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ABSTRACT

This research presents development of L1 adaptive output-feedback control theory for a class

of uncertain, nonlinear, and non-square multivariable systems. The objective is to extend the L1

adaptive control framework to cover a wide class of underactuated systems with uniform perfor-

mance and robustness guarantees.

This dissertation starts by investigating some structural properties of multivariable systems

that are used in the development of L1 adaptive output feedback controllers. In particular, a

state-decomposition is introduced for adaptive laws that only depends on the output signals. The

existence of the decomposition is ensured by defining a virtual system for underactuated plants.

Based on the mathematical findings, we propose a set of output feedback solutions for uncertain

underactuated systems.

In adaptive control applications, a baseline control augmentation is often preferred, where the

baseline controller defines the nominal system response. Adaptive controllers are incorporated into

the control loop to improve the system response by recovering the nominal performance in the pres-

ence of uncertainties. This thesis provides a solution for L1 output feedback control augmentation.

Stability and transient performance bounds are proven using Lyapunov analysis. To demonstrate

the benefits of the L1 adaptive controllers we consider a missile system and an inverted pendulum,

which are both underactuated systems.

Finally, we propose a filter design framework in the frequency domain. A new sufficient con-

dition is presented to ensure stability of the closed loop and the reference systems, which is sub-

sequently used in the optimal filter design. Existing H∞ optimization techniques are leveraged to

address the performance and robustness trade-off issues.

ii



To my wife Jihye and our family with endless love and respect

iii



ACKNOWLEDGMENTS

I am deeply grateful to my advisor Prof. Naira Hovakimyan for her guidance, inspiration, and

support throughout my Ph.D studies. Her supervision has promoted my adherence to high academic

standards and high quality work. Prof. Hovakimyan’s indispensable advice and knowledge have

equipped me with enhanced understanding of mathematical rigor, as well as practical insights on

engineering problems. I would like to express my gratitude to the committee members Prof. Petros

Voulgaris, Prof. Dusan Stipanovic, and Prof. Srinivasa Salapaka for their helpful comments to

improve my dissertation.

My thanks also go to our research group members. The opportunities to work with Venanzio

Cichella, Steven Snyder, and Hamidreza Jafarnejadsani allowed me to explore academic subjects

with great pleasure, and thoughtful discussions have been a significant aid in developing the ideas of

my dissertation. In addition, friendly support from all the other labmates is greatly acknowledged.

Special acknowledgment is given to the Korean Agency for Defense Development (ADD) for

granting me the opportunity of doctoral study. I am utterly thankful to Prof. Youdan Kim, Prof.

Chan Gook Park, Dr. Hang-Ju Cho, and my former supervisors VP. Ui-Jun Mun, VP. Hee Cherl

Lee, and PR. Hamin Jeong, who motivated me to pursue doctoral studies and helped me secure a

place at the University of Illinois at Urbana-Champaign. Additionally, recognition must be given

to my considerate colleagues, who gave kind assistance to successfully complete my program of

study.

Last but not least, heartfelt appreciation and thanks go toward my beloved wife Jihye and our

dear family. I am indebted for her sacrifice, patience, and tolerance during the course of my graduate

work. This could never have been completed without having her being besides me. She has been an

exceptional friend and a lovely wife adding endless sparkle and love into my life. I am profoundly

grateful to my parents, parents-in-law, and all family members for their persistent support and

encouragement. The dissertation would not have been possible without their unconditional love.

iv



TABLE OF CONTENTS

LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

CHAPTER 1: INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Overview of L1 Adaptive Control . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Literature Review on Adaptive Output Feedback . . . . . . . . . . . . . . . . 3

1.3. Main Contributions and Thesis Organization . . . . . . . . . . . . . . . . . . . 5

CHAPTER 2: MATHEMATICAL PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . 7

2.1. Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2. System Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3. Uncertainty Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

CHAPTER 3: L1 ADAPTIVE OUTPUT-FEEDBACK FOR MIMO SYSTEMS WITH VEC-

TOR RELATIVE DEGREE ONE . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1. L1 Adaptive Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2. L1 Adaptive Augmentation of a Baseline Controller . . . . . . . . . . . . . . . 64

CHAPTER 4: L1 ADAPTIVE CONTROLLER FOR MIMO SYSTEMS WITH ARBITRARY

VECTOR RELATIVE DEGREE . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.1. L1 Adaptive Control for Nonlinear Systems . . . . . . . . . . . . . . . . . . . . 79

4.2. Piecewise Constant Adaptation Laws for L1 Adaptive Control . . . . . . . . . 96

CHAPTER 5: APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.1. Design of Missile Longitudinal Autopilot . . . . . . . . . . . . . . . . . . . . . 110

5.2. Inverted Pendulum on a Cart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

CHAPTER 6: DESIGN OF THE LOWPASS FILTER FOR L1 REFERENCE SYSTEM

PERFORMANCE OPTIMIZATION . . . . . . . . . . . . . . . . . . . . . . . . 126

6.1. Stability Condition for L1 Adaptive Systems . . . . . . . . . . . . . . . . . . . 127

6.2. Filter Design with H∞ Optimization Theory . . . . . . . . . . . . . . . . . . . 135

6.3. Design Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

CHAPTER 7: CONCLUSION AND FUTURE RESEARCH . . . . . . . . . . . . . . . . . . . 143

7.1. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.2. Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

v



LIST OF SYMBOLS

C+ The set of complex numbers whose real parts are strictly positive or zero

C The set of complex numbers

C− The set of complex numbers whose real parts are strictly negative

In The identity matrix with dimension n

N The set of natural numbers including zero

N The set of natural numbers

R The set of real numbers

Rn The set of n dimensional vectors whose entries are in R

Rn×l The set of (n× l) matrices whose entries are in R

R+ The set of positive real numbers

R+ The set of positive real numbers including zero

R[s] The ring of polynomials with coefficients in R

R(s) The field of rational fractions associated with R[s]

Rp×m[s] The ring of p×m matrix polynomials with coefficients in R

Rp×m(s) The set of p×m matrices whose entries are in R(s)

Z The set of integers

1m The vector 1m = [1, · · · , 1] ∈ Rm

detA The determinant of a matrix A

diag (A1, . . . , An) The (block) diagonal matrix whose (i, i)th entry is Ai, 1 ≤ i ≤ n

eig(A) The set of all eigenvalues of a matrix A

λmax(P ) The minimum eigenvalue of a positive (semi-) definite matrix P

λmin(P ) The minimum eigenvalue of a positive (semi-) definite matrix P

normrank(P (s)) The normal rank of P (s) ∈ Rp×m(s)

rank(A) The rank of a matrix A

vi



√
A The upper triangular matrix satisfying Cholesky decomposition, i.e., A =√

A
>√

A

sup(·) The supremum of a set or the essential supremum of a function

A† The generalized inverse of a matrix A

A> The transpose of a matrix A

(x)τ , xτ The truncated signal of x(t) such as xτ (t) = 0 for t > τ , and xτ (t) = x(t) for

t ≤ τ

L (·) The Laplace transform operator

‖·‖ The matrix or vector ∞-norm

‖·‖p The matrix or vector p-norm

vii



CHAPTER. 1

Introduction

Stability of feedback systems and asymptotic tracking of the reference commands are the

main goals in almost all control design problems. The main challenge that the control designers

face stems from the presence of model uncertainties and external disturbances in the system. For

example, flying vehicles are required to operate in large flight envelopes; hence, their control systems

are inevitably affected by modeling uncertainties and unavoidable disturbances. Modern control

techniques have been extensively investigated to ensure closed-loop stability and robust tracking

performance. Adaptive control was motivated by the design of autopilots that could operate for

large flight envelopes with sufficient robustness and desirable performance. Early developments

in adaptive control were validated in experiments without in-depth robustness analysis, which led

to the tragic flight test of the X-15, [1, 2]. The initial work in adaptive control was inspired by

system identification and was focused on the paradigm of combining on-line parameter estimators

and adjustable control laws [3–5]. The stability proofs of adaptive controllers were developed

in [6–12]. As a result, adaptive control has become one of the most popular methods for dealing

with system parametric and structural uncertainties in the last decade. With that said, most of

the real-world applications have been based on full-state feedback measurements. While there

has been a significant effort to develop output feedback extensions, most of the developments

remained focused on square Multi-Input Multi-Output (MIMO) systems, subject to relative degree

constraints manifested by strictly positive real transfer functions for desired system behavior. Such

developments appear to be non-suitable for underactuated systems, where the number of inputs

is less than the number of regulated output variables. In this thesis, we develop adaptive output-

feedback solutions for nonlinear and underactuated systems using L1 adaptive control theory that

has been recognized for its ability to deliver uniform performance with a priori robustness guarantees

[2, 13–17].

1.1. Overview of L1 Adaptive Control

L1 adaptive control theory emerged in 2005 to address performance and robustness issues in

adaptive control systems, [18, 19]. Robustness of model reference adaptive control (MRAC) sys-

tems has been significantly challenged in mid-eighties through the well-known Rohrs’ example [20].

Following that seminal article, projection operator was introduced in [21] to ensure boundedness of

the adaptive estimates of the parameters, leading to boundedness of the closed-loop signals in the

presence of disturbances. Nevertheless, challenges remained with the prediction of the transient

response and robustness margins of the closed-loop adaptive systems.

L1 adaptive control resolves these problems by introducing a new control architecture, with

predictable transient response and robustness guarantees. The main elements of an L1 adaptive
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Figure 1.1: Model reference adaptive control Figure 1.2: L1 adaptive control

controller are a low-pass filter, a state predictor and adaptation laws. In L1 architecture, the low

pass filter plays a central role in preventing high frequency signals entering the control channel. This

low-pass filter decouples the control loop from the estimation loop. Figures 1.1 and 1.2 illustrate

architectural differences between standard Model Reference Adaptive Controllers (MRAC) and L1

adaptive controllers. Unlike MRAC, the L1 controller allows one to use high adaptation gains

without losing robustness, which helps to improve the system performance in the presence of large

and rapid variation of uncertainties. The benefits of L1 adaptive controllers have been extensively

studied in [2,13,22], and it was shown that the L1 architecture leads to guaranteed robustness in the

presence of fast adaptation. As a result, the adaptation gains in the architecture are limited only

by the available hardware, as CPU and sensor sampling. In fact, the filtering structure provides

a trade-off between robustness and performance. L1 adaptive controllers have been successfully

employed in real-world aerospace applications involving performance recovery after challenging

failure events [14–17,23,24].

The fundamental idea of L1 adaptive control is to compensate for uncertainties only within

the bandwidth of the low-pass filter; this strategy seems to be less ambitious than full uncertainty

compensation as MRAC aims to achieve. Similar ideas, in terms of control strategies, are found in

Disturbance Observer Based (DOB) Control or Internal Model Control (IMC), which use distur-

bance estimation in feedback signals to compensate for uncertainties. Compared to L1 adaptive

control, DOB/IMC require explicit system inversion to compute the estimate of the disturbance

signals. This may limit the range of applications, since there are many physical plants for which it

is difficult to obtain the inverse (e.g., non-square Multi-Input Multi-Output (MIMO) systems and

nonlinear plants, to name a few). Moreover, the design process for a low-pass filter should include

the procedure to obtain the inverse system [25–28].

The L1 adaptive architecture considers an auxiliary L1 reference system, which is the closed-

loop system resulting from compensation of uncertainties within the low-pass filter bandwidth. The

signals of the closed-loop L1 adaptive system approximate the signals of this closed-loop reference

system in the presence of fast adaptation. The fast estimation loop achieves an implicit system

inversion, similar to IMC/DOB controllers, yet without explicitly constructing an inverse. This

architectural flexibility of L1 adaptive controller allows to explore a large class of uncertain systems,
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including underactuated systems that cannot be inverted. Since the design of the low-pass filter is

decoupled from the estimation loop, one can account for system delays, control signal saturation

and rate constraints, actuator and sensor dynamics in the estimation loop [29–31].

Figure 1.3: L1 reference system (not imple-
mentable)

Figure 1.4: IMC

Taking advantage of the architectural flexibility of the L1 adaptive control structure, this

dissertation outlines the design of L1 adaptive controllers for nonlinear and non-square MIMO

systems, retaining all the benefits of existing L1 adaptive controllers.

1.2. Literature Review on Adaptive Output Feedback

A pioneering work in adaptive output feedback control was reported by Monopoli in 1974, which

considered the use of auxiliary signals to design asymptotically stable model reference adaptive

controllers for Linear Time-Invariant (LTI) Single-Input Single-Output (SISO) systems [8]. This

work also led to further research on the topic of output-feedback control design [10,12,32]; however

the output-feedback approaches generally are limited by structural assumptions.

Common approaches are based on passivity-type assumptions (e.g., Strictly Positive Realness

(SPR) or its variations) [10,33]. For example, the SPR condition allows one to apply the Kalman-

Yakubovich-Popov (KYP) lemma, which presents an algebraic relationship between the internal

states and output signals, thus admitting output-dependent adaptive laws. Notice that these as-

sumptions limit the range of applications to systems with relative degree one. Several solutions are

found in the literature to handle SISO plants with high relative degree. The authors of [9] bor-

rowed the concept of auxiliary signals and extended the results to SISO systems with higher relative

degree. Solutions based on adaptive back-stepping techniques have been proposed in [12, 34–36],

where the plants were assumed to have a specific recursive structure and high relative degree.

In general, solutions to SISO systems can be straightforwardly extended to MIMO plants

under similar structural requirements [10,32,33,37]. The authors of [32,37] extend the results from

SISO SPR systems to MIMO systems. They introduce a modified interactor in order to relax the

SPR assumptions, thus increasing the applicability of the result to include square MIMO systems

with high relative degree; however, their applications are limited to Linear Time-Invariant (LTI)
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MIMO systems. Similarly, the approaches in [38,39] borrow concepts and tools from [12,34–36] to

address square MIMO systems with high relative degree. In these methods, the improvement in

the transient performance is achieved by introducing a nonlinear damping term, which attenuates

the effect of initial parameter errors. However, one silent drawback is the structural complexity

of the controllers, which make it difficult to implement especially as the relative degree increases.

Moreover, the approaches assume that the uncertainties are parametrized with unknown constants

and output-dependent regressor functions. Their extension to time-varying uncertainties, which

are dependent on the internal states, is not straightforward.

Other related papers in the literature are based on high-gain observers [40–42]. Since the state

errors for the adaptation laws are estimated by the observer, the observer-based methods allow

to use a state-feedback structure, which helps to deal with high relative degree. For example, the

authors of [40] use the structure of the adaptive state-feedback control, and adopt a high-gain

observer to provide error estimation for the adaptation laws. However, the saturation function for

preventing the peaking phenomenon is based on the apriori knowledge of the initial conditions.

When the stability domain is set to be larger, the saturation level needs to be increased, which can

result in unacceptable transients since higher peaking signals are transmitted to the plant [43].

The majority of physical systems exhibits a non-square structure, or becomes underactuated

when control augmentation is performed on a square system [44]. One way to deal with non-square

MIMO plants is to employ solutions for square systems in combination with squaring (-down or -up)

methods [45, 46] Squaring-down methods can be applied to overactuated systems [45] by reducing

the excessive number of inputs; the use of existing square-based controllers in overactuated systems

is not challenging. However, when dealing with underactuated systems, these methods ignore

available measurements, thus limiting the use of output information. The disadvantage of squaring-

down methods becomes even more evident when the system under consideration is non-minimum

phase (e.g. missiles, inverted pendulums, etc.). In general, the extension of solutions for square

systems to underactuated systems is not trivial [47].

Recent work on adaptive output feedback control of underactuated systems can be found

in [48–50]. The authors of [48, 49] present a solution for square systems and its extension to

non-square systems using square-up methods from [46]. They consider the systems in which the

product between the input and output matrices is full rank; this assumption intrinsically implies

that the system must have (vector) relative degree equal to one. The work in [48,49] was extended

in [51] to only deal with systems that have relative degree equal to two. In [50], the authors tackle

underactuated systems by designing an adaptive controller with multi-rate inputs. The approach

requires the lifted system to be Almost SPR (ASPR), and thus may not be applicable to systems

with any relative degree.

In this thesis, we propose adaptive output-feedback solutions for a wider class of nonlinear and

non-square systems. Our solutions are applicable to underactuated systems with arbitrary relative

degree, and provide guaranteed transient and steady-state performance bounds. The solutions in
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this thesis are based on L1 adaptive control theory, which considers a filtering structure providing a

trade-off between robustness and performance. With this architecture, the control loop is decoupled

from the estimation loop, affording high adaptation gains. While L1 adaptive state-feedback con-

trollers (e.g. [13,52]) have been successfully employed in real-world applications [14–17,24,53], the

literature directly concerned with output-feedback implementations is less extensive [30,54–58]. L1

output-feedback solutions for Single-Input Single-Output (SISO) systems can be found in [55,57,58],

and can be easily extended to square MIMO systems. For example, the approach of [55] can be

employed for square nonlinear systems with high relative degree. L1 output feedback using input

predictor [57] and L1 output feedback with model reference control [58] are applicable to square

systems with a more easily verifiable stability condition. However, their extension to underactuated

systems is challenging due to fundamental assumptions that hold only for square systems.

1.3. Main Contributions and Thesis Organization

In this thesis, we develop L1 adaptive output-feedback controllers for a class of nonlinear and

underactuated systems. The main contributions are: (i) analysis of mathematical properties of

multivariable systems, which can be used to develop L1 adaptive controllers for underactuated sys-

tems; (ii) control of nonlinear underactuated systems with arbitrary relative degree; (iii) analytical

results on the performance bounds during the transient and steady-state; and (iv) a filter design

framework, which is suitable for high order systems with frequency-domain specifications.

In Chapter 2, we introduce the relevant definitions and theoretical findings which are used in

this thesis. This chapter includes topics from linear systems theory, definitions on system stability,

and several approaches for uncertainty parametrization. In particular, we introduce a state decom-

position with a verifiable condition for underactuated systems. The result is initially developed

based on the assumption of relative degree one, and later is extended to systems with high relative

degree.

Chapter 3 addresses control problems for underactuated nonlinear systems with relative degree

one. In this chapter, we introduce L1 augmentation of state-feedback and dynamic output-feedback

controllers. The L1 adaptive controllers are designed to recover the nominal performance. The

theoretical results demonstrate that the transient response in the presence of non-zero initialization

error is upper bounded by a strictly decreasing function, and that arbitrary small steady-state

errors can be obtained by allowing high adaptation gains. The results are verified with illustrative

examples.

In Chapter 4, we develop output-feedback solutions for underactuated systems with arbitrary

relative degree. These approaches make the use of a virtual system and a right interactor that

are presented in Chapter 2. The controller employs uncertainty estimation in the virtual system,

which is an auxiliary structure for addressing systems with high relative degree. The performance

of the controller is analyzed. A numerical example is provided to validate the theoretical findings.
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We also derive piecewise constant adaptation laws for L1 adaptive control, which is more suitable

for real-time applications. Analysis is presented to show that arbitrary performance bound can be

assigned by selecting a sufficiently fast sampling rate.

Chapter 5 considers two different applications for underactuated systems. First, we consider

missile-autopilot design applications. The proposed method developed in Chapter 3 is used to

augment the baseline controller with L1 adaptive controller, resulting in the well-known three-loop

autopilot. In this application, we show how the non-minimum phase zeros of the acceleration loop

are addressed. Simulations show that the L1 adaptive controller improves the tracking performance

per theoretical predictions. The second application is the inverted pendulum on a cart. The

dynamics have high relative degree in this case. We demonstrate that the L1 controller developed

in Chapter 4 can stabilize the system with arbitrarily small steady-state bounds. Simulation results

are carried out to show the performance of the proposed controller.

Chapter 6 addresses a low-pass filter design problem for the L1 reference system. The low-pass

filter is a key element in L1 adaptive control, which decides the trade-off between robustness and

performance. In this chapter, a filter design framework to deal with frequency-domain specifications

is proposed towards optimal trade-offs between robustness and performance. This approach avoids

existing conservative designs that may occur in high order systems. We first present a new sufficient

condition to guarantee stability of both the L1 reference system and the closed-loop L1 adaptive

system. With this condition, a filter design framework is proposed with a suitable parametrization

of the filter. The proposed method is more suitable especially for high order systems, in which

frequency-domain specifications are easily incorporated. A design example illustrates the benefits

of the proposed approach.

Finally, this thesis ends with concluding remarks addressing future research in Chapter 7.
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CHAPTER. 2

Mathematical Preliminaries

In this chapter, we introduce a few structural properties of multivariable systems, and review

stability theory. Mathematical results on underactuated systems1 are presented towards obtaining

L1 adaptive output-feedback solutions.

2.1. Linear Systems

Throughout this section, we consider the LTI system, denoted by G:

G : ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), x(0) = x0, (2.1.1)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp with {A,B,C,D} having appropriate dimensions. The

transfer matrix of the system (2.1.1) is given by

G(s) = C(sIn −A)−1B +D, G(s) ∈ Rp×m(s). (2.1.2)

2.1.1. Zeros of Multivariable System

This section starts by briefly reviewing mathematical definitions and tools that are used in

the polynomial approach for multivariable system analysis. Rp×m[s] is the ring of p × m matrix

polynomials with coefficients in R, and Rp×m(s) is the set of p ×m matrices whose entries are in

the field of rational fractions.

Definition 2.1.1 (Degree of a polynomial matrix, [59]). Let P (s) ∈ Rp×m[s] be a p ×m matrix

polynomial. The degree of P (s), denoted by deg(P (s)), is defined as the largest integer k such that

Bk 6= 0, where P (s) = skBk + sk−1Bk−1 + · · ·+ sB1 +B0 with Bl ∈ Rp×m, 0 ≤ l ≤ k and l ∈ Z.

Definition 2.1.2 (Infinite elementary divisor, [59]). Let P (s) ∈ Rp×m[s] and d = deg(P (s)). The

infinite elementary divisors of P (s) are defined as the elementary divisors of the polynomial matrix

sdP (1/s).

Definition 2.1.3 (Unimodular polynomial matrix, [59]). Let U(s) ∈ Rn×n[s]. U(s) is called

unimodular if det(U(s)) = α and α 6= 0. Equivalently, U(s) is unimodular if and only if there

exists U−1(s) ∈ Rn×n[s] such that U(s)U−1(s) = U−1(s)U(s) = In.

Definition 2.1.4 (Normal rank of a polynomial matrix, [59]). Let P (s) ∈ Rp×m[s]. The normal

1Hereafter underactuated system denotes tall or square system.
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rank of P (s), denoted by normrank(P (s)), is defined as

normrank(P (s)) = max{rank(P (s)) : s ∈ C}.

Theorem 2.1.1 (Matrix polynomial decomposition, [60,61]). Let P (s) ∈ Rp×m[s] and r = normrank(P (s)).

Then, there exist unimodular matrices U1(s) ∈ Rp×p and U2(s) ∈ Rm×m[s] such that

SP (s) =

[
Λ(s) 0

0 0

]
= U1(s)P (s)U2(s), (2.1.3)

where Λ(s) = diag (λ1(s), ..., λr(s)); λi(s) ∈ R[s] is a monic polynomial satisfying λi(s)|λi+1(s) for

i = 1, ..., r − 1. SP (s) ∈ Rp×m[s] is called the Smith form of P (s).

In Theorem 2.1.1, λi(s) is uniquely determined by P (s). Moreover, If ∆i(s) is defined as the

monic greatest common divisor of all the i× i non-zero minors of P (s), then λi(s) = ∆i+1(s)/∆i(s)

with ∆1 = 1, and {∆i; 1 ≤ i ≤ r} is the set of determinantal divisors of P (s).

Definition 2.1.5 (Smith zero, [59]). Let P (s) ∈ Rp×m[s] and r = normrank(P (s)). The z0 ∈ C
is called a Smith zero of P (s) if z0 is a root of zΛ =

∏r
i=1 λi(s), where λi(s) is the i-th diagonal

element of Λ(s) given in (2.1.3).

Definition 2.1.6 (Smith-McMillan form, [60,61]). Consider G(s) ∈ Rp×m(s) with r = normrank(G(s)).

Let d(s) ∈ R[s] be the monic least common denominator of all non-zero entries of G(s), and de-

fine N(s) ∈ Rp×m[s] such that G(s) = 1
d(s)N(s); notice that N(s) has the normal rank r. From

Theorem 2.1.1, we can find unimodular matrices U1(s) ∈ Rp×p[s] and U2(s) ∈ Rm×m[s] such that

Γ(s) = U1(s)N(s)U2(s). Let MG(s) = U1(s)G(s)U2(s). Reducing the elements of MG(s) produces

λi(s)

d(s)
=
εi(s)

φi(s)
, i = 1, ..., r, (2.1.4)

where {εi, φi} is coprime for each i ∈ [1, . . . , r]. Then, MG(s) is called the Smith-McMillan form

of G(s), which is given by

MG(s) =

[
ΓG(s) 0

0 0

]
, (2.1.5)

with ΓG(s) = diag
(
ε1(s)
φ1(s) , ...,

εr(s)
φr(s)

)
. Notice that εi(s)|εi+1(s), φi+1(s)|φi(s), i ∈ [1, . . . , r − 1], and

d(s) = φ1(s).

Moreover, Let AG be the set of zeros of εi(s) and φi(s) with i ∈ [1, . . . , r]. Then, for each

α ∈ AG the set of structural indices is defined as {σi;σi ≤ σi+1, i = 1, ..., r − 1}α such that

∏
α∈AG

Mα(s) = diag

(
ε1(s)

φ1(s)
, ...,

εr(s)

φr(s)

)
, Mα(s) = diag ((s− α)σ1 , . . . , (s− α)σr) . (2.1.6)

Definition 2.1.7 (Coprime polynomial matrices, [60]). Nr(s) ∈ Rp×m[s], Dr(s) ∈ Rm×m[s],
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Nl(s) ∈ Rp×m[s], and Dl(s) ∈ Rp×p[s]. Then

• Nr(s) and Dr(s) are called right coprime, if there exist Xr(s) ∈ Rm×p[s] and Yr(s) ∈ Rm×p[s]
such that Xr(s)Nr(s) + Yr(s)Dr(s) = Im.

• Nl(s) and Dl(s) are called left coprime, if there exist Xr(s) ∈ Rp×p[s] and Yr(s) ∈ Rp×p[s]
such that Nl(s)Xl(s) +Dl(s)Yl(s) = Ip.

Now, let G(s) ∈ Rp×m(s). A polynomial fraction description of G(s) is defined as

G(s) = Nr(s)D
−1
r (s) = D−1

l (s)Nl(s), (2.1.7)

where Nr(s) ∈ Rp×m[s], Dr(s) ∈ Rm×m[s] are right coprime, and Nl(s) ∈ Rp×m[s], Dl(s) ∈ Rp×p[s]
are left coprime.

Definition 2.1.8 (Matrix pencil, [59]). Consider the system (2.1.1). The matrix pencil PG(s) ∈
Rp×m[s] of G is defined as

PG(s) = −sPE + PA, PE =

[
In 0

0 0p×m

]
, PA =

[
A B

C D

]
. (2.1.8)

Taking the Laplace transform on G, one has the following relationship:[
−x0

y(s)

]
= (−sPE + PA)

[
x(s)

u(s)

]
=

[
−sIn +A B

C D

][
x(s)

u(s)

]
. (2.1.9)

The matrix pencil of the system G is also called a Rosenbrock’s system matrix. The ma-

trix polynomial PG(s) exhibits the internal structure associated with the state-space model, while

the transfer matrix G(s) describes the structure of reachable and detectable states (input-output

structure). The matrix PG(s) illustrates that frequency-response and state-space methods are inter-

related. [62].

Lemma 2.1.1 ( [63]). Consider the system G given in (2.1.1), and the matrix pencil PG(s) of G.

Then, there exist unitary matrices S ∈ R(n+p)×(n+p), T ∈ R(n+m)×(n+m) (i.e., S>S = SS> = In+p

and T>T = TT> = In+m) such that

S>(−sPE + PA)T =

[
−sEf +Af 0

∗ −sE∞ +A∞

]
, (2.1.10)

where −sEf + Af , and −sE∞ + A∞ contain all the finite and infinite elementary divisors of

−sPE + PA, respectively.

Remark 2.1.1. Lemma 2.1.1 is often called the Schur decomposition lemma.
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Lemma 2.1.2. Consider the system G given in (2.1.1), the matrix pencil PG(s) of G, and its transfer

matrix G(s) given in (2.1.2). Let eig(A) be the set of all eigenvalues of A. Suppose z /∈ eig(A).

Then, rank(PG(z)) = n+ rank(G(z)). Moreover, normrank(PG(s)) = n+ normrank(G(s)) holds.

Proof. Notice that for all z /∈ eig(A)

PG(z) = (−zPE + PA) =

[
I 0

−C(zIn −A)−1 I

][
−zIn +A B

0 G(z)

]

=

[
−zIn +A 0

C G(z)

][
I −(zIn −A)−1B

0 I

]
.

By applying Sylvester’s inequality, it follows that

rank(PG(z)) = n+ rank(G(z)), ∀z /∈ eig(A).

Since normrank(G(s)) = max
z∈C

(rank(G(z))) and normrank(PG(s)) = max
z∈C

(rank(PG(z))), one con-

cludes normrank(PG(s)) = n+ normrank(G(s)). This completes the proof.

Notice that Lemma 2.1.2 does not assume that (A,B,C) is a minimal realization of G(s).

Definition 2.1.9 (Degeneracy). Consider the system G given in (2.1.1). The system is called

degenerate if

rank(PG(s)) < n+ min(m, p), ∀s ∈ C. (2.1.11)

Otherwise, it is called non-degenerate system.

Lemma 2.1.3. The system G in (2.1.1) is degenerate, if and only if normrank(G(s)) < min(m, p)

for all s ∈ C. Therefore, the system is non-degenerate, if and only if normrank(G(s)) = min(m, p).

Proof. Notice that the system is degenerate if and only if Equation (2.1.11) holds. Moreover, a

necessary and sufficient condition for (2.1.11) is normrank(PG(s)) < n+ min(m, p), which, together

with Lemma 2.1.2, leads to normrank(G(s)) < min(m, p).

Notice that degeneracy of the system is based on a rank condition of the matrix pencil PG(s).

However, the same rank condition can be applied to the transfer matrix G(s), which implies that

the minimal system can be degenerate.

Definition 2.1.10 (Markov parameters, [59]). Consider the transfer function G(s) given in (2.1.2),

let M0 = D and Mk = CAkB with k ∈ N. Then, Mk ∈ Rp×m is called a Markov parameter.
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Lemma 2.1.4 ( [59]). Consider the transfer function G(s) given in (2.1.2). Let eig(A) be the set

of all eigenvalues of A. Then, if |s| > max(eig(A)), the following holds:

G(s) = D +

∞∑
k=1

s−kCAk−1B =

∞∑
k=0

s−kMk, (2.1.12)

where Mk is a Markov parameter of G(s) with k ∈ N.

Proof. The proof of Lemma is found in [59].

Remark 2.1.2. The right side of (2.1.12) is called a Laurent series expansion of G(s). Notice

that from Lemma 2.1.4, lims→∞G(s) = D holds.

In SISO systems, the zeros are the roots of the numerator polynomial of the transfer function,

and thus characterize blocking property of some signals through the systems. The extension of this

definition to MIMO systems is not trivial, as in MIMO systems one has a matrix of transfer functions

in the numerator. There have been different definitions introduced for zeros of MIMO systems

[61,62]. The zeros of a MIMO system have played critical role in the decoupling structure [64], high

gain control [65], and invariance of internal states [66, 67], and model matching/factorization [68].

Zeros are important in adaptive systems as well, since many existing techniques are limited if the

system has unstable zeros. In the literature, different definitions of zeros have been introduced

to illustrate structural properties of the MIMO system [60, 69, 70]. The classical MIMO zeros are

transmission zeros, decoupling zeros, system zeros, invairant zeros, and zeros at infinity.

Definition 2.1.11 (Output-zeroing direction). Consider the system in (2.1.1). Let zi ∈ C be a

complex number. Then, the augmented vector
[
x>i u>i

]>
∈ Rn+m is called an output-zeroing

direction associated with zi, if

PG(zi)

[
xi

ui

]
= 0, (2.1.13)

where PG(zi) is the matrix pencil of G evaluated at s = zi.

Notice that the output-zeroing direction can represent transmission-blocking properties, since

Equation (2.1.13) implies that PG(s) loses its local rank at s = zi /∈ eig(A), and therefore from

Lemma 2.1.2 it follows that G(s) also has the rank deficiency at s = zi. Moreover, if the system is

fat (i.e., m > p), then the output-zeroing direction always exists for an infinite number of complex

numbers (in the whole complex plane) regardless of the normal rank of PG(s). However, when the

system is square or tall (i.e., m ≤ p) and is non-degenerate, it only has output-zero direction for a

finite number of complex numbers (which will be called transmission zeros later). If the system is

degenerate and tall or square, then it has zero directions associated with the whole complex plane.

Definition 2.1.12 (Poles and transmission zeros, [60]). Consider a transfer matrix G(s) ∈ Rp×m(s).

Let MG(s) be the Smith-McMillan form of G(s) given in (2.1.5). Let pG(s) =
∏r
i=1 φi(s) be the
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characteristic polynomial, and let zG(s) =
∏r
i=1 εi(s). Then, the root of pG(s) is called a pole of

G(s), and the root of zG(s) is called a zero of G(s) (i.e., pG(p0) = 0 and zG(z0) = 0). The zeros of

zG(s) are called transmission zeros.

Remark 2.1.3. Transmission zero are generalization of the classical definition of zeros in SISO

systems, since they are associated with the reachable and controllable states of the MIMO systems

[69]. Notice that transmission zeros are defined through the transfer matrix of the system.

In MIMO systems, there are some elements which are both poles and zeros of a transfer matrix,

while no such cases are found in SISO systems. In other words, a Smith zero of G(s) (transmission

zero) can also be a pole of G(s). For example, consider

G(s) =

[
1

(s+1)2
1

(s+1)(s+2)
1

(s+1)(s+2)
(s+3)
(s+2)2

]
.

Then, the Smith-McMillan form of G(s) is given by MG(s) = diag
(

1
(s+1)2(s+2)2 , (s+ 2)

)
, and

therefore s = −2 is both a pole and a transmission zero of G(s). Moreover, notice that the number

of transmission zeros is always finite, which is less than or equal to r = normrank(G(s)).

Transmission zeros can be obtained from right/left coprime factorizations of G(s).

Lemma 2.1.5. Consider a transfer matrix G(s) ∈ Rp×m(s). Suppose z0 ∈ C is not a pole of G(s).

Then, z0 ∈ C is a transmission zero if and only if rank(G(z0)) < normrank(G(s)).

Proof. The proof of Lemma 2.1.5 follows from Lemma 2.1.2.

Lemma 2.1.6. Consider a transfer matrix G(s) ∈ Rp×m(s). Let r = normrank(G(s)), and let

G(s) have polynomial fraction representation such that

G(s) = Nr(s)D
−1
r (s) = D−1

l (s)Nl(s), (2.1.14)

where Nr(s) ∈ Rp×m[s], Dr(s) ∈ Rm×m[s] are right coprime, and Nl(s) ∈ Rp×m[s], Dl(s) ∈ Rp×p[s]
are left coprime.

(a) Let ZDr , ZDl be the set of Smith zeros of Dr(s) and Dl(s), respectively. Then, p0 ∈ C is a

pole of G(s) ⇔ det(Dr(p0)) = 0 ⇔ det(Dl(p0)) = 0. Therefore, ZDr = ZDl, which is

equivalent to the set of poles of G(s).

(b) Let ZNr , ZNl be the set of Smith zeros of Nr(s) and Nl(s), respectively. Then, ZNr = ZNl, which

is equivalent to the set of transmission zeros of G(s). Moreover, z0 ∈ C is a transmission zero of

G(s), if and only if rank(Nl(z0)) < normrank(Nl(s)) with r = normrank(Nl(s)). Equivalently,

z0 ∈ C is a transmission zero of G(s), if and only if rank(Nr(z0)) < normrank(Nr(s)) with

r = normrank(Nl(s)).
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Proof. Let MG(s) be the Smith-McMillan form of G(s). Then, G(s) = U1(s)MG(s)U2(s) for some

unimodular matrices U1(s) ∈ Rp×p[s], and U2(s) ∈ Rm×m[s]. Notice that MG(s) = EG(s)R−1
d (s) =

L−1
d (s)EG(s), where

EG(s) =diag
(
ε1(s), · · · , εr(s), 0(p−r)×(m−r)

)
,

Rd(s) =diag (φ1(s), · · · , φr(s), Im−r) ,

Ld(s) =diag (φ1(s), · · · , φr(s), Ip−r) ,

with {εi(s), φi(s); 1 ≤ i ≤ r} being the set of diagonal elements of MG(s) in (2.1.5). Then, one has

G(s) = Nr(s)D
−1
r (s) = D−1

l (s)Nl(s), (2.1.15)

where Nr(s) = U1(s)EG(s), Dr(s) = U2(s)Rd(s), Nl(s) = EG(s)U2(s), and Dl(s) = Ld(s)U1(s)

Since Nr(s), Dr(s) are right coprime, and Nl(s), Dl(s) are left comprime, Equation (2.1.15) is a

coprime factorization of G(s). From the fact that U1(s) and U2(s) are unimodular, it follows that

p0 ∈ C is a pole of G(s) ⇔ det(Dr(p0)) = 0 ⇔ det(Dl(p0)) = 0.

Notice that normrank(Nr(s)) = normrank(Nl(s)) = r. Since the set of Smith zeros of Nr(s) is

ZNr = {z0 ∈ C;φi(z0) = 0, i ∈ [1, . . . , r]}, ZNr is equivalent to the set of transmission zeros of G(s).

The same argument holds for ZNl . This completes the proof.

Lemma 2.1.6 states that the transmission zeros can be obtained from the coprime factorization

of the system. Then one can conclude that the MIMO transmission zeros generalize the SISO zeros,

since Nl(s) and Nr(s) lose their local ranks at the transmission zeros. Notice that Lemma 2.1.6

cannot be used to determine the multiplicities of MIMO transmission zeros; a canonical form of

the transfer matrix is required to decide the multiplicities [71].

Definition 2.1.13 (Decoupling Zeros, [69]). Consider the system G given in (2.1.1).

• A complex number z0 ∈ C is called input decoupling zero, if

rank(DI(z0)) < n, DI(s) =
[
−sIn +A B

]
. (2.1.16)

• A complex number z0 ∈ C is called output decoupling zero, if

rank(DO(z0)) < n, DO(s) =

[
−sIn +A

C

]
. (2.1.17)

• A complex number z0 ∈ C is called input-output decoupling zero, if

rank(DI(z0)) < n, rank(DO(z0)) < n,
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where DI(s), DO(s) are given in (2.1.16) and (2.1.17), respectively.

Remark 2.1.4. Decoupling zeros present the decoupling structure of the MIMO systems: input-

decoupling, output-decoupling, and input-output decoupling. In state-space representation of the

system, these zeros correspond to uncontrollable or unobservable modes of the system [60, 70].

Lemma 2.1.7. Consider the system G in (2.1.1).

• The system has no input decoupling zeros if and only if the controllability matrix

C = [B,AB, . . . , AnB]

has full rank n.

• The system has no output decoupling zeros if and only if the observability matrix

O = [C>, (CA)>, . . . , (CAn−1)>]>

has full rank n.

Proof. The proof of Lemma 2.1.7 is given in [60].

The decoupling zeros are some eigenvalues of the system matrix A. More precisely, the input

decoupling zeros (or output decoupling zeros) correspond to the uncontrollable (or unobservable)

modes among the eigenvalues of A. Moreover, the intersection of the set of all decoupling zeros

and that of all transmission zeros is the empty set, since the transmission zeros are defined on

the controllable-observable subspace of the system. Rosenbrock introduced the set of system zeros

which is the union of all transmission zeros and all decoupling zeros [72]. These system zeros can

be calculated from specially formed minors of the matrix pencil.

Definition 2.1.14 (System zeros, [72]). Consider the matrix pencil PG(s) of the system (2.1.1).

Suppose the normal rank of PG(s) is r > 02. Let mP,k(s) be the r-th order non-zero minor of PG(s),

which is formed by taking the first n rows and n columns of PG(s)3. Let zP(s) be the monic greatest

common divisor of all these minors mP,k(s). Then, the roots of zP(s) are called system zeros (i.e.,

zP(z0) = 0).

Remark 2.1.5. System zeros exhibit the behavior of the system states. System zeros were firstly

introduced in [73], and revised later in [72] to establish the exact set equality for transmission zeros

and decoupling zeros.

2In general, the normal rank of the matrix pencil PG(s) is not the same as that of G(s) (i.e., n ≤ r ≤ min(n +
p, n + m)); see also Lemma 2.1.2.

3Take all rows and columns of (−sIn+A), and add appropriate r−n rows (of [C,D]) and columns (of [B>, D>]>)
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Theorem 2.1.2. Consider the system (2.1.1). Let ZS be the set of system zeros, ZT be the set

of transmission zeros, and ZI , ZO, ZIO be the sets of input-decoupling, output-decoupling, input-

output-decoupling zeros, respectively. Then the following relationships hold:

ZS = ZT ∪ ZI ∪ ZO, |ZS | = |ZT |+ |ZI |+ |ZO| − |ZIO| .

Proof. The proof of Theorem 2.1.2 can be found in [72,73].

Theorem 2.1.3. Consider the system (2.1.1). Let PS be the set of eigenvalues of A, PT be the set of

poles in the transfer matrix of the system (2.1.2), and ZI , ZO, ZIO be the sets of input-decoupling,

output-decoupling, input-output-decoupling zeros, respectively. Then, the following relationships

hold:

PS = PT ∪ ZI ∪ ZO, |PS | = |PT |+ |ZI |+ |ZO| − |ZIO| .

Proof. The proof of Theorem 2.1.3 can be found in [62,72,73].

Definition 2.1.15 (Invariant zeros). Consider the matrix pencil PG(s) of the system (2.1.1). Let

SP be its Smith form and let r = normrank(PG(s)). The invariant zero of the system is defined as

the root z0 ∈ C such that zIP(s) =
∏r
i=1 λi(s), where λi is given in (2.1.3).

Remark 2.1.6. Invariant zeros present the zero-output behaviors of MIMO systems, since they are

associated with the state-space structure in which the system output is identically zero for non-zero

inputs [62].

Lemma 2.1.8. Consider the matrix pencil PG(s) of the system (2.1.1). Then, z0 ∈ C is an

invariant zero if and only if rank(PG(z0)) < normrank(PG(s)).

Proof. The proof of Lemma 2.1.8 immediately follows from the Smith form of PG(s).

From Definitions 2.1.14 and 2.1.15 it follows that the set of invariant zeros is a subset of the

set of system zeros. Moreover, from Lemma 2.1.5 and 2.1.8, the invariant zeros of the system G are

analogous to the transmission zeros of its transfer matrix, since both are Smith zeros of PG(s) and

G(s), respectively. Notice that the Smith zeros of PG(s) can also exhibit the transmission-blocking

properties in the matrix pencil in a similar way as the transmission zeros do in the transfer matrix,

which results in output-zeroing problems.

The relationships among MIMO zeros are established according to the following lemma.

Lemma 2.1.9. Consider the matrix pencil PG(s) of the system (2.1.1), and its transfer matrix

given in (2.1.2). Let ZS, ZV , and ZT be the set of system zeros, invariant zeros, and transmission

zeros, respectively. Then,

(a) ZT ⊆ ZV ⊆ ZS.
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(b) If (A,B,C) is an observable and controllable triple, then ZT = ZV = ZS.

(c) If the system is non-degenerate with m = p, then ZV = ZS.

Proof. The proof of Lemma 2.1.9(a) and 2.1.9(b) directly follow from definitions of each zero. The

proof of Lemma 2.1.9(c) is found in [74].

Lemma 2.1.10. Consider the matrix pencil PG(s) of the system in (2.1.1) and the transfer matrix

in (2.1.2). Assume the system is non-degenerate. Let ZV , ZI , ZO, ZIO be the set of invariant,

input-decoupling, output-decoupling, input-output-decoupling zeros, respectively.

(a) If the system is tall or square (i.e., m ≤ p), then ZO ⊆ ZV , as well as ZIO ⊆ ZV .

(b) If the system is fat or square (i.e., m ≥ p), then ZI ⊆ ZV , as well as ZIO ⊆ ZV .

Proof. Suppose m ≤ p. Since the system is non-degenerate, normrank(PG(s)) = n + m, which

implies that PG(s) can lose its rank only at distinct complex numbers. Now, let z0 ∈ C be an

output-decoupling zero. Notice that the matrix DO(s) in (2.1.17) has the normal rank n, since it

can only lose its local rank at s ∈ eig(A). Let v1 ∈ Rn be a vector of the null space of DO(z0).

Then DO(z0)v1 = 0 holds. Now, let vt = [v>1 , 0]> ∈ Rn+m. Then, PG(z0)vs = 0. Therefore,

PG(z0) < n+m, and z0 is the invariant zero following Lemma 2.1.8. The rest of the proof can be

completed from a dual argument.

Notice that Lemma 2.1.10 is not valid when the system is degenerate. However, the system

zeros always include the decoupling zeros regardless of the degeneracy of the system as it follows

from Theorem 2.1.2.

Lemma 2.1.11. Consider the system given in (2.1.1) with m ≤ p, and its transfer matrix in

(2.1.2). Let ZV , ZT ,ZI , ZO, ZIO be the set of invariant, transmission, input-decoupling, output-

decoupling, input-output-decoupling zeros, respectively. Then, ZV consists of all elements of ZO
and ZT , as well as some elements of (ZI −ZIO).

Proof. The proof of Lemma 2.1.11 is given in [74].

Lemma 2.1.12. Consider the non-degenerate systems G1, G2 with m ≤ p such that

G1 : ẋ1(t) = A1x1(t) +B1u1(t), y1(t) = C1x1(t), x1(0) = 0,

G2 : ẋ2(t) = A2x2(t) +B2u2(t), y2(t) = C2x2(t), x2(0) = 0,
(2.1.18)

where x1(t) ∈ Rn1, x2(t) ∈ Rn2, u1(t) ∈ Rm, u2(t) ∈ Rm, y1(t) ∈ Rm, and y2(t) ∈ Rp. Let G2G1 be

the cascaded system of G1 and G2 with u2(t) = y1(t). Then,

ZV (G2G1) = ZV (G1) ∪ ZV (G1), (2.1.19)
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where ZV (·) denotes the set of invariant zeros of a system.

Proof. Notice that the matrix pencil of G2G1 satisfies

PG2G1(s) = P2(s)P1(s), ∀s ∈ C, (2.1.20)

where

PG2G1(s) =

 −sIn1 +A1 0 B1

B2C1 −sIn2 +A2 0

0 C2 0

 ,

P2(s) =

 In1 0 0

0 −sIn2 +A2 B2

0 C2 0

 , P1(s) =

 −sIn1 +A1 0 B1

0 In2 0

C1 0 0

 .
First, we show that the system G2G1 is non-degenerate by a contradiction argument. Suppose it is

not true. Then, there exists a non-zero vector ξ ∈ Rn1+n2+m such PG2G1(s)ξ = 0 for ∀s ∈ C. Since

P1(s) and P2(s) are full normal column rank, it is not possible that P1(s)P2(s)ξ = 0 for ∀s ∈ C.

Therefore, PG2G1(s) must be full normal column rank, which proves that it is non-degenerate system.

i.e., normrank(PG2G1(s)) = n1 + n2 +m.

Next, we prove Equation (2.1.19). Suppose z0 ∈ ZV (G1)∪ZV (G2). Then, PG1(s = z0) < n1 +m

or PG2(s = z0) < n2 + m holds, which further yields either rank(P1(z0)) < n1 + n2 + m or

rank(P2(z0)) < n1 + n2 + m with PG1(s), PG2(s) being matrix pencils of G1 and G2, respectively.

Therefore, from (2.1.20) it follows that rank(PG2G1(z0)) < n1 + n2 + m, which implies that z0 ∈
ZV (G2G1) and ZV (G1) ∪ ZV (G2) ⊂ ZV (G2G1). Now, let z1 ∈ ZV (G2G1). Since rank(PG2G1(z1)) <

n1 +n+ 2 +m holds, Sylvester’s rank inequality in (2.1.20) leads to rank(P1(z1)) + rank(P2(z2)) <

2(n1 + n2 + m). This implies that one of P1(z1) and P2(z1) must have a rank less than (n1 +

n2 + m). Therefore, either rank(PG1(z1)) < n1 + m or rank(PG1(z1)) < n2 + m holds. Since

normrank(PG1(s)) = n1 +m and normrank(PG2(s)) = n2 +m hold by the hypothesis, it follows that

z1 ∈ ZV (G1) ∪ ZV (G2), which proves ZV (G1) ∪ ZV (G2) ⊃ ZV (G2G1). This completes the proof.

Corollary 2.1.1. Consider the non-degenerate systems G1, G2 given in (2.1.18) with m ≤ p.

Suppose G1 and G2 are controllable and observable systems. Then

ZT (G2G1) ⊂ ZV (G2G1) = ZT (G1) ∪ ZT (G1) (2.1.21)

holds, where ZT (·), ZV (·) are the set of transmission zeros and that of invariant zeros, respectively.

Proof. The proof of Lemma 2.1.1 follows from Lemma 2.1.12, together with the fact that ZV (G1) =

ZT (G1), ZV (G2) = ZT (G2), and ZT (G2G1) ⊂ ZV (G2G1).
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Now, we introduce zeros at infinity which generalize the relative degree for MIMO systems.

Definition 2.1.16 (Zero at infinity (or infinite zero), [68]). Let G(s) ∈ Rp×m(s) be a transfer

matrix. The zeros at infinity (or infinite zeros) of G(s) are the zeros at s = 0 of G(1/s).

Remark 2.1.7. Structural indices of the zeros at infinity (or infinite zeros) are the generalization

of the relative degree in SISO systems. Therefore, the zeros at infinity are used to generalize the

relative degree of SISO systems to MIMO systems [60]. For MIMO systems one considers the

notion of vector relative degree, which will be defined later.

The zero at infinity can be obtained from the Smith-McMillan form of G(1/s) (see Definition

(2.1.6)). Notice that the Smith-McMillan form of G(1/s) provides the set of structural indices for

s = α = 0 (see (2.1.5)), which is often called infinite zero structure of G(s). However, since the

unimodular matrices can destroy the information concerning the infinite frequency structure of the

system, the following lemma was developed to determine the zeros at infinity [70].

Lemma 2.1.13. Let G(s) ∈ Rp×m(s) be a transfer matrix. Let MG(s) be the Smith-McMillan form

of G(s), where

MG(s) =

[
ΓG(s) 0

0 0

]
,

with ΓG(s) = diag (γ1(s), ·, γm(s)); γi(s) = εi(s)/φi(s) ∈ R(s). Then, the infinite zero structure of

G(s) is the set of the relative degrees of γi(s), i ∈ 1, . . . , r.

Proof. See [70] and [75].

Remark 2.1.8. Notice that from the Smith-McMillan form one has G(s) = U1(s)MG(s)U2(s),

where U1(s), U2(s) are unimodular (thus biproper). Therefore, U1(s), U2(s) do not affect the

infinite zero structure. Let KG = {ki = deg(φi(s))− deg(εi(s)); i ∈ 1, . . . , r}. Then, KG represents

the infinite zero structure of G(s).

It is known that the order of infinite zero (i.e., ki ∈ KG) is the number of inherent integrations

between the input and output pairs [76]. Notice that order ki of zero at infinity is equivalent to the

relative degree in SISO systems. Therefore, infinite zeros generalize the relative degree of a SISO

transfer function.

Up to this point we reviewed classical definitions and properties of transmission zeros, decou-

pling zeros, system zeros, invariant zeros, and zeros at infinity. Since the roots of polynomials are

distinct in the complex domain, the number of those zeros is always finite in LTI systems. The

interesting point is that the (classical) invariant zeros do not fully exhibit output-zeroing properties

of the system; notice that the matrix pencil PG(s) can lose its rank for the whole complex plane

while the number of invariant zeros is finite by its definition. This leads to another direction of def-

initions (in a geometric point of view) for MIMO zeros along with different definitions for system’s

non-degeneracy [67].
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2.1.2. Relative Degree and Interactor

In this section, we introduce the vector relative degree of MIMO system which is a generalized

relative degree (called a vector relative degree) in SISO system, and an interactor which cancels

infinite zeros of a proper transfer matrix. This vector relative degree plays an important role in

control system design (e.g., adaptive control [12,32,77], the factorization of transfer matrices with

infinite zeros [75], and sliding mode control [78, 79]). In the literature, the vector relative degree

is defined on square systems. In this thesis, we introduce a generalized definition for non-square

systems.

Definition 2.1.17 (Vector relative degree). Consider the transfer matrix G(s) ∈ Rp×m(s). Let

r > 0 be the normal rank of G(s), and k̄G ∈ Rr be a vector whose entries are elements of KG,

where KG is a set representing the infinite zero structure of G(s)4. Then, kG is called vector (or

generalized) relative degree of G(s). Moreover, G(s) is said to have no infinite zeros, if kG = 0.

Hereafter, we focus on tall or square systems (i.e., underactuated systems), in which the number

of inputs are less than or equal to the number of outputs.

Lemma 2.1.14. Consider P (s) ∈ Rp×m(s). Suppose P (s) is a proper matrix with m ≤ p and

normrank(P (s)) = m. Then, P (s) has no infinite zeros, if and only if P (∞) = lim
s→∞

P (s) has full

rank.

Proof. The proof of Lemma 2.1.14 is given in [75].

Lemma 2.1.15. Consider the transfer matrix G(s) ∈ Rp×m(s) given in (2.1.2) with D = 0.

Suppose G(s) is underactuated (i.e., m ≤ p) with normrank(G(s)) = m. Let kG ∈ Rm be the vector

relative degree such that kG = [k1, . . . , km]>. Then

Mki 6= 0, i = [1, . . . ,m], (2.1.22)

where Mki = CAki−1B is a Markov parameter of G(s).

Proof. From the Smith-McMillan form of G(s) we have G(s) = U1(s)MG(s)U2(s), where U1(s),

U2(s) are unimodular matrices. Notice that from Lemma 2.1.4 it follows that for |s| > max(eig(A))

we have

skiMG(s) =
∞∑
k=0

ski−kU−1
1 (s)MkU

−1
2 (s). (2.1.23)

Suppose Mki = 0. Then from (2.1.23) one has

lim
s→∞

skiMG(s) = 0,

4See Lemma 2.1.13 and Remark 2.1.8.
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which contradicts to the fact that MG(s) has a diagonal element, which is a rational fraction of

polynomials with the relative degree ki. Therefore, Mki 6= 0.

Lemma 2.1.16. Consider the transfer matrix G(s) given in (2.1.2) with D = 0. Consider G(s) ∈
Rp×m(s). Suppose G(s) is underactuated (i.e., m ≤ p) with normrank(G(s)) = m. Then, the vector

relative degree is equal to 1m = [1, . . . , 1] ∈ Rm, if and only if (CB) is full rank.

Proof. Consider the Smith-McMillan form of G(s) such that G(s) = U1(s)MG(s)U2(s), where

U1(s), U2(s) are unimodular matrices. Notice that sG(s) = U1(s)(sMG(s))U2(s) holds. This

implies that the vector relative degree of sMG(s) should be the zero vector (i.e. sG(s) has no

infinite zero structure), since MG(s) only has rational fractions of polynomials with relative degree

1m. Moreover, from Lemma 2.1.4 it follows that lim
s→∞

sG(s) = (CB). Finally, using Lemma 2.1.14

one concludes that (CB) is full rank, since sG(s) has no infinite zero structure. The converse is

straightforward. This completes the proof.

The infinite zeros of the system are defined on its transfer matrix. However, the following

lemma links them to infinite zeros of its matrix pencil; this property can be used to obtain a right

interactor (which will be defined later) by using a matrix pencil approach [80].

Lemma 2.1.17. Consider the matrix pencil of the system G given in (2.1.1), and let G(s) be

its transfer matrix given in (2.1.2). Moreover, suppose G(s) is underactuated (i.e., m ≤ p) with

normrank(G(s)) = m, and the realization of {A,B,C,D} is detectable. Let KG be the infinite

zero structure of G(s) with l = |KG|. Then, the matrix pencil PG(s) has l infinite eigenvalues of

respective orders ki, i ∈ [1, . . . , l].

Proof. The proof of Lemma 2.1.17 is given in [75].

Now, we define an (right) interactor of G(s) as follows.

Definition 2.1.18 (Interactor, [81]). Consider the transfer matrix G(s) ∈ Rp×m(s) given in (2.1.2).

The polynomial matrix R−1(s) is called an (right) interactor of G(s), if

lim
s→∞

G(s)R−1(s) (2.1.24)

is a full rank matrix.

The following lemma demonstrates that one can always find a right interactor for non-degenerate

and underactuated systems.

Theorem 2.1.4 ( [80]). Consider the system G given in (2.1.1) and the transfer matrix G(s) in

(2.1.2). Suppose G(s) is an underactuated system with full normal column rank5. Then there exist

5normrank(G(s)) = m with m ≤ p.
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matrices Ar ∈ Rnr×nr , Br ∈ Rnr×m, Cr ∈ Rm×nr and Dr ∈ Rm×m, such that

PG(s)

[
Tr 0

0 Im

]
=

[
Tr B0

0 D0

][
−sInr +Ar Br

Cr Dr

]
, (2.1.25)

and ∣∣∣∣∣
[
−sInr +Ar Br

Cr Dr

]∣∣∣∣∣ 6= 0, ∀s ∈ C, (2.1.26)

where PG(s) is given in (2.1.8), and Tr ∈ Rn×nr , B0 ∈ Rn×m, D0 ∈ Rp×m are some matrices; T

and D0 have full column rank. Moreover,

(a) Let Kr ∈ Rn×m be any matrix, and let Ār = Ar−KrCz, B̄r = Br−KrDr, and B̄0 = B0+TrKr.

Then, the following holds:

Ḡ(s) = G(s)R(s), G(s) = Ḡ(s)R−1(s),

and

PG(s)

[
Tr 0

0 Im

]
=

[
Tr B̄0

0 D0

][
−sInr + Ār B̄r

Cr Dr

]
,

where Ḡ(s) = C(sIn −A)−1B̄0 +D0, and R(s) = Cr(sInr − Ār)−1B̄r +Dr. Therefore, R−1(s)

is a right interactor of G(s). Moreover, the set of {Ār, B̄r, Cr, Dr} also satisfies (2.1.26); it is

a minimal realization and has no finite invariant zeros.

(b) The zeros of R−1(s) are the eigenvalues of Ār, and Kr can be chosen such that all zeros of

R−1(s) are stable (i.e., the real parts of all eigenvalues of Ār are in the left-half complex plane).

(c) If Kr is chosen such that all eigenvalues of Ār are contained in C−, then the stabilizability of

(A,B) guarantees that of (A, B̄).

(d) If Kr is chosen such the eig(Ār)∩ eig(A) = ∅, then the controllability of (A,B) guarantees that

of (A, B̄).

Proof. The proof of Theorem 2.1.4 is given in [80].

Remark 2.1.9. The authors of [80] used Lemma 2.1.17 in the proof of Theorem 2.1.4, and therefore

one can find an interactor using the system matrix pencil. To obtain the interactor, one can take

the following procedures:

(a) Using a lower triangular Schur decomposition of the matrix pencil G(s) (see [63, Algorithm

4.1]), one obtains S ∈ R(n+p)×(n+p), T ∈ R(n+m)×(n+m), E∞ ∈ Rn∞×n∞, and A∞ ∈ Rn∞×n∞

which satisfy Lemma 2.1.1.
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(b) Let nr = n∞ −m, and define a partitioned matrix E1 ∈ Rn∞×nr such that E∞ = [E1, E2].

(c) From a singular value decomposition on E1, one has U1 ∈ Rn∞×n∞, V1 ∈ Rnr×nr such that

U>1 E1V1 = ΣE1, U>1 U1 = In∞, and V >1 V1 = Inr .

(d) Define U∞ = diag
(
V1Σ−1

r , Im
)
U>1 ∈ Rn∞×n∞, where Σr ∈ Rnr×nr is the diagonal matrix taking

the first nr elements (singular values) of ΣE1.

(e) Let Sm ∈ R(n+p)×(n+p−n∞), S∞ ∈ R(n+p)×n∞, Tm ∈ R(n+m)×(n−nr), T∞ ∈ R(n+m)×n∞ be

partitioned matrices such that S = [Sm, S∞], and T = [Tm, T∞]. In addition, define Su =

S∞U
−1
∞ and Zu = U∞A∞.

(f) Then, Tz ∈ Rn×nr , B0 ∈ Rn×m, and D0 ∈ Rp×m are partitioned matrices satisfying

Su =

[
Tr B0

0 D0

]
∈ R(n+p)×n∞ .

Moreover, Ar ∈ Rnr×nr , Br ∈ Rnr×m, Cr ∈ Rm×nr , and Dr ∈ Rm×m are obtained by partition-

ing Zu such as

Zu =

[
Ar Br

Cr Dr

]
∈ Rn∞×n∞ .

The interactor can be used to find a virtual system which has vector relative degree 1.

2.1.3. State Decomposition

In this section, we consider a state-decomposition to decouple the system dynamics from the

control input direction. The decomposition is valid if the system has vector relative degree 1.

However, it will be shown that the decomposition is always possible in underactuated systems by

introducing a virtual system. Consider the non-degenerate LTI system, denoted by M:

M : ẋ(t) = Amx(t) +Bmux(t), y(t) = Cmx(t), x(0) = x0, (2.1.27)

where x(t) ∈ Rn, ux(t) ∈ Rm, y(t) ∈ Rp with {Am, Bm, Cm} being a stabilizable-detectable triple;

Am being Hurwitz, and Bm, Cm being full rank. Moreover, it is assumed that the system has full

column norm rank with m ≤ p. The transfer matrix of the system (2.1.27) is given by

M(s) = Cm(sIn −Am)−1Bm, M(s) ∈ Rp×m(s). (2.1.28)

From Lemma 2.1.16 it follows that (CmBm) has rank deficiency, if and only if M(s) does not have

the vector relative degree 1m = [1, . . . , 1] ∈ Rm. However, using a right interactor of sM(s), we

can construct a virtual system which has the vector relative degree 1m.

Corollary 2.1.2. Consider the system M given in (2.1.27), and its transfer matrix M(s) defined

in (2.1.28). Suppose (CmBm) is rank deficient. Then, there exist a stable transfer matrix Z(s) and
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matrices, B̄ ∈ Rn×m, Tz ∈ Rn×nz , such that

Z(s) =Cz(sInz −Az)−1Bz +Dz,

M̄(s) =Cm(sIn −Am)−1B̄ = M(s)Z−1(s),
(2.1.29)

and

AmTz =TzAz + B̄Cz, CmAmTz = CmB̄Cz,

Bm =TzBz + B̄Dz, CmBm = CmB̄Dz,
(2.1.30)

where Az ∈ Rnz×nz , Bz ∈ Rnz×m, Cz ∈ Rnz×m, and Dz ∈ Rnz×m satisfy∣∣∣∣∣
[
−sInz +Az Bz

Cz Dz

]∣∣∣∣∣ 6= 0, ∀s ∈ C, (2.1.31)

and Tz is full column rank. Moreover, the following hold:

• (Am, B̄) is stabilizable, and (CmB̄) is full rank.

• If the system M has no unstable invariant zeros, then the system of {Am, B̄, Cm} does not

possess unstable invariant zeros, and M̄(s) has no unstable transmission zeros.

Proof. Notice that (CmBm) = lim
s→∞

(sM(s)). Let G(s) = sM(s), and G(s) = C(sIn − A)−1B + D

with A = Am, B = Bm, C = CmAm, and D = CmBm. Since {Am, Bm, Cm} is stabilizable-

detectable, and Am is Hurwitz, the triple {A,B,C} is also stabilizable and detectable. Therefore,

from Theorem 2.1.4(a) it follows that there exists a right interactor Z−1(s) (having the stable Z(s)),

which satisfies (2.1.31) and[
−sIn +Am Bm

CmAm CmBm

][
Tz 0

0 Im

]
=

[
Tz B̄

0 D̄

][
−sInz +Az Bz

Cz Dz

]
, (2.1.32)

with Tz ∈ Rn×nz , B̄ ∈ Rn×m, and D̄ ∈ Rp×m; (Am, B̄) is stabilizable. Since Equation (2.1.32)

holds, one has

(D̄ − CmB̄)CzA
−1
z = CmTz, (D̄ − CmB̄)Dz = CmTzBz,

which further leads to

(D̄ − CmB̄)(Dz − CzA−1
z Bz) = 0. (2.1.33)

Notice that both (Dz−CzA−1
z Bz) (see Equation (2.1.31)) and D̄ are full rank (see Theorem 2.1.4).

From (2.1.33) it follows that D̄ = CmB̄ holds. Therefore, (CmB̄) is full rank, and Equation (2.1.30)

follows from (2.1.32).

Finally, Suppose that the system M has no unstable invariant zeros. Let M̄ be the system

23



with (Am, B̄, Cm). Notice that (Am, B̄, Cm) is a stabilizable-detectable triple. Therefore, if one

can show that M̄(s) has no unstable transmission zeros, then all invariant zeros of M̄ are in C−

(see Lemma 2.1.11). Since M(s) = M̄(s)Z(s) holds, the set of invariant zeros of M must contain

transmission zeros of M̄(s) and Z(s) (see Lemma 2.1.12). By the hypothesis, M has no unstable

invariant zeros, which implies that M̄(s) has no unstable transmission zeros. This completes the

proof.

Remark 2.1.10. Notice that if (CmBm) is full rank, then Z(s) = Im. Moreover, if (Am, Bm, Cm)

is a controllable-observable triple, then (Am, B̄) can be controllable with an appropriate choice of

Z(s) (see Theorem 2.1.4).

Notice that M(s) = M̄(s)Z(s) implies that MIMO systems with arbitrary relative degree can

be represented with cascaded connections of M̄(s) and Z(s), where M̄(s) is a virtual system with the

vector relative degree 1m, and Z(s) is the stable inverse of the right interactor of sM(s). Although

this representation only exhibits an input-output connection, one can establish the relationship

between the states of the original system and those of the virtual system, since Corollary 2.1.2

relies on the state-space structure (matrix pencil).

Corollary 2.1.3. Consider the system M given in (2.1.27) with a non-zero initial condition x0 ∈
Rn. Let xv(t) ∈ Rn and xz(t) ∈ Rnz be the states of the following cascaded system:

ẋz(t) =Azxz(t) +Bzux(t), uv(t) = Czxz(t) +Dzux(t),

ẋv(t) =Amxv(t) + B̄uv(t), yv(t) = Cmxv(t),

xv(0) =x0, xz(0) = 0, (2.1.34)

where yv(t) ∈ Rp is the output vector, and Az ∈ Rnz×nz , Bz ∈ Rnz×m, Cz ∈ Rm×nz , Dz ∈ Rm×m,

B̄ ∈ Rn×m are defined in Corollary 2.1.2. Then, for all t ≥ 0

x(t) = xv(t) + Tzxz(t), yv(t) = y(t), (2.1.35)

where Tz ∈ Rn×nz is full column rank satisfying (2.1.30).

Proof. Notice that Equation (2.1.34) can be rewritten as[
ẋv(t)

ẋz(t)

]
=

[
Am B̄Cz

0 Az

][
xv(t)

xz(t)

]
+

[
B̄Dz

Bz

]
ux(t),

yv(t) =
[
Cm 0

] [ xv(t)

xz(t)

]
. (2.1.36)

Now, let [x>t (t), x>z (t)]> = Tt[x
>
v (t), x>z (t)]> with Tt =

[
In Tz

0 Inz

]
. By applying a similarity
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transform with Tt, from (2.1.36) it follows, together with (2.1.30), that

ẋz(t) =Azxt(t) +Bzux(t),

ẋt(t) =Amxt(t) +Bmux(t), yv(t) = Cmxt(t),

with xt(0) = x0, and xz(0) = 0. This implies that x(t) = xt(t) for all t ≥ 0. Therefore, Equation

(2.1.35) holds, which completes the proof.

Corollary 2.1.3 provides a relationship between the states of the original system and those of

its cascaded representation, i.e. xv(t) is the state vector of the virtual system and xz(t) is the state

vector of the inverse of the right interactor. Up to this point, we have shown that any underactuated

MIMO system can be rewritten as a cascaded representation of the virtual system and the inverse of

an interactor. Moreover, the virtual system has relative degree one. Next we introduce important

lemmas which are related to the relative degree.

Lemma 2.1.18. Consider the system M in (2.1.27) with m ≤ p. Then (CmBm) is full rank, if

and only if there is a matrix H ∈ Rn×p such that (In −HCm)Bm = 0. Moreover, one such H can

be found as follows

H = Bm (CmBm)† ,

where (CmBm)† is the generalized left inverse of (CmBm).

Proof. Since rank(CmBm) = rank(Bm), the proof of Lemma 2.1.18 follows from [82]. More-

over, it is easy to verify that H = Bm(CmBm)† is a solution of (In − HCm)Bm = 0, since

(CmBm)†(CmBm) = Im.

Notice that (In −HCm) ∈ Rn×n is a projection matrix, which projects Rn onto the subspace

orthogonal to the range of Bm. The states x(t) can be decomposed into x(t) = v(t) +Hy(t), where

v(t) = (In −HCm)x(t).

Lemma 2.1.19. Given the system M in (2.1.27) along with m ≤ p, suppose M(s) does not have

unstable invariant zeros and (CmBm) is full rank. Let H = Bm (CmBm)†. Then, the following

relationships hold:

• If there is an unobservable mode of the pair ((In −HCm)Am, Cm), it is an invariant zero of

the system M(s).

• Moreover, ((In −HCm)Am, Cm) is detectable and there exists a gain Kv ∈ Rn×p such that

Av = ((In −HCm)Am +KvCm) is Hurwitz.

Proof. Suppose zi ∈ C is an unobservable mode of ((In −HCm)Am, Cm), where H = Bm(CmBm)†.

We will show that zi is a stable invariant zero of M(s). By Popov-Belevitch-Hautus observability

25



test [60, Chapter 3], there exists a non-zero vector ξi ∈ Rn such that

(In −HCm)Amξi = ziξi, Cmξi = 0, (2.1.37)

which yields

(ziIn −Am) ξi +HCmAmξi = 0. (2.1.38)

Now, let ςi ∈ Rm be ςi = (CmBm)†CmAmξi. Then, it follows

Bmςi = Bm(CmBm)†CmAmξi = HCmAmξi. (2.1.39)

By combining (2.1.37), (2.1.38) and (2.1.39), it follows that

PM (zi)

[
−ξi
ςi

]
=

[
0

0

]
, PM (zi) =

[
−ziIn +Am Bm

Cm 0

]
, (2.1.40)

and [−ξ>i , ς>i ]> 6= 0. Notice that rank(PM (zi)) < n+m in (2.1.40). Therefore, applying Lemmas

2.1.3 and 2.1.5 implies that zi must be an invariant zero of M(s). Finally, since M(s) does not

have unstable invariant zeros, zi ∈ C− holds, which yields that ((In −HCm)Am, Cm) is detectable.

This completes the proof.

The following lemma shows the invariant property of the rank condition on (CmBm).

Lemma 2.1.20. Let (Ap, Bp, Cp) is a stabilizable-detectable triple of the non-degenerate MIMO

system that represents an open-loop plant. Let Gp(s) =
yp(s)
up(s) = Cp(sI−Ap)−1Bp. Define Kc(s) as

its dynamic controller with up(s) = Kc(s)yp(s). Let (Ac, Bc1 , Cc, Dc) be a realization of Kc(s) with

appropriate dimensions such that (Aa, Ba, Ca) defined as

Aa =

[
Ap +BpDcCp BpCc

Bc1Cp Ac

]
, Ba =

[
Bp

0

]
, Ca =

[
Cp 0

0 I

]
, (2.1.41)

is a stabilizable-detectable realization of the augmented input sensitivity function Ma(s) = Ca(sI−
Aa)

−1Ba. Further, assume (CpBp) is full rank. Then the following hold:

• (CaBa) is full rank.

• If z ∈ C is an invariant zero of (Aa, Ba, Ca), it is the invariant zero of (Ap, Bp, Cp).

Proof. By the definitions of Ba and Ca, it is obvious that (CaBa) is full rank. Since the system

M(s) is non-degenerate, the transmission zeros of the system can be obtained from the matrix

pencil (Lemmas 2.1.3 and 2.1.5). Now, suppose z ∈ C is a transmission zero of M(s). It follows
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from Lemmas 2.1.3 and 2.1.5 that there exists a non-zero vector ξ> =
[
ξ1
>, ξ2

>, ξ3
>] satisfying

zI−Ap −BpDcCp −BpCc Bp

−Bc1Cp λzI−Ac 0

−Cp 0 0

0 −I 0


 ξ1

ξ2

ξ3

 =


0

0

0

0

 . (2.1.42)

Notice that ξ2 = 0 and Cpξ1 = 0. Therefore, Equation (2.1.42) can be reduced to

PMa(z)

[
−ξ1

ξ3

]
= 0, PMa(z) =

[
−zI +Ap Bp

Cp 0

]
.

Since [ξ>1 , ξ
>
3 ] is a non-zero vector, applying Lemmas 2.1.3 and 2.1.5 concludes that z is the invariant

zero of the system Gp(s). This completes the proof.

Remark 2.1.11. Suppose that {Ap, Bp, Cp} is a minimal realization of a given open-loop transfer

matrix Gp(s). It is well-known that any dynamic controller cannot move open-loop transmission

zeros in the closed-loop system, but may add transmission zeros identical to the poles of the dynamic

controller. However, Lemma 2.1.20 states that the input sensitivity function augmented with the

controller has only open-loop transmission zeros.

2.2. System Stability

In this section, we review stability of nonlinear systems. We begin by comparison functions

which are denoted by K, K∞, and KL class functions.

Definition 2.2.1 ( [83]). Let a > 0 be a positive constant.

(a) A function α : [0, a) → R+ is called a class K function, if α(0) = 0 and α(·) is strictly

increasing.

(b) A function α : R+ → R+ is called a class K∞-class function, if α(·) is in class K and is radially

unbounded (i.e., lim
r→∞

α(r) =∞).

(c) A function β : R+ × [0, a)→ R+ is called a class KL function, if it verifies:

• for each t ∈ R+, β(t, r) is in class K with respect to r;

• for each r ∈ [0, a), β(t, r) is decreasing with respect to t;

• for each r ∈ [0, a), β(t, r)→ 0 as t→∞.

(d) A function β : R+ × R+ → R+ is called a class KL∞ function, if it satisfies:

• for each t ∈ R+, β(t, r) is in class KL with respect to r;
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• for each r ∈ R+, β(t, r) is decreasing with respect to t;

• for each r ∈ R+, β(t, r)→ 0 as t→∞.

2.2.1. Lp stability

Lp stability theory is essential to analyze the stability of MIMO systems. We consider the

input-output map of the system given by y = Hu, where H is the mapping, and u, y are the input

and output signals, respectively. We first define the spaces of signals

Definition 2.2.2 ( [84, 85]). The Ln(p,q) space is defined as the set of measurable functions such

that

Ln(p,q) = {f : R→ Rn; ‖f‖L(p,q)
<∞},

where ‖·‖L(p,q)
is given by

‖f‖L(p,q)
=

∫
R

‖f‖pqdt

1/p

, 1 ≤ p ≤ ∞,

‖f‖L(∞,q) = sup
R
‖f(t)‖q .

Moreover, if p = q, then we simply use Lnp to denote Ln(p,p).

Remark 2.2.1. In Definition 2.2.2, ‖·‖q is a spatial norm (i.e., for each t ∈ R, ‖f(t)‖q is inter-

preted as a vector q-norm in Rn).

The definition of Lp stability is given as follows.

Definition 2.2.3 ( [83, 85]). Consider the following input-output map H : Lm(p,r) → L
l
(q,s) with

y = Hu, where u(t) ∈ Lm(p,r) and y(t) ∈ Ll(q,s); the map H is not necessarily linear. The map H is

called L-stable if there exist a class K function α, defined on [0,∞), and a nonnegative constant β

such that

‖(Hu)τ‖L(r,s)
≤ α(‖uτ‖L(p,q)

) + β, ∀u ∈ Lm(p,r), ∀τ ∈ [0,∞).

Moreover, H is called finite-gain L-stable if there exist nonnegative constants γ and β such that

‖(Hu)τ‖L(r,s)
≤ γ‖uτ‖L(p,q)

+ β, ∀u ∈ Lm(p,r), ∀τ ∈ [0,∞). (2.2.1)

Remark 2.2.2. The terms L2 stability and L∞ stability will be used for p = q = r = s = 2,

and p = q = r = s = ∞, respectively. The L∞ stability is often referred to as Bounded-Input

Bounded-Output (BIBO) stability.

When H is a linear map, the L stability theory can be connected to the linear operator theory.
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Definition 2.2.4 ( [85]). Let O : u→ y be a linear operator between L spaces. The induced norm

(operator norm) of O is defined as

‖O‖(p,r)→(q,s) = sup
‖Ou‖L(q,s)

‖u‖L(p,r)

.

Moreover, if ‖O‖(p,r)→(q,s) < ∞, then the operator O is called a bounded (or continuous) linear

operator.

Now we focus on LTI MIMO systems. Let a stable and strictly proper LTI system (denoted

by G0) be :

G0 : ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), x(0) = 0, (2.2.2)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rl with {A,B,C} having appropriate dimensions. Notice that

the LTI system of interest has zero initial condition in Lp stability definitions. The LTI system G0

can be regarded as a linear convolution operator G0 : u(t)→ y(t) such that

y = G0u =

∞∫
0

G0(t− τ)u(τ)dτ, (2.2.3)

where G0(t) is the impulse matrix defined as

G0(t) =

0, t < 0,

CeAtB, t ≥ 0.
(2.2.4)

Remark 2.2.3. Later we will see that a stable LTI system can be considered as a bounded linear

operator. However, linear operators and LTI systems need to be distinguished in few different

aspects: (1) the operators need to be defined between some function (signal) spaces, while LTI

systems do not; (2) there are LTI systems which do not belong to the set of bounded operators (e.g.

unstable systems); (3) special considerations are required when dealing with the case of LTI systems

with D 6= 0 (proper LTI systems), since the impulse matrices of proper systems are not matrix

functions in a conventional notion. Notice that the space of bounded linear operators is larger than

the set of stable LTI systems.

Theorem 2.2.1 ( [86]). Given the LTI system (as a linear convolution operator) G0 : Lm(p,r) → L
l
(q,s)

in (2.2.3), the following claims hold:

(a) Let p = r = 2 and q = s = 2. Then, ‖G0‖(2,2)→(2,2) = sup
ω∈R

σmax(G0(jω)), where G0(jω) =

C(jω −A)−1B.

(b) Let p = 1, r ∈ [1,∞], and q = s = 2. Then ‖G0‖(1,r)→(2,2) = ‖P 1/2‖r→2, where P = B>WoB

with Wo being the observability Grammian (i.e., A>Wo + WoA + C>C = 0); ‖·‖r→2 is the

matrix induced norm from r to 2.
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(c) Let p = r = 2, q =∞, and s ∈ [1,∞]. Then, ‖G0‖(2,2)→(∞,s) = ‖Q1/2‖s̄→2, where Q = C>WcC

with Wc being the controllability Grammian (i.e., AWc + WcA
> + BB> = 0); ‖·‖s̄→2 is the

matrix induced norm from s̄ to 2, where s̄ is the conjugate of s such that 1/s+ 1/s̄ = 1.

(d) Let p = 1, r ∈ [1,∞], q = ∞, and s ∈ [1,∞]. Then, ‖G0‖(1,r)→(∞,s) = sup
t≥0
‖G0(t)‖r→s, where

G0(t) is the impulse matrix given in (2.2.4); ‖·‖r→s is the matrix induced norm from r to s.

(e) Let p = r ∈ [1,∞], q = s = ∞. Then, ‖G0‖(r,r)→(∞,∞) = max
1≤i≤l

‖Rowi(Ĝ0)‖r̄, where Rowi(·)

takes the ith row of the matrix argument, Ĝ0 = ‖G0(i, j)‖L(p̄,1)
, and p̄ is the conjugate of p such

that 1/p+ 1/p̄ = 1; G0(i, j) is the (i, j) element of the impulse matrix given in (2.2.4)

Proof. The proof of Theorem 2.2.1 is found in [86].

Remark 2.2.4. The interpretation of several induced norms follows:

(a) The induced norm ‖G0‖(2,2)→(2,2) is the system gain between energy signals (i.e. L2-norm

bounded signals), which is known as the H∞ system norm. This induced norm can be used for

the worst-case disturbance attenuation in terms of signal energy.

(b) The induced norm ‖G0‖(2,2)→(∞,∞) denotes the system gain for finite energy signals, which is

known as the H2 system norm. This induced norm is often used to describe the worst-case peak

amplitude due to finite energy signals.

(c) The induced norm ‖G0‖(∞,∞)→(∞,∞) indicates the system gain for bounded signals, which is

known as the L1 system norm. This induced norm is often used to quantify the worst-case

peak-to-peak gain.

Theorem 2.2.1 implies that a (strictly proper) LTI system can be regarded as an element in

the subspace of (matrix) functions with bounded L1 norms. In other words, the operator space

consisting of (strictly proper) LTI systems has one-to-one correspondence to the subspace of L1,

which is composed of the corresponding impulse matrix functions.

Definition 2.2.5 (L1 norm, H∞ norm). Let G be the system representing the map from inputs to

outputs. Then, the L1-norm and H∞-norm of the system G are defined as the following induced

norms:

‖G‖L1 = ‖G‖(∞,∞)→(∞,∞), ‖G‖H∞ = ‖G‖(2,2)→(2,2).

Remark 2.2.5. For a strictly proper LTI SISO system G0, ‖G0‖L1 = ‖g0‖L(1,1)
holds, where g0(t)

is the impulse response of the system, i.e. the system’s L1-norm is the L1-norm of its impulse

response. However, since LTI MIMO systems have an impulse matrix, the L1 norm of the matrix

function needs to be clarified. Let G0(t) = [gij(t)]1≤i≤p, 1≤j≤q and define ḡi : R → Rm, such as
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ḡi(t) = [gi1(t), . . . , gim(t)]> with i ∈ [1, . . . , p] (i.e., G0(t) = [ḡ1(t), . . . , ḡp(t)]
>). Then, the following

are equivalent:

‖G0‖L1 = ‖G0‖(∞,∞)→(∞,∞)

= ‖
[
‖ḡ1‖L(1,1)

, ‖ḡ2‖L(1,1)
, . . . , ‖ḡp‖L(1,1)

]
‖ = max

1≤i≤p
‖ḡi‖L(1,1)

= max
1≤i≤p

∫ ∞
0

 m∑
j=1

|gij(τ)|

 dτ = max
1≤i≤p

m∑
j=1

‖gij‖L(1,1)

Notice that if the impulse matrix is a row vector signal (fat system), then ‖G0‖L1
= ‖g‖L(1,1)

holds;

however, if it is a column vector (tall system), then ‖G0‖L1
6= ‖g‖L(1,1)

.

Remark 2.2.6. The H∞-norm of LTI systems can be calculated from the maximal singular value,

[87]:

‖G(s)‖H∞ = sup
ω
σmax(G(jω)).

Notice that if an LTI system has a non-zero D matrix, its impulse matrix is not well-defined.

However the system norm (induced norm) still can be introduced from Definition 2.2.4 in a operator-

theoretic way. This technical issue can be resolved by introducing distribution theory [88], where an

impulse matrix of a proper LTI system is treated as a distribution; the Lp norm of the distribution

is identical to the induced norm of the proper LTI system.

Definition 2.2.6 (Banach algebra, [89]). Suppose g(t) is a distribution with support in the interval

[0,∞) of the form

g(t) =
∞∑
i=0

giδ(t− ti) + g0(t), (2.2.5)

where 0 ≤ t0 < t1 < · · · , δ(·) represents the unit impulse distribution, {gi; i ∈ N} is a sequence,

and g0(·) is a Lebesgue measurable function. The set A consists of all distributions g of the form

(2.2.5) such that

‖g‖A =

∞∫
0

g0(τ)dτ +
∞∑
i=0

|gi| <∞.

The space A equipped with ‖·‖A in Definition 2.2.6 consists of systems with norm-bounded

impulses (i.e. finite A-norm); in addition, ‖g‖A = sup
‖Gu‖L∞
‖u‖L∞

holds, where G is a convolution

operator with a distribution g(t). Therefore, G can represent proper and stable LTI systems. More

precisely, for a convolution operator G the induced norm is equivalent to the A-norm of its impulse

distribution. Since proper and stable LTI systems can be represented with impulse distributions,

G can be used to represent proper and stable LTI systems; notice that the space A can include the

set of proper and stable LTI systems, while the L1 space does not. The L1 norm of the LTI MIMO
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system G given in (2.1.1) can be computed as follows:

‖G‖L1 = ‖G0‖L1 + ‖D‖∞,

where ‖G0‖L1 is the L1norm of the system, which is obtained from assuming D = 0. i.e.

‖G0‖L1 = max
1≤i≤p

∫ ∞
0

 m∑
j=1

|gij(τ)|

 dτ,

where gij(t) is the (i, j) element of G0(t) = CeAtB.

Remark 2.2.7. A computation algorithm for the L1-norm with high precision can be found in [90].

A set of bounded linear operators forms a Banach Algebra A equipped with an induced norm

[84], i.e. for any G1 ∈ A and G2 ∈ A the following sub-multiplicative hold:

‖G1 · G2‖op ≤ ‖G1‖op‖G2‖op,

where ‖·‖op is an induced norm. The operator multiplication · is a continuous map A×A → A; in

general, · is a composition of two operators. Therefore, one has

‖G1 · G2‖L1 ≤ ‖G1‖L1‖G2‖L1 .

Notice that since the LTI systems having boundedH∞ norm are always Bounded-Input/Bounded-

Output stable (bounded L1-norm), there should be a relationship between these two norms.

Lemma 2.2.1 ( [91], [92]). Suppose G(s) is a stable system, and let n be a McMillan degree6.

1. If G(s) ∈ R[s] is a strictly proper SISO system, then

‖G(s)‖H∞ ≤ ‖G(s)‖L1
≤ 2n ‖G(s)‖H∞ , (2.2.6)

where n is a McMillan degree (the dimension of states in a minimal realization).

2. If G(s) ∈ R[s] is a proper SISO system, then

‖G(s)‖H∞ ≤ ‖G(s)‖L1
≤ (2n+ 1) ‖G(s)‖H∞ . (2.2.7)

3. If G(s) ∈ Rp×m[s] is a strictly proper MIMO system, then

‖G(s)‖H∞ ≤
√
p ‖G(s)‖L1

, ‖G(s)‖L1
≤ 2n

√
m ‖G(s)‖H∞ . (2.2.8)

6The dimension of states in a minimal realization.
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4. If G(s) ∈ Rp×m[s] is a proper MIMO system, then

‖G(s)‖H∞ ≤
√
p ‖G(s)‖L1

, ‖G(s)‖L1
≤ (2n+ 1)

√
m ‖G(s)‖H∞ . (2.2.9)

Proof. The proof of Equations (2.2.6) and (2.2.7)(b) are given in [92, 93]. In Equation (2.2.8), the

first inequalities are proven in [91]. Since Equation (2.2.9) follows straightforwardly from (2.2.8),

we only prove the second inequality in (2.2.8) with the same idea as in [93]:∫ ∞
0

eA
>τC>CeAτdτ =

∫ ∞
0

eA
>τBB>eAτdτ = diag (σ1, . . . , σn) , (2.2.10)

where σi is a Hankel singular value [92]. Let C = [c>1 , c
>
2 , . . . , c

>
p ]> and B = [b1, b2, . . . , bm], where

ci ∈ Rn and bi ∈ Rm are row and column vectors, respectively; i ∈ [1, . . . , p] and j ∈ [1, . . . ,m]. For

each k ∈ [1, . . . , n], i ∈ [1, . . . , p], and j ∈ [1, . . . ,m] define

φjk(t) =
1
√
σk
u>k e

Atbj ∈ R, (2.2.11)

and

ψik(t) =
1
√
σk
cie

Atuk ∈ R, (2.2.12)

where uk ∈ Rn is a unit column vector with the ith element being 1. Notice that ψik(t) satisfies

p∑
i=1

ψ2
ik(t) =

p∑
i=1

ψ>ik(t)ψik(t) =
1

σk
u>k e

A>t

(
p∑
i=1

c>i ci

)
eAtuk

=
1

σk
u>k e

A>tC>CeAtuk,

(2.2.13)

which, together with (2.2.10), leads to

∫ ∞
0

p∑
i=1

ψ2
ik(τ)dτ =

1

σk
u>k

(∫ ∞
0

eA
>τC>CeAτdτ

)
uk = 1, k ∈ [1, . . . , n]. (2.2.14)

This implies that
∑m

i=1 (‖ψik‖L2
)2 = 1 for i ∈ [1, . . . , p] and k ∈ [1, . . . , n]. Similarly, since

m∑
j=1

φ2
jk(t) =

1

σk
u>k e

AtBB>CeAtuk,

one has ∫ ∞
0

m∑
j=1

φ2
jk(τ)dτ =

1

σk
u>k

(∫ ∞
0

eAτBB>CeAτdτ

)
uk = 1, k ∈ [1, . . . , n], (2.2.15)

which leads to
∑m

j=1 (‖φjk‖L2
)2 = 1 for any k ∈ [1, . . . , n].
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Now, let G(t) be the impulse matrix of G(s), which is given by

G(t) = CeAtB = [gij(t)] 1≤i≤p
1≤j≤m

, gij(t) = cie
Atbj . (2.2.16)

Since
∑n

k=1 uku
>
k = In, it follows that

n∑
k=1

σkψik

(
t

2

)
φjk

(
t

2

)
= cie

Atbj = gij(t), i ∈ [1, . . . , p], ∈ [1, . . . ,m]. (2.2.17)

Moreover, for each i ∈ [1, . . . , p], we have

m∑
j=1

∫ ∞
0
|gij(τ)| dτ =

m∑
j=1

∫ ∞
0

∣∣∣∣∣
n∑
k=1

σkψik

(τ
2

)
φjk

(τ
2

)∣∣∣∣∣ dτ
≤ 2

n∑
k=1

m∑
j=1

σk

∫ ∞
0
|ηikj(τ)| dτ

≤ 2

n∑
k=1

m∑
j=1

σk ‖ηikj‖L1
,

(2.2.18)

where ηijk = ηikj(t) = ψik(t)φjk(t). Notice that from the definitions of ψik(τ) and φjk(τ), ηikj ∈ L1

holds, and therefore, by applying Holder inequality [84], one has

‖ηijk‖L1
≤ ‖ψik‖L2

‖φjk‖L2
. (2.2.19)

Moreover, Cauchy-Schwarz inequality, together with the fact that
∑m

j=1 (‖φjk‖L2
)2 = 1, implies

that
m∑
j=1

‖φjk‖L2
≤
√
m

 m∑
j=1

(‖φjk‖L2
)2

1/2

=
√
m. (2.2.20)

Now, combining (2.2.18)-(2.2.20) yields

m∑
j=1

∫ ∞
0
|gij(τ)| dτ = 2

√
m

n∑
k=1

σk ‖ψik‖L2
, i ∈ [1, . . . , p], (2.2.21)

which further leads to

‖G(s)‖L1
≤ 2
√
m max

1≤i≤p

(
n∑
k=1

σk ‖ψik‖L2

)
. (2.2.22)

Since
∑p

j=1 (‖φjk‖L2
)2 = 1 holds, it follow that for each k ∈ [1, . . . , n]

‖φjk‖2L2
≤ 1, ∀j ∈ [1, . . . , p], (2.2.23)
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which, together with (2.2.22), yields

‖G(s)‖L1
≤
√
m

n∑
k=1

σk. (2.2.24)

Finally, since σk ≥ ‖G(s)‖H∞ (Hankel singular value theorem, [87]), k ∈ [1, . . . , n] holds, we obtain

‖G(s)‖L1
≤ 2n

√
m ‖G(s)‖H∞ . (2.2.25)

This completes the proof.

Notice that the inequalities in Lemma 2.2.1 are not sharp. Moreover, one expects that the

difference between H∞-norm and L∞-norm would be increasing, as the order of the system grows.

Finally, we introduce an important lemma from H∞ theory.

Lemma 2.2.2 ( [87]). Let G(s) ∈ Rp×m be a MIMO system with G(s) = D + C(sI − A)B;

{A,B,C,D} is a realization of G(s).

(a) Suppose A ∈ Rn×n is Hurwitz. Then, ‖G(s)‖H∞ < γ if and only if

(1) R = γ2In −D>D � 0,

(2) and there exists P = P> � 0 such that P (A + BR−1D>C) + (A + BR−1D>C)>P +

PBR−1B>P + C>(In +DR−1D>)C ≺ 0 with (A+BR−1(D>C +B>P )) being Hurwitz.

(b) Suppose A ∈ Rn×n is Hurwitz. Then, ‖G(s)‖H∞ ≤ γ if and only if there exist real matrices

P < 0, L, and W such that

A>P + PA+ C>C = −L>L, D>C +B>P = −W>L, γ2In −D>D = W>W.

(c) Suppose A ∈ Rn×n has no imaginary axis eigenvalue. Then, ‖G(s)‖H∞ < γ if and if only

(a) R = γ2In −D>D � 0,

(b) and H has no eigenvalue on the imaginary axis, where

H =

[
A 0

−C>C −A>

]
−

[
−B
C>D

]
R−1

[
D>C B>

]
.

Proof. The proof of Theorem 2.2.2 can be found in [87].

Lemma 2.2.2 is often called the Bounded-Real-Lemma.
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2.2.2. Lyapuvnov Stability and Its Extensions

Consider the following system without any uncertainties

ẋ = f(x, t), x(t0) = x0, (2.2.26)

where f : Rn × R+ → Rn with x0 ∈ Rn being an initial condition. We assume that the system

(2.2.26) has a solution for any initial condition x0 ∈ Rn and t0 ≥ 0.

Definition 2.2.7. Let x(t) be a solution of the system (2.2.26). The point xe ∈ Rn is called an

equilibrium point of the system (2.2.26), if 0 = f(xe, t), ∀t ∈ R+.

Definition 2.2.8. Let x(t) be a solution of the system (2.2.26). The point xa ∈ Rn is called

(a) locally attractive, if for each t0 ≥ 0 there exists δ(t0) > 0 such that ‖x0 − xa‖ < δ(t0) implies

lim
t→∞
‖x(t; t0, x0)− xa‖ = 0.

(b) locally equi-attractive (uniformly attractive) with respect to x0, if for each t0 ≥ 0 and ε > 0

there exist δ(t0) > 0 and T (ε, t0) > 0 such that if ‖x0 − xa‖ < δ(t0) then ‖x(t; t0, x0)− xa‖ < ε

for all t ≥ t0 + T .

(c) locally uniformly attractive with respect to t0 and x0, if there exists δ > 0 such that for each

ε > 0 there exists T (ε) > 0 implying that for ‖x0 − xa‖ < δ one has ‖x(t; t0, x0)− xa‖ < ε for

all t ≥ t0 + T (ε).

(d) globally attractive, if for each t0 > 0, x0 ∈ Rn, and each ε > 0 there exists T (ε, t0, x0) > 0 such

that ‖x(t; t0, x0)− xa‖ < ε for all t ≥ t0 + T (ε, t0, x0) and all x0 ∈ Rn.

(e) globally uniformly attractive, if for each ε > 0 there exists T (ε) > 0 such that ‖x(t; t0, x0)− xa‖ <
ε for all t ≥ t0 + T (ε), all t0 > 0, and all x0 ∈ Rn.

Notice that the definitions in 2.2.8 can be easily extended to a set instead of a point xa.

Moreover, Definition 2.2.8(a) should be read carefully; the limit depends on the choice of (t0, x0).

An alternative definition is given as:

The point xa ∈ Rn is locally attractive, if for each t0 ≥ 0 and ε > 0 there exist δ(t0) > 0

and T (ε, t0, x0) > 0 such that ‖x0 − xa‖ < δ(t0) implies ‖x(t; t0, x0)− xa‖ < ε for all

t ≥ t0 + T (ε, t0, x0).

The terms uniformly and globally on an attractive point need to be carefully taken into account.

These terms apply to two independent variables (t0, x0), and two dependent variables, such as the

ball of initial variables δ(t0) and the rate of convergence T (ε, t0, x0). Technically, the uniformity in

t0 will remove all dependencies on t0 in δ(t0) and T (ε, t0, x0), and the uniformity in x0 (called equi-)

ignores all dependencies of x0 on T (ε, t0, x0). However, when we say uniformly attractive, it means

that the uniformity applies to both x0 and t0. Moreover, from the definitions in 2.2.8(d) and 2.2.8(e),
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global attraction does not necessarily imply uniform attraction with respect to (t0, x0), since the

term globally indicates that the ball for initial conditions can be arbitrarily large. Therefore, we

may allow a globally (in δ) attractive point, but not uniformly (in t0) attractive one. While the

condition on global attraction removes the dependency of t0 on δ(t0), the rate of convergence can

still depend on the location of x0 in Rn. To summarize, the following claims hold.

• The definition in 2.2.8(b) implies that the rate of convergence is not dependent on the choice

of x0 in the ball.

• In Definition 2.2.8(c), the rate of convergence only depends on the size of ‖x(t; t0, x0)− xa‖,
and the size of initial conditions is independent on t0 as well. Therefore, it is automatically

locally equi-attractive.

• In Definition 2.2.8(d), the term globally indicates that the ball of initial values can be arbi-

trarily large.

• In Definition 2.2.8(e), the uniformity is defined with respect to the choice of (t0, x0).

Next, we introduce several notions of point stability.

Definition 2.2.9. Let xe ∈ Rn be an equilibrium point of the system (2.2.26), and let x0 = x(t0)

for some t0 ∈ R+. Then, xe is called:

(a) stable (in sense of Lyapunov), if for each ε > 0 and t0 ≥ 0, there exists δ(ε, t0) > 0 such that

if ‖x0 − xe‖ < δ(ε, t0) then ‖x(t; t0, x0)‖ < ε for all t ≥ t0 ≥ 0.

(b) Uniformly Stable (US), if there exists a class K function α(·) and c > 0 (independent of t0)

such that ‖x(t)‖ ≤ α(‖x0‖), ∀t ≥ t0 ≥ 0, ∀‖x0‖ < c.

(c) Asymptotically Stable (AS), if xe is stable and locally attractive.

(d) Globally Asymptotically Stable (GAS), if xe is stable and globally attractive.

(e) Uniformly Asymptotically Stable (UAS), if there exists a class KL function β(·, ·) and c > 0

(independent of t0) such that ‖x(t)‖ ≤ β(‖x0‖, t− t0), ∀t ≥ t0 ≥ 0, ∀‖x0‖ < c.

(f) Globally Uniformly Asymptotically Stable (GUAS), if there exists a class KL function β(·, ·)
such that ‖x(t)‖ ≤ β(‖x0‖, t− t0), ∀t ≥ t0 ≥ 0, ∀x0 ∈ Rn.

The term globally or locally in Definition 2.2.9 applies to the attractive property, not to the

stability; therefore, the term globally must be used with asymptotically. In the literature, the term

globally stable or locally stable are often used by omitting asymptotically. Notice that a point may

be not (Lyapunov) stable, but could still be (globally) attractive (see Remark 2.2.8).
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Remark 2.2.8. Consider ẋ(t) = −x(t) + e−tcos(t), for which x = 0 is not stable but globally at-

tractive. To verify this, let xe(t) = e−tcos(t), then ẋe(t) = f(xe(t), t) = 0 holds from the differential

equation. However, since ẋe(t) = d
dt(e

−tcos(t)) 6= 0 for some t > 0, xe(t) is not stationary with

respect to t. Therefore, the system does not have an equilibrium point, since the equilibrium point

should be stationary. Moreover, it is easy to show that x(t)→ 0 for any x0 ∈ Rn, so that x = 0 is

globally attractive.

In nonlinear system analysis, boundedness of the solutions is an important property, which

differs from the notion of stability.

Definition 2.2.10. Consider the system in (2.2.26). The solution x(t) of the system is said to be

(a) uniformly bounded if there exists c > 0 (independent of t0) such that for each a ∈ (0, c) there

exists d = d(a) > 0 implying that for all ‖x(t0)‖ ≤ a one has ‖x(t)‖ ≤ d, ∀t ≥ t0.

(b) globally uniformly bounded if for each a ∈ R+ there exists d = d(a) > 0 such that ‖x(t0)‖ ≤ a

implies ‖x(t)‖ ≤ d, ∀t ≥ t0.

(c) uniformly ultimately bounded with ultimate bound b, if there exists b (independent of t0) and c

(independent of t0), and for each a ∈ (0, c) there exists T (a, b), such that ‖x(t0)‖ ≤ a implies

‖x(t)‖ ≤ b, ∀t ≥ T (a, b) + t0.

(d) globally uniformly ultimately bounded with ultimate bound b, if there exists b (independent of

t0) such that for each a ∈ R+ there exists T = T (a) > 0, implying that for ‖x(t0)‖ ≤ a one has

‖x(t)‖ ≤ b, ∀t+ T (a) ≥ t0.

In Definition 2.2.10, the term uniformly indicates that the bound d (or b) does not depend on

t0, and the term ultimately is used to show that boundedness of the solution holds after a certain

time T . Moreover, the ultimate boundedness condition is stronger than the boundedness condition

in the sense that a smaller bound can be used; notice that if b is chosen such that b ≥ d(a), the

ultimate boundedness reduces to boundedness. Although not explicitly stated in the definition,

ultimate boundedness is often used for the case that b is small, which indicates a better result than

the boundedness.

Remark 2.2.9. Lyapunov stability implies uniform boundedness; however, the converse is not true.

An example is ẋ(t) = −x(t)+e−t cos(t). As discussed in Remark 2.2.8, this system is not Lyapunov

stable, since it does not have any equilibrium point. However, the attraction to the origin implies

ultimate boundedness (and thus uniform boundedness).

Up to this point we have investigated conventional definitions of stability. In practice, the con-

ventional notions are not sufficient to describe the behavior of nonlinear systems when the systems
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under consideration are affected by undetermined signals such as control inputs and disturbances.

Now, we consider advanced notions on stability. Consider the following system with an input signal:

ẋ = f(x, u, t), x(t0) = x0, (2.2.27)

where x0 ∈ Rn is an initial condition, f : Rn ×Rm ×R+ → Rn is locally Lipschitz continuous with

respect to (x, u) and piecewise continuous in t. Notice that u(t) can be either a disturbance or

control signal.

Definition 2.2.11 (0-GAS, [94]). Consider the system (2.2.27). Let the zero-input system of

(2.2.27) be

ẋ = f̄(x, t), x(t0) = x0, (2.2.28)

where f̄(x, t) = f(x, 0, t). Then, the system (2.2.27) is said to be 0-GAS, if the zero-input system

(2.2.28) is globally asymptotically stable.

Definition 2.2.12 (BIBS, CICS, [94,95]). The system given in (2.2.27) is said to be Bounded-Input

Bounded-State (BIBS) stable, if for some class K∞ function α, the following holds:

‖x(t)‖ ≤ max (α(‖x0‖), α(‖u(t)‖)), (2.2.29)

where x(t) ∈ Rn is a solution of the system. Moreover, the system is said to be Converging-Input

Converging-State (CICS) stable, if

lim
t→∞
‖x(t)‖ = 0, (2.2.30)

for all x0 ∈ Rn and all inputs u(t) converging to 0.

Remark 2.2.10. It is well-known that a linear system is 0-GAS, if and only if it is BIBS. However,

this is not true for nonlinear systems. Consider the following nonlinear system

ẋ = −x+ (x2 + 1)d, x(0) = x0, (2.2.31)

where x0 ∈ Rn is an initial condition. The system (2.2.31) is 0-GAS, since it reduces to ẋ = −x
when d ≡ 0. However, the system is not BIBS. For example, let d(t) = (2t+ 2)−1/2, and x0 =

√
2.

Then, the solution is given by x(t) = (2t + 2)1/2 which is unbounded. Even worse, the bounded

disturbance d(t) ≡ 1 results in a finite-time explosion of the solution. Therefore, 0-GAS does not

implies BIBS (i.e., 0-GAS does not guarantee good behaviors with respect to the inputs). This

motivates input-to-state stability [94].

Definition 2.2.13 (ISS, [94,96]). The system given in (2.2.27) is said to be

(a) locally (uniformly) Input-to-State Stable (ISS), if there exists a class KL function β, a class K

function γ, δx > 0 such that for each x0 ∈ D0, each t0, each u ∈ L∞, the solution x(t) satisfies

‖x(t)‖ ≤ β(‖x0‖, t− t0) + γ( sup
t0≤τ≤t

‖u(τ)‖), ∀t ≥ t0,
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where D0 = {x ∈ Rn : ‖x‖ < δ}.

(b) globally (uniformly) ISS if there exists a class KL function β, a class K function γ such that

for each x0 ∈ Rn, each t0, each u ∈ L∞, the solution x(t) satisfies

‖x(t)‖ ≤ β(‖x0‖, t− t0) + γ( sup
t0≤τ≤t

‖u(τ)‖), ∀t ≥ t0.

Remark 2.2.11. It can be shown that if the system (2.2.27) is ISS stable. Then, the system has the

0-GAS, BIBS, and CICS properties [96]. Moreover, the locally (respectively, globally) ISS implies

the locally (respectively, globally) UAS, when u(t) ≡ 0 and xe = 0 is an equilibrium point.

Definitions 2.2.9 and 2.2.13 are used to describe system behavior around a point. In real-world

applications, system uncertainties such as unmodeled dynamics and disturbances often prevent the

states from going to zero. Therefore, practical stability is introduced to describe the behavior of

solutions with respect to a neighborhood of the origin [97,98].

Definition 2.2.14 (Practically UAS, [97]). The system given in (2.2.26) is said to be (globally)

practically UAS, if there exists a class KL function and a constant d > 0 such that for each x0 ∈ Rn

the following holds

‖x(t)‖ ≤ β(‖x0‖, t− t0) + d, ∀t ≥ t0.

The definition of local practical UAS follows if the set of initial conditions is a local domain in

Rn. Practical input-to-state stability can be defined in a similar manner.

Definition 2.2.15 (Practically ISS, [98]). The system given in (2.2.27) is said to be

(a) locally practically ISS, if there exist a class KL function β, a class K function γ, a constant

d > 0 and δx > 0 such that for each x0 with ‖x0‖ < δx, each t0, each u ∈ L∞, the solution x(t)

satisfies

‖x(t)‖ ≤ β(‖x0‖, t− t0) + γ( sup
t0≤τ≤t

‖u(τ)‖) + d, ∀t ≥ t0.

(b) globally practically ISS, if there exist a class KL function β, a class K function γ, and a constant

d > 0 such that for each x0 ∈ Rn, each t0, each u ∈ L∞, the solution x(t) satisfies

‖x(t)‖ ≤ β(‖x0‖, t− t0) + γ( sup
t0≤τ≤t

‖u(τ)‖) + d, ∀t ≥ t0.

In the literature, global stabilization is referred when a designer finds a single control parameter

to stabilize nonlinear systems for all possible initial conditions [85,99]. However, in general, global

stabilization of nonlinear systems is not easily attained, if specific conditions are not imposed on

the nonlinearities. Therefore, semi-global stabilization is often used to describe the stability of

the systems. Roughly speaking, semi-global stabilization implies that one can always find a set of
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control parameters to stabilize the nonlinear system. The choice of the parameters is dependent

on the bounds of initial conditions [99]. Consider the following nonlinear system:

ẋ = f(x, t, θ), x(t0) = x0, t ≥ t0, (2.2.32)

where x0 ∈ Rn is an initial condition, and θ ∈ Θ with Θ ⊆ Rl being a set of constant parameters

(i.e., Θ indicates a set of all design parameters in general). In addition, suppose that for each θ ∈ Θ

fθ(x, t) is locally Lipschitz continuous in x, and piecewise continuous in t, where fθ(x, t) = f(x, t, θ).

Definition 2.2.16 (UGPAS/USPAS, [97]). The system given in (2.2.32) is said to be

(a) Uniformly Globally Practically Asymptotically Stable (UGPAS), if for each d > 0 there exist

θ?(d) ∈ Θ and a class KL function β such that for all x0 ∈ Rn and t0 ≥ 0

‖x(t; t0, x0, θ
?)‖ ≤ β(‖x0‖, t− t0) + d, ∀t ≥ t0. (2.2.33)

(b) Uniformly Semi-globally Practically Asymptotically Stable (USPAS), if for each d > 0 and

δ > 0 satisfying δ > d > 0, there exist θ?(d, δ) ∈ Θ and a class KL function β, such that for

all x0 ∈ D0 and t0 ≥ 0

‖x(t; t0, x0, θ
?)‖ ≤ β(‖x0‖, t− t0) + d, ∀t ≥ t0, (2.2.34)

where D0 = {x ∈ Rn : ‖x‖ < δ}.

Notice that the function β in Definitions 2.2.16(a) and 2.2.16(b)) depends on d; d indicates the

size of the invariant set where the state trajectories eventually remain. However, the semi-global

stability (in Definition 2.2.16(b)) requires an additional dependency on the function β; β also relies

on δ which indicates the size of the set of initial conditions. Moreover, the control parameter

θ depends on both d and δ in the semi-global case, while it is independent of δ in Definition

2.2.16(a). This dependency indicates that the control parameters should be tuned according to

initial conditions in the semi-global case. Similarly, the semi-global property can be applied to

input-to-state stability. Consider the system

ẋ = f(x, u, t, θ), x(t0) = x0, t ≥ t0, (2.2.35)

where x0 ∈ Rn is an initial condition, and θ ∈ Θ with Θ ⊆ Rl being a set of constant parameters.

In addition, suppose that for each θ ∈ Θ fθ(x, u, t) is locally Lipschitz continuous in (x, u), and

piecewise continuous in t, where fθ(x, u, t) = f(x, u, t, θ).

Definition 2.2.17 (SPISS). The system given in (2.2.35) is said to be Semi-globally Practically

ISS (SPISS), if for each d > 0, δx > 0, and δr > 0 satisfying δx > d, there exist θ?(d, δx, δr) ∈ Θ
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and a class KL function β such that for all x0 ∈ D0 and t0 ≥ 0

‖x(t; t0, x0, θ
?)‖ ≤ β(‖x0‖, t− t0) + γ( sup

t0≤τ≤t
‖u(τ)‖) + d, ‖u‖L∞ < δr, ∀t ≥ t0. (2.2.36)

where D0 = {x ∈ Rn : ‖x‖ < δx}.

Remark 2.2.12. Definitions 2.2.15(a) and 2.2.15(b) assume that the choice of design parameter θ

is independent of initial conditions, reference commands, and disturbances. However, the parameter

θ has dependencies on them in Definition 2.2.17.

2.3. Uncertainty Parameterization

In adaptive control theory, parametrization of system uncertainties is a key technical issue. In

the following, we introduce parametrization of an unknown LTI plant and nonlinear functions.

2.3.1. LTI System Parametrization

In this section, we introduce the bilinear parameterization of unknown LTI plants. Let Gp(s)

be an unknown LTI plant and M(s) be a given (and known) desired model. The parametrization

of Gp(s) can be derived from solving a model matching problem, in which unknown coefficients of

Gp(s) will be represented as matched uncertainties of the known M(s). The objective of model

matching design is to find a control law to exactly follow the desired model, which establishes an

algebraic relationship between Gp(s) and M(s); this is known as Model Reference Control (MRC)

design. In fact, the method provides a solution to represent the unknown plant with the desired

model, known (regressor) functions, and constant unknown parameters. For the sake of brevity, we

consider SISO LTI plants (see [32] for MIMO plants). Let Gp(s) and M(s) be

Gp(s) = kp
Zp(s)

Rp(s)
, M(s) = km

Zm(s)

Rm(s)
, (2.3.1)

where Zp(s), Rp(s), Zm(s), Rm(s) are monic polynomials.

Assumption 2.3.1. Assume that the unknown LTI plant G(s) and the given desired model M(s)

given in (2.3.1) satisfy

(a) kp is an unknown positive constant, and km > 0 is known.

(b) The polynomials Zp(s) and Rp(s) have no zeros in C+ with unknown coefficients.

(c) The relative degree of Gp(s) is known and identical to the relative degree of M(s).

(d) The known polynomials Zm(s) and Rm(s) have no zeros in C+.
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From MRC theory, it is known that there exist control gains and control laws to solve the

model matching problem, such as

u(s) =
θ1α(s)

Λ(s)
u(s) +

θ2α(s)

Λ(s)
y(s) + θ3y(s) + θ4r(s) , (2.3.2)

where n ≥ degRm(s), θ1 , θ2 ∈ Rn−1 , θ3, θ4 ∈ R are constant control gains, Λ(s) is an arbitrary

monic n− 1 order polynomial containing Zm(s), and

α(s) = [sn−2 , sn−1 , . . . , 1] , ∀n ≥ 2,

α(s) = 0 , n = 1 .

The control gains θi , ∀i ∈ {1 , . . . , 4} are selected to satisfy

θ>1 α(s)Rp(s) + kn(θ>2 α(s) + θ3Λ(s))Zp(s)

=Λ(s)Rp(s)− Zp(s)Λ0(s)Rm(s) , ∀s ∈ C ,
(2.3.3)

where Λ0(s) is the polynomial such that Λ(s) = Λ0(s)Zm(s), and

θ4 =
kp
km

. (2.3.4)

Notice that the existence of {θ1 , θ2 , θ3 , θ4} follows from (2.3.3) under Assumption 2.3.1 [32]. Since

Gp(s) is unknown, θi, i = 1, . . . , 4 is also unknown. However, Λ(s) and α(s) can be defined from

the minimal information about Gp(s) and M(s). Moreover, one can verify that the control law

(2.3.2) gives a solution to the model matching such that

Gc(s) =
θ4kpZp(s)Γ

2(s)

Γ(s)
(
(Γ(s)− θ>1 α(s))Rp(s)− kpZp(s)(θ>2 α(s) + θ3Γ(s))

) ,
M(s) =

θ4kpZp(s)Γ
2(s)

Γ(s)
(
(Γ(s)− θ>1 α(s))Rp(s)− kpZp(s)(θ>2 α(s) + θ3Γ(s))

) ,
where Gc(s) is the closed-loop system with the control law (2.3.2), i.e. y(s) = Gc(s)r(s) = M(s)r(s)

holds for a given reference command r(s).

Nest we investigate the state-space structure of this parametrization.

Theorem 2.3.1. Suppose the unknown LTI system Gp(s) and the given desired model M(s) satisfy

Assumption 2.3.1. Then, Gp(s) can be represented as

ẋ(t) = Amx(t) +Bm(ωu(t) + θ>φ(x)), y(t) = Cmx(t), x(0) = 0, (2.3.5)

where {Am, Bm, Cm} is a realization of M(s), and ω > 0, θ, φ(x) are an unknown constant,

unknown vector, and known regressor function with appropriate dimensions.
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Proof. A realization of the (unknown) control law given in (2.3.2) can be rewritten in state space

form as

ẇ1(t) = Fw1(t) + gu(t), ẇ2(t) = Fw2(t) + gyn(t), w1(0) = 0, w2(0) = 0, (2.3.6)

u(t) = θ>1 w1(t) + θ>2 w2(t) + θ3y(t) + θ4r(t), (2.3.7)

where w1(t), w2(t) ∈ R(n−1) are auxiliary states, and F ∈ R(n−1)×(n−1) and g ∈ Rn−1 are chosen

such that det(sI − F ) = Λ(s) and (sI − F )−1g = α(s)
Λ(s) . In other words, letting

Λ(s) = sn−1 + λn−2s
n−2 + . . .+ λ1s

1 + λ0 ,

one has

F =



−λn−2 −λn−3 −λn−4 . . . −λ0

1 0 0 . . . 0

0 1 0 . . . 0
...

...
...

. . .
...

0 0 . . . 1 0


, g = [1 0 . . . 0]> .

By combining (2.3.6) and (2.3.7) with a state-space realization of Gp(s), the closed-loop system

Gc(s) can be rewritten as

ẋ(t) = Acx(t) + bbθ4r(t), y(t) = c>b x(t), xb(0) = 0, (2.3.8)

where

Ac =

 Ap + bpθ3c
>
p bpθ̄

>
1 bpθ̄

>
2

gθ3c
>
p F + gθ>1 gθ>2

gc>p 0 F

 , bb =

 bn

g

0

 , cb =
[
c>p 0 0

]>
,

with (Ap, bp, cp) being a realization of Gp(s), and x(t) = [x>p (t), w>1 (t), w>2 (t)]. Since Gc(s) = M(s)

holds, it follows that M(s) = c>b (sI −Ac)−1bbθ̄4, and therefore (Am, bm, and cm) is the realization

of the desired model M(s), with Am = Ac, bm = bbθ4 and cm = cb. Finally, let ω = θ−1
4 ,

θ = [−θ−1
4 θ>1 ,−θ

−1
4 θ2,−θ−1

4 θ>3 ]>, and φ(x) = [w>1 (t), w>2 (t), y(t)]>; notice that φ(x) has a state-

dependency, but it is a known and computable function without the knowledge of the internal

states of the unknown plant. Finally, from (2.3.7) one has

r(t) = ωu(t) + θ>φ(x),

which, together with (2.3.8), leads to Equation (2.3.5). This completes the proof.
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2.3.2. Nonlinear Function Parametrization

Consider the nonlinear function f : Rnm × R→ Rnp subject to the following Assumption.

Assumption 2.3.2. There exists b0 > 0 such that

‖f(0, t)‖ < b0, ∀t ≥ 0,

where b0 is a known constant. Moreover, for any δ > 0 there exist dδ > 0, and bδ > 0 such that∥∥∥∥∂f(X, t)

∂X

∥∥∥∥ ≤ dδ, ∥∥∥∥∂f(X, t)

∂t

∥∥∥∥ ≤ bδ, ∀‖X‖ < δ,

where dδ and bδ are known constants.

Lemma 2.3.1. Let τ > 0, and let X(t) = [X>1 (t), X>2 (t)]> be a continuous and (piecewise) differ-

entiable function, where X1(t) ∈ Rn1, X2(t) ∈ Rn2. Suppose that ‖Ẋ(t)‖ is finite for all 0 ≤ t ≤ τ .

Consider a nonlinear function f(X, t) satisfying Assumption 2.3.2 and

‖f(X, t)‖ < d̄X‖X1(t)‖+ b̄X , ‖Xτ‖L∞ ≤ ρX , 0 ≤ t ≤ τ,

for some ρX > 0, d̄X > 0 and b̄X > 0, Then, there exist continuous and (piecewise) differentiable

θ(t) and σ(t), such that

f(X, t) = θ(t)‖X1(t)‖+ σ(t) , ∀t ∈ [0, τ ],

and

‖θ(t)‖ ≤ d̄X , ‖θ̇(t)‖ ≤ l̄θ, ‖σ(t)‖ ≤ b̄X , ‖σ̇(t)‖ ≤ l̄σ,

where l̄θ, l̄σ are computable finite bounds.

Proof. See [2, Lemma A.9, Lemma A.10].
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CHAPTER. 3

L1 Adaptive Output-Feedback for MIMO Systems with Vector Relative Degree
One

This chapter presents L1 adaptive output feedback controllers for underactuated systems with

vector relative degree 1m. We present two design approaches: (i) L1 adaptive controller as the main

controller of the system, and (ii) L1 adaptive augmentation of a dynamic baseline controller. With

the state decomposition introduced in Chapter 2, the proposed methods directly tackle underactu-

ated systems without additional squaring-up process, which makes the design procedures simpler.

Throughout this chapter, we consider the following class of unknown input gain and nonlinear

functions:

Assumption 3.0.1. The unknown constant input gain Ω is assumed to be a (nonsingular) strictly

row-diagonally dominant matrix with sgn(Ωii) known. Moreover, the input gain satisfies Ω ∈ CΩ,

where CΩ ⊆ Rm×m is a known convex compact set.

Assumption 3.0.2. There exists b0 > 0 such that

‖f(0, t)‖ ≤ b0, ∀t ≥ 0,

where b0 is a known constant. Moreover, for any δ > 0 there exist cδ > 0, and dδ > 0 such that∥∥∥∥∂f(x, t)

∂t

∥∥∥∥ ≤ cδ, ∥∥∥∥∂f(x, t)

∂x

∥∥∥∥ ≤ dδ, ∀‖x‖ < δ,

where cδ and dδ are known constants.

3.1. L1 Adaptive Controller

In this section, we introduce the L1 adaptive output feedback controller for underactuated

MIMO system. Consider the following MIMO system:

ẋ(t) =Apx(t) +Bm(Ωu(t) + f(x, t)),

y(t) =Cmx(t), x(0) = x0,
(3.1.1)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp are the state, input, and measurable output vectors,

respectively, with m ≤ p, x0 ∈ Rn is an unknown initial value, Ω ∈ Rm×m is an unknown constant

input gain, and f : R×Rn → Rm is an unknown function representing matched uncertainties; Ω, and

f(x, t) satisfy Assumptions 3.0.1 and 3.0.2, respectively. Ap ∈ Rn×n is a known (nominal) matrix,

and Bm ∈ Rn×m and Cm ∈ Rp×n are known full rank matrices; (Ap, Bm, Cm) is a stabilizable and

detectable triple which represents the nominal system. To proceed, the following assumptions are

made:
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Assumption 3.1.1. The nominal system Gp(s) = Cm(sIn−Ap)−1Bm has no unstable transmission

zeros, and (CmBm) is full rank.

Assumption 3.1.2. Km ∈ Rm×n is chosen so that Am = A0 −BmKm is Hurwitz, and

M(s) = Cm(sIn −Am)−1Bm

represents desired responses.

Remark 3.1.1. Notice that Assumption 3.1.1 leads to the fact that M(s) has no unstable zeros,

since the state-feedback gain cannot change zeros of the system.

The formal problem statement at hand is given as follows:

Problem 3.1.1. Let the system described by Equation (3.1.1) satisfy Assumptions 3.0.1, 3.0.2,

3.1.1, and 3.1.2. The control objective is to design an adaptive output feedback control law for u(t)

so that y(t) tracks ym(t) governed by ym(s) = M(s)Kgr(s), where Kg ∈ Rm×mr is a known gain

and r(s) is the Laplace transform of a given reference command r(t) ∈ Rmr .

3.1.1. Design of L1 adaptive controller

In this section, we propose an L1 adaptive output feedback controller to solve Problem 3.1.1.

Firstly, we introduce a few variables of interest. Define

cΩ = max
Ω∈CΩ

‖ΩKm‖, cΩ̄ = max
Ω∈CΩ

‖(Im − Ω)Km‖. (3.1.2)

Let ρ0 > 0 be a given upper bound satisfying ‖x0‖ ≤ ρ0. For a given δ > 0, define

Lδ =
δ̄(δ)

δ

(
dδ̄(δ) + cΩ̄

)
, δ̄(δ) = δ + γ̄. (3.1.3)

where dδ̄(δ) is introduced in Assumptions 3.0.2. Define

κm = sup
t≥0
‖eAvt‖, κv =

√
n
λmax(P̄v)

λmin(Pv)
, κy =

√
n
λmax(P̄v)

λmin(Py)
, (3.1.4)

where Py ∈ Rp×p be a given positive definite matrix, and

P̄v = (In −HCm)>Pv(In −HCm), H = Bm(CmBm)†. (3.1.5)

Moreover,

Av = (In −HCm)Am +KvCm (3.1.6)

is assumed to be Hurwitz with a given Kv ∈ Rn×p (such Kv always exists, see Remark 3.1.1 and

Lemma 2.1.19), and Pv ∈ Rn×n is the positive definite matrix which solves A>v Pv +PvAv = −Q for
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Q � εqIn with a small positive number εq.

Let D(s) be a m×m transfer function matrix chosen so that for all Ω ∈ CΩ

C(s) = ΩD(s) (Im + ΩD(s))−1 (3.1.7)

is stable and strictly proper, and C(0) = Im. Moreover, the choice of D(s) ensures that for all

Ω ∈ CΩ there exists ρr > 0 such that

‖G(s)‖L1
<
ρr − ρext − ρint

Lρrρr
, (3.1.8)

where

ρext = ‖H0(s)C(s)‖L1
‖Kgr‖L∞ + ‖G(s)‖L1

b0, ρint = (κm + κx)ρ0,

κx = ‖H1(s)‖L1
κy + (‖H2(s)‖L1

+
∥∥H̄2(s)

∥∥
L1

)κv,
(3.1.9)

with

H0(s) =(Ins−Am)−1Bm, G(s) = H0(s)(Im − C(s)),

H1(s) =H0(s)C1(s), H2(s) = H0(s)C2(s), H̄2(s) = H0(s)C̄(s)Km,
(3.1.10)

and

C1(s) = (s+ µ)C(s)B†H, C2(s) = C(s)B†HCmAm, C̄(s) = (Im − C(s))Ω. (3.1.11)

Notice that Lρr satisfies (3.1.3) with dρx (given in Assumption 3.0.2) and

ρx = ρr + γ̄. (3.1.12)

Moreover, µ > 0 is chosen to satisfy µ > α, where α =
α∗1+α∗2

2 solves

(α∗1, α
∗
2) = arg min(α1 + α2),

subject to α1 > 0, α2 > 0,

(
ε1
α1

+
ε2
α2

)
≤ εq,

(3.1.13)

with ε1 =
∥∥√PyCmBmKm

∥∥2

2
and ε2 =

∥∥√PyCmBm∥∥2

2
mL2

ρr .

Now, the adaptive control input u(t) ∈ Rm is defined as

u(s) = D(s)(Kgr(s)− η̂t(s)−Kmx̂(s))−Kmx̂(s), (3.1.14)

where r(s) is the Laplace transform of a reference command r(t) ∈ Rm, Kg ∈ Rm×m is a known

constant matrix, and x̂(t) = v̂(t) +Hy(t); v̂(t) ∈ Rn is provided by the state-output predictor, and
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η̂t(s) is the Laplace transform of

η̂t(t) = Ω̂(t)u(t) + θ̂(t)‖x̂(t)‖+ σ̂(t), (3.1.15)

where Ω̂(t), θ̂(t), σ̂(t) are given by the adaptive laws. The following state-output predictor is

considered:

˙̂v(t) =Avx̂v − P−1
v A>mC

>
mPyỹ(t)−Kvy(t), v̂(0) = 0,

˙̂y(t) =− µỹ(t) + CmBm(η̂t(t) +Kmx̂(t)) + CmAmx̂(t), ŷ(0) = y0

(3.1.16)

where y0 = Cmx0 is assumed to be known, and ỹ(t) = ŷ(t) − y(t). The adaptive laws are defined

using the projection operator:

˙̂
Ω(t) =ΓΩProj(Ω̂(t),−e(t)u>(t)), Ω̂(0) = Im,
˙̂
θ(t) =ΓθProj(θ̂(t),−e(t)‖x̂(t)‖), θ̂(0) = 0,

˙̂σ(t) =ΓσProj(σ̂(t),−e(t)), σ̂(0) = 0,

(3.1.17)

where e(t) = B>mC
>
mPyỹ(t), Proj(·, ·) denotes the projection operator [21], and ΓΩ > 0, Γθ > 0,

Γσ > 0 are real constant adaptation gains. Figure 3.1 depicts the structure of the proposed

controller.

Figure 3.1: L1 output feedback control with state-feedback gain

Notice that γ̄ can be chosen sufficiently small, so that ρr ≈ ρx. Later, it will be shown that ρx

characterize a positively invariant set of the closed-loop system.

3.1.2. Stability and performance analysis

In this section, the stability analysis of the proposed L1 adaptive output feedback controller is

presented. First, we analyze the L1 reference system stability. Consider the following closed-loop
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reference system

ẋref (t) =Amxref (t) +BmΩ (uref (t) +Kmxref (t)) (3.1.18)

+Bm((Im − Ω)Kmxref (t) + f(xref , t)), (3.1.19)

yref (t) =Cmxref (t), xref (0) = 0,

with

uref (s) =C0(s) (Kgr(s)− ηref (s)− σ(s))−Kmxref (s), (3.1.20)

where xref (t) ∈ Rn, yref (t) ∈ Rp are the reference system state and output vectors, respectively,

and

C0(s) = D(s)(Im + ΩD(s))−1. (3.1.21)

Moreover, ηref (s) and σ(s) are the Laplace transform of

ηref (t) = (Im − Ω)Kmxref (t) + f(xref , t)− f(0, t), σ(t) = f(0, t), (3.1.22)

respectively. Notice that the system (3.1.18) and (3.1.20) compensates uncertainties within a filter

bandwidth, defining the reference system of the proposed L1 control laws. Since the system is not

implementable due to the unknowns signals, we use it only for analysis purposes. To prove the

closed-loop stability, we first introduce a condition for the semi-global stability of the ideal reference

system. Then, it will be shown that the difference between the closed-loop system and the ideal

reference system is semi-globally attractive with arbitrarily small bounds, which guarantees the

closed-loop stability.

Lemma 3.1.1. Consider the closed-loop reference system given in (3.1.18) and (3.1.20) subject to

design constraints given in (3.1.2) - (3.1.13). Then, for each Ω ∈ CΩ and each τ > 0 one has

∥∥xrefτ∥∥L∞ < ρrx, (3.1.23)

where

ρrx = ρr − γx0ρ0, γx0 =
κx + κm

1− ‖G(s)‖L1
Lρr

, (3.1.24)

with κm, κx, and G(s) are given in (3.1.4), (3.1.9), and (3.1.10), respectively. Moreover, the

following holds: for each Ω ∈ CΩ and each τ > 0

∥∥urefτ∥∥L∞ < ρru, (3.1.25)

where

ρru = ‖C0(s)‖L1

(
‖Kgr‖L∞ + Lρrρrx + b0

)
+ ‖Km‖ρrx. (3.1.26)
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Proof. Substituting the control law given in (3.1.20) into (3.1.18) yields

xref (s) =H0(s)C(s)Kgr(s) +G(s)(ηref (s) + σ(s)),

yref (s) =Cmxref (s) ,
(3.1.27)

where H0(s) and G(s) are given in (3.1.10); ηref (s), σ(s) are the Laplace transform of the sig-

nals, ηref (t) and σ(t) given in (3.1.22), respectively. Notice that Equation (3.1.8) implies that

‖G(s)‖L1
Lρr < 1, which in turn yields ρrx > 0.

Now, we prove Equation (3.1.23) using a contradiction argument. Suppose it is not true. Since

‖xref (0)‖ = 0 < ρrx, it follows from the system in (3.1.27) that there exists τ > 0 such that

‖xref (τ)‖ = ρrx, while ‖xref (t)‖ < ρrx for 0 ≤ t < τ . Therefore, the following must hold:

∥∥xref τ∥∥L∞ = ρrx. (3.1.28)

Since ρrx ≤ ρr ≤ ρx, Assumption 3.0.2, along with (3.1.3) and (3.1.22), leads to

∥∥ηref τ∥∥L∞ ≤ Lρr ∥∥xref τ∥∥L∞ . (3.1.29)

Therefore, combining (3.1.27) and (3.1.29) yields

ρrx =
∥∥xref τ∥∥L∞ < ρr − γx0ρ0, (3.1.30)

where γx0 is given in (3.1.24). Since ρrx = ρr − γx0ρ0 holds in (3.1.24), Equation (3.1.30) contra-

dicts (3.1.28), thus proving (3.1.23). Finally, combining (3.1.20), (3.1.23), and (3.1.29) concludes

Equation (3.1.25). This completes the proof.

Notice that Lemma 3.1.1 present semi-global stability of the L1 reference system, since the

condition in (3.1.8) is always verified as the bandwidth of a low pass filter increases. Moreover,

from the Laplace transform of the closed-loop reference system in (3.1.18) and (3.1.20), it follows

that

(ym − yref )(s) = Gm(s)(Kgr(s)− ηref (s)− σ(s)), (3.1.31)

where ηref (s), σ(s) are the Laplace transform of bounded signals (given in (3.1.22)), and Gm(s) =

M(s) (Im − C(s)) with Gm(0) = 0. Equation (3.1.31) implies that yref (t) can closely approximate

ym(t) with C(s) ≈ Im. However, the high-bandwidth filter may result in loss of robustness to time

delay [2]. Therefore, the choice of a filter gives a trade-off between performance and robustness.

Now, we analyze the performance of the proposed controller. To proceed, we introduce several
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variables of interests. Let

γu0 =(‖C0(s)‖L1
Lρr + ‖Km‖)γx0 + ‖C3(s)‖L1

κy + (‖C4(s)‖L1
+
∥∥C̄4(s)

∥∥
L1

)κv),

γu =(‖C0(s)‖L1
Lρr + ‖Km‖)γx +

‖C3(s)‖L1√
λmin(Py)

+
‖C4(s)‖L1

+
∥∥C̄4(s)

∥∥
L1√

λmin(Pv)
,

γx =
λmin(Py)

− 1
2 ‖H1(s)‖L1

+ λmin(Pv)
− 1

2 (‖H2(s)‖L1
+
∥∥H̄2(s)

∥∥
L1

)

1− ‖G(s)‖L1
Lρr

,

(3.1.32)

where G(s), H1(s), H2(s), H̄2(s) are given in (3.1.10), and

C3(s) = (s+ µ)C0(s)B†mH, C4(s) = C0(s)B†mHCmAm, C̄4(s) = (Im −D(s)Ω)−1Km. (3.1.33)

Let εr > 0 satisfy

γxεr < γ̄, γxεr < γ̄, ∀Ω ∈ CΩ. (3.1.34)

Finally, define

ρu = ρru + ρdu, ρdx = γx0ρ0 + γ̄, ρdu = γu0ρ0 + γ̄, (3.1.35)

where ρru is given in (3.1.26).

Lemma 3.1.2. Let τ > 0. Suppose ‖xτ‖L∞ ≤ ρx and ‖uτ‖L∞ ≤ ρu. Then, the nonlinear function

f(x, t) in (3.1.1) can be rewritten as

f(x, t) = θ(t)‖x(t)‖+ σ(t), (3.1.36)

where θ(t) ∈ Rm and σ(t) ∈ Rm satisfy

‖θ(t)‖ ≤ dρx , ‖θ̇(t)‖ ≤ lθ, ‖σ(t)‖ ≤ b0, ‖σ̇(t)‖ ≤ lσ, (3.1.37)

for all 0 ≤ t ≤ τ ; lθ and lσ are computable bounds.

Proof. Since ‖xτ‖L∞ < ρx and ‖uτ‖L∞ < ρu holds from the hypothesis, Equation (3.1.1) implies

that ‖ẋτ‖L∞ is finite. Therefore, the proof of Lemma 3.1.2 follows from Lemma 2.3.1.

Lemma 3.1.3. Let v(t) = (In −HCm)x(t). Given the system (3.1.1), the control laws defined

in (3.1.16) - (3.1.17) and with the design constraints, the estimation errors ṽ(t) = v̂(t)− v(t) and

ỹ(t) = ŷ(t)− y(t) have the following bounds for all t ≥ 0:

‖ṽ(t)‖ ≤ ρ(t)√
λmin(Pv)

, ‖ỹ(t)‖ ≤ ρ(t)√
λmin(Py)

, (3.1.38)
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where

ρ(t) =

√(
x>0 P̄vx0 −

θ1 − θ0

Γ

)
e−λ1t +

θ1

Γ
, (3.1.39)

with Γ = min (ΓΩ,Γθ,Γσ), and

θ1 = θ0 +
4m

λ1
(dρx lθ + b0lσ) ,

θ0 = 4 max
Ω∈CΩ,t≥0

(
tr
(

Ω>Ω
)

+md2
ρx +mb20

)
,

λ1 =

(
max

(
λmax(Pv)

λmin(Qv)
,

λmax(Py)

2(µ− α)λmin(Py)

))−1

, Qv = Q− εqIn,

(3.1.40)

Proof. Pre-multiplying both sides of (3.1.1) by (In −HCm) leads to

v̇(t) =AHv(t) +AHHy(t),

ẏ(t) =CmAmv(t) + CAmHy(t) + CmBmKmx(t) + CmBm (Ωu(t) + f(x, t)) ,

x(t) =v(t) +Hy(t), v(0) = v0, y(0) = y0,

(3.1.41)

where AH = (In −HCm)Am, y0 = Cmx0, and v0 is given in (3.1.40). Let τ be a positive constant.

Since Cmv̂(t) − (Ip − CmH)y(t) = Cmṽ(t) holds from Cmv(t) = Cm(In − HCm)x(t), subtracting

(3.1.41) from (3.1.16) yields the following error dynamics:

˙̃v(t) =Avṽ(t)− P−1
v A>mC

>
mPyỹ(t), ṽ(0) = −v0,

˙̃y(t) =− µỹ(t) + CmBmη̃σ(t) + CmAmṽ(t), ỹ(0) = 0,
(3.1.42)

where Av = AH +KvCm is Hurwitz, and

η̃σ(t) = Ω̃(t)u(t) + θ̂(t)‖x̂(t)‖+ σ̂(t)− (f(x, t)− f(0, t))− σ(t), (3.1.43)

with Ω̃(t) = Ω̂(t) − Ω and σ(t) = f(0, t). Since ‖xτ‖L∞ ≤ ρx and ‖uτ‖L∞ ≤ ρu holds from the

hypothesis, Equation (3.1.43), along with (3.1.36), can be rewritten as η̃σ(t) = η̃t(t) + φ(t), where

η̃t(t) = Ω̃(t)u(t) + θ̃(t)‖x̂(t)‖+ σ̃(t), (3.1.44)

and φ(t) = φ1(t) + φ2(t) with θ̃(t) = θ̂(t)− θ(t), σ̃(t) = σ̂(t)− σ(t), and

φ1(t) = Km (x̂(t)− x(t)) = Kmṽ(t), φ2(t) = θ(t) (‖x̂(t)‖ − ‖x(t)‖) . (3.1.45)
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Now, consider the Lyapunov function

V (t) =ṽ>(t)Pvṽ(t) + ỹ>(t)Pyỹ(t) +
tr(Ω̃>(t)Ω̃(t))

ΓΩ
+
θ̃>(t)θ̃(t)

Γθ
+
σ̃>(t)σ̃(t)

Γσ
, (3.1.46)

where Py ∈ Rp×p is chosen to be positive definite and Pv � 0 is the solution of A>v Pv +PvAv = −Q
for a given Q ∈ Rn×n; Q � εqIn. By combining (3.1.17) and (3.1.42), the derivative of (3.1.46) is

given by

V̇ (t) ≤− ṽ>(t)Qṽ(t)− 2µỹ>(t)Pyỹ(t)− 2θ̃>θ̇

Γθ
− 2σ̃>σ̇

Γσ
+ 2ỹ>(t)PyCmBmφ(t). (3.1.47)

Notice that the completion of squares yields

2ỹ>(t)PyCmBmφ1(t) ≤ α1ỹ
>(t)Pyỹ(t) +

1

α1

∥∥∥√PyCmBmKm

∥∥∥2

2
‖ṽ(t)‖22 ,

2ỹ>(t)PyCmBmφ2(t) ≤ α2ỹ
>(t)Pyỹ(t) +

1

α2

∥∥∥√PyCmBm∥∥∥2

2
‖φ2(t)‖22 ,

(3.1.48)

where α1, α2 are arbitrary positive constants. By using the fact that dρx < Lρr , from (3.1.48) and

(3.1.37) it follows that

‖φ2(t)‖2 ≤
√
mLρr‖ṽ(t)‖2, ∀t ≥ 0. (3.1.49)

Choose α = α∗1+α∗2 for the given (α∗1, α
∗
2) in (3.1.13). By combining (3.1.47) - (3.1.49), the following

holds

V̇ (t) ≤− ṽ>(t)Qvṽ(t)− 2(µ− α)ỹ>(t)Pyỹ(t)− 2θ̃>(t)θ̇(t)

Γθ
− 2σ̃>(t)σ̇(t)

Γσ
, (3.1.50)

where Qv = Q− εqIn � 0. Notice that µ was chosen to ensure µ−α > 0. Furthermore, the bounds

given in (3.1.37), together with (3.1.2), lead to

θ̃>(t)θ̇(t)

Γθ
+
σ̃>(t)σ̇(t)

Γσ
≤ θ1 − θ0

2Γ
λ1, (3.1.51)

where Γ = min (ΓΩ,ΓΘ,Γσ). Combining (3.1.50) and (3.1.51) gives

V̇ (t) ≤ −ṽ>(t)Qvṽ(t)− 2(µ− α)ỹ>(t)Pyỹ(t) +
θ1 − θ0

Γ
λ1, (3.1.52)

where θ0, θ1, and λ1 are give in (3.1.40). The projection operator in (3.1.17) ensures

max
Ω∈CΩ

(
tr(Ω̃>(t)Ω̃(t))

ΓΩ
+
θ̃>(t)θ̃(t)

Γθ
+
σ̃>(t)σ̃(t)

Γσ

)
≤ θ0

Γ
, 0 ≤ t ≤ τ, (3.1.53)
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which leads to

V (t) ≤ṽ>(t)Pvṽ(t) + ỹ>(t)Pyỹ(t) +
θ1

Γ
− 1

λ1

θ1 − θ0

Γ
λ1, ∀t ≥ 0. (3.1.54)

Notice that

ṽ>(t)Pvṽ(t) + ỹ>(t)Pyỹ(t) ≤ 1

λ1

(
ṽ>(t)Qvṽ(t) + 2(µ− α)ỹ>(t)Pyỹ(t)

)
, 0 ≤ t ≤ τ. (3.1.55)

From (3.1.54) and (3.1.55) it follows that

−ṽ>(t)Qvṽ(t)− 2(µ− α)ỹ>(t)Pyỹ(t) ≤ −λ1

(
V (t)− θ1

Γ

)
− θ1 − θ0

Γ
λ1, (3.1.56)

which, along with (3.1.52), yields

V̇ (t) ≤ −λ1

(
V (t)− θ1

Γ

)
, ∀t ≥ 0. (3.1.57)

Gronwall-Bellman inequality further leads to√
V (t) ≤ ρv(t, t0), 0 ≤ t0 ≤ t ≤ τ, (3.1.58)

where

ρv(t, t0) =

√(
V (t0)− θ1

Γ

)
e−λ1(t−t0) +

θ1

Γ
. (3.1.59)

Finally, using V (0) ≤ v>0 Pvv0 + θ0
Γ , ‖ỹ(t)‖ ≤ ρv(t,0)√

λmin(Py)
, and ‖ṽ(t)‖ ≤ ρv(t,0)√

λmin(Pv)
concludes the upper

bounds in (3.1.38), which completes the proof.

The upper bounds in (3.1.38) depend on the initial condition through v0 = (In − HCm)x0,

regardless of y0. The steady-state bounds can be made arbitrary small by high adaptation gains.

Notice that the effect due to the non-zero initial condition depends on the choice of Kv and µ (with

Qv and Py). Now, we present the results on the transient and steady-state performance.

Theorem 3.1.1. Consider the closed-loop system with L1 adaptive output feedback controller de-

fined via (3.1.14) – (3.1.17), subject to the design constraints in (3.1.2) - (3.1.13). Suppose the

adaptation gains are chosen sufficiently high to satisfy

Γ >
θ1

εγ
, (3.1.60)

where εγ > 0 satisfies (3.1.34), Γ = min (ΓΩ,Γθ,Γσ), and θ1 is given in (3.1.40). Then, the

following upper bounds holds:

‖x̃ref‖L∞ < ρdx, ‖ũref‖L∞ < ρdu, (3.1.61)
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and

‖x‖L∞ ≤ ρx, ‖u‖L∞ ≤ ρu. (3.1.62)

Moreover, for each Ω ∈ CΩ, there exist constants γdx > 0, γdy > 0, and strictly decreasing functions

υdx(t), υdy(t) such that for all t ≥ 0

‖xref (t)− x(t)‖ ≤ υdx(t)‖v0‖+
γdx√

Γ
, ‖yref (t)− y(t)‖ ≤ υdy(t)‖v0‖+

γdy√
Γ
, (3.1.63)

Proof. Define

η(t) = (Im − Ω)Kmx(t) + f(x, t)− f(0, t), (3.1.64)

and η̃ref (t) = ηref (t) − η(t), where ηref (t) is given in (3.1.22). Let x̃ref (t) = xref (t) − x(t),

ũref (t) = uref (t)− u(t), and ỹref (t) = yref (t)− y(t). First, we prove (3.1.61) using a contradiction

argument. Suppose it is not true. From (3.1.8) it follows that ‖G(s)‖L1
Lρr < 1. Using the

definition of ρdx in (3.1.35) one can obtain ρdx > ρ0, which leads to ‖x̃ref (0)‖ < ρdx. Moreover,

‖ũref (0)‖ = 0 < ρ0 holds. From continuity, there exists τ > 0 such that

‖x̃ref (τ)‖ = ρdx, or ‖ũref (τ)‖ = ρdu,

while

‖x̃ref (t)‖ < ρdx, ‖ũref (t)‖ < ρdu, 0 ≤ t ≤ τ,

where ρdu is given in (3.1.35). This leads to

∥∥x̃refτ∥∥L∞ ≤ ρdx, ∥∥ũrefτ∥∥L∞ ≤ ρdu. (3.1.65)

From (3.1.35) it follows that ρdx = ρx−ρrx and ρdu = ρu−ρru. Since Lemma 3.1.1 holds, Equation

(3.1.65) yields

‖xτ‖L∞ ≤ ρx, ‖uτ‖L∞ ≤ ρu. (3.1.66)

Since (dρx + cΩ̄) < Lρr , Assumption 3.0.2 along with (3.1.66) yields

‖η̃ref (t)‖ ≤ Lρr‖x̃ref (t)‖, 0 ≤ t ≤ τ. (3.1.67)

Moreover, from Lemma 3.1.2 and Equation (3.1.15) it follows that

η̂t(t) +Kmx̂(t) =Ω(u(t) +Kmx(t)) + η̃t(t) + φ(t) + η(t) + σ(t), (3.1.68)

where η̃t(t), η(t) are given in (3.1.44) and (3.1.64), respectively, σ(t) = f(0, t), and φ(t) = φ1(t) +

φ2(t); φ1(t) and φ2(t) are defined in (3.1.45). By substituting (3.1.68) into the control law (3.1.14),

it follows that

u(s) =C0(s) (Kgr(s)− η(s)− σ(s)− η̃t(s)− φ(s))− C̄0(s)φ1(s)−Kmx(s), (3.1.69)
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where C̄0(s) = (Im+D(s)Ω)−1. Further, by substituting (3.1.69) into (3.1.1), the Laplace transform

of the closed-loop system is written as

x(s) =H0(s)rf (s) +G(s)(η(s) + σ(s)) + xin(s)

−H0(s)C(s)(η̃t(s) + φ(s))−H0(s)C̄(s)φ1(s),

y(s) =Cmx(s) ,

(3.1.70)

where xin(s) = (sIn −Am)−1x0, rf (s) = C(s)Kgr(s), and C̄(s) = ΩC̄0(s); C(s) is given in (3.1.7),

and G(s), H0(s) are defined in (3.1.10). Notice that (Im − C(s)) = (I + ΩD(s))−1 leads to

C̄(s) = (Im − C(s))Ω. (3.1.71)

Let x̃ref (t) = xref (t)−x(t), η̃ref (t) = ηref (t)−η(t), and ỹref (t) = yref (t)−y(t). Now, by subtracting

(3.1.70) from (3.1.27), together with (3.1.71), it follows that

x̃ref (s) =G(s) (η̃ref (s) + Ωφ1(s)) +H0(s)φf (s)− xin(s), (3.1.72)

ỹref (s) =Cmx̃ref (s),

where φf (s) = C(s) (η̃t(s) + φ(s)). Moreover, from (3.1.20) and (3.1.69) one has

ũref (s) = −C0(s)η̃ref (s)−Kmx̃ref (s) + C̄0(s)φ1(s) + Ω−1φf (s). (3.1.73)

Notice that Equation (3.1.3), together with Assumption 3.0.2, yields

‖η̃ref (t)‖ ≤ ‖(Im − Ω)Km‖‖x̃ref (t)‖+ dρx‖x̃ref (t)‖ < Lρr‖x̃ref (t)‖, (3.1.74)

for 0 ≤ t ≤ τ . The Laplace transform of (3.1.42) implies

φf (s) = C(s) (η̃t(s) + φ(s)) = C1(s)ỹ(s)− C2(s)ṽ(s), (3.1.75)

where C1(s) and C2(s) are given in (3.1.11). Now, combining (3.1.72) - (3.1.75), together with

Lemma 3.1.3, leads to

∥∥ũrefτ∥∥L∞ ≤ γu0ρ0 + γu

√
θ1

Γ
,
∥∥x̃refτ∥∥L∞ ≤ γx0ρ0 + γx

√
θ1

Γ
, (3.1.76)

where γx0 , {γu0 , γu, γx} are given in (3.1.24), and (3.1.32), respectively. From the hypothesis in

(3.1.60), Equation (3.1.76) further yields

∥∥ũrefτ∥∥L∞ < ρdx,
∥∥x̃refτ∥∥L∞ < ρdu, (3.1.77)

which shows the clear contradiction to (3.1.65), thus proving (3.1.61). Moreover, by applying the
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triangular inequality on ‖x̃ref‖ and ‖ũref‖, Equation (3.1.62) follows

Next, we prove Equation (3.1.63). Notice that φf (t) is a bounded signal from the fact that

C1(s), C1(s) are stable and proper. Since Ωφ1(t) = ΩKmṽ(t) holds in (3.1.45), Ωφ1(t) is also a

bounded signal. Let C(s) = Cf (sIm−Af )−1Bf in (3.1.27), where {Af ∈ Rnf×nf , Bf ∈ Rnf×m, Cf ∈
Rm×m} is a minimal realization of C(s). Then, a state-space realization of (3.1.72) takes the form:

˙̃xc(t) = Acx̃c(t) +Bc(η̃ref (t) + Ωφ1(t)) +Brφf (t),

x̃ref (t) = Ccx̃c(t), x̃c(0) = [−x>0 , 0]>,
(3.1.78)

with

Ac =

[
Am BmCf

0 Af

]
, Bc =

[
Bm

−Bf

]
, Br =

[
Bm

0

]
, Cc =

[
In 0

]
, (3.1.79)

where x̃c(t) = [x̃>ref (t), x>f (t)]> ∈ Rnc×nc ;nc = n + nf , and xf (t) ∈ Rnf is some internal state

vector in (3.1.72) Notice that G(s) = Cc(sInc − Ac)−1Bc = H0(s)(Im − C(s)) holds. In addition,

{Ac, Bc, Cc} is detectable and stabilizable, since pole-zero cancellations of G(s) happen on C−, if

any. Let tm ≥ 0. For a given initial condition xc(tm) and t ≥ t0, the solution of (3.1.78) is given by

x̃c(t) =eAc(t−tm)x̃c(tm) +

∫ t

tm

eAc(t−τ)Brφf (τ)dτ

+

∫ t

tm

eAc(t−τ)Bc(η̃ref (τ) + Ω1φ(t))dτ, t ≥ tm ≥ 0,

(3.1.80)

Now, using the continuity of the L1-norm, one may take a sufficiently small λ0 > 0 such that

β1 = ‖G(s− λ0)‖L1
< 1/L. Define Aλ0 = Ac+λ0Inc , x̄c(t) = eλ0(t−tm)x̃c(t), φ̄f (t) = eλ0(t−tm)φf (t),

η̄ref (t) = eλ0(t−tm)η̃ref (t), and φ̄1(t) = eλ0(t−tm)Ωφ1(t). Multiplying both sides of (3.1.80) by

eλ0(t−t0)Cc yields

x̄ref (t) =Cce
Aλ0

(t−tm)x̃c(tm) +

∫ t

tm

Cce
Aλ0

(t−τ)Brφ̄f (τ)dτ

+

∫ t

tm

Cce
Aλ0

(t−τ)Bc(η̄ref (τ) + φ̄1(τ))dτ, (3.1.81)

where x̄ref (t) = eλ0(t−tm)x̃ref (t). Notice that Aλ0 is Hurwitz by ‖G(s− λ0)‖L1
< ∞. Since

Equation (3.1.74) holds for all t ≥ 0, by using the fact that Cc = [Inc , 0], from (3.1.81) and (3.1.74)

it follows that for all t ≥ t0

‖x̄ref‖L∞[t0,t]
≤ β0

1− β1L
‖x̃c(t0)‖+

β1

1− β1L

∥∥φ̄1

∥∥
L∞[t0,t]

+
β2

1− β1L

∥∥φ̄f∥∥L∞[t0,t]
, (3.1.82)

where β0 = sup
0≤τ
‖eAλ0

τ‖, β1 = ‖G(s− λ0)‖L1
, and β2 =

∥∥(sInc −Aλ0)−1Br
∥∥
L1

. Now, multiplying
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both sides of (3.1.80) by eλ0(t−t0), and combining (3.1.74) and (3.1.82), one can obtain

‖x̄c(t)‖ ≤ κ0‖x̃c(tm)‖+ κ1

∥∥φ̄f∥∥L∞[tm,t]
+ κ2

∥∥φ̄1

∥∥
L∞[tm,t]

, (3.1.83)

where

κ0 =β0(1 +
Lβ3

1− β1L
), κ1 = β2(1 +

Lβ3

1− β1L
),

κ2 =
β3

1− β1L
, β3 =

∥∥(sInc −Aλ0)−1Bc
∥∥
L1
.

(3.1.84)

Since ‖x̄c(t)‖ = eλ0(t−tm)‖x̃c(t)‖ holds, Equation (3.1.83) can be rewritten by

‖x̃c(t)‖ ≤κ0e
−λ0(t−tm)‖x̃c(t0)‖+ κ1‖φf‖L∞[tm,t]

+ κ2‖Ωφ1‖L∞[tm,t]
, ∀t ≥ tm ≥ 0. (3.1.85)

Since ‖ỹ(t)‖ ≤ ρv(t,tm)√
λmin(Py)

, and ‖ṽ(t)‖ ≤ ρv(t,tm)√
λmin(Pv)

, substituting (3.1.45) and (3.1.75) into (3.1.85)

yields

‖x̃c(t)‖ ≤κ0e
−λ0(t−tm)‖x̃c(tm)‖+ γ1 sup

tm≤τ≤t
ρv(τ, tm), (3.1.86)

where ρv(τ, tm) is given in (3.1.59), and

γ1 =
κ1 ‖C1(s)‖L1√

λmin(Py)
+
κ1 ‖C2(s)‖L1

+ κ2‖ΩKm‖√
λmin(Pv)

.

Moreover, notice that

sup
tm≤τ≤t

ρv(τ, tm) ≤
√
V (tm) +

√
θ1

Γ
, (3.1.87)

where V (t) is given in (3.1.46), and θ1, Γ are defined in (3.1.40). Let tm = t
2 . combining (3.1.58),

(3.1.86) and (3.1.87) leads to

‖x̃c(t)‖ ≤ υx(t)‖v0‖+
γx√

Γ
, (3.1.88)

where

υx(t) = γ1

√
nλmax(Pv)(κ0e

−λ0
2
t + e−

λ1
4
t) + κ2

0e
−λ0t,

γx = κ0γ1

√
θ0 + 3

√
θ1,

with θ0 given in (3.1.40). Since ‖x̃ref (t)‖ ≤ ‖x̃c(t)‖, letting υy(t) = ‖Cm‖ρx(t) and γy = ‖Cm‖γx
concludes (3.1.63). This completes the proof.

Notice that high adaptation gains produce arbitrarily small steady-state bounds in (3.1.63), and

the transient bounds to unknown initial conditions are guaranteed by strictly decreasing functions.

Since the transient bounds are independent of adaptation gains, adaptation gains can be made
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arbitrarily high without undesirable transient behaviors. Moreover, combining Lemma 3.1.1 and

Theorem 3.1.1 proves the semi-global stability of the closed-loop system.

3.1.3. Application to Reference Tracking Control

In this section, we introduce adaptive integral control for a reference tracking problem using

the proposed method. Consider the open-loop system

ẋp(t) = A0xp(t) +Bp (Ωu+ fp(xp, t)) ,

yp(t) = Cpxp(t), xp(0) = 0,
(3.1.89)

where xp(t) ∈ Rnp , u(t) ∈ Rm, yp(t) ∈ Rpp are the state, input and measurable output vectors,

respectively, with pp ≥ m. Moreover, A0 ∈ Rnp×np , Bp ∈ Rnp×m, Cp ∈ Rpp×np are known matrices;

(A0, Bp) is a controllable pair, (A0, Cp) is an observable pair, and rank(CpBp) = m. Ω ∈ Rm×m is

an unknown constant input gain, and fp : Rnp × R → Rm represents matched uncertainties. Let

z(t) = Tzpyp(t) be a performance output, where Tzp ∈ Rm×np is a given matrix.

For the purposes of zero-tracking error, let us define the tracking error as ez(t) = rcmd(t)−z(t).
Then, the augmented plant with the tracking error can be written as

ẋ(t) =A0x(t) +Bm (Ωu+ f(x, t)) +Bzrcmd(t),

y(t) =Cmx(t),

z(t) =TzCmx(t), x(0) = x0,

(3.1.90)

where f(x, t) = fp([Inp , 0]x, t), x(t) = [x>p (t), e>z (t)]> is the augmented state, y(t) = [y>p (t), e>z (t)]>

is the augmented output, and x0 = [0, e>z (0)]>; A0 ∈ Rn×n, Bm ∈ Rn×m, Bz ∈ Rn×m, Cm ∈ Rp×m,

Tz ∈ Rm×p are defined as

A0 =

[
Ap 0

−TzpCp 0

]
, Bm =

[
Bp

0

]
, Bz =

[
0

Im

]
,

Cm =

[
Cp 0

0 Im

]
, Tz =

[
Tzp , 0

]
, (3.1.91)

with n = np + m, and p = pp + m. To proceed, we assume the system in (3.1.90) satisfies

Assumptions 3.0.1, 3.0.2, 3.1.1, and 3.1.2 with M(s) = Cm(sIn −Am)−1Bm.

Remark 3.1.2. Notice that from the definitions of Bm and Cm in (3.1.91) rank(CpBp) = m implies

rank(CmBm) = m.

The control objective is to construct adaptive control laws such that the performance output

tracks the given reference command rcmd(t) ∈ Rm. The control law is given in (3.1.14) with Kg = 0,

and the adaptive law is defined in (3.1.17). Since the system (3.1.90) has Bzrcmd(t), the modified
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state-output predictor is introduced as follows:

˙̂v(t) =Avx̂(t)− P−1
v A>mC

>
mPyỹ(t)−Kvy(t) +BHrcmd(t), v̂(0) = 0,

˙̂y(t) =− µỹ(t) + CmBm(η̂t(t) +Kmx̂v(t)) + CmBzrcmd(t) + CmAmx̂(t), ŷ(0) = y0,
(3.1.92)

where y0 = Cmx0 is known, x̂(t) = v̂(t) +Hy(t), and BH = (In −HCm)Bz. Design constraints are

similar with those in Section 3.1.1.

The modified closed-loop reference system can be written as

ẋref (t) =Amxref (t) +Bzrcmd(t) +Bm (Ω (uref (t) +Kmxref (t)) + f(xref , t)) ,

yref (t) =Cmxref (t),

zref (t) =TzCmxref (t), xref (0) = x0,

(3.1.93)

with

uref (s) = −C0(s)(ηref (s) + σ(s))−Kmxref (s), (3.1.94)

where xref (t) ∈ Rn, yref (t) ∈ Rp, zref (t) ∈ Rm are the reference system state, measured output,

and performance output vectors, respectively, and C0(s) is given in (3.1.21); ηref (s), and σ(s) are

the Laplace transform of the signals ηref (t), and σ(t) defined in (3.1.22).

Corollary 3.1.1. Given the system in (3.1.90), the closed-loop system via the L1 adaptive controller

defined in (3.1.14), (3.1.17), and (3.1.92), subject to the L1–norm condition in (3.1.8), has the

following upper bound:

‖zref − z‖L∞ ≤ ‖Tz‖
γy√

Γ
,

for some γy > 0, where Γ = min (ΓΩ,ΓΘ,Γσ).

Proof. Notice that the modified state-output predictor in (3.1.92) and the augmented plant in

(3.1.90) yield the error dynamics in (3.1.42), so that Lemma 3.1.3 holds. Therefore, the proof of

Corollary 3.1.1 follows from Theorem 3.1.1, and thus is omitted.

3.1.4. Illustrative example

In this section, we provide a numerical example to demonstrate the performance of the proposed

method. Consider the uncertain plant given in (3.1.89) with the nominal matrices:

Ap =

 −1.0190 0.9051 0.0022

0.8223 −1.0770 0.1756

0 0 −20.2

, Cp =

[
0 57.3 0

16.25 0.9788 0.0485

]
, Bp =

 0

0

−20.2

.
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To verify the proposed controller, the following uncertainties are taken into account:

Ω = 0.8, f(x, t) = 0.5x3
1 − 0.15x2

2 + sin(t),

where xi is the ith element of x ∈ R3. The goal is to design an adaptive controller so that y1(t)

tracks a given reference command r(t) ∈ R, where y1(t) is the first element of y(t) ∈ R2. For the

purposes of command tracking, we define tracking error ez(t) = r(t)−y1(t), and apply the proposed

method in Section 3.1.3. The desired model is obtained via designing the state-feedback gain

Km = [5.5210, 37.4448, 0.2854,−2.2361],

where we used standard LQR techniques for the augmented system in (3.1.90) with the weighting

matrices Qm = diag (0, 1, 0, 5), and Rm = 1. The set of parameters in the L1 adaptive controller

are given by

Q = 10I4, Py = 0.2I3, µ = 20, D(s) = 30/s, Γ = 500, Kv =


−0.16 −0.64 0

−0.70 −0.06 0.01

−2.83 −11.85 −0.53

0.82 0.05 −1.21

 .

Figure 3.2: System responses and control inputs with initial conditions

Figure 3.2 shows the system response and control inputs for r(t) = 5 and r(t) = 10, where two

different initial conditions x0 = 0 and x0 = π
180 [−3, 3,−5]> are used. In Figure 3.2, red-dotted lines
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are the desired responses for y1(t), and red-solid lines represent the desired reference signals for

y2(t). The results clearly indicate that the transient responses due to the non-zero initial conditions

decay over time, and that the small tracking errors are achieved by nullifying the effects of system

uncertainties.
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3.2. L1 Adaptive Augmentation of a Baseline Controller

In this section, we introduce L1 adaptive augmentation of a baseline controller. In output-

feedback systems, the baseline augmented system is often a non-square and underactuated system

[44]. In this chapter, we develop the L1 adaptive output feedback controller for this class of systems.

Consider the system with matched uncertainties as

ẋp(t) =Apxp(t) +Bp(Ωup(t) + fp(xp, t)),

yp(t) =Cpx(t), xp(0) = xp0 ,
(3.2.1)

where xp(t) ∈ Rnp , up(t) ∈ Rm, yp(t) ∈ Rpp are the state, input, and measurable output vectors

with m ≤ pp, respectively, and Ap ∈ Rnp×np , Bp ∈ Rnp×m, Cp ∈ Rpp×np are known matrices, with

(Ap, Bp, Cp) being controllable and observable; xp0 ∈ Rnp is an initial condition, Ω ∈ Rm×m rep-

resents the unknown constant input gain satisfying Assumption 3.0.1, and fp(xp, t) is an unknown

function describing matched uncertainties. The baseline control structure is assumed to be

ẋc(t) =Acxc(t) +Bc1yp(t) +Bc2r(t),

ub(t) =Ccxc(t) +Dcyp(t), xc(0) = 0,
(3.2.2)

where xc(t) ∈ Rnc , r(t) ∈ Rpc , ub(t) ∈ Rm, are the controller state, reference command, and baseline

controller input vectors, respectively. Ac ∈ Rnc×nc , Bc1 ∈ Rnc×pp , Bc2 ∈ Rnc×pc , Cc ∈ Rm×nc , and

Dc ∈ Rm×pp are known matrices. Let up(t) = ub(t) + u(t), where u(t) ∈ Rm is the adaptive

controller input, which will be defined later. By combining (3.2.1) and (3.2.2), the augmented

plant is rewritten as

ẋ(t) = Amx(t) +Bm (Ωu(t) + f(x, t)) +Bzr(t) ,

y(t) = Cmx(t) ,

z(t) = Czx(t) , x(0) = x0 ,

(3.2.3)

where x(t) =
[
x>p (t), x>c (t)

]> ∈ Rn, y(t) ∈ Rp is the augmented measurable output, z(t) ∈ Rpc is

the performance output such that z(t) = Tzyp(t) for some matrix Tz ∈ Rpc×pp ; x0 = [x>p0
, 0]> is the

initial condition, and Am ∈ Rn×n, Bm ∈ Rn×m, Br ∈ Rn×m, Cm ∈ Rp×n, Cz ∈ Rpc×n are known

matrices (with n = np + nc, p = pp + nc, p < n, and m < n) defined as

Am =

[
Ap +BpDcCp BpCc

Bc1Cp Ac

]
, Bm =

[
Bp

0

]
, (3.2.4)

Bz =

[
0

Bc2

]
, Cm =

[
Cp 0

0 Inc

]
, Cz =

[
TzCp 0

]
.
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Finally, f(x, t) is the unknown function satisfying Assumption 3.0.2 and

f(x, t) = (Ω− Im) (Ccxc(t) +DcCpxp(t)) + fp(xp, t).

To proceed, consider the following assumptions:

Assumption 3.2.1. The baseline controller (3.2.2) is designed so that the performance output

z(t) ∈ Rpc tracks the desired response zm(t) ∈ Rpc for the nominal system (Ω = Im, f(xp, t) ≡ 0).

In other words,

z(s) = zm(s) = Mz(s)r(s), (3.2.5)

where Mz(s) = Cz(sIn − Am)−1Bz, and r(s) is the Laplace transform of the reference command

r(t) ∈ Rpc.

Assumption 3.2.2. Let the augmented input sensitivity function M(s) be

M(s) = Cm (sIn −Am)−1Bm , (3.2.6)

where Am is Hurwitz, Bm, Cm are full rank, and (Am, Bm), (Am, Cm) are controllable and observ-

able pairs, respectively. Moreover, the following hold:

• The open-loop system (Ap, Bp, Cp) has no unstable transmission zeros; i.e. if zi ∈ C is a

transmission zero of the system, then zi has a strictly negative real part.

• (CpBp) is full rank.

Remark 3.2.1. It follows from Lemma 2.1.20 that M(s) does not have unstable transmission zeros

and

rank(CmBm) = m. (3.2.7)

The problem is formally stated as follows:

Problem 3.2.1. Let the augmented system described by Equation (3.2.3) satisfy Assumptions 3.0.1,

3.0.2, 3.2.1, and 3.2.2. The control objective is to design an output feedback control law for u(t)

that compensates for the uncertainties and ensures that z(t) tracks the desired response zm(t) with

uniform bounds both in transient and steady-state.

3.2.1. Design of L1 adaptive controller

In this section, we introduce the L1 adaptive output feedback controller for the MIMO system

(3.2.3). Before stating the main results, we introduce several design variables. Let ρ0 > 0 be a

given constant satisfying ‖x0‖ ≤ ρ0 with x0 ∈ Rn being the initial condition, and let γ̄ > 0 be an
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arbitrarily small constant. For a given δ > 0 define

Lδ =
δ̄(δ)

δ
dδ̄(δ), δ̄(δ) = δ + γ̄ , (3.2.8)

where dδ̄(δ) is introduced in Assumption 3.0.2. Let Kv ∈ Rn×p be the gain chosen so that

Av = (In −HCm)Am +KvCm (3.2.9)

is Hurwitz (from Remark 3.2.1 and Lemma 2.1.19 such Kv exists) with H = Bm(CmBm)†. Let

εq > 0 be any positive number, Py ∈ Rp×p be a given positive definite matrix, and Pv ∈ Rn×n be

the positive definite matrix which solves

A>v Pv + PvAv = −Q (3.2.10)

for a positive definite Q ∈ Rn×n with εq < λmin(Q). Define

κm = sup
t≥0
‖eAmt‖, κy =

√
n
λmax(P̄v)

λmin(Pv)
, κv =

√
n
λmax(P̄v)

λmin(Py)
, (3.2.11)

where P̄v = (In − HCm)>Pv(In − HCm). Let D(s) be a m ×m transfer matrix such that for all

Ω ∈ CΩ

C(s) = ΩC0(s), (3.2.12)

is a stable and strictly proper transfer matrix with C(0) = Im, where

C0(s) = D(s)(Im + ΩD(s))−1. (3.2.13)

Moreover, the choice of D(s) must ensure that for all Ω ∈ CΩ, there exists ρr > 0 such that

‖G(s)‖L1
<
ρr − ρext − ρint

Lρrρr
, (3.2.14)

where

ρext = ‖Hz(s)‖L1
‖r‖L∞ + ‖G(s)‖L1

b0,

ρint =(κm + κx)ρ0,

κx = ‖H1(s)‖L1
κy + ‖H2(s)‖L1

κv,

(3.2.15)

with κm, κy,κv being given in (3.2.11),

Hz(s) =(sIn −Am)−1Bz, H0(s) = (sIn −Am)−1Bm,

H1(s) =H0(s)C1(s), H2(s) = H0C2(s), (3.2.16)

G(s) =H0(s) (Im − C(s)) ,
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and

C1(s) =(s+ µ)C(s)B†mH, C2(s) = C(s)B†mHCmAm. (3.2.17)

Notice that Lρr satisfies (3.2.8) with dρx and

ρx = ρr + γ̄. (3.2.18)

Finally, let µ ∈ R be chosen to satisfy

µ > α?, α? =
mL2

ρr

εq

∥∥∥√PyCmBm∥∥∥2

2
. (3.2.19)

We consider the control input u(t) ∈ Rm according to the following law:

u(s) = −D(s)η̂t(s) , (3.2.20)

where D(s) ∈ Cm×m is chosen to satisfy the design constraints via (3.2.8) - (3.2.19), and η̂t(s) is

the Laplace transform of

η̂t(t) = Ω̂(t)u(t) + θ̂(t)‖x̂(t)‖+ σ̂(t), (3.2.21)

where x̂(t) = v̂(t) +Hy(t); v̂(t) ∈ Rn is provided by the state-output predictor, and Ω̂(t), θ̂(t), σ̂(t)

are given in the adaptive laws. The following state-output predictor is used:

˙̂v(t) =Avx̂(t)−Kvy(t)− P−1
v A>mC

>
mPyỹ(t) + (In −HCm)Bzr(t),

˙̂y(t) =CmAmx̂(t)− µỹ(t) + CmBmη̂t(t) + CmBzr(t),

x̂(t) =v̂(t) +Hy(t), v̂(0) = 0, ŷ(0) = y0,

(3.2.22)

where ỹ(t) = ŷ(t) − y(t), and y0 ∈ Rp is a known initial output vector with y0 = Cmx0. The

adaptive laws are defined using the projection operator:

˙̂
Ω(t) = ΓΩProj(Ω̂(t),−ey(t)u>(t)), Ω̂(0) = Im,
˙̂
θ(t) = ΓθProj(θ̂(t),−ey(t)‖(x̂(t))‖), Θ̂(0) = 0,
˙̂σ(t) = ΓσProj(σ̂(t),−ey(t)), σ̂(0) = 0,

(3.2.23)

where ey(t) = B>mC
>
mPyỹ(t), ΓΩ > 0, ΓΘ > 0, Γσ > 0 are real constant adaptation gains and

Proj(·, ·) denotes the projection operator [21]. Figure 3.3 depicts the proposed control architecture.
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Figure 3.3: L1 output feedback control architecture

3.2.2. Stability and Performance Analysis

In this section, the reference system of L1 adaptive controller is introduced, and its stability

analysis is presented. Consider the following closed-loop reference system

ẋref (t) =Amxref (t) +Bm (Ωuref (t) + f(xref , t)) +Bzr(t), xref (0) = 0,

yref (t) =Cmxref (t), zref (t) = Czxref (t),
(3.2.24)

with

uref (s) = −C0(s) (ηref (s) + σ(s)) , (3.2.25)

where xref (t) ∈ Rn, yref (t) ∈ Rp, zref (t) ∈ Rpc are the reference system state, output, and

performance output vectors, respectively. Moreover, ηref (s), and σ(s) are the Laplace transforms

of ηref (t), and σ(t) given by

σ(t) = f(0, t), ηref (t) = f(xref , t)− f(0, t). (3.2.26)

The closed-loop reference system in (3.2.24) and (3.2.25) defines the best achievable performance of

the L1 adaptive architecture [2]. Notice that the system is not implementable as it depends on the

unknowns; it is used only for analysis purposes.

Lemma 3.2.1. Consider the closed-loop reference system given in (3.2.24) and (3.2.25) and design

constraints defined via (3.2.8) - (3.2.19). Then, for each Ω ∈ CΩ and each τ > 0 the following holds

∥∥xref τ∥∥L∞ ≤ ρrx, (3.2.27)

where

ρrx = ρr − γx0ρ0, γx0 =
κx + κm

1− ‖G(s)‖L1
Lρr

, (3.2.28)
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with κm, κx, and G(s) being given in (3.2.11), (3.2.15), and (3.2.16), respectively. Moreover,∥∥uref τ∥∥L∞ ≤ ρru holds, where

ρru = ‖C0(s)‖L1
(Lρrρrx + b0) , (3.2.29)

with C0(s) defined in (3.2.13).

Proof. Notice that the definition of ρrx in (3.2.28), together with (3.2.14), yields

ρrx = ρr − γx0ρ0 >
ρext

1− ‖G(s)‖L1
Lρr

, (3.2.30)

which leads to ρrx > 0. Now, we prove Equation (3.2.27) by a contradiction argument. Suppose it

is not true. Since ‖xref (0)‖ = 0 < ρxr, from the continuity it follows that there exists τ > 0 such

that ‖xref (τ)‖ = ρxr, while ‖xref (t)‖ < ρxr for 0 ≤ t < τ . Therefore, the following must hold:

∥∥xref τ∥∥L∞ = ρxr. (3.2.31)

By substituting (3.2.25) into (3.2.24), the Laplace transform of the closed-loop reference system is

given by

xref (s) =Hz(s)r(s) +G(s)(ηref (s) + σ(s)),

uref (s) =− C0(s)(ηref (s) + σ(s)),

yref (s) =Cmxref (s), zref (s) = Czxref (s),

(3.2.32)

where ηref (s), σ(s) are the Laplace transforms of ηref (t), and σ(t) given in (3.2.26), and C0(s),

{Hz(s), G(s)} are defined in (3.2.13), and (3.2.16), respectively. Since ρrx ≤ ρr ≤ ρx and dρx ≤ Lρr
hold, Assumption 3.0.2, along with (3.2.8), leads to

∥∥ηref τ∥∥L∞ ≤ Lρr ∥∥xref τ∥∥L∞ . (3.2.33)

From (3.2.32) and (3.2.33) it follows

∥∥xref τ∥∥L∞ ≤ ρext + ‖G(s)‖L1
Lρr

∥∥xref τ∥∥L∞ . (3.2.34)

Since ‖G(s)‖L1
Lρr < 1 is derived from (3.2.14), Equation (3.2.34) can be rewritten as

∥∥xref τ∥∥L∞ ≤ ρext
1− ‖G(s)‖L1

Lρr
, (3.2.35)

which, together with (3.2.30), yields

∥∥xref τ∥∥L∞ < ρrx. (3.2.36)
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This contradicts (3.2.31), thus proving (3.2.27). Finally, combining (3.2.27), (3.2.32), and (3.2.33)

yields ∥∥uref τ∥∥L∞ ≤ ρru,
where ρur is given in (3.2.29). This completes the proof.

By choosing D(s) such that C(s) ≈ Im, Equation (3.2.14) can be always verified, and thus

implies the semi-global stability of the ideal L1 reference system in (3.2.24) - (3.2.25). Moreover,

the input sensitivity function of the reference system is given by

(zref − zm)(s) = Gz(s)(ηref (s) + σ(s)),

where Gz(s) = Cz(sI − Am)−1Bm(Im − C(s)), and (ηref (s) + σ(s)) is the Laplace transform of

f(xref , t) which is bounded by Lemma 3.2.1. Therefore, while C(s) ≈ Im makes the bound

‖zref − zm‖L∞ arbitrarily small, it also reduces the input sensitivity to zero. However, choosing

C(s) with high bandwidth (i.e. C(s) ≈ Im) can result in loss of robustness [2].

In what follows, the closed-loop system stability is analyzed and the transient performance

bounds are presented. Let

γu0 = ‖C0(s)‖L1
Lρrγx0 + (‖C3(s)‖L1

κy + ‖C4(s)‖L1
κv),

γu = ‖C0(s)‖L1
Lρrγx +

‖C3(s)‖L1√
λmin(Py)

+
‖C4(s)‖L1√
λmin(Pv)

,

γx =
λmin(Py)

− 1
2 ‖H1(s)‖L1

+ λmin(Pv)
− 1

2 ‖H2(s)‖L1

1− ‖G(s)‖L1
Lρr

,

(3.2.37)

where {κy, κv}, γx0 are given in (3.2.11) and (3.2.28), respectively, and

C3(s) = (s+ µ)C0(s)B†mH, C4(s) = C0(s)B†mHCmAm. (3.2.38)

Next, εγ > 0 is chosen to satisfy

γxεγ < γ̄, γuεγ < γ̄, ∀Ω ∈ CΩ. (3.2.39)

Finally, let ρu, ρdx, and ρdu be

ρu = ρru + ρdu,

ρdx = γx0ρ0 + γ̄, ρdu = γu0ρ0 + γ̄,
(3.2.40)

respectively, where ρru is defined in (3.2.29).
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Notice that from Lemma 3.1.2 the nonlinear function can be parameterized as follows:

f(x, t) = θ(t)‖x(t)‖+ σ(t), (3.2.41)

where θ(t) ∈ Rm and σ(t) ∈ Rm satisfy

‖θ(t)‖ ≤ dρx , ‖θ̇(t)‖ ≤ lθ, 0 ≤ t ≤ τ,

‖σ(t)‖ ≤ b0, ‖σ̇(t)‖ ≤ lσ, 0 ≤ t ≤ τ,
(3.2.42)

with lθ = lθ(ρx, ρu) and lσ = lσ(ρx, ρu) being bounded.

Lemma 3.2.2. Consider the system given in (3.2.3) with control laws and design constraints defined

via (3.2.8) - (3.2.23). Let ṽ(t) = v̂(t)− v(t) and ỹ(t) = ŷ(t)− y(t), where v(t) = (In −HCm)x(t).

Let τ > 0 be a positive constant. Then, if ‖xτ‖L∞ ≤ ρx and ‖uτ‖L∞ ≤ ρu, the following bounds

hold for all t ≥ 0

‖ṽ(t)‖ ≤κve−
λ?1
2
t‖x0‖+

√
θ1

λmin(Pv)

1√
Γ
,

‖ỹ(t)‖ ≤κye−
λ?1
2
t‖x0‖+

√
θ1

λmin(Py)

1√
Γ
,

(3.2.43)

where κy, κv are defined in (3.2.11), and

λ?1 =

(
max

(
λmax(Pv)

λmin(Qv)
,

λmax(Py)

(µ− α?)λmin(Py)

))−1

,

θ1 = θ0 +
4m

λ?1
(dρx lθ + b0lσ) ,

θ0 = 4 sup
Ω∈CΩ

(
tr
(

Ω>Ω
)

+ n(d2
ρx + b20)

)
,

Γ = min (ΓΩ,ΓΘ,Γσ) , Qv = Q− εqIn > 0,

(3.2.44)

with lθ = lθ(ρx, ρu) and lσ = lσ(ρx, ρu) satisfying (3.2.42).

Proof. Let τ > 0 satisfy ‖xτ‖L∞ < ρx and ‖uτ‖L∞ < ρu. Pre-multiplying both sides of (3.2.3) by

(In −HCm) and taking the derivative of y(t) yield

v̇(t) =AHv(t) +AHHy(t) + (In −HCm)Bzr(t), v(0) = v0

ẏ(t) =CmAm (v(t) +Hy(t)) + CmBm (Ωu(t) + f(x, t)) + CmBzr(t), y(0) = y0

x(t) =v(t) +Hy(t),

(3.2.45)

where AH = (In−HCm)Am, v0 = (I−HCm)x0, and y0 = Cmx0. By using the fact that Cmv(t) =

Cm(In −HCm)x(t), and subtracting (3.2.22) from (3.2.45), it follows, together with Lemma 3.1.2,
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that

˙̃v(t) =Avṽ(t)− P−1
v A>mC

>
mPyỹ(t), ṽ(0) = −v0

˙̃y(t) =CmAmṽ(t) + CmBm(η̃t(t) + φ(t))− µỹ(t), ỹ(0) = 0,
(3.2.46)

where Av is given in (3.2.9), and

η̃t(t) = Ω̃(t)u(t) + θ̃(t)‖x̂(t)‖+ σ̃(t), (3.2.47)

with Ω̃(t) = Ω̂(t)− Ω, θ̃(t) = θ̂(t)− θ(t), σ̃(t) = σ̂(t)− σ(t), σ(t) = f(0, t), and

φ(t) =θ(t) (‖x̂(t)‖ − ‖x(t)‖) . (3.2.48)

Now, consider the Lyapunov function

V (t) =ṽ>(t)Pvṽ(t) + ỹ>(t)Pyỹ(t) +
tr(Ω̃>(t)Ω̃(t))

ΓΩ
+
θ̃>(t)θ̃(t)

Γθ
+
σ̃>(t)σ̃(t)

Γσ
, (3.2.49)

where Py ∈ Rp×p is chosen to be positive definite and Pv > 0 is the solution of A>v Pv +PvAv = −Q
for a given Q ∈ Rn×n; notice that Q is chosen to satisfy Q > εqIn. By combining (3.2.23) and

(3.2.46), the derivative of (3.2.49) satisfies

V̇ (t) ≤− ṽ>(t)Qṽ(t)− 2µỹ>(t)Pyỹ(t)− 2θ̃>(t)θ̇(t)

Γθ

− 2σ̃>(t)σ̇(t)

Γσ
+ 2ỹ>(t)PyCmBmφ(t).

(3.2.50)

Using the completion of squares, one has

2ỹ>(t)PyCmBmφ(t) ≤αỹ>(t)Pyỹ(t) +
1

α
‖
√
P yCmBm‖22‖φ(t)‖22, (3.2.51)

where α is any positive constant. Moreover, combining (3.2.42) and (3.2.48), along with the fact

that dρx ≤ Lρr , leads to

‖φ(t)‖2 ≤
√
mLρr‖ṽ(t)‖. (3.2.52)

Choose α? = α
2 , with α? being given in (3.2.19). By combining (3.2.50) - (3.2.52), it follows that

V̇ (t) ≤− ṽ>(t)Qvṽ(t)− 2(µ− α?)ỹ>(t)Pyỹ(t)− 2θ̃>(t)θ̇(t)

Γθ
− 2σ̃>(t)σ̇(t)

Γσ
, (3.2.53)

where Qv = Q − εqIn > 0. Notice that µ is chosen to satisfy µ > α? (see (3.2.19)). Furthermore,
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Equation (3.2.42) implies

θ̃>(t)θ̇(t)

Γθ
+
σ̃>(t)σ̇(t)

Γσ
≤ 2m

Γ
(dρx lθ + b0lσ), (3.2.54)

where lθ = lθ(ρx, ρu) and lσ = lσ(ρx, ρu) are given in (3.2.42), and Γ = min(ΓΩ,Γθ,Γσ). The

projection operator in (3.2.23) ensures that

sup
t≥0

(
tr(Ω̃>Ω̃)

ΓΩ
+
θ̃>θ̃

Γθ
+
σ̃>σ̃

Γσ

)
≤ θ0

Γ
, (3.2.55)

where θ0 is defined in (3.2.44). From the definition of λ?1 given in (3.2.44), it follows that for all

t ≥ 0

ṽ>(t)Pvṽ(t) + ỹ>(t)Pyỹ(t) ≤ 1

λ?1
(ṽ>(t)Qvṽ(t) + 2(µ− α?)ỹ>(t)Pyỹ(t)). (3.2.56)

Next, from (3.2.52) - (3.2.54) one has

V̇ (t) ≤− ṽ>(t)Qvṽ(t)− 2(µ− α?)ỹ>(t)Pyỹ(t) +
4m

Γ
(dρx lθ + b0lσ), (3.2.57)

which, along with (3.2.49), (3.2.55), and (3.2.56), leads to

V̇ (t) ≤ −λ?1
(
V (t)− θ1

Γ

)
, t ≥ 0,

where θ1 is given in (3.2.44), and lθ = lθ(ρx, ρu), lσ = lσ(ρx, ρu) satisfy (3.2.42). Gronwell-Bellman

inequality further yields √
V (t) ≤ υv(t, t0), 0 ≤ t0 ≤ t, (3.2.58)

which leads to

‖ỹ(t)‖ ≤ υv(t, t0)√
λmin(Py)

, ‖ṽ(t)‖ ≤ υv(t, t0)√
λmin(Pv)

, (3.2.59)

where

υv(t, t0) =

√(
V (t0)− θ1

Γ

)
e−λ

?
1(t−t0) +

θ1

Γ
. (3.2.60)

Finally, since V (0) ≤ x>0 P̄vx0 + θ0
Γ with P̄v = (In − HCm)>Pv(In − HCm), by letting t0 = 0,

Equation (3.2.59) reduces to (3.2.43), which completes the proof.

Theorem 3.2.1. Consider the closed-loop system with L1 adaptive output feedback controller de-

fined via (3.2.20) – (3.2.23), subject to the L1–norm condition in (3.2.14). Suppose the adaptation

gain is chosen sufficiently high to satisfy

Γ >
θ1

εγ2
, (3.2.61)
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where Γ, θ1 are defined in (3.2.44), and εγ satisfies (3.2.39). Then, the following upper bounds

hold:

‖xref − x‖L∞ ≤ ρdx, ‖uref − u‖L∞ ≤ ρdu, (3.2.62)

and

‖yref − y‖L∞ ≤‖Cm‖ρdx, ‖zref − z‖L∞ ≤ ‖Cz‖ρdx,

‖x‖L∞ ≤ρx, ‖u‖L∞ ≤ ρu. (3.2.63)

Moreover, for each Ω ∈ CΩ there exist positive constants γdx, γdy, and γdz depending on ρx and ρu,

and strictly decreasing functions υdx(t), υdy(t), and υdz(t), such that for all t ≥ 0

‖xref (t)− x(t)‖ ≤υdx(t)‖x0‖+
γdx√

Γ
,

‖yref (t)− y(t)‖ ≤υdy(t)‖x0‖+
γdy√

Γ
,

‖zref (t)− z(t)‖ ≤υdz(t)‖x0‖+
γdz√

Γ
.

(3.2.64)

Proof. Let x̃ref (t) = xref (t) − x(t), ũref (t) = uref (t) − u(t), ỹref (t) = yref (t) − y(t), z̃ref (t) =

zref (t)−z(t), and η̃ref (t) = f(xref , t)−f(x, t). First, we prove Equation (3.2.62) by a contradiction

argument. Suppose it is not true. Since ‖G(s)‖L1
Lρr < 1 holds from (3.2.14), Equation (3.2.40),

together with the fact that κm ≥ 1 in (3.2.11), leads to

ρdx > (κx + κm)ρ0 + γ̄ > ρ0, (3.2.65)

which implies that ‖x̃ref (0)‖ < ρdx, and ‖ũref (0)‖ = 0 < ρdu. From continuity, there exists τ > 0

such that

‖x̃ref (τ)‖ = ρdx or ‖ũref (τ)‖ = ρdu, (3.2.66)

while

‖x̃ref (t)‖ < ρdx, ‖ũref (t)‖ < ρdu, 0 ≤ t < τ, (3.2.67)

where ρdu is given in (3.2.40). Moreover, from (3.2.66) and (3.2.67) the following must hold:

∥∥x̃refτ∥∥L∞ ≤ ρdx, ∥∥ũrefτ∥∥L∞ ≤ ρdu. (3.2.68)

Notice that combining (3.2.18), (3.2.28) and (3.2.40) leads to

ρdx = ρx − ρrx, ρdu = ρu − ρru,

which, together with Lemma 3.2.1 and the triangular inequalities on ‖x̃ref‖ and ‖ũref‖, yields

‖xτ‖L∞ ≤ ρx, ‖uτ‖L∞ ≤ ρu. (3.2.69)
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Since dρx ≤ Lρr holds, Assumption 3.0.2 along with (3.2.69) yields

‖η̃ref (t)‖ ≤ Lρr‖x̃ref (t)‖, 0 ≤ t ≤ τ. (3.2.70)

Moreover, using Lemma 3.1.2, from (3.2.21) one has

η̂t(t) = Ωu(t) + f(x, t) + η̃t(t) + φ(t), (3.2.71)

where η̃t(t), and φ(t) are defined in (3.2.47), and (3.2.48), respectively. Substituting (3.2.71) into

(3.2.20) leads to

u(s) = −C0(s) (η(s) + σ(s) + η̃t(s) + φ(s)) , (3.2.72)

where η(s), σ(s), η̃t(s), and φ(s) are the Laplace transforms of (f(x, t)−σ(t)), σ(t), η̃t(t), and φ(t),

respectively; C0(s) is given in (3.2.13). Next, combining (3.2.3) and (3.2.72) yields

x(s) =Hz(s)r(s) +G(s)(η(s) + σ(s))−H0(s)φf (s) + (sIn −Am)−1x0,

y(s) =Cmx(s), z(s) = Czx(s),
(3.2.73)

where Hz(s), H0(s), G(s) are given in (3.2.16), and

φf (s) = C(s)(η̃t(s) + φ(s)). (3.2.74)

By subtracting (3.2.73) from (3.2.32), it follows that

x̃ref (s) =G(s)η̃ref (s) +H0(s)φf (s)− (sIn −Am)−1x0,

ỹref (s) =Cmx̃ref (s), z̃ref (s) = Czx̃ref (s), (3.2.75)

and

ũref (s) = C0(s) (η̃t(s) + φ(s)− η̃ref (s)) . (3.2.76)

Since (CmBm)†(CmBm) = Im, from (3.2.46) one has

C0(s)(η̃t(s) + φ(s)) = C3(s)ỹ(s)− C4(s)ṽ(s), (3.2.77)

and

φf (s) = C(s)(η̃t(s) + φ(s)) = C1(s)ỹ(s)− C2(s)ṽ(s), (3.2.78)

where {C1(s), C2(s)}, and {C3(s), C4(s)} are defined in (3.2.17) and (3.2.38), respectively; C1(s),

C2(s), C3(s), and C4(s) are all stable and proper transfer function matrices. By combining (3.2.14),

(3.2.70), and (3.2.75) - (3.2.78), it follows, together with Lemma 3.2.2, that

∥∥ũrefτ∥∥L∞ ≤ γu0ρ0 + γu

√
θ1

Γ
,
∥∥x̃refτ∥∥L∞ ≤ γx0ρ0 + γx

√
θ1

Γ
, (3.2.79)
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where θ1 is given in (3.2.44). Since the choice of adaptation gains ensures that γx

√
θ1
Γ < γ̄ and

γu

√
θ1
Γ < γ̄, Equation (3.2.79), along with (3.2.40), implies

∥∥ũrefτ∥∥L∞ < ρdx,
∥∥x̃refτ∥∥L∞ < ρdu, (3.2.80)

which shows the clear contradiction to (3.2.68), thus proving (3.2.62). Moreover, by applying the

triangular inequality on ‖x̃ref‖ and ‖ũref‖, Equation (3.2.63) follows.

Next, we prove Equation (3.2.64). Notice that φf (t) of Equation (3.2.78) is bounded, since

C1(s), C2(s) are stable transfer matrices, and Lemma 3.2.2 holds. Let C(s) = Cf (sIm −Af )−1Bf ,

where Af ∈ Rnf×nf , Bf ∈ Rnf×m, Cf ∈ Rm×m present a minimal realization. Then, the state-space

realization of the system given in (3.2.75) and (3.2.76) can take the form of

˙̃xc(t) = Acx̃c(t) +Bcη̃ref (t) +Bfφf (t),

x̃ref (t) = Ccx̃c(t), x̃c(0) = [−x>0 , 0]>,
(3.2.81)

with

Ac =

[
Am BmCf

0 Af

]
, Bc =

[
Bm

−Bf

]
, Bf =

[
Bm

0

]
, Cc =

[
In 0

]
, (3.2.82)

where x̃c(t) = [x̃>ref (t), x̃>f (t)]> ∈ Rnc×nc is the state of the system (3.2.81); nc = n + nf , and

x̃(t) ∈ Rnf is an internal state vector. Let tm ≥ 0. For a given x̃c(tm) and t ≥ tm, the solution of

(3.2.81) is given by

x̃c(t) =eAc(t−tm)x̃c(tm) +

∫ t

tm

eAc(t−τ)Bfφf (τ)dτ +

∫ t

tm

eAc(t−τ)Bcη̃ref (τ)dτ. (3.2.83)

Notice that G(s) = Cc(sInc − Ac)
−1Bc = H0(s)(Im − C(s)). Since Equation (3.2.14) implies

‖G(s)‖L1
Lρr < 1, the continuity of the L1-norm allows to take a sufficiently small λ0 > 0 such

that β1 = ‖G(s− λ0)‖L1
< 1/Lρr . Define Aλ0 = Ac + λ0Inc , x̄c(t) = eλ0(t−tm)x̃c(t), φ̄f (t) =

eλ0(t−tm)φf (t), and η̄ref (t) = eλ0(t−tm)η̃ref (t). Multiplying both sides of (3.2.83) by eλ0(t−tm)Cc

yields

x̄ref (t) =Cce
Aλ0

(t−tm)x̃c(tm) +

∫ t

tm

Cce
Aλ0

(t−τ)Bf φ̄f (τ)dτ

+

∫ t

tm

Cce
Aλ0

(t−τ)Bcη̄ref (τ)dτ, (3.2.84)

where x̄ref (t) = eλ0(t−tm)x̃ref (t). Notice that Aλ0 is Hurwitz by ‖G(s− λ0)‖L1
<∞. From (3.2.70),

one has

‖η̄ref (t)‖ ≤ Lρr‖x̄ref (t)‖ , ∀t ≥ 0. (3.2.85)
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By combining (3.2.84) and (3.2.85) and using the fact that Cc = [Inc , 0], it follows that for all t ≥ tm

‖x̄ref‖L∞[tm,t]
≤ β0

1− β1Lρr
‖x̃c(tm)‖+

β2

1− β1Lρr

∥∥φ̄f∥∥L∞[tm,t]
, (3.2.86)

where β0 = sup
0≤τ
‖eAλ0

τ‖, β1 = ‖G(s− λ0)‖L1
, and β2 =

∥∥(sInc −Aλ0)−1Bf
∥∥
L1

. Now, multiplying

both sides of (3.2.83) by eλ0(t−tm), and combining (3.2.85) - (3.2.86), one can obtain

‖x̄c(t)‖ ≤ κ0‖x̃c(tm)‖+ κ1

∥∥φ̄f∥∥L∞[tm,t]
,

which further yields

‖x̃c(t)‖ ≤κ0e
−λ0(t−tm)‖x̃c(tm)‖+ κ1‖φf‖L∞[tm,t]

, (3.2.87)

where

κ0 =β0(1 +
Lρrβ3

1− β1Lρr
), κ1 = β2(1 +

Lρrβ3

1− β1Lρr
), (3.2.88)

with β3 =
∥∥(sInc −Aλ0)−1Bc

∥∥
L1

. Substituting (3.2.59), (3.2.60) and (3.2.78) into (3.2.87) leads to

‖x̃c(t)‖ ≤κ0e
−λ0(t−tm)‖x̃c(tm)‖+ γ1

(
υv(tm, 0) +

√
θ1

Γ

)
, (3.2.89)

where υv(·, ·) is defined in (3.2.60), and

γ1 = κ1

(
‖C1(s)‖L1√
λmin(Py)

+
‖C2(s)‖L1√
λmin(Pv)

)
.

Since Equation (3.2.87) holds for any 0 ≤ tm ≤ t, using Lemma 3.2.2, and Equations (3.2.78) and

(3.2.87) results in

‖x̃c(tm)‖ ≤ κ0e
−λ0tm‖x0‖+ γ1

√
nλmax(P̄v)‖x0‖+ γ1

√
θ1

Γ
.

Since V (0) ≤ nλmax(P̄v)‖x0‖2 + θ0
Γ with P̄v = (In −HCm)>Pv(In −HCm), setting tm = t/2, and

substituting (3.2.60) and (3.2.90) into (3.2.89) yield

‖x̃c(t)‖ ≤ υdx(t)‖x0‖+
γdx√

Γ
, t ≥ 0, (3.2.90)

where

υdx(t) =κ2
0e
−λ0t + κ0γ1

√
nλmax(P̄v)e

−λ0
2
t + γ1

√
nλmax(P̄v)e

−λ
?
1
4
t,

γdx =(κ0 + 2)γ1

√
θ1.
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Since ‖x̃ref (t)‖ ≤ ‖x̃c(t)‖, letting γdy = ‖Cm‖γdx, υdy(t) = ‖Cm‖υdx(t), γdz = ‖Cz‖γdx, and

υdz(t) = ‖Cz‖υdx(t) reduces to (3.2.64). This completes the proof.

The semi-global result for the closed-loop system stability directly follows from Lemma 3.2.1

and Theorem 3.2.1. Notice that the transient performance due to the non-zero initial conditions

is upper-bounded by strictly decreasing functions that are not dependent on the adaptation gain.

Moreover, high adaptation gains lead to arbitrarily small steady-state performance bounds.
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CHAPTER. 4

L1 adaptive controller for MIMO Systems with Arbitrary Vector Relative
Degree

In this chapter, we relax the vector relative degree condition that was made in the previous

chapter. Although the relative degree constraint is crucial for the use of the state-decomposition,

it may not be satisfied in many physical systems, which in turn limits the range of applications.

This chapter shows that the problem can be resolved by introducing a virtual system and a right

interactor. Figures 4.1 and 4.2 illustrate the uncertain open-loop system and the cascaded connec-

tion of the virtual system and the inverse system of a right interactor, where M(s) is the desired

system, and Z(s) denotes the inverse of a right interactor. The main idea is to design the estima-

tion loop based on the virtual system, in which state-decomposition is allowed. Since the cascaded

connection fully describes the open-loop system, this method is effective to tackle the systems with

high relative degree.

This chapter starts by introducing an L1 adaptive controller for nonlinear underactuated sys-

tems. Next, we present the piecewise constant adaptation laws for the L1 adaptive controller, which

are more suitable for real-time applications.

Figure 4.1: Uncertain system Figure 4.2: Cascaded representation

4.1. L1 Adaptive Control for Nonlinear Systems

In this section, we introduce the L1 adaptive output-feedback controller for the systems with

arbitrary relative degree. Consider the following MIMO system

ẋ(t) = Amx(t) +Bm(ωu(t) + f(x, t)) ,

y(t) = Cmx(t) , x(0) = x0 ,
(4.1.1)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp are the state, input and measurable output vectors,

respectively, with p ≥ m, and x0 ∈ Rn is the initial state. Moreover, Am ∈ Rn×n is a known

Hurwitz matrix, Bm ∈ Rn×m and Cm ∈ Rp×n are known matrices. Let (Am, Bm, Cm) be the
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minimal realization of M(s) = Cm (sIn −Am)−1Bm, which describes the desired dynamics of the

closed-loop system; suppose M(s) has full column rank m. Finally, ω > 0 is an unknown constant

input gain, and f : R× Rn → Rm is an unknown function representing system uncertainties.

Assumption 4.1.1. M(s) does not have unstable transmission zeros.

Remark 4.1.1. Notice that we do not require (CmBm) be full rank.

Assumption 4.1.2. The unknown constant input gain satisfies ω ∈ Cω, where Cω = [ωl, ωu] is a

known compact set with 0 < ωl < ωu.

Assumption 4.1.3. There exists b0 > 0 such that

‖f(0, t)‖ < b0, ∀t ≥ 0,

where b0 is a known constant. Moreover, for any δ > 0 there exist dδ > 0, and bδ > 0 such that∥∥∥∥∂f(x, t)

∂x

∥∥∥∥ ≤ dδ, ∥∥∥∥∂f(x, t)

∂t

∥∥∥∥ ≤ bδ, ∀‖x‖ < δ,

where dδ and bδ are known constants.

Then, the problem at hand is stated as follows:

Problem 4.1.1. Consider the system described by Equation (4.1.1) satisfying Assumptions 4.1.1-

4.1.3. Design an adaptive control law for u(t) such that y(t) tracks the desired response ym(t)

both in transient and steady state, where ym(t) is the signal with the Laplace transform of ym(s) =

M(s)Kgr(s) with Kg ∈ Rm×mr being a feed-forward gain, and r(t) ∈ Rmr being a reference signal.

4.1.1. Uncertainty parameterization

Let {Az, Bz, Cz, Dz} be the set of system matrices of Z(s) defined for M(s), and Tz ∈ Rn×nz ,
B̄ ∈ Rn×m be matrices satisfying (2.1.30). Consider the following systems:

ẋu(t) =Azxu(t) +Bzu(t),

uz(t) =Czxu(t) +Dzu(t), xu(0) = 0,
(4.1.2)

and

ẋf (t) =Azxf (t) +Bzf(Tgxg + Tzxf , t), xf (0) = 0, (4.1.3)

where xg(t) = [x>v (t), x>u (t)]>, Tg = [In, ωTz], and f(·, t) satisfy Assumption 4.1.3. The state

xv(t) ∈ Rn is governed by the following virtual system:

ẋv(t) =Amxv(t) + B̄(ωuz(t) + f̄(X, t)),

yv(t) =Cmxv(t), xv(0) = x0,
(4.1.4)
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where

f̄(X, t) = Czxf (t) +Dzf(Tgxg + Tzxf , t), (4.1.5)

with X = [x>g (t), x>f (t)]>. By letting xz(t) = xf (t) + ωxu(t), from Corollary 2.1.3 and Equations

(4.1.2) - (4.1.5) we have x(t) = Tgxg(t) + Tzxf (t) and yv(t) = y(t) for any t ≥ 0, where x(t), y(t)

are solutions of (4.1.1).

Lemma 4.1.1. Consider the systems in (4.1.2) - (4.1.5). Let τ > 0, ρx > 0, and ρu > 0. Suppose

‖xτ‖L∞ ≤ ρx, and ‖uτ‖L∞ ≤ ρu, where x(t) = Tgxg(t) + Tzxf (t). The function f̄(X, t) in (4.1.5)

can be represented as:

f̄(X, t) = θ(t)‖xg(t)‖+ σ(t), 0 ≤ t ≤ τ,

where

‖θ(t)‖ ≤ d̄ρx ‖θ̇(t)‖ ≤ l̄θ,

‖σ(t)‖ ≤ b̄ρx , ‖σ̇(t)‖ ≤ l̄σ,
(4.1.6)

with l̄θ, l̄σ being computable finite bounds, and d̄ρx, b̄ρx being given by

d̄ρx = max
ω∈Cω

(‖CzT †zTg‖+ ‖Dz‖‖Tg‖dρx),

b̄ρx =‖CzT †z ‖ρx + ‖Dz‖ ‖T (s)‖L1
d2
ρxρx

+ ‖Dz‖(‖T (s)‖L1
dρx + 1)b0.

(4.1.7)

with T (s) = Tz(sInz −Az)−1Bz, and b0, dρx being given in Assumption 4.1.3.

Proof. Since ‖xτ‖L∞ ≤ ρx, from (4.1.3) it follows that

‖Tzxz‖L∞[0,τ ] ≤ ‖T (s)‖L1
dρxρx + ‖T (s)‖L1

b0, (4.1.8)

where dρx , b0 are given in Assumption 4.1.3, and

T (s) = Tz(sInz −Az)−1Bz.

Moreover, notice that xz(t) = T †zTgxg(t) + T †zx(t), where T †z is the generalized inverse of Tz. From

(4.1.5), one has

f̄(X, t) =CzT
†
zTgxg(t) + CzT

†
zx(t) +Dzf(Tgxg + Tzxf , t), (4.1.9)

Using Assumption 4.1.3 on f(x, t), it can be shown that the partial derivatives of f̄(X, t) are

(semi-globally) bounded. Since ‖Tgxg + Tzxf‖L∞[0,τ ] ≤ ρx holds, from (4.1.8) and (4.1.9) it follows
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that

‖f̄(X, t)‖ < d̄ρx‖xg(t)‖+ b̄ρx , 0 ≤ t ≤ τ,

where d̄ρx , b̄ρx are given in (4.1.7). Finally, since ‖xg‖L∞[0,τ ] and ‖ẋg‖L∞[0,τ ] are finite, from Lemma

2.3.1 the conclusion follows. This completes the proof.

Remark 4.1.2. The conservative bounds on θ(t) and σ(t) are dependent on the choice of Z(s).

4.1.2. Design of L1 adaptive controller

In this section, the L1 adaptive output feedback controller that solves Problem 4.1.1 is pre-

sented. Before stating the main result, we introduce several design variables. Let ρ0 > 0 be a given

constant satisfying ‖x0‖ ≤ ρ0 with x0 ∈ Rn being an initial condition, and choose γ̄ > 0 to be an

arbitrarily small constant. For a given δ > 0 define

Lδ =
δ̄(δ)

δ
dδ̄(δ), δ̄(δ) = δ + γ̄ , (4.1.10)

where dδ̄(δ) is introduced in Assumption 4.1.3. Choose Z−1(s) to be a right interactor of sM(s)

such that

Z(s) = Cz(sInz −Az)−1Bz +Dz,

where Az is Hurwitz, and {Az ∈ Rnz×nz , Bz ∈ Rnz×m, Cz ∈ Rm×nz} is a minimal realization of

Z(s). Notice that the existence of Z(s) is guaranteed by Theorem 2.1.4. Now, let Tz ∈ Rn×nz and

B̄ ∈ Rn×m be matrices that satisfy Corollary 2.1.2. Choose Kv ∈ Rn×p as a stabilizing gain so that

Av = AH +KvCm (4.1.11)

is Hurwitz (from Lemma 2.1.19 such Kv exists), where

AH = (In −HCm)Am, H = B̄(CmB̄)†, (4.1.12)

with (CmB̄)† being the generalized inverse of (CmB̄). Let Py ∈ Rp×p be a given positive definite

matrix, and Pv ∈ Rn×n be the positive definite matrix which solves

A>v Pv + PvAv = −Q (4.1.13)

for a positive definite Q ∈ Rn×n with εq < λmin(Q). Define

κm = sup
t≥0
‖eAmt‖,

κy =
√
nλmax(P̄v)
λmin(Pv) , κv =

√
nλmax(P̄v)
λmin(Py) ,

(4.1.14)
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where P̄v = (In −HCm)>Pv(In −HCm). Let D(s) be a m ×m transfer matrix such that, for all

ω ∈ Cω
C(s) = ωC0(s)

is stable with C(0) = Im, and C(s)Z−1(s) is strictly proper, where

C0(s) = D(s)(Im + ωD(s))−1. (4.1.15)

Moreover, it is assumed that D(s) ensures that there exists ρr > 0 such that

‖G(s)‖L1
<
ρr − ρext − ρint

Lρrρr
, ω ∈ Cω, (4.1.16)

where

ρext = ‖H0(s)C(s)Kg(s)‖L1
‖r‖L∞ + ‖G(s)‖L1

b0,

ρint =(κm + κx)ρ0,

κx = ‖H1(s)‖L1
κy + ‖H2(s)‖L1

κv,

(4.1.17)

with κm, κy, and κv being given in (4.1.14). Moreover,

H0(s) =(sIn −Am)−1Bm,

H1(s) =ωH0(s)C1(s), H2(s) = ωH0(s)C2(s), (4.1.18)

G(s) =H0(s) (Im − C(s)) ,

and

C1(s) =(s+ α)C0(s)Z−1(s)(CmB̄)†,

C2(s) =C0(s)Z−1(s)(CmB̄)†CmAm,
(4.1.19)

where α > 0 will be defined later. Notice that Lρr satisfies (4.1.10) with dρx and

ρx = ρr + γ̄. (4.1.20)

Finally, let α > 0 be chosen to satisfy

αy = 2α− αφ > 0, αφ =
md̄2

ρx

εq

∥∥∥√PyCmB̄∥∥∥2

2
, (4.1.21)

where d̄ρx is given in (4.1.7), and
√
Py ∈ Rp×p is the upper triangular matrix satisfying the Cholesky

decomposition; Py =
√
Py
>√

Py.

Remark 4.1.3. Clearly, for small γ̄ > 0, we have ρx ≈ ρr; ρr is used to characterize the conser-

vative bounds on the positive invariant set of the closed-loop system.
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Next, consider the following control law

u(s) = D(s)Kgr(s)−D(s)Z−1(s)η̂t(s) , (4.1.22)

where η̂t(s) is the Laplace transform of

η̂t(t) = ω̂(t)uz(t) + θ̂(t)‖x̂g(t)‖+ σ̂(t), (4.1.23)

and ω̂(t), θ̂(t), σ̂(t) are defined later in the adaptive laws, uz(t) is given in (4.1.2), and xg(t) =

[x̂>v (t), x>u (t)]>; xu(t) is defined in (4.1.2), and x̂v(t) = v̂(t) + Hy(t) with v̂(t) being given by the

following predictor:

˙̂v(t) =Avx̂v(t)−Kvy(t)− P−1
v A>mC

>
mPyỹ(t),

˙̂y(t) =− αỹ(t) + CmAmx̂v(t) + CmB̄η̂t(t),

v̂(0) =0, ŷ(t) = y0,

(4.1.24)

where y0 = Cmx0 is assumed to be known, ỹ(t) = ŷ(t)− y(t), and Av is given in (4.1.11). Finally,

the following adaptive laws are used:

˙̂ω(t) =ΓωProj(ω̂(t),−u>z (t)ey(t)), ω̂(0) = 1,

˙̂
θ(t) =ΓθProj(θ̂(t),−‖x̂g(t)‖ey(t)), θ̂(0) = 0,

˙̂σ(t) =ΓσProj(σ̂(t),−ey(t)), σ̂(0) = 0,

(4.1.25)

where Γω, Γθ, Γσ are positive adaptation gains, ey(t) = B̄>C>mPyỹ(t), and Proj(·, ·) denotes the

projection operator [21].

4.1.3. Stability and Performance Analysis

Consider the following closed-loop reference system

ẋref (t) =Amxref (t) +Bm (ωuref (t) + f(xref , t)) ,

yref (t) =Cmxref (t), xref (0) = 0,
(4.1.26)

with

uref (s) = C0(s) (Kgr(s)− ηref (s)− σ(s)) , (4.1.27)

where xref (t) ∈ Rn, yref (t) ∈ Rp are the reference system states and outputs, respectively, r(s) is

the Laplace transform of the reference command r(t) ∈ Rmr , Kg ∈ Rm×mr is a feed-forward gain,

and C0(s) is given in (4.1.15). Moreover, ηref (s) and σ(s) are the Laplace transforms of

.ηref (t) = f(xref , t)− f(0, t), σ(t) = f(0, t), (4.1.28)
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respectively.

The reference system given in (4.1.26) and (4.1.27) assumes compensation of uncertainties

within the filter bandwidth.

Lemma 4.1.2. Consider the closed-loop reference system given in (4.1.26) and (4.1.27) and design

constraints defined in (4.1.10) - (4.1.20). Then, for each ω ∈ Cω and τ > 0 the following bound

holds

∥∥xref τ∥∥L∞ ≤ ρrx, (4.1.29)

where

ρrx = ρr −
ρint

1− ‖G(s)‖L1
Lρr

> 0, (4.1.30)

with ρint, G(s) given in (4.1.17) and (4.1.18), respectively. Moreover,

∥∥uref τ∥∥L∞ ≤ ρru, (4.1.31)

where

ρru = ‖C0(s)‖L1
(Lρrρrx + b0) + ‖C0(s)Kg‖L1

‖r‖L∞ , (4.1.32)

with C0(s) defined in (4.1.15).

Proof. Notice that from (4.1.16) and (4.1.30) one has

ρrx > ρext ≥ 0 , (4.1.33)

where ρext is defined in (4.1.17). Next, it will be shown that Equation (4.1.29) holds by a contra-

diction argument. Suppose it is not true for some τ ′ > 0. Then, since xref (t) is continuous and

xref (0) = 0, there exists τ ′ ∈ [0, τ ] such that

‖xref (τ ′)‖ = ρrx , ‖xref (t)‖ < ρrx , ∀t ∈ [0, τ ′) ,

which yields ∥∥xref τ ′∥∥L∞ = ρrx . (4.1.34)

By substituting the control law in (4.1.27) into (4.1.26), the Laplace transform of the closed-loop

reference system is written as

xref (s) = H0C(s)Kgr(s) +G(s)ηref (s) +G(s)σ(s) ,

yref (s) = Cmxref (s) ,
(4.1.35)
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which further leads to

∥∥xref τ ′∥∥L∞ ≤‖H0(s)C(s)Kg‖L1
‖r‖L∞ + ‖G(s)‖L1

∥∥ηref τ ′∥∥L∞ + ‖G(s)‖L1
‖σ‖L∞ , (4.1.36)

where C(s), {H0(s), G(s)} are given in (4.1.2) and (4.1.18), respectively, and ηref (s), σ(s) are the

Laplace transform signals defined in (4.1.28). Since
∥∥xref τ ′∥∥L∞ ≤ ρrx < ρx and dρx < Lρr hold,

from Assumption 4.1.3 it follows that

∥∥ηref τ ′∥∥L∞ ≤ Lρr ∥∥xref τ ′∥∥L∞ , ‖σ‖L∞ ≤ b0. (4.1.37)

Since Equation (4.1.16) implies ‖G(s)‖L1
Lρr < 1, combining (4.1.36) and (4.1.37) yields

∥∥xref τ ′∥∥L∞ ≤‖H0(s)C(s)Kg‖L1
‖r‖L∞ + ‖G(s)‖L1

b0

1− ‖G(s)‖L1
Lρr

,

which, together with (4.1.16), leads to

ρxr =
∥∥xref τ ′∥∥L∞ ≤ ρext + ‖G(s)‖L1

b0

1− ‖G(s)‖L1
Lρr

< ρr −
ρint

1− ‖G(s)‖L1
Lρr

= ρxr (4.1.38)

Therefore, Equation (4.1.38) shows a contradiction to (4.1.34), thus proving (4.1.29). Finally,

Equation (4.1.31) follows from combining (4.1.27) and (4.1.37). This completes the proof.

Notice that the condition given in (4.1.16) depends on the upper bound of the partial derivative

of f(x, t), which, in turn, depends upon the unknown initial condition. Thus, the stability result in

Lemma 4.1.2 is semi-global. However, in the case, when the uncertain function f(x, t) has globally

bounded partial derivatives (e.g. dδ ≡ L for some constant L > 0), it is straightforward to verify

that Equation (4.1.16) provides a uniform condition for stabilization (i.e., ‖G(s)‖L1
L < 1).

Remark 4.1.4. Notice that the present approach requires a minimum order filter (i.e., C(s)Z−1(s)

is proper), when the system has high relative degree. Such condition is typical for output-feedback

approaches. For example, the methods of [55, 57] require choosing a low-pass filter dependent upon

the systems relative degree.

To demonstrate the stability of the closed-loop system with the proposed L1 adaptive control

laws (4.1.22)-(4.1.25), it will be shown that the difference between the closed-loop system and the

ideal reference system is semi-globally bounded with arbitrarily small steady-state bounds. Before
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stating the main results, we introduce a few variables of interest. Let

γu0 = ‖C0(s)‖L1
Lρrγx0 + (‖C1(s)‖L1

κy + ‖C2(s)‖L1
κv),

γx0 =
κx + κm

1− ‖G(s)‖L1
Lρr

,

γu = ‖C0(s)‖L1
Lρrγx +

‖C1(s)‖L1√
λmin(Py)

+
‖C2(s)‖L1√
λmin(Pv)

,

γx =
λmin(Py)

− 1
2 ‖H1(s)‖L1

+ λmin(Pv)
− 1

2 ‖H2(s)‖L1

1− ‖G(s)‖L1
Lρr

,

(4.1.39)

where {κm, κy, κv}, κx, {H1(s), H2(s)}, and {C1(s), C2(s)} are given in (4.1.14), (4.1.17), (4.1.18),

and (4.1.19), respectively. Next, εγ > 0 is chosen to satisfy

γxεγ < γ̄, γuεγ < γ̄, ∀ω ∈ Cω. (4.1.40)

Finally, let ρu, ρdx, and ρdu be

ρu = ρru + ρdu,

ρdx = γx0ρ0 + γ̄, ρdu = γu0ρ0 + γ̄,
(4.1.41)

respectively, where ρru is defined in (4.1.32).

Lemma 4.1.3. Consider the system given by Equation (4.1.1) with control law defined in (4.1.22)-

(4.1.25). Let τ > 0 be a positive constant. If ‖xτ‖L∞ ≤ ρx and ‖uτ‖L∞ ≤ ρu, then the output-

estimation error for all t ∈ [0, τ ] is bounded as follows:

‖ỹ(t)‖ ≤κye−
λ1
2
t‖x0‖+

√
θ1

λmin(Py)

1√
Γ
, (4.1.42)

where κy is defined in (4.1.14), and

λ1 = min

(
λmin(Qv)

λmax(Pv)
, αy

)
,

θ1 = θ0 + 4m
d̄ρx l̄θ + b̄ρx l̄σ

λ1
,

θ0 = 4
(
ω2
u +md̄2

ρx +mb̄2ρx
)
,

Γ = min (Γω,Γθ,Γσ) ,

(4.1.43)

with Qv = Q − εqIn � 0, αy > 0 is given in (4.1.21), and d̄ρx, l̄θ, b̄ρx, l̄σ are bounds satisfying

(4.1.6).
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Proof. Notice that Lemma 4.1.1 holds from the hypothesis. From (4.1.2) - (4.1.4) it follows that

ẋv(t) =Amxv(t) + B̄(ωuz(t) + θ(t)‖xg(t)‖+ σ(t)),

y(t) =Cmxv(t), xv(0) = x0,
(4.1.44)

where xg(t) = [x>v (t), x>u (t)], and xu(t), uz(t) are given in (4.1.2). Notice that x(t) = xv(t) +

Tz(ωxu(t) + xf (t)) holds, where xf (t) is defined in (4.1.3), and Tz ∈ Rn×nf satisfies (2.1.30). Next,

define v(t) = (In−HCm)xv(t). By pre-multiplying both sides of (4.1.44) by (In−HCm) and taking

the derivative of y(t), it follows that

v̇(t) =AHv(t) +AHHy(t), v(0) = v0,

ẏ(t) =CmAmv(t) + CmAmHy(t) + CmB̄(ωuz(t) + θ(t)‖xg(t)‖+ σ(t)), y(0) = y0,
(4.1.45)

where v0 = (In −HCm)x0, and {AH , H} is given in (4.1.12). Let

η̃t(t) = ω̃(t)uz(t) + θ̃(t)‖x̂g(t)‖+ σ̃(t), (4.1.46)

and

φ(t) = θ(t)(‖x̂g(t)‖ − ‖xg(t)‖), (4.1.47)

where ω̃(t) = ω̂(t)− ω, θ̃(t) = θ̂(t)− θ(t), and σ̃(t) = σ̂(t)− σ(t). Define

ṽ(t) = v̂(t)− v(t), ỹ(t) = ŷ(t)− y(t). (4.1.48)

Then, subtracting (4.1.45) from (4.1.24) yields

˙̃v(t) =Avṽ(t)− P−1
v A>mC

>
mPyỹ(t),

˙̃y(t) =− αỹ(t) + CmAmṽ(t) + CmB̄(η̃t(t) + φ(t)),

ṽ(0) =− v0, ỹ(0) = 0,

(4.1.49)

where Av is Hurwitz (see (4.1.11)), and η̃t(t), φ(t) are given in (4.1.46), and (4.1.47), respectively.

Now, consider the Lyapunov function:

V (t) = ṽ>(t)Pvṽ(t) + ỹ>(t)Pyỹ(t) +
ω̃2(t)

Γω
+
θ̃>(t)θ̃(t)

Γθ
+
σ̃>(t)σ̃(t)

Γσ
. (4.1.50)

Taking the derivative of (4.1.50), and substituting (4.1.25) and (4.1.49), one has

V̇ (t) ≤− ṽ>(t)Qṽ(t)− 2αỹ>(t)Pyỹ(t)− 2θ̃>(t)θ̇(t)

Γθ

− 2σ̃>(t)σ̇(t)

Γσ
+ 2ỹ>(t)PyCmB̄φ(t),

(4.1.51)

where Q � εqIn is positive definite satisfying (4.1.13). Notice that ‖‖x̂g(t)‖ − ‖xg(t)‖‖ ≤ ‖ṽ(t)‖
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holds. Then from (4.1.47) and (4.1.6) it follows that

2ỹ>(t)PyCmB̄φ(t) ≤αφỹ>(t)Pyỹ(t) +
md̄2

ρx‖
√
PyCmB̄‖22
αφ

‖ṽ(t)‖22, (4.1.52)

where d̄ρx , αφ are given in (4.1.7) and (4.1.21), respectively. Further, from (4.1.51) and (4.1.52)

one has

V̇ (t) ≤− ṽ>(t)Qvṽ(t)− αyỹ>(t)Pyỹ(t)− 2θ̃>(t)θ̇(t)

Γθ
− 2σ̃>(t)σ̇(t)

Γσ
, (4.1.53)

where Qv = Q− εqIn � 0 and αy > 0 (see (4.1.21)). Notice that from Lemma 4.1.1 it follows that

for 0 ≤ t ≤ τ
2θ̃>(t)θ̇(t)

Γθ
+

2σ̃>(t)σ̇(t)

Γσ
≤ θ1 − θ0

Γ
λ1,

and the projection operator in (4.1.25) ensures

ω̃2(t)

Γω
+
θ̃>(t)θ̃(t)

Γθ
+
σ̃>(t)σ̃(t)

Γσ
≤ θ0

Γ
, (4.1.54)

where Γ, θ0, θ1, λ1 are given in (4.1.43). Since

−ṽ>(t)Qvṽ(t)− αyỹ>(t)Pyỹ(t) ≤ −λ1(ṽ>(t)Pvṽ(t) + ỹ>(t)Pyỹ(t)),

combining (4.1.53) - (4.1.54), along with (4.1.50), leads to

V̇ (t) ≤ −λ1

(
V (t)− θ1

Γ

)
.

Choose t0 ∈ R to be 0 ≤ t0 ≤ t ≤ τ . Then, Gronwell-Bellman inequality yields√
V (t) ≤ υv(t, t0), 0 ≤ t0 ≤ t ≤ τ, (4.1.55)

which gives

‖ṽ(t)‖ ≤ υv(t, t0)√
λmin(Pv)

, ‖ỹ(t)‖ ≤ υv(t, t0)√
λmin(Py)

, (4.1.56)

where

υv(t, t0) =

√(
V (t0)− θ1

Γ

)
e−λ1(t−t0) +

θ1

Γ
. (4.1.57)

Finally, since V (0) ≤ x>0 P̄vx0 + θ0
Γ with P̄v = (In −HCm)>Pv(In −HCm), from letting t0 = 0 it
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follows that

‖ỹ(t)‖ ≤κye−
λ1
2
t‖x0‖+

√
θ1

λmin(Py)

1√
Γ
,

‖ṽ(t)‖ ≤κve−
λ1
2
t‖x0‖+

√
θ1

λmin(Pv)

1√
Γ
,

(4.1.58)

where κv, κy are given in (4.1.14). This completes the proof.

Notice that high adaptation gains make the estimation errors arbitrarily small.

Theorem 4.1.1. Consider the closed-loop system with L1 adaptive output feedback controller de-

fined via (4.1.22)-(4.1.25), subject to the design constraints in (4.1.10)-(4.1.21). Suppose the adap-

tation gains are chosen sufficiently high to satisfy

Γ >
θ1

εγ2
,

where Γ, θ1 are defined in (4.1.43), and εγ satisfies (4.1.40). Then, the following upper bounds

hold:

‖xref − x‖L∞ ≤ ρdx, ‖uref − u‖L∞ ≤ ρdu, (4.1.59)

and

‖yref − y‖L∞ ≤ ‖Cm‖ρdx,

‖x‖L∞ ≤ ρx, ‖u‖L∞ ≤ ρu.
(4.1.60)

Moreover, for each ω ∈ Cω there exist positive constants γdx, γdy, and γdz, and strictly decreasing

functions of υdx(t), υdy(t), and υdz(t), such that for all t ≥ 0

‖xref (t)− x(t)‖ ≤υdx(t)‖x0‖+
γdx√

Γ
,

‖yref (t)− y(t)‖ ≤υdy(t)‖x0‖+
γdy√

Γ
.

(4.1.61)

Proof. Define x̃ref (t) = xref (t) − x(t), ũref (t) = uref (t) − u(t), ỹref (t) = yref (t) − y(t), and

η̃ref (t) = f(xref , t)−f(x, t). First, it will be shown that Equation (4.1.59) holds by a contradiction

argument. Suppose it is not true. Notice that since κm ≥ 1 in (4.1.14), it follows that γx0 > 1,

which leads to ρdx > ρ0, and ‖x̃ref (0)‖ = ρ0 < ρdx, where γx0 , ρdx are given in (4.1.39), and

(4.1.41), respectively. Moreover, since ‖ũref (0)‖ = 0 < ρdu with ρdu being given in (4.1.41), from

the continuity of the solutions it follows that there exists τ ′ > 0 such that

‖x̃ref (τ ′)‖ = ρdx or ‖ũref (τ ′)‖ = ρdu,
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while

‖x̃ref (t)‖ < ρdx, ‖ũref (t)‖ < ρdu, 0 ≤ t < τ ′,

which implies that the following must hold:

∥∥x̃refτ ′∥∥L∞ ≤ ρdx, ∥∥ũrefτ ′∥∥L∞ ≤ ρdu. (4.1.62)

Notice that from (4.1.20), (4.1.30), and (4.1.41) it follows that

ρdx = ρx − ρrx, ρdu = ρu − ρru.

Then, the triangular inequalities on (4.1.62), together with (4.1.29) and (4.1.31), yield

‖xτ ′‖L∞ ≤ ρx, ‖uτ ′‖L∞ ≤ ρu, (4.1.63)

which, together with Assumption 4.1.3 and the fact that dρx ≤ Lρr , leads to

‖η̃ref (t)‖ ≤ Lρr‖x̃ref (t)‖, 0 ≤ t ≤ τ ′. (4.1.64)

Since Equation (4.1.63) holds, from Lemma 4.1.1, Equation (4.1.23) can be rewritten as

η̂t(t) = ωuz(t) + f̄(X, t) + η̃t(t) + φ(t), (4.1.65)

where uz(t), f̄(X, t), η̃t(t), φ(t) are given in (4.1.2), (4.1.5), (4.1.46), and (4.1.47), respectively.

Notice that x(t) = Tgxg(t) + Tzxf (t), and therefore from (4.1.2) and (4.1.3) it follows that

ωuz(t) + η̄(s) = Z(s)(ωu(s) + η(s)), (4.1.66)

where η̄(s), η(s) are the Laplace transforms of f̄(X, t) and f(x, t), respectively. Substituting (4.1.65)

and (4.1.66) into (4.1.22) leads to

u(s) =C0(s)(Kgr(s)− η(s))− φc(s),

φc(s) =C0(s)Z−1(s)(η̃t(s) + φ(s)),
(4.1.67)

where C0(s) is given in (4.1.15); C0(s)Z−1(s) is a stable and strictly proper transfer matrix. Com-

bining the Laplace transform of (4.1.1) with (4.1.67) yields

x(s) =Hr(s)r(s) +G(s)η(s)− ωH0(s)φc(s) + xin(s),

y(s) =Cmx(s), (4.1.68)

where Hr(s), H0(s), G(s) are given in (4.1.18), and xin(s) = (sIn − Am)−1x0. By subtracting
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(4.1.67) and (4.1.68) from (4.1.35), it follows that

x̃ref (s) =G(s)η̃ref (s) + ωH0(s)φc(s)− xin(s),

ỹref (s) =Cmx̃ref (s),
(4.1.69)

and

ũref (s) = −C0(s)η̃ref (s) + φc(s). (4.1.70)

Since (CmBm)†(CmBm) = Im, from (4.1.49) one has

φc(s) = C0(s)Z−1(s)(η̃t(s) + φ(s)) = C1(s)ỹ(s)− C2(s)ṽ(s), (4.1.71)

where {C1(s), C2(s)}, and {ỹ(t), ṽ(t)} are defined in (4.1.19), and (4.1.48), respectively; C1(s),

C2(s) are all stable and proper transfer function matrices. From (4.1.16) it can be shown that

‖G(s)‖L1
Lρr < 1. Therefore, combining (4.1.64), and (4.1.69)-(4.1.71) yields

∥∥x̃refτ ′∥∥L∞ ≤‖H1(s)‖L1
‖ỹτ ′‖L∞ + ‖H2(s)‖L1

‖ṽτ ′‖L∞
1− ‖G(s)‖L1

Lρr
+

κmρ0

1− ‖G(s)‖L1
Lρr

,∥∥ũrefτ ′∥∥L∞ ≤‖C1(s)‖L1
‖ỹτ ′‖L∞ + ‖C2(s)‖L1

‖ṽτ ′‖L∞ + ‖C0(s)‖L1
Lρr

∥∥x̃refτ ′∥∥L∞ ,
where κm, {H1(s), H2(s)}, {C1(s), C2(s)} are given in (4.1.14), (4.1.18), and (4.1.19), respectively.

Since Equation (4.1.58) holds for 0 ≤ t ≤ τ ′, one has

∥∥ũrefτ ′∥∥L∞ ≤γu0ρ0 + γu

√
θ1

Γ
,

∥∥x̃refτ ′∥∥L∞ ≤γx0ρ0 + γx

√
θ1

Γ
,

(4.1.72)

where γu0 , γx0 , γu, γx are given in (4.1.39), and θ1 is defined in (4.1.43). Since Γ > 0 is chosen so

that γx

√
θ1
Γ < γ̄ and γu

√
θ1
Γ < γ̄, from (4.1.72) it follows that

∥∥ũrefτ ′∥∥L∞ < ρdx,
∥∥x̃refτ ′∥∥L∞ < ρdu,

which contradict to (4.1.62), thus proving (4.1.59). Moreover, Equation (4.1.60) is obtained from

applying the triangular inequality on ‖x̃ref‖ and ‖ũref‖.

Next, we prove Equation (4.1.61). Let Ab ∈ Rnb×nb , Bb ∈ Rnb×m, and Cb ∈ Rm×m be a

minimal realization of C(s) with the appropriate dimension nb. Then, the system given in (4.1.69)

and (4.1.70) can be represented as

˙̃xc(t) = Acx̃c(t) +Bcη̃ref (t) + B̄cωφc(t),

x̃ref (t) = Ccx̃c(t), x̃c(0) = [−x>0 , 0]>,
(4.1.73)
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with

Ac =

[
Am BmCb

0 Ab

]
, Bc =

[
Bm

−Bb

]
, B̄c =

[
Bm

0

]
, Cc =

[
In 0

]
,

where x̃c(t) = [x̃>ref (t), x̃>b (t)]> ∈ Rnc×nc is the state vector with nc = n + nb. Let tm ≥ 0. Then,

from (4.1.73) it follows that for t ≥ tm

x̃c(t) =eAc(t−tm)x̃c(tm) +

∫ t

tm

eAc(t−τ)B̄cωφc(τ)dτ +

∫ t

tm

eAc(t−τ)Bcη̃ref (τ)dτ. (4.1.74)

Notice that it can be shown that G(s) = Cc(sInc − Ac)
−1Bc = H0(s)(Im − C(s)). Since from

(4.1.16) ‖G(s)‖L1
Lρr < 1 holds, from the continuity of the L1-norm it follows that one may take

a sufficiently small λ0 > 0 such that β1 = ‖G(s− λ0)‖L1
< 1/Lρr . Next, let Aλ0 = Ac + λ0Inc ,

and define x̄c(t) = eλ0(t−tm)x̃c(t), φ̄c(t) = ωeλ0(t−tm)φc(t), x̄ref (t) = eλ0(t−tm)x̃ref (t), and η̄ref (t) =

eλ0(t−tm)η̃ref (t). Since Assumption 4.1.3 implies that

‖η̄ref (t)‖ ≤ Lρr‖x̄ref (t)‖, (4.1.75)

multiplying both sides of (4.1.74) by eλ0(t−tm)Cc leads to

‖x̄ref‖L∞[tm,t]
≤ β0

1− β1Lρr
‖x̃c(tm)‖+

β2

1− β1Lρr

∥∥φ̄c∥∥L∞[tm,t]
, (4.1.76)

where β0 = sup
0≤τ
‖eAλ0

τ‖, β1 = ‖G(s− λ0)‖L1
, and β2 =

∥∥(sInc −Aλ0)−1B̄c
∥∥
L1

. By combining

(4.1.74) - (4.1.76), it can be shown that

‖x̄c(t)‖ ≤ κ0‖x̃c(tm)‖+ κ1

∥∥φ̄c∥∥L∞[tm,t]
,

which further gives

‖x̃c(t)‖ ≤κ0e
−λ0(t−tm)‖x̃c(tm)‖+ ωuκ1‖φc‖L∞[tm,t]

, (4.1.77)

where ωu > 0 is the upper bound of ω, and

κ0 =β0(1 +
Lρrβ3

1− β1Lρr
), κ1 = β2(1 +

Lρrβ3

1− β1Lρr
), (4.1.78)

with β3 =
∥∥(sInc −Aλ0)−1Bc

∥∥
L1

. Substituting (4.1.71) together with (4.1.55) - (4.1.57) into (4.1.77)

leads to

‖x̃c(t)‖ ≤κ0e
−λ0(t−tm)‖x̃c(tm)‖+ γ1

(
υv(tm, 0) +

√
θ1

Γ

)
, (4.1.79)
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where υv(·, ·), θ1 are defined in (4.1.57) and (4.1.43), respectively, and

γ1 = ωuκ1

(
‖C1(s)‖L1√
λmin(Py)

+
‖C2(s)‖L1√
λmin(Pv)

)
.

Notice that from (4.1.43) and (4.1.57) it follows that

υ(tm, 0) ≤
√
nλmax(P̄v)‖x0‖+

√
θ1

Γ
,

which, together with (4.1.79), results in

‖x̃c(tm)‖ ≤ κ0e
−λ0tm‖x0‖+ γ1

√
nλmax(P̄v)‖x0‖+ γ1

√
θ1

Γ
, (4.1.80)

where P̄v = (In − HCm)>Pv(In − HCm). Set tm = t/2. Substituting (4.1.80) into (4.1.79), and

using (4.1.57), one has

‖x̃ref (t)‖ ≤ ‖x̃c(t)‖ ≤ υdx(t)‖x0‖+
γdx√

Γ
, t ≥ 0,

where

υdx(t) =κ2
0e
−λ0t + κ0γ1

√
nλmax(P̄v)e

−λ0
2
t + γ1

√
nλmax(P̄v)e

−λ1
4
t,

γdx =(κ0 + 2)γ1

√
θ1,

with λ1 being given in (4.1.43). Finally, letting γdy = ‖Cm‖γdx and υdy(t) = ‖Cm‖υdx(t) yields

(4.1.61). This completes the proof.

Notice that the steady-state bounds can be tuned to arbitrarily small values by increasing

the adaptation gains. This does not affect the upper bound functions υdx and υdy. Moreover, the

closed-loop system is semi-globally stabilized, which follows from Lemma 4.1.2 and Theorem 4.1.1.

Notice that the stability result becomes global, when the uncertain function f(x, t) has globally

bounded partial derivatives.

4.1.4. Illustrative example

To illustrate the performance of the proposed L1 adaptive controller, we present simulation

results on a numerical example. Consider the uncertain plant given in (4.1.1) with

Am =


−1 0 0 1.5

0 0 1 1.5

0 −1 −1.5 1.5

0 0 0 −3

, Cm =

[
1 0 0 0

0 0.8 0 0

]
, Bm =


0

0

0

2

, (4.1.81)
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Figure 4.3: System responses and control inputs

Ω = 0.8 , and

f(x, t) =0.017‖x‖22 + 0.05 tanh(0.5x1)x1 − 0.08x2
3 − 0.5x3 cos(0.1t) + 0.5x4 sin(0.15t)

− 0.05(1− e−0.7t).

Since (CmBm) is not full rank, the design procedure of the L1 controller starts by choosing

the interactor Z(s) = 1.3
s+1.5 (see Remark 2.1.9). Let Kg = 1 and D(s) = 2

s
4s2+434s+4
s2+101s+0.8

. The design

parameters for the proposed method are given by

Q = 4I3, Py = 0.1I2, µ = 20, Γ = 200 , Kv =


−3.87 0.98

0.27 −5.8

0.7 −0.74

1.25 −1.15

 .

Figure 4.3 shows the system response and control inputs for r(t) = 1 and r(t) = 1.5; the

left plots illustrates the results for the system with x0 = 0, and the left plots present simulation

results for the system initialized with x0 = [2,−2, 2,−2]>. Notice that red-dotted lines represent

the desired responses of y1(t), and red-solid lines are used for the desired responses of y2(t). As

shown in Figure 4.3, the proposed controller shows that the effects of non-zero x0 vanish over time,

and the steady-state errors remain small. This validates the theoretical results.
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4.2. Piecewise Constant Adaptation Laws for L1 Adaptive Control

In this section, we present piecewise constant adaptation laws for L1 adaptive output-feedback

control. The proposed scheme extends the existing L1 adaptive control with piecewise constant

adaptation laws to underactuated systems. In the existing architecture, the procedure to obtain

the inverse of the desired model is required, which is not trivial for underactuated systems. Using

the state-decomposition technique, we demonstrate that the piecewise constant adaptation laws

can be extended to underactuated systems.

Consider the system with nonlinear uncertainties as

ẋ(t) =Amx(t) +Bm(Ωu(t) + f(x, t)),

y(t) =Cmx(t), x(0) = x0,
(4.2.1)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp are the state, the input and the measurable output

vectors with m ≤ p, respectively, Am ∈ Rn×n, Bm ∈ Rn×m, Cm ∈ Rp×n are known matrices

with Am being Hurwitz, and (Am, Bm, Cm) is a controllable-observable pair; notice that M(s) =

Cm(sIn − Am)−1Bm presents the desired response. Finally, Ω ∈ Rm×m is an unknown input gain,

f(x, t) ∈ Rm is an unknown function representing system uncertainties, and x0 ∈ Rn is an initial

condition.

Assumption 4.2.1. M(s) has no unstable transmission zeros.

Assumption 4.2.2. The unknown constant input gain Ω ∈ Rm×m is assumed to be an unknown

(nonsingular) strictly row-diagonally dominant matrix with sign(Ωii) known. Moreover, it is as-

sumed that there exists a known compact convex set CΩ such that Ω ∈ CΩ, and that a nominal

system input gain Ω0 ∈ Rm×m is known.

Assumption 4.2.3. Define Bδ = {x ∈ Rn; ‖x‖ < δ} with δ > 0. The unknown function f(x, t) :

(Rn × R)→ Rm is assumed to have the following properties:

• There exists b0 > 0 such that ‖f(0, t)‖ < b0 for all t ≥ 0.

• For each δ > 0, there exists dδ > 0 such that ‖f(x, t)− f(y, t)‖ ≤ dδ‖x− y‖ for all x, y ∈ Bδ,
uniformly in t ∈ R.

With the above setup, the problem is formally stated as follows:

Problem 4.2.1. Let the system described by Equation (4.2.1) satisfy Assumptions 4.2.2 – 4.2.3.

The objective is to design an adaptive output feedback control law for u(t) so that the output y(t)

tracks the desired response ym(t) both in transient and steady state, where ym(t) ∈ Rp is the signal

with the Laplace transform of ym(s) = M(s)Kgr(s); r(t) ∈ Rmr is a reference command, and

Kg ∈ Rm×mr is a known feed-forward gain.
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4.2.1. Design of L1 adaptive controller

In this section, L1 adaptive output feedback controller is developed to solve Problem 4.2.1.

Let ρ0 > 0 be a given constant satisfying ‖x0‖ ≤ ρ0 with x0 ∈ Rn being an initial condition, and

choose γ̄ > 0 to be an arbitrarily small constant. For a given δ > 0 define

Lδ =
δ̄(δ)

δ
dδ̄(δ), δ̄(δ) = δ + γ̄ , (4.2.2)

where dδ̄(δ) is introduced in Assumption 4.2.3. Let Z(s) and M̄(s) be given as

Z(s) = Cz(sInz −Az)−1Bz +Dz, M̄(s) = Cm(sIn −Am)−1B̄, (4.2.3)

which satisfy Corollary 2.1.2. Notice that the existence of Z(s) and M̄(s) is guaranteed. Choose

Kv ∈ Rn×p, such that Av = AH +KvCm is Hurwitz (see Lemma 2.1.18), where

AH = (In −HCm)Am, H = B̄(CmB̄)†, (4.2.4)

with (CmB̄)† being the generalized inverse of (CmB̄). Now, let λv > 0 be the decay rate of eAvt,

such that

‖eAvt‖ ≤ κv0e
−λvt, κv0 = sup

t≥0
‖eAvt‖, ∀t ≥ 0. (4.2.5)

Choose µ > λv and define

κm = sup
t≥0
‖eAmt‖, κy =

2κv‖CmAm‖
µ− λv

, κv = ‖In −HCm‖κv0 . (4.2.6)

Next, let D(s) be a m×m transfer matrix such that

C(s) = ΩD(s)(Im + ΩD(s))−1 (4.2.7)

is stable with C(0) = Im, and D(s)Z−1(s) is a proper transfer matrix. In addition, the choice of

D(s) ensures that there exists ρr > 0 such that for all Ω ∈ CΩ

‖G(s)‖L1
<
ρr − ρext − ρint

Lρrρr
, (4.2.8)

where

G(s) = H0(s) (Im − C(s)) , H0(s) = (sIn −Am)−1Bm, (4.2.9)

and

ρext = ‖H0(s)C(s)Kg‖L1
‖r‖L∞ + ‖G(s)‖L1

b0,

ρint =(κm + κx)ρ0 ,

κx = ‖H1(s)‖L1
κv + (‖H2(s)‖L1

+ ‖H3(s)‖L1
)κy,

(4.2.10)
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with Kg ∈ Rm×mr being a feed-forward gain, r(t) ∈ Rmr being a reference command, and κm, κv

being given in (4.2.6); H1(s), H2(s), and H3(s) are defined as

H1(s) =H0(s)C(s)Z−1(s)(CmB̄)†C̄mĀm,

H2(s) =H0(s)C(s)Z−1(s)(CmB̄)†(s+ µ),

H3(s) =µH0(s)C(s)Z−1(s)(CmB̄)†,

(4.2.11)

and Lρr is given in (4.2.2) with

ρx = ρr + γ̄. (4.2.12)

Let Ts > 0 be the sampling rate of CPU. The adaptive control input u(t) ∈ Rm is governed by

u(s) = D(s)Kgr(s)−D(s)Z−1(s)η̂t(s),

η̂t(s) = ûv(s) + η̂v(s),
(4.2.13)

where

ûv(s) = Z(s)Ω0u(s), η̂v(s) = (CmB̄)†eµIpTs η̂H(s), (4.2.14)

with Ω0 being a (known) nominal input gain; η̂H(s) will be shortly defined in the adaptation laws.

The following state-output predictor is used:

˙̂v(t) =AH v̂(t) +AHHy(t) +Kv (Cmv̂(t)− (Ip − CmH)y(t)) , v̂(0) = 0,

˙̂y(t) =− µ(ŷ(t)− y(t)) + CmAm(v̂(t) +Hy(t)) + CmB̄ûv(t) + η̂H(t), ŷ(0) = y0,
(4.2.15)

where AH , H are given in (4.2.4), and ûv(t) is defined in (4.2.14). The adaptive laws for η̂H(t) are

defined as

η̂H(t) = −Φ−1(Ts)e
−µTs ỹH(t) , (4.2.16)

where

ỹH(t) = ŷ(kTs)− y(kTs) , ∀t ∈ [kTs, (k + 1)Ts) , ∀k ∈ N , (4.2.17)

and

Φ(Ts) = µ−1(1− e−µTs) . (4.2.18)

Notice that µ > 0 can be a small number, since a small variable λv > 0 always satisfies (4.2.5).

Notice that when the system does not have vector relative degree 1m, the proposed method requires

a minimum order for the filter such that C(s)Z−1(s) is proper (see also Remark 4.1.4).
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4.2.2. Stability and performance analysis

Consider the following closed-loop reference system

ẋref (t) =Amxref (t) +Bm (Ωuref (t) + f(xref , t)) ,

yref (t) =Cmxref (t), xref (0) = 0,
(4.2.19)

with

uref (s) = C0(s)(Kgr(s)− ηref (s)− σ(s)) , (4.2.20)

where xref (t) ∈ Rn, yref (t) ∈ Rp are the state and output vectors, respectively. Moreover,

C0(s) = D(s) (Im + ΩD(s))−1 , (4.2.21)

and ηref (s), σ(s) are the Laplace transforms of the following signals:

ηref (t) = f(xref , t)− f(0, t), σ(t) = f(0, t). (4.2.22)

The closed-loop reference system in (4.2.19) and (4.2.20) is identical to the one in Section 4.1.3.

Lemma 4.2.1. Consider the closed-loop reference system in (4.2.19) and (4.2.20) subject to (4.2.8).

Then, for each τ > 0 the following bounds hold:

∥∥xref τ∥∥L∞ < ρrx , (4.2.23)

∥∥uref τ∥∥L∞ < ρru, (4.2.24)

where ρrx and ρru are defined as

ρrx = ρr−
ρint

1− ‖G(s)‖L1
Lρr

> 0, ρru = ‖C0(s)Kg‖L1
‖r‖L∞+‖C0(s)‖L1

(Lρrρrx + b0) . (4.2.25)

Moreover, ρint, G(s), C0(s) are defined in (4.2.10), (4.2.9), and (4.2.21), respectively.

Proof. Notice that substituting (4.2.20) into (4.2.19) yields

xref (s) = H0C(s)Kgr(s) +G(s)ηref (s) +G(s)σ(s) ,

yref (s) = Cmxref (s) ,
(4.2.26)

where C(s), {H0(s), G(s)} are given in (4.2.7) and (4.2.9), respectively, and ηref (s), σ(s) are the

Laplace transform signals defined in (4.2.22). The system (4.2.26) is identical with the reference

system in Section 4.1. Therefore, the proof follows from the previous analysis (see the proof of

Lemma 4.1.2).

To proceed, we introduce a few definitions and variables of interest. The following variables
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are used in the analysis of transient and steady-steady bounds:

ρu = ρru + ρdu, ρdx = γx0ρ0 + γ̄, ρdu = γu0ρ0 + γ̄, (4.2.27)

where ρru is given in (4.2.25), and

γx0 =
κx + κm

1− ‖G(s)‖L1
Lρr

,

γu0 = ‖C0(s)‖L1
Lρrγx0 + ‖C1(s)‖L1

κv + (‖C2(s)‖L1
+ ‖C3(s)‖L1

)κy,

γx =
‖H1(s)‖L1

+ ‖H2(s)‖L1

1− ‖G(s)‖L1
Lρr

,

γu = ‖C0(s)‖L1
Lρrγx + ‖C2(s)‖L1

+ ‖C3(s)‖L1

(4.2.28)

with κm, κx being given in (4.2.6) and (4.2.10); Ci(s), i = 1, 2, 3 are defined as

C1(s) =C0(s)Z−1(s)(C̄mB̄m)†C̄mĀm,

C2(s) =C0(s)Z−1(s)(C̄mB̄m)†(s+ µ),

C3(s) =µC0(s)Z−1(s)(C̄mB̄m)†.

(4.2.29)

Next, define

α1(Ts) =
(

1− e−(µ−λv)Ts
)
, α2(Ts) = ‖CmB̄‖Φ(Ts), (4.2.30)

and

∆u = max
Ω∈CΩ

‖Ω0 − Ω‖ ‖Z(s)‖L1
ρu, ∆s = ‖Z(s)‖L1

(Lρrρr + b0) , (4.2.31)

where Z(s), λv, κy and Φ(Ts) are given in (4.2.3), (4.2.5), (4.2.6) and (4.2.18). Moreover, let

γ(Ts) = 2α2(Ts)(∆u + ∆f ) . (4.2.32)

Lemma 4.2.2. Given the definitions of variables in (4.2.27) - (4.2.32), the following holds

lim
Ts→0

γ(Ts) = 0. (4.2.33)

Moreover, there exists T̄s > 0, such that for all Ts ∈ [0, T̄s]

γxγ(Ts) < γ̄, γuγ(Ts) < γ̄, ∀Ω ∈ CΩ, (4.2.34)

where γx and γu are given in (4.2.28).

Proof. The proof of Lemma 4.2.2 is straightforward from the definition of γ(Ts).
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Lemma 4.2.3. Let τ > 0, and assume Ts > 0 satisfies (4.2.34). Then

‖ỹ(t)‖ ≤ κyα1(Ts)e
−λvt‖x0‖+ γ(Ts), 0 ≤ t ≤ τ, (4.2.35)

where κy, α1(Ts) and γ(Ts) are given in (4.2.6), (4.2.30) and (4.2.32), respectively.

Proof. Let ũv(t) and ηv(t) be the signals of the Laplace transform of

ũv(s) = Z(s)(Ω0 − Ω)u(s), ηv(s) = Z(s)(η(s) + σ(s)), (4.2.36)

where η(s) is the Laplace transform of η(t) := f(x, t)−f(0, t), and Z(s) is defined in (4.2.3); notice

that σ(s) is the Laplace transform of σ(t) given in (4.2.22). Since ‖xτ‖L∞ ≤ ρx, from Assumption

4.2.3 it follows that for all 0 ≤ t ≤ τ

‖f(x, t)‖ ≤ dρxρx + b0 ≤ Lρrρr + b0, (4.2.37)

which further leads to

‖ηv(t)‖ ≤ ‖Z(s)‖L1
(Lρrρr + b0) . (4.2.38)

Similarly, from ‖uτ‖L∞ ≤ ρu one has

‖ũv(t)‖ ≤ max
Ω∈CΩ

‖Ω0 − Ω‖∞ ‖Z(s)‖L1
ρu, 0 ≤ t ≤ τ. (4.2.39)

Notice that from Corollary 2.1.3 the system (4.2.1) can be represented by

ẋv(t) =Amxv(t) + B̄(ûv(t)− ũv(t) + ηv(t)) ,

y(t) =Cmxv(t) , xv(0) = x0,
(4.2.40)

where ûv(t) is given in (4.2.14), and ũv(t), ηv(t) are defined in (4.2.36). Now, let xv(t) = v(t)+Hy(t)

with

v(t) = (In −HCm)xv(t), (4.2.41)

where H is given by (4.2.4). By pre-multiplying both sides of (4.2.40) by (In −HCm) and taking

the derivative of y(t), Equation (4.2.40) can be rewritten by

v̇(t) = AHv(t) +AHHy(t), v(0) = v0 ,

ẏ(t) = CmAmv(t) + CmAmHy(t) + CmB̄ (ûv(t)− ũv(t) + ηv(t)) , y(0) = y0 ,
(4.2.42)

where AH , H are given in (4.2.4), v0 = (In −HCm)x0 and y0 = Cmx0. Then, subtracting (4.2.42)
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from (4.2.15), together with the fact that Cmv̂(t)− (Ip − CmH)y(t) = Cmṽ(t), yields

˙̃v(t) = Avṽ(t), v(0) = −v0 ,

˙̃y(t) = −µỹ(t) + CmAmṽ(t) + η̂H(t) + CmB̄ (ũv(t)− ηv(t)) , y(0) = 0 ,
(4.2.43)

where ṽ(t) = v̂(t) − v(t) and ỹ(t) = ŷ(t) − y(t). Next, let t0 ≥ 0 and tk = kTs + t0, where k ∈ N.

By substituting (4.2.16) into (4.2.43), and integrating (4.2.43), one has

ỹ(τ ′ + tk) =α0(τ ′, Ts)e
−µτ ′ ỹ(tk) +

∫ τ ′

0
e−µIp(τ ′−ξ)CmAmṽ(tk + ξ)dξ

+

∫ τ ′

0
e−µIp(τ ′−ξ)CmB̄(ũv(tk + ξ)− ηv(tk + ξ))dξ, τ ′ ∈ [0, Ts],

(4.2.44)

where α0(τ ′, Ts) is defined as

α0(τ ′, Ts) = 1− Φ(τ ′)Φ−1(Ts)e
−µ(Ts−τ ′) . (4.2.45)

Notice that from (4.2.5) it follows that

‖
∫ τ ′

0
e−µIp(τ ′−ξ)CmAmṽ(tk + ξ)dξ‖ ≤ α1(τ ′)e−λv(tk+τ ′−t0)‖ṽ(t0)‖, (4.2.46)

where

ᾱ1(τ ′) = kv0

‖CmAm‖
µ− λv

α1(τ ′), ∀τ ′ ∈ [0, Ts], (4.2.47)

and κv0 , λv are given in (4.2.5); α1(·) is defined in (4.2.30). Moreover, since

‖ũv(t)‖ ≤ ∆u, ‖ηv(t)‖ ≤ ∆f , 0 ≤ t ≤ τ, (4.2.48)

it can be shown that

‖
∫ τ ′

0
e−µIp(τ ′−ξ)CmB̄(ũv(tk + ξ) + ηv(tk + ξ))dξ‖ ≤ α2(τ ′)(∆u + ∆f ), ∀τ ′ ∈ [0, Ts], (4.2.49)

where α2(·) is given in (4.2.30), with Φ(τ ′) being given by (4.2.18). Since

‖ỹ(tk)‖ ≤ ᾱ1(Ts)e
−λv(tk−t0)‖ṽ(t0)‖+ α2(Ts)(∆u + ∆f ), ∀k ∈ N, (4.2.50)

from (4.2.44) it follows that

‖ỹ(τ ′ + tk)‖ ≤
(
e−(µ−λv)τ ′α0(τ ′, Ts)ᾱ1(Ts) + ᾱ1(τ ′)

)
e−λv(τ ′+tk−t0)‖ṽ(t0)‖(

e−µτ
′
α0(τ ′, Ts)α2(Ts) + α2(τ ′)

)
(∆u + ∆f ), τ ′ ∈ [0, Ts].

(4.2.51)

Notice that since ᾱ1(τ ′) ≤ ᾱ1(Ts), α2(τ ′) ≤ α2(Ts), and 0 ≤ Φ(τ ′)Φ−1(Ts) ≤ 1 hold for τ ′ ∈ [0, Ts],
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one has

e−(µ−λv)τ ′α0(τ ′, Ts)ᾱ1(Ts) + ᾱ1(τ ′) ≤ 2α1(Ts),

e−µτ
′
α0(τ ′, Ts)α2(Ts) + α2(τ ′) ≤ 2α2(Ts),

(4.2.52)

for all τ ′ ∈ [0, Ts]. Therefore, from (4.2.50), (4.2.51) and (4.2.52) it can be shown that

‖ỹ(t)‖ ≤ 2ᾱ1(Ts)e
−λv(t−t0)‖ṽ(t0)‖+ γ(Ts), 0 ≤ t0 ≤ t ≤ τ, (4.2.53)

where γ(Ts) is given in (4.2.32). Notice that from (4.2.47) it follows that

2‖In −HCm‖ᾱ1(Ts) = κyα1(Ts), (4.2.54)

where κy, α1(Ts) are defined in (4.2.6) and (4.2.30), respectively. Finally, since v0 = (In−HCm)x0,

letting t0 = 0 yields

‖ỹ(t)‖ ≤ κyα1(Ts)e
−λvt‖x0‖+ γ(Ts), 0 ≤ t ≤ τ. (4.2.55)

This completes the proof.

Remark 4.2.1. From Lemma 4.2.2, the adaptation sampling time Ts > 0 can be chosen such that

γ(Ts) becomes arbitrarily small.

Remark 4.2.2. Since α1(Ts) and γ(Ts) converge to zero as Ts → 0, the transient bounds and

steady-state bounds for ỹ(t) can be small enough.

Theorem 4.2.1. Suppose Ts > 0 is chosen such that

γxγ(Ts) < γ̄, γuγ(Ts) < γ̄, ∀Ω ∈ CΩ, (4.2.56)

where γx and γu are given in (4.2.28). Then, the L1 adaptive output feedback controller defined via

(4.2.13) – (4.2.18), subject to the L1–norm condition (4.2.8), provides the following upper bounds:

‖uref − u‖L∞ ≤ ρdu, ‖xref − x‖L∞ ≤ ρdx, (4.2.57)

and

‖yref − x‖L∞ ≤ ‖Cm‖ρdx,

‖x‖L∞ ≤ ρx, ‖u‖L∞ ≤ ρu .
(4.2.58)

Moreover, for each Ω ∈ CΩ there exist strictly decreasing functions υx(t), υy(t), and positive con-

stants γdx, γdy, such that

‖xref − x‖L∞ ≤ υx(t)‖x0‖+ γdxγ̄, ‖yref − y‖L∞ ≤ υy(t)‖x0‖+ γdyγ̄ . (4.2.59)
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Proof. First, define

η̃v(s) = η̂v(s) + ũv(s)− ηv(s) , (4.2.60)

where η̂v(s), {ũv(s), ηv(s)} are given in (4.2.14) and (4.2.36), respectively. Notice that the control

laws in (4.2.13) can be rewritten by

u(s) =D(s)Z−1(s) (Z(s)Kgr(s)− Z(s)Ωu(s)− ηv(s)− η̃v(s)) ,

which further leads to

u(s) = C0(s) (Kgr(s)− η(s)− σ(s))− C0(s)Z−1(s)η̃v(s), (4.2.61)

where C0(s) is given in (4.2.21); recall that η(s), σ(s) are the Laplace transforms of η(t) = (f(x, t)−
f(0, t)) and σ(t) = f(0, t), respectively. From (4.2.61) and (4.2.1), the closed-loop system is given

by

x(s) = H0(s)C(s)Kgr(s) +G(s)(η(s) + σ(s))−H0(s)C(s)Z−1(s)η̃v(s) + xin(s),

y(s) = Cmx(s),
(4.2.62)

where {H0(s), G(s)}, C(s) are given in (4.2.9) and (4.2.7), respectively, and xin(s) = (sIn −
Am)−1x0. Now, let x̃ref (t) = xref (t) − x(t), ũref (t) = uref (t) − u(t), and η̃ref (t) = ηref (t) − η(t).

Then, subtracting (4.2.62) from (4.2.26) yields

x̃ref (s) = G(s)η̃ref (s) +H0(s)C(s)Z−1(s)η̃v(s)− xin(s),

ỹref (s) = Cmx̃ref (s).
(4.2.63)

Similarly, from (4.2.61) and (4.2.20) it follows that

ũref (s) = −C0(s)η̃ref (s) + C0(s)Z−1(s)η̃v(s). (4.2.64)

Next, we prove (4.2.57) by a contradiction argument. Suppose that it is not true. Notice that

ρdx > ρ0. Since ‖x̃ref (0)‖ ≤ ρ0 < ρdx and ‖ũref (0)‖ = 0 < ρdu hold, the continuity of a solution in

(4.2.63) implies that there exists τ ′ > 0, such that the following must hold:∥∥x̃refτ ′∥∥L∞ = ρdx,
∥∥ũrefτ ′∥∥L∞ ≤ ρdu,

or∥∥x̃refτ ′∥∥L∞ ≤ ρdx, ∥∥ũrefτ ′∥∥L∞ = ρdu.

(4.2.65)

Notice that ρrx+ρdx = ρx holds, and the triangular inequality, together with (4.2.23), (4.2.24) and

(4.2.65), yields

‖xτ ′‖L∞ ≤ ρrx + ρdx = ρx, ‖uτ ′‖L∞ ≤ ρru + ρdu = ρu, (4.2.66)
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where ρrx, ρru are given in (4.2.25), and ρdx, ρu, ρdu are defined in (4.2.27). Since ρdx < ρx and

dρx < Lρr , Assumption 4.2.3 leads to

‖η̃ref (t)‖ ≤ Lρr‖x̃ref (t)‖, ∀t ∈ [0, τ ′]. (4.2.67)

Next, by taking the Laplace transform of (4.2.43) and using the fact that ỹ(0) = 0, it follows,

in conjunction with (4.2.60), that

η̃v(s) + (1− eµTs)(CmB̄)†η̂H(s) = (CmB̄)†(s+ µ)ỹ(s)− (CmB̄)†C̄mĀmṽ(s) . (4.2.68)

Moreover, the adaptation laws in (4.2.16), together with (4.2.18), implies

(1− eµTs)η̂H(s) = µỹH(s) , (4.2.69)

where ỹH(s) is the Laplace transform of ỹH(t) given in (4.2.17). Therefore, combining (4.2.68) and

(4.2.69) yields

C0(s)Z−1(s)η̃v(s) =C1(s)ṽ(s) + C2(s)ỹ(s)− C3(s)ỹH(s), (4.2.70)

where C1(s), C2(s), and C3(s) are given in (4.2.29).

From (4.2.63), (4.2.67) and (4.2.70) it follows that

∥∥x̃refτ ′∥∥L∞ ≤‖H1(s)‖L1
‖ṽ‖L∞ + ‖H2(s)‖L1

‖ỹ‖L∞ + ‖H3(s)‖L1
‖ỹH‖L∞

1− ‖G(s)‖L1
Lρr

+
κmρ0

1− ‖G(s)‖L1
Lρr

,∥∥ũrefτ ′∥∥L∞ ≤‖C0(s)‖L1
Lρr

∥∥x̃refτ ′∥∥L∞ + ‖C1(s)‖L1
‖ṽ‖L∞

+ ‖C2(s)‖L1
‖ỹ‖L∞ + ‖C3(s)‖L1

‖ỹH‖L∞ ,

(4.2.71)

where κm and {H1(s), H2(s), H3(s)} are given in (4.2.6) and (4.2.11), respectively. Since ‖xτ ′‖L∞ ≤
ρx and ‖uτ ′‖L∞ ≤ ρu, from Lemma 4.2.3 and (4.2.5) it follows that for all t ∈ [0, τ ′]

‖ỹH(t)‖ ≤ κyρ0 + γ(Ts), ‖ỹH(t)‖ ≤ κyρ0 + γ(Ts), ‖ṽ(t)‖ ≤ κvρ0, (4.2.72)

which, along with (4.2.71), leads to

∥∥x̃refτ ′∥∥L∞ ≤ γx0ρ0 + γxγ(Ts),
∥∥ũrefτ ′∥∥L∞ ≤ γu0ρ0 + γuγ(Ts). (4.2.73)

Since γxγ(Ts) < γ̄ and γuγ(Ts) < γ̄ (see (4.2.34)), it follows that
∥∥x̃refτ ′∥∥L∞ < ρdx and

∥∥ũrefτ ′∥∥L∞ <

ρdu, which contradict to (4.2.65). Therefore, Equation (4.2.57) is proven. It can be shown that

Equation (4.2.58) holds by applying the triangular inequality.
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Now, we prove (4.2.59). Let φc(t) is the signal with the Laplace transform

φc(s) = ΩC0(s)Z−1(s)η̃v(s), (4.2.74)

with η̃v(s) being given in (4.2.60). Notice that φc(t) is a bounded signal, because from (4.2.70) it

follows that

φc(s) = ΩC1(s)ṽ(s) + ΩC2(s)ỹ(s)− ΩC3(s)ỹH(s), (4.2.75)

and ṽ(t), ỹ(t), ỹH(t) are all bounded for t ≥ 0 (see Lemma 4.2.3), where C1(s), C2(s), C3(s) are

stable and proper transfer matrices given in (4.2.29).

Applying a similar method from the proof of Theorem 4.2.1, one has

‖x̃c(t)‖ ≤κ0e
−λ0(t−tm)‖x̃c(tm)‖+ κ1‖φc‖L∞[tm,t]

, 0 ≤ tm ≤ t, (4.2.76)

where x̃c(t) = [x̃>ref (t), x̃>b (t)]> ∈ Rnc×nc is the internal state vector of the system (4.2.63) with

nc > n; κ0, λ0 and κ1 are some positive constants (see the proof of Theorem 4.1.1). Since (4.2.75)

implies that

‖φc‖L∞[tm,t]
≤ ‖ΩC1(s)‖L1

‖ṽ‖L∞[tm,t]
+ ‖ΩC2(s)‖L1

‖ỹ‖L∞[tm,t]
+ ‖ΩC3(s)‖L1

‖ỹH‖L∞[tm,t]
,

(4.2.77)

by combining (4.2.5), (4.2.53) and (4.2.77), and (4.2.76), it follows that

‖x̃c(t)‖ ≤ κ0e
−λ0(t−tm)‖x̃c(tm)‖+ κ1κ2‖ṽ(tm)‖+ κ1κ3γ(Ts), (4.2.78)

where

κ2 = ‖ΩC1(s)‖L1
κv0 + 2ᾱ1(Ts)(‖ΩC2(s)‖L1

+ ‖ΩC3(s)‖L1
),

κ3 = ‖ΩC2(s)‖L1
+ ‖ΩC3(s)‖L1

with κv0 , ᾱ1(Ts) being given in (4.2.5) and (4.2.47), respectively. Moreover, by letting tm = t/2

and using ‖xc(0)‖ = ‖x0‖ and ‖v0‖ ≤ ‖I−HCm‖‖x0‖, from (4.2.78) it can be shown that

‖x̃c(t)‖ ≤ υdx(t)‖x0‖+ γdxγ(Ts),

where

υdx(t) =κ2
0e
−λ0t + ‖I−HCm‖κ1κ2(κ0e

−λ0
2
t + e−

λv
2
t),

γdx =(κ0 + 1)κ1κ3.
(4.2.79)

This proves (4.2.58). Finally, defining γdy = ‖Cm‖γdx and υdy(t) = ‖Cm‖υdx(t) yields Equation

(4.2.59). This completes the proof.
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Assume that the system (4.2.1) has zero initial condition. From Equation 4.2.44 in the proof

of Lemma 4.2.3, one can show that for each tk = kTs, k ∈ N,

Ts∫
0

eµIpξη̂v(tk)dξ =

∫ Ts

0
eµIp−ξ(ũv(tk−1 + ξ)− ηv(tk−1 + ξ))dξ, (4.2.80)

where η̂v(tk) is given in (4.2.16). Notice that η̂v(tk) is an exponentially weighted average of uncer-

tainties over the interval (eµξ is a weighting function, and ũv, ηv represent the input gain mismatch

and nonlinear uncertainties after passing through Z(s)). Therefore, the proposed adaptive laws

provide a piecewise constant estimation of system uncertainties; the estimate can be improved by

using small enough Ts > 0. Moreover, the steady-state bound can be made arbitrarily small, since

γ(Ts) given in (4.2.32) gets close to zero with Ts → 0 (see (4.2.18)).

4.2.3. Illustrative example

In this section, we verify the proposed controller on an academic example. Consider the

following nonlinear system:

ẋ(t) =

 −2 0 1

1 −5 2

1 0 −5.5


︸ ︷︷ ︸

Am

x(t) +

 2

2.5

−3


︸ ︷︷ ︸

Bm

(Ωu(t) + f∆(x, t)),

y(t) =

[
−5 10 5

2.5 −2 0

]
︸ ︷︷ ︸

Cm

x(t),

where Ω ∈ [0.5, 1.5] is an unknown input gain, and the unknown function is given by

f∆(x, t) = B†m

 1.65‖x‖+ 5 tanh(0.5x1)x1

−0.3x2
3 − 0.2(1− e−0.3t)

−x3 cos(1.256t)

 .
The design parameters for L1 adaptive controllers are chosen such that

D(s) =
15

s(s/30 + 1)
, Z(s) =

4.09

s+ 3
, µ = 1.0, Kv =

 0.20 −0.42

−1.30 0.40

0.50 −0.60

 . (4.2.81)

Figures 4.4 - 4.5 illustrate the performance of the proposed controller according to different

choices of sampling rates (Ts = 2Hz and Ts = 20Hz). In Figure 4.4, it is observed that the lower

sampling rate (Ts = 20Hz) makes the system responses close to the reference system. Figure 4.5
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Figure 4.4: Effects of the choice of sampling rates

Figure 4.5: Piecewise estimation of uncertainties

shows the piecewise constant estimation of a disturbance signal; the estimate is improved with

Ts = 20Hz. In Figure 4.6, we present the simulation results for the unit step command, and the

sinusoidal command r(t) = sin(t), where the system is initialized with non-zero initial condition

x0 = [0.4,−0.4, 0.4]. As predicted in the analysis, the effects of the non-zero initial condition are

decreasing over time, and the steady-state errors remain small; notice that the choice of a small

sampling rate Ts reduces the errors.
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Figure 4.6: System responses for x0 = [0.4,−0.4, 0.4]
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CHAPTER. 5

Applications

This chapter considers longitudinal autopilot of missile and inverted pendulum. For both

applications, we validate the L1 adaptive controllers and provide simulation results.

5.1. Design of Missile Longitudinal Autopilot

A classic approach for missile control systems is the three-loop autopilot (dubbed Raytheon

three-loop autopilot), which uses only the acceleration and angular rate signals and has been

successfully employed in real applications (e.g., Sparrow, Patriot Anti-Cruise Missile, Standard

Missile Block IV, and Enhanced Fiber Optic Guided Missile, to name a few) [100–102]. The three-

loop autopilot is characterized by a rate loop to improve overall damping properties, a synthetic

stabilization loop to tolerate some instability (i.e., Mα > 0), and an acceleration loop for command

tracking [102, 103]. The aerodynamic characteristics of missile systems related to the three-loop

autopilot design are well studied in [104], and the conncetion with modern control methodologies is

found in [105]. In [106], the authors show that the three-loop autopilot has guaranteed robustness

properties of the optimal control around the trim condition. To extend these robustness properties

along the large flight envelope with performance guarantees we consider L1 adaptive augmentation

of the three-loop autopilot.

Several approaches for adaptive missile autopilot can be found in the literature. For example,

the authors of [107, 108] use dynamic inversion for missile autopilot design. An approach with a

neural network and output redefinition was introduced in [109,110]. Notice that these methods are

based on full state information, so they may require additional observers for state estimation and

corresponding analysis for the closed-loop stability.

Adaptive augmentation of the three-loop autopilot is not straightforward. There are a few is-

sues: 1) adaptive output feedback approaches are mainly derived under the assumption of minimum-

phase and square systems, 2) the transfer function from the fin command to the measured acceler-

ation shows typically non-minimum phase features in missile systems, and 3) the missile dynamics

present a non-square system when the set of all available signals is considered.

In this section, an L1 adaptive output feedback controller is presented for a missile longitudinal

autopilot using both acceleration and pitch rate signals, as discussed in Chapter 3.
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5.1.1. Linearized model for missile longitudinal dynamics

The transfer function of the linearized longitudinal missile dynamics with a first-order actuator

is given by [102, Chapter 21]:

[
nz(s)
δcmd(s)
q(s)

δcmd(s)

]
= −(MαZδ − ZαMδ)

Mα

 Vm
1845

(
1− Zδs

2

MαZδ−ZαMδ

)(
1 + Zα

Mα
s− s2

Mα

)−1 (
1

τas+1

)
(

1 + Mδs
MαZδ−ZαMδ

)(
1 + Zα

Mα
s− s2

Mα

)−1 (
1

τas+1

)
 ,
(5.1.1)

where δcmd(s), nz(s) and q(s) are the Laplace transforms of the actuator command, body acceler-

ation, and pitch rate, respectively, τa is the time constant of the actuator, Vm is the velocity of the

missile, and Zα, Zδ, Mα, Mδ are aerodynamic derivatives.

Figure 5.1: Three-loop autopilot

The three-loop autopilot structure is given in Figure 5.1. Along the lines of the representation

given in Section 3.2, the controller dynamics of the three-loop autopilot are written as

ẋc = Bc1yp +Bc2nc,

ub = Ccxc +Dcyp,
(5.1.2)

where nc is an acceleration command, and

Bc1 =
[
Ka 1

]
, Bc2 = −KdcKa, Cc = KRWI , Dc =

[
0 KR

]
,

with yp = [nz, q]
> and Kdc, Ka, WI , KR being the control gains. In tail-controlled missile systems,

it is observed that the transfer function of nz(s)
δcmd(s) has an unstable zero

wz =

√
MαZδ −MδZα

Zδ
,

while the transfer function of q(s)
δcmd(s) has a stable zero at s = −1/Ta, where Ta is the turning rate

time constant defined as

Ta =
Mδ

MαZδ −MδZα
.

Notice that the transmission zeros of the open-loop system in (5.1.1) are the common zeros of nz(s)
δcmd(s) ,

and q(s)
δcmd(s) , so that the open-loop transfer function matrix cannot have unstable transmission zeros.
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Moreover, it is easy to verify that (CpBp) is full rank, where (Ap, Bp, Cp) is the minimal realization

of (5.1.1). Therefore, from Lemma 2.1.20, it follows that the augmented input sensitivity function

M(s) has no unstable transmission zeros, which implies that the augmented system together with

(5.1.1) and (5.1.2) satisfies Assumption 3.1.2. Figure 5.2 illustrates the proposed control scheme.

Figure 5.2: Adaptive control extension of three-loop autopilot

5.1.2. Linear Model Simulation

To verify the performance of the proposed L1 controller, simulation results are illustrated in

this section. The nominal aerodynamics coefficients and three-loop autopilot gains are obtained

from [102, Chapter 23]:

Vm = 3000 ft/s, Zα = −2.94 s−1, Zδ = −0.65 s−1 ,

Mα = −642 s−2, Mδ = −555 s−2, τa = 0.0106 s ,

Kdc = 1.5348 Ka = 1.15 , WI = 12.9 , KR = 0.0928 .

The autopilot design of the nominal system shows the desired time constant 0.3 s, the cross-over

frequency 55 rad/s, and the delay margin 15ms with the given 1st order actuator. It is known that

the selection of C(s) defines the trade-off between the performance to command tracking and the

robustness to a time delay. Figure 5.3 illustrates the numerically determined time delay margin

and maximum singular values of the input sensitivity function to the performance output according

to different choices of the bandwidth of the filter C(s) (we assume that Ω = Im and D(s) = k
s Im in

this analysis).

In the design, the filter bandwidth is chosen to be 15Hz for Ω = Im (i.e., D(s) = 94.25/s),

which gives 10ms of the time delay margin in the closed-loop system. The design parameters for
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Figure 5.3: Time delay margin and input sensitivity

the proposed controller are selected as

Kv =


−13.59 4.06 0.00

10.40 3.04 0.00

−10.77 7.83 0.00

−1.15 −1.00 −35.00

 , µ = 30, Qv = 103I4, Py = I3,

ΓΩ =ΓΘ = Γσ = 100, D(s) = 94.25/s.

Figure 5.4 depicts the system response and control history of the nominal system for a 10 g step

command. Notice that for the nominal system, the controller with and without augmentation

produces the same response. This is the expected and correct behavior; no additional action is

required by the augmenting controller.

Three kinds of matched disturbances are taken into account during simulations: an actuator

bias σ1(t) = 2, a sinusoidal input bias σ2(t) = 2 sin(4πt), and nonlinear matched uncertainties

η(t) = 0.5 sin(2t)‖y(t)‖2 + sin(3t). Simulation results for a 10 g step command are illustrated in

Figures 5.5 – 5.7. When there is a constant bias (Figure 5.5), the three-loop autopilot is eventually

able to compensate for the disturbance, but the response time is slower relative to the nominal

system, and a larger actuator deflection is commanded. In Figure 5.6, the sinusoidal disturbance

has a more pronounced presence in the output, when the three-loop system is used alone. The L1

augmentation is able to greatly reduce the effect of the disturbance on the output, improving the

tracking performance. When nonlinear uncertainties are considered, the three-loop controller is not

able to stabilize the system. This can be seen in Figure 5.7. However, the L1 augmentation is able

to reject the disturbance and achieve tracking performance similar to the nominal system.
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Figure 5.4: Response of the nominal system

Figure 5.5: Response of the system for σ(t) = σ1(t)
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Figure 5.6: Response of the system for σ(t) = σ2(t)

Figure 5.7: Response of the system for the disturbance η(t)
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5.1.3. Nonlinear Model Simulation

In this section, we demonstrate the proposed method with a nonlinear missile model. The

nonlinear longitudinal model for a missile system is given in [111]:

Ṁ(t) =
1

vs

(
−|nz(t)| sin(|α(t)|) +AxM

2(t) cos(α(t))
)
,

α̇(t) = KαM(t)Cn(α(t), δe(t),M(t)) cos(α(t)) + q(t),

q̇(t) = KqM
2(t)Cm(α(t), δe(t),M(t)),

nz(t) = KzM
2(t)Cn(α(t), δe(t),M(t)), (5.1.3)

where Ax, Kα, Kq, and Kz are given constants, vs is the speed of sound, M(t) is the Mach

number, α(t) is the angle of attack, q(t) is the pitch rate, n(t) is the acceleration, δe(t) is the

fin deflection, and Cn(α(t), δe(t),M(t)) and Cm(α(t), δe(t),M(t)) are the aerodynamic coefficients

written as nonlinear functions of M(t), α(t), and q(t) (See details in [111]). The actuator dynamics

are given by

δ̇e(t) = τ(δc(t)− δe(t)),

where τ = 188.5 rad/s, and δc(t) is the fin command. The goal is to design an adaptive controller to

track a given acceleration command nc(t) with measurable outputs of nz(t) and q(t). The nominal

model is obtained from a linearization at M = 3.0 and α = 0. The baseline controller gains are

chosen to have an infinite gain margin, and a phase margin of 75◦ with a phase cross-over frequency

52 rad/s; the gains of three-loop autopilot in (5.1.2) are:

Kdc = 1.1873, Ka = −0.0553, WI = 17.5144, KR = 0.4667.

For the L1 adaptive controller, the low-pass filter and the adaptation gains are chosen as D(s) =

188.5/s, and ΓΩ = Γθ = Γσ = 200, respectively. The predictor gain Kv is obtained from pole

assignment such that Av has the poles [−50,−52.5,−55,−57.5]; µ = 30, Q = diag(50, 5, 5, 50), and

Py = 0.1I3.

For the purposes of demonstrating robustness to uncertainties, we perform nonlinear simula-

tions with perturbed moment coefficients defined as

Cm = Cm((1 + ∆a)α(t), (1 + ∆e)δe(t),M(t)),

where ∆a and ∆e represent perturbations in the aerodynamic derivatives of Cmα and Cmδe , respec-

tively. The following scenarios of perturbations ∆i = (∆a,∆e) are chosen as:

∆0 = (0, 0), ∆1 = (−0.5,−0.5), ∆2 = (−2.0,−0.25), ∆3 = (−2.5, 0).

Figures 5.8 - 5.15 illustrate system responses and control histories of the nonlinear missile
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system for a given reference command. In this simulation, the Mach number deviates from 3.0

to 2.3 and the angle-of-attack varies from approximately −15◦ to 15◦ as shown in Figure 5.8 -

5.11. Since the L1 controller is designed at the point (M,α0) = (3, 0), the uncertainties in the

simulation are the nonlinearities of the model and the variations of aerodynamic coefficients. In

Figures 5.8 5.9, the L1 adaptive controller provides similar response to the baseline three-loop

controller, when slight variations of the aerodynamic derivatives occur (i.e., ∆0 and ∆1). However,

for the cases of large uncertainties (i.e., ∆2, ∆3), the response of the three-loop controller is shown

through the dotted black lines and can be compared directly to the solid blue lines in Figures

5.10 5.11. The adaptive output-feedback controller shows a tangible improvement in performance,

almost nullifying the oscillations that were present with the three-loop controller.

Figure 5.8: System responses for ∆0
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Figure 5.9: System responses for ∆1

Figure 5.10: System responses for ∆2
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Figure 5.11: System responses for ∆3

Figure 5.12: Control histories for ∆0
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Figure 5.13: Control histories for ∆1

Figure 5.14: Control histories for ∆2

Figure 5.15: Control histories for ∆3
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5.2. Inverted Pendulum on a Cart

In this section, we consider the control problem of the inverted pendulum which is an un-

deractuated system with relative degree 2. Notice that the linearized dynamics of the system has

rank deficiency for the product of its input and output matrices. Therefore, we will consider the

controller from Section 4.2. As shown in Figure 5.16, an input force F (t) acts on the cart for

Figure 5.16: Inverted pendulum on a cart

the purpose of tracking a reference position p while maintaining the inverted pendulum balanced

upright. The nonlinear model is given by

F (t) + Ffric(t) + d(t)

M +m
= p̈(t) +

ml cos θ(t)θ̈(t)−ml sin θ(t)θ̇2(t)

M +m
,

0 = ml cos θp̈(t)−mgl sin θ(t) + (I +ml2)θ̈(t),

F (t) = ωu(t)− νṗ(t),

(5.2.1)

where p(t) ∈ R, θ(t) ∈ R are the cart position and pendulum angle (measurable outputs), re-

spectively, u(t) is the voltage input, and Ffric(t) represents the nonlinear dynamic friction given

by [112]

Ffric(t) =− 73ṗ(t)− 121z(t)

(
1− 70

‖ṗ(t)‖
h(ṗ(t))

)
,

ż(t) =ṗ(t)− 121
‖ṗ(t)‖
h(ṗ(t))

z(t),

(5.2.2)

with h(ṗ(t)) = −(0.04287 + 0.0432e−(
ṗ(t)

0.105
)2

)(m+M)g. Moreover, the definitions of system param-

eters are given in (5.1). The nominal system parameters are selected as follows [112]:

M0 = 0.815, m0 = 0.210, l0 = 0.305, ω0 = 1.719, ν0 = 7.682, (5.2.3)

and two sets of parameter variations are taken into account:

S1 ={M = 1.2M0,m = 0.7m0, l = 0.7l0, ω = 0.8ω0, ν = 0.7ν0},

S2 ={M = 1.2M0,m = 0.8m0, l = 0.8l0, ω = 0.8ω0, ν = 0.5ν0}.
(5.2.4)
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Table 5.1: Definitions of parameters

Parameter Description Unit

M mass of the cart kg
m mass of the pendulum kg
l length of the pendulum m
ω voltage to force conversion factor N/V
ν electrical resistance factor Ns/m
I moment of inertia of the pendulum kgm2

The control objective is to make the closed-loop system track a given position command by

using both p(t) and θ(t). For the purposes of comparison, we first consider a standard LQR

controller [60, 112]. The gain can be computed from the linearizion of the nonlinear model (5.2.1)

at (pe, θe) = (0, 0), together with cos θ(t) ≈ 1:

Klqr = [−7.0711,−13.5752,−42.5823,−7.6058]

with the weighting matrics Qlqr = diag (50, 10, 150, 5) and Rlqr = 1. As for the proposed L1

controller given in Section 4.2, the desired model is chosen identical to the nominal (linearized)

closed-loop system obtained by the LQR controller:

Am =


0 1 0 0

14.62 20.64 88.23 15.87

0 0 0 1

−44.26 −62.47 −237.34 −48.04

 , Bm =


0

2.07

0

−6.26

 ,

Cm =

[
1 0 0 0

0 0 1 0

]
,

with the state vector x(t) = [p(t), ṗ(t), θ(t), θ̇(t)]>, and the reference position command r(t).

Remark 5.2.1. The nominal (linearized) open-loop transfer function from u(t) to p(t) has an

unstable zero. However, the transfer matrix from u to [p, θ]> does not possess unstable transmission

zeros, which guarantees that M(s) has no unstable transmission zeros.

Since the desired model is obtained from the linearizion, the uncertain function f(x, t) in (4.2.1)

includes the linearizion errors, parameter variations, nonlinear friction Ffric(t), and disturbance

signal d(t). The set of parameters for the L1 adaptive controller is given by

Kg = −7.0711, Z(s) =
−9.323

s+ 17
, D(s) =

30

s(s/70 + 1)(s/100 + 1)
, µ = 1, Ts = 0.005,
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and

Kv =

[
−5.16 −30.92 −1.42 62.34

−1.42 −36.03 −3.79 76.71

]>
.

In simulation, we considers two cases: (1) the nominal nonlinear dynamics with system pa-

rameters in (5.2.3), Ffric(t) ≡ 0, d(t) ≡ 0, and zero initialization errors; (2) the nonlinear dynamics

with parametric variations in (5.2.4), the nonlinear friction given by (5.2.2), the input disturbance

d(t) = 3sin(t), and non-zero initial condition x0 = [−0.5,−1, 0.1745, 0]>. Figures 5.17 and 5.18

illustrates the simulation results for the first case. From the plots it can be noted that there is

no significant difference in the performance of the solutions; this is not surprising, since the only

uncertainties that affect the performance of the controllers are the linearization errors. Figures 5.19

and 5.20 present the system responses and control inputs for the second case. As shown in Figure

5.19, the L1 controller ensures close tracking of the position, and boundedness of the angle within

a neighborhood of zero, in spite of the uncertainties and non-zero initial error.

Figure 5.17: Inverted pendulum: position, and angle for case 1
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Figure 5.18: Inverted pendulum: control input for case 1

Figure 5.19: Inverted pendulum: position, and angle for case 2
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Figure 5.20: Inverted pendulum: control input for case 3
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CHAPTER. 6

Design of the Lowpass filter for L1 Reference System Performance Optimization

In the previous chapters, we demonstrated that the L1 reference system is L∞ stable with

respect to external signals, if a low- pass filter is designed to satisfy the L1-norm stability condition.

We also proved that the closed-loop L1 adaptive system converges to the reference system in the

presence of fast estimation rates. For optimization of the reference system performance, one needs a

systematic design procedure for the low-pass filter towards achieving satisfactory trade-off between

robustness and performance of the closed-loop system. The filter design problem for MIMO systems

is overly challenging as compared to SISO systems.

Since the stability condition is formulated with an L1 norm constraint, the problem is reduced

to L1-norm optimization problem. In robust control literature, the continuous-time L1 optimal

controllers (minimizing a worst-case norm) are known to be in the form of irrational controllers.

The authors of [113] proposed optimizing a star-norm (which is an upper bound of the L1 norm)

to solve the filter design problem. In [114], a D-K iteration procedure for L1-norm optimization

was suggested. However, these methods seem to be rather conservative for an optimal solution; the

approach in [113] ignores a performance measure and only takes a fixed time-delay into account in

the design process; the D-K iteration method may not be a suitable approach for continuous-time

L1-norm minimizing problems, since it produces an irrational filter [91]. Recent progress in this

direction is based on discretization of the continuous-time system. The optimal solution for the filter

is obtained in the discrete-time domain, and then the discrete optimal filter is converted into its

continuous-time version [115]. This method is more tractable since it gives a rational approximation

of the optimal solution; the authors of [115] borrowed the idea of Euler approximation [116] which

is a suitable approximation, guaranteeing the closeness to the continuous-time optimal solution

with a small sampling time. In this approach, both robustness and performance of the reference

system are taken into account. However, the use of small time-steps in the discretization inevitably

results in undesirable high-order filters. As a result, an additional order reduction step is required;

notice that the reduction should be performed with an L1 optimization setup. This is known to be

a challenging problem because the optimal reduction may result in an irrational filter.

In real-world applications, performance specifications are often given in the frequency domain,

which necessarily require obtaining an optimal solution within an H∞ optimization framework.

Frequency-domain approaches are well established in control engineering, allowing the designers to

utilize commercial off-the-shelf optimization tools. Many efficient numerical solvers are found for

the H∞ optimization with successful applications, providing optimal (or suboptimal) solutions to

the problems that include structured uncertainties, uncertain time delays, and requirements of the

control structure.

The key challenge in dealing with the frequency-domain specifications for the L1 reference
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system is a conservative design result especially with high order systems. This stems from converting

the L1 norm condition to a corresponding constraint in the frequency domain. For example, the

authors of [117] use the fact that the L1-norm is upper and lower bounded by the H∞-norm (see

Lemma 2.2.1):
1
√
p
‖G(s)‖H∞ ≤ ‖G(s)‖L1

≤ 2n
√
m ‖G(s)‖H∞ , (6.0.1)

where G(s) ∈ Rp×m(s) and n is the dimension of the state vector of G(s). In [117], the authors

solve
√
mL ‖G(s)‖H∞ <

1

2n
(6.0.2)

to ensure ‖G(s)‖L1
L < 1, where L > 0 is the Lipschitz constant of the unknown nonlinearity.

However, as the system order increases, the solution becomes more conservative, since the norm

inequality between the L1-norm and the H∞-norm depends on the order of G(s).

In this chapter, we avoid the conservative conversions given in (6.0.1) and (6.0.2) by proposing

a filter design method with a new stability condition. The condition is formulated in the frequency

domain for stability of both the L1 reference system and the closed-loop L1 adaptive system. A

suitable parameterization of the low-pass filter makes the design problem solvable in a standard

H∞ optimization framework. Moreover, frequency-domain specifications are easily taken into the

framework.

6.1. Stability Condition for L1 Adaptive Systems

In this section, we first develop a new sufficient condition for the stability of the L1 reference

system, and then show that this condition also guarantees the closed-loop stability for L1 adaptive

systems. Consider the following nonlinear system:

ẋ(t) =Amx(t) +Bm(Ωu(t) + f(x, t)), (6.1.1)

y(t) =Cmx(t), x(0) = x0,

where {Am ∈ Rn×n, Bm ∈ Rn×m, Cm ∈ Rp×n} is a controllable-observable triple representing the

desired model M(s) = Cm(sIn−Am)−1Bm, Ω ∈ Rm×m is an unknown input gain, and f : Rn×R→
Rm represents system uncertainties. Now, suppose the unknown input gain and the nonlinear

function f(x, t) satisfy the following assumptions:

Assumption 6.1.1. There exist L > 0 and B0 > 0 such that

‖f(x, t)− f(y, t)‖ ≤ L‖x− y‖, ‖f(0, t)‖ < b0, x, y ∈ Rn, ∀t ≥ 0. (6.1.2)

Assumption 6.1.2. The unknown constant input gain Ω is assumed to be a (nonsingular) strictly

row-diagonally dominant matrix with sgn(Ωii) known. Moreover, the input gain satisfies Ω ∈ CΩ,

where CΩ ⊆ Rm×m is a known convex compact set.
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Remark 6.1.1. For the sake of simplicity, we assume a globally Lipschitz condition in Assumption

6.1.1. For locally Lipschitz continuous functions, Rn can be replaced with Dx = {x ∈ Rn : ‖x‖ < ρx},
where ρx denotes the size of a positive invariant set.

We start by analyzing the L1 reference system stability. Let Z−1(s) be a right interactor of

sM(s) and D(s) ∈ Rm×m[s] be a proper transfer matrix such that

C(s) = ΩD(s)(Im + ΩD(s))−1 (6.1.3)

is a low pass filer with C(0) = Im. Moreover, it is assumed that D(s)Z−1(s) is a proper transfer

matrix. Now, consider the following reference system:

ẋref (t) =Amxref (t) +Bm(Ωuref (t) + f(xref , t)), (6.1.4)

yref (t) =Cmxref (t), xref (0) = 0,

and

uref (s) =Ω−1C(s) (Kgr(s)− ηref (s)− σ(s)) , (6.1.5)

where C(s) is given in (6.1.3), ηref (s) = L (ηref ), and σ(s) = L (σ) with

ηref (t) = f(xref , t)− f(0, t), σ(t) = f(0, t). (6.1.6)

Lemma 6.1.1. Consider the closed-loop reference system given in (6.1.4) and (6.1.5). Suppose

that the lowpass filter satisfies

‖G(s)‖L1
L < 1, (6.1.7)

where L is given in Assumption 6.1.1, G(s) = H0(s)(Im − C(s)), and H0(s) = (sIn −Am)−1Bm.

Then, the closed-loop reference system is practically ISS with respect to the reference command

r(t)7. Moreover, there exists λ0 > 0 , κ0 > 0, κ1 > 0, and κ2 > 0 such that for all t ≥ t0 ≥ 0.

‖xref (t)‖ ≤ κ0e
−λ0(t−t0)‖xref (t0)‖+ κ1‖rf‖L∞[t0,t]

+ κ2‖σ‖L∞[t0,t]
, (6.1.8)

with rf (s) = C(s)Kgr(s).

Proof. Consider the closed-loop reference system defined in (6.1.4) and (6.1.5). Let rf (s) =

C(s)Kgr(s). Substituting the control law given in (6.1.5) into (6.1.4) yields

xref (s) =H0(s)rf (s) +G(s) (ηref (s) + σ(s)) + xin(s),

yref (s) =Cmxref (s),

7See Definition 2.2.15.
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where H0(s) = (sIn − Am)−1Bm, G(s) = H0(s)(Im − C(s)), and xin(s) = (sIn −Am)−1xref (t0).

Define C(s) = Cf (sIm − Af )−1Bf , where {Af ∈ Rnf×nf , Bf ∈ Rnf×m, Cf ∈ Rm×m} is a minimal

realization of C(s). Then, a state-space realization of (6.1.9) is given by

ẋc(t) = Acxc(t) +Bc(ηref (t) + σ(t)) +Brrf (t),

xref (t) = Ccxc(t), xc(t0) = [xref (t0)>, 0]>,
(6.1.9)

with

Ac =

[
Am BmCf

0 Af

]
, Bc =

[
Bm

−Bf

]
, Br =

[
Bm

0

]
, Cc =

[
In 0

]
, (6.1.10)

where xc(t) = [x>ref (t), x>f (t)]> ∈ Rnc×nc ;nc = n+nf , and xf (t) ∈ Rnf is some internal state vector

in (6.1.9). Therefore, the following solution for a given initial condition xc(t0) can be obtained:

xc(t) = eAc(t−t0)xc(t0) +

∫ t

t0

eAc(t−τ)Brrf (τ)dτ +

∫ t

t0

eAc(t−τ)Bc(ηref (τ) + σ(τ))dτ. (6.1.11)

Using the continuity of the L1-norm, one may take a sufficiently small λ0 > 0 such that

β1 = ‖G(s− λ0)‖L1
< 1/L. Define Aλ0 = Ac + λ0Inc , x̄c(t) = eλ0(t−t0)xc(t), r̄f (t) = eλ0(t−t0)rf (t),

η̄ref (t) = eλ0(t−t0)ηref (t), and σ̄(t) = eλ0(t−t0)σ(t). Multiplying both sides of (6.1.11) by eλ0(t−t0)Cc,

yields

x̄ref (t) =Cce
Aλ0

(t−t0)xc(t0) +

∫ t

t0

Cce
Aλ0

(t−τ)Brr̄f (τ)dτ

+

∫ t

t0

Cce
Aλ0

(t−τ)Bc(η̄ref (τ) + σ̄(τ))dτ, (6.1.12)

where x̄ref (t) = eλ0(t−t0)xref (t). Notice that Aλ0 is Hurwitz by ‖G(s− λ0)‖L1
< ∞. Moreover,

Assumption 6.1.1, along with (6.1.7) and (6.1.6), implies

‖η̄ref (t)‖ ≤ L‖x̄ref (t)‖ , ∀t ≥ t0. (6.1.13)

By combining (6.1.12) and (6.1.13) and using the fact that Cc = [Inc , 0], it follows that for all t ≥ t0

‖x̄ref‖L∞[t0,t]
≤ β0

1− β1L
‖xc(t0)‖+

β1

1− β1L
‖σ̄‖L∞[t0,t]

+
β2

1− β1L
‖r̄f‖L∞[t0,t]

, (6.1.14)

where β0 = sup
0≤τ
‖eAλ0

τ‖, β1 = ‖G(s− λ0)‖L1
, and β2 =

∥∥(sInc −Aλ0)−1Br
∥∥
L1

. Now, multiplying

both sides of (6.1.11) by eλ0(t−t0), and combining (6.1.13) and (6.1.14), one can obtain

‖x̄c(t)‖ ≤ κ0‖xc(t0)‖+ κ1‖r̄f‖L∞[t0,t]
+ κ2‖σ̄‖L∞[t0,t]

, (6.1.15)
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where

κ0 =β0(1 +
Lβ3

1− β1L
), κ1 = β2(1 +

Lβ3

1− β1L
),

κ2 =
β3

1− β1L
, β3 =

∥∥(sInc −Aλ0)−1Bc
∥∥
L1
.

(6.1.16)

Since

e−ε0(t−t0)‖σ̄‖L∞[t0,t]
≤ ‖σ‖L∞[t0,t]

, e−ε0(t−t0)‖r̄f‖L∞[t0,t]
≤ ‖rf‖L∞[t0,t]

,

and ‖x̄c(t)‖ = eλ0(t−t0)‖xc(t)‖ hold, Equation (6.1.15) can be rewritten by

‖xc(t)‖ ≤κ0e
−λ0(t−t0)‖xc(t0)‖+ κ1‖rf‖L∞[t0,t]

+ κ2‖σ‖L∞[t0,t]
, ∀t ≥ t0. (6.1.17)

Since rf (s) = C(s)Kgr(s) holds, and σ(t) is bounded, Equation (6.1.17) implies that the closed-

loop reference system is practically ISS. Finally, the fact that ‖xc(t)‖ ≥ ‖xref (t)‖ concludes (6.1.8),

which completes the proof.

Lemma 6.1.1 provides a further result on the L1 reference system stability; notice that Lemma

6.1.1 indicates the ISS property of the reference system, while the L1 literature mainly demonstrates

the BIBO stability [2].

Remark 6.1.2. It can be shown that if the nonlinear function f is locally Lipschitz continuous, then

Equation (6.1.8) still holds depending on the upper bound of initial conditions. Notice that C(s)

can always be chosen to satisfy (6.1.7) by increasing the filter bandwidth. Therefore, the closed-loop

reference system becomes semi-globally practically ISS with respect to r(t) in this case.

Next, we introduce a new sufficient condition for the ISS L1 reference system.

Lemma 6.1.2. Consider the closed-loop reference system given in (6.1.4) and 6.1.5. Suppose that

a low-pass filter C(s) is chosen to satisfy

‖G(s)‖H∞
√
mL < 1, (6.1.18)

where L is given in Assumption 6.1.1, G(s) = H0(s)(Im − C(s)) and H0(s) = (sIn −Am)−1Bm.

Then, the closed-loop system is practically ISS with respect to r(t). Moreover, there exists λ̄0 > 0 ,

κ̄0 > 0, κ̄1 > 0, and κ̄2 > 0 such that for all t ≥ t0 ≥ 0

‖xref (t)‖ ≤ κ̄0e
−λ̄0(t−t0)‖xref (t0)‖+ κ̄1‖rf‖L∞[t0,t]

+ κ̄2‖σ‖L∞[t0,t]
, (6.1.19)

with rf (s) = C(s)Kgr(s).

Proof. Consider the reference system given in (6.1.4) and (6.1.5). Let rf (s) = C(s)Kgr(s). By
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applying a state-space realization, it follows that for t ≥ t0 the internal state of the system xc(t)

satisfies

ẋc(t) = Acxc(t) +Bc(ηref (t) + σ(t)) +Brrf (t),

xref (t) = Ccxc(t), xc(t0) = [xref (t0)>, 0]>,
(6.1.20)

where Ac, Bc, and Cc are given in (6.1.10). Since G(s) = H0(s)(Im−C(s)) = Cc(sIn−Ac)Bc holds

with the observable and controllable {Ac, Bc, Cc}, Ac should be Hurwitz.

Suppose ‖G(s)‖H∞ < γ with γ = 1√
mL

. From Lemma 2.2.2(a), there exists P = P> � 0 such

that

A>c P + PAc + γ2PBcB
>
c P + C>c Cc = −Q, Q � 0. (6.1.21)

Choose a small enough ε > 0 such that Q − εInc � 0, and consider a Lyapunov function V (t) =

xc(t)
>Pxc(t). Taking the derivative of V (t) and substituting (6.1.20) into the derivative, one has

V̇ (t) = x>c (t)(A>c P + PAc)xc(t) + 2x>c PBcηref (t) + 2x>c PBcσref (t) + 2x>c PBrrf (t). (6.1.22)

Notice that from Assumption 6.1.1 one obtains

η>ref (t)ηref (t) ≤ mL2x>ref (t)xref (t), t ≥ t0. (6.1.23)

Since

2x>c PBcηref (t) ≤γ2x>c (t)PBcB
>
c P
>xc(t) +

1

γ2
η>ref (t)ηref (t),

from (6.1.22) it follows, along with (6.1.23), that

2x>c PBcηref (t) ≤γ2x>c (t)PBcB
>
c Pxc(t) + x>c (t)C>c Ccxc(t). (6.1.24)

Now, combining (6.1.21), (6.1.22) and (6.1.24) brings

V̇ (t) ≤ −x>c (t)Qxc(t) + 2x>c PBcσref (t) + 2x>c PBrrf (t). (6.1.25)

Let εσ > 0 and εf > 0 satisfy εσ + εf < ε, and define Qε = Q− (εσ + εf )Inc � 0. Then, by applying

square completions in (6.1.25) it can be shown that

V̇ (t) ≤ −x>c (t)Qεxc(t) + γσ‖σref (t)‖2 + γf‖rf (t)‖2, (6.1.26)

where γσ = n
εσ
‖PBc‖22 > 0 and γf = n

εf
‖PBr‖22 > 0. Moreover, since x>c (t)Qεxc(t) ≥ λmin(Qε)

λmax(P ) V (t),

Equation (6.1.26) can be rewritten as

V̇ (t) ≤ −λ0V (t) + γσ‖σref (t)‖2 + γf‖rf (t)‖2, (6.1.27)
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where λ0 = λmin(Qε)
λmax(P ) . The Comparison Lemma from (6.1.27) implies that

V (t) ≤ e−λ0(t−t0)V (t0) +

∫ t

t0

e−λ0(t−τ)(γσ‖σref (τ)‖2 + γf‖rf (τ)‖2)dτ,

which further yields

V (t) ≤ e−λ0(t−t0)V (t0) + γ′σ sup
τ∈[t0,t]

‖σref (τ)‖2 + γ′f sup
τ∈[t0,t]

‖rf (τ)‖2, (6.1.28)

where γ′σ = γσ
λ0

and γ′f =
γf
λ0

. Notice that

sup
τ∈[t0,t]

‖σref (τ)‖2 ≤

(
sup

τ∈[t0,t]
‖σref (τ)‖

)2

, sup
τ∈[t0,t]

‖rf (τ)‖2 ≤

(
sup

τ∈[t0,t]
‖rf (τ)‖

)2

.

Therefore, from (6.1.28) it follows that

‖xc(t)‖ ≤ κ̄0e
−λ̄0(t−t0)‖xc(t0)‖+ κ̄1 sup

τ∈[t0,t]
‖σref (τ)‖+ κ̄2 sup

τ∈[t0,t]
‖rf (τ)‖, (6.1.29)

where λ̄0 = λ0/2, κ̄0 =
√
nλmax(P )
λmin(P ) , κ̄1 =

√
γ′σ

λmin(P ) , and κ̄2 =

√
γ′f

λmin(P ) Finally, since ‖xref (t)‖ ≤

‖xc(t)‖ and xc(t0) = [x>ref (t0), 0]> holds, from (6.1.29) one concludes (6.1.19). This completes the

proof.

Remark 6.1.3. In Lemma 6.1.2, the condition (6.1.18) is formulated in the frequency domain.

Notice that the stability condition is less conservative than the condition in (6.0.2). Moreover, the

inequality in (6.1.18) does not depend on system order8.

Up to this point the reference system stability has been discussed. Now, we analyze the

behavior of the closed-loop L1 adaptive system. Given the nonlinear system in (6.1.1), consider the

L1 adaptive control laws:

u(s) = D(s)Kgr(s)−D(s)Z−1(s)η̂t(s), (6.1.30)

where r(s) is the Laplace transform of a reference command r(t) ∈ Rmr , and Kg ∈ Rm×mr is a

known feed-forward gain, and η̂t(s) is the Laplace transform of η̂t(t) ∈ Rm, which represents the

signals generated by the predictor and the adaptive laws in the L1-adaptive control structure.

Remark 6.1.4. Notice that the control law in (6.1.30) does not assume a specific structure for the

predictor and the adaptive laws, and therefore Equation (6.1.30) can represent the control laws that

we discussed in the previous chapter (see (4.1.22), and (4.2.13)).

Lemma 6.1.3. Consider the nonlinear system (6.1.5), subject to the following assumptions:

8McMillan degree, the dimension of states in a minimal realization of the system.
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(a) C(s) is chosen such that the closed-loop reference system satisfies (6.1.8);

(b) the control structure (6.1.30) guarantees that there exist a class KL∞ function βφ and a constant

γ > 0, such that

‖φt(t)‖ ≤ βφ(‖x(t0)‖, t− t0) + γ, 0 ≤ t0 ≤ t, (6.1.31)

where φt(t) is the signal with the Laplace transform of

φt(s) = C(s)Z−1(s)(η̂t(s)− ηt(s)), (6.1.32)

with ηt(s) = Z(s)(Ωu+ L (f)).

Then, there exist a class KL∞ function βdx and a class K∞ class function γdx such that

‖xref (t)− x(t)‖ ≤ βdx(‖x0‖, t− t0) + γdx(γ). (6.1.33)

Proof. Let t0 ≥ 0, and

η̃t(t) = η̂t(t)− ηt(s). (6.1.34)

Combining (6.1.34) and (6.1.30) yields

u(s) = D(s)Kgr(s) +D(s)Z−1(s)(ηt(s) + η̃t(t)),

which, together with the fact that L (f) = L (η) + L (σ), leads to

u(s) =Ω−1C(s) (Kgr(s)− η(s)− σ(s))− Ω−1C(s)Z−1(s)η̃t(s), (6.1.35)

where η(s) = L (η), and σ(s) = L (σ) with

η(t) = f(x, t)− f(0, t), σ(t) = f(0, t),

Substituting (6.1.35) into (6.1.1) yields the following closed-loop system:

x(s) =H0(s)rf (s) +G(s)(η(s) + σ(s)) + xin(s)−H0(s)C(s)η̃t(s)

y(s) =Cmx(s) ,
(6.1.36)

where xin(s) = (sIn − Am)−1x0, rf (s) = C(s)Kgr(s), G(s) = H0(s)(Im − C(s)), and H0(s) =

(sIn−Am)−1Bm. Let x̃ref (t) = xref (t)− x(t), η̃ref (t) = ηref (t)− η(t), and ỹref (t) = yref (t)− y(t).

Now, by subtracting (6.1.36) from (6.1.9), it follows that

x̃ref (s) =G(s)η̃ref (s) +H0(s)φt(s) + xin(s),

ỹref (s) =Cmx̃ref (s),
(6.1.37)
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and

‖η̃ref (t)‖ ≤ L‖xref (t)‖, t ≥ 0, (6.1.38)

where φt(s) = C(s)Z−1(s)η̃t(s), and xin(s) = (sIn−Am)−1x̃ref (0) with x̃ref (0) = −x0. Notice that

the system (6.1.37) with (6.1.38) has the same structure as in (6.1.9), and therefore from (6.1.8) it

follows that

‖x̃ref (t)‖ ≤ κ0e
−λ0(t−tm)‖x̃ref (tm)‖+ κ1‖φt‖L∞[tm,t]

, tm ≤ t, (6.1.39)

for some κ0 > 0, λ0 > 0, and κ1 > 0. Suppose tm ≥ t0. From (6.1.31) it follows that

‖φt‖L∞[t0,tm] = sup
t0≤τ≤tm

‖φt(τ)‖

≤ sup
t0≤τ≤tm

(βφ(‖x̃ref (t0)‖, τ − t0)) + γ ≤ βφ(‖x̃ref (t0)‖, 0) + γ,
(6.1.40)

and

‖φt‖L∞[tm,t]
≤ βφ(‖x̃ref (tm)‖, 0) + γ. (6.1.41)

Next, combining (6.1.39) and (6.1.40) yields

‖x̃ref (t)‖ ≤κ0e
−λ0(t−t0)‖x̃ref (t0)‖+ κ0κ1e

−λ0(t−tm)βφ(‖x̃ref (t0)‖, 0) + κ0κ1γ

+ κ1‖φt‖L∞[tm,t]
,

(6.1.42)

which, together with (6.1.41), leads to

‖x̃ref (t)‖ ≤κ0e
−λ0(t−t0)‖x̃ref (t0)‖+ κ0κ1e

−λ0(t−tm)βφ(‖x̃ref (t0)‖, 0)

+ (κ0 + 1)κ1γ + κ1βφ(‖x̃ref (tm)‖, 0).
(6.1.43)

Since

βφ(‖x̃ref (tm)‖, 0) ≤ βφ(‖κ0e
−λ0(tm−t0)‖x̃ref (t0)‖+ κ1βφ(‖x̃ref (t0)‖, 0) + κ1γ‖, 0),

by letting tm = (t+ t0)/2, one has a class KL∞ function βm and a class K∞ function γm, such that

βφ(‖x̃ref (tm)‖, 0) ≤ βm(‖x̃ref (t0)‖, t− t0) + γm(γ). (6.1.44)

Finally, combining (6.1.43) and (6.1.44), it can be shown that

‖x̃ref (t)‖ ≤ βdx(‖x̃ref (t0)‖, t− t0) + γdx(γ), 0 ≤ t0 ≤ t,

where βdx and γdx are some class KL∞ and K∞ functions, respectively. Therefore, letting x̃ref (t0) =

−x0 concludes (6.1.33), which completes the proof.

Remark 6.1.5. Equation (6.1.33) implies that the transient due to non-zero initialization is quan-

tified with a strictly decreasing function, and that the steady-state errors remain bounded; notice
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that the errors are bounded by γdx(·) that converges to zero as γ → 0. The small γ is achieved with

high adaptation gains.

The hypothesis (a) of Lemma 6.1.3 holds if a low-pass filter C(s) is chosen to satisfy either

(6.1.7) or (6.1.18) (see Lemmas 6.1.1 and 6.1.2). Moreover, it can be easily shown that the condition

(b) of Lemma 6.1.3 is always guaranteed by the bounded estimation errors of the L1 controllers of

this thesis. These observations allow us to state the following theorem.

Theorem 6.1.1. Consider the nonlinear system given in (6.1.1), satisfying Assumptions 6.1.1 and

6.1.2. Suppose

(a) the low pass filter C(s) is designed to ensure either ‖G(s)‖L1
L < 1 or ‖G(s)‖H∞

√
mL < 1,

where G(s) = (sIn −Am)−1Bm(Im − C(s));

(b) The controller in (6.1.30) is implemented with the estimation laws that satisfy (6.1.31).

Then, the closed-loop system is practically ISS with respect to the reference command r(t).

Proof. Notice that

‖x(t)‖ ≤ ‖xref (t)‖+ ‖x(t)− xref (t)‖, ∀t ≥ 0. (6.1.45)

Therefore, the proof of Theorem 6.1.1 directly follows from Lemmas 6.1.1 - 6.1.3.

Remark 6.1.6. It is easy to show that the closed-loop L1 adaptive system becomes semi-globally

practically ISS with respect to r(t)9 if the nonlinear function f(x, t) in (6.1.1) is assumed to be

locally Lipschitz continuous (see also Remark 6.1.2).

6.2. Filter Design with H∞ Optimization Theory

Now, we introduce the a filter design method for frequency-domain specifications, where the

condition in (6.1.18) is used as the stability condition. The optimal filter design problem is formally

stated as follows:

Problem 6.2.1.

min
C(s) stabilizing

‖TΩ‖H∞

subject to

‖H0(s)(Im − C(s))‖H∞ <
√
mL, C(0) = Im, Ω ∈ CΩ,

where TΩ is a map from the external input w to the performance output z.

9See Definition 2.2.17.
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Now, the objective is to reformulate Problem 6.2.1 into a standard robust performance problem

such that

min
stabilizing Q(s)

‖Fl(P∆(s), Q(s))‖H∞ ,

subject to ‖∆‖H∞ < γ,

where Fl is the Lower Linear Fractional Transform (LLFT) of the generalized plants consisting of

an uncertain plant model P∆(s) and a controller Q(s); ∆ is a norm-bounded uncertain block, and

γ > 0 is a given constant. Notice that Problem 6.2.1 includes the algebraic constraint C(0) = Im,

which is not easy to handle within standard H∞ frameworks. To tackle this issue, we first develop

a feedback structure of L1 reference system, which satisfies the low-pass filter constraint.

Consider the closed-loop reference system given in (6.1.4) and (6.1.5). From (6.1.3) and (6.1.5)

it follows that

uref (s) = D(s)(Kgr(s)− Ωuref (s)− ηref (s)− σ(s)),

where ηref (s) and σ(s) are given in (6.1.6). Figure 6.1 illustrates the feedback structure of the L1

reference system.

Figure 6.1: Feedback structure of L1 reference system

By letting

D(s) =
1

s
Q(s), (6.2.1)

we notice that C(0) = Im is always satisfied, where Q(s) ∈ Rm×m(s) is any stable and proper

matrix; this implies that C(s) can be parameterized with Q(s), and therefore an optimal filter can

be obtained by finding an optimal Q(s). Moreover, from (6.1.5) and (6.1.3) it follows that

ηref (s) + σ(s) = Kgr(s)− (Im + ΩD(s))D−1(s)uref (s). (6.2.2)

Notice that from (6.1.4) one has

Ωuref (s) + ηref (s) + σ(s) = B†m(sIn −Am)xref (s), (6.2.3)
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which, in conjunctions with (6.2.2), leads to

uref (s) = D(s)(Kgr(s)−B†m(sIn −Am)xref (s))

= Q(s)(F1(s)r(s)− F2(s)xref (s)),
(6.2.4)

where F1(s) = Kg
1
s and F2(s) = 1

sB
†
m(sIn − Am). Then, combining (6.2.4) and (6.1.4) yields the

feedback structure given in Figure 6.2, where ∆Ω is the uncertain block that satisfies ‖∆Ω‖H∞ ≤
max
Ω∈CΩ

‖Ω− Im‖2.

Figure 6.2: Feedback structure with Q-parametrization

Remark 6.2.1. We notice that the reference control law in (6.2.4) is not implementable since it

depends on the unmeasurable states. We use it only for the purposes of filter design. As it was

stated in [118], the L1 reference controller can be implemented for some classes of systems. For

example, in [118] it is shown that an implementable reference controller for square output-feedback

systems can be formulated with the use of the system inverse. In cases, when the system inverse

is not straightforward to obtain, the L1 controller shows clear benefits over other robust control

methods. Underactuated systems belong to that class of problems, where the inverse is not defined.

From the H∞ optimization theory, the condition in (6.1.18) can be represented with a norm-

bounded uncertain block ∆L such that ‖∆L‖H∞ <
√
mL. Therefore, the stability problem for the

L1 reference system can be tackled by solving the standard robust stability problem:

Problem 6.2.2. Given the feedback system in Figure 6.3, find Q(s) that stabilizes the system,

subject to ‖∆L‖H∞ <
√
mL and ‖∆Ω‖H∞ < max

Ω∈CΩ
‖Ω− Im‖2.

Notice that the algebraic constraint C(0) = Im is always satisfied in the feedback structure of

Figure 6.3.

Remark 6.2.2. As discussed in Chapter 4, the system with high vector relative degree requires a

minimum order of the filter (i.e., C(s)Z−1(s) is proper, where Z(s) ∈ Rm×m(s) is a (given) stable
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Figure 6.3: Feedback structure for the L1 reference system stability problem

and proper transfer matrix). This issue can be addressed by using block modifications in Figure 6.3:

F1(s) and F2(s) can be replaced with F ′1(s) = F1(s)Z(s) and F ′2(s) = F2(s)Z(s), respectively. Then,

from an optimal solution for Q(s), the low-pass filter can be obtained by letting D(s) = 1
sQ(s)Z(s).

Next, we introduce a H∞ optimization framework for the design of an optimal filter with

frequency-domain specifications. Since the stability condition for the L1 reference system is refor-

mulated into Problem 6.2.2, the optimal design with the specifications simply follows from con-

ventional H∞ design procedures; additional weighting functions are taken into Problem 6.2.2 to

realize the frequency-domain specifications. Therefore, Problem 6.2.1 can be re-stated as the robust

performance problem:

Problem 6.2.3. Consider the feedback structure given in Figure 6.4, where WI(s), WU (s), and

WE(s) are weighting functions. We solve

min
Q(s) stabilizing

‖Fl(P∆, Q(s))‖H∞

subject to

‖∆L‖H∞ <
√
mL, ‖∆Ω‖H∞ < max

Ω∈CΩ
‖Ω− Im‖2, ‖∆I‖H∞ < 1,

where Fl is the LLFT that represents a map from r to [eu, ey]
>, and P∆ is the uncertain plant that

includes the uncertain block ∆ = diag (∆L,∆Ω,∆I).

Remark 6.2.3. Since the constraints in Problem 6.2.3 are uniform over system order, Problem

6.2.3 is more suitable to deal with high order systems (see also Remark 6.1.3). Moreover, any

algebraic constraints are not observed in Problem 6.2.3, and therefore it is solved by using efficient

H∞ numerical solvers (e.g., µ synthesis, and non-smooth optimization techniques [87, 92, 119]).

Different types of weighting blocks can be introduced to obtain desired robustness and perfor-

mance. For the criteria of weighting function selection, one can refer to [119–121]:
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• Weight WI(s) for time-delay margins

WI(s) is chosen for a time-delay consideration. WI(s) is typically set to be

WI(s) = ε
(θ/ε) + 1

(θ/p)s+ 1
(6.2.5)

for the input delay e−θs (Pade Approximation, [119]), where p is a large number and ε � 2

denotes the allowed steady-state relative gain error, while θ is the admissible time delay error.

This approximation implies that the uncertainty amounts to 100% at the frequency 1/θ.

• Weight WU (s) for control efforts

WU (s) penalizes the control input. A typical setup is WU (s) = s, which is used to to avoid

fast changes in the inputs. Notice that the use of WU (s) to penalize the inputs at the low

frequency range makes little sense, since the controller needs a certain magnitude for the

input to be effective [120].

• Weight WE(s) for performance measures

WE(s) indicates the allowed magnitude for the tracking errors at each frequency. One example

is to consider: (i) steady-state offset less than A; (ii) closed-loop bandwidth higher than ωB,

and (iii) amplification of high-frequency noise less than an factor M . These specifications

can be realized as the weighting function that has a stair-like asymptote [121]:

WE(s) =
1

M

τP s+ 1

τP s+A/M
, τP =

1

MωB
, (6.2.6)

Notice that ωB is the frequency at which the magnitude is almost 0dB, and 1/M , 1/A

represent the minimum and the maximum magnitude of the asymptote, respectively. Then,

M is the magnitude of the allowed errors for ω > ωB, and A denotes the allowed magnitude

error at a low frequency range (less than ωB) [120,121].

Figure 6.4: Uncertain plants for µ synthesis with weighting functions Wu(s) and We(s)
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Remark 6.2.4. The benefits of the method in this section are summarized as follows: (i) the

standard H∞ design procedures for frequency-domain specifications are allowed; (ii) the design

procedure is systematically implemented for an optimal trade-off between performance of robustness;

and (iii) the solution is less conservative especially for high order systems.

6.3. Design Example

In this section, we design a lowpass filter withH∞ optimization method. Consider the nonlinear

dynamics:

ẋ(t) =

 −2 0 1

1 −5 2

1 0 5.5


︸ ︷︷ ︸

Am

x(t) +

 1

2.5

−3


︸ ︷︷ ︸

Bm

(u(t) + f∆(x, t)),

y(t) =

[
−5 10 5

2.5 −2 0

]
︸ ︷︷ ︸

Cm

x(t),

where f∆(x, t) satisfies

‖f(x, t)− f(y, t)‖2 ≤ L ‖x− y‖2 , ‖f(0, t)‖2 ≤ b0, x, y ∈ Rn, t ≥ 0, (6.3.1)

for some L > 0 and b0 > 0. The objective is to design a low-pass filter C(s) (as in (6.1.3))

to guarantee the stability in the L1 reference system (6.1.4). To deal with frequency-domain

specifications, we use the H∞ framework proposed in Section 6.2 (see Problem 6.2.3). From the

Figure 6.5: Block diagram for the filter design

H∞ theory, the robust performance problem in 6.2.3 can be reformulated into the H∞ synthesis

problem:
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Problem 6.3.1. Let WL(s) = L. Given the feedback structure T in Figure 6.5, we solve

min
stabilizing Q(s)

{‖T : wd → zd‖H∞ , ‖T : rc → ewy‖H∞}

subject to ‖T : ws → xref‖H∞ < 1.

Notice that T : wL → xref in Figure 6.5 corresponds to the transfer matrix G(s) given in

(6.1.18).

For the filter design, we use WI(s) in (6.2.5) for a delay margin around 0.15s, and WE in

(6.2.6) for the low-frequency tracking performance; WI(s) is set with θ = 0.15, ε = 0.2, and p = 10,

and WE(s) is computed with M = 1, A = 3.16 × 10−5, and τB = 18.85. Figure 6.6 illustrates the

weighting functions that are used in this optimization. Notice that (CmBm) is not full rank, and

Figure 6.6: Weighting functions

therefore we obtain an right interactor Z(s). The right interactor is computed as Z(s) = 4/(s+ 3)

by following the procedure in Remark 2.1.9. Since Problem 6.3.1 is structured and non-convex, we

use a MATLAB solver (Hifoo, [122]), and obtain

C(s) =
3.672

s2 + 3s+ 3.672
, D(s) =

3.672

s2 + 3s

with

‖G(s)‖H∞ = 0.9687, ‖G(s)‖L1
= 0.9248.

To demonstrate the performance of the L1 adaptive system, we consider a numerical simu-

lation with the L1 adaptive controller of Section 4.2 with the design parameters given in Section

4.2.3; notice that the filter has been changed to the one that we obtained in this section. In the

simulation, arbitrary uncertainties with Lipschitz constant L = 1.0324, and any input time delays

within [0, 0.12] are taken. Figure 6.7 illustrate the L1 reference system and the closed-loop system

responses, and control histories of both systems are given in Figure 6.8. Although the effect of the

time delay is not incorporated in the closed-loop analysis, the result shows that the L1 adaptive
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controller renders the system response close to the L1 reference system for uncertain time delays

within the specified margin.

Figure 6.7: System responses of the L1 reference and the closed-loop system

Figure 6.8: Control histories of the L1 reference and the closed-loop system
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CHAPTER. 7

Conclusion and Future research

7.1. Conclusion

This dissertation develops L1 adaptive output feedback controllers for uncertain, nonlinear,

and underactuated systems. Prior results were limited to square MIMO systems, [55,57,58].

In Chapter 2, we introduced the required theoretical background. It was shown that a state

decomposition approach can be effectively used along with a right interactor to create a virtual

system.

In Chapter 3, we consider underactuated nonlinear systems with vector relative degree one.

With mild assumptions on the uncertainties, the proposed controller guarantees semi-global sta-

bilization of the closed-loop system. In Chapter 4, approaches to deal with the underactuated

systems with high relative degree are addressed. By using a right interactor, a virtual system is

introduced which allows for state-decomposition for the L1 adaptive closed-loop system. Chapter

5 verifies the performance of the proposed controllers with practical examples. In Chapter 6, we

develop a low-pass filter design method in the frequency domain. A frequency-domain condition to

guarantee the closed-loop stability is introduced. With this condition, the design method suitably

deals with frequency-domain specifications. A trade-off between robustness and performance can

be optimally performed in the frequency domain by utilizing existing H∞ optimization techniques.

7.2. Future research

Future research will focus on extensions of L1 adaptive control to cover wider classes of MIMO

systems. First, the approach will be extended to handle unmatched uncertainties in underactuated

systems. The compensation for unmatched uncertainties is a challenging issue in control system

design. From geometric control theory, it is known that unmatched uncertainties of underactuated

systems may not be perfectly canceled out through the control input, even if they are estimated

with high precision [123]. However, it is possible that some class of unmatched nonlinearities can

be dealt with by using L1 adaptive controllers. For example, if the systems are square and all states

are measurable, the unmatched uncertainties can be compensated within a filter bandwidth [2].

Second, we envision to develop L1 adaptive control for switched systems, which can facilitate a

multi-model L1 adaptive control for complex systems that may require different reference behaviors

around different trim conditions. This approach cna cpature systems with much larger class of

uncertainties.

Finally, the sampled-data applications for L1 adaptive control will be addressed. Since most
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controllers (if not all) are implemented in digital computers, the overall control system needs to be

tackled in the sampled-data framework. For example, many important cyber-physical systems such

as power grids, transportation and financial systems are sampled-data systems. The development

of control strategies to handle vulnerability to cyber attacks has become an active research area

of interest [124]. In the literature, it has been shown that the L1 adaptive control with piecewise-

constant adaptation can be analyzed in the sampled-data framework [125] by providing an upper

bound for sampling rates for closed-loop stability. The approach is based on square-system analysis.

For underactuated systems, the L1 adaptive controller presented in 4.2 can be extended to sampled-

data systems. This will enable the use of L1 adaptive controller in a much broader range of

applications.
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