transportation infrastructure in the urban areas compared to the

semi-urban areas.

Figure 2.1: call-to-scene time by caller location

The operator classifies a call as ‘abandoned’ if, upon reaching the scene

of the caller, the patient is found to have already moved by other means.

During this period, 83.42% of all dispatched ambulances were utilized and

not abandoned. 16.58% of dispatched ambulances were abandoned.
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Figure 2.2: Utilization of dispatched vehicles by patients

The share of abandoned calls by location of the caller is shown in Figure

2.3.

Figure 2.3: Abandonment by urban and semi-urban callers

We note that the higher proportion of abandoned calls are from urban

areas in spite of lower call-to-scene times. This implies a higher tendency to

wait for semi-urban callers in comparison with urban callers.

Calls are also classified based on the description of the emergency. The rea-

son for every emergency call is listed in the data and we use the Emergency

Severity Index (ESI Index) classification from the Agency of Healthcare Re-

search and Quality of the U.S. Department of Health and Human Services
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(Gilboy et al., 2012) to triage the calls based on emergency type. (Gilboy

et al., 2012) outlines the conditions, based on the reasons for emergency

calls, to triage calls into ESI levels 1 through 5, where ESI level 1 is the

most severe and ESI level 5 is the least severe. We also consider if a call

requires an Advanced Life Support (ALS) ambulance or a Basic Life Sup-

port (BLS) ambulance 3. The description of the various emergency types

and the frequencies of their occurrences in the data set are detailed in Table

2.1. While the operator in the systems operates with a homogeneous fleet of

ambulances, the ALS and BLS classifications are merely used as a proxy for

the severity of the incident.

Emergency Type Basis of Classification % Occurences

1 Require ALS and ESI Levels 1 or 2 95.01%
2 Require BLS or other ESI Levels 4.99%

Table 2.1: Emergency Type Classification

2.2 Model Formulation - Estimating Patient Waiting

Times

We hypothesize that patients have a ceiling on the time they are willing to

wait for service after they have made an emergency call and after they become

aware that an ambulance has been dispatched to serve them. We refer to this

period of time as the waiting time of a patient. Ambulance abandonment

results if the patient’s waiting time is lesser than the corresponding call-to-

scene time. The patients’ waiting times are not directly observed and they

need to be estimated. We now describe in detail the procedure for waiting

time estimation.

2.2.1 Interval censored data

As we had described in the beginning of this chapter, abandonment by a

patient cannot be observed until an ambulance reaches the spot to serve a

3https://www.nemsis.org/v2/downloads/documents/NEMSIS Data Dictionary v2.2.pdf
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patient. If, at the time of ambulance arrival, it is observed that the patient

has already left the spot then the ambulance has been abandoned. Else if

the patient is still awaiting service, then the ambulance has not yet been

abandoned and could have been abandoned if the ambulance had arrived at

a later time.

Let us assume that the time taken for an ambulance to reach the patient,

or the call-to-scene time, is t. If the patient had abandoned the ambulance,

we know that the time of abandonment lies in the interval [0, t). If the

patient had not abandoned the ambulance, we can only say that the time

of abandonment will lie in the interval [t,∞). Hence the waiting time data

is truncated or ‘censored’ in the intervals described above. This type of

censored data is called type I interval censored data or current status data

(Huang and Wellner, 1997).

We now discuss the special case when patients are served within their wait-

ing thresholds and hence did not abandon the ambulance. We defined that

their waiting times lie in the interval [t,∞). According to this assumption,

extremely high values for waiting times can also be considered as feasible.

However in reality, this is not a sound assumption to make as patients calling

for emergency services do not wait indefinitely. Any model we use for esti-

mating the waiting times will consider a feasibility range of [t,∞) for those

patients whose abandonment was not observed. Hence we define an upper

bound or ceiling on the waiting time of every patient so that we make an

assumption which is more realistic. We now define this mathematically.

Let i = 1, 2...n denote the number of patients. The corresponding call-

to-scene times are denoted by ti and waiting times are denoted by wi. The

corresponding upper bound on the waiting time of every patient is denoted

by ui. Let δi where

δi =

{
1, if patient i had abandoned the ambulance

0, if patient i had not abandoned the ambulance
(2.1)

denote the abandonment indicator for every patient.

The waiting time intervals are now defined as

wi ∈

{
[0, ti), ∀i ∈ {i|δi = 1}
[ti, ui],∀i ∈ {i|δi = 0}

(2.2)
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This type of interval censoring where the intervals are finitely bounded is

defined as bivariate interval censored data or type 2 interval censored data

(Huang and Wellner, 1997). We now discuss the estimation procedures for

interval censored data in detail.

2.2.2 Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is the process of finding the set of

parameters of a statistical model given a data set, that maximizes the likeli-

hood of observing the data assuming that the phenomena occur as described

by the statistical model. In this context, we assume that the waiting times

of patients follow a certain probability distribution function, and aim to es-

timate the parameters of the underlying distribution. We introduce some

notation to describe maximum likelihood estimation in detail.

Let W denote the random variable representing the waiting times of pa-

tients and f(W ) be the corresponding density function representing the pa-

tient waiting times. For i = 1, 2...n, where n is the number of patients, let

Li and Ei denote the corresponding location and emergency type of caller i.

We mathematically define these variables as follows:

Li =

{
1, if patient i had called from an urban area

0, if patient i had called from an semi-urban area
(2.3)

Ei =

{
1, if patient i had called for a Type 1 emergency

2, if patient i had called for a Type 2 emergency
(2.4)

The description for the two types of emergencies had been outlined in

Table 2.1.

We are also interested in the hazard rate λ(W ) and survival function S(W )

of the distribution. Hazard rate is defined in this context as the probability of

instantaneous abandonment or in other words, the likelihood that a patient

will abandon an ambulance in the immediate future given that they have

waited until time T . Mathematically, it can be written as

λ(t) = P (W ∈ (t, t+ dt)|W ≥ t) (2.5)
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Hazard rate and abandonment behavior

The hazard rate of the underlying probability distribution of the patient

waiting times can describe the patient waiting behavior. If

λ(t2) ≥ λ(t1), t2 ≥ t1 (2.6)

then the hazard rate is increasing with time. This implies that the probability

of abandonment increases when the call-to-scene time increases. On the

contrary, if

λ(t2) ≤ λ(t1), t2 ≤ t1 (2.7)

then the hazard rate is decreasing with time. This implies that the proba-

bility of abandonment decreases when the call-to-scene time increases.

An increasing hazard rate is more intuitive as one would assume that the

tendency to become impatient would increase with time. A decreasing hazard

rate is counter-intuitive in this scenario.

Survival Probability

The survival probability at time t for a patient is defined as the probability

that the patient would have waited for a period of time greater than t.

S(t) = P (W > t) (2.8)

The survival function at time t S(t) is the complement of the cumulative

distribution function F (t) at time t.

S(t) = 1− P (W ≤ t) = 1− F (t) (2.9)

We now outline various maximum likelihood estimation procedures for

estimating waiting time distributions using interval censored data.

Parametric Maximum Likelihood Estimation

Parametric MLE assumes that the data follows a specific parametric proba-

bility distribution (e.g. Exponential, Weibull distributions) and is aimed at
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estimating the parameters that define the assumed distribution. Mathemat-

ically, it can be detailed as follows.

If a call has been abandoned (δi = 1) then wi ≤ ti. The contribution of

this observation to the likelihood function is P (W ≤ ti) = F (ti). If a call

has not been abandoned (δi = 0) then wi > ti and the contribution of this

observation to the likelihood function is P (W > ti) = 1− F (ti) = S(ti), the

survival function. Let θ be the set of parameters in the distribution that

need to be estimated.

Hence the Likelihood function is

L(θ|T ) =
n∏
i=1

[F (ti)
δi ∗ S(ti)

(1−δi)] (2.10)

Maximizing the logarithm of eq. (2.10) also known as the log-likelihood func-

tion will provide an estimate of the parameter vector θ. The log-likelihood

function is defined as:

logL(θ|T ) =
n∑
i=1

[δi log(F (ti)) + (1− δi) log(S(ti))] (2.11)

This technique requires that we estimate the probability distributions sep-

arately for all four classes of patients. If our model has more categories of

patients, then this procedure of estimating a distribution for every category

separately becomes inefficient. Also estimating the distributions separately

would render it difficult to understand how the distribution of one class of

patients compares to another distribution. To include patient specific co-

variates or explanatory variables in our model, we use a semi-parametric

maximum likelihood estimation approach.

MLE with covariates - Semi-parametric Maximum Likelihood
Estimation

In parametric MLE, the waiting times are just a function of the call-to-scene

times Ti. We observed in section 2.1 that call-to-scene times and abandon-

ment tendencies are not same across urban and semi-urban areas. It is hence

obvious that a single distribution for waiting time cannot be a representative

for the whole population. There is a need to account for the difference in
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waiting tendencies between callers from different locations and callers with

different types of emergencies. It becomes imperative that we use explana-

tory variables also in addition to the call-to-scene times. Semi-parametric

MLE becomes useful when there are explanatory variables in addition to the

observed data.

We use a conditional distribution f(T |Z), where Z is the vector of the

explanatory variables or covariates. The log-likelihood function (eq. 2.11)

becomes

logL(θ|t) =
n∑
i=1

[δi logF (ti|zi) + (1− δi) logS(ti|zi)] (2.12)

The Proportional Hazards model by Cox (Cox, 1992), which we refer to

as the Cox-PH model is used to solve a semi-parametric model. According

to this model, the survival probability of the distribution at time t given the

covariate of interest z is defined as

S(t|z) = S0(t)e
βz

(2.13)

where S0(t) is the baseline survival probability distribution. S(t|z) can

be estimated without making a parametric assumption for the baseline dis-

tribution for right-censored data using a Cox-PH model. However it is not

possible to solve the Cox-PH model without making a parametric assump-

tion for the baseline distribution in the case of interval censored data (Huang

and Wellner, 1997). In our experiments, we make a Weibull assumption for

the baseline distribution. We describe this in detail in section 2.2.3.

Non-parametric Maximum Likelihood Estimation

A Non-parametric MLE (NPMLE) approach is used to estimate an empiri-

cal probability distribution of the data, thus eliminating any need for prior

distributional assumptions. We get a discrete probability distribution as a

result of this NPMLE procedure.

A number of studies describe solving Maximum Likelihood models using

a non-parametric assumption. The Expectation- Maximization algorithm

(Dempster et al., 1977) is a popular approach used to solve NPMLE mod-

els. For the special case of type 1 interval censored data, (Turnbull, 1976)
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proposed a self-consistency algorithm, which is an E-M algorithm. This

algorithm divides the waiting time distribution into a number of discrete

non-overlapping intervals and estimates the proportion of observations lying

within every interval.

(Groeneboom, 1995) proposes an iterative convex minorant algorithm,

which maximizes a concave maximum likelihood objective function. (Huang

et al., 1996) proposes using a Maximum Profile Likelihood Estimation Ap-

proach to solve NPMLE. The log likelihood equation is written in terms of

the cumulative hazard function Λ(t). For i = 1, 2...n where n is the number

of observations, the log-likelihood is

ln(θ,Λ) =
n∑
i=1

δi log(1− e−Λ(Yi)e
θ′Zi − (1− δi)eθ

′ZiΛ(Yi) (2.14)

(Huang et al., 1996) has also shown that the log-likelihood function is

concave with respect to the cumulative hazard function. His main argument

is as follows. The values of the cumulative hazard Λ at the observation points

i = 1, 2...n alone matter, hence it could be discretized. The cumulative

hazard function can be thought of as a right continuous step function with

jump points only at T(i) where T(i)s are the order statistics of the call to scene

times.The cumulative hazard function is a non-decreasing function and hence

this assumption can be valid. Maximizing this log-likelihood can now be

formulated as maximizing a non-linear function subject to linear constraints

i.e.,

Maximize φ(θ, x̃) =
n∑
i=1

δi log(1− e−eθ
′Zixi − (1− δi)eθ

′Zixi (2.15)

s.t. θ ∈ Θ and 0 ≤ x1 ≤ x2..... ≤ xn (2.16)

This formulation forms the basis of the NPMLE approach. Computing the

Non Parametric Maximum Likelihood Estimator is relatively simple and com-

putationally less expensive than the parametric and non-parametric models.

However there are a number of limitations in using a non-parametric model.

According to this assumption, the maximum likelihood estimators are com-

puted only at discrete instances in time where ambulance arrivals at the scene

are observed. For other instances in time, we cannot compute the density
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function making it difficult for generalization. Also since the model only

estimates the observed proportion in every waiting time interval, there is a

problem of over-fitting the model to the observations in the data set. Per-

turbing the observations by a small amount will produce a significant change

in the estimated distribution, and hence we resort to using a proportional

hazards model to estimate the waiting times.

2.2.3 Estimating Waiting Times

We first define an upper bound for the waiting time of every patient in the

data set. ui is defined based on the knowledge of the dispatch policies in the

system. Typically a dispatch officer finds the nearest available ambulance

for each call, in the region he operates in. If no ambulance is found to be

available, the call is dropped. Thus, ui is chosen as the call-to-scene time

of the farthest ambulance that can be dispatched to call i without the call

being dropped. This helps us practically bound the waiting time, as waiting

times higher than this will not be practically observed in the data.

We use a two-parameter Weibull distribution for the baseline as we need

not make a prior assumption on the nature of the hazard rate. The shape

parameter k defines the nature of the hazard rate. If the estimated shape

parameter is strictly less than 1, it indicates the hazard rate is decreasing

with increasing call-to-scene time. If the estimated hazard rate parameter

k is equal to 1, it indicates a constant hazard rate. If the estimated hazard

rate parameter is greater than 1, it means that the hazard rate (probability

of abandonment) is increasing with increasing call-to-scene time. Hence the

estimated shape parameter defines the patient waiting behavior without a

need for assuming it prior to estimation.

We implement the proportional hazards model in R using the package

‘icenReg’ (Anderson-Bergman, 2017), assuming a Weibull baseline distribu-

tion. The estimated function for the waiting time distribution, after solving

the MLE for the proportional hazards model is as follows.

S(t|z) = (e( −t
50.25 )1.699)β (2.17)
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where the regression coefficient

β


= 1, if the patient calls for type 1 emergency from an urban area

= 0.7577, if the patient calls for type 2 emergency from an urban area

= 0.5716, if the patient calls for type 1 emergency from a semi-urban area

= 0.5647, if the patient calls for type 2 emergency from a semi-urban area

(2.18)

Since the estimated shape parameter k is greater than 1, we deduce that

the hazard rate is increasing or in other words, the patients’ tendency to

abandon increases with time.

The estimated survival curves are shown in Figure 2.4.

Figure 2.4: Estimated Survival Curves

To understand the survival curves better, we plot the hazard rate of the

distribution as a function of time. The hazard rate curves are shown in

Figure 2.5.
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Figure 2.5: Hazard rate curves

The hazard rate of urban patients is more than the hazard rate of semi-

urban patients, as we notice that the hazard rate curves for urban patients

rise more steeply as compared to the semi-urban patients. In easier terms

this can be interpreted as follows: Given that a patient has waited until time

T , the probability that a patient from an urban locality will immediately

abandon after time T is greater than the probability that a patient from a

semi-urban locality will immediately abandon after time T . This observation

stems from the fact that the average call-to-scene times in the semi-urban

areas is on an average 10 minutes higher than the call-to-scene times in the

urban areas.

Within urban and semi-urban cases, the curves for type 1 emergency cases

rise more steeply than the curves for type 2 emergencies. Using the same

argument described as above, we can conclude that given a certain call to

scene time, the patients with type 1 emergencies have the highest hazard

rate.
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2.3 Resource Allocation

Our principal aim is to maximize the number of calls successfully served by

the EMS to achieve service levels comparable to those of developed economies.

We first attempt to study if optimizing the use of current resources and oper-

ational changes will lead to better service levels, before moving on to studying

the effect of additional resources. Section 2.3 has three major components.

First, we first aim to achieve a better allocation of the existing set of ambu-

lances across the existing set of bases. Then we look at modifying the current

ambulance dispatch policy by utilizing our knowledge of patient waiting times

that were estimated in section 2.2. Thirdly, we redesign the existing EMS

network by increasing the number of available ambulances, changing the base

locations and studying different dispatch policies.

2.3.1 Ambulance Allocation

We first focus on achieving a better allocation of the existing fleet of am-

bulances across the existing bases. The solution space for this problem is

exponentially large and the approach to arrive at the optimal solution is NP-

hard. To this end, we employ a greedy optimization algorithm described in

(Yue et al., 2012a).

This approach first builds a simulator to evaluate the cost of each possible

allocation. It uses as input sets of call logs from historical or simulated data.

the approach we use is a simulation-based optimization approach. Given

the sets of call logs, a dispatch policy and an allocation (configuration) of

ambulances at bases, the simulator finds the cost function related to the

allocation.

Our cost function for this problem is defined as follows. Each call has a

cost of 1 if unsuccessfully served, that is, no ambulance could be assigned

to the call as all ambulances were busy, or the call was abandoned after an

ambulance was assigned.
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Algorithm 1 Dispatch: First-come First-served Dispatch Policy
1: input: current request r, available ambulancesW , priority queue qr for request
r

2: for a ∈ qr in decreasing preference order do
3: if a ∈W then
4: return: a
5: end if
6: end for
7: return: ⊥

To evaluate the utility of an allocation, we use the data-driven simulator

described in Algorithm 5. This is similar to the simulator described in (Yue

et al., 2012a), but in addition we account for heterogeneity among emergency

callers and ambulance abandonment as well.

The following are the inputs to the simulator. Let R = {r1, . . . , rN} repre-

sent a request log with a sequence of requests. A is the allocation vector of

ambulances to bases. yr denotes the base of ambulance dispatched to service

request r (⊥ if no ambulance was dispatched). r(yr) denotes active call r

to which ambulance yr is dispatched and t̄r(yr) denotes the completion time

of request r. tr denotes call arrival time for request r, cr(yr) denotes the

call-to-scene time of the ambulance dispatched for request r and wr denotes

the estimated patient wait time (willingness to wait) of request r.
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Algorithm 2 Simulator: Data-driven Simulator Method
1: input: (R,A), Dispatch

2: W ← A //keeps track of which ambulances are free

3: R̂← ∅ //keeps track of active requests

4: initialize Y = {yr}r∈R such that yr ← ⊥
5: initialize events E ← R sorted in arrival order

6: while |E| > 0 do

7: remove next arriving event e from E
8: if e = new request r then

9: yr ← Dispatch(r,W,R) //dispatch policy

10: if yr 6= ⊥ then

11: R̂← R̂+ r(yr) //updating active requests

12: W ←W − yr //updating free ambulances

13: if cr(yr) > wr then

14: t̄r(yr)← tr + 2 ∗ cr(yr) //call abandoned; updating request com-

pletion time

15: end if

16: insert job completion event at time t̄r(yr) into E
17: end if

18: else if e = job completion event t̄r(yr) then

19: R̂← R̂− r(yr) //updating active requests

20: W ←W + yr //updating free ambulances

21: end if

22: end while

23: return: Processed assignments of ambulances to requests Y

2.3.2 The Greedy Algorithm

We employ a greedy algorithm to obtain the allocation of a set of m ambu-

lances over n base locations across the city. We describe the procedure in

detail below.

The greedy algorithm employed by (Yue et al., 2012a) is used to solve the

problem of ambulance allocation. The algorithm is described in Algorithm 3.

(Yue et al., 2012a) employ the data driven simulator subroutine described in

section 2.3.1, in the greedy algorithm. The algorithm iteratively selects the

ambulance that has maximal incremental gain to the current solution until

all the ambulances ambulances have been allocated. To employ a greedy
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algorithm the submodularity conditions have to be satisfied and (Yue et al.,

2012a) show that this problem is approximately submodular.

Algorithm 3 Greedy Ambulance Allocation
1: input: F , K

2: A← ∅
3: for ` = 1, . . . ,K do

4: â← arg maxa δF (a|A)

5: A← A+ â

6: end for

7: return: A

The solution provided by the greedy algorithm is not guaranteed to be

optimal. But the the solution is bound to be at least (1− 1
e
) of the optimum

when the property of submodularity holds((Nemhauser et al., 1978)). Yue

et al (2012a) show that the greedy algorithm can be close to optimal using a

bounding procedure. therefore we employ the same algorithm in this work.

2.4 Computational Experiments

The greedy algorithm described in Section 4 is used to obtain an allocation

of m ambulances over n bases. For the purpose of simulating an allocation of

ambulances, we require a set of sampled requests R to evaluate an allocation.

We sample calls according to a sampling procedure, as described in Algorithm

4. The following estimations have been included in the model.

We fit the call arrival times to a spatio-temporal Poisson process. For the

purpose of our analysis, we estimate the Poisson rate parameter separately for

each sub-city district within the city. The time elapsed since an ambulance

arrives at the scene until it reaches its base again is called as back to base

time. We find all historical travel times by learning from real-world traffic

data. To find the travel times based on distance between any two points in a

map, , we fit a simple regression model based on the historically experienced

travel times. We use this model to eliminate the need for large volume GIS

data where there is a need to estimate distances between every pair of points

for tens of thousands of points.
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Algorithm 4 Sampling Procedure
1: input: tstart, tend

2: R← ∅, t← tstart

3: while t < tend do

4: Sample r ← P(r|t) // Starting request sampling at time t

5: t← tr // Incrementing time counter

6: R← R ∪ {r} // Adding a sampled request to the collection

7: end while

8: return: R

Our sampling procedure assumes that the emergency requests are inde-

pendent of each other and the dispatch behavior of the EMS. Here, P(r|t)
denotes the distribution of the next arriving request starting at time t, and

tr denotes the arrival time of request r.

For the ambulance allocation problem, we sample a total of Ntotal = 1500

call logs, where each call log is worth a week and use the sampled data

for training, validation and testing. In our experiments, we use Ntrain =

500, Nvalid = 500 and Ntest = 500 call logs. In addition, the set of 500

training call logs is divided into M = 10 disjoint subsets. We first obtain

M allocations A1, A2...AM by using the M disjoint subsets of the Ntrain

requests. We then evaluate these allocations on Nvalid validation requests.

The allocation for which we observe the maximum number of calls served is

chosen, and evaluated on the Ntest requests. We then report these results

as the performance of an allocation. The greedy algorithm minimizes the

following cost objective function:

Cost =

{
0, if a call is served and not abandoned

1, otherwise

This cost function penalizes any call for which either an ambulance is sent

but abandoned or an ambulance is not dispatched for a call. It does not

differentiate between the calls that were served. Hence this cost function

solely aims to maximize the number of instances where an ambulance was

dispatched for service and it was utilized by the patient.
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2.4.1 Experimental Setup

The current action space consists of 58 bases and an ambulance located per

base. The dispatch policy is to send the nearest free ambulance to every

call. In this experimental setup, we allocate ambulances to bases by varying

a combination of the following three parameters: the budget of ambulances,

the dispatch policy and the base locations themselves. The base locations

are shown in the map in Figure 2.6

Figure 2.6: Map of existing base Locations with a latitude-longitude grid
superimposed on it
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2.4.2 Greedy Allocation Solution

Figure 2.7: Performance of the greedy allocation

The greedy algorithm involves a large number of function evaluations, hence

we use a lazy variant of the algorithm described in (Leskovec et al., 2007).

This lazy greedy algorithm produces nearly identical results with much lesser

function evaluations. We also use Sample Average Approximation ((Verweij

et al., 2003)) for model selection. The lazy greedy solution improves upon

the baseline performance by less than 1% with the existing budget of 58

ambulances. Hence we seek to achieve a significant jump in the number of

calls served by increasing the ambulance budget.
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2.4.3 Varying the ambulance budget

Figure 2.8: Calls Served and not abandoned (values at 58, 120 and 175
ambulances indicated in red)

The allocation obtained from the greedy algorithm does not increase the

calls served by a significant amount. Because we have a limited budget of

ambulances to service a large geographical area, the question of whether

the resource constraint i.e., the limited budget of ambulances is the primary

cause of abandonment, is the next question we wish to answer. To tackle

this, we increase the budget of ambulances to three times its current budget

so that the ambulance-population ratio is comparable to U.S. standards. We

then repeat the same experiment as above under similar conditions, but we

increase the number of ambulances to as high as 175 from 58 to measure the

impact of an enhanced budget on the number of calls served. Figure 2.8 shows

that the number of calls served increases monotonically in a non linear fashion

with respect to the calls successfully served without being abandoned and

becomes nearly constant after 130 ambulances. We get an improvement of 4

percentage points decrease in the calls abandoned by tripling the ambulance

budget.
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Figure 2.9 illustrates a similar trend in decreasing fashion with respect to

abandonment and we see an 18% reduction in abandonment as a result of

tripling the ambulance budget.

Figure 2.9: Calls abandoned(values at 58, 120 and 175 ambulances
indicated in red)

2.4.4 Varying the dispatch policy and ambulance budget

Because increasing the number of ambulances at the current set of bases does

not change the abandonment significantly, we explore a different operational

strategy, that of changing the dispatch policy. The idea of modifying the

dispatch policy is motivated by the following assumption: If we know with a

high probability that a patient is going to abandon, the ambulance meant to

serve that patient can be re-routed to someone else, improving the utilization

and hence the service level of the EMS system.

We utilize our estimate of a patient’s waiting time to modify the dispatch

policy of ambulances. We use the patient waiting times to compute the
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probability of abandonment. The probability of abandonment is defined as

P (abandonment) = P (Waiting Time ≤ call-to-scene Time)

.

We use a threshold parameter α, α ∈ {0, 0.1, 0.2, 0.3...0.9, 1} for making a

dispatch decision.

P (abandonment)

{
≤ α, then dispatch an ambulance

> α, then do not dispatch an ambulance

If α = 0 then no ambulance will be dispatched for any call in the system.

If α = 1 then ambulances will be dispatched for all the calls in the system

irrespective of the probability of abandonment.

In our experiments, we also vary the number of ambulances as a param-

eter, keeping the number of bases and base locations fixed. The results are

summarized in Figure 2.10.

Figure 2.10: Varying dispatch policy

From the results, we can see that the number of calls served follows an

increasing trend with α. However, for all the three fleet sizes, we see that the

28



number of calls served when α = 0.9 is marginally higher than the number

of calls served when α = 1.0. The difference is marginally visible with the

current fleet size, but not seen when the fleet size is doubled or tripled.

This leads to the policy implication that selective non-dispatch of ambu-

lances when there is strong evidence of abandonment leads to better per-

formance of the EMS network. However this policy would face operational

issues as there will be reluctance from the ambulance providers to not dis-

patch ambulances to distress calls. However the improvement obtained as a

result of this exercise is less than one-thousandth of a percent when the fleet

size is increased. Since we see a significant reduction in abandonment when

the fleet size is doubled or tripled and the current dispatch policy performs

equally good, the policy implication would be to dispatch all ambulances

irrespective of abandonment probability, to maximize service level and to

encourage implementation compatibility with the ambulance provider.

2.4.5 Network redesign

Since the ambulance budget and dispatch policy together do not significantly

increase the calls served, we attempt to redesign the network by changing

the locations of the ambulance bases themselves. A grid is superimposed

on the map of the city (Figure 2.6), and every intersection of latitudes and

longitudes on the grid is taken a candidate base location resulting in a base

location at every street corner, or closer.

For every possible call location, we consider all the grid locations within

a radius of 30 minutes from the call location as candidate bases. locations

for ambulances. We consider each latitude and longitude intersection, with

a distance of 0.01 degrees (approximately 5 min travel time) between each

other, as possible bases. Combining all such candidate base locations for all

possible call locations, we arrive at a total of 13,644 candidate bases in the

system, at which ambulances could possibly be located. Hence, this is a large

scale experiment where the optimization process not only finds a good set of

base locations but also a good allocation of ambulances at these new bases.

Ambulance allocation across bases has been studied previously in litera-

ture, but an experiment of this magnitude where resource allocation across

more than 10,000 bases has not been done previously. For example, (Re-
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strepo, 2008) considers an allocation of 97 ambulances across 88 bases in the

city. (McCormack and Coates, 2015) perform a very similar study where

they allocate ambulances to 70 bases. Our study is unique because of the

sheer magnitude of the action space we consider for optimization, which is

two orders of magnitude higher than the size of problems studied in existing

literature.

We use this modified action space and run the greedy algorithm to allocate

the current fleet of 58 ambulances in the 13,644 bases across the city. The

result of this experiment is shown in Figure 2.11.

Figure 2.11: Performance with New Base Locations

With the current budget of 58 ambulances, the performance of the greedy

algorithm over the new set of bases is marginally higher than the performance

with the existing set of bases (see Figure 2.11). The new set of bases in

addition to the existing set of bases is shown in Figure 2.12.
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Figure 2.12: New base locations for current budget of ambulances

The spatial distribution of the new set of bases is not very different from

the current setup. We see that a lot of the existing bases need to be slightly

relocated in the urban areas, while there is no significant difference in the lo-

cation of bases in the rural areas. Since resource optimization in a redesigned

network does not improve service level significantly, we now expand the set

of available resources to determine the additional resources we need to match

service levels of emerging economies.

2.4.6 Varying the base locations and the ambulance budget

We now study the effect of supply side expansion, both in terms of number

of ambulances and the bases. With an increase in ambulance budget we also

now have to determine where the corresponding bases need to be situated and

how many bases are required. To this end, we repeat the same experiment

on the expanded set of bases and also triple the ambulance budget as was

the case with 58 bases. The results are summarized in Figure 2.13.
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Figure 2.13: Performance with New Base Locations - Calls served

Budget % Calls Served

Current base configuration Proposed base configuration

58 81.30% 83.59%
120 88.08% 93.03%
175 88.35% 94.92%

Table 2.2: Comparison of fraction of calls served

We see a significant rise in the number of calls served with the expanded set

of bases. The gap between this performance and the performance of 58 bases

is narrow until a budget of 90 ambulances and deviates significantly after

90 ambulances. When the ambulance budget is tripled, we see a significant

rise in the number of calls that were served and not abandoned. In absolute

terms, nearly 95% of all calls are served and not abandoned. This is nearly

a 14 percentage point increase from the performance of the greedy algorithm

with the current ambulance fleet size.

Figure 2.14 shows the decrease in abandonment with the expanded set

of bases. When the budget is tripled, the abandonment decreased by more
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than half. While it may not be possible to increase the ambulance budget

to thrice the original size, Figure 2.14 also demonstrates that the majority

of the abandonment reduction can be achieved with doubling the number of

ambulances, i.e., with 120 ambulances.

Figure 2.14: Performance with New Base Locations - Calls abandoned

Budget % Calls Abandoned

Current base configuration Proposed base configuration

58 16.26 % 14.07%
120 11.91 % 6.95%
175 11.64% 5.07%

Table 2.3: Comparison of fraction of calls abandoned

The set of base locations with additional budget of ambulances are shown

in figures 2.15 and 2.16. As we increase the budget, we see that more number

of bases are first allocated to the densely populated areas or the urban areas

followed by addition of new bases to semi-urban areas. In section 2.1, we

have described that patients from semi-urban abandon less frequently and

wait longer. Since our optimization objective strives to minimize the number
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of calls that were served and not abandoned, a bulk of the resources are

initially allocated to urban areas which contribute more to abandonment.

As we make more resources available to our algorithm, it starts allocating

more to semi-urban areas where people wait longer.

Figure 2.15: New base locations for budget of 120 ambulances

Figure 2.16: New base locations for budget of 175 ambulances
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Figures 2.17 through 2.19 represent the improvement in the performance

of the EMS system in terms of its timely service. Figure 2.19 depicts the the

decrease in the number of calls that were either not served or abandoned.

From Figure 2.17 we can see that there is a significant spike in the number

of calls that were served within 15 minutes. We also see an improvement in

the calls served within 30 minutes. This can be attributed to the enhanced

spatial distribution of the new base locations to enable a more distributed

system in comparison to the current system, enabling faster service. Hence we

not only improve the fraction of calls that were served, but also significantly

improve upon the number of calls that were successfully served within 15 and

30 minutes respectively.

Figure 2.17: Fraction of calls served within 15 minutes
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Figure 2.18: Fraction of calls served within 30 minutes

Figure 2.19: Cost when varying ambulance budget
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2.4.7 Varying the base locations, dispatch policy and
ambulance budget

With the existing set of bases, we determined earlier that the current dispatch

policy of sending the nearest free ambulance to all the calls was the best. We

now try to understand if the same policy holds good for the new set of bases

as well. The results of this experiment are shown in Figure 2.20. We observe

that the policy of selective non-dispatch when α = 0.9 performs well, as we

had seen with the current set of bases.

Figure 2.20: Performance with New Base Locations - Varying dispatch
policy

However, because selective dispatch can be very difficult to implement in

practice, and moreover does not provide significant gains; we recommend the

policy of dispatching ambulances to all callers irrespective of the tendency

to abandon.

Thus we have identified network redesign and operational strategies that

can be used by the operator to operate with a clearer awareness of abandon-

ment, resulting in improved service to users across the system.
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Chapter 3

Robust Ambulance Allocation using
Risk-Based Metrics

This chapter includes previously published material from (Krishnan et al.,

2016) 1 ©2016 IEEE. We do not use the same data set that was used for

chapter 2. Instead, we use a modified version of the data from (Yue et al.,

2012a) for our analysis here.

3.1 Objective

The primary question addressed in this chapter is not only how to allocate

a fleet of ambulances to maximize its service level but also to design the

network in such a way that it is robust to unexpected demand patterns.

Due to the spatio-temporal nature of emergencies occurring in EMS sys-

tems, the resource constraints on ambulances and the network structure of

the city, there are cascading effects on the calls causing each call to be de-

pendent on the previous calls and the ambulances assigned to them. These

cascading dependencies are captured by assuming that the call arrivals follow

a Poisson process and optimizing for the average-case metrics. However in

emerging economies where resources are heavily constrained, the notion of

Poisson call arrivals may not always hold and the above approach may not

be robust. Hence we need to account for the tail behavior in addition to

average-case metrics. We achieve this by incorporating a risk metric, Condi-

tional Value at Risk (CVaR) in the objective function.

1 K. Krishnan, L. Marla, and Y. Yue, Robust ambulance allocation using risk-based
metrics, in Communication Systems and Networks (COMSNETS), 2016 8th International
Conference on. IEEE, 2016, pp. 16
I was provided with the base code by the co-authors of this paper which I had used and
built upon
The IEEE grants authors the license to re-use their paper in their thesis
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3.2 Motivation

When some parts of the network incur heavy-tailed call arrivals, we observe

that the entire resource-constrained network behaves in a heavy tailed man-

ner.We illustrate this statement considering data from an Indian metropoli-

tan city. The city contains 83 sub-city districts. When as few as six sub-

districts begin to follow a heavy-tailed distribution, the entire call stream

follows a heavy-tailed distribution (see Table 3.1).

Call Log 1 Call Log 2
Sub-city districts 83 77
(Light-tailed)

Sub-city districts 0 6
(Heavy-tailed)
Distribution Poisson Weibull
Parameters Rate = 0.28 Shape = 0.97, Scale = 3.9

Table 3.1: Comparing call streams from light-tailed and heavy-tailed
distributions ©2016 IEEE

The performance of these allocations are evaluated using the data-driven

discrete-event simulator described in (Yue et al., 2012b). The procedure

followed in the simulator is described in Algorithm 5. The dispatch policy is

the same as what we had described in Algorithm 1 in chapter 2. The nearest

available ambulance is dispatched to service a request. When the nearest

ambulance is not available to serve the next call, it creates a dependency

between two requests.

Informally, r depends on r′ if the assignment of yr′ to r′ causes r to be

assigned yr such that yr′ �pr yr (Yue et al., 2012b). The formal definitions

follow.

Definition 1 There exists an active dependency γr,r′,yr′ from request r to

request r′ with label yr′ if

1. tr′ < tr (r′ arrives before r)

2. t̄r′(yr′) > tr (r′ completes after r arrives – this indicates that the two

requests “overlap” in time)
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3. yr′ �pr yr (r′ is assigned an ambulance from a higher priority base,

w.r.t. r’s priority queue, than the ambulance ultimately assigned to r)

The dependency structure in the network is dependent on the call ar-

rivals, the ambulance allocation and dispatch policy. An efficient allocation

is defined as one which allows for more calls to be served by the nearest

ambulance, thereby maximizing the service level. When such dependencies

occur with Poisson call arrivals, it will be more pronounced with heavy-tailed

call arrivals.

To illustrate this behavior, we consider the naive allocation that the oper-

ator uses and evaluate the two call logs (see Table 3.2)

Call Log 1 Call Log 2

Mean number of calls not served 8.87% 10.23 %

90th quantile of calls not served 10.11% 12.58%

Table 3.2: Naive allocation performance on light-tailed and heavy-tailed
call logs ©2016 IEEE

Hence it is important that we allocate ambulances considering the perfor-

mance at the tail of the distribution as well.

The data structure for input to the discrete event simulator described

below is the same as what is described in chapter 2, but we do not consider

patient waiting time and emergency classification.
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Algorithm 5 Simulator: Data-driven Simulator Method
1: input: (R,A), Dispatch

2: W ← A //keeps track of which ambulances are free

3: R̂← ∅ //keeps track of active requests

4: initialize Y = {yr}r∈R such that yr ← ⊥
5: initialize events E ← R sorted in arrival order

6: while |E| > 0 do

7: remove next arriving event e from E
8: if e = new request r then

9: yr ← Dispatch(r,W,R) //dispatch policy

10: if yr 6= ⊥ then

11: R̂← R̂+ r(yr) //updating active requests

12: W ←W − yr //updating free ambulances

13: insert job completion event at time t̄r(yr) into E
14: end if

15: else if e = job completion event t̄r(yr) then

16: R̂← R̂− r(yr) //updating active requests

17: W ←W + yr //updating free ambulances

18: end if

19: end while

20: return: Processed assignments of ambulances to requests Y

3.3 Modeling Approach

Our objective function uses a linear combination of expected value met-

rics and risk metrics. As a risk metric, we consider Conditional-Value-at-

Risk (CVaR) due to its properties of coherence (Rockafellar and Uryasev,

2002),(Rockafellar and Uryasev, 2000).

For a general loss function described by random variable X and 0 < α < 1,

CV aR is defined as CV aRα = 1
α

∫ 1

1−α V aRα(X)dα where V aRα is the Value-

at-risk (VaR). This can be equivalently written as:

CV aRα = − 1

α

(
E[X 1{X≤xα}] + xα(α− P [X ≤ xα])

)
(3.1)

where xα = inf{x ∈ R : P (X ≤ x) ≥ α} is the upper α-quantile and
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1A(x) =

1 if x ∈ A

0 else
is the indicator function.

Let A denote an allocation of ambulances to a set of bases A (there can

be more than one ambulance at a base). We represent A as a multiset of

elements in A. Let M(A) denote the multi-powerset of A and L(A) as the

cost of allocation A. L(A) may correspond to the fraction of requests not

served, fraction of requests whose service time is above some target threshold,

fraction of requests served at each service level; and is a tunable component

of the framework.

We define L(A) in terms of balancing reward and risk. In particular, as we

want to typically maximize the expected value of an allocation and minimize

its CVaR (the expectation of the allocation value being lower than a specified

threshold), we consider the function: max(β∗E(gain)−(1−β)CV aRαF (A)).

We measure the cost of an allocation A using a real-valued objective func-

tion F : M(A)→ <. We focus on penalty reduction formulations, where we

can write F (A) as

F (A) = L(∅)− L(A), CV aR(A) = CV aR (3.2)

where L : M(A) → < measures the cost of an ambulance allocation over

each request log that spans some period of time (e.g., one week).

We define L using the outcomes of simulated requests over several request

logs. Using the simulator, we measure the percentiles of the expected metrics

of interest over the set of request logs. Our goal is to maximize the expected

gain in performance over some (known) distribution of requests P(R). Let

Y = {yr}r∈R denote the output of Algorithm 5 for request log R. Then we

can write the αth quantile of expected penalty as

L(A) = ER∼P(R)

[∑
r∈R

Lr(yr)

]
, (3.3)

where Lr(y) is the penalty of assigning request r with yr (e.g., whether or

not assigning ambulance yr to r results in a service time above a target

threshold).

In practice, we resort to optimizing over a collection of request logs R ={
{Rmn}Mm=1

}N
n=1

, where each Rm ∈ R is sampled i.i.d according to P(R) and
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each Rmn sampled according to Abandonment. In our experiments, we use

Sample Average Approximation (Verweij et al., 2003) to bound the difference

between our sample average objective and the optimal expected performance.

We thus approximate the expectation with the sampled average,

LR(A) =
1

M

M∑
m=1

1

N

N∑
n=1

∑
r∈Rmn

Lr(yr) ≈ ER

[∑
r∈R

Lr(yr)

]
. (3.4)

Let δF (a|A) denote the gain of adding a to A,

δE(L)(a|A) = L(A)− L(A ∪ a). (3.5)

δCV aRα(L) = CV aRα(L(A))− CV aRα(L(A ∪ a)). (3.6)

δF (a|A) = β ∗ δE(L)(a|A)− (1− β)δCV aRα(L) (3.7)

δE(L)(A) corresponds to the expected value of the dependency chains bro-

ken by the allocation A compared to the null allocation, and δCV aRα(L) cor-

responds to the condistional-value-at-risk of the dependency costs.

Given a budget of K ambulances, the static allocation goal then is to

select the ambulance allocation A (with |A| ≤ K) such that the utility F (A)

is maximized. More formally, we can write our optimization problem as

arg max
A∈M(A):|A|≤K

F (A). (3.8)

The greedy algorithm employed by (Yue et al., 2012b) is used, because the

properties of approximate submodularity still hold as discussed above. The

greedy algorithm has already been described in chapter 2. The algorithm

iteratively selects the ambulance a that has maximal incremental gain to the

current solution until M ambulances have been allocated. Note that each

evaluation of δ(a|A) requires running the simulator to evaluate F (A+ a).

3.4 Computational Results

The data from the Indian metropolitan city contains approximately ten thou-

sand logged emergency requests over the course of one month. Each record

in the request log contains the type and location of the request, the ambu-
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lance (if any) that was dispatched, and the various travel times (e.g., base

to scene, scene to hospital, hospital to base). The request arrivals fit typ-

ically into Poisson distributions per sub-city-district and service times fit

into log-normal distributions respectively. Request arrivals and service times

are independent. However, certain sub-city-districts also have distributions

that can be fit to heavy-tailed distributions (Weibull distribution). We will

therefore examine if the difference in the assumptions behind the distribu-

tions (which makes the sampling consistent with real-world data) results in

solutions that are robust to heavy tailed arrival rates.

We run our optimization model described in 3 with training call logs having

exponential inter-arrival times, and test call logs sampled according to the

following cases:

• Exponential inter-arrival times

• Weibull inter-arrival times in sub-city-districts (call arrivals are heavy-

tailed)

• Poisson inter-arrival times with hotspots in some sub-city-districts (cho-

sen such that high arrival areas are simultaneously stressed)

• Weibull inter-arrival times with hotspots in some sub-city-districts (cho-

sen such that high arrival areas are simultaneously stressed)

Our action space contains 58 bases and 58 ambulances. We evaluate our

methods over a period of one week. 500 training call logs and 500 test call

logs, each spanning one day, and independent of each other, are used.

The following cost function is considered in our experiments.

Lr(y) =

1 if service time ≥ 30min

0 otherwise
.

Our metrics are the various quantiles of the test calls logs, that evaluate the

tail probabilities of failure (non-service), as well as the mean performance.

We use β = 0.7 and for varying values of α (tail CVaR values).

Figures 3.1 and 3.2 present the improvement in the tail metrics (calls not

served) for varying values of protection levels α when there are no hotspots

observed.
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Figure 3.1: Performance of risk-optimized allocation on Poisson call log
without hotspots ©2016 IEEE

Figure 3.2: Performance of risk-optimized allocation on heavy-tailed call log
without hotspots ©2016 IEEE
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Figures 3.3 and 3.4 present the improvement in the tail metrics (calls not

served) for varying values of protection levels α when there are hotspots.

Figure 3.3: Performance of risk-optimized allocation on Poisson call log
with hotspots ©2016 IEEE
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Figure 3.4: Performance of risk-optimized allocation on heavy-tailed call log
with hotspots ©2016 IEEE

Our results show that optimizing with a combination of expected-value

and risk-metrics provides improved results on tail-related metrics such as

service failure probabilities, as compared to optimizing using expected value-

based metrics alone. When there is imperfect information such as when

the allocation was built assuming Poisson call arrivals but we see Weibull

call arrivals in the system, or when there are hotspots, optimizing for the

mean performed better. Also we observe that there is no single value of the

protection level α that performs well for all cases, indicating the need to

conduct further research to fix the right protection level.
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Chapter 4

Conclusion

n this work, we have described data-driven models to maximize EMS service

levels in emerging economies. We considered two problems specific to emerg-

ing economies. the first is that of customer abandonment of ambulances and

the second is that of using risk metrics in the resource allocation of such

systems.

We observed that due to the resource-constraints in emerging economies,

including fewer ambulances and higher traffic, customers can depart to the

hospital using other means of transportation without waiting for the dis-

patched ambulance to arrive at the scene. In this context, we explained the

concept of in-service abandonment of ambulances and contrasted it aban-

donment in other settings like a call center. By using a semi-parametric

Maximum Likelihood Estimation approach, we empirically estimated wait-

ing time distributions for different classes of patients.

We then built upon the simulation based greedy optimization approach

proposed by (Yue et al., 2012a) to design better networks to mitigate aban-

donment. With the current base configuration, we could not observe a signif-

icant decrease in ambulance abandonment even by tripling the fleet size and

by varying the ambulance dispatch policy. To overcome this, we considered a

problem where potentially every street corner can be considered a candidate

base location. This resulted in an extremely large scale resource allocation

problem which is two orders of magnitude larger than similar problems dis-

cussed in literature. We proposed a new network design consisting of a new

set of bases and an allocation of ambulances across these bases, and demon-

strated a 6 percentage point increase in calls served and decreased abandon-

ment by 6 percentage points by tripling the fleet size. This can increase the

number of calls successfully served to 94%, a considerable improvement over

the current system.

Next, we presented an efficient approach to ambulance fleet allocation that

48



is data-driven and balances expected value-based and risk-based metrics. We

show that maximizing with CVaR of gain in addition to expected gain for

certain values of the protection level α helps generate more robust allocations

than optimizing with the expected value of the gain alone. Further research

needs to be done on examining the theoretical properties of the objective

function and determine bounds for performance of this algorithm.
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