
c© 2017 Shaoshi Ling

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158322494?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ON LEXICAL LEVEL MATCHING

BY

SHAOSHI LING

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2017

Urbana, Illinois

Adviser:

Professor Dan Roth

ABSTRACT

In many natural language understanding applications, text processing re-

quires comparing lexical units: words, phrases, name entities and sentences.

A significant amount of research has taken place in studying evaluating sim-

ilarity metrics between those units. In this thesis, we summarize some re-

search work in computing lexical similarity. We describe a new approach to

compute similarity between two spans of text, using multiple semantic-units

level comparison measures to compute sentence-level similarity scores.

ii

To my parents, for their love and support.

iii

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor, Prof. Dan Roth,

for all the supports in the last three years. Dan Roth has been a perfect

advisor. I really enjoy solving challenging problems with him and I always

admire his insightful ideas. Dan has steered my research and yet given me

the intellectual freedom to pursue my interests. He demonstrates what is a

remarkable scholar and a passionate educator.

I would like to thank everyone I encountered in the last five years. They

shaped me and made my life in Champaign-Urbana more colorful. I espe-

cially acknowledge the members in CogComp group. Over the years, I have

interacted and worked closely with many people belonging to the group. No

part of my research would have been possible without help from them.

Finally, and most importantly, I would like to thank my parents, my grand-

parents, my girlfriend, for their unconditional sacrifice and support. I will

not be able to go this far without you.

iv

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

LIST OF ABBREVIATIONS . ix

CHAPTER 1 INTRODUCTION . 1
1.1 Lexical Similarity . 1
1.2 Challenges and Motivation . 1
1.3 Overview of the Work . 2

CHAPTER 2 BACKGROUND . 4
2.1 Word Similarity Metrics . 4
2.2 Lexical Level Matching . 5
2.3 Phrases Mining . 5
2.4 Name Entity Recognition . 6

CHAPTER 3 LEXICAL SIMILARITY USING WORD COMPARA-
TOR . 8
3.1 LLM With WordNet Hierarchy 8
3.2 LLM With Word Embedding 9
3.3 LLM with Explicit Semantic Analysis 11

CHAPTER 4 SEMANTIC-UNITS TOKENIZATION 13
4.1 Phrase Mining and Collection 13
4.2 Identification of Phrase Continuity 14
4.3 Multi-words Terms . 14
4.4 Text Tokenization . 15

CHAPTER 5 LEXICAL SIMILARITY USING SEMANTIC-UNIT
COMPARATOR . 17
5.1 Framework . 17
5.2 LLM with Phrase Comparator 17
5.3 LLM with Name Entity Comparator 18

v

CHAPTER 6 EXPERIMENTS . 21
6.1 Datasets Description . 21
6.2 Comparison Metric . 21
6.3 Experimental Results . 22
6.4 Case Study . 23

CHAPTER 7 CONCLUSION . 26
7.1 Future Work . 26

REFERENCES . 28

vi

LIST OF TABLES

6.1 Accuracy on Microsoft Paraphrase Identification Corpus
and Pearson’s r Correlation on SICK Relatedness Dataset . . 22

6.2 Selected Most Similar Words/Semantic Units of “Support
Vector Machine”. 24

vii

LIST OF FIGURES

3.1 Skip-gram Model . 10

4.1 Overview of AutoPhrase [28] 15

viii

LIST OF ABBREVIATIONS

LLM Lexical Level Matching

NER Name Entity Recognition

NLP Natural Language Processing

NESim Name Entity Similarity

ix

CHAPTER 1

INTRODUCTION

Many natural language understanding applications need to compute the sim-

ilarity between sentences or between pairs of other short snippets as one

of their fundamental operation. For instance, in document summarization

tasks [29] [2], there is a need to identify and remove duplicate sentences to

maximize the diversity of information in a summary. Similarly, computing

semantic similarity between sentences is essential in evaluating automated

paraphrasing techniques [6]. In textual entailment tasks [30], there is a need

to decide if two sentences refer to the same concepts, even though they may

be using different words to express them. Large news aggregators need to

identify similar news reports so that they can cluster or remove duplicate

news articles received from various news agencies.

1.1 Lexical Similarity

One approach to sentence similarity is matching their lexical tokens between

two sentences. So Lexical similarity plays an important role in our method

to text similarity. Lexical similarity is a measure of the degree to which

the lexical tokens of two given languages are similar. The lexical tokens

include words, phrases, and name-entity. One very common approach to this

problem is to train and obtain a representation of those tokens and use the

representation to compute the degree of similarity.

1.2 Challenges and Motivation

With the trend of deep learning, the NLP community shows a strong interest

in the study of sentence representations [5][14]. Their goal is to use the

neural language model to represent a span of text as a fixed-length feature

1

vector. Their method achieves the the-state-of-art performance on various

tasks including sentence level similarity. However, to convert a sentence into

a feature vector is a very complicated process including a large amount of

training and time-consuming encoding process. Our motivation is to develop

a light and simple approach to compute sentence similarity.

Lexical level matching is one of traditional word alignment method [8].

With years of development, this approach is well-studied, very robust and

most importantly is in light-weight.

One problem is that in the current lexical level matching algorithm, to-

kens representation methods are simply based on the single word. They

regard each word independently and employ single word as a basic unit.

However, from a cognitive point of view, it can be argued that the basic

units that the human cognitive system uses include not only single words

but also multiple-word phrases and name entities. One limitation of the cur-

rent implementation is the comparing representation of non-compositional

phrases. Particularly convincing examples for such units are phrasal verbs in

English, which often have a non-compositional meaning. For example, it is

more plausible that we recognize “keep up”, “keep on” and “keep from” as

relevant basic linguistic units in these contexts and that the human cognitive

systems represent them as units. The other limitation is that it’s hard to

handle name entity with typing. For example, the word “Washington” can

both refer to location “Washington State” and the person “George Wash-

ington”. Using unigram representation methods fail to be discriminative for

those token units.

The goal of our work is to improve the performance of current lexical

level matching (LLM) implementation. We extend lexical similarity from

word-based to the semantic-unit based comparison. Our idea is to treat

word, phrase, name entity with typing as a basic unit to handle limitation

of unigram-based representation in lexical level matching.

1.3 Overview of the Work

To achieve this goal, we first use data mining approach to extract semantic

units in a large corpus and then train embedding representation for them.

Our semantic relatedness experiments show that employing semantic-unit

2

based representations in LLM outperforms the LLM with only traditional

word-based representation.

In chapter 2, we discuss the background information including LLM, name

entity recognition approach and phrases mining methods. In chapter 3, we

discuss the approach to text similarity by LLM using different word repre-

sentation. In chapter 4, we obtain semantic-unit representation and explain

our approach to tokenize the text into word, phrases and name-entity. In

chapter 5, we propose the new LLM which uses phrases and name-entity

comparison to compute sentence similarity. In chapter 6, we conduct exper-

iments to show the effectiveness of semantic unit matching against normal

word level matching. And in the last chapter, we made the conclusion and

list the future work.

3

CHAPTER 2

BACKGROUND

We started by discussing some very related topic and the existing algorithms

which will be the foundation of building our new LLM similarity metrics.

2.1 Word Similarity Metrics

Word similarity, also referred as word semantic similarity, is a metric to

evaluate the distance between them based on the likeness of their meaning or

semantic content as opposed to similarity which can be estimated regarding

their syntactical representation (e.g. their string format).

Wordnet similarity is one of the commonly used approaches. It implements

measures of similarity and relatedness that are all in some way based on the

structure and content of WordNet which is an on-line lexical reference system

[24].

And there are a large number of other word semantic similarity measures,

using approaches that are either knowledge based or corpus-based [18]. One

knowledge-based word representation we will use is Explicit Semantic Anal-

ysis, a method that represents the meaning of texts in a high-dimensional

space of concepts derived from Wikipedia.[11].

In recent year, the use of dense distributional lexical representations, known

as word embeddings, supports better performance on a range of NLP tasks

[3][15] [19]. Thus, word embeddings have been commonly used in the last

few years for lexical similarity tasks and as features in multiple, syntactic

and semantic, NLP applications.

We use those metrics in LLM as word comparator and we will discuss each

of them in very detail in Chapter 3.

4

2.2 Lexical Level Matching

The similarity between two spans of text is computed based on the individual

term-similarity as follows: First, both sentences are tokenized to find all

semantic units, viz. named entities, phrasal verbs, multi-word expressions,

and words. Then, the similarity metrics are applied based on the type of

semantic units to match the units from one sentence to the most similar unit

from the other sentence. At the end of this step, all semantic units map

to their best counterparts from the other sentence. Finally, the sentence-

level similarity score is computed as the sum of the similarity scores of the

matching pairs, normalized by the number of units matched. We refer to this

measure as the Lexical Level Matching (LLM) score. For two sentences s1

and s2, such that |s1| ≥ |s2|,

LLM(s1, s2) =

∑
v∈s1 maxu∈s1sim(u, v)

|s2|
(2.1)

where sim(u, v) is the corresponding similarity metrics defined over semantic

units u and v [8].

2.3 Phrases Mining

This section introduces phrases mining technique which we covered in phrase

representation step in the new approach.

Comparing with unigrams (single word), a natural, meaningful, unambigu-

ous semantic unit (phrase) is more effective to manipulate unstructured text

data. We are supposed to generate high quality phrases, which should have

high popularity, concordance, completeness and meaningful, to help us ma-

nipulate unstructured text data. In overall, we can transform unigrams to

the semantic unit (phrase) based text processing.

In natural language processing field, the community has conducted exten-

sive studies typically referred to as automatic term recognition [10][33], for

the computational task of extracting terms (such as technical phrases). Su-

pervised noun phrase chunking techniques [26] exploit such tagged documents

to automatically learn rules for identifying noun phrase boundaries. The de-

pendency on these various kinds of linguistic analyzers, domain-dependent

5

language rules, and expensive human labeling, makes it challenging to ex-

tend these approaches to emerging, big, and unrestricted corpora, which may

include many different domains, topics, and languages [28].

In data mining field, there are many data-driven and unsupervised ap-

proaches can overcome this limitation. They make use of frequency statistics

in the corpus to address both candidate generation and quality estimation

[16][7][23]. Which means they no longer need to rely on complex linguistic

feature generation, domain-specific rules [16]. The basic idea is based on fre-

quent pattern mining. If the probabilities of co-occurrence of certain words

are high, which means they are highly frequent, we can determine that those

words patterns have high probabilities to be phrases. However, even the

probabilities of co-occurrence of certain words are pretty high, we can not

ensure those words patterns are phrases because they may not discriminative

and informative, eg. this paper or they may lose completeness such as vec-

tor machine vs support vector machine. The general principle of approaches

is exploiting information redundancy and data-driven criteria to determine

phrase boundaries and salience.

2.4 Name Entity Recognition

In this section, we introduce name entity recognition technique we used to

process input sentences in LLM.

A named entity is a sequence of words that designate some real-world en-

tity, e.g. “California”, “Steve Jobs” and “Apple Inc.” The task of named

entity recognition is to identify named entities from the free-form text and

to classify them into a set of predefined types such as a person, organization

and location[1]. In another word, Named entity recognition (NER) is the

problem of locating and categorizing important nouns and proper nouns in

a text[22]. For example, give a sentence

The best BBQ I’ve tasted in Phoenix! I had the pulled pork sandwich

with coleslaw and baked beans for lunch.

The highlighted named entities hold most of the important information in

the sentence, and are phrases we care the most in various natural language

6

processing applications.

Named entity recognition is probably the most fundamental task in infor-

mation extraction [1]. To extract complex structures such as relations and

location-based events, an accurate named entity recognition is an important

preprocessing step. Other than that, named entity recognition is also widely

used in Question Answering [13] and Machine Translation. In question an-

swering, the candidate answer strings are always named entities, which need

to be extracted first using NER. In machine translation, for example, the

extracted entity Support Vector Machine avoid the machine to translate the

phrase word by word, which is not exactly the correct meaning.

In our LLM, we use CogCom NLP NER package to recognize name-entity

in processing sentences [27].

7

CHAPTER 3

LEXICAL SIMILARITY USING WORD
COMPARATOR

In LLM with word comparator, sentences are tokenized to find all word units.

Then, we apply word similarity metrics to match the word from one sentence

to the most similar word from the other sentence.

Like shown in equation:

LLM(s1, s2) =

∑
v∈s1 maxu∈s1sim(u, v)

|s2|
(3.1)

where we use word similarity metric as sim(u, v) in the equation [8].

In this chapter, we will talk about multiple word similarity metrics we used

in detail.

3.1 LLM With WordNet Hierarchy

One of the most influential works has been in building WordNet [24]. Word-

Net organizes words into synsets that are further linked to other synsets using

hypernymy, meronymy, and other linguistic relations. There have been many

similarity metrics proposed using the hierarchical structure of WordNet, es-

pecially for nouns [24].

We formulate a similarity measure, WNSim, over the WordNet hierarchy to

compute similarity between words. For two words w1 and w2 in the WordNet

hierarchy, WNSim finds the closest common ancestor of the words, sometimes

referred to as least common subsumer (lcs). The similarity is then defined

based on the distance of the words from the lcs, as follows:

WNSim(w1, w2) =


Θl1+l2 if l1 + l2 ≤ k

Θk if l1 + l2 ≤ α ∗ depth of lcs(w1, w2)

o if otherwise

(3.2)

8

This measure captures the key concepts of hierarchical similarity used in

other WordNet based similarity measures. It has 3 parameters: , k, and . In

the experiments, we empirically set them as = 0.3, k = 3, and = 0.667, after

manually searching over various values for these parameters. The words are

first converted to the same part-of-speech, by finding the base verb or noun

form of the word, if available, before the appropriate WordNet hierarchy

is considered. To compute the least common subsumer, we consider the

synonymy-antonymy, hypernymy-hyponymy, and meronymy relations. If the

path from the lcs to one of the words contains an antonymy relation, we

reduce the similarity value by half and negate the score. Hence, under this

scheme, synonyms get a score of 1.0 and antonyms get a similarity value of

0.5. Further, we compare the determiners and prepositions separately if

two words are determiners or prepositions, they get a similarity score of 0.5.

Hence, this similarity measure gives a score in [1, 1] range. (The motivation

here is to discount differences between words that tend to have little influence

on overall similarity judgments different prepositions, for example, may take

on similar meanings based on context).

3.2 LLM With Word Embedding

Word embeddings have been exceptionally successful in many NLP tasks

including word similarity tasks.

The term word embedding was originally coined by [3]. The classical neu-

ral model consists of a one-hidden layer feed-forward neural network that

predicts the next word in a sequence. The model maximizes the training

corpus penalized log-likelihood:

L =
1

T

∑
logf(wt, wt−1, ..., wt−n+1; Θ) +R(Θ) (3.3)

where R(Θ)) is a regularization term. i.e. the probability p(wt|wt1, , wtn+1)

as computed by the softmax, where n is the number of previous words fed

into the model.

9

3.2.1 Word2vec

It was Word2vec [19] who really brought word embedding to the forefront

through the creation of word2vec, a toolkit enabling the training and use

of pre-trained embeddings. Word2Vec is the most popular of the word em-

bedding models. Word2vec recommends two architectures for learning word

embeddings: Continuous bag-of-words and Skip-gram. Skip-gram uses the

center word to predict the surrounding words as can be seen in Figure 3.1.

The skip-gram objective thus sums the log probabilities of the surrounding

n words to the left and to the right of the target word wt to produce the

following objective:

JΘ =
1

T

t=1∑
T

∑
−n≤j≤n,6=0

logp(wt+j|wt) (3.4)

Figure 3.1: Skip-gram Model

3.2.2 GloVe

GloVe [25] seeks to make explicit what SGNS does implicitly: Encoding

meaning as vector offsets in an embedding space – seemingly only a serendip-

10

itous by-product of word2vec – is the specified goal of GloVe.

Specifically, the authors of Glove show that the ratio of the co-occurrence

probabilities of two words (rather than their co-occurrence probabilities them-

selves) is what contains information and aim to encode this information as

vector differences. To achieve this, they propose a weighted least squares

objective JJ that directly aims to minimize the difference between the dot

product of the vectors of two words and the logarithm of their number of

co-occurrences:

J =
V∑

i,j=1

f(Xij)(w
T
i w̃j + bi + b̃j − logXij)

2 (3.5)

where wi and bi are the word vector and bias respectively of word i, wjand bj

are the context word vector and bias respectively of word j, Xij the number

of times word i occurs in the context of word j, and f is a weighting function

that assigns relatively lower weight to rare and frequent co-occurrences.

3.2.3 Paragram

Paragram [31] is another embedding that uses compositional models that

can encode arbitrary word sequences into a vector with the property that

sequences with similar meaning have high cosine similarity, and that can,

importantly, also transfer easily across domains. The method considers six

compositional architectures based on neural networks and trains them on

noisy phrase pairs from the Paraphrase Database [12].

3.3 LLM with Explicit Semantic Analysis

One special word comparison metrics we used is the Explicit Semantic Anal-

ysis (ESA), which was introduced in [11] and uses Wikipedia as its source of

world knowledge.

ESA was originally introduced to measure semantic relatedness between

text fragments. Given a text fragment, the ESA algorithm generates a set

of concepts that are weighted and ordered by their relevance to the input.

Here, we provide a brief summary of this approach and refer the reader to

11

[11] for more details.

The main assumption is that each article in Wikipedia corresponds to a

concept. To get the ESA representation of a word, the interpreter identifies

the concepts that contain it. These concepts are combined to form a weighted

vector, where the weights are obtained by using the TFIDF representation

of the original text. The list of concepts is ordered by the weight to get the

final ESA representation.

Since Wikipedia is the largest encyclopedic source of knowledge on the web,

ESA representation is sufficient for many categorization tasks. Additionally,

since Wikipedia was generated by humans, it provides a natural measure

of relatedness between text fragments. Previous research has shown that

semantic interpretation based on Wikipedia is a more reliable measure of

distance between documents than the traditional bag-of-words approach.

12

CHAPTER 4

SEMANTIC-UNITS TOKENIZATION

The inspiration to our new implementation is to compare different type of

tokens using their corresponding metrics. So the most important question is

how to tokenize the sentences into different semantic tokens: word, phrases

and name-entity.

In this chapter, we propose our approach to accomplish this goal. We first

do phrase collection and mining, both from the corpus and knowledge bases.

To process input sentences, we then apply named entity recognition method

to extract named entities. And we reformat each sentence by concatenating

words that belong to same phrases or named entities, with types specified.

And we use CogCom Tokenizer package to find all the units at the last step.

4.1 Phrase Mining and Collection

To obtain quality phrases, we extract phrases both from Corpus and knowl-

edge bases. Phrases can be divided into two parts, one is general phrases

and another is domain-specific terms. For general phrases, there are two

kinds: continuous phrases such as “apply for”, discontinuous phrases such as

“pick . . . up”. For domain specific terms, they are mainly continuous phrases

and defined in a specific domain such as “support vector machine” in com-

puter science domain. To collect these two type phrases, we extract general

two-word phrases from WordNet [21] using method defined in [32] and other

multi-word terms from the results of AutoPhrase [28] on the generalized cor-

pus, the Wikipedia dump. We form a phrase collection of size around 185236.

After that, we use these phrases collection to reformat sentences.

13

4.2 Identification of Phrase Continuity

We extract general two-word phrases such as “apply for” from WordNet

[21], which is an on-line lexical database. It groups words into many sets by

similar meaning. Moreover, it provides words collocations such as “car pool”,

“eat out”, etc. We can treat these word collocations as high quality phrases.

For now, we obtain high quality general phrases but WordNet [21] doesn’t

provide us information about these phrases whether its continuous phrases

or discontinuous phrases. Thus, we have to do one more step to distinguish

phrases belong to which kind, continuous or discontinuous. Generally, we

using the same approach of continuity identification defined in [32].

The idea is that most discontinues phrases are separated by an entity such

as “take clothes off” and we assume most discontinues phrases are separated

within 5 tokens. So based on this heuristics, by finding the frequency of co-

occurrences of target words pair at specific words collocation order, we can

search and determine discontinues phrases.

For each phrase, we compute [w1, w2, w3, w4, w5] where wi, 1 ≤ i ≤ 5,

indicates there are wi occurrences of A and B in that order with a distance

of i. We compute these statistics for a corpus consisting Wikipedia. We set

the maximal distance to 5 because discontinuous phrases are rarely separated

by more than 5 tokens. If w1 is 10 times higher than (w2 +w3 +w4 +w5)/4,

we classify the as continuous, otherwise as discontinuous.

Taking phrase pick off as an example, it gets vector [1121, 632, 337, 348,

4052], w1 (1121) is smaller than the average 1342.25, so pick off is set as

discontinuous. Further consider Cornell University which gets [14831, 16,

177, 331, 3471], satisfying above condition, hence it is treated as a continuous

phrase.

4.3 Multi-words Terms

Besides general phrases, named entities and terms are also important parts

of phrases. It is hard to obtain those multi-word terms from general dictio-

naries because most named entities or terms are defined in a specific domain

such as ”support vector machine” is an important phrase(term) in computer

science domain but it is meaningless in sports or other domains. We employ

14

AutoPhrase[28] as a helper tool to extract these domain specific terms and

named entities.

Figure 4.1: Overview of AutoPhrase [28]

Comparing with other phrase mining models, AutoPhrase [28] doesn’t need

human effort to annotate text data as training data. It depends on high qual-

ity phrases in knowledge database as positive labels to help generating high

quality phrases. Because it contains high quality phrases from knowledge

database as positive labels and poor quality phrase candidates as negative la-

bels, the label generation is trustworthy. After obtaining high quality labels,

AutoPhrase executes robust positive-only distant training and POS-guided

phrasal segmentation. Robust positive-only distant training and POS-guided

phrasal segmentation would enhance mutually. The overall framework is

shown in 4.1.

4.4 Text Tokenization

After we obtain both the phrases and named entities, we are able to tokenize

the raw text into several semantic tokens. This is an essential preprocessing

step for comparing semantic units. We are reformatting the sentences, which

contains following steps:

Given a sentence “. . . A B. . . C. . . D. . . E F. . . ”,

1. If A and B form a continuous phrase in our collected phrase set and no

words between them, we reformat the sentence as “. . . A B. . . C. . . D. . . E

F. . . ”

2. If C and D form a discontinuous phrase, and they are separated by

less than k words, where k is the predetermined threshold. We replace

15

each of the two words with C D to make the context of both con-

stituents available to phrase in learning, that is, reformat the sentence

as “. . . A B. . . C D. . . C D. . . E F. . . ”

3. If E and F form a named entity with specific typing in our interested

type set, we reformat the sentence as

“. . . A B. . . C D. . . C D. . . E F:〈Type〉. . . ”

16

CHAPTER 5

LEXICAL SIMILARITY USING
SEMANTIC-UNIT COMPARATOR

5.1 Framework

Following the preprocessing method in previous chapter, we can now split a

sentence into semantic-unit tokens. For example, the sentence ”Trump turn

the light off”, we reformat it into ”Trump(PER) turn off the light” after

semantic-unit tokenization. And for this particular sentence, we now have a

phrase ”turn off” and a name entity Donald Trump(PER) and word ”the,

light”.

Once we have those different kinds of tokens, we could use corresponding

metrics to match the semantic tokens from one sentence to the most similar

semantic tokens from the other sentence.

The similarity score is computed by the equation shown below:

LLM(s1, s2) =

∑
t∈tokens

∑
v∈s1 maxu∈s1simt(u, v)

|s2|
(5.1)

where we use the tokens’ corresponding comparison metrics as simt(u, v)

in the equation. We will talk each different tokens comparison metrics in

detail below.

5.2 LLM with Phrase Comparator

The problem of the current uni-gram representation is that it does not

have an accurate representation for phrases especially the non-compositional

phrase. For example,”support vector machine”, combing representation of

each word ”support” ”vector” ”machine” fails to capture the semantic mean-

ing of the phrases and thus may lead to token mismatch. In order to accu-

17

rately compare and match phrases, our first step is to obtain representations

for phrases.

5.2.1 Semantic Unit Embedding

It was [19] who really brought word embedding to the forefront through the

creation of word2vec, a toolkit enabling the training and use of pre-trained

embeddings. Due to the huge success of Word2vec, we decide to use the Skip-

gram model in their toolkit to train our semantic unit embedding. We first

used text tokenization method described in chapter 4 to process the training

corpus so that we have label for both phrases and name-entity. We slightly

modified the model object to better fits our semantic unit based embedding.

The objective function is modified as below:

JΘ =
1

T

t=1∑
T

∑
−n≤j≤n,6=0

logp(wt+j, zt+j|wt, zt+j) (5.2)

And the Softmax function is:

Pr(〈wc, zc〉|〈wi, zi〉) =
exp(w

zj
j ·w

zt
t)∑

〈wj ,zj〉∈〈W,T 〉 exp(w
zj
j ·w

zt
t)

(5.3)

where (w, z) is word-phrases pair or name entity-type pair and wz is the

vector we learn when we regard each pair as a pseudo word.

Once we have the representation, we can compute the cosine as degree

similarity between those two semantic units as we did on single words.

5.3 LLM with Name Entity Comparator

One challenge we encounter here is that we can only have embedding rep-

resentations for very common names. For generalized name and entity, we

decide to employ NESim metric [8].

5.3.1 NESim

As with words, named entities need to be compared in a variety of NLP

tasks, such as entity/schema matching and named co-reference discovery. For

18

example, in the schema matching task, it is important to know that George

Bush is the same as Bush, George or that Mr. Smith is different from Mrs.

Smith. Several named entity metrics were developed incorporating inputs

from statistical methods, databases, or artificial intelligence [4]. However,

most of the existing approaches are limited in two aspects:

1. they do not take advantage of the named entity types when computing

the similarity,

2. they do not consider the semantics of the tokens in named entities.

We have found that the types and the semantics of the tokens in named

entities play important roles in named entity metrics. For example, George

Washington and Washington are similar if we know that they are two person

names, but different if they are two locations, and more obviously, they are

different if one refers to a location and the other refers to a person. Similarly,

it would be simple to compare these two names if we know that George is the

first name and Washington is the last name. To address these two limitations,

we incorporate the two main improvements specified below.

1. Leveraging the types of named entities in measuring their similarity.

Named entity types are given by many named entity recognition pack-

ages. Standard types include person, location, and organization. If two

names have different types, they should not be considered as similar.

Therefore, our similarity computation depends on the named entity

types. If two names are labeled as persons, they will be compared

based on their identified first names, last names, and if available, their

middle names. We also consider replacing nicknames with their origi-

nal names in order to improve the coverage of our metric (e.g. Bob and

Robert). Honorifics are also separated and identified, so that gender

based comparison can be made. If two names are locations, the metric

considers several standard ways of expressing locations, such as using

abbreviations (e.g. IL for Illinois, or VN and VNM for Vietnam) and

using a country-language look-up table (e.g. Russia and Russian.) For

organizations, our metric is able to capture acronyms which are often

used when an organization name is mentioned many times (e.g. NATO

for North Atlantic Treaty Organization). If the type is not known, the

metric tries the three types one-by-one, and returns the highest score.

19

2. Parsing the input names to identify the semantics of each token in

the names. This is required especially for person names. In order

to compare first names, last names, and middle names of persons, the

metric parses the input names into fields and compares them separately.

Person names are parsed using common cues in name format, such as

names with or without commas (for first and last names), names with

or without abbreviation (for first and middle names), etc. The metrics

parser also identifies organization acronyms by combining the initial

letters of name tokens. It is worth noting that there are several cases

where this heuristic is not sufficient to form an acronym (e.g. AIRTC

stands for Air Training Corps). The parser deals with this phenomenon

by simply trying several combinations of the name tokens first letters.

As a final back-off step, our metric uses edit distance metrics (viz. the

one proposed by [4]) to measure the similarity between named entities if

none of the above conditions is matched. Table 1 shows some similarity

scores of the input names given by a metric using Jaro-Winkler distance

(JRWK) [4]) and our method, NESim.

20

CHAPTER 6

EXPERIMENTS

In this chapter, we conduct experiments to show the effectiveness of semantic-

unit matching against the traditional word-unit matching.

6.1 Datasets Description

The first task we consider is the paraphrase or semantic relatedness identifi-

cation. To evaluate the performance of paraphrase identification, we use the

Microsoft Research Paraphrase Corpus (MSRP) [9] dataset. In this dataset,

two sentences are given and we are expected to predict whether or not they

are paraphrases. The training set consists of 4076 sentence pairs (2753 which

are positive) and the test set has 1725 pairs (1147 are positive).

The other dataset is the SemEval 2014 Task 1: semantic relatedness SICK

dataset [17]. Given two sentences, the goal is to produce a score of how

semantically related these sentences are, based on human generated scores.

Each score is the average of 10 different human annotators. Scores take values

between 1 and 5. A score of 1 indicates that the sentence pair is not at all

related, while a score of 5 indicates they are highly related. The dataset

comes with a predefined split of 4500 training pairs, 500 development pairs

and 4927 testing pairs. All sentences are derived from existing image and

video annotation datasets.

6.2 Comparison Metric

For Microsoft Paraphrase task, We compute the snippet similarity for all

5801 pairs of the corpus, using the different measures defined in chapter 2

and 4: LLM with word comparator and LLM with semantic-unit comparator.

After finding the similarity scores using the similarity metrics, we rank the

21

documents on the similarity score and choose a threshold that maximizes

the accuracy over the training data. We report the accuracy scores over

the complete dataset. Accuracy measures the fraction of all instances that

were labeled correctly, including both positive and negative instances. F1

is the harmonic mean of the precision and recall values. In this evaluation,

Accuracy is the more appropriate measure, since it is important to recognize

both positive and negative instances correctly.

For the semantic relatedness SICK dataset, we compute the similarity

score, using the different measures defined in chapter 2 and 4, between all

the pairs of the sentences. And then we report the Pearson’s r correlation

between the similarity score and human annotation score.

6.3 Experimental Results

Table 6.1: Accuracy on Microsoft Paraphrase Identification Corpus and
Pearson’s r Correlation on SICK Relatedness Dataset

MSRP Corpus SICK Dataset
LLM with Wordnet 0.716 0.6728
LLM with Word2vec 0.706 0.637
LLM with GloVe 0.694 0.649
LLM with Phrases(Wordnet) 0.718 0.673
LLM with Phrases(Wordnet) and NER 0.705 0.656
LLM with Phrases Embedding 0.709 0.632
LLM with Phrases Embedding and NER 0.7 0.625
Skip-thought[14] 0.758 0.7995
compositional embedding [20] 0.73 *
sentence representation[5] * 0.84

In the table, the leftmost column is the name of the method we compared.

The number in the middle column is accuracy score on MSRP and the number

in the rightmost column is Pearson’s r Correlation reported on SICK Dataset

by each metric.

The ”LLM with phrases Embedding” means LLM using phrase embed-

ding representation as the matching comparator. Since the representation is

trained with skip-gram model. So comparing with ”LLM with word2vec”,

”LLM with phrase” has very slight improvement on Microsoft paraphrase

22

test. The ”LLM with phrases(Wordnet)” means LLM using phrases as to-

kens and use Wordnet to compare them. As we can see, phrases tokenization

is more effective than the simple unigram tokenization.

”LLM with phrase Embedding and NER” means LLM with both phrase

embedding and NE comparator. ”LLM with phrase(Wordnet) and NER”

means LLM using Wordnet to compare phrase units and also using the NE

comparator. But unfortunately, NE comparator doesnt improve much on

the results as we expected. One reason is that both datasets have very few

sentences has person’s or location name. Another possible cause is that

NESim metric gives us very low score on the different name and thus lead

to low sentence similarity score on the similar sentences pair. For example,

”James turn off the light” and ”John turn off the light”, the two sentence are

supposed to be very similar. But NESim returns 0 score for the two name

”James” and ”John” and leads to low sentence similarity score in overall.

For the Microsoft paraphrase, ”Wordnet” metric is close to the-state-of-art

result by the unsupervised method reported by [20]. For the sick dataset,

the results we have are not very promising compared with state-of-the-art

results by neural sentence representation model [5][14].

6.4 Case Study

We present some cases to demonstrate the effectiveness of LLM with semantic-

unit comparator in this section.

6.4.1 Phrase Similarity

In table 6.2, we find that Skip-gram doesn’t have an accurate representation

of the the non-compositional phrase ”support vector machine”. In contrast,

with our phrase embedding, we can handle this non-compositional phrase

very well and the model finds us really similar terms.

23

Table 6.2: Selected Most Similar Words/Semantic Units of “Support Vector
Machine”.

Rank Skip-gram Semantic Unit Based
1 vector SVM
2 matrix discriminative classifiers
3 scalar kernel-based
4 learning classification

6.4.2 Phrases Comparator

In unigram matching model, it’s unlikely that we will have high similarity

score between the two sentences:

1. “He turns the light on.”

2. “He opens the light.”

Since the unigram matching model doesn’t have representation for phrase

“turns on”. The mismatching of phrase ”turn on” and ”open” will cause

very low sentence similarity score. While with our phrase comparator, the

sentence will be reformatted and move word ”turns” and ”on” together as

”turns on”. Then we will perfectly match ”turns on” and ”opens” since they

have high similarity score in the phrase representation.

6.4.3 Name Entity Comparator

Without name entity comparator, the similarity between the two sentences:

1. ”Washington was not at Boston.”

2. ”Boston is not in Washington State”

are likely to be very high. Since traditional LLM implementation does not

distinguish the person Washington and the location Washington. The align-

ment will just simply match the word “Washington” from both sentences.

While in our approach, we have NER annotator to tag name-entity with its

typing for above terms. So we can reformat sentences into

1. ”Washington:PER was not at Boston.”

2. ”Boston is not in Washington State:LOC”

24

And with the NESim metric, the new model will definitely not match those

tokens and reports an accurate similarity score.

6.4.4 Phrases and Name Entity Comparator

Considering the following examples:

1. ”He likes playing computers in Siebel Center”

2. ”Sibel likes the computer science major”

The traditional LLM with match the same word ”Siebel” and ”Computer”

in both sentences but mismatch the other words.

With only phrase comparator, the sentence will be reformatted into:

1. ”He likes playing computers in Siebel Center”

2. ”Sibel likes the computer-science major”

and still match the same word ”Siebel”.

With both phrases and name entity comparator, the sentence will become:

1. ”He likes playing computers in Siebel-Center:LOC”

2. ”Sibel:PER likes the computer-science major”

and thus it will accurately report the similarity score.

So as we can see, with phrases and NER, it can greatly help us to infer

correctly that the sentences are paraphrases or related. Hence, our model

seems very promising in those tasks.

25

CHAPTER 7

CONCLUSION

In my thesis work, we first summarized the approach of lexical similarity,

phrase mining, name entity recognition and current LLM implementation.

We extend LLM word comparator with many word similarity metrics. We

obtain an embedding representation for generalized phrases. And we use the

phrases dictionary we built along with NER annotator to chunk the raw text

into semantic tokens: word, phrases, name-entity. Then we propose our new

lexical level matching method which matching semantic tokens instead of

word tokens between two sentences. Our method extends lexical matching

from word-based to semantic-unit based.

Our experiments show that semantic unit based matching outperforms

word level based matching on multiple datasets.

7.1 Future Work

Compared with the-state-of-art sentence representation method, our approach

didn’t show very promising results. We could try the more complicated

method in the matching process. For example, the attention module in neu-

ral machine translation is very similar to our matching process and it may

work better than the simple similarity metrics. The basic mechanism could

be encoding both sentences and use attention module to match tokens in

their decoding process.

What’s more, we could try to apply our model on other NLP tasks to

further prove the robustness of our model. Since most NLP application is

dealing with the single word, our model is changing the basic unit from single

word token to semantic-unit tokens. We believe this model can be generalized

to many tasks and it may achieve a very promising result intuitively.

26

Cross-lingual NLP is a very applicable field. We could use cross-embedding

to match cross-language sentences. Cross-embedding representations have

already been useful and proven to be successful in a variety of tasks including

similarity tasks. So it will be very interesting to see what we can do with

LLM using cross-lingual embedding similarity metrics.

27

REFERENCES

[1] C. C. Aggarwal and C. Zhai, Mining text data. Springer Science &
Business Media, 2012.

[2] R. M. Aliguliyev, “A new sentence similarity measure and sentence based
extractive technique for automatic text summarization,” Expert Systems
with Applications, vol. 36, no. 4, pp. 7764–7772, 2009.

[3] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural proba-
bilistic language model,” Journal of machine learning research, vol. 3,
no. Feb, pp. 1137–1155, 2003.

[4] W. Cohen, P. Ravikumar, and S. Fienberg, “A comparison of string
metrics for matching names and records,” in Kdd workshop on data
cleaning and object consolidation, vol. 3, 2003, pp. 73–78.

[5] A. Conneau, D. Kiela, H. Schwenk, L. Barrault, and A. Bordes, “Su-
pervised learning of universal sentence representations from natural lan-
guage inference data,” arXiv preprint arXiv:1705.02364, 2017.

[6] M. Connor and D. Roth, “Context sensitive paraphrasing with a global
unsupervised classifier,” in ECML, vol. 7. Springer, pp. 104–115.

[7] P. Deane, “A nonparametric method for extraction of candidate phrasal
terms,” in Proceedings of the 43rd Annual Meeting on Association for
Computational Linguistics. Association for Computational Linguistics,
2005, pp. 605–613.

[8] Q. Do, D. Roth, M. Sammons, Y. Tu, and V. Vydiswaran, “Robust,
light-weight approaches to compute lexical similarity,” Computer Sci-
ence Research and Technical Reports, University of Illinois, p. 94, 2009.

[9] B. Dolan, C. Quirk, and C. Brockett, “Unsupervised construction of
large paraphrase corpora: Exploiting massively parallel news sources,”
in Proceedings of the 20th international conference on Computational
Linguistics. Association for Computational Linguistics, 2004, p. 350.

[10] K. Frantzi, S. Ananiadou, and H. Mima, “Automatic recognition of
multi-word terms:. the c-value/nc-value method,” International Journal
on Digital Libraries, vol. 3, no. 2, pp. 115–130, 2000.

28

[11] E. Gabrilovich and S. Markovitch, “Computing semantic relatedness
using wikipedia-based explicit semantic analysis.” in IJcAI, vol. 7, 2007,
pp. 1606–1611.

[12] J. Ganitkevitch, B. Van Durme, and C. Callison-Burch, “Ppdb: The
paraphrase database.” in HLT-NAACL, 2013, pp. 758–764.

[13] N. Kaji and M. Kitsuregawa, “Building lexicon for sentiment analysis
from massive collection of html documents.” in EMNLP-CoNLL, 2007,
pp. 1075–1083.

[14] R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun, A. Tor-
ralba, and S. Fidler, “Skip-thought vectors,” in Advances in neural in-
formation processing systems, 2015, pp. 3294–3302.

[15] O. Levy, Y. Goldberg, and I. Dagan, “Improving distributional simi-
larity with lessons learned from word embeddings,” Transactions of the
Association for Computational Linguistics, vol. 3, pp. 211–225, 2015.

[16] J. Liu, J. Shang, C. Wang, X. Ren, and J. Han, “Mining quality phrases
from massive text corpora,” in Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data. ACM, 2015, pp.
1729–1744.

[17] M. Marelli, L. Bentivogli, M. Baroni, R. Bernardi, S. Menini, and
R. Zamparelli, “Semeval-2014 task 1: Evaluation of compositional distri-
butional semantic models on full sentences through semantic relatedness
and textual entailment,” SemEval-2014, 2014.

[18] R. Mihalcea, C. Corley, C. Strapparava et al., “Corpus-based and
knowledge-based measures of text semantic similarity,” in AAAI, vol. 6,
2006, pp. 775–780.

[19] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Dis-
tributed representations of words and phrases and their compositional-
ity,” in Advances in neural information processing systems, 2013, pp.
3111–3119.

[20] D. Milajevs, D. Kartsaklis, M. Sadrzadeh, and M. Purver, “Evaluating
neural word representations in tensor-based compositional settings,” in
In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP. Citeseer, 2014.

[21] G. A. Miller, “Wordnet: a lexical database for english,” Communications
of the ACM, vol. 38, no. 11, pp. 39–41, 1995.

[22] B. Mohit, “Named entity recognition,” in Natural Language Processing
of Semitic Languages. Springer, 2014, pp. 221–245.

29

[23] A. Parameswaran, H. Garcia-Molina, and A. Rajaraman, “Towards the
web of concepts: Extracting concepts from large datasets,” Proceedings
of the VLDB Endowment, vol. 3, no. 1-2, pp. 566–577, 2010.

[24] T. Pedersen, S. Patwardhan, and J. Michelizzi, “Wordnet:: Similar-
ity: measuring the relatedness of concepts,” in Demonstration papers at
HLT-NAACL 2004. Association for Computational Linguistics, 2004,
pp. 38–41.

[25] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation.”

[26] V. Punyakanok and D. Roth, “The use of classifiers in sequential infer-
ence,” in Advances in Neural Information Processing Systems, 2001, pp.
995–1001.

[27] L. Ratinov and D. Roth, “Design challenges and misconceptions in
named entity recognition,” in CoNLL, 6 2009. [Online]. Available:
http://cogcomp.cs.illinois.edu/papers/RatinovRo09.pdf

[28] J. Shang, J. Liu, M. Jiang, X. Ren, C. R. Voss, and J. Han, “Au-
tomated phrase mining from massive text corpora,” arXiv preprint
arXiv:1702.04457, 2017.

[29] D. Wang, T. Li, S. Zhu, and C. Ding, “Multi-document summarization
via sentence-level semantic analysis and symmetric matrix factoriza-
tion,” in Proceedings of the 31st annual international ACM SIGIR con-
ference on Research and development in information retrieval. ACM,
2008, pp. 307–314.

[30] R. Wang and G. Neumann, “Recognizing textual entailment using sen-
tence similarity based on dependency tree skeletons,” in Proceedings of
the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing.
Association for Computational Linguistics, 2007, pp. 36–41.

[31] J. Wieting, M. Bansal, K. Gimpel, and K. Livescu, “Towards universal
paraphrastic sentence embeddings,” arXiv preprint arXiv:1511.08198,
2015.

[32] W. Yin and H. Schütze, “An exploration of embeddings for generalized
phrases.” 2014.

[33] Z. Zhang, J. Iria, C. Brewster, and F. Ciravegna, “A comparative eval-
uation of term recognition algorithms,” 2008.

30

