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Abstract

Individualized modeling and multi-modality data integration have experienced an explosive growth

in recent years, which have many important applications in biomedical research, personalized ed-

ucation and marketing. Conventional statistical models usually fail to capture significant variation

due to subject-specific effects and heterogeneity of data from multiple sources. Consequently, it

has become very critical to incorporate individuals’ and modalities’ heterogeneous characteristics

in order to efficiently explore the data structure and enhance the prediction power. In this thesis, we

address three challenging issues: mixture modeling for longitudinal data, individualized variable

selection and multi-modality tensor learning with an application in medical imaging analysis.

In the first part of the thesis, we develop a model-based subgrouping method for longitudinal

data. Specifically, we propose an unbiased estimating equation approach for a two-component mix-

ture model with correlated response data. In contrast to most existing longitudinal data clustering

methods, the proposed model allows subgroup membership change for each individual over time.

Furthermore, we incorporate correlation structure on unobservable latent indicator variables. An-

other advantage our approach is that we do not require any information about joint likelihood func-

tion for each subject. The proposed model is shown to have more efficient parameter estimators

in both mixing proportions and component densities. In addition, by utilizing within-subject serial

correlations, the proposed approach enhances classification power compared to existing methods,

especially for those boundary observations.

In the second part of the thesis, we propose an individualized variable selection approach to

select different relevant variables for different individuals. The conventional homogeneous model,

which assumes all subjects share the same effects of certain predictors, may wash out important

information due to heterogeneous variation. For example, in personalized medicine, some indi-

viduals could have positive responses to the treatment while some individuals could have negative

ones. Hence the population average effect could be close to zero. In this thesis, we construct a
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separation penalty with multi-directional shrinkages including zero, which facilitates individual-

ized modeling to distinguish strong signals from noisy ones. As a byproduct, the proposed model

identifies subgroups among which individuals share similar effects, and thus improves estimation

efficiency and personalized prediction accuracy. Finite sample simulation studies and an applica-

tion to HIV longitudinal data demonstrate the model efficiency and the prediction power of the

new approach compared to a variety of existing penalization models.

In the third part of the thesis, we are interested in employing medical imaging data for diag-

nosis. This work is motivated by breast cancer imaging data produced by a multimodality multi-

photon optical imaging technique. We develop an innovative multilayer tensor learning method to

predict disease status effectively through utilizing subject-wise imaging information. In particular,

we propose an individualized multilayer model which leverages an additional layer of individual

structure of imaging shared by multiple modalities in addition to employing a high-order tensor

decomposition shared by populations. One major advantage of our approach is that we are able to

capture the spatial information of microvesicles observed in certain modalities of optical imaging

through integrating multimodality imaging data. Our simulation studies and real data analysis both

indicate that the proposed multilayer learning method improves prediction accuracy significantly

compared to existing competitive statistical and machine learning methods.
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Chapter 1

Introduction

There has been a growing demand to develop effective and efficient methods to capture and uti-

lize data heterogeneity from specific individuals, subgroups of subjects, or multiple data sources.

For example, personalized medicine requires to identify different treatment effect groups, which

enables us to assign a more efficient treatment to each specific patient. In addition, in biomedical

imaging analysis, multiple imaging techniques, such as CT scan, MRI, fMRI and optical imaging,

are usually applied together for diagnosing disease status. To achieve a better diagnosis power, it

is very crucial to effectively integrate information from different modalities of imaging data. In

this thesis, we propose methods and theory for individualized modeling and integration of multi-

modality data. Our contributions are mainly from three perspectives: longitudinal mixture model-

ing, individualized feature selection, and tensor learning for multi-modality imaging data.

1.1 Longitudinal Mixture Modeling

Mixture modeling is a major technique to model the subgroup structure, which draws more and

more attention recently. A direct application of mixture modeling is on clustering. Compared to

other clustering methods, e.g., K-means, mixture modeling provides a soft prediction on subgroup

membership, which is more informative. In the past two decades, many mixture modeling tools

have been developed to incorporate covariates information in addition to outcomes. A mixture

model could be viewed as a hieratical structure consisting of a subgroup membership indicator and

component outcomes given the indicator. However, the indicator variable is unable to be observed

directly and could be only inferred from the outcomes and the covariates. Therefore the mixture

modeling is also treated as an incomplete-data modeling. This unique challenge of the mixture
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modeling prevents its extension to more complicated data structure, e.g., longitudinal data.

Longitudinal data has well known within subject correlation information, which is very im-

portant. It is very challenging to incorporate the correlation information in the mixture modeling

while allowing time-varying subgroup membership, especially in latent subgroup membership’s

level. The conventional parametric mixture modeling would encounter difficulties since the full

joint distribution of categorical latent variables is far more than complicated.

In Chapter 2, we propose an unbiased estimating equation approach for a two-component mix-

ture model with correlated response data. We adapt the mixture-of-experts model and a generalized

linear model for component distribution and mixing proportion, respectively. The new approach

only requires marginal distributions of both component densities and latent variables. We utilize

serial correlations from subjects’ subgroup memberships, which improves estimation efficiency

and classification accuracy, and show that estimation consistency does not depend on the choice

of the working correlation matrix. The proposed estimating equation is solved by an Expectation-

Solving estimating equation (ES) algorithm. In the E-step of the ES algorithm, we propose a joint

imputation based on the conditional linear property for the multivariate Bernoulli distribution.

In addition, we establish asymptotic properties for the proposed estimators and the convergence

property using the ES algorithm. Our method is compared to an existing competitive clustering

approach in both simulation studies and 2008 election data application.

1.2 Individualized Feature Selection

In recent years, the arise of precision medicine and wide-spread electronic health record data mo-

tivate us to develop a more effective personalized treatment. This has widely applications in per-

sonalized medicine, personalized education program and personalized marketing. Consequently,

the increasing demand of personalized prediction requires personalized modeling. The traditional

one-model-fits-the-whole-population may not have power to detect some important predictors for

subgroups of interest. For example, different individuals may have different prognostic factors
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associated with the same disease.

In Chapter 3, We propose a novel individualized variable selection method which performs

coefficient estimation, subgroup identification and variable selection simultaneously. In contrast

to traditional feature selection approaches, an individualized regression model allows different

individuals to have different relevant variables. The key component of the new approach is to

construct a multi-directional separation penalty which shrinks weak signals to zero and aggregates

strong signals to a subgroup-shared homogeneous effect. This allows us to borrow information

from subjects within the same subgroup, and therefore improve the estimation efficiency and vari-

able selection accuracy for each individual. Another advantage of the proposed model is that it can

incorporate within-subject correlation for longitudinal data.

We provide a general theoretical foundation under a double-divergence modeling framework

where the number of subjects and the number of repeated measurements both go to infinity, and

therefore involves high-dimensional individual parameters. In addition, we present the oracle prop-

erty for the proposed estimator to ensure its optimal large sample property. Simulation studies and

an application to HIV longitudinal data are illustrated to compare the new approach to existing

penalization methods.

1.3 Tensor Learning for Imaging Data Analysis

Imaging analysis has drawn great attention and encounters an explosive growth, due to wide ap-

plications in medical images for diagnosing, especially in neuroimaging and cancer radiotherapy.

It is in great demand to develop efficient statistical tools to utilize the image information to predict

interested outcomes, for example, disease status and treatment responses. However, the imaging

data has many challenges to be fitted into a traditional statistical model, including high-dimensional

data structure, heterogeneous background noise and multiple data modalities.

Chapter 4 is motivated by multiphoton optical imaging data for breast cancer diagnosis pro-

duced by Boppart Lab at University of Illinois at Urbana-Champaign, where there are four imag-
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ing modalities at each subject capturing different microenvironments. In Chapter 4, we treat the

image data along with additional information (e.g., time) as a higher-order multi-dimensional ar-

ray, which is called a tensor as well. We propose a multi-layer tensor learning model to efficiently

extract image’s information and then use the extracted information to fit a regression model as-

sociated to the interested outcomes. Specifically, we construct a low-rank decomposition for the

image tensor, which consists of the individualized layers, which capture the subject-specific infor-

mation over each individual’s multiple modalities, and the population-shared layers, which model

the modality-specific background and achieve an effective dimension reduction. Then the both

layers’ information are incorporated to predict the outcome responses.

Due to individualized signals, traditional homogeneous dimension reduction methods could

loss their power in capturing those images’ structures under a conventional low-rank model frame-

work. By decomposing a tensor into different specific layers, the proposed method is capable

of capturing the unique spatial information from the tensor structure and reduces the complex

data’s dimensionality efficiently. Numerical studies illustrate the power of the proposed method,

especially when signal regions vary a lot among different images, which often occurs in breast

cancer diagnosis. The proposed approach is also applied to four-modality optical imaging data and

achieves a significantly better prediction power on breast cancer diagnosis.
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Chapter 2

Mixture Modeling for Longitudinal Data

2.1 Introduction

The mixture model has been extensively applied in many fields due to its flexibility to capture

the heterogeneity arising from subgroups (components) in the whole population. The mixture

model can also be viewed as a two-level hierarchical structure with incomplete data, where the

first level consists of latent variables indicating subjects’ subgroup memberships, and the second

level consists of outcome variables. However, the individual’s subgroup membership has to be

inferred from the location of the outcome response due to unobservable latent variables.

Existing methods of mixture model with covariates for independent data include, but are not

limited to, [30]’s mixture-of-experts for a mixture of component regressions, [32]’ extension on

the generalized linear model for mixing proportion. For correlated or longitudinal outcome data,

[70] introduce a linear random-effects model for components’ densities under the mixture frame-

work. Alternatively, [67] propose a generalized estimating equation for component distributions

to incorporate correlations. These approaches all assume that the latent variables are independent.

However, modeling correlation from outcome variables only is not sufficient to address correla-

tions from subgroup membership over time.

One notable approach to model the correlated latent structure is the hidden Markov chain model

([62]). However, this is not applicable for longitudinal data since the Markov chain assumption

dose not hold or approximate some common correlation structure in longitudinal data such as

exchangeable structure. Another well-known approach of mixture modeling for longitudinal data

is related to growth-curve mixture modeling [53], where the subject’s group membership is fixed
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over time, while different trajectory classes represent different mixture components. [29] propose

a kernel smoothing method for a mixture of Gaussian processes incorporating both functional and

heterogeneous types of dense longitudinal data. In addition, to incorporate the individual effects,

[80] propose a multivariate Bernoulli mixture model by utilizing random effects in the generalized

linear model for mixing proportion.

Although the mixed-effects model is widely used to handle dependent data, incorporating serial

correlation for latent variables in mixture modeling for longitudinal data is still limited. In this

chapter, we are interested in developing an efficient method in mixture modeling of longitudinal

data where within-subject subgroup memberships could be correlated.

One challenge in formulating a mixture model for dependent data is that the joint likelihood

function usually does not have an explicit form, because the latent variables are correlated categor-

ical variables. In addition, the latent indicator variables are unobservable and require imputation.

Although one can assume independent structure for the latent variables, the estimation efficiency

will be compromised.

In this chapter, we allow group memberships to change over time in addition to taking serial

correlation into account. We adopt the generalized estimating equation (GEE) approach ([44]) for

both component distributions and mixing proportion in a two-component mixture model. This can

be accomplished by treating the estimating equations for incomplete data as the conditional ex-

pectations of those for complete data. Specifically, we apply the Expectation-Estimating-Equation

(EEE) algorithm to solve the equations. To impute the latent variable in the E-step, we provide an

approximation method to calculate the joint conditional expectation utilizing the conditional linear

property for the correlated binary variables ([61]; [63]).

In contrast to the joint likelihood approach, the proposed method only requires the marginal

distributions for both components’ densities and latent variables. In the estimating step, we fully

utilize the serial correlation while treating it as a working structure. Allowing different working

correlation structures enables one to incorporate various correlated latent structures, although the

proposed method does not require to know the true correlation structure in order to produce con-
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sistent estimators of mean parameters. However, if the correlation structure is correctly or closely

specified, we gain efficiency of the parameter’s estimation and improve the classification accuracy

from a model-based clustering.

The rest of this chapter is organized as follows: Section 2.2 introduces some notation and

background knowledge; Section 2.3 presents our method and provides some theoretical results,

as well as the EEE algorithm and imputation methods; Section 2.4 provides simulation studies;

Section 2.5 considers an application to the Election data; and Section 2.6 offers a brief summary

and some further discussion.

2.2 Background and Notation

For longitudinal data, let yit be the response of subject i at time t, and xit be a p-dimensional

covariate vector, where i = 1, ..., n and t = 1, ..., Ti. For ease of notation, we first assume Ti = T

for all i representing a balanced data case, where an unbalanced data case will be discussed later.

Denote yi = (yi1, ..., yiT ) as a T×1 response vector, xi = (xi1, ...,xiT ) as a p×T covariate matrix.

In a two-component mixture model, let zit denote the binary latent variable associated with yit. Let

µr(·) be an inverse link function satisfying E[yit|xit, zit = 2 − r] = µr(β
′
rxit) (r = 1, 2), where

βr is a p-dimensional parameter, and µri = E[yi|xi, zi = 2− r].

In this chapter, we consider a two-component mixture model. The outcome variable yit is from

either one of the two subgroup populations and thus is assumed to follow a mixture distribution

πitf1(yit|xit,β1, φ1) + (1− πit)f2(yit|xit,β2, φ2), where πit is a mixing proportion defined as the

probability of a response yit from a specified subgroup, f1(yit|xit,β1, φ1) and f2(yit|xit,β2, φ2)

are the components’ distributions, and φ = (φ1, φ2) is the dispersion parameter. This two-

component mixture model can be regarded as a hierarchical structure. Specifically,

zit ∼ Bernoulli(πit),

yit|(zit = 1) ∼ f1(yit|xit,β1, φ1) and yit|(zit = 0) ∼ f2(yit|xit,β2, φ2),
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where a latent variable zit represents a subgroup membership indicator.

The most common assumption for this hierarchical model is that the outcome variable yit’s

are conditionally independent given the subgroup membership label zit, then the joint likelihood

density function of complete data (yi, zi) can be written as

fc(yi, zi) = f(yi|zi,β1,β2,φ,xi)p(zi|πi,xi)

=

( T∏
t=1

f1(yit|β1, φ1,xit)
zitf2(yit|β2, φ2,xit)

1−zit
)
p(zi|πi,xi).

(2.1)

Under the mixture framework, the latent variable zit is missing. The simplest way to get around

the latent structure is to assume independence of subgroup memberships at different times within

each subject and thus p(zi|πi) =
∏T

t=1 π
zit
it (1 − πit)

1−zit . In the independent mixture model,

the correlations among longitudinal observations and their subgroup memberships are not fully

utilized.

[32] propose a hierarchical mixture-of-experts model which takes covariates into consideration

for both latent variable and component distributions, where the latent variable zit is assumed to

follow a logistic model: πit = exp(η′xit)/(1 + exp(η′xit)), and components’ densities have a

mean regression form. Here we denote θ = (η′,β′1,β
′
2)′ as a grand mean parameter vector, then

the log of joint likelihood for complete data is:

Lc(y, z,θ,φ) =
n∑
i=1

T∑
t=1

(
zit{logπit + logf1(yit|xit,β1, φ1)}+ (1− zit){log(1− πit)

+logf2(yit|xit,β2, φ2)}
)
,

(2.2)

under the independence assumption within subject.

For classical mixture models where the latent variable zit is missing, the maximum likelihood

estimator (MLE) is typically computed through the Expectation-Maximization (EM) algorithm

([12]). The EM algorithm proceeds iteratively in two steps. In the E-step, we take the conditional

expectation of complete-data log likelihood given observed outcome response y and current pa-

rameters’ estimates (θ(k),φ(k)). Since the complete-data log likelihood Lc(y, z,θ,φ) in (2.2) is a

linear function of latent variable zit, the E-step only requires us to impute zit by its conditional ex-
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pectation w(k)
it = E[zit|yit,xit,θ(k),φ(k)] denoted as the mixing weight. In the M-step, we obtain

the k + 1th updates of parameters’ estimations by maximizing

L(θ,φ|θ(k),φ(k)) =
n∑
i=1

T∑
t=1

(
w

(k)
it {logπit + logf1(yit|xit,β1, φ1)}+ (1− w(k)

it ){log(1− πit)

+logf2(yit|xit,β2, φ2)}
)
.

(2.3)

It has been shown that the obtained series (θ(k),φ(k)) in the EM algorithm converges to the MLE

estimator of the mixture distribution f(y,θ,φ) =
∫
z
fc(y, z,θ,φ)dz ([12]).

2.3 Unbiased Estimating Equations for Mixture Modeling

2.3.1 Unbiased estimating equations

Due to the correlated nature of longitudinal data, it is important to incorporate correlation for mix-

ture modeling as it provides more efficient estimation and benefits the longitudinal subgrouping.

In this section, we first propose an efficient unbiased estimating equation for complete data, and

then extend it to the incomplete-data mixture model.

To account for within-subject correlation among group memberships in (2.1), we have to deal

with the joint likelihood function p(zi|πi) of the latent multivariate Bernoulli variable zi. Un-

like the multivariate Gaussian distribution, there is no explicit form of likelihood function for the

multivariate Bernoulli distribution. The unknown membership in the mixture models makes the

incomplete-data likelihood function even more complicated since the latent zi needs to be inte-

grated out from the complete-data likelihood function. One possible approximation is to apply

the Bahardur representation ([1]) for the multivariate Bernoulli distribution by ignoring high-order

moments. However, there are several drawbacks such that the correlations are constrained through

marginal means and covariates in a complicated way ([15]). In addition, the dimension of the

correlation parameters could be very high when the repeated measurement size T is large, which

leads to increasing computational demands.
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To address this problem, we first introduce an unbiased estimating equation approach and es-

tablish it for the complete-data model. The proposed unbiased estimating equation regrading the

mean parameter θ is formulated through the log-likelihood function Lc in (2.2). Maximizing Lc

with respect to θ by solving the corresponding score equation is equivalent to solving the quasi-

likelihood equation ([89]; [51]) as follows:

Sc(θ) =
n∑
i=1

Sci (θ) =


∑n

i=1

(
∂πi
∂η

)T
V −1
i (zi − πi)∑n

i=1

(
∂µ1i

∂β1

)T
U1i

−1Zi(yi − µ1i)∑n
i=1

(
∂µ2i

∂β2

)T
U2i

−1(1−Zi)(yi − µ2i)

 = 0, (2.4)

where µri = (µri1, ..., µriT )′, µrit = E[yit|zit = 2− r] = µr(β
′
rxit) (r = 1, 2) are the corre-

sponding mean functions for components’ densities, Zi = diag(zi1, ..., ziT ) is a diagonal matrix of

corresponding latent labels, and U1i and U2i are the diagonal covariance matrices of component

densities respectively: Uri = Var(yi|zi = 2 − r). The covariance matrices U1i and U2i could

be functions of both mean parameters µ1i, µ2i and dispersion parameter φ. As a result, given

θ, the dispersion parameter φ can be consistently estimated via the second moment conditions of

component distributions. For the independent model, Vi = diag
(

Var(zi1), ...,Var(ziT )

)
.

To account for serial correlation induced by latent variable zi, we assume Vi = A
1
2
i R(ρ)A

1
2
i

analogue to the generalized estimating equation (GEE) ([44]), whereAi = diag{πi1(1−πi1), ..., πiT (1−

πiT )} is a diagonal matrix of marginal variance of zi, and R(ρ) is a working correlation matrix.

IfR is the true correlation matrix for zi, then Vi = Cov(zi).

In the following, we extend the proposed estimating equation to the incomplete-data model.

To handle the missing latent indicator zi, we take the conditional expectations for the equations in

(2.4) given the outcome observation y, and therefore construct the unbiased estimating equations

11



for the incomplete data as:

S(θ) = Ez[
n∑
i=1

Sci (θ)|y,θ] =
n∑
i=1

Si(θ|θ) =


∑n

i=1

(
∂πi
∂η

)T
V −1
i (wi − πi)∑n

i=1

(
∂µ1i

∂β1

)T
U1i

−1Wi(yi − µ1i)∑n
i=1

(
∂µ2i

∂β2

)T
U2i

−1(1−Wi)(yi − µ2i)

 = 0,

(2.5)

wherewi = Ez[zi|y,θ] is the mixing weight representing the inferred probability of the subgroup

memberships, and Wi is a diagonal matrix of corresponding mixing weights associated with yi.

Similar to the GEE method, our approach can handle unbalanced data if the missing mechanism is

missing completely at random (MCAR) ([69]). If the missing mechanism is not MCAR, then the

estimating equation estimators could be biased and inefficient, and weighted generalized estimat-

ing equations (WGEE) can be employed to deal with the missing not completely at random cases

([66]; [68]).

To solve the estimating equation (2.5), we present a two-step Expectation-Estimating-Equation

(EEE) algorithm. Analogue to the EM algorithm, the EEE algorithm follows an iterative estimating

process. Specifically, at the (k + 1)th step, based on the current estimation of parameter θ(k), we

impute w(k)
i = Ez[zi|y,θ(k)], and then update θ(k+1) by solving the estimating equation:

S(θ|θ(k)) =
n∑
i=1

Si(θ|θ(k)) =


∑n

i=1(∂πi
∂η

)TV −1
i (w

(k)
i − πi)∑n

i=1(∂µ1i

∂β1
)TU1i

−1W
(k)
i (yi − µ1i)∑n

i=1(∂µ2i

∂β2
)TU2i

−1(1−W (k)
i )(yi − µ2i)

 = 0. (2.6)

A more detailed EEE algorithm is provided in Section 2.3.3.

The main difference between the above method and [67]’s approach is that we incorporate an

additional estimating equation associated with the mixing proportion. This enables us to utilize the

longitudinal correlations among the unobservable subgroup memberships from the same subject.

Furthermore, in our estimating equation (2.5), we can also utilize the correlation information from

the outcome variable yi simultaneously through the working correlation structures ofU1i andU2i.

In this chapter, we focus on utilizing the subject’s group membership correlation over time. We

12



assume that yit’s given zit’s are conditionally independent within the same subject, and thus U1i

and U2i are set to be diagonal.

Indeed, the proposed model assuming working correlation structure has the same identifiability

problem as the independent model, which is equivalent to the mixtures-of-experts model. We can

refer to [31]’s discussion for the identifiability problem of the mixtures-of-experts model.

2.3.2 Asymptotic Properties

In this chapter, we utilize the latent variable’s serial correlation information to improve the param-

eter estimation and the subject’s group membership prediction. We first examine the optimization

properties for the complete-data equations.

Once we establish the optimal estimating equation Sc(z,y,θ) for complete data, then the con-

ditional expectation S(y,θ) = E[Sc|y] is the best estimating equation for the incomplete data such

that the L2 norm ‖Sc(z,y,θ)−S(y,θ)‖ is minimized. In other words, if the proposed Sc(z,y,θ)

is efficient enough, then S(y,θ) will inherit some efficiency from the complete-data model. In

the following proposition, we establish the optimality of the unbiased estimating equation (2.4) for

complete data.

Proposition 1. If the working correlation structure is correctly specified, that is, Vi = Var(zi), the

estimating equations in (2.4) are the optimal linear estimating equations with respect to (zi,yi),

in the sense that the asymptotic variance of the estimator solved by (2.4) reaches the minimum.

The proof is provided in the Section 2.7. Indeed, incorporating the serial correlation informa-

tion is more important for the mixture model since zi can not be observed. For the complete-data

estimating equations in (2.4), the first set of equations with respect to the group membership and

the other two equations associated with component densities are uncorrelated with each other.

Therefore the induced serial correlations only affect the estimation of mixing proportion param-

eters in π(η), but have no influence on estimating the component parameters in µ1(β1) and

µ2(β2). However, for the incomplete data, the three equations in (2.5) are correlated because the
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imputed term wi is a function of yi. For the longitudinal data of the subjects, taking advantage of

the information at the other time points through accounting for the serial correlation improves the

estimation efficiency of both the component parameters and the mixing proportion parameters.

It is known that the consistency of the above estimator only depends on correct specification

of the mean functions, but does not rely on correct specification of the working correlation struc-

ture nor on the estimation of the correlation parameters ρ. This is one desirable property for the

proposed approach since the serial correlation induced from unobservable latent variables could

be difficult to model and estimate precisely. In contrast to the full joint likelihood approach, we

only require the second moment approximation. Furthermore, the following theorem establishes

the asymptotic properties of the proposed estimators.

Theorem 1. Let γ = (θ′,φ′)′ denote a grand parameter vector, in the proposed unbiased estimat-

ing equation (2.5), assuming that the following regularity conditions are satisfied:

(i) φ̂ is consistently estimated given θ via some unbiased estimating equation
∑n

i=1 Hi(φ|θ) = 0;

(ii) ρ̂ is n1/2-consistent given γ, denoted as ρ̂(γ);

(iii) ‖∂ρ̂/∂γ‖ ≤ Op(1);

Let Gi(γ) = (Si(θ)′, Hi(φ|θ)′)′ be the augmented unbiased estimating equation, then the asymp-

totic distribution of γ̂ obtained from
∑n

i=1Gi = 0 is: n1/2(γ̂ − γ)→ N(0, Vg), where the asymp-

totic covariance matrix Vg is given by:

Vg = limn→∞n

( n∑
i=1

∇Gi(γ)

)−1( n∑
i=1

cov(Gi(γ))

)( n∑
i=1

∇Gi(γ)

)−T
,

∇Gi is the gradient of Gi with respect to γ.

Theorem 1 is established based on the following unbiased estimating equations:

E[(wi − πi)] = E[(E[zi|yi]− πi)] = E[zi]− πi = 0;

E[Wi(yi − µ1i)] = E[E[Zi|yi](yi − µ1i)] = E[Zi(yi − µ1i)] = 0;

E[(1−Wi)(yi − µ2i)] = E[(1−E[Zi|yi])(yi − µ2i)] = E[(1−Zi)(yi − µ2i)] = 0.
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A sketch of the proof of Theorem 1 is given in the Section 2.7. Noting that even if wi is imputed

through the marginal expectation wit = E[zit|yit], the estimating equations in (2.5) are still unbi-

ased. The estimating equation Hi for the dispersion parameter is established based on the second

moment condition provided in the Section 2.7.

In practice, a consistent variance estimator of γ̂ can be obtained by replacing Cov(Gi(γ)) by

Ĝ′iĜi, and ∇Gi by ∇Ĝi at the estimates of θ̂, ρ̂, φ̂. One practical difficulty arises from getting an

explicit form of the gradient∇Ĝi in the calculation of mixing weightswi. The imputation termwi

is the posterior probability of zi containing both the response value yi and all the parameters θ, φ

and ρ. The complicated form of wi makes it difficult to calculate the exact derivatives, especially

when the conditional expectation wi = E[zi|yi] requires specifying the joint likelihood function

for zi. We present some numerical approximation methods to calculatewi and∇Gi. More details

are provided in Section 2.3.3.

2.3.3 Algorithm and Implementation

In this section, we provide the two-step iterative EEE algorithm and its theoretical properties. In

addition, the details of marginal imputation and the joint imputation methods are provided.

Algorithm 1
Step 1: Set the initial values of the mean regression parameter θ and the dispersion parameter φ:
γ(0) = (θ(0),φ(0));
Step 2 (E-Step): Impute the mixing weights w(k)

it = E[zit|yi] given current estimates γ(k) ;
Step 3 (M-Step): Given the current imputed mixing weights w(k)

it ,
(i) update θ(k+1) by solving the estimating equation in (2.6), and
(ii) update φ(k+1) given θ(k+1);
Step 4: Return to Step 2 if ‖γ(k+1) − γ(k)‖ > ε, where ε is the chosen tolerance level.

In Step 3 of Algorithm 1, with the current mixing weights, we apply the Newton-Raphson

method to solve the estimating equations in (2.6) to obtain the updates θ(k+1) for the mean pa-

rameter. The updated dispersion parameter φ(k+1) can be estimated using the second moment

conditions given θ(k+1). See Section 2.7 for more details. In the Newton-Raphson algorithm, the

first derivative of the estimating function can be calculated as a simple diagonal matrix:
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diag
(∑n

i=1

(
∂πi

∂η

)T
V −1
i

(
∂πi

∂η

)
,
∑n

i=1

(
∂µ1i

∂β1

)T
U1i

−1W
(k)
i

(
∂µ1i

∂β1

)
,
∑n

i=1

(
∂µ2i

∂β2

)T
U2i

−1(1−W (k)
i )

(
∂µ2i

∂β2

))
.

For the EEE Algorithm 1, the estimating function in (2.5) can be regarded as a bivariate func-

tion S(θ|λ) restricted on the subspace θ = λ, which is denoted as S(θ|θ). In fact, the first

argument θ of S(θ|θ) comes from the mean regression part, while the second argument comes

from the conditional expectations. The EEE Algorithm 1 is simply updating the estimation of θ

by solving S(θ|θ(k)) = 0 in (2.6). If the iterative sequence of the estimator obtained from the EEE

algorithm converges, it will converge to the solution of the original equation S(θ|θ) = 0 which is

guaranteed by the continuity. The following lemma provides a local convergence of the estimator

based on the Algorithm 1 in a more general form.

Lemma 1. Suppose that S(θ|λ) is a bivariate function on the space Θ×Θ satisfying the following

regularity conditions:

(a) S(θ|λ) is continuous and both ∂S
∂θ

and ∂S
∂λ

exist;

(b) In a neighborhood of (θ0,θ0), where S(θ0|θ0) = 0, we have ‖ (∂S
∂θ

)−1 · ∂S
∂λ
‖2< 1 hold;

then the iterative sequence of estimator {θ(k)} solved by S(θ(k+1)|θ(k)) = 0 converges to θ0.

The proof of Lemma 1 is provided in the Section 2.7. Lemma 1 provides a sufficient but not

necessary condition for the algorithm’s convergence. Indeed, the algorithm convergence problem

is also associated with general convergence theory regarding the iterative solutions to nonlinear

equations. More detailed discussion of this type of algorithm can be found in [55].

In practice, it is possible to have multiple roots for the proposed estimating equations. One

suggested method is to choose the root closest to the independent estimator which is consistent

([78]). [73] proposed to exclude all singular solutions and therefore reduce the risk of selecting

spurious roots of the likelihood equation. Their method is powerful in selecting reasonable roots

for the independent finite normal mixture model. In addition, we may also need to provide a “good”

initial value for the iterations to converge. One way is to select different initial values randomly

until the algorithm converges; another choice is to set the initial value as the estimator obtained

from the existing independent mixture model.
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In Algorithm 1, the E-step (Step 2) requires one to impute the missing latent variable zi through

its conditional expectation wi = E[zi|y,θ,φ]. However, this joint conditional expectation in-

volves the joint density of the multivariate binary variable zi, which is very difficult to calculate.

One possible way is to use the marginal imputation wit = E[zit|yit,θ,φ] since we only assume a

marginal distribution for the individual observation (yit, zit) in our approach. The marginal impu-

tation

wit =
πitf1(yit,θ1, φ1)

πitf1(yit,θ1, φ1) + (1− πit)f2(yit,θ2, φ2)

guarantees the estimating equations in (2.5) to be unbiased, where f1 and f2 are component den-

sities. In fact, the imputation wit provides the inferred subgroup membership of the outcome

observation yit. The drawback of the marginal imputation is that it only utilizes local information

to infer the group membership. If two subgroups are well-separated, i.e., most wit are either close

to 1 or 0, then the marginal imputation is sufficient since the local information yit dominates the

subgroup membership’s prediction. However, if two subgroups are not well-separated, then the

marginal imputation does not fully utilize the within-subject correlation to improve the subgroup

classification.

Therefore, we provide an alternative approximation of the joint imputation w∗it = E[zit|yi]

which relies only on the second moment condition of zi. To predict the subgroup member-

ship of yit, we consider the conditional expectation E[zit|yit, zi(−t)] based on local observation

yit and all latent group labels zi(−t) at other time points for the ith subject, where zi(−t) =

(zi1, ...zi(t−1), zi(t+1), ..., ziT ). Since

P (zit|yit, zi(−t)) ∝ f(yit|zit)P (zit|zi(−t)),

thenw∗it = π∗itf1(yit,β1, φ1)/[π∗itf1(yit,β1, φ1)+(1−π∗it)f2(yit,β2, φ2)], where π∗it = E[zit|zi(−t)].

By taking account of zi(−t), this imputation w∗it allows us to utilize the group membership infor-

mation from other time points within the same subject as well.

However, the exact value of E[zit|zi(−t)] still requires the joint likelihood function for zi.
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Motivated by [61]’s conditional linear family for the multivariate binary distribution in generating

correlated binary data, we consider a linear approximate:

π∗it = E[zit|zi(−t)] = πit + bTit(zi(−t) − πi(−t)),

where πit = E[zit], πi(−t) = E[zi(−t)], and bit is a (T − 1)-dimensional coefficient vector. Based

on the fact that for any two random variable X and Y , Cov(X, Y ) = Cov(X,E[Y |X]), we have:

Cov(zi(−t), zit) = Cov(zi(−t), π
∗
it) = Cov(zi(−t))bit.

Denote Cov(zi(−t), zit) as sit and Cov(zi(−t)) as Vi(−t), then bit = V −1
i(−t)sit. Here both sit and

Vi(−t) could be obtained from the second moment condition Cov(zi).

To implement the Algorithm 1, at the (k + 1)th step, we use the current estimators θ(k) and

V
(k)
i(−t) to obtain π∗it

(k+1) and thus impute w∗it
(k+1). Here the true latent label zi(−t) is replaced by

the last prediction ẑ(k)
i(−t). A similar technique is also used by [62] to approximate P (zit|ẑ(k)

i(−t)) in

a hidden Markov field modeling.

In Section 2.3.2, we mention that in order to obtain the robust variance estimator of γ̂, it

requires us to calculate the gradient of Gi(γ). Here we take the numerical approximation of the

gradient∇Gi(γ) by Gi(γ
(k+1))−Gi(γ(k))

γ(k+1)−γ(k) , where γ(k) and γ(k+1) are obtained from the previous two

adjacent iterations, and the ijth component of ∇Gi(γ) corresponds to the ratio between the ith

and jth components of Si(γ(k+1))− Si(γ(k)) and γ(k+1) − γ(k) respectively.

2.4 Numerical Study

In this section, we conduct two simulation studies to illustrate the performance of the proposed

method on mixture modeling for longitudinal data. We are particularly interested in comparing the

performance of our method to other approaches when the serial correlation is induced by latent

variables. Our simulation results show that we can gain efficiency on parameter estimation by
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utilizing correlation information.

In the first simulation study, we consider a two-component mixture of univariate normal dis-

tribution, and mainly focus on the estimating performance of the mixing proportion parameters

with different dependence structures. In the second simulation study, we consider a mixture of

two regression models, where the separation levels of two subgroups will change over time. The

proposed method has extra power in both estimation and prediction, especially at poorly-separated

time points.

2.4.1 Study 1: Two-component mixture of univariate normal densities

In this simulation study, we first generate component indicator variables Zi from Bernoulli distri-

butions for subjects i = 1, ..., n. For each Zi, we assume there are T repeated measurements over

time, where Zi = (Zi1, ..., ZiT ), and Zit is a binary variable following a logistic regression with

time covariate. That is, E[Zit] = πit and log( πit
1−πit ) = η0 + η1

t
T

. Conditional on Zit, we generate

outcome response Yit from two univariate normal distributions: Yit|(Zit = 1) ∼ N(µ1, σ
2
1) and

Yit|(Zit = 0) ∼ N(µ2, σ
2
2). For latent variable Zi, we assume independence among different sub-

jects, but a common correlation structure (either AR-1 or exchangeable) within a subject over time.

For outcome response Yi, we assume independence among different subjects and conditional in-

dependence within a subject given component indicator Zi. In our simulation studies, we generate

binary responses through the R package “mvtBinaryEP”.

We let the sample size n = 100 and time points T = 10, and the mixing proportion parameters

in the logistic model are set to be (η0, η1) = (−0.3, 0.5), which allows certain correlations among

multivariate binary variables. In addition, we set variance parameters as (σ2
1, σ

2
2) = (1, 1).

The separation between two normal homoscedastic components could be accessed by ∆ =

|µ1−µ2|/σ, defined as the Mahalanobis distance between two normal mixture distributions ([52]).

We investigate two settings with component means (µ1, µ2) = (−1.5, 1.5) and (µ1, µ2) = (−1.2, 1.2)

to represent well-separated and poorly-separated bimodal densities, respectively. In addition, we

also simulate a heterogeneous case with (µ1, µ2) = (−1.5, 1.5) and (σ1, σ2) = (1, 1.5). The sim-
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ulation results are similar to those for the homogeneous case, and are thus omitted due to space

limitations.

In the following simulation studies, we choose the initial value randomly in the neighborhood

of the independent estimator until the EEE algorithm converges. The estimation results are sum-

marized based on 1000 replicates. In our simulations, the empirical standard errors are quite close

to the standard errors calculated from the robust sandwich variance, and therefore we only pro-

vide the empirical standard errors in our tables. In practice, label-switching issues might arise,

especially for Bayesian mixture models. [92] and [93] discussed many feasible labeling meth-

ods. In our simulation study, we solve the labeling problem by imposing an ordered constraint on

components’ mean parameters.

We compare the estimators based on the proposed unbiased estimating equation with either

joint imputation (UEEJoint) or marginal imputation (UEEMar), with working correlation structure

of either exchangeable, AR-1 or unstructured, the mixtures-of-experts model (Jacobs et al., 1991)

which is the same as the independent estimating equation (UEEInd), and the oracle estimators

(Oracle) assuming the true values of latent variable Zi are known. The oracle estimator serves as

a benchmark estimator, where the generalized estimating equation (GEE) utilizes the correlation

structure for the binary data Zi, and the MLE estimators of component parameters are obtained

given Zi. In the following tables, we denote the correlation structure in the superscript such as

UEEAR1
Joint. In the text, to avoid redundant notation, we omit the superscript if the correlation

structure is correctly specified.

In addition, we also compare the proposed method with the random-effects model ([80]. In

the random-effects model, we assume E[Zit] = πit and log( πit
1−πit ) = η0 + η1

t
T

+ γi, where γi ∼

N(0, σ2
γ) is the random intercept accounting for the subject effect. Given γi, the latent variables

within the ith subject are independent. The random-effects estimator (RE) are obtained by the EM

algorithm.

In Tables 2.1 and 2.2, we observe that all the estimating equation estimators are consistent

as discussed in Section 2.3.2, including the estimators using misspecified correlation structures.
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However, we can improve the estimating efficiency if the correct correlation information is in-

corporated especially for joint-imputed model. This is reflected in that the UEEJoint estimators

have much smaller standard errors compared with the other estimators in both well-separated and

poorly-separated cases. Indeed, the UEEJoint performs almost the same as the Oracle estimator.

For a well-separated case or if an exchangeable correlation structure is assumed, the performance

of the UEEMar is quite similar to that of the UEEInd since the longitudinal data generated here is

balanced ([44]). But when two subgroups are poorly-separated and the latent variable has an AR-1

correlation structure, then the UEEMar has smaller standard errors than UEEInd.

In addition, if we compare Table 2.1 and Table 2.2, we notice that the standard errors of the in-

dependent estimators increase significantly from a well-separated case to a poorly-separated case,

while the proposed UEEJoint is much more stable and performs similarly to the Oracle estima-

tor. Table 2.3 provides the classification error rates from the model-based clustering. The proposed

UEEJoint model has sufficient power in predicting the subgroup membership since we incorporate

the information from other time points for the same subject.

In general, it is difficult to know the true correlation structure for latent variables. The un-

structured working correlation is always a possible choice because of its flexibility, as it does not

assume any pattern for the correlation structure. However, the unstructured correlation leads to

additional computational cost, as it has more correlation parameters T∗(T−1)
2

to estimate compared

with the AR-1 and exchangeable working correlations. In addition, the variation introduced by

unstructured correlation leads to less efficient estimations for regression parameters and increases

the chance of the convergence problem in the EEE algorithm. The unstructured model is recom-

mended when the sample size n is large and the repeated measurement size T is relatively small in

the well-separated case. In Tables 2.1 and 2.2, UEEUns
Mar and UEEUns

Joint do not show significant im-

provement in estimations, but they have more power in prediction compared with the independent

and misspecified models in Table 2.3.

In Tables 2.1-2.2, the random-effects estimators perform poorly with large bias and standard

errors. This is because [80] approach can only incorporate the random intercept which might not
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be sufficient to handle the within-subject dependence if group membership changes over time. In

addition, we also conduct a simulation study where the latent variable Zi is generated from the

random-effects model only (2.4). The random-effects model generates correlations which do not

have an obvious patten. Therefore the proposed estimating equation assuming a certain pattern of

working structure for serial correlations might not be the most efficient in estimation. Nevertheless,

Table 2.4 indicates that although the standard errors of the estimating equation estimators are

slightly overestimated, they are still acceptable. In all, regardless of which source the dependence

within subjects is induced from, the proposed UEE estimators are robust and efficient in general.

2.4.2 Study 2: Two-component mixture of linear regression models

In simulation study 2, we consider a mixture of two linear regression models. In this case, not only

the mixing proportion, but also the component densities follow a mean regression model with time

covariates.

Similar to the first simulation study, we generate component indicator variables Zi’s from a

logistic model, and for each Zi, we assume there are T repeated measurements over time with

Zi = (Zi1, ..., ZiT ). The mixing proportion E[Zit] = πit is generated from the logistic model:

log(
πit

1− πit
) = η0 + η1

t

T
,

with either an AR-1 or exchangeable correlation structure. Conditional on Zit, we generate the

outcome response Yit from two normal distributions:

Yit|(Zit = 1) ∼ N
(
β
(1)
0 + β

(1)
1

t

T
, σ2

1

)
,

Yit|(Zit = 0) ∼ N
(
β
(2)
0 + β

(2)
1

t

T
, σ2

2

)
.

In this study, we let the sample size n = 100 and time points T = 5, the mixing proportion

parameters in logistic model are set to be (η0, η1) = (−0.3, 0.5), and the component’s regression

parameters are set as (β
(1)
0 , β

(1)
1 ) = (−3, 2) and (β

(2)
0 , β

(2)
1 ) = (3,−2), the variance parameters

are set as (σ2
1, σ

2
2) = (1, 1). In contrast to the first simulation setting, the mixture components
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are regression functions of time covariates, where the component means are changing over time,

leading to different separation levels at different times.

Figure 2.1 illustrates four different separations of two components at different time points in

this simulation study. This motivates us to take advantage of serial correlations within subjects

to improve accuracy in predicting class memberships and thus to improve the estimations of the

regression parameters. In addition, we allow subjects to change group memberships over time (see

Figure 2.2 as an illustration), which makes our approach more flexible compared to growth-curve

mixture modeling.

The results in Table 2.5 show that we gain extra efficiency with smaller standard errors in

estimating both the mixing proportion parameters and the component regression parameters for

the proposed UEEJoint estimators especially on slope estimators. Table 2.6 indicates that our

approach utilizing the within-subject correlation information provides more predictive power, es-

pecially at poorly-separated times. In general, when within-subject correlation is large, our ap-

proach is able to “borrow" information from well-separated observations to enhance membership

prediction for poorly-separated observations by incorporating the correlations within each individ-

ual subject. Consequently, improvement of the prediction of the subgroup’s membership leads to

better estimation of the slope parameter associated with time effect.

2.5 Real Data Application: 2008 Election Data

In this section, we apply the proposed method to the 2007-2008 AP-YAHOO NEWS election panel

study (http://www.knowledgenetworks.com/GANP/election2008/index.html). The study was con-

ducted by Knowledge Networks on behalf of the Associated Press and Yahoo! News (APYN)

which intends to measure opinion changes starting with the primary elections through the presi-

dential election in November 2008. The data consists of 4965 participants over eleven waves from

November 2007 to December 2008, with nine waves before the election, one wave on election day,

and the last wave after the election. The primary goal of the study is to investigate the change of
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participants’ interest in the election over time and important factors associated with their interest.

One important factor associated with the interest in the election is interest in election news.

Therefore we choose one of the survey questions: “Question LV3: How much interest do you

have in the following news about the campaign for president, a great deal, quite a bit, only some,

very little, or no interest at all.” The five categories of opinions are recorded as an ordinal response

variable: 1, 2, 3, 4 and 5, where a smaller value corresponds to a high level of interest in the

election news. In order to measure the opinion change towards the election, we focus on the first

nine waves occurring before the election date. There are 1200 participants who have completed

the “Question LV3” over the first nine waves. In the following, we have n = 1200 and the repeated

measurement size T = 9.

In this study, we intend to classify all the participants into two groups, whether they actively

follow the election or not, based on their responses to the question “LV3” in the AP-Yahoo sur-

vey. Since the survey collects participants’ responses longitudinally, it is not surprising that their

interest towards the election could be different at different time points. Consequently, this results

in changes of group membership over time. The covariates include time, gender and race, where

gender is 1 for female and 0 for male, and “race” consists of “white,” “black” and “the other” coded

as dummy variables with “white" as the reference. In addition, we also include an interaction term

between “time” and the “gender.”

We formulate a two-component mixture model as follows. Let the latent variable Zit indicate

whether the participant i at the time point t is interested in election news (Zit = 1) or not (Zit = 0).

We model the mixing proportion using a logistic regression to capture the change in group mem-

bership, and the univariate Gaussian for the component distribution. We compare estimators via

the proposed unbiased estimating equations using different working correlation structures: inde-

pendent (UEEInd), exchangeable (UEEExch), AR-1 (UEEAR1) and unstructured (UEEUns), in

addition to the random-effects model (RE). The joint imputation is applied in all cases. We fo-

cus on modeling the mixing proportion since we are interested in opinion changes over time. The

estimates of mixing proportion parameters with corresponding p-values are summarized in Table
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7. The p-values are calculated based on the asymptotic normal distribution since the sample, size

n = 1200 is quite large.

Table 2.7 indicates that the participants become more and more interested in the election cam-

paign as the time gets closer to election day. Male participants are more interested in election news

than females on average; however, females become increasingly more interested in election news

than their male counterparts as the election gets closer. In addition, the “black” group is more

interested in election news compared to the “white” group, while the “other” group is slightly

less interested in election news than the “white” group. In total, about 43.5% of the participants

changed their group memberships of showing interest in election news over time.

Furthermore, Table 2.7 shows that the proposed estimating equation estimators using differ-

ent working correlations are similar in identifying the effects for “gender” and the interaction of

“gender” and “time,” which are highly significant. However, the estimators for the gender and the

interaction term are not significant using the random-effects model with much larger p-values. In

addition, the [59] reports that the “race” factor played a significant role in the 2008 presidential

election, where “black" voters showed more interest in the election than other races in general. For

this survey study, the “black” group is only about 7.5% of the participant population (90 out of

1200) which makes it more difficult to detect the “race” factor. Neither the random-effects model

nor the independent estimating equations are able to detect a significant difference between the

“black” group and the “white” group. However, the proposed method using the unstructured cor-

relation is capable of identifying that the “black” group is significantly different from the “white”

group with a p-value of 0.04. This implies that the proposed method accounting for the serial cor-

relation can improve the estimation efficiency and increase testing power to detect a factor which

might not be picked by other approaches.
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2.6 Discussion

In this chapter, we propose an unbiased estimating equation approach for mixture modeling in

longitudinal data, and illustrate how to induce correlation at the level of latent subgroup indicator

variables. The proposed method does not require that each subject belong to the same group at dif-

ferent time. To circumvent the complicated form of joint likelihood of the multivariate Bernoulli

variables, we propose an unbiased estimating equation approach utilizing the first two moment ap-

proximations of the full likelihood, where the serial correlation is incorporated through a working

correlation structure. The proposed estimating equations can be regarded as a projection of optimal

estimating equations obtained from the complete data via taking the conditional expectation for the

missing latent variables.

Our numerical studies show that incorporating correlation information allows one to gain esti-

mation efficiency for the mean regression parameters and the mixing proportion parameters com-

pared to the independent models. The efficiency improvement is significant if the correlation from

the longitudinal data is strong and the working structure is correctly specified. In addition, we can

improve the classification accuracy for the boundary observations through joint imputation for the

missing latent variable.

We can further generalize the current method for more than two subgroups in the population

through the extended generalized estimating equation, applying the cumulative logit model for a

multinomial latent variable. In addition, we can extend the univariate outcome variable to the mul-

tivariate component distribution. If the dimension of the multivariate distribution is high, we can

employ the variable selection method by incorporating some penalty terms ([90]. In this chapter,

we mainly focus on modeling serial correlation arising from the latent variable, it would be worth-

while to consider a more complicated setting where within-subject dependence is induced by both

latent variable and outcome variable.
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2.7 Proofs of Theoretical Results

A.1 Estimate dispersion parameter

The dispersion parameter φ = (φ1, φ2) is associated with the second moments of the compo-

nents’ distributions. For components’ densities in the exponential family, we have

Var(yit|zit = 2−r) = ν(µrit)φr, r = 1, 2. In the complete-data case, given the true subgroup label

zit, for instance, the second moment of the first component distribution could be estimated by

V̂ar(yit|zit = 1) =
∑n

i=1

∑Ti
t=1 zit(yit − µ1it)

2/
∑n

i=1

∑Ti
t=1 zit. Then we could establish an unbi-

ased estimating equation for φ1 given mean parameter µ1it(β1):

n∑
i=1

Hc
i (φ1|β1) =

n∑
i=1

Ti∑
t=1

zit[(yit − µ1it)
2 − ν(µ1it)φ1] = 0.

Similarly, we could establish the unbiased estimating equation for incomplete data by taking the

conditional expectation:

n∑
i=1

Hi(φ1|β1) =

n∑
i=1

Ti∑
t=1

wit[(yit − µ1it)
2 − ν(µ1it)φ1] = 0,

where wit is the imputed mixing weight, and φ2 is estimated in the same way.

For example, in the two-component Gaussian mixture model, the variance parameter (σ2
1, σ

2
2)

for normal components could be estimated by σ̂1
2 =

∑n
i=1

∑Ti
t=1 wit(yit − µ1it)

2/
∑n

i=1

∑Ti
t=1wit.

A.2 Proof of Theorem 1

Note that the estimating equation Gi in (2.5) contains both interest parameter γ = (θ′,φ′)′

and nuisance correlation parameter ρ. By assumptions, the correlation parameter ρ could be esti-

mated consistently given γ, written as ρ̂(γ). Then the augmented unbiased estimating equation in

Theorem 1 has the form

n∑
i=1

Ĝi(γ, ρ̂(γ)) = 0.
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From the theory of unbiased estimating equations ([25]), under some regularity conditions, n1/2(γ̂−

γ) could be approximated by the one-step Taylor expansion:

[−n−1

n∑
i=1

dGi

dγ
]−1 · [n1/2

n∑
i=1

Ĝi],

where

dĜi(γ, ρ̂(γ))

dγ
=
∂Ĝi(γ, ρ̂(γ))

∂γ
+
∂Ĝi(γ, ρ̂(γ))

∂ρ̂
· ∂ρ̂
∂γ

.

With marginal imputation wit = E[zit|yit], the nuisance parameter ρ is only contained in

the working correlation matrix R, therefore ∂Ĝi(γ,ρ̂(γ))
∂ρ̂

is linear of unbiased estimating equa-

tions (wi − πi), thus
∑n

i=1
∂Ĝi(θ,ρ̂(γ))

∂ρ̂
= op(n), and by condition (iii) ‖ ∂ρ̂

∂γ
‖ = Op(1), therefore

n−1
∑n

i=1
dĜi(γ,ρ̂(γ))

dγ
= n−1

∑n
i=1

∂Ĝi(γ,ρ̂(γ))
∂γ

+ op(1).

Further, fix γ and from Taylor expansion again:

n−1/2

n∑
i=1

Ĝi(γ, ρ̂) = n−1/2

n∑
i=1

Gi(γ, ρ) + [n−1

n∑
i=1

∂Gi(γ, ρ)

∂ρ
] · [n1/2(ρ̂− ρ)] + op(1).

By condition (ii) n1/2(ρ̂−ρ) = Op(1) and also n−1
∑n

i=1
∂Gi(γ,ρ)

∂ρ
= op(1), suggests that n−1/2

∑n
i=1 Ĝi(γ, ρ̂)

is asymptomatically equivalent to n−1/2
∑n

i=1Gi(γ, ρ). Hence n1/2(θ̂−θ) could be approximated

by

[−n−1

n∑
i=1

∂Gi

∂γ
]−1 · [n1/2

n∑
i=1

Gi],

which would be asymptotically Gaussian with mean vector of 0 and asymptotic variance of Vg.

A.3 Proof of Proposition 1

It is well-known from the theory of optimal estimating equations ([25]), that for unbiased

estimating equation gi(θ), the optimal weights would be Var(gi)−1ġi, where ġi = ∂gi
∂θ

, θ′ =
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(η′,β1,β
′
2)′. As for the complete data (yi, zi), the unbiased linear equation is

gi =


zi − πi(η)

Zi

(
yi − µ1i(β1)

)
(1−Zi)

(
yi − µ2i(β2)

)
 .

Firstly, it is easy to show that ġi has the form

ġi =


∂πi
∂η

0 0

0 Zi
∂µ1i

∂β1
0

0 0 (1−Zi)
∂µ2i

∂β2

 .

Also we could show that Var(gi) is a diagonal matrix

Var(gi) =


Var(zi) = Vi 0 0

0 Var(Zi(yi − µ1i)) 0

0 0 Var((1−Zi)(yi − µ2i))

 .

This is because

E[(zit − wit)zij(yij − µ1ij)] = E

[
(zit − wit)zijE[(yij − µ1ij)|(zit, zij)]

]
= 0

always holds for any t and j since E[(yij − µ1ij)|(zit, zij)] = (1 − zij)(µ2ij − µ1ij). In addition,

from the joint log-likelihood function (2.2) we could see that the component densities are estimated

given the true values of latent variable in the complete-data case, and thus Var(Zi(yi − µ1i)) =

ZiU1iZ
T
i . Noting that Zi is a diagonal matrix and U1i,U2i are diagonal covariance matrices,

thereforeZT
i Var(Zi(yi−µ1i))

−1Zi = U−1
1i Zi and (1−Zi)

TVar((1−Zi)(yi−µ2i))
−1(1−Zi) =

U−1
2i (1−Zi). Then the optimal equation has the form (2.4).

A.4 Proof of Lemma 1
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Consider the bivariate function S(θ|λ) on Θ⊗Θ, we have the first order partial Taylor’s expansion

with respect to θ in a neighborhood of (θ0,θ0):

S(θ|λ) ≈ S(θ0|λ) +
∂S(·|λ)

∂θ
· (θ − θ0).

If we obtain θ̂ by solving the equation S(θ|λ) = 0, then (θ̂ − θ0) ≈ (∂S(·|λ)
∂θ

)−1 · S(θ0|λ).

Apply partial Taylor’s expansion again with respect to λ:

S(θ0|λ) ≈ S(θ0|θ0) +
∂S(θ0|·)
∂λ

· (λ− θ0),

which indicates that (θ̂ − θ0) ≈ A(λ− θ0), where A = (∂S(·|λ)
∂θ

)−1 · ∂S(θ0|·)
∂λ

. Therefore we have

‖ θ̂ − θ0 ‖≤‖ A ‖ · ‖ λ− θ0 ‖ .

Hence, the iteratively constructed sequence {θ(k)} satisfies ‖ θ(k+1) − θ0 ‖≤‖ A ‖ · ‖ θ(k) − θ0 ‖

and thus converges to θ0 based on the condition that ‖ A ‖< 1.
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2.8 Tables and Figures

Table 2.1: The parameter estimators and their empirical standard errors (provided in the subscripts)
for a well-separated two-component univariate normal mixture model, based on 1000 replicates.
The latent variable zi is generated by exchangeable (Exch) and AR-1 structures with serial corre-
lation parameter ρ = 0.7.

True UEEInd UEEExMar UEEExJoint UEEAR1
Mar UEEAR1

Joint UEEUnsMar UEEUnsJoint RE Oracle
µ1 −1.500.09 −1.500.09 −1.500.05 −1.480.09 −1.500.06 −1.500.10 −1.490.07 −1.520.05 −1.500.05
σ1 1.000.06 1.000.06 1.000.04 1.000.06 1.000.06 1.000.06 1.010.06 0.980.04 1.000.03

Exch µ2 1.500.09 1.500.09 1.500.05 1.480.10 1.490.06 1.500.09 1.490.06 1.520.05 1.500.05
σ2 1.000.06 1.000.06 1.000.04 1.010.06 1.010.06 1.010.06 0.990.06 0.980.04 1.000.03
η0 −0.310.22 −0.310.22 −0.300.19 −0.320.23 −0.320.20 −0.310.22 −0.310.21 −0.880.62 −0.300.19
η1 0.520.16 0.520.16 0.500.13 0.510.20 0.510.17 0.500.20 0.500.18 1.500.48 0.500.12
µ1 −1.500.10 −1.500.10 −1.500.10 −1.500.09 −1.500.05 −1.500.09 −1.500.07 −1.510.05 −1.500.05
σ1 1.000.06 1.000.06 1.000.06 1.000.06 1.000.04 1.000.06 1.000.05 1.000.06 1.000.03

AR1 µ2 1.500.11 1.500.09 1.500.09 1.500.09 1.500.05 1.500.09 1.500.09 1.520.05 1.500.05
σ2 1.000.06 1.000.06 1.000.06 1.000.06 1.000.04 1.000.06 1.000.06 1.000.06 1.000.04
η0 −0.310.26 −0.330.27 −0.330.27 −0.310.26 −0.310.22 −0.290.25 −0.300.23 −0.410.32 −0.310.21
η1 0.510.36 0.530.38 0.530.38 0.510.36 0.510.34 0.520.36 0.510.36 0.830.49 0.510.34

Table 2.2: The parameter estimators and their empirical standard errors (provided in the subscripts)
for a poorly-separated two-component univariate normal mixture model, based on 1000 replicates.
The latent variable zi is generated by exchangeable (Exch) and AR-1 structures with serial corre-
lation parameter ρ = 0.7.

True UEEInd UEEExMar UEEExJoint UEEAR1
Mar UEEAR1

Joint UEEUnsMar UEEUnsJoint RE Oracle
µ1 −1.210.14 −1.210.14 −1.200.05 −1.210.16 −1.210.09 −1.210.16 −1.210.07 −1.220.05 −1.200.05
σ1 1.000.07 1.000.07 0.990.04 1.000.08 1.000.05 0.990.08 1.000.05 0.980.04 1.000.03

Exch µ2 1.210.14 1.210.14 1.200.05 1.210.16 1.200.09 1.200.16 1.200.07 1.220.06 1.200.05
σ2 1.000.08 1.000.08 1.000.04 1.010.08 1.010.05 1.000.08 1.000.05 0.980.05 1.000.03
η0 −0.330.32 −0.330.31 −0.300.19 −0.320.34 −0.320.31 −0.310.35 −0.310.23 −0.640.46 −0.310.18
η1 0.520.20 0.520.20 0.500.14 0.520.20 0.510.19 0.490.23 0.500.20 1.110.50 0.500.12
µ1 −1.220.19 −1.220.15 −1.210.10 −1.210.14 −1.220.06 −1.220.14 −1.220.09 −1.230.05 −1.200.04
σ1 1.000.09 1.000.07 1.000.07 1.000.07 1.000.04 1.000.07 1.000.05 0.970.06 1.000.03

AR1 µ2 1.210.19 1.190.15 1.190.11 1.200.14 1.200.06 1.210.14 1.200.10 1.220.06 1.200.05
σ2 1.000.09 1.000.07 1.000.07 1.000.07 1.000.04 1.000.07 1.000.05 0.980.04 1.000.04
η0 −0.310.39 −0.320.32 −0.310.28 −0.310.33 −0.310.23 −0.310.34 −0.310.25 −0.510.43 −0.310.21
η1 0.510.38 0.530.37 0.480.39 0.510.36 0.510.33 0.520.36 0.530.36 0.830.62 0.510.34
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Table 2.3: Classification error rate based on a two-component univariate normal mixture model.
The latent variable zi is generated by exchangeable (Exch) and AR-1 structures with serial corre-
lation parameter ρ = 0.7.

Separation Correlation UEEInd UEEExMar UEEExJoint UEEAR1
Mar UEEAR1

Joint UEEUnsMar UEEUnsJoint RE

Well AR-1 0.070 0.069 0.055 0.069 0.038 0.069 0.051 0.055
Exch 0.069 0.069 0.030 0.069 0.045 0.069 0.042 0.041

Poorly AR-1 0.127 0.122 0.095 0.121 0.068 0.121 0.089 0.097
Exch 0.121 0.121 0.051 0.123 0.092 0.122 0.088 0.093

Table 2.4: The parameter estimators and their empirical standard errors (provided in the subscripts)
for a two-component univariate normal mixture model, based on 1000 replicates. The latent vari-
able zi is generated by random-effects model.

Separation UEEInd UEEAR1
Mar UEEAR1

Joint UEEExMar UEEExJoint UEEUnsMar UEEUnsJoint RE
µ1 −1.510.09 −1.510.09 −1.510.09 −1.500.09 −1.500.09 −1.510.09 −1.510.09 −1.500.06
σ1 1.000.06 1.000.06 1.000.06 1.000.06 1.000.06 1.000.06 1.010.06 1.000.04

Well µ2 1.510.09 1.500.09 1.490.09 1.510.09 1.510.09 1.490.09 1.500.08 1.500.06
σ2 1.000.08 1.000.06 1.000.06 1.000.06 1.000.06 0.990.06 1.000.06 1.000.04
η0 −0.310.18 −0.310.18 −0.290.18 −0.310.18 −0.310.18 −0.280.19 −0.290.19 −0.320.16
η1 0.510.25 0.510.25 0.510.25 0.510.25 0.510.25 0.490.27 0.490.26 0.540.27

Classification errors 0.069 0.068 0.067 0.069 0.069 0.069 0.067 0.067
µ1 −1.210.13 −1.200.14 −1.200.14 −1.200.14 −1.200.13 −1.220.15 −1.210.14 −1.200.05
σ1 1.000.07 1.000.07 1.000.07 1.000.07 1.000.07 0.990.07 0.990.07 1.000.04

Poorly µ2 1.220.14 1.200.14 1.210.14 1.210.14 1.220.14 1.210.15 1.190.16 1.200.05
σ2 1.000.06 1.000.06 1.000.06 1.000.06 1.000.06 1.000.07 1.000.07 1.000.04
η0 −0.330.26 −0.310.28 −0.300.26 −0.330.26 −0.330.26 −0.330.26 −0.320.26 −0.300.17
η1 0.540.28 0.510.27 0.510.27 0.540.28 0.530.28 0.550.28 0.540.28 0.500.26

Classification errors 0.116 0.118 0.116 0.120 0.116 0.130 0.128 0.114

Table 2.5: The parameter estimators and their empirical standard errors (provided in the subscripts)
for a mixture of two regression models, based on 1000 replicates. Latent variable zi is generated
by exchangeable (Exch) and AR-1 structures with serial correlation parameter ρ = 0.7

True UEEInd UEEExMar UEEExJoint UEEAR1
Mar UEEAR1

Joint UEEUnsMar UEEUnsJoint Oracle

β
(1)
0 −3.000.17 −3.000.17 −3.000.16 −2.990.17 −3.000.16 −3.000.17 −3.000.16 −3.000.14

β
(1)
1 2.000.30 2.000.30 2.000.24 1.950.30 1.980.29 1.980.30 1.970.25 2.000.21
σ(1) 0.990.06 0.990.06 0.990.05 0.990.06 0.990.06 0.990.06 0.990.06 1.000.04

Exch β
(2)
0 2.990.16 2.990.16 3.000.15 2.990.17 2.990.16 2.990.16 2.990.16 2.990.13

β
(1)
1 −1.970.29 −1.970.29 −2.000.23 −1.980.32 −1.990.24 −1.990.29 −1.990.24 −1.990.22
σ(2) 0.990.06 0.990.06 0.990.04 0.990.06 0.990.06 0.990.06 1.000.06 1.000.04
η0 −0.310.22 −0.310.22 −0.300.19 −0.310.26 −0.320.23 −0.310.24 −0.300.22 −0.300.19
η1 0.520.36 0.520.36 0.490.19 0.470.40 0.520.28 0.470.36 0.460.25 0.510.18

β
(1)
0 −2.990.17 −2.990.17 −3.030.17 −2.990.17 −3.000.16 −3.020.17 −3.020.16 −3.000.15

β
(1)
1 1.980.29 1.980.32 2.040.29 1.980.30 2.000.24 1.990.34 2.000.28 2.000.21
σ(1) 0.990.06 0.990.06 1.010.05 0.990.05 0.990.04 0.980.06 0.980.05 1.000.04

AR-1 β
(2)
0 3.000.17 3.000.17 3.010.17 3.010.17 3.000.16 2.990.17 3.010.16 3.000.15

β
(1)
1 −2.000.32 −1.970.31 −2.020.29 −2.000.34 −2.000.26 −1.960.32 −1.980.28 −2.000.22
σ(2) 0.990.06 0.990.06 1.010.05 0.990.05 0.990.04 1.010.06 0.990.05 1.000.04
η0 −0.310.26 −0.310.27 −0.330.26 −0.300.26 −0.310.23 −0.280.28 −0.290.26 −0.310.23
η1 0.510.45 0.500.48 0.540.44 0.510.45 0.500.37 0.460.47 0.480.40 0.510.33
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Table 2.6: Classification error rate at each time point for a mixture of two regression models.
Latent variable zi is generated by exchangeable (Exch) and AR-1 structures with serial correlation
parameter ρ = 0.7.

True Model Time Points True Model Time Points
Corr t = 1 t = 2 t = 3 t = 4 t = 5 Corr t = 1 t = 2 t = 3 t = 4 t = 5

UEEInd 0.005 0.014 0.037 0.086 0.165 UEEInd 0.004 0.014 0.036 0.084 0.164
UEEExMar 0.006 0.013 0.035 0.081 0.165 UEEAR1

Mar 0.005 0.017 0.034 0.076 0.168
UEEExJoint 0.005 0.009 0.022 0.057 0.140 UEEAR1

Joint 0.003 0.011 0.028 0.060 0.098
AR1 UEEUnsMar 0.005 0.009 0.037 0.083 0.162 Exch UEEUnsMar 0.005 0.013 0.036 0.084 0.164

UEEUnsJoint 0.003 0.008 0.022 0.058 0.124 UEEUnsJoint 0.003 0.010 0.023 0.045 0.080
UEEAR1

Mar 0.005 0.014 0.037 0.085 0.161 UEEExMar 0.004 0.014 0.036 0.084 0.164
UEEAR1

Joint 0.003 0.007 0.019 0.055 0.115 UEEExJoint 0.002 0.008 0.019 0.040 0.069

Table 2.7: Mixing proportion estimators and corresponding p-values (in subscripts) for the two-
component mixture model of the election data.

η̂0 η̂T ime η̂Gender η̂Black η̂Other η̂G∗T
UEEInd −0.710.00 1.240.00 −0.220.00 0.170.18 −0.020.81 0.290.00

UEEExch −0.700.00 1.240.00 −0.200.01 0.170.19 −0.010.91 0.290.00

UEEAR1 −0.830.00 1.280.00 −0.240.02 0.210.09 −0.030.76 0.310.00

UEEUns −0.770.00 1.230.00 −0.190.01 0.250.04 0.020.86 0.240.00

RE −0.470.03 3.010.00 −0.370.19 0.380.42 −0.080.82 0.440.09

Figure 2.1: Plots of the mixture density of two univariate normal components with mixing propor-
tion (corresponding to the negative-mean component): 0.4, 0.45, 0.55 and 0.6 for (a) to (d), a com-
mon variance σ2 = 1, and the mean parameters are: (a) (µ1, µ2) = (−3, 3), (b) (µ1, µ2) = (−2, 2),
(c) (µ1, µ2) = (−1.5, 1.5), (d) (µ1, µ2) = (−1.1, 1.1).
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Figure 2.2: Plots of longitudinal responses from a subset of subjects in simulation study 2.4.2.
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Chapter 3

Individualized Multi-directional Variable Se-

lection

3.1 Introduction

In recent years there has been a growing demand for exploring individualized modeling, which has

broad applications in personalized medicine, personalized education and personalized marketing.

The traditional one-model-fits-the-whole-population approach is unable to detect important pat-

terns and make personalized predictions for specific individuals. In addition, the rise of precision

medicine and wide-spread electronic health record data also motivate us to develop more effective

personalized treatment. The collection of rich data information makes it feasible and compelling

to utilize individualized models as traditional population models cannot incorporate heterogeneous

effects from different individuals.

In this chapter, we consider an individualized model based on a double-divergence framework,

where the number of subjects and the amount of individual information increase together. Conse-

quently, this introduces a diverging number of parameters as the sample size of subjects increases.

In addition, one unique challenge of individualized model selection is that there could be different

relevant or important predictors for different subjects. For instance, different individuals may have

different prognostic factors associated with the same disease. Therefore it is important to develop

new statistical methodology and theory for variable selection and estimation for individualized

modeling.

In the past two decades several penalized model selection methods have been developed, e.g.,
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the Lasso [81], the smoothly clipped absolute deviation (SCAD) [17], the elastic net [99], the adap-

tive Lasso [100], the group Lasso [94], the minimax concave penalty (MCP) [95] and the truncated

L1-penalty (TLP) [76]. However, the above methods are based on a homogeneous model setting

which selects predictors for entire populations. For the individualized model, we can employ tra-

ditional variable selection methods separately for each subject, if there are multiple observations

from each subject as in longitudinal data settings. However, in practice, the number of measure-

ments for particular individuals could be limited. In addition, it is likely that some variables are

invariant for the same subject, such as demographic information variables, e.g., race and gender,

which impose restrictions and additional obstacles to performing individualized variable selection

based on a standard subject-wise model framework.

Another limitation of applying standard subject-wise variable selection is that it ignores infor-

mation from other subjects which might share similar effects on important predictors of interest.

Moreover, assuming each individual to have unique effects for all covariates is practically unreal-

istic and computationally infeasible. In contrast, it is more sensible to assume that a subpopulation

of individuals share common effects on selected predictors. In addition, borrowing information

from homogeneous subgroups allows one to increase estimation efficiency and model selection

accuracy.

In order to utilize cross-subject information, one may assume that an underlying subpopula-

tion structure depends on unobserved covariates. Existing approaches dealing with clustering on

regression coefficients include mixture modeling for regression, such as the mixture-of-experts

model [30]. However, most model selection approaches under this framework including [64], [56]

and [23] only focus on choosing informative variables to distinguish different subgroups, rather

than on selecting relevant predictors for different individuals.

Alternative approaches to model-based clustering on regression coefficients employ grouping

penalization. For example, [83] propose a fused Lasso by adding an L1-penalty to the pair of adja-

cent coefficients; [5] propose a clustering algorithm for regression by imposing a special octagonal

shrinkage penalty on each pair of coefficients; [75] develop a grouping pursuit algorithm utiliz-
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ing the truncated L1-penalty for fusions, and [35] propose a data-driven segmentation method to

explore homogeneous groups with regression. Nevertheless, these are all still under the population-

regression model, and do not allow different individuals to have different features. For the purpose

of subgrouping different individuals, [26] and [45] formulate clustering as a penalized regression

problem by adopting an Lp-fusion penalty. [57] and [47] apply non-convex fusion penalties to

solve the bias problem. However, the fusion-type of penalty focuses on subgrouping rather than

on model selection for individual coefficients.

In this chapter, we propose an effective individualized model selection approach utilizing multi-

directional shrinkage to select unique relevant variables for different individuals. To the best of our

knowledge, this is a new approach which has not been offered in the existing literature.

Specifically, the proposed penalty allows multiple possible shrinking directions including the

one towards zero, which differs from conventional penalty functions with shrinking direction to-

wards zero only. The consequence of conventional penalty functions is that non-zero signals could

suffer from zero-directional shrinkage, although a variety of penalty methods have been proposed

to solve the bias problem such as non-concave penalties (e.g., SCAD, MCP and TLP) or adap-

tive weights (e.g., adaptive Lasso). Instead we propose a rather different approach which shrinks

penalized parameters to one of the multiple directions including zero, where the best shrinking

direction is determined by the data itself. One advantage of the proposed method is that, as long

as the candidate directions contain the one closest to the truth, the optimal large sample properties

such as the oracle property hold by applying the L1-type of penalty function in each direction.

Another advantage of the proposed method is that it separates different groups of individuals

based on their effects on the same covariates. Indeed, the proposed penalty function is analogous to

an objective function from center-based clustering, which can be viewed as a “separation penalty”

among different individuals. As a byproduct, we identify subgroups with individuals sharing simi-

lar covariate effects, where the centers of subgroups provide a set of estimated shrinking directions.

In addition, through utilizing cross-subject information, the proposed model improves estimation

efficiency and thus enhances personalized prediction power.
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Another contribution of this chapter is that we lay out a theoretical framework for the double-

divergence individualized model with serial correlation. [91] and [2] established rigorous large

sample theory for the generalized estimating equation [44] (GEE) estimator when the number of

clusters and the cluster size are both large while the dimension of parameters is fixed; and [88]

investigate the GEE model with high-dimensional covariates, but bounded cluster size. In contrast

we establish theoretical properties in a framework when the number of clusters and the cluster size

are both increasing, which involves high-dimensional parameters. We develop asymptotic theory

for the oracle estimator and demonstrate the subpopulation effects on model estimation. In addi-

tion, we show the advantage of utilizing the multi-directional penalty for establishing the oracle

property. Moreover, the proposed method is capable of incorporating within-subject correlation to

achieve efficient estimation.

The rest of this chapter is organized as follows. Section 3.2 introduces the model framework

and presents the proposed methodology. Section 3.3 establishes the theoretical results. Section

3.4 proposes an efficient algorithm with implementation. Section 3.5 provides simulation studies.

Section 3.6 illustrates an application for HIV data. The last section provides concluding remarks

and discussion.

3.2 Model Framework and Methodology

3.2.1 The individualized model and subject-wise variable selection

We formulate the problem under the clustered data setting, where each subject has multiple obser-

vations. Let yi = (yi1, . . . , yimi)
′ be an mi-dimensional response variable for the ith individual,

Xi = (xi,1, . . . ,xi,p) be an mi × p covariates matrix corresponding to individual predictors, and

Zi = (zi,1, . . . ,zi,q) be an mi × q covariates matrix corresponding to population-shared predic-

tors, where i = 1, . . . , N . For ease of notation, we assume that the clustered data is balanced with

cluster size mi = m, although the development of the method does not require a balanced data

structure.
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We consider a regression model:

yi = Xiβi +Ziα+ εi, i = 1, . . . , N,

where each individual has its own regression parameter vector βi = (βi1, . . . , βip)
′
p×1, in addi-

tion to the population-shared parameter vector α = (α1, . . . , αq)
′
q×1, and random errors εi =

(εi1, . . . , εim)′m×1 independent over different subjects. Within a subject, εij’s (j = 1, . . . ,m) have

mean 0 and variance σ2, and they could be correlated such as in the longitudinal date setting.

In general, to identify unique features for different individuals, we select and estimate the

regression parameters βi’s and α through minimizing the penalized objective function

(β̂, α̂) = argmin
β,α

1

2

N∑
i=1

L(yi − µi) +
N∑
i=1

p∑
k=1

h
(1)
λ1

(βik) +

q∑
l=1

h
(2)
λ2

(αl), (3.1)

where µi(βi,α) = Xiβi + Ziα, L(·) is a loss function, h(1)
λ1

(·) and h(2)
λ1

(·) are feature-selection

penalties for individualized parameters and population-shared parameters respectively, and λ1, λ2

are the corresponding tuning parameters. The selection of population parameter α is regular and

thus, in this chapter, we focus on individualized variable selection. To simplify the model, with a

squared-error loss, the objective function in (3.1) becomes

1

2

N∑
i=1

‖ yi −Xiβi −Ziα ‖2
2 +

N∑
i=1

p∑
k=1

hλN,m(βik), (3.2)

where ‖ · ‖2 is the Euclidean norm. Then we could employ different penalties hλN,m(·) to adopt

traditional penalized selection approaches (e.g. Lasso, adaptive Lasso, MCP and SCAD).

Without the penalty term hλN,m(·), minimizing (3.2) leads to the ordinary least squares (OLS)

estimator. Letβ = (β′1, . . . ,β
′
N )′ be the individualized coefficients vector andY = (y′1, . . . ,y

′
N )′.

We denoteX = diag(X1, . . . ,XN ), a block-diagonal matrix, and Z = (Z ′1, . . . ,Z
′
N )′. The OLS

estimator is

(β̂Sub
′
, α̂Sub

′
)′ = [(X,Z)T (X,Z)]−1(X,Z)TY ,
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whose dimension (Np+ q) diverges as subject size N increases.

Note that if there are no population-shared predictors, minimizing (3.2) is the same as minimiz-

ing the objective function for each individual (subject) separately. We call this approach subject-

wise modeling; however, it only utilizes within-subject information. As a result, this leads to

inefficient estimation and over-fitting of a model, especially when the sample size N is large and

m is relatively small.

3.2.2 The proposed model with multi-directional separation penalty

We propose a novel penalized variable selection approach by providing multiple shrinking direc-

tions for individualized parameters and utilizing homogeneity information within the subpopula-

tion, which performs parameter estimation, variable selection and subgrouping simultaneously.

For the kth (k = 1, . . . , p) individualized predictor corresponding to the ith subject, we assume

that there are Gk + 1 subgroups in the population such that

βik =

 γ
(g)
k , if i ∈ G(g)

k , g = 1, . . . , Gk

0, if i ∈ G(0)
k

, (3.3)

where γ(g)
k (g 6= 0) is an unknown non-zero parameter corresponding to the homogeneous coef-

ficient for the gth subgroup, and G(g)
k ’s are the index sets representing the subgroup memberships

with respect to the kth predictor.

For ease of notation, in the following, we focus on the setting where there are two subgroups

with respect to each individualized covariate: the non-zero-coefficient group (βik = γk) and the

zero-coefficient group (βik = 0). We denote γ = (γ1, . . . , γp)
′ as the sub-homogeneous effect

vector. The extension to multiple subgroups is straightforward.

We first consider a model assuming within-subject independence. The extension to correlated

data will be discussed later. The main idea is to encourage grouping of the subjects with similar

effects on specific individualized predictors, by inducing the sub-homogeneous effect γ in the
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proposed objective function

Qind
N,m(β,α,γ) =

1

2

N∑
i=1

‖ yi −Xiβi −Ziα ‖2
2 +λN,m

N∑
i=1

p∑
k=1

s(βik, γk), (3.4)

where λN,m is the tuning parameter. Here the key part is the proposed multi-directional separation

penalty (MDSP) function s(βik, γk), defined as

s(βik, γk) = min
(
|βik|, |βik − γk|

)
, (3.5)

which is a piece-wise L1-penalization function (Figure 3.1).

The multi-directional penalty term in 3.4 essentially contains a double-summation providing

two different perspectives of the proposed model. From a subject’s point of view, the penalty

term is
∑p

k=1 s(βik, γk). In contrast to the traditional penalized variable selection approaches, the

proposed MDSP function s(·) provides an alternative shrinking direction in addition to 0. Given

γk, the s(·) penalty can be viewed as shrinking a weak signal of βik towards zero, while pulling the

strong magnitude signals to γk. This reduces the bias for large coefficient estimators introduced

by the Lp-penalty. Figure 3.1 illustrates the MDSP function s(βik, γk) for a given γk, and Figure

3.2 provides plots of the thresholding functions of the Lasso and the proposed method. Without

loss of generality, we assume γk > 0. Figure 3.2 indicates that when βik > γk or βik < 0, |βik|

and |βik − γk| have the same shrinking effect; and when 0 < βik < γk, the two penalties produce

different shrinking directions, which separates strong signals from weak signals.

From the other perspective, for one individualized predictor over different subjects, the MDSP

term is
∑N

i=1 s(βik, γk). Given β′iks, the proposed method leads to subgrouping the coefficients

of individuals, where the separation-penalty term serves the role of centering, similar to K-means

clustering. Compared to pairwise grouping penalization such as the fusion penalty, the center-

based one has less computational cost, with O(Np) penalty terms in contrast to the fusion-type of

clustering containing O(N2p) penalty terms. This also implies that the computational cost of the

proposed approach increases more slowly as the sample size N increases.
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In addition, the unknown true effects γk’s can be obtained simultaneously through minimizing

the objective function in (3.4), where the estimation of γk utilizes information from individuals

within the subgroup. By pulling the coefficients’ estimators towards the center γ̂k, it allows us to

borrow cross-subject information for individuals’ coefficient estimation, and therefore reduces the

estimation bias and variance for non-zero coefficients.

Furthermore, the above two-subgroup model can be extended to multiple subgroups and even

with additional constraints in practice. We illustrate the extension of three subgroups which allows

positive and negative effects of personalized coefficients. The separation penalty imposed for three

groups is

s(βik, γ
+
k , γ

−
k ) = min

(
|βik|, |βik − γ+

k |, |βik − γ
−
k |
)
, s.t. γ+

k > 0, γ−k < 0, (3.6)

which shrinks the coefficient of the individualized predictor either to zero, a positive effect γ+
k , or

a negative effect γ−k .

For correlated data structure, we can incorporate correlations of errors to obtain more efficient

estimation ([44]), and introduce within-subject correlations through a weighting matrix Vi to the

weighted squared-loss in the objective function

QN,m(α,β,γ) =
N∑
i=1

(yi − µi(θ))TV −1
i (yi − µi(θ)) + λN,m

N∑
i=1

p∑
k=1

s(βik, γk) (3.7)

= LN,m(α,β) + SλN,m(β,γ), (3.8)

where Vi = A
1
2
i RiA

1
2
i , Ai is a diagonal matrix of marginal variance of yi and Ri is a working

correlation matrix.
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3.3 Theoretical Results

In this section, we establish the theoretical properties of the proposed estimator, and the connection

to the oracle estimator and the subject-wise least squares estimator. One unique aspect here is

that our theory is established under a general double-divergence framework which assumes that

both sample size N and cluster size m go to infinity, and therefore the number of individualized

parameters also diverges.

We introduce some notation as follows. For any symmetric matrix An×n, let λmin(A) and

λmax(A) be the smallest and the largest eigenvalues of A, respectively. For an arbitrary ma-

trix Am×n(bij), denote ‖A‖2 =
√
λmax(ATA) as its L2-norm, ‖A‖1 = max

1≤j≤n
(
∑m

i=1 |bij|) as its

L1-norm and ‖A‖∞ = max
1≤i≤m

(
∑n

j=1 |bij|) as its L∞-norm. For a vector a = (a1, . . . , an)′, ‖a‖2 re-

duces to its Euclidean norm and ‖a‖∞ = max
1≤i≤n

(|ai|). Moreover, we denote ‖a‖0 =
∑n

i=1 I{ai 6=0}.

In addition, we define the order between two n × n square matrices as A > B if ∀x ∈ Rn,

xTAx > xTBx holds. Let A � B denote c1A ≤ B ≤ c2A for some constants 0 < c1 ≤ c2 <

∞. Then we define a sequence of m ×m matrices An as An = O(n) if c1nIm ≤ An ≤ c2nIm

when n is large. Moreover, letA ◦B denote the entrywise Hadamard product between two same-

dimension matrices (see details in Appendix A.1), and “⊗” denote the Kronecker product.

For unbalanced data, we define min(mi) = m and assume mi = O(m) for 1 ≤ i ≤ N . To

simplify the notation, we let mi = m in the following discussion. In addition, without loss of

generality, we consider the two-subpopulation structure with respect to each individualized pre-

dictor. The theory for a structure with more than two subpopulations can be shown similarly. Let

Gk ⊂ {i : 1 ≤ i ≤ N} denote a signal-group index set for the kth individualized predictor such

that βik = γk 6= 0 if i ∈ Gk and βik = 0 otherwise. For any set G, let |G| be the cardinal of G.

Moreover, we denote θ = (β′,α′)′ and let θ0 = ((β0)′, (α0)′)′ be its true value. Let the true value

of βi be β0
i = (β0

i,Ai
′
,β0

i,Aci
′
)′, where Ai and Aci denote the index sets such that β0

i,Ai = γ0
Ai 6= 0

and β0
i,Aci

= 0.

The proposed objective function (3.7) consists of a loss function LN,m(·) and a penalty function
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SλN,m(·), where the squared loss function LN,m(θ) in (3.8) can accommodate diverging N and m.

Both the oracle estimator and the subject-wise least squares estimator are obtained by minimizing

LN,m(θ), but with different design matrices, where the corresponding quasi-likelihood estimating

equation is

GN,m(θ) =
N∑
i=1

gi(θ) =
N∑
i=1

Ui(θ)TV −1
i (yi − µi(θ)) = 0, (3.9)

with Ui(θ) = ∂µi(θ)
∂θT

. Due to the linear mean function, Ui(θ) does not depend on unknown pa-

rameters and thus is suppressed as Ui in the following, and we also denoteGN,m = GN,m(θ0) for

ease of notation. In addition, let

DN,m = −∂GN,m(θ)

∂θT
=

N∑
i=1

UT
i V

−1
i Ui,

HN,m = Cov(GN,m(θ)) =
N∑
i=1

UT
i V

−1
i ΣiV

−1
i Ui,

where Σi = Cov(yi) = A
1
2
i R

0
iA

1
2
i and R0

i is the true correlation matrix. Note that DN,m and

HN,m do not depend on unknown mean regression parameter θ. We require some common regu-

larity conditions

(A1) The unknown parameter θ = (β′,α′)′ belongs to a compact subset B ⊆ Rpθ and its true

value θ0 lies in the interior of B;

(A2) DN,m andHN,m are positive definite when N or m is large.

Note that the standard assumptions of Ri such as converging to a constant positive definite

matrix with eigenvalues bounded away from zero and infinity ([88]) might not be valid in the

proposed framework, since the dimension of Ri increases as m increases. Here we only require

the following general regularity condition forRi andR0
i :

(A3) There exist νl > 0, ν ′l > 0, such that λmin(R0
i ) > νl and λmin(Ri) > ν ′l for all i and m.

The estimating equation GN,m(θ) contains double summations with the sample size N and

the cluster size m, which both can diverge. Consequently, the standard asymptotic results for M -
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estimators are not applicable here even with a fixed number of parameters ([91]). In general, for

an estimator θ̂ obtained by solving the estimating equation (3.9), under regularity conditions (A1)-

(A2), by Taylor’s expansion, (θ̂ − θ0) = −D−1
N,mGN,m. This implies that the consistency of θ̂

relies on the following condition on the information matrixDN,mH
−1
N,mDN,m,

(Ca) λmin(DN,mH
−1
N,mDN,m)→∞.

In the independent model (R0
i = Ri = Im), DN,mH

−1
N,mDN,m reduces to DN,m as HN,m =

DN,m.

The condition Ca is a standard condition analogous to [91] condition to establish the weak con-

sistency of a fixed-dimensional GEE estimator. However, in contrast to [91]’s setting, the proposed

method results in a diverging dimension of the information matrix which is more complicated. In

addition, to utilize subpopulation information, the convergence rates for estimators of different

parameters are of great importance and interest in this chapter. The following lemma provides a

convergence property for the estimating equation estimator from (3.9).

Lemma 2. Under regularity condition (A2), for any δ > 0, there exists a solution θ̂ of (3.9) such

that

P

(
p
− 1

2
θ ‖H

− 1
2

N,mDN,m(θ̂ − θ0)‖2 > δ

)
< 1

δ2
,

where pθ is the dimension of θ. Moreover, if condition (Ca) holds, we have

P

(
p
− 1

2
θ ‖θ̂ − θ0)‖2 > δ

)
→ 0.

Lemma 2 presents the consistency result under all settings. It indicates that the estimator’s

convergence rate depends on the divergence rate ofDN,mH
−1
N,mDN,m’s eigenvalues.

Remark 1. Note that Lemma 2 provides consistency under the spectral norm (L2-norm). For any

fixed-dimensional estimator, for example, the oracle estimator and the subject-wise estimator when

N is bounded, the consistency in Lemma 2 is equivalent to P
(
‖θ̂ − θ0)‖∞ > δ

)
→ 0. However,

if pθ is diverging, we need additional conditions to ensure the stronger consistency under the L∞-

norm. More discussion will be provided later regarding the proposed estimator when N →∞.
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In addition, we assume that a few general regularity conditions hold for the design matrix,

(A4) X̃ij = (X ′ij,Z
′
ij)
′
(p+q)×1 belongs to a compact setX ⊂ Rp+q for 1 ≤ i ≤ N and 1 ≤ j ≤ m;

(A5) Let X̃i,k denote the kth column of X̃i, assume ‖X̃i·,k‖2
2 = Op(m) and

∑N
i=1m

−1‖X̃i·,k‖2
2 =

Op(N), for 1 ≤ k ≤ p+ q;

(A6) m−1λmin(XT
i Xi) > c3 for any i and 1

Nm
λmin

(∑N
i=1Z

T
i (Im − HXi)Zi

)
> c4, where

HXi = Xi(X
T
i Xi)

−1XT
i , for some constants 0 < c3 <∞, 0 < c4 <∞ .

Conditions (A4)-(A6) are regularity conditions which are typically required for the bounded

regressors. However, these are less restrictive than other assumptions, e.g., 1
m
XT

i Xi converges to

a positive constant matrix. Note that condition (A6) allows within-subject invariant covariates, and

is less restrictive since it does not require X̃T
i X̃i to be positive definite.

The regularity conditions (A1)- (A6) are assumed to hold in this section. In Condition (A2)

and Lemma 2, matrices DN,m and HN,m represent a general form according to the estimating

equation (3.9). For different estimators using the same data, for example, the oracle estimator or

the subject-wise estimator,DN,m andHN,m can be different due to their different formulating.

3.3.1 Asymptotic results for the oracle estimator with group effects

In the proposed framework, the oracle estimator assumes that all subpopulation information (Gk,

1 ≤ k ≤ p) with respect to the individualized predictors is known. This is equivalent to assuming

that the true signal sets Ai’s (1 ≤ i ≤ N ) for all subjects are known.

The individualized parameter βi for each subject is linked to the sub-homogeneous parameter

γ as ωi ◦ γ = βi through an indicator vector ωi = (ωi1, . . . , ωip)
′ ∈ Rp, where ωik = I{i∈Gk} =

I{k∈Ai}. Hence there exists a mapping linking two parameter spaces, which is Rp 7→ RNp : Ωγ =

β, where Ω = (Ω1, . . . ,ΩN)′ is a Np × p matrix and Ωi = diag(ωi) is a diagonal matrix. We

define LorN,m(α,γ) = LNm(α,β(γ)). By noting that SλN,m(β,γ) = 0 with β = Ωγ and Ω is
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known, the oracle estimator can be obtained by minimizing LorN,m(α,γ) as

(
((γ̂or)′, α̂or)′

)′
= argmin

α,γ

N∑
i=1

(
yi −Xi(ωi ◦ γ)−Ziα

)T
V −1
i

(
yi −Xi(ωi ◦ γ)−Ziα

)
.

The oracle individualized estimator for each subject is obtained by β̂ori = ωi ◦ γ̂or.

Let X̃i = (Xi,Zi) and ω̃i = (ω′i,1
′
q)
′, and X̃or

i = X̃iΩ̃i where Ω̃i = diag(ω̃i). We denote

Hor
N,m =

∑N
i=1(X̃or

i )TV −1
i ΣiV

−1
i X̃or

i , Dor
N,m =

∑N
i=1(X̃or

i )TV −1
i X̃or

i , and Lemma 2 directly

applies for the oracle estimator by replacingHN,m andDN,m withHor
N,m andDor

N,m, respectively.

Let θ̂or =

(
(γ̂or)′, (α̂or)′

)′
and θ̃0 =

(
(γ0)′, (α0)′

)′
, according to Lemma 2 we have

(Hor
N,m)−

1
2 (Dor

N,m)(θ̂or − θ̃0) = Op(1). (3.10)

Note that the divergence rates of Hor
N,m and Dor

N,m are associated with the subpopulation size

|Gk|’s as N goes to infinity. However, in contrast to other clustering approaches based on an entire

set of coefficient vector βi (e.g., [57]; [47]), the proposed model allows the subgroup partitions

corresponding to different individualized predictors to be different. Therefore the design matrix

for the oracle estimator here cannot be formulated as a block diagonal form, which leads to non-

trivial subgroup effects on divergence rates.

Remark 2. A few comments about the eigenvalues of the matrices are worth mentioning. For

two square matrices A and B with the same dimension, AB and BA have the same non-zero

eigenvalues. If A and B are non-singular and A ≤ B, for any matrix C we have CTAC ≤

CTBC, andA−1 ≥ B−1. The proofs of these results are provided in Section 3.8.

To get a better understanding of the group effects on the oracle estimator, we reformulate

Dor
N,m =

∑N
i=1 Ω̃T

i X̃
T
i V

−1
i X̃iΩ̃i =

∑N
i=1(Ω̃iΩ̃

T
i ) ◦ (XT

i V
−1
i Xi), where Ω̃T

i Ω̃T
i is a symmetric

square matrix with entries to be zero or one. Suppose

(R1). κlm ≤ λmin(X̃T
i V

−1
i X̃i) ≤ λmax(X̃

T
i V

−1
i X̃i) ≤ κum
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holds uniformly for any subject i with some positive constant sequences {κlm}∞m=1 and {κum}∞m=1,

then we have κlm
∑N

i=1 Ω̃i ≤ Dor
N,m ≤ κum

∑N
i=1 Ω̃i by noting Ω̃2

i = Ω̃i. Under a similar condition

to (R1), we could show that φlm
∑N

i=1 Ω̃i ≤ Hor
N,m ≤ φum

∑N
i=1 Ω̃i for some positive constant

sequences {κlm}∞m=1 and {κum}∞m=1. If
∑N

i=1 Ω̃i is non-singular, then

(φum)−1(κlm)2

N∑
i=1

Ω̃i ≤Dor
N,m(Hor

N,m)−1Dor
N,m ≤ (φlm)−1(κum)2

N∑
i=1

Ω̃i. (3.11)

Let ΛN,m =
∑N

i=1 Ω̃i and note that ΛN,m = diag(N1′q, |G1|, . . . , |Gp|) is a diagonal matrix, where

|Gk|’s (1 ≤ k ≤ p) are signal-subgroup sizes corresponding to p individualized predictors. It

is clear that ΛN,m contains the group effects on estimation. In particular, the group size for the

population-shared parameter is N .

Remark 3. The condition (R1) could be relaxed by replacing X̃i with Xi since we allow within-

subject invariant covariates, especially for the population-shared predictors. Moreover, if m is

bounded, it is straightforward to show that clm ≤ κlm ≤ κum ≤ cum and c′lm ≤ φlm ≤ φum ≤ c′um

hold for some constants 0 < cl ≤ cm < ∞, 0 < c′l ≤ c′m < ∞, which immediately implies that

Dor
N,m � mΛN,m and Hor

N,m � mΛN,m. This conclusion also holds for the independent model

even when m goes to infinity.

Let Nk =
∑

i∈Gk mi = m|Gk| denote the number of observations in group Gk and Na =∑N
i=1mi = mN denote the total number of observations. For the independent error model, we

establish asymptotic normality for the oracle estimators with convergence rates associated to the

sample size N and the cluster size m.

Theorem 2. Under regularity conditions, suppose R0
i = Ri = Im holds for any i, as either

m→∞ or min
1≤k≤p

(|Gk|)→∞, we have

(Hor
N,m)

1
2

(
{(γ̂or)′, (α̂or)′}′ − {(γ0)′, (α0)′}′

)
→d N

(
0, Ip+q

)
,

where Hor
N,m � MN,m, and MN,m = diag(N1, . . . , Np︸ ︷︷ ︸

p

, Na, . . . , Na︸ ︷︷ ︸
q

) is a (p + q) × (p + q)-dim

diagonal matrix.
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Theorem 2 indicates that the convergence rates of the oracle estimator benefit from both in-

creasing N and m, which implies that incorporating subgroup information is able to improve esti-

mation efficiency as we utilize additional number of observations from each subgroup. In addition,

Theorem 2 allows both m and N to go to infinity and has no restriction on their divergence rates.

However, in the correlated model with cluster size m diverging, the analysis of the estimator’s

asymptotic behavior becomes more complicated , since it involves the working correlation matrix

Ri and the unknown true correlation matrix R0
i , which makes it difficult to verify the condition

(Ca) and to figure out the estimators’ convergence rates.

Similar to [91], we consider a sufficient condition which may simplify the verification and the

discussion. Let ηN,m = max
1≤i≤N

{λmax(R−1
i R

0
i )}, an alternative condition for consistency is

(C∗a) η−1
N,mλmin(DN,m)→∞.

The sufficiency of (C∗a) that implies (Ca) is trivial by noting HN,m ≤ ηN,mDN,m. Based on (3.10),

we present the asymptotic theory for the oracle estimator with the the condition C∗a .

Theorem 3. Under regularity conditions, for the oracle estimator θ̂or = ((γ̂or)′, (α̂or)′)′, we have

η
− 1

2
N,m‖(D

or
N,m)

1
2 (θ̂or − θ̃0)‖2 ≤ Op(1),

and if η−1
N,mλmin(Dor

N,m)→∞, θ̂or →p θ̃
0.

The proof of Theorem 3 is straightforward by following (3.11) and condition C∗a . Theorem 3

indicates that the convergence of the estimator depends on the divergence rate of ηN,m and Dor
N,m.

Without considering the group effects, the oracle estimator reduces to a fixed-dimensional GEE

estimator by [91] and [2]. Therefore, in the following, we only focus on a few common cases and

some useful conditions.

Remark 4. For any N and m, according to regularity condition (A3), note that

ηN,m ≤ ( min
1≤i≤N

{λmin(Ri)})−1 max
1≤i≤N

{λmax(R0
i )} ≤ (ν ′l)

−1tr(R0
1) ≤ (ν ′l)

−1m.
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If m is bounded, then ηN,m is bounded, which implies that the condition C∗a does not depend on

unknown true correlation structure R0
i . As N → ∞, we have λmin(Dor

N,m) → ∞ regardless of

the choice of working correlationRi. Hence, similar to standard results for the GEE estimator, the

oracle estimator θ̂or has asymptotic normality, although it may not achieve optimal efficiency if

Ri 6= R0
i .

Remark 5. If m → ∞, ηN,m is not always bounded. For example, if R0
i admits an exchangeable

correlation structure and we choose working correlationRi as an identity matrix, we have ηN,m =

O(m). For any bounded N , Dor
N,m = O(m), which implies that the condition (C∗a) fails. Although

the condition (Ca) may still hold with some constraints on the design matrix to ensure consistency

(see following Example 1), the convergence rate could be slower than the optimal rate
√
m and it

may not converge to a normal distribution asymptotically ([91]).

We use the following example of a simple linear regression to illustrate some details about the

conditions Ca and C∗a with specific covariates design.

Example 1. Consider a subject-wise model with homogeneous effect,

yij = xijβ + εij, i = 1, . . . , N ; j = 1, . . . ,m,

where εi = (εi1, . . . , εim)′ ∼ N(0, σ2R0) and R0 admits an exchangeable structure with pa-

rameter ρ > 0, xij’s are iid N(µ, 1). For the case of bounded N , without loss of general-

ity, we assume N = 1. By using an independent working correlation Ri = Im, we have

Dm = xT1 x1 = O(m) and ηm = λmax(R
0) = mρ+1−ρ, where x1 = (x11, . . . , x1m)′. Thus con-

dition C∗a fails. However, note that R0(ρ) = (1− ρ)Im + ρ1m1Tm. We have Hm = σ2xT1R
0x1 =

σ2xT1 ((1 − ρ)Im + ρ1m1Tm)xT1 = σ2(1 − ρ)xT1 x1 + mρ(m−
1
2

∑m
i=1 x1j)

2 = O(m) + O(m) if

µ = 0, and thus λmin(DmH
−1
m Dm) = O(m) → ∞ as m → ∞. But if µ > 0, it is clear that

mρ(m−
1
2

∑m
i=1 x1j)

2 = O(m2) and thus λmin(DmH
−1
m Dm) = O(1).

Corollary 1. Suppose ηN,m ≤ C1 holds uniformly for some constant 0 < C1 <∞, under regular-

ity conditions, we have
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‖M
1
2
N,m(θ̂or − θ̃0)‖2 ≤ Op(1),

whereMN,m is defined in Theorem 2.

The condition of uniformly bounded ηN,m in Corollary 1 naturally holds when m is bounded

or for the independent model. However, as m goes to infinity, it implies that either we choose

a working correlation matrix Ri close to the true one, or the correlation is not too strong. The

first case involves a consistent and efficient estimator of the correlation structure, which has been

discussed in [?], [33] and [24]. For the second case, a variety of conditions can be imposed on the

correlation structures to ensure a “weak” dependency.

In the following, we provide a sufficient condition which can be verified easily in practice. For

an arbitrary correlation matrixRm×m(ρij), assume

(Ra) |ρij| ≤ ρ|i−j| for i 6= j and
∑∞

k=1 ρk <∞.

We show in the Appendix that if condition (Ra) holds for the true correlation matrixR0
i , then ηN,m

is bounded uniformly for any working correlation structures. This indicates that R0
i is bounded as

the within-subject correlation decays rapidly as m increases. In practice, a wide family of corre-

lation structures satisfy the conditions (Ra) including the AR-1 and the M-dependent correlation

matrices.

3.3.2 Asymptotic results for the proposed estimator

In general, the least squares estimator plays an important intermediate role in investigating the

large sample theory of the penalized estimator. Hence, prior to presenting the theoretical results

for the proposed estimator, we provide the asymptotic theory for the subject-wise least squares

estimator θ̂Sub = ((β̂Sub)′, (α̂Sub)′)′ obtained by minimizing LN,m(θ).

Note that, for the proposed estimator and the subject-wise least squares estimator, each term

of UT
i V

−1
i Ui in DN,m does not equal to XT

i V
−1
i Xi , but is a block sparse, matrix as µi does not

contain any other individualized parameter βj for j 6= i. We denote
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Ds
N,m =

 Ds
xx(Np×Np) Ds

xz(Np× q)

Ds
zx(q ×Np) Ds

zz(q × q)

 ,

for the subject-wise estimator, where Ds
xx = bdiag

(
{XT

i V
−1
i Xi}Ni=1

)
and bdiag(·) denotes a

block-diagonal matrix. Similarly, we haveHs
xx = bdiag

(
{XT

i V
−1
i ΣiV

−1
i Xi}Ni=1

)
inHs

N,m (see

Appendix for details), and both Ds
xx and Hs

xx will expand as N increases. Following Lemma 2,

we obtain the following result:

Lemma 3. Under regularity conditions, for any δ > 0 and a ∈ RNp+q, we have

P
(
|aT (θ̂Sub − θ0)|2 > δ

)
≤ δ−2aT (Ds

N,m(Hs
N,m)−1Ds

N,m)−1a.

If we choose a as a coordinate indicator for βi in θ, that is, a = (0′q,a
′
1, . . . ,a

′
N)′, where aj ∈

Rp, 1 ≤ j ≤ N , aj = 1p if j = i or aj = 0p if j 6= i, Lemma 3 implies the following corollary,

which provides a detailed view of the convergence property for each subject-wise estimator β̂Subi

and the population-shared estimator α̂Sub.

Corollary 2. Under regularity conditions, for any δ > 0 and individualized estimator β̂Subi ,

P
(
‖β̂Subi − β0

i ‖2 > δ

)
≤ pδ−2ηNmλmin(Ds

Xi
)−1,

whereDs
Xi

= XT
i V

−1
i Xi, i = 1, . . . , N , and for the population-shared estimator α̂Sub,

P
(
‖(α̂Sub −α0)‖2 > δ

)
≤ qδ−2ηNmλmin(Ds

Z)−1,

whereDs
Z =

∑N
i=1Z

T
i V

−1
i Zi.

Note that the condition ((C)a) requires that m → ∞. In the case of bounded m and di-

verging N , it is straightforward that the consistency of any individualized parameter cannot be

achieved since λmin(Ds
Xi

) does not diverge. Intuitively, the increasing number of subjects does

not accumulate additional information for the subject-wise parameters. However, the estimator of
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population-shared parameter α̂ could still be consistent as N →∞ by noting that ηNm is bounded

and λmin(Ds
Z)→∞ .

Lemma 3 and Corollary 2 provide consistent estimations under the L2-norm, which depend

on the dimension of parameters. Furthermore, we pursue a stronger uniform consistency with

additional conditions on either the random errors’ distributions or the divergence rates of N and

m. In addition to the basic assumptions of zero mean and finite second moment σ2 for random

error εij’s, let ε∗i = Σ−
1
2εi and denote τ sN,m = λmin(Ds

N,m(Hs
N,m)−1Ds

N,m)

(Ia) N = o(τ sN,m),

(Ib) (i) ε∗i is a sub-Gaussian vector, that is, P(|aTε∗i | > t) < 2exp(− t2

c2σ‖a‖22
) for any a ∈ Rm

and t > 0, where cσ is a positive constant; and (ii) log(N) = o(τ sN,m).

In the independent model where Σ = Im, the condition (i) in Ib is equivalent to assuming

marginal sub-Gaussian tails for εij’s, which is a standard assumption in high-dimensional model.

Alternatively, if the random errors are assumed to be normally distributed, then the condition (i) in

Ib holds naturally for both independent and correlated models.

Under condition (Ia) or (Ib), we achieve a stronger uniform consistency for the diverging

number of parameters when N →∞ as m→∞.

Lemma 4. Under regularity conditions, if either condition (Ia) or (Ib) is satisfied, for any δ > 0,

as m→∞, we have

P
(
‖θ̂Sub − θ0‖∞ > δ

)
→ 0.

Theorem 4 indicates that if N diverges at a limited rate compared to m, or the tails of the

random errors’ distribution decay fast enough, we are able to achieve a stronger consistency un-

der the L∞ norm. Note that the τ sN,m in conditions (Ia) and (Ib) could also be replaced with

η−1
N,mλmin(Ds

N,m) analogous to the above discussion, which leads to a sufficient condition.

Based on the above conditions and results, we establish the large sample theory for the proposed

estimator. We first provide insight into the proposed multi-directional separation penalty. Consider
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a simple independent linear regression model for one subject with the objective function

Qi,m(βi|γ̂) =
1

2
‖ yi −Xiβi −Ziα ‖2

2 +λm

p∑
k=1

s(βik, γ̂k), (3.12)

given an estimator of the sub-homogeneous effects γ̂ = (γ̂1, · · · , γ̂p)′. Therefore, the proposed

penalty function s(·, γ̂k) provides an alternative shrinking direction besides zero. The following

theorem presents the asymptotic property for the individualized estimator obtained by minimizing

(3.12).

Theorem 4. Under regularity conditions, there exists a local minimizer β̂i = (β̂′i,Ai , β̂
′
i,Aci

)′ of

(3.12), if λm → 0, as m → 0, we have β̂i →p β
0
i . In addition, if λm/

√
m → ∞, suppose

√
m(γ̂ − γ0) = Op(1), then we have

P(β̂i,Aci = 0)→ 1 and P(β̂i,Ai = γ̂Ai)→ 1.

It is worth noting that the condition of consistency on γ̂ can be relaxed. The proof of Theo-

rem 4 shows that both estimation consistency and selection consistency still hold even if γ̂ is not

consistent. However, if am(γ̂ − γ0) = Op(1) and am/
√
m → ∞ hold for some am, then the esti-

mator β̂iAi can achieve a faster convergence rate than
√
m, which is optimal for any subject-wise

model. In the proposed model, γ̂ is estimated over different subjects via the subgrouping and gains

efficiency from increasing number of subjects N .

In another perspective, we investigate group separation as both N and m go to infinity. Denote

Bβ0
i
(r) as a ball in Rp centered at β0

i with a radius r > 0.

Lemma 5. Suppose either condition (Ia) or (Ib) holds. Under regularity conditions, for any

constant r > 0, as τ sN,m →∞, there exists a local minimizer (α̂T , β̂T , γ̂T )T of QN,m in (3.7) such

that

P
( ⋂

1≤i≤N

{β̂i ∈ Bβ0
i
(r)}

⋂
{α̂ ∈ Bα0(r)}

⋂
{γ̂ ∈ Bγ0(r)}

)
→ 1.

As both sample size N and cluster size m increase, if N diverges at a limited rate, the speed of

separation over subjects dominates the speed of increasing subjects. Lemma 5 essentially implies
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group identification consistency and thus we obtain more information about the correct direction

of the true individualized parameters.

In the spirit of Theorem 4 and Lemma 5, we present the oracle property for the proposed

estimator under a general double-divergence setting.

Theorem 5. Under regularity conditions, suppose either condition (Ia) or (Ib) holds, assuming
λN,m
τsN,m

→ 0 and λN,m√
τsN,m

→ ∞, then there exists a local minimizer (α̂T , β̂T , γ̂T )T of QN,m in (3.7);

as τ sN,m →∞, we have

P
(
{α̂T , β̂T , γ̂T}T = {(α̂or)T , (β̂or)T , (γ̂or)T}T

)
→ 1.

Corollary 3 (Uniform selection consistency). Under the same conditions as in Theorem 5, as

τ sN,m →∞, we have P
(⋂N

i=1{Âi = Ai}
)
→ 1.

Theorem 5 indicates that the proposed estimator is the same as the oracle estimator, which

utilizes the most information. In fact, by providing additional shrinking directions, the proposed

model enables us to separate the strong signals from the weak ones. Consequently, we achieve the

oracle information about the underlying subpopulation structure, which ensures that the proposed

estimator inherits the optimal efficiency from the oracle estimator. From the other perspective,

Corollary 3 also implies subgroup identification consistency.

In addition, in the independent error model, by noting τ sN,m = m, the conditions (Ia) and (Ib)

can be simplified as follows:

(I∗a) N = o(m),

(I∗b ) εij has sub-Gaussian tails and log(N) = o(m).

Hence, we have a simplified result for the independent model.

Corollary 4. Under regularity conditions, if Ri = R0
i = Im, suppose either condition (I∗a) or

(I∗b ) holds, assuming λN,m
m
→ 0 and λN,m√

m
→∞, then there exists a local minimizer (α̂T , β̂T , γ̂T )T

of QN,m in (3.7); as m→∞, we have

P
(
{α̂T , β̂T , γ̂T}T = {(α̂or)T , (β̂or)T , (γ̂or)T}T

)
→ 1.
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Combining Theorem 2 and Corollary 4, we have the asymptotic normality of the independent

estimator with the optimal efficiency.

The proofs of the theorems and associated lemmas, corollaries and remarks are provided in the

Section 3.8.

3.4 Computation

Compared to traditional penalized variable selection methods, the proposed method is more com-

plex to implement since the proposed objective function QN,m(·) in (3.7) involves an unknown

homogeneous effect γ in addition to a non-convex penalty function. We propose an iterative algo-

rithm as follows to simplify the optimization process.

3.4.1 Algorithm and convergence property

Note that the first term of the quadratic loss function in (3.7) does not involve the subgroup homo-

geneous effect γ. Therefore we first fix γ to minimize (3.7) with respect to β,α. Next, given an

estimator of β̂, α̂, we update estimator of γ by minimizing the grouping loss through the separa-

tion penalty term in (3.7). We iterate these two steps until the algorithm converges. The specific

algorithm is described as follows:

In Algorithm 1, under the homogeneous variance assumption, the Vi in the quadratic loss could

be replaced by a working correlation matrix Ri. Specifically, we recommend one-step moment

estimation for theRi using the subject-wise least squares estimator βi from an independent model.

Note that at Step 3 in Algorithm 1, the objective function (3.13) is a Lasso-type penalized loss

function, which is convex. We can solve the optimization problem by using existing algorithms

developed for Lasso. In addition, Step 4 can be implemented mimicking K-means algorithm with

one subgroup centered at zero.

The following theorem provides the convergence property of Algorithm 2.
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Algorithm 2
Step 1. (Initialization) Start with initial estimators: β̂(0), α̂(0), e.g. the OLS or Lasso estimators.
Step 2. Estimate an initial value of γ by γ̂(0) = argminγ

∑N
i=1

∑p
k=1 min(|β̂(0)

ik |, |β̂
(0)
ik − γk|).

Step 3. (Penalized Regression) At the nth iteration, given γ̂(n−1), update β̂(n), α̂(n) via minimizing
the objective function:

1

2

N∑
i=1

(
yi − µi(βi,α)

)T
V −1
i

(
yi − µi(βi,α)

)
+ λN,m

N∑
i=1

p∑
k=1

s(n−1)(βik, γ̂k
(n−1)), (3.13)

where s(n−1)(βik, γk) = (1− ξ̂(n−1)
ik )|βik|+ ξ̂

(n−1)
ik |βik− γk| , ξ̂(n−1)

ik = I(|β̂(n−1)
ik | > |β̂(n−1)

ik − γk|).

Step 4. (Grouping) Given α̂(n), β̂(n), update γ̂(n) = argmin
γ

N∑
i=1

p∑
k=1

min(|β̂(n)
ik |, |β̂

(n)
ik − γk|).

Step 5. (Stopping Criterion) Iterate Step 3 and Step 4 until ‖ β̂(n)−β̂(n−1) ‖2 + ‖ α̂(n)−α̂(n−1) ‖2

is less than a small predetermined threshold value.

Theorem 6. For a sequence of estimators β̂(n), α̂(n), γ̂(n) obtained in Algorithm 1, the objective

function QN,m(β̂(n), α̂(n), γ̂(n)) in (3.7) is non-increasing as the number of iterations m increases,

which leads to the convergence of β̂(n), α̂(n) and γ̂(n).

However, the iterative estimator may converge to a local minimizer since the objective func-

tion is non-convex. Multiple initial values are recommended so that the optimum value can be

identified. In fact, the proposed piece-wise convex penalty function produces local minimums cor-

responding to different subgroups. However, not all individuals are sensitive to initial values except

the corresponding coefficients close to boundary. Heuristically, if λN,m/γk is small, implying that

the true effects γ are strong, then the coefficient estimators for these individuals are stable. In

addition, we recommend a step-wise tuning in practice, that is, we initialize the tuning parameter

by a very small value and increase it to the specified value as the number of iterations increases.

3.4.2 Tuning parameter and select number of subgroups

In this chapter, we apply the generalized cross-validation (GCV) method to select an appropriate

tuning parameter λN,m. The GCV can be regarded as an approximation of leave-one-out cross-

validation (CV) and thus provides an approximately unbiased estimator of the prediction error
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([57]). The GCV is defined as

GCV (df) =
RSS

(N0 − df)2
=

∑N
i=1

∑mi
j=1(yij − ŷij)2

(N0 − df)2
,

where N0 =
∑N

i=1mi is the total sample size anddf is the degrees of freedom used in estimating

the ŷij’s. In our setting, the degrees of freedom cannot be considered as the number of non-zero

parameters, since some of the β̂ik’s are shrunk to the exact sub-homogeneous effect γ̂k. [57]

suggest the generalized degrees of freedom (GDF) which is computationally costly. Alternatively,

we define the df as the number of homogeneous effects plus the number of remaining non-zero

coefficient estimators which are not equal to γ̂k’s. To select a tuning parameter λN,m, we search

from a sequence of grid points which minimizes the GCV.

The proposed method allows a multiple subgroups case as defined in (3.3), and the number

of subgroups is usually unknown. In practice, we could specify the number of the subgroups

according to known scientific information or a particular target such as exploring the positive

effect, the negative effect and no effect.

In practice, we can select the number of subgroups based on a data-driven approach. One

approach is to adopt the idea of the jump statistic ([79]) with a K-means clustering based on some

pre-estimators, e.g., the subject-wise least squares estimator. This is easy to implement but might

not be reliable, as in the two-step procedure, the pre-estimators are treated as observed responses

which do not change as the number of subgroups changes.

Here we provide the modified Bayesian Information Criterion (BIC, [87]) for high-dimensional

data settings to select the number of subgroups. We use one individualized covariate as an illustra-

tion. The number of subgroups Gk is selected by minimizing

BIC(Gk) = log

( N∑
i=1

m∑
j=1

(yij − µ̂ij(Gk))
2/(mN)

)
+ bN,m

log(mN)

mN
(Gk + q), (3.14)

where bN,m is a positive number and depends on N and m. When bN,m = 1, the modified BIC

reduces to the traditional BIC ([72]). For the high-dimensional setting, we follow [86] with bN,m =
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c log(log(pθ)), where pθ = N + q and c = 2. To extend to more than one individualized covariate,

we adopt a strategy of selecting the number of subgroups for one predictor while fixing other

individualized coefficients with the subject-wise least squares estimators.

3.5 Numerical Study

In this section, we provide simulation studies to investigate the numerical performance of the

proposed method in finite samples. Specifically, we compare the proposed model with the subject-

wise model, the homogeneous model and five other regularization models in Section 3.5.1. In

addition, we demonstrate the benefit of incorporating within-subject correlations. In Section 3.5.2,

we investigate the subgroup number selection of the proposed model and test the robustness against

model misspecification.

3.5.1 Individualized regression with correct-specified subgroup numbers

In this simulation study, we simulate two cases to evaluate the proposed model when the number

of subgroups is correctly specified. In the first case, we consider a heterogeneous regression model

with one individualized variable and two population-shared variables:

yij = α0 + α1zij1 + α2zij2 + βixij + εij, i = 1, . . . , N, j = 1, . . . ,m. (3.15)

We set the sample size N = 40, 100, and the cluster size m = 10, 20. The individualized

coefficients are set as β = (β1, . . . , βN)′ = (γ, . . . , γ︸ ︷︷ ︸
N/2

, 0, . . . , 0︸ ︷︷ ︸
N/2

)′, where γ is the true subgroup

homogeneous effect chosen as 1 or 2, and the population parameters are α′ = (α0, α1, α2) =

(1, 1, 1). The covariates zij1, zij2 and xij are generated from N(0, 1). The random error εij’s are

independently generated from N(0, 1).

We compare the performance of the proposed model (MDSP) with five regularized variable

selection approaches, namely, the Lasso ([81]) implemented by R package glmnet (version 2.0-2)

([19]), the adaptive Lasso (AdapL) ([100]) solved by R package parcor (version 0.2-6) ([39]), the
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SCAD ([17]) and the MCP ([95]) implemented by R package ncvreg (version 3.5-1) ([8]), and the

fused Lasso (FusedL) ([83]) solved by R package penalized (version 0.9-50) ([22]). Note that there

areN+3 variables andNm observations for the above five conventional regularization models. For

the fused Lasso, we order estimators of the individualized coefficients based on the least squares

estimation as the fused Lasso only imposes L1-penalties on adjacent coefficients. In addition, we

also compare two non-variable-selection models, namely, the heterogeneous model (Sub) assum-

ing subject-wise coefficients βi’s, and the homogeneous model (Homo) assuming homogeneous

effect βi = βh (i = 1, . . . , N ). Both of them are based on the least squares estimators.

To evaluate the performance of these approaches on individual variable selection and pre-

diction, we calculate the correct variable selection rate (CVSR), sensitivity and specificity, and

the root mean square error (RMSE) for coefficient estimators, where the correct variable selec-

tion rate (CVSR) of the individualized variable is defined as the rate of correctly classifying βi’s

(i = 1, . . . , N ) to be either zero or non-zero among all individuals, and sensitivity and specificity

are the true positive rate P (β̂i 6= 0|βi 6= 0) and the true negative rate P (β̂i = 0|βi = 0), respec-

tively. The root mean square error is defined as ‖β̂−β0‖2, where β0 = (β0
i1, . . . , β

0
iN)′ are the true

values.

Table 3.1 provides the mean of root mean square errors (RMSE) based on 100 simulations.

Figures 3.3 and 3.4 are the boxplots of the RMSE for all approaches. The proposed method has

the smallest RMSE in all settings, which has an improvement of at least 20% (m = 10) and

71% (m = 20) compared to other methods for both sample sizes N = 40, 100 when γ = 1. The

improvement is more significant and reaches 150% (m = 10) and 250% (m = 20) when subgroups

are separated well (γ = 2). This is because that the proposed method is able to borrow strength

from different individuals within the same subgroup in estimating individualized coefficients.

The CVSR, sensitivity and specificity for the above simulations are summarized in Table 3.3.

The proposed method (MDSP) clearly outperforms the other conventional penalization approaches

in terms of the highest CVSR, especially when the subgroup homogeneous effect is large (γ =

2). Although all models achieve similar rates on sensitivity, the proposed model leads to higher
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specificity rates. Figures 3.5–3.8 provide the boxplots of CVSR, sensitivity and specificity for all

of the variable selection approaches.

In addition, Table 3.2 summarizes the estimators and the empirical standard errors of the sub-

group homogeneous effects γ from the proposed model. Specifically, the estimators γ̂’s are con-

sistent as the cluster size m increases. The estimators of the population-shared coefficients α̂ are

quite similar for all methods and thus are omitted here.

In the second simulation case, we consider a subject-wise model of two individualized predic-

tors with serial correlations:

yij = βi1xij1 + βi2xij2 + εij, i = 1, . . . , N, j = 1, . . . ,m.

The individualized coefficients β1 = (β11, . . . , βN1)′ and β2 = (β12, . . . , βN2)′ are

β1 = (γ1, . . . , γ1︸ ︷︷ ︸
N/2

, 0, . . . , 0︸ ︷︷ ︸
N/2

), β2 = (0, . . . , 0︸ ︷︷ ︸
N/2

, γ2, . . . , γ2︸ ︷︷ ︸
N/2

),

where γ1 = 1 and γ2 = −2. We choose the sample sizeN = 20, 80 and the cluster sizem = 10, 20.

The covariates xij1 and xij2 are generated from N(0, 1). The random error ε′i = (εi1, . . . , εm)’s

are generated from a multivariate normal distribution with mean 0 and covariance σ2R(ρ), where

R(ρ) is the correlation matrix which has either an AR-1 or exchangeable structure. We set σ = 1

and ρ = 0.5.

We compare the performance of the proposed model using different working correlation struc-

tures to the independent model. Table 3.4 summarizes the average root mean square errors (RMSE)

based on 100 simulations under various settings. Overall, the proposed model utilizing within-

subject correlation information achieves smaller RMSE than the independent model. In particular,

if the correct working structure is correctly specified, the RMSE can be reduced at least 40% com-

pared to the one obtained using independent structure.
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3.5.2 Subgroup number selection and robustness

In this simulation study, we first investigate the performance of the data-driven method discussed

in Section 3.4 to select the number of shrinkage centers (subgroups). We compared the proposed

method (MDSP) based on BIC-type criterion with a two-stage approach (OLSK) which employs

the gap statistic ([82]) to choose the number of subgroups for the K-means algorithm based on

the least squares estimators of individualized coefficients. The OLSK method is implemented by

R package cluster (version 2.0.5) ([48]). The number of bootstrap samples in calculating the gap

statistic is set as 100.

We generate the data following (3.15) under various scenarios. Scenario 1 has only a noise

individualized variable (βi = 0, i = 1, . . . , N ), while Scenarios 2 and 3 have two (βi = 0, 1)

or three subgroups (βi = 0, 2, 5) for one individualized predictor, respectively, and Scenario 4

assumes a model of two individualized predictors with two (βi1 = 0, 2) or three (βi2 = 0,−2, 1)

subgroups, respectively. The subgroup size in each scenario is balanced.

Table 3.5 provides the mean estimated number of subgroups and proportion of selecting the

correct number of subgroups based on 100 replications. Overall, the proposed method is able

to select the correct number of subgroup with more than 85% probability over all scenarios with

different sample sizes (N = 60, 120) and cluster sizes (m = 5, 10, 20). The chance of selecting

the correct number of subgroups increases as the cluster size increases. In addition, the proposed

method consistently outperforms the two-stage OLSK method, especially when the cluster size is

small (m = 5).

Next we test the robustness of the proposed model when the number of subgroups is mis-

specified. We generate the data as in model (3.15) under two scenarios: one has a population

homogeneous predictor (βi = γ = 2, i = 1, . . . , N ) and the other generates an individualized

variable with three subgroups (γ0 = 0, γ1 = −3, , γ2 = 1) with balanced size. We set the sample

size N = 60 and the cluster size m = 10. For both cases, we fit the proposed model assuming two

subgroups (βi = 0, γ).

62



Table 3.6 provides the mean of RMSE and CVSR for the proposed method, the subject-wise

model and the five other regularized methods described in Section 3.5.1. In general, the proposed

method is robust against the misspecification of subgroup numbers. In the case of homogeneous

effect, all models perform similarly in selecting the true variable for all individuals. However, the

proposed method has the smallest RMSE among all methods with a 170% reduction. In addition,

in the case when there are fewer assumed subgroups than is true, the proposed method still has

the best correct variable selection rate, and reduces the RMSE at least 14% compared to the other

methods.

Figure 3.9 illustrates the estimation of individualized coefficients from the proposed model. In

the setting where the true effect is homogeneous with individuals separate from zero, all subjects

are identified correctly as one group, and are shrunk towards a non-zero group. In the scenario

with three true subgroups, the subgroup with a relatively stronger signal (γ1 = −3) is successfully

identified, and therefore we gain more estimation efficiency for the individuals in this subgroup.

Moreover, the subgroup with the weaker effect (γ2 = 1) is shrunk towards zero since it is the

only other shrinking direction we provide, where the proposed estimator is equivalent to the Lasso

estimator.

3.6 Real Data Application

In this section, we illustrate the proposed individualized variable selection method using the Har-

vard longitudinal AIDS clinical trial group (ACTG) data. One of the goals from this study is to

test the treatment effect of Zidovudine on CD4 cell counts (e.g., [16]). The 140 patients from this

study are repeated measured over 14 time points with a missing rate of 8.5% and maintain CD4

counts above 50 at the baseline measures.

The demographic information includes age and gender for each patient. We denote ZDV=1 if

the patient receives the treatment and ZDV=0 if the patient is in the control group. Let yit be the

CD4 counts for the ith patient at time t. Each individuals’ CD4 measurements are standardized by
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within-individual standard deviation to achieve a uniform scale. A marginal model to incorporate

time, treatment, interaction of time and treatment, age and gender is provided as follows:

yit = β0 + βt ∗ Time+ βz ∗ZDV + βzt ∗ZDV ∗ Time+ βa ∗Age+ βg ∗Gender+ εit. (3.16)

We are particularly interested in the treatment effect of Zidovudine over time. The standard analy-

sis concludes that the marginal treatment effect over time β̂zt is not significant with p-value= 0.113.

However, if we examine the time trend of CD4 counts from individuals, there exist subgroups

for the treatment group. Given the treatment ZDV, some individuals’ CD4 counts are more stable

over time while some patients’ CD4 counts decrease more rapidly than the average of the control

group over time. This could be interpreted that some patients respond more positively, while some

respond more negatively, and the remaining patients have no effects from receiving ZDV treatment

compared to the average effect of the control group.

Clearly, the subgroup differences are washed out if we apply the above marginal model in

(3.16). Therefore, we employ an individualized regression model which accommodates the per-

sonalized treatment effects ZDV over time as the following:

yit = β0 + βt ∗ Time+ βz ∗ ZDV + βizt ∗ ZDV ∗ Time+ βa ∗ Age+ βg ∗Gender + εit.

We assume for the βizt coefficient, that it falls into three subgroups (βizt = γ+ > 0, βizt =

γ− < 0 or βizt = 0). Note that for patients in the control group, we set βizt = 0 since their

personalized effects corresponding to the treatment are unobserved. Since the treatment variable

is constant over time, we compare our proposed method with the subject-wise Lasso model, the

standard population homogeneous model, the random-effects model assuming a random slope of

ZDV and time interaction and the fused Lasso model.

We choose observations at times t = 1, . . . , 12 as the training set and the remaining obser-

vations at t = 13, 14 as the testing set. On the testing set, we calculate the root mean square

prediction error for each individual at t = 13, 14, where the median of the individuals’ prediction

errors is reported. Table 3.7 shows that the proposed method has the smallest median prediction

error among all methods. For example, the proposed method has 16.0%, 13.9% and 18.1% im-
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provement in prediction accuracy compared to the marginal model, the random-effects model and

the Lasso model, respectively.

Furthermore, Figure 3.10 shows the individuals corresponding to no effect, positive effect and

negative effect in the treatment group identified by the Lasso method and the proposed method

respectively. The proposed method is able to detect more individuals with significant responses to

the treatment than the Lasso method does, as the proposed separation penalty enables us to shrink

the estimated coefficients in multiple directions.

To examine whether subgrouping provides more informative treatment effect over time, we

refit a marginal regression model in (3.16) for each subgroup, where each subgroup consists of the

corresponding individuals identified in the treatment group and all individuals in the control group.

Table 3.8 illustrates that the treatment effect over time from the positive-effect subgroup selected

by the Lasso method is still not significant, while the negative-effect subgroup is significant with

p-value of 0.02. In contrast, the proposed method identifies both positive and negative subgroups

with significant p-values of 0.02 and 0.00 respectively.

3.7 Discussion

In this chapter, we consider an individualized regression model where both the number of subjects

and the number of subject-wise repeated measurements increase. To select different important

predictors for different individuals, we propose a novel multi-directional separation penalty to

implement individualized variable selection. In addition, by utilizing subpopulation structure, we

induce within-subgroup homogeneous effects and borrow cross-subject information to achieve a

good balance of parsimonious modeling and heterogeneous interpretation.

In contrast to the conventional penalized variable selection approaches, the proposed method

provides multiple shrinking directions to overcome estimation bias from L1-regularization, where

the alternative shrinking directions in addition to zero are automatically selected through group-

ing of subjects with similar effects from predictors. Consequently, for any subject, the proposed
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model achieves estimation consistency and selection consistency, even with the L1-penalty on each

shrinking direction.

In addition, compared to subject-wise modeling, the proposed method is able to achieve the

population-wise oracle property when the number of the individualized parameters increases along

with the sample size. Consequently, the proposed estimator inherits the optimal convergence rate

from the oracle estimator due to increasing sizes of within-subject measurements and subgroups.

Moreover, by incorporating within-subject serial correlation, the proposed method is able to gain

more efficiency than the model assuming independence.

In this chapter, the individualized and the population-shared predictors are pre-specified in the

model. Therefore it is also essential to develop a method to identify individualized variables from

population-shared variables prior to applying the proposed method. One possible solution is to

impose an additional penalty on sub-homogeneous effects. In addition, it is worth investigating the

possibility of linking subgroup membership to population-shared covariates, such as demographic

information, which could be useful for making predictions for new subjects without much prior

information.

3.8 Proofs of Theoretical Results

3.8.1 Some Notation and Matrix Algebra

(N1). Denote a ∧ b = min(a, b).

(N2). Define “ ◦ ” as the Hadamard product, that is, for two matrices, A and B, of the same

dimension m× n, then A ◦B is a matrix, of the same dimension of A and B, with elements

given by (A ◦B)ij = Aij ·Bij .

Next, we provide the proofs for some matrix algebra. For two square matrices A and B with

the same dimension,

(M1). AB andBA have the same non-zero eigenvalues.
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Proof: For any eigenvalue λ of AB, there exists a non-zero vector µ such that ABµ = λµ. It

implies that BABµ = λBµ. Let Bµ = µ∗ and we have BAµ∗ = λµ∗ indicating that λ is also

an eigenvalue ofBA.

(M2). If A and B are non-singular and A ≤ B, for any matrix C, we have CTAC ≤ CTBC,

andA−1 ≥ B−1.

Proof: 1) Note that A ≤ B is equivalent to xTAx ≤ xTBx for any vector x. ∀ x, de-

note Cx = x∗ such that xTCTACx = (x∗)TAx∗ ≤ (x∗)TBx∗ = xTCTBCx, implies

CTAC ≤ CTBC.

2) It is trivial that if A ≥ I , then we have A−1 ≤ I . Hence, A ≤ B ⇒ B−
1
2AB−

1
2 ≤ I ⇒

B
1
2A−1B

1
2 ≥ I ⇒ A−1 ≥ B−1.

3.8.2 Proof of Lemma 2 and Theorem 2

Proof of Lemma 2

For an estimator θ̂ obtained by solving the estimating equation GN,m(θ) = 0 in (3.9), under

regularity condition (A2), by Taylor’s expansion, we have (θ̂ − θ0) = −D−1
N,mGN,m and thus

H
− 1

2
N,mDN,m(θ̂ − θ0) = −H−

1
2

N,mGN,m.

By the Chebyshev inequality,

P

(
p
− 1

2
θ ‖H

− 1
2

N,mDN,m(θ̂ − θ0)‖2 > δ

)
= P

(
p
− 1

2
θ ‖H

− 1
2

N,mGN,m‖2 > δ

)
≤ p−1

θ δ−2E(‖H−
1
2

N,mGN,m‖2
2)

= p−1
θ δ−2E(tr(H

− 1
2

N,mGN,mG
T
N,mH

− 1
2

N,m))

= p−1
θ δ−2tr(H

− 1
2

N,mE(GN,mG
T
N,m)H

− 1
2

N,m)

= p−1
θ δ−2tr(H

− 1
2

N,mHN,mH
− 1

2
N,m) = δ−2.
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Furthermore, noting that ‖H−
1
2

N,mDN,m(θ̂−θ0)‖2 ≥ λmin(DN,mH
−1
N,mDN,m)

1
2‖(θ̂−θ0)‖2 and

thus

P

(
p
− 1

2
θ ‖(θ̂ − θ

0)‖2 > δ

)
= P

(
p
− 1

2
θ λmin(DN,mH

−1
N,mDN,m)

1
2‖(θ̂ − θ0)‖2 > λmin(DN,mH

−1
N,mDN,m)

1
2 δ

)
≤ P

(
p
− 1

2
θ ‖H

− 1
2

N,mD
1
2
N,m(θ̂ − θ0)‖2 > λmin(DN,mH

−1
N,mDN,m)

1
2 δ

)
≤ λmax(DN,mH

−1
N,mDN,m)−1σ−2.

As λmax(DN,mH
−1
N,mDN,m)→∞, we have P

(
p
− 1

2
θ ‖(θ̂ − θ0)‖2 > δ

)
→ 0.

Proof of Theorem 2

Following the matrix algebra in Remark 2, we have

(φum)−1(
N∑
i=1

Ω̃i)
−1 ≤ (Hor

N,m)−1 ≤ (φum)−1(
N∑
i=1

Ω̃i)
−1,

and therefore 3.11 holds.

Recall that θ̂or =

(
(γ̂or)′, (α̂or)′

)′
, by Taylor’s expansion, we note that (θ̃or−θ̃0) = −(Dor

N,m)−1Gor
N,m =

−(Hor
N,m)−1Gor

N,m, where

Gor
N,m =

N∑
i=1

X̃T
i V

−1
i (yi − X̃iθ̃

0),

sinceR0
i = Ri = Im holds for any i. By the standard central limit theorem, we have (Hor

N,m)−1/2Gor
N,m →

N(0, Ip+q), implying that (Hor
N,m)1/2(θ̂or−θ̃0)→ N(0, Ip+q), as eitherm→∞ or min1≤k≤p(|Gk|)→

∞. In addition, if R0
i 6= Im but m is bounded, then the asymptotic normality still holds when N

goes to infinity regardless of the choice of working correlation matrixRi.

Moreover, under regularity conditions (A5)-(A6), we have λmin(
∑N

i X̃
T
i X̃i) = O(mN) and

λmax(
∑N

i X̃
T
i X̃i) = O(mN). When R0

i = Ri = Im, it is trivial that Hor
N,m = Dor

N,m �

mΛN,m = MN,m.
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3.8.3 Proof of Theorem 3 and Corollary 1, and conditionRa

Following Lemma 2, we have

P

(
(p+ q)−

1
2‖(Hor

N,m)−
1
2Dor

N,m(θ̂or − θ̃0)‖2 > δ

)
< 1

δ2
.

Note that

HN,m =
N∑
i=1

UT
i V

−1
i ΣiV

−1
i Ui

=
N∑
i=1

UT
i V

−1/2
i V

−1/2
i ΣiV

−1/2
i V

−1/2
i Ui

≤ λmax(R
−1/2
i R0

iR
−1/2
i )

N∑
i=1

UT
i V

−1/2
i V

−1/2
i Ui

= λmax(R
−1
i R

0
i )DN,m = ηN,mDN,m.

Therefore we haveDN,mH
−1
N,mDN,m ≥ η−1

N,mDN,m, which implies that

‖(Hor
N,m)−

1
2Dor

N,m(θ̂or − θ̃0)‖2 ≥ η
− 1

2
N,m‖(D

or
N,m)

1
2 (θ̂or − θ̃0)‖2,

and thus

P

(
η
− 1

2
N,m‖(D

or
N,m)

1
2 (θ̂or − θ̃0)‖2 > δ

)
< c0

1

δ2

for some c0 > 0. The proof of Theorem 3 is completed.

As a result, if ηN,m ≤ C1 holds uniformly for some positive constant C1, it is straightfor-

ward that ‖(Dor
N,m)

1
2 (θ̂or − θ̃0)‖2 = Op(1). Note that Dor

N,m ≤ λmax(R
−1
i )
∑N

i Ω̃iX̃
T
i X̃iΩ̃i ≤

(ν
′

l )
−1MN,m, and therefore ‖(MN,m)

1
2 (θ̂or − θ̃0)‖2 ≤ Op(1).

The correlation matrix R(ρij) is symmetric, which implies that ‖Rm×m‖1 = ‖Rm×m‖∞ ≤∑m−1
k=0 |ρk| <

∑∞
k=0 |ρk| < ∞. By noting that ‖Rm×m‖2

2 ≤ ‖Rm×m‖1‖Rm×m‖∞, we have

λmax(R) = ‖R‖2 uniformly bounded, and thus ηN,m ≤ (ν ′l)
−1
∑∞

k=0 |ρk| <∞.
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3.8.4 Proof of Lemma 3, Corollary 2

Note that, for the proposed estimator and the subject-wise least squares estimator, each term of

UT
i V

−1
i Ui in DN,m does not equal to XT

i V
−1
i Xi , but is a block sparse matrix as µi does not

contain any other individualized parameter βj for j 6= i. We denote

Ds
N,m =

 Ds
xx(Np×Np) Ds

xz(Np× q)

Ds
zx(q ×Np) Ds

zz(q × q)

 ,

for the subject-wise estimator. Specifically,

Ds
N,m =



XT
1 V

−1
1 X1 0 . . . 0 XT

1 V
−1

1 Z1

0 XT
2 V

−1
2 X2 . . . 0 XT

2 V
−1

2 Z2

...
... . . . ...

...

0 0 . . . XT
NV

−1
N XN XT

NV
−1
N ZN

ZT
1 V

−1
1 X1 ZT

2 V
−1

2 X2 . . . ZT
NV

−1
N XN

∑N
i=1Z

T
i V

−1
i Zi


,

Similarly we have

Hs
N,m =



XT
1 V

−1
1 Σ1V

−1
1 X1 0 . . . 0 XT

1 V
−1
1 Σ1V

−1
1 Z1

0 XT
2 V

−1
2 Σ2V

−1
2 X2 . . . 0 XT

2 V
−1
2 Σ2V

−1
2 Z2

...
...

. . .
...

...

0 0 . . . XT
NV

−1
N ΣNV

−1
N XN XT

NV
−1
N ΣNV

−1
N ZN

ZT
1 V

−1
1 Σ1V

−1
1 X1 ZT

2 V
−1
2 Σ2V

−1
2 X2 . . . ZT

NV
−1
N ΣNV

−1
N XN

∑N
i=1Z

T
i V

−1
i ΣiV

−1
i Zi


,

Since Hs
N,m ≤ ηN,mD

s
N,m, we have aT (Ds

N,m(Hs
N,m)−1Ds

N,m)−1 ≤ ηN,ma
T (Ds

N,m)−1a.

Note thatDs
N,m can be decomposed as

Ds
N,m =

 INp 0

Ds
zx(D

s
xx)

−1 Iq

 Ds
xx 0

0 Ds
zz −Ds

zx(D
s
xx)

−1Ds
xz

 INp (Ds
xx)

−1Ds
xz

0 Iq

 ,
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and hence

(Ds
N,m)−1 =

 INp 0

−Ds
zx(D

s
xx)

−1 Iq

 (Ds
xx)

−1 0

0 (Ds
zz −Ds

zx(D
s
xx)

−1Ds
xz)

−1

 INp −(Ds
xx)

−1Ds
xz

0 Iq

 .

Therefore, for any coordinate indicator a ofβi, we have aT (Ds
N,m)−1a = 1Tp (XT

i V
−1
i Xi)

−11p ≤

pλmin(XT
i V

−1
i Xi)

−1. The result for the population-shared parameter α̂ could be obtained follow-

ing the same argument.

3.8.5 Proof of Lemma 4

Denote

X̃ = (X,Z) =


X1 . . . 0 Z1

... . . . ...
...

0 . . . XN ZN

 ,

and Ṽ = diag(V1, . . . ,VN), Σ̃ = diag(Σ1, . . . ,ΣN), ε̃ = (ε̃′1, . . . , ε̃
′
N)′.

Denote θ̂Sub =

(
(β̂Sub)′, (α̂Sub)′

)′
, we have the least squares estimator

(θ̂Sub − θ0) =

(
X̃T Ṽ −1X̃

)−1

X̃T Ṽ −1ε̃

=

(
X̃T Ṽ −1X̃

)−1

X̃T Ṽ −1Σ̃1/2Σ̃−1/2ε̃

=

(
X̃T Ṽ −1X̃

)−1

X̃T Ṽ −1Σ̃1/2ε̃∗.
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Under condition (Ia) that N = o(τ sN,m), by Chebyshev’s inequality,

P(‖θ̂Sub − θ0‖∞ > δ) = P(‖(X̃T Ṽ −1X̃)−1X̃T Ṽ −1ε̃‖∞ > δ)

≤ δ−2tr

(
(X̃T Ṽ −1X̃)−1X̃T Ṽ −1Σ̃Ṽ −1X̃(X̃T Ṽ −1X̃)−1

)
= δ−2tr

(
(Ds

N,m)−1Hs
N,m(Ds

N,m)−1

)
≤ δ−2(Np+ q)λmax

(
(Ds

N,m)−1Hs
N,m(Ds

N,m)−1

)
≤ δ−2(Np+ q)(τ sN,m)−1 → 0

as τ sN,m →∞.

Moreover, let at = ((X̃T Ṽ −1X̃)−1X̃T Ṽ −1Σ̃1/2)t· denote the tth row of (X̃T Ṽ −1X̃)−1X̃T Ṽ −1Σ̃1/2,

t = 1, . . . , (Np+ q). By condition (i) in (Ib), we have

P(|aTt ε∗i | > δ) < 2exp(− δ2

c2
σ‖at‖2

2

).

Hence

P(‖θ̂Sub − θ0‖∞ > δ) = P(‖(X̃T Ṽ −1X̃)−1X̃T Ṽ −1Σ̃1/2ε̃∗‖∞ > δ)

≤
Np+q∑
t=1

P(|aTt ε∗| > δ)

≤
Np+q∑
t=1

2exp(− δ2

c2
σ‖at‖2

2

)

≤ (Np+ q) max
1≤t≤Np+q

(2exp(− δ2

c2
σ‖at‖2

2

))

= 2(Np+ q)exp(− δ2

c2
σ max1≤t≤Np+q(‖at‖2

2)
).
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Note that

max
1≤t≤Np+q

(‖at‖2
2) ≤ λmax

(
(X̃T Ṽ −1X̃)−1X̃T Ṽ −1Σ̃Ṽ −1X̃(X̃T Ṽ −1X̃)−1

)
= λmax

(
(Ds

N,m)−1Hs
N,m(Ds

N,m)−1

)
= (τ sN,m)−1.

By condition (ii) in (Ib) that log(N) = o(τ sN,m),

P(‖θ̂Sub − θ0‖∞ > δ) ≤ 2(Np+ q)exp(−
δ2τ sN,m
c2
σ

)→ 0

as τ sN,m →∞.

3.8.6 Proof of Theorem 4

First, we prove the estimation consistency as λm = o(m). Recall that θi = (β′i,α
′)′ and X̃i =

(Xi,Zi). Given γ̂, let

Qi,m(θi|γ̂) =‖ yi − X̃iθi ‖2
2 +λm

p∑
k=1

s(βik, γ̂k)

= Li,m(θi) + Sλm(βi|γ̂),

which is minimized at θ̂(m)
i , where Li,m(·) is the squared loss function and Sλm(·) is the MDSP

function.

Suppose 1
m
X̃i

T
X̃i → Ci where Ci is a positive definite matrix. Following [36], we define

another function not related to m

Qi(θi|γ0) = (θi − θ0
i )TCi(θi − θ0

i ) + λ0

p∑
k=1

s(βik, γ
0
k),

and λm/m→ λ0. SinceCi is not singular, if λ0 = 0, thenQi has a unique minimizer θ0
i . Following
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[36], we need to show

sup
θi∈Θ

| 1

m
Qi,m(θi|γ̂)−Qi(θi|γ0)− σ2 |→p 0, (3.17)

for any compact set Θ and also that

θ̂
(m)
i = Op(1). (3.18)

The result in (3.17) follows

1

m
‖ yi − X̃iθi ‖2

2→p (θi − θ0
i )TCi(θi − θ0

i ) + σ2

according to standard results ([60]) and also

sup
θi∈Θ
| 1
m
Sλm(βi|γ̂)− S0(βi|γ0)| ≤ sup

θi∈Θ

1

m
|Sλm(βi|γ̂)− Sλm(βi|γ0)|+ sup

θi∈Θ
| 1
m
Sλm(βi|γ0)− S0(βi|γ0)|

≤ λmp

m
‖ γ̂ − γ0 ‖2 +c|λm

m
− λ0| → 0,

where c > 0 is a constant. Although Hi,m is not convex, we note that argmin(Li,m) = Op(1) and

argmin(Sλm) = Op(1). It follows that θ̂(n)
i = argmin(Qi,m) = Op(1). Under(3.17) and (3.18),

we have

argmin(Qi,m)→p argmin(Qi).

Next, we prove the selection consistency as λm/
√
m → ∞. Let βi = β0

i + u
λm

and α =
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α0 + v
λm

, where u = Op(1) and v = Op(1). Let

Di,m(u,v) = Qi,m(βi,α|γ̂)−Qi,m(β0
i ,α

0|γ̂)

= Li,m(βi,α)− Li,m(β0
i ,α

0) + Sλm(βi|γ̂)− Sλm(β0
i |γ̂)

= ‖εi −Xi
u

λm
−Zi

v

λm
‖2

2 − ‖εi‖2
2 + λm

p∑
k=1

[s(β0
ik +

uk
λm

, γ̂k)− s(β0
ik, γ̂k)]

=

√
m

λm

1√
m
εTi (Xiu+Ziv) +

m

λ2
m

(uT ,vT )

(
1

m
(Xi,Zi)

T (Xi,Zi)

)
(uT ,vT )T

+ λm

p∑
k=1

[s(β0
ik +

uk
λm

, γ̂k)− s(β0
ik, γ̂k)].

The first two terms vanish as λm/
√
m→∞. Let γ̂ → γ(0), it follows that

Di,m(u,v)→
∑
k∈Aci

|uk|+
∑
k∈Ai

uksgn(γ
(0)
k − γ

0
k).

Since
√
m(γ̂−γ) = Op(1), that is, γ(0) = γ0, then the second term above also vanishes, therefore

Di,m(u,v) is minimized at uk = 0, k ∈ Aci . Note that u = λm(βi−β0
i ) and thus argmin(Qi,m) =

argmin(Di,m), the proof is hence completed.

In general, the regularity condition (A6) only guarantees that 1
m
XT

i Xi is positive definite, but

not for 1
m
X̃i

T
X̃i since there could be invariant population-shared covariatesZi within the subject.

However, the above argument still holds by taking a transformationZ∗i = ZiTi such that 1
m
Z∗Ti Z

∗
i

is positive definite.

3.8.7 Proof of Lemma 5, Theorem 5 and Corollary 4

We first establish the following result.

Lemma 6. Suppose there is a sequence of numbers {ai}i=1,...,N associated with a partition of index

sets Gl (l = 1, . . . , L), such that |ai− bl| ≤ ε for any i ∈ Gl, where ε is a small positive value. Then
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there is a local minimizer b̂ of following objective function

S(b|a) =
N∑
i=1

(
∧

1≤l≤L
|ai − bl|

)
,

such that ‖b̂− b‖∞ ≤ 2ε, where ∧
1≤l≤L

|ai − bl| = min
1≤l≤L

(|ai − bl|).

Proof: Without loss of generality, assume b1 = 0, we have |ai| ≤ ε for any i ∈ G1 and hence∑
i∈G1 |ai| ≤ |G1|ε. Moreover, note that

∑
i∈G1 |ai − 2ε| =

∑
i∈G1(2ε− ai) ≥

∑
i∈G1 ε = |G1|ε and∑

i∈G1 |ai + 2ε| =
∑

i∈G1(2ε − ai) ≥
∑

i∈G1 ε = |G1|ε. Therefore there is a minimizer |b̂1| ≤ 2ε

and the proof of Lemma 6 is completed.

The proposed objective function is

QN,m(β,α,γ) =
1

2

N∑
i=1

‖ yi −Xiβi −Ziα ‖2
2 +λN,m

N∑
i=1

p∑
k=1

s(βik, γk)

= LN,m(θ) + SλN,m(β,γ).

Let θ∗ = θ0 + (τ sN,m)−1/2u, γ∗ ∈ Rp, where ‖ u ‖2= d. Note that SλN,m(β0,γ0) = 0, by

Taylor’s expansion, we have

DN,m(u) = QN,m(θ∗,γ∗)−QN,m(θ0,γ0)

= LN,m(θ∗)− LN,m(θ0) + SλN,m(β∗,γ∗)

= (τ sm)−1/2L̇TN,m(θ0)u+
1

2
(τ sm)−1uT L̈N,m(θ0)u+ SλN,m(β∗,γ∗),

= (τ sm)−1/2(Gs
N,m)Tu+

1

2
(τ sm)−1uTDs

N,mu+ SλN,m(β∗,γ∗),

where L̇N,m is the gradient vector of LN,m(θ) and L̈N,m is the Jacobian matrix. Note that

P (uT (Hs
N,m)−1/2Gs

N,m| > δ) ≤ δ−2uTE((Hs
N,m)−1/2Gs

N,m(Gs
N,m)T (Hs

N,m)−1/2)u

≤ δ−2d2,
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implying that uT (Hs
N,m)−1/2Gs

N,m = Op(d). Moreover, we have

(Hs
N,m)1/2 = (Ds

N,m)1/2(Ds
N,m)−1/2(Hs

N,m)1/2(Ds
N,m)−1/2(Ds

N,m)1/2

≤ (Ds
N,m)1/2λmax

(
(Ds

N,m)−1/2(Hs
N,m)1/2(Ds

N,m)−1/2

)
(Ds

N,m)1/2

= λmin

(
(Ds

N,m)1/2(Hs
N,m)−1/2(Ds

N,m)1/2

)−1

Ds
N,m

= (τ sN,m)−1/2Ds
N,m,

and thus (τ sN,m)−1/2(Hs
N,m)1/2 ≤ (τ sN,m)−1Ds

N,m. Consequently, if d is sufficiently large, then the

second term in DN,m(u) dominates the first term, which implies that, with probability tending to

1, DN,m(u) > 0 at ‖ u ‖2= d. Hence we have

P

{
inf
‖u‖2=d

DN,m(u) > 0

}
→ 1.

This implies that, with probability tending to 1, there exists a local minimizer θ̂ in the ball

B(θ0, (τ sN,m)−1/2d). In particular, this indicates that the convergence rate for estimator of any

individualized parameter β̂i is (τ sN,m)1/2. Following the proof of Lemma 4, under condition Ia

or Ib, we have P (‖β̂ − β0‖∞ > p−1r) → 0 for any positive constant r. By Lemma 6, given

‖β̂−β0‖∞ ≤ p−1r, there exists a minimizer γ̂ of SλN,m(γ|β̂), such that γ̂ ∈ B(γ0, r). The proof

of Lemma 5 is completed.

Next we show that the objective functionQN,m(θ∗,γ∗) is convex at {θ∗ ∈ B(θ0, (τ sN,m)−1/2d)}∩

{γ∗ ∈ B(γ0, (τ sN,m)−1/2d)} when m is sufficiently large. Note that, if β0
ik = γ0

k , we have

sup
β∗ik∈B(β0

ik),γ∗k∈B(γ0k)

|β∗ik − γ∗k| ≤ sup
β∗ik∈B(β0

ik)

|β∗ik − β0
ik|+ sup

γ∗k∈B(γ0k)

|γ∗k − γ0
k|+ |β0

ik − γ0
k|

≤ 2(τ sN,m)−1/2d+ |β0
ik − γ0

k| → 0,
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and inf
β∗ik∈B(β0

ik)
|β∗ik|≥(|γ0

k| − (τ sN,m)−1/2d)+ → |γ0
k|. It follows

P

(
sup

β∗ik∈B(β0
ik),γ∗k∈B(γ0k)

|β∗ik − γ∗k| ≤ inf
β∗ik∈B(β0

ik)
|β∗ik|

)
→ 1.

Define

S̃λN,m(β∗,γ∗) = λN,m

p∑
k=1

{∑
i∈Gck

|β∗ik|+
∑
i∈Gk

|β∗ik − γ∗k|
}
,

and Q̃N,m = LN,m+S̃λN,m . We haveQN,m(θ∗,γ∗) = Q̃N,m(θ∗,γ∗) at {θ∗ ∈ B(θ0, (τ sN,m)−1/2d)}∩

{γ∗ ∈ B(γ0, (τ sN,m)−1/2d)}when τ sN,m is sufficiently large, and thus argminQN,m = argmin Q̃N,m.

Let θ∗∗ = θ0 + λ−1
N,mu and γ∗∗ = γ0 + λ−1

N,mv, similarly it follows that

DN,m(u,v) = Q̃N,m(θ∗∗,γ∗∗)− Q̃N,m(θ0,γ0) = LN,m(θ∗∗)− LN,m(θ0) + S̃λN,m(β∗∗,γ∗∗)

=
(τ sN,m)1/2

λN,m
(τ sN,m)−1/2L̇TN,m(θ0)u+

τ sN,m
λ2
N,m

1

2
(τ sN,m)−1uT L̈N,m(θ0)u

+ λN,m

p∑
k=1

{∑
i∈Gck

λ−1
N,m|uik|+

∑
i∈Gk

λ−1
N,m|uik − vk|

}
.

Since λN,m
(τsN,m)1/2

→∞, hence DN,m(u,v)→p D(u,v), where

D(u,v) =

p∑
k=1

{∑
i∈Gck

|uik|+
∑
i∈Gk

|uik − vk|
}
,

which is minimized at {uik = 0|i ∈ Gck; uik = vk|i ∈ Gk}. Because DN,m(u,v) is a convex

function, it follows ([21]) that argminDN,m → argminD, and thus argminQN,m → argminD.

This implies that P (β̂ik = 0|i ∈ Gck) → 1 and P (β̂ik = γ̂k|i ∈ Gk) → 1. The proof of Theorem 5

is completed.
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3.8.8 Proof of Theorem 6

For proposed objective function QN,m, at mth iteration in Algorithm 2, it is obvious that

LN,m(β̂(n), α̂(n)) + S
(n−1)
N,m (β̂(n), γ̂(n−1)) ≤ LN,m(β̂(n−1), α̂(n−1)) + S

(n−1)
N,m (β̂(n−1), γ̂(n−1))

= LN,m(β̂(n−1), α̂(n−1)) + SN,m(β̂(n−1), γ̂(n−1))

holds after Step 3, where LN,m(·) is the squared-loss function.

Next, after Step 4 (grouping) in Algorithm 2, we have

SN,m(β̂(n), γ̂(n)) ≤ S
(n)
N,m(β̂(n), γ̂(n−1)) ≤ S

(n−1)
N,m (β̂(n), γ̂(n−1)).

This follows

LN,m(β̂(n), α̂(n)) + SN,m(β̂(n), γ̂(n)) ≤ LN,m(β̂(n−1), α̂(n−1)) + SN,m(β̂(n−1), γ̂(n−1)),

which implies a non-increasing sequence of QN,m(β̂(n), α̂(n), γ̂(n)) obtained by Algorithm 2. Note

that QN,m is non-negative, thus the obtained iterations (β̂(n), α̂(n), γ̂(n)) would converge to a local

minimizer.
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3.9 Tables and Figures

Table 3.1: The average root mean square error (RMSE) of the proposed MDSP model compared with
other approaches based on 100 simulations, with sample size N = 40, 100, cluster size m = 10, 20, and
subgroup homogeneous effect γ = 1, 2, where Sub, Homo, FusedL, Lasso, AdapL, SCAD and MCP stand
for subject-wise model, homogeneous model, the fused Lasso ([83]), the Lasso ([81]), the adaptive Lasso
([100]), the SCAD([17]) and the MCP ([95]) regularization models, respectively. The number of subgroups
(two) is correctly specified in the proposed model.

Sample Cluster Methods
Size (N) Size(m) MDSP Sub Homo FusedL Lasso AdapL SCAD MCP

γ = 1

40
10 0.267 0.349 0.504 0.323 0.439 0.339 0.344 0.350
20 0.120 0.232 0.502 0.206 0.298 0.207 0.201 0.201

100
10 0.262 0.350 0.501 0.319 0.394 0.334 0.335 0.345
20 0.119 0.233 0.501 0.210 0.271 0.208 0.205 0.206

γ = 2

40
10 0.122 0.349 1.004 0.317 0.408 0.309 0.311 0.309
20 0.048 0.232 1.002 0.204 0.293 0.181 0.168 0.167

100
10 0.113 0.350 1.001 0.318 0.387 0.305 0.300 0.299
20 0.037 0.233 1.001 0.210 0.274 0.208 0.206 0.206

Table 3.2: The average RMSE of the estimated subgroup homogeneous effect γ̂ from the proposed
model based on 100 simulations (empirical standard errors in parenthesis), with sample size N =
40, 100, cluster size m = 10, 20.

Homogeneous N=40 N=100
Effect T = 10 T = 20 T = 10 T = 20
γ = 1 1.03(0.08) 1.00(0.05) 1.02(0.05) 1.00(0.03)
γ = 2 2.01(0.07) 2.00(0.05) 2.00(0.05) 2.00(0.03)
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Table 3.3: The average correct variable selection rate (CVSR), sensitivity and specificity of the
proposed MDSP model compared with other approaches based on 100 simulations, with sample
size N = 40, 100, cluster size m = 10, 20, and subgroup homogeneous effect γ = 1, 2, where
Sub, Homo, FusedL, Lasso, AdapL, SCAD and MCP stand for subject-wise model, homogeneous
model, the fused Lasso ([83]), the Lasso ([81]), the adaptive Lasso ([100]), the SCAD([17]) and
the MCP ([95]) regularization models, respectively. The number of subgroups (two) is correctly
specified in the proposed model.

Variable Sample Cluster Methods
Selection Size (N) Size(m) MDSP FusedL Lasso AdapL SCAD MCP

γ = 1

CVSR
40

10 0.916 0.692 0.876 0.820 0.717 0.741
20 0.970 0.678 0.924 0.869 0.778 0.829

100
10 0.909 0.673 0.862 0.840 0.718 0.754
20 0.963 0.682 0.890 0.888 0.773 0.833

Sensitivity
40

10 0.942 0.978 0.898 0.943 0.975 0.966
20 0.985 1.000 0.990 0.997 0.999 0.999

100
10 0.946 0.986 0.917 0.941 0.974 0.967
20 0.990 0.999 0.993 0.994 0.999 0.997

Specificity
40

10 0.909 0.406 0.853 0.696 0.460 0.517
20 0.956 0.356 0.857 0.742 0.557 0.659

100
10 0.886 0.360 0.807 0.739 0.462 0.542
20 0.942 0.364 0.787 0.782 0.547 0.669

γ = 2

CVSR
40

10 0.959 0.639 0.886 0.884 0.800 0.852
20 0.972 0.670 0.928 0.940 0.908 0.953

100
10 0.940 0.648 0.868 0.898 0.809 0.871
20 0.965 0.682 0.890 0.888 0.773 0.832

Sensitivity
40

10 0.997 0.996 0.997 0.998 1.000 0.998
20 1.000 1.000 1.000 1.000 1.000 1.000

100
10 0.998 0.997 0.998 0.998 0.999 0.999
20 1.000 0.999 0.993 0.994 0.999 0.997

Specificity
40

10 0.922 0.282 0.774 0.771 0.602 0.705
20 0.945 0.340 0.856 0.880 0.816 0.906

100
10 0.882 0.299 0.738 0.797 0.620 0.744
20 0.930 0.365 0.787 0.782 0.546 0.668
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Table 3.4: The average root mean square error (RMSE) of the proposed MDSP model with differ-
ent working correlation structures based on 100 simulations, including AR-1 (βAR1), exchangeable
(βEx) and independent (βInd) models. The true structures for the within-subject serial correlation
are AR-1 or exchangeable, and correlation parameter ρ = 0.5, sample size N = 20, 80, cluster
size m = 10, 20.

True Cluster N = 20 N = 80
Correlation size (m) βAR1 βEx βInd βAR1 βEx βInd

Exch
10 0.209 0.165 0.265 0.193 0.110 0.258
20 0.072 0.053 0.078 0.067 0.051 0.076

AR-1
10 0.182 0.230 0.258 0.183 0.205 0.256
20 0.091 0.121 0.132 0.089 0.112 0.130

Table 3.5: The mean of identified subgroup numbers of the proposed model compared with the
two-stage OLSK method based on 100 simulations, with sample size N = 60, 120, cluster size
m = 5, 10, 20. The first three scenarios contain one individualized predictor (p = 1) of one, two
and three groups, respectively. The last scenario contains two individualized predictors (p = 2),
one with two groups and the other with three groups. The subgroup sizes are equal in each scenario.
The subgroup homogeneous effects are listed as possible values for βi in the table.

Number of individualized variables p = 1 p = 2
Sample Cluster βi = 0 βi = 0, 1 βi = 0, 2, 5 β1i = 0, 2 β2i = −2, 0, 1
Size
(N)

Size(m) MDSP OLSK MDSP OLSK MDSP OLSK MDSP OLSK MDSP OLSK

60
5 1.0(100) 1.0(100) 2.0(95) 1.0(2) 2.9(88) 2.5(68) 2.0(100) 1.5(52) 3.2(85) 1.2(0)
10 1.0(100) 1.0(100) 2.0(100) 1.3(26) 3.1(90) 2.7(74) 2.0(100) 2.0(100) 3.1(90) 2.4(44)
20 1.0(100) 1.0(100) 2.0(100) 2.0(100) 3.1(92) 2.8(78) 2.0(100) 2.0(100) 3.0(100) 2.8(80)

120
5 1.0(100) 1.0(100) 2.0(96) 1.0(2) 3.2(86) 2.8(82) 2.0(100) 1.7(72) 3.1(90) 1.4(0)
10 1.0(100) 1.0(100) 2.0(100) 1.2(24) 3.1(92) 2.9(86) 2.0(100) 2.0(100) 3.1(90) 2.6(64)
20 1.0(100) 1.0(100) 2.0(100) 2.0(100) 3.0(98) 2.9(96) 2.0(100) 2.0(100) 3.1(92) 2.78(78)
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Table 3.6: The average RMSE and CVSR of the proposed MDSP model compared to the subject-
wise model (Sub), the fused Lasso (FusedL), the Lasso, the adaptive Lasso (Adapl), the SCAD
and the MCP penalization models, based on 100 simulations with sample size N = 60 and cluster
size m = 10. The first case contains a population homogeneous effect (Gk = 1) and the second
case contains an individualized predictor of three subgroups (Gk = 3) with equal subgroup size.
In both cases the proposed model assumes two subgroups. The estimated subgroup homogeneous
effects from the proposed model are γ̂ = 2.01(0.06) and γ̂ = −2.99(0.06) in these two cases (with
empirical standard errors in parenthesis), respectively.

Case MDSP Sub FusedL Lasso AdapL SCAD MCP
Gk = 1 RMSE 0.115 0.346 0.319 0.414 0.373 0.346 0.345
(βi = 2) CVSR 0.996 - 0.993 0.994 0.992 0.995 0.996

Gk = 3 RMSE 0.277 0.349 0.315 0.410 0.335 0.337 0.338
(βi = −3, 0, 1) CVSR 0.901 - 0.748 0.877 0.902 0.816 0.817

Table 3.7: The estimated coefficients of the population model, the random-effects model, the L1-
penalty model and the proposed model with corresponding median prediction errors (MPE) for the
ACTG data. The individualized coefficient estimators β̂izt’s in the Lasso model, the fused Lasso
(fusedL) model and the proposed (MDSP) model are not listed.

Model β̂0 β̂t β̂z β̂a β̂g β̂zt γ̂+ γ̂− MPE
Population 3.09 −0.68 −0.54 0.01 −0.01 −0.24 - - 1.67

Random-effects 2.56 −0.68 −0.57 0.02 −0.01 −0.29 - - 1.70
Lasso 3.09 −0.76 −0.54 0.01 −0.01 - - - 1.64
fusedL 3.05 −0.72 −0.52 0.01 −0.01 - - - 1.62
MDSP 3.10 −0.68 −0.56 0.01 −0.01 - 0.62 −0.60 1.44
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Table 3.8: The treatment effect estimators within each subgroup model (zero-effect group: β0
zt,

negative-effect group: β−zt and positive-effect group β+
zt) as well as the standard errors (s.e.) and

the p-values. Each subgroup consists of the corresponding individuals in the treatment group
identified by the Lasso model or the proposed model (MDSP) as well as all the individuals in the
control group. The proportion of individuals with the treatment classified into each subgroup is
provided.

Model Estimates s.e. p-value Proportion
β̂0
zt −0.24 0.17 0.14 0.75

Lasso β̂−zt −0.73 0.31 0.02 0.18

β̂+
zt 0.82 0.48 0.10 0.07

β̂0
zt −0.04 0.30 0.89 0.20

MDSP β̂−zt −0.68 0.08 0.00 0.64

β̂+
zt 0.72 0.33 0.02 0.16
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Figure 3.3: The boxplot of RMSE of the proposed MDSP model compared with other approaches based on
100 simulations, with sample size N = 40, 100, cluster size m = 10, 20, where homogeneous effect γ = 1.
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Figure 3.4: The boxplot of RMSE of the proposed MDSP model compared with other approaches based on
100 simulations, with sample size N = 40, 100, cluster size m = 10, 20, where homogeneous effect γ = 2.
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Figure 3.5: The boxplots of CVSR, sensitivity and specificity for all regularization approaches based on
100 simulations, with cluster size m = 10, 20, where homogeneous effect γ = 1 and sample size N = 40.
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Figure 3.6: The boxplots of CVSR, sensitivity and specificity for all regularization approaches based on
100 simulations, with cluster size m = 10, 20, where homogeneous effect γ = 1 and sample size N = 100.
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Figure 3.7: The boxplots of CVSR, sensitivity and specificity for all regularization approaches based on
100 simulations, with cluster size m = 10, 20, where homogeneous effect γ = 2 and sample size N = 40.
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Figure 3.8: The boxplots of CVSR, sensitivity and specificity for all regularization approaches based on
100 simulations, with cluster size m = 10, 20, where homogeneous effect γ = 2 and sample size N = 100.
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Figure 3.9: The subject-wise least squares estimator and the proposed estimator assuming two
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Chapter 4

Individualized Multi-layer Tensor Learning

4.1 Introduction

In recent years, imaging analysis has experienced an explosive growth due to high demand and ap-

plications in biomedical imaging for diagnosing disease status and assessing treatment outcomes.

The biomedical applications of imaging analyses are especially powerful in cancer radiotherapy

and neuroimaging [18, 50, 9, 14, 98, 42]. In addition, advanced technology developing in imaging

analysis can be utilized to better understand structures of the human body associated with biolog-

ical, psychological and clinical traits, [46, 41, 20, 27, 34, 71], so cancer and chronic diseases can

be diagnosed earlier, and intervention treatments can be implemented.

The imaging data are usually stored and formatted as a multi-dimensional array (also known as

a multi-order tensor), which is quite different from standard vector data since the tensor data have

higher-order structures and contain rich spatial information. Moreover, the tensor covariates could

contain other dimensions of information in addition to imaging, for example, a dimension of time

in time-course imaging or a dimension of multimodality imaging. This imposes great challenges

in developing new statistical tools to effectively extract essential imaging features associated with

disease outcomes and to utilize information from multiple sources jointly.

Traditional regression methods treat covariates as vectors. However, transforming an imaging

array to a vector becomes infeasible when an array size is large. For instance, a four-modality

breast cancer imaging size of 4, 000 × 4, 000 for each modality implicitly requires 4 × 4, 0002 =

6.4 × 107 regression parameters. This leads to an ultra-high dimensional problem which could

be computationally infeasible and non-scalable. Most critically, vectorization of an array is not

90



capable of preserving the spatial structure of imaging, and therefore spatial dynamics information

is not captured entirely.

Under the vectorization framework, Bayesian variable selection approaches are developed for

high-dimensional imaging regression models to identify important regions by applying Markov

random field priors to account for the spatial correlation between voxels, e.g., [58, 6, 7, 13, 42].

However, this increases complexity of the prior rapidly when the tensor order and dimension in-

creases, and could be computationally infeasible if the tensor order is high. Alternatively, func-

tional data analysis can be adopted to construct a two-dimensional image predictor [65] in a func-

tional regression model. Nevertheless, the extension to three dimensions or beyond could be im-

practical due to high-dimensional parameters arising from higher-order imaging data [98].

Recent major developments of imaging analyses employ a two-stage strategy, that is, perform a

dimension reduction such as principle component analysis (PCA) in the first step, and fit a regres-

sion model based on the extracted principal components in the second step [9]. [96] propose a two-

stage multi-modal and multi-task learning method by support vector machine (SVM). One critical

issue is that the PCA is an unsupervised dimension reduction technique, that is, the extracted prin-

cipal components or features might not be relevant to the responses. In addition, [98, 43] propose

a tensor regression model, where the coefficients associated to imaging voxels are formulated as a

tensor and assumed to be low-rank. However, they require locations of imaging voxels to be fixed

for different individuals, which are not applicable for breast cancer imaging.

One unique aspect of breast cancer imaging is that different individuals might have breast

imaging at very different locations, which is quite different from brain imaging where the target

locations of the brain are typically known and fixed. This creates a technical difficulty in that

the imaging background and the signal location could vary for different individuals. In fact, the

random-located-signal structure is equivalent to the case with very weak signals as it cannot cu-

mulate enough information if the sample size is not large.

Another prevalent tool for imaging analysis, especially on image recognition and classification,

is the deep learning method such as the convolutional neural network (CNN). In addition to input
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and output layers, a CNN contains multiple hidden layers which are either convolutional, pooling

or fully connected, which employs filters to reduce parameter dimension and extract local features.

However, without massive data, the deep learning approach cannot be well trained as it does not

pre-specify any structures. Thus a CNN could be lack of prediction power when training sample

size is not sufficiently large or imaging signals are not strong enough which is common at early

stage of disease.

In this chapter, we develop an individualized multilayer model utilizing an additional layer

of individual imaging structure and construct a high-order tensor decomposition to reduce the

dimensionality of features shared by populations. In addition, we propose an even higher order

tensor representation to integrate information from multimodality imaging data, which enables us

to capture the spatial structures of microvesicles associated with an early cancer stage.

The strength of the proposed approach is that we are able to capture the locations of microvesi-

cles more accurately when the locations of signals vary for different individuals, which is quite

common among breast cancer patients. In addition, the individualized multilayer tensor model is

able to identify the magnitude of microvesicle density more effectively compared to existing meth-

ods. This also implies medical and clinical significance when there is an indication of association

between tumor-associated microvesicles (TMVs) and development of carcinogenesis.

The conventional tensor decomposition methods for feature extraction [49, 3] such as the CAN-

DECOMP/PARAFAC (CP) decomposition assume common-shared parallel factors for any dimen-

sion of the tensor, which could be inefficient due to the complex tensor data structure. For instance,

in a higher-order multimodality imaging tensor, each modality of imaging could have its unique

modality-specific structure, which varies significantly for different modalities. In contrast, the pro-

posed method allows different structures (layers) along different dimensions, e.g., different dimen-

sions for individuals and modalities. Consequently, the proposed method is capable of capturing

important tensor features from different layers effectively and achieving dimension reduction more

efficiently, thus enhancing the prediction power.

Another advantage of the proposed method is that the extracted individuated layer is able to
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effectively integrate multi-modality information as it is shared by different image modalities from

the same subject. Although many work have been made to deal with multimodal images [96], to

best of our knowledge, most of existing methods combine the information extracted independently

from each image modality in a prediction stage, which could be inefficient in our situation that the

signal strength is very weak within each modality compared to the modality-specific background

noise.

This chapter is organized as follows. Section 4.2 introduces the notation and background model

framework. Section 4.3 presents the proposed method and establishes theoretical results. Section

4.4 proposes a scalable parallel algorithm. Section 4.5 provides simulation studies. Section 4.6 il-

lustrates an application for breast cancer optical imaging data. The last section provides concluding

remarks and discussion.

4.2 Background and Framework

4.2.1 Notation

In this section, we provide the notation and formulations of tensor. A Dth-order (or D-way) tensor

is a D-dimensional array X ∈ Rp1×p2×...×pD , where the order of a tensor is defined as the number

of dimensions, and is also known as ways or modes [37]. In this chapter, we use the terms ways,

modes and order interchangeably. For example, a vector is a one-way (first-order or one-mode)

tensor and a matrix is a two-way tensor. In addition, a fiber is defined as a vector by fixing every

index but one in a tensor [38], which is analogue to a matrix row or a column. Moreover, pd

(d = 1, . . . , D) is the marginal dimension of each mode, or the length of the corresponding fiber.

In the following, we introduce tensor operations. We denote vec(·) as a vectorizing operation

which converts a tensor to a vector, where the element xi1,...,iD in a D-way tensor X is turned to

be the
(
i1 +

∑D
d=2[(id− 1)

∏d−1
j=1 pj]

)
th element in the long vector vec(X). In addition, the inner
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product 〈·, ·〉 of two tensors with the same dimension is defined as

〈A,B〉 = 〈vecA, vecB〉 =

p1∑
i1=1

p2∑
i2=1

· · ·
pD∑
iD=1

ai1i2...iDbi1i2...iD .

It follows immediately that 〈A,A〉 =‖ A ‖2
F , where ‖ · ‖F is the Frobenius norm defined as the

square root of the sum of the squares of all elements. Moreover, an outer product “◦” operating on

multiple vectors b(1) ∈ Rp1 , . . . , b(D) ∈ RpD creates a D-way tensor

X = b(1) ◦ b(2) ◦ . . . ◦ b(D),

where the (i1, i2, . . . , iD)th element ofX is defined as xi1,...,iD = b
(1)
i1
b

(2)
i2
. . . b

(D)
iD

, and b(1), . . . b(D)

do not need to have the same dimension.

Consequently, a D-way tensor X ∈ Rp1×p2×...×pD is rank K if it can be represented as X =∑K
k=1 b

(1)
k ◦b

(2)
k ◦ . . .◦b

(D)
k , where bdk’s (k = 1, . . . , K) are pd-dimensional vectors (d = 1, . . . , D).

We denoteBd = [bd1, b
d
2, . . . , b

d
K ] ∈ Rpd×K as rank-K bases on mode d.

4.2.2 Background of the Two-Stage Model

One way to model an association between the image tensor predictors and the outcome response

is through a generalized linear model [51]. That is,

g(µi) = αTZi + βTf(Xi), (4.1)

where g(·) is a link function, µi = E(yi), and Zi is a common vector covariate. Alternatively,

we can employ a machine learning model such as the support vector machine (SVM) for binary

outcomes:

min
n∑
i=1

(
1− yi(αTZi + βTf(Xi))

)
+

. (4.2)

For both models above, the D-way tensor predictor Xi is incorporated through an appropriate

feature extraction or transformation procedure f(·). One naive transformation method is to convert
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Xi to a vector via f(Xi) = vec(Xi). However, the number of unknown parameters using a vector

is pα +
∏D

d=1 pd, which is ultra-high dimensional and leads to an estimable model.

A natural solution to solve this problem is to employ a dimension reduction technique to extract

important features from the tensor predictor at the first stage, and then fit the model in either (4.1) or

(4.2) based on the extracted information f(Xi). In the first dimension reduction step, we consider

a low-rank approximation for tensorXi as

Xi =
K∑
k=1

wikBk, i = 1, . . . , N,

where N is the sample size, and Bk’s (k = 1, . . . , K) are regularized D-way tensor bases shared

by populations. Given a rank K, the tensor bases can be obtained by minimizing the difference

between the observed imaging and approximated values:

min
{Bk,wk}Kk=1

N∑
i=1

‖Xi −
K∑
k=1

wikBk ‖2
F , s.t. ‖ Bk ‖F= 1, k = 1, . . . , K, (4.3)

where wk = (w1k, . . . , wNk)
′ is the loading vector. Note that ‖ Xi ‖F=‖ vec(Xi) ‖F . The

number of unknown parameters to be estimated in (4.3) is K(N +
∏D

d=1 pd − 1), which is still

ultra-large if the order of the tensor is high.

To overcome the computational difficulty, [9] propose a dimension reduction technique for

fMRI image data, which converts fMRI images to a matrix with one dimension as a vectorizing

MRI image and the second dimension as time. By mimicking [9]’s approach, we obtain a set of

common bases for individual tensor predictors by using a marginal principal component analysis

(MPCA) technique.

Specifically, for a two-way individual tensor (matrix), we first apply singular value decomposi-

tion on each individual matrix such thatXi = UiWiV
T
i , and select the firstKs component vectors

[ui1, . . . ,uiKs ] and [vi1, . . . ,viKs ] from Ui and Vi, respectively. Then we apply principal com-

ponent analysis on each set of combined individual component vectors {uik}i=1,...,N ;k=1,...,K and

{vik}i=1,...,N ;k=1,...,K , and generate two sets of eigen-bases [eu1 , . . . , e
u
Kp

] and [ev1, . . . , e
v
Kp

]. Con-
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sequently, the common bases for two-way tensors are obtained byBk = euk ◦ evk, k = 1, . . . , Kp.

Note that any higher-order tensor can be transformed to a two-way matrix, and the MPCA

is applicable for the transformed two-way matrix. However, this kind of transformation is usually

arbitrary without knowing which part of the tensor should be converted to a vector, and thus making

the MPCA rather limited.

4.3 Proposed Method

4.3.1 Individualized Multilayer Model

In this section, we propose a novel individualized multilayer method for tensor feature extraction

based on high-order decomposition. Here we assume that each individual has a D-way tensor

covariate Xi ∈ Rp1×p2×...×pD . We integrate all individual tensors to a higher-order (D + 1)-way

grand tensorX = [X1, . . . ,XN ] ∈ Rp1×p2×...×pD×N . Analogous to singular value decomposition,

we allow the (D + 1)-way grand tensorX to follow a low-rank structure as

X =
K∑
k=1

b
(1)
k ◦ b

(2)
k ◦ . . . ◦ b

(D)
k ◦wk, (4.4)

where b(d)
k ’s (k = 1, . . . , K) are pd-dimensional vectors (d = 1, . . . , D), andwk’s areN -dimensional

vectors representing the dimension of sample individuals. This tensor rank decomposition is also

known as CANDECOMP/PARAFAC decomposition, or Kruskal decomposition [40]. To ensure

identifiability, we require ‖ b(d)
k ‖F= 1 for all k’s and d’s. Note that the CP decomposition of a

tensor is not always unique, except under certain conditions [77].

An alternative tensor decomposition is high-order singular value decomposition, also called

Tucker decomposition [85], which decomposes a tensor into a D-way core tensor associated with

D orthonormal bases matrices. However, the core tensor in Tucker decomposition is not guaranteed

to be diagonal, and thus the tensor rank is not estimable. Therefore we adopt the CP decomposition
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here. The rank-K CP decomposition in (4.4) is obtained by minimizing

min
{b(1)k ,...,b

(D)
k ,wk}Kk=1

‖X −
K∑
k=1

b
(1)
k ◦ b

(2)
k ◦ . . . ◦ b

(D)
k ◦wk ‖2

F . (4.5)

Since ‖ b(1)
k ◦ b

(2)
k ◦ . . . ◦ b

(D)
k ‖F=

∏D
d=1 ‖ b

(d)
k ‖F= 1, it can be shown that (4.3) is equivalent

to (4.5) if the basis tensorBk in (4.3) admits a rank-one decomposition asBk = b
(1)
k ◦ b

(2)
k ◦ . . . ◦

b
(D)
k . However, the number of unknown parameters in (4.5) is K{N +

∑D
d=1(pd − 1)}, which

is much smaller than that in (4.3) when the order D and the marginal dimensions pd’s are large.

Consequently, the tensor covariate Xi is reduced to f(Xi) = wi = (wi1, . . . , wiK)′, which can be

fitted in a prediction model as (4.1) or (4.2).

The higher-order CP decomposition (HOCPD) described in (4.5) is powerful for reducing the

tensor covariates’ dimensionality; however, it depends on the low-rank assumption in order to

achieve an integrated high-order tensor. The high-order tensor decomposition methods could fail to

capture complex tensor data information if there is significant heterogeneous variation arising from

different individuals. In the following, we propose an individualized multilayer tensor learning

(IMTL) method. For the ith individual, we assume

Xi =
K∑
k=1

wikBk + uiSi, s.t. 〈Bk,Si〉 = 0, k = 1, . . . , K, (4.6)

whereBk = b
(1)
k ◦ b

(2)
k ◦ . . . ◦ b

(D)
k is the population-shared basis, and Si = s

(1)
i ◦ s

(2)
i ◦ . . . ◦ s

(D)
i

is an individualized rank-1 basis with s(d)
i ∈ Rpd (d = 1, . . . , D). An orthogonal constraint is

imposed between homogeneous bases in (4.4) and heterogeneous bases in (4.6) to guarantee the

identifiability between these two different layers. Therefore the extracted information for tensor

covariates based on the IMTL method is f(Xi) = (wi, ui, vec(Si)
′)′.

Through (4.6), each tensor covariate Xi can be represented by two different layers, one layer

consisting of a linear combination of homogeneous structures (Bk’s), and the other layer contain-

ing an individualized structure (Si) capturing the heterogeneity of individual features. In addition,
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the individualized basis Si is likely to contain rich spatial imaging information for different indi-

viduals.

We can further fit a generalized linear model or a SVM with imaging information from both

layers. For example, the fitted generalized linear model is

g(E[yi]) = αTZi + βTf(Xi) = αTZi + βTwwi + βTuui, (4.7)

where ui = (ui, vec(Si)
′)′ and β = (β′w,β

′
u)
′. In addition, we can impose additional penalties for

feature selection when the sample size N is much smaller than the total number of the parameters

(pα +K +
∏D

d=1 pd + 1), where pα is the dimension of the vector-based predictor Zi.

4.3.2 Generalization for Multimodality Tensor

Multimodality imaging produces multiple images using different wavelengths of light from a single

examination and is widely adopted in optical imaging. In particular, the multimodality multiphoton

imaging technique [84] is capable of generating imaging in different modalities at tissue, cellular

and molecular scales. Although a single modality model is applicable, there is a critical need to

combine all information collected from multimodality imaging, so important features associated

with disease status and clinical outcomes can be extracted effectively. In addition, through com-

bining multimodal data, we can capture the spatial information shared by different modalities from

the same individual. In the following, we develop multimodality imaging tensor model which

extends the individualized multilayer tensor model to incorporate different sources of modality

information.

We consider a M-modality tensor covariate Xi = [X1
i , . . . ,X

M
i ], where each signal-modality

tensorXm
i (m = 1, . . . ,M ) has the same size Rp1×p2×...×pD . For the purpose of feature extraction,
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we propose an individualized multilayer model for the mth modality:

Xm
i =

Km∑
k=1

wmikb
m,(1)
k ◦. . .◦bm,(D)

k +umi s
(1)
i ◦. . .◦s

(D)
i =

Km∑
k=1

wmikB
m
k +umi Si, s.t. 〈Bm

k ,Si〉 = 0,

(4.8)

where {Bm
k = b

m,(1)
k ◦. . .◦bm,(D)

k }Kmk=1 is the set of bases for themth modality,Si = s
(1)
i ◦. . .◦s

(D)
i is

a rank-1 individualized basis shared within the ith subject, andKm is the rank of themth modality’s

common bases. The proposed model is estimated by minimizing a sum of squared loss

min
{wmi ,Bmk ,ui,Si}i,k,m

N∑
i=1

M∑
m=1

‖Xm
i −

Km∑
k=1

wmikB
m
k − umi Si ‖2

F , s.t. 〈Bm
k ,Si〉 = 0, (4.9)

where wm
i = (wmi1 , . . . , w

m
iKm

)′, and ui = (u1
i , . . . , u

M
i )′. Consequently, for this M-modality

tensor, the extracted information is f̂(Xi) = (w1′
i , . . . ,w

M ′
i ,u′i, vec(Si)

′)′. Figure 4.1 provides

an illustration of the individualized layers and the modality-specific layers on the four-modality

optical breast cancer images.

In the following we consider a new subject with the M-modality tensor covariate X∗j =

[X∗1j , . . . ,X
∗M
j ]. In order to make a prediction of outcome y∗j , first we obtain its extracted tensor

covariate’s information following the training model, denoted as f̂(X∗j ). Note that the modality-

specific loading w∗mj = (w∗mj1 , . . . , w
∗m
jKm

)′ ∈ RKm for the new subject’s tensor predictor can be

calculated as a projection corresponding to the estimated modality layers

w∗mj = (Â
′mÂm)−1Â

′mvec(X∗mj ),

where Âm = [vec(Bm
1 ), . . . , vec(Bm

Km
)] ∈ R

∏D
d=1 pd×KM is the extracted tensor basis matrix for

the mth modality from the training model. Next we obtain the individualized layer for the new

subject by

min
u∗j ,S

∗
j

M∑
m=1

‖Xm
j −

Km∑
k=1

w∗mjk B
m
k − u∗mj S∗j ‖2

F ,

where S∗j = s
∗(1)
j ◦ . . . ◦ s∗(D)

j ∈ Rp1×...×pD has a rank-1 structure. In addition, we have f̂(X∗j ) =
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(w∗1
′

j , . . . ,w∗M
′

j ,u∗
′
j , vec(S∗j )

′)′, and the prediction for the new subject provided by the general-

ized linear model is

µ∗j = g−1

(
α̂TZ∗j + β̂T f̂(X∗j )

)
,

where µ∗j = E[y∗j ], α̂ ∈ Rpα and β̂ ∈ R
∑M
m=1(Km+1)+

∏D
d=1 pd are the estimated coefficients from the

training model.

In addition, the individualized layer Si usually contains important spatial information for the

image tensor. However, the traditional tensor decomposition techniques, e.g., the CP decomposi-

tion and the Tucker decomposition, are not effective to capture the spatial information, which is a

remaining challenge in imaging analysis. To solve this problem, we propose a penalized decom-

position model based on (4.9) as follows

min
{wmi ,Bmk ,ui,Si}i,k,m

N∑
i=1

( M∑
m=1

‖Xm
i −

Km∑
k=1

wmikB
m
k − umi Si ‖2

F +λρf (Si)

)
, s.t. 〈Bm

k ,Si〉 = 0,

(4.10)

where λ is a tuning parameter and ρf (·) adopts a fusion-type penalty:

ρf (Si) =
D∑
d=1

pd−1∑
jd=1

|s(d)
ijd
− s(d)

i(jd+1)|,

and s(d)
i = (s

(d)
i1 , . . . , s

(d)
ipd

)′ is the pd-dim vector for the dth mode of the CP decomposition for Si.

By imposing a fusion penalty on the adjacent components of each mode’s decomposition vec-

tor (s(d)
i , d = 1, . . . , D), the proposed penalized tensor decomposition method takes neighboring

correlation information into account and thus utilizes the individualized spatial information on

multimodal images. Note that the proposed penalized tensor decomposition model is a general

method to incorporate spatial information in a tensor decomposition, which is not limited to only

individualized layer Si in this case.

100



4.3.3 Theoretical Results

In this section, we develop the theoretical foundation for the proposed model. First, we provide

necessary and sufficient conditions to achieve the model identifiability. In addition, we show that

the proposed method provides an estimated tensor converging to the hypothetical true tensor under

regularity conditions, which lays the foundation of estimation consistency.

Before establishing the statistical property, it is important and crucial to deal with the model

identifiability issue, which is always challenging for tensor-structure framework. Here we provide

some necessary and sufficient conditions to achieve identifiable layers in the proposed multi-layer

tensor model, which are also easy to check in practice. The following discussion focuses on the sin-

gle modality model while the presented conditions could be easily extended to the multi-modality

model.

In the proposed framework, the unidentifiability lies in the multi-layer CP decomposition of

tensor predictors in 4.6, which is attributed to three aspects. The first two aspects are indetermi-

nacies of scaling and permutation, The last aspect is the non-uniqueness of the CP decomposition

for a tensor, which means that there might be more than one possible combination of population

layers and individualized layers that sum to the underlying true image tensor.

The proposed single-modality individual tensor consists of R+ 1 layers: Xi =
∑R

r=1wirBr +

uiSi, where Br = b
(1)
r ◦ · · · ◦ b(D)

r and Si = s
(1)
i ◦ · · · ◦ s

(D)
i . The scaling indeterminacy refers to

the fact that we can arbitrarily scale the factor vectors of different modes of each layer since

Br = a(1)b(1)
r ◦ · · · ◦ a(D)b(D)

r

holds as long as
∏D

d=1 a
(d) = 1. Therefore we impose a unit-norm constraint on parameterization,

that is, ‖b(d)
r ‖2 = 1 (d = 1, . . . , D; r = 1, . . . , R) and ‖s(d)

i ‖2 = 1 (d = 1, . . . , D; i = 1, . . . , N ),

to eliminate the indeterminacy from the scaling issue. In addition, the permutation indeterminacy

comes from the arbitrary reordering of the population layers. To treat the permutation indetermi-

nacy, we could align the population layers according to a descending order of the first element of
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mode-1 factor vectors, that is, requiring b(1)
1 [1] ≥ b(1)

2 [1] ≥ . . . ≥ b(1)
R [1].

After controlling the scaling and the permutation, in general, the CP decomposition for a tensor

may still not be unique. It is possible to have more than one combination of rank-one tensors that

sums toXi. Note that the individualized layer is of rank one. The following lemma guarantees the

uniqueness of the CP decomposition of any rank-1 tensor, which implies the identifiability of the

individualized layer given the population layers.

Lemma 7. Any rank-1 CP decomposition for a D-way (D ≥ 2) tensor is unique up to only scaling

indeterminacy.

Next we introduce the concept of k-rank of a matrix, which is introduced by [40]. Specifically,

the k-rank of a matrixA, denoted as KA is defined as

KA = max{k : any k columns ofA are linearly independent}.

Let B̃(d)
i = [b

(d)
1 · · · b(d)

R s
(d)
i ] denote the mode-d factor matrix of individual tensor predictor

Xi. The next proposition provides a necessary and a sufficient condition on model identifiability

following the standard results from [40, 77].

Proposition 2. i) (sufficient condition) For the D-way tensor X i in 4.6 (1 ≤ i ≤ N ), the multi-

layer CP decomposition is unique up to scaling and permutation if

D∑
d=1

K
B̃

(d)
i
≥ 2R +D + 1;

ii) (necessary condition) R ≤ min
1≤d≤D

(
∏
m 6=d
KB(m) + 1)− 1.

The conditions above are easy-to-check in numerical studies. Combined with Lemma 1, the

following corollary provides a more straightforward condition.
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Corollary 5. For any D-way tensor Xi (1 ≤ i ≤ N ), where D ≥ 3, if the factor matrix B̃(d)
i has

a full k-rank at each mode, that is, K
B̃

(d)
i

= R+ 1 for 1 ≤ d ≤ D; then the the decomposed layers

in 4.6 are unique up to scaling and permutation.

In the case of D = 2, where the individual predictor is of a matrix structure, the above con-

dition does not hold. One way to solve the identifiability issue is to impose additional orthogonal

constraints between factor vectors within each mode, which is analogous to the singular value de-

composition. However, this brings additional computation cost. Moreover, Proposition 1 has to

check all individual tensors separately, which is not effective in practice, especially when sample

size N is increasing. Next we provide a much weaker sufficient condition based on the integrated

higher-order tensor without imposing any additional constraints on parameterization.

Let X[1:n] denote an integrated (D + 1)-way tensor combining n individual tensors. Without

loss of generality, we assume X[1:n] = [X1 · · · Xn]. Note that there is a (R + n)-rank represen-

tation for the integrated tensor

X[1:n] =
R∑
r=1

w[1:n]
r ◦ b(1)

r ◦ · · · ◦ b(D)
r +

n∑
i=1

u
[1:n]
i ◦ s(1)

i ◦ · · · ◦ s
(D)
i ,

where w[1:n]
r = (w1r, . . . , wnr)

′ and u[1:n]
i = (0, . . . , 0︸ ︷︷ ︸

1,...,i−1

, 1︸︷︷︸
i

, 0, . . . , 0︸ ︷︷ ︸
i+1,...,n

)′. Similarly, we denote

B̃
(d)
[1:n] = [b

(d)
1 · · · b(d)

R s
(d)
1 · · · s(d)

n ] as the mode-d factor matrix for then tensor X [1:n] for

1 ≤ d ≤ D. We have the following result providing a sufficient condition for the identifiability of

the multi-layer tensor decomposition in 4.9.

Proposition 3. If there exists n individual tensors (2 ≤ n ≤ N ), such that for the integrated

high-order tenorX[1:n],
D∑
d=1

K
B̃

(d)
[1:n]

≥ 2R + n+D

holds, then the multi-layer decomposition in 4.6 is unique up to scaling and permutation.

The above sufficient condition is weak and easy-to-check as it requires holding only for an

arbitrary n. For example, let n = 2 and assume that the factor matrices are of full rank, that is,
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K
B̃

(d)
[1:n]

= R + n, then the condition in Proposition 2 reduces to D(R + n) ≥ 2R + n + D, which

holds as long as D ≥ 2.

Next we establish the statistical properties for the proposed estimator. We denote γ as the

vector of all latent variable parameters. It is straightforward that dim(γ) = (K + 1)(
∑D

d=1 pd +

NM). Let Θ = (θmi,j1···jD) and θmi,j1···jD =
∑Km

k=1(wmikb
m,(1)
kj1
· · · bm,(D)

kjD
) + umi s

(1)
ij1
· · · s(D)

ijD
. In the

proposed model, we assume that E[xmi,j1...jD ] = θmi,j1...jD , where xmi,j1...jD denotes an element of the

observed tensor, for example, a pixel in an image.

In practice, each pixel of a tensor image can only range from white to black and is usually

normalized. Hence, it is sensible to assume that ‖Θ‖∞ ≤ C0 and ‖γ‖∞ ≤ C1 for large constants

C0 ≥ 0 and C1 ≥ 0. One challenge to our theory derivation is that the proposed individualized

layer of tensor recovery implicitly assumes that the number of parameters grows as the number

of subjects increases. Therefore we impose a condition such that the parameter space is restricted

based on the regularization function. Specifically, let p(γ) be a positive penalty function. As the

dimension of the parameter space increases as N and M increases, we assume that p(γ) ≤ r2 and

r = O(
√

(K + 1)(
∑D

d=1 pd +NM)). Then we define the vector parameter space

SΘ(r) = {θ : ‖Θ‖∞ ≤ C0, p(γ) ≤ r2}

and

Sγ(r) = {γ : ‖γ‖∞ ≤ C1, p(γ) ≤ r2}.

This controls the overall degree of freedom for parameters. In addition, other regularizations

include the orthogonality requirement 〈Bm
k ,Si〉 = 0 imposed in Section 3.2, the L1 and L2 penalty

to control weight decay, penalty functions to ensure identifiability, or any combinations of these.
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For the (j1, . . . , jD)th element of Xm
i , we define the loss function

l(Θ, xmi,j1···jD) = (xmi,j1···jD − θ
m
i,j1···jD)2 (4.11)

= (xmi,j1···jD −
Km∑
k=1

wmikb
m,(1)
j1k
· · · bm,(D)

kjD
− umi s

(1)
ij1
· · · s(D)

ijD
)2. (4.12)

In the following, we assume that the overall criterion function is an additive form of the loss

function and the penalty function, that is,

L(Θ) =
N∑
i=1

M∑
m=1

∑
j1

· · ·
∑
jD

l(Θ, xmi,j1···jD) + λp(γ),

where λ is a penalization coefficient. Suppose that S is the parameter space of Θ, and that

Θ̂N = arg minL(Θ), (4.13)

then the following theory provides the consistency of the parameter estimation.

Theorem 7. For the sample minimizer Θ̂N , we have

P (
1

N
‖Θ̂N −Θ0‖F ≥ ηN) ≤ 7 exp(−c1Nη

2
N),

where c1 ≥ 0 is a constant, ηN = max(εN , λ
1/2
N ), and εN = 1

N1/2 is the best possible rate achieved

when λN ∼ ε2
N .

Theorem 7 indicates that the minimizer obtained in (4.13) converges to the true parameter when

the sample size goes to infinity and the penalization coefficient goes to zero faster than the best

convergence rate. In other words, each element of the estimated tensor converges to the corre-

sponding element of the true tensor. In addition, this theorem is established under the tensor CP

decomposition framework which requires a smaller number of parameters, assuming a low rank of

the true tensor. Furthermore, we can show a model collapsing multimodality imaging into vectors

or matrices leads to a larger number of parameters in order to preserve the true tensor structure,
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and hence entails a slower convergence rate than the rate provided in Theorem 7. Furthermore,

given the identifiable conditions, Theorem 7 also implies the consistency of parameter estimator

γ̂, that is, γ̂ → γ0 as N →∞.

4.4 Implementation

In this section, we propose a two-step alternating least-squares (ALS) algorithm to solve the es-

timation problem for the proposed IMTL method in (4.9). In contrast to traditional CP decom-

position, incorporating individual layers of the proposed method significantly increases the com-

putation cost, and algorithms feasible for tensor decomposition are not necessarily scalable in our

situation. In this section, we provide the algorithm for the multimodality data case; the estimation

for single-modality data is just a special case with the number of modalities M = 1.

The proposed algorithm first estimates the modality-specific layers by minimizing the within-

modality loss

min ‖Xm − X̂m ‖2
F with X̂m =

Km∑
k=1

b
m,(1)
k ◦ . . . ◦ bm,(D)

k ◦wm
k , (4.14)

where Xm is the (D + 1)-way tensor for the mth modality combing all individuals’ tensors, and

the (D + 1)th mode of Xm denotes the dimension of individuals and wm
k ∈ RN . Let

Km∑
k=1

b
m,(1)
k ◦

. . . ◦ bm,(D)
k ◦wm

k = bBm,(1), . . . ,Bm,(D);wmc, whereBm,(d) = {bm,(d)
1 , . . . , b

m,(d)
Km
} ∈ Rpd×Km is

the basis matrix of the dth mode for the mth modality, and satisfies the constraint of ‖bm,(d)
k ‖F = 1

(k = 1, . . . , Km).

To solve the optimization in (4.14), we update one mode’s basis matrix by fixing the other

modes’ parameters, which reduces the problem to a least-squares type of problem at each itera-

tion. For example, to update Bm,(1) at the tth iteration Bm,(1),[t], the above minimization problem

becomes

min
Bm,(1)

p1∑
n=1

∥∥∥∥∥Xm[n, :, . . . , :]−
Km∑
k=1

b
m,(1)
nk

(
b
m,(2),[t−1]
k ◦ . . . ◦ bm,(D),[t−1]

k ◦wm,[t−1]
k

)∥∥∥∥∥
2

F

,
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where Xm[n, :, . . . , :] is a D-way tensor fixing the index of the first mode, bm,(1)
nk is the (n, k)th

element of the unknownBm,(1),wm,[t−1]
k and bm,(d),[t−1]

k ’s are estimated factors of the other modes

from the (t − 1)th iteration. Let Bm,(1)[n, :] denote the nth row of Bm,(1), B̃m,[t−1]
k [−1] =

b
m,(2),[t−1]
k ◦. . .◦bm,(D),[t−1]

k ◦wm,[t−1]
k , and Ṽ m,[t−1][−1] =

[
vec(B̃

m,[t−1]
1 [−1]), . . . , vec(B̃

m,[t−1]
Km

[−1])

]
∈

RN
∏D
d=2 pd×Km . Then the minimization is solved by

(B̃m,(1),[t][n, :])T =

(
(Ṽ m,[t−1][−1])T Ṽ m,[t−1][−1]

)−1

(Ṽ m,[t−1][−1])Tvec(Xm[n, :, . . . , :])

(4.15)

for n = 1, . . . , p1, which only involves the inverse calculation of a Km ×Km matrix. The estima-

tions of factors B̃m,(d)’s (d = 1, . . . , D) corresponding to the other modes follow similarly. Finally,

we normalize the columns of B̃m,(d),[t−1] to obtain B̂m,(d),[t−1]; that is, let b̂m,(d),[t−1]
k =

b̃
m,(d),[t−1]
k

‖b̃m,(d),[t−1]
k ‖F

(k = 1, . . . , Km) and ŵm,[t−1]
k is updated by ŵm,[t−1]

k ‖b̃m,(d),[t−1]
k ‖F .

Next we estimate the individualized layers by minimizing the within-subject loss while fixing

the modality-specific layers (ŵm,[t−1]
ik ’s and B̂m,[t−1]

k ’s) estimated from the first step, that is,

min
{umi }Mm=1,{s

(d)
i }Dd=1

M∑
m=1

‖Xm
i −

Km∑
k=1

ŵmikB̂
m
k − umi Si‖2

F , with Si = s
(1)
i ◦ . . . ◦ s

(D)
i . (4.16)

The individualized parameters umi ’s (m = 1, . . . ,M ) and s(d)
i ’s (d = 1, . . . , D) are estimated by

employing the ALS algorithm, as in the procedure in estimating modality-specific layers above.

The proposed two-step algorithm can be summarized in Algorithm ??.

The proposed algorithm makes parallel computing feasible in estimating different modality-

specific bases at Step 2 and individualized layers at Step 3. In addition, parallel computing can

also be applied in calculating different rows of modality-specific factors B̃m,(d)’s in (4.15). This

ensures that the computation of the proposed method is highly scalable and efficient.
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Algorithm 3 A Two-Step ALS Algorithm with Parallel Computing
1. (Initialization) Input all observed Xi’s, the rank for each modality Km’s, initial values for
Bm,(d),[0]’s (m = 1, . . . ,M ; d = 1, . . . , D). Set S(d),[0]

i = 0 and u[0]
i = 0 for i = 1, . . . , N , and a

stopping criterion ε = 10−4.

2. (Modality-specific layers) At the tth iteration, for each modality m (m = 1, . . . ,M ),

1. LetXm,[t]
i = Xm

i − û
m,[t−1]
i Ŝ

m,[t−1]
i and replaceXm

i withXm,[t]
i in (4.15);

2. Update B̂m,(d),[t] through (4.15) given
(
B̂m,(1),[t], . . . , B̂m,(d−1),[t], B̂m,(d+1),[t−1], . . . , B̂m,(D),[t−1]

)
sequentially.

3. (Individualized layers). At the tth iteration, for each subject i, update um,[t]i and S[t]
i through

(4.16) for i = 1, . . . , N .

4. (Stopping Criterion). Calculate the fitted tensor X̂m,[t]
i =

∑Km
k=1 ŵ

m,[t]
ik B̂

m,[t]
k + û

m,[t]
i Ŝ

[t]
i ,

and the difference between the two latest fitted tensors
∑N

i=1

∑M
m=1 ‖X̂

m,[t]
i − X̂

m,[t−1]
i ‖F .

Continue the iteration processes in Step 2 and 3 until the difference of the two latest fitted tensors
is smaller than the stopping criterion ε.

4.5 Numerical Studies

In this section, we provide simulation studies to illustrate the numerical performance of the pro-

posed method compared with other competing methods. Specifically, we first consider two sim-

ulation studies for single modality data in Sections 4.5.1 and 4.5.2, and investigate multimodality

imaging in Section 4.5.3.

4.5.1 Simulation A: Random Signal Area

In this study, we simulate random-signal-area imaging data which frequently arise in clinical di-

agnosis. In the real case, disease is detected through identifying an unusual area (signal area) by

medical imaging. The location of the signal area could be restricted within a subregion, but it is

typically not fixed.

The D×D two-way image predictorXi is generated asXi = Bi +Ni, whereBi is a D×D

sparse feature matrix and Ni is a noise matrix with each component generated from N(0, 0.1).
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Specifically, the entries of Bi within a subregion (rows 8-13 and columns 8-13) are independently

generated from a Bernoulli distribution with a success probability 0.01 of being 1. The response

yi is set as 1 (disease) if the number of non-zero entries in Bi is greater than zero, or 0 (normal)

otherwise, Figure 4.2 illustrates cancer and normal imaging where the location of signals (white

color) could randomly appear in a subregion containing 36 pixels compared to the whole imaging

with 400 pixels. The outcome rate of cancer is 1 − 0.9936 = 0.30, and the probability of having

more than one signal is 0.05.

We set the sample size for the training set to be Ntr = 40 and the testing set to be Nts = 100.

The marginal imaging dimension D is set as 20. The simulation results are summarized based on

100 replications.

We compare the proposed individualized multilayer tensor learning model with the higher-

order CP decomposition method in (4.5), the marginal principal component analysis method de-

scribed in Section 4.2, the vectorizing L1-penalized logistic regression model (VPL), the mean-

distance classification method (MeanDist), and the tensor regression (TR) model [98].

The vectorizing L1-penalized logistic regression model converts the imaging covariateXi to a

D2 × 1 vector predictor and then fits an L1-penalized logistic regression model for the binary re-

sponse, which is implemented by the R package “penalized.” The mean-distance model calculates

the sample mean images M1 = 1
|I1|
∑

i∈I1Xi and M0 = 1
|I0|
∑

i∈I0Xi for the disease group and

the control group in the training set, respectively, where I1 = {i : yi = 1} and I0 = {i : yi = 0},

and | · | denotes the set size. For a new subject with an imaging predictor X∗j , the MeanDist

model assigns a predicted label as ŷ∗j = 1{‖X∗j−M1‖F<‖X∗j−M0‖F }. In addition, the tensor regression

method is implemented by [97]’s Matlab toolbox “TensorReg.”

To evaluate the prediction performance, we calculate the overall prediction accuracy rate (P[ŷ =

y0]), the sensitivity (P[ŷ = y0|y0 = 1]) and the specificity (P[ŷ = y0|y0 = 0]) on the testing test,

where y0 denotes the true label. The tuning parameters associated with the latent rank for the

IMTL, the TR, the HOCPD and the MPCA are selected through minimizing the prediction error

rates (1−P[ŷ = y0]) in the validation set.
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Table 4.1 provides prediction performance comparisons for various methods. It shows that

the proposed IMTL model outperforms all the other methods in prediction. In general, the vec-

torizing penalization logistic model and the tensor regression model perform inadequately with

an overall prediction accuracy below 65%. These two approaches assume that the signal pixels

occur at the same locations in different images and share the same association strength with the

response through a population coefficient model. However, in this simulation setting, the signal

location is random for different images. In addition, Table 4.1 shows that HOCPD, MCPA and

MeanDist perform similarly and have better overall accuracy than VPL and TR. This indicates

that the dimension-reduction methods are more accurate in capturing relevant features associated

with responses in this setting. The proposed IMTL method outperforms the three competitive

dimension-reduction methods with about 20% improvement in prediction accuracy. Moreover, the

proposed IMTL model achieves 97% overall accuracy, indicating that heterogeneous variations

from the individual images indeed contain essential information in predicting disease outcomes.

4.5.2 Simulation B: Multiple Random Weak Signals

In this simulation study, we consider a multiple-random-weak-signal problem motivated by a real

data example, which is also quite common in practice. The disease imaging contains a large

number of signal pixels with random locations, while the normal imaging has a much smaller

number of signal pixels with random locations. This setting mimics breast cancer imaging where

cancerous tissue has a lot more tumor-associated microvesicles compared to normal tissue.

Similarly to Simulation A, we generate the D ×D two-way image predictor fromXi = Bi +

Ni, For each Bi, we randomly select Si entries to be 1 (signal pixels) while the other entries are

0. We generate the response label yi from a Bernoulli distribution with a probability 0.5. The

number of the signal pixels Si is generated from a Poisson distribution with means µC and µN for

the cancer group (yi = 1) and the normal group (yi = 0), respectively. Figure 4.3 illustrates the

cancer and normal images.

We set the training and testing set sizes to be Ntr = 50 and Nts = 100 respectively, the
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marginal imaging dimension to be D = 32, and µC = 20, 30 and µN = 5. The prediction results

from various methods are summarized based on 100 simulations.

We compare the proposed IMTL method with the five competing methods described in Section

4.5.1. Table 4.2 provides the prediction results, indicating the superior performance of the proposed

method in terms of the highest overall accuracy, sensitivity and specificity. Figure 4.3 illustrates

that the signals occur throughout the entire region randomly, but each pixel could be very weakly

associated with the response outcome. Therefore the VPL method and the TR method perform

poorly. In addition, if the disease imaging has more signal quantity than a normal image with µC =

30, then the MPCA and the HOCPD methods perform reasonably well with an overall prediction

accuracy of 83.4% and 99.2%, respectively. However, if the difference between the disease and

normal signal patterns is relatively smaller with µC = 20, then the MPCA and the HOCPD methods

lose prediction power more rapidly, while the proposed IMTL method still achieves over 96%

overall accuracy.

4.5.3 Simulation C: Multimodality Data

In this simulation study, we simulate four-modality imaging data. Four modalities imaged from the

same individual share multi-random-weak-signal features as described in Section 4.5.2, where the

same modality imaging from different individuals contains its unique background bases. Figure

4.4 illustrates control and disease imaging for each modality.

We simulate the mth-modal image for the ith subject Xmi (D × D-dimensional) as Xmi =

Ami +Bi +Ni, m = 1, . . . , 4, where the feature imageBi, the noise imageNi and the response

label yi are generated similarly as those in Section 4.5.2. The mean number of signals for cancer

imaging µC is chosen as 30. The first modalityA1i is generated as a full-rank random noise matrix

with elements generated from N(0, 0.52); the second modality imaging has a uniform background

with A2i = w2i1D1TD, where 1D is a D × 1 vector of 1’s and w2i is generated from an absolute

value of N(0, 0.52); and both the third and fourth modality imaging have low-rank structures with

Ami =
∑5

k=1wmika
(1)
mk ◦ a

(2)
mk (m = 3, 4), where wmik’s are generated from N(0, 0.52), a(1)

mk’s and
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a
(2)
mk’s are generated from N(0, 0.52ID), and ID is the D-dimensional identity matrix. We set the

training and testing set sizes as Ntr = 100 and Nts = 100 respectively, and the marginal imaging

dimension is D = 64.

We compare the proposed individualized multilayer tensor learning method to the VPL method,

the MPCA method, the TR method and the HOCPD method. The VPL is applied on a 16, 384-

dimensional vector predictor by vectorizing all four modalities. In addition, the MPCA is applied

on each individual modality at the first stage and then fits a logistic model with extracted features

from all modalities at the second stage. We do not apply the MPCA on the integrated imaging since

the multimodality dimension (Dm = 4) is not comparable to the marginal imaging dimension

(D = 64). The HOCPD is applied on the integrated multimodality image (third-order tensor

predictor).

Table 4.3 provides the prediction results on the testing set. The proposed method (IMTL)

outperforms other methods with the highest prediction accuracy (84.2%) and sensitivity (80.5%).

Moreover, both the proposed IMTL method and the HOPCD method have significant advantage

over the VPL method, the TR method and the MPCA method which assume that the four modal-

ities of imaging are independent. This indicates that integrating different modalities’ information

enhances the prediction power. In addition, the proposed IMTL method achieves more than 12.6%

improvement in prediction accuracy than the HOCPD, indicating that the proposed method is more

effective in utilizing correlation information among different modalities. Note that the basis struc-

tures of the imaging tensor (Ami) vary significantly among four modalities, and the corresponding

ranks are 4, 096, 1, 5 and 5, respectively. Consequently, the HOCPD method assuming a low-rank

structure with common bases shared by different modalities might not have sufficient power to

extract heterogeneous signal features. In contrast, the proposed IMTL method is able to capture

within-subject homogeneous features by utilizing an individualized layer in addition to modality-

specific layers.
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4.6 Real Data: Multiphoton Imaging Data for Breast Cancer

Our research problems are motivated by multimodality breast cancer imaging data produced by

Boppart Lab [84] at University of Illinois at Urbana-Champaign. We applied the proposed method

to multiphoton imaging data for breast cancer diagnosis. To better visualize the biological tissue at

cellular and molecular levels, [84]’s multiphoton microscope generates multimodal images using

two-photon auto-fluorescence (2PAF), three-photon auto-fluorescence (3PAF), second-harmonic

generation (SHG) and third-harmonic generation (THG). Two-photon-fluorescence microscopy

is commonly used to visualize tissue morphology and physiology at a cellular level, and three-

photon-fluorescence with longer wavelength can reach deeper levels of the tissue and thus provide

higher resolution [11, 28]. Figure 4.5 illustrates the four modalities of 2PAF and 3PAF, SHG and

THG for normal rat’s breast tissue and cancerous rat’s breast tissue. The new technique is able to

identify cancer cell clusters in a specimen which are not easily identified by histology imaging.

Figure 4.5 provides the multiple contrast mechanisms produced by four-modality microscope

imaging, which highlight the structural components of tissues. In contrast to the normal rat’s tissue,

multiple modalities clearly indicate a large number of biological tumor-associated micro-vesicles

(circled in Figure 4.5) which appear spatially aligned in a tubular formation on the cancer rat’s

tissue, particularly in the 3PAF image. In addition, Figure 4.5 also shows that the microvesicles are

visible in the THG and 3PAF images, but are not obvious in the SHG and 2PAF images through

visualization, indicating that there is a critical need to integrate all modalities for more efficient

detection of TMVs using novel statistics and machine learning tools.

Furthermore, although different individuals have imaging at very different locations, different

modalities from the same individual are observed from the same tissue and thus share some com-

mon structures, which could be informative for capturing the spatial locations and formations of

TMVs. Therefore, it is crucial to utilize homogeneous information from multimodality imaging

within individuals.

Prior knowledge in cancer detection shows that TMVs are frequently observed at the lipid
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boundary area, therefore we study a segmented imaging of 150 × 150 pixels more closely at the

boundary area for both the normal rat and the cancerous rat (see Figure 4.6). In addition, due to

the limited sample size at the current experimental stage, we generate more sample images using

a resampling technique. Specifically, every original image is segmented into nine subregions with

no overlapping, and each subregion has a size of 50 × 50 pixels. Additional sample images are

generated by randomly sampling from the original subregions with replacement as well as adding

certain noise to the subregions samples. The noise added to each pixel is generated from N(0, σ2),

where σ is set as σ̂m/5, and σ̂m (m = 1, . . . , 4) is the sample standard deviation for the mth-

modality imaging. Consequently, we generate a training data set and a testing data set with a total

of 40 subjects for each data set, where each subject has four-modality images taken in the same

subregion.

We compare the proposed IMTL method to the four models described in Section 4.3. The

tuning parameters associated with the latent rank for the TR, the MPCA, the HOCPD and the

IMTL are selected in order to minimize the prediction error rates in the validation set, which is

generated following the same resampling procedure as described above.

Table 4.4 provides the prediction results on the testing set, which illustrates that the proposed

method outperforms the other methods significantly in terms of achieving the highest overall pre-

diction accuracy rate, sensitivity and specificity. In addition, both the proposed IMTL and the

HOCPD utilizing all four-modality imaging outperform all other methods, showing the prediction

power improved by integrating multimodality information. Figure 4.6 displays several common

tubular spatial structures of TMVs shared by the tumor imaging on modalities 1, 2 and 4. The

proposed IMTL method applying an individualized layer to different imaging modalities from the

same subject performs the best for capturing important heterogeneous TMVs’ patterns and thus

enhances the prediction power for cancer detection. The VPL method and the tensor regression

model perform inadequately with prediction accuracy below 55%. This is because the locations

of the TMV’s vary heterogeneously for different subjects and the signals of the TMV’s are weak

compared to the modality background (e.g., third modality). Therefore the VPL and the TR are
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not powerful at capturing the TMV’s effects in predicting disease outcomes.

4.7 Discussion

In this article, we propose an individualized multilayer tensor learning model incorporating imag-

ing covariates to predict targeted responses. In the proposed two-stage model, we first extract

important features from tensor covariates incorporating different layers to achieve dimension re-

duction through tensor decomposition techniques, and then fit a prediction model with the extracted

features. We illustrate the proposed method through numerical studies and data application on both

single-modality and multimodality imaging data.

A major contribution of the proposed method is that we achieve tensor decomposition through

utilizing an additional layer of individual structure in addition to population-shared modality-

specific structure following the CANDECOMP/PARAFAC decomposition. Our method is mo-

tivated by a multiphoton multimodality imaging study for breast cancer diagnosis, where tumor

locations of imaging can vary for different individuals, yet the multimodality images from the

same individual share important spatial information. Most existing methods assuming fixed signal

locations are either infeasible or inefficient in our setting. In contrast, the proposed individualized

layer is capable of capturing within-subject spatial features through integrating different modali-

ties’ imaging information for the same individual. Both simulation studies and real data analyses

demonstrate that the proposed method can achieve higher diagnostic accuracy compared to other

competing methods.

In the proposed method, we only consider a linear transformation for dimension reduction

on the tensor data, e.g., the CP decomposition. Due to the complex nature of imaging data, it

will be our next step to employ nonlinear transformation techniques such as manifold dimension

reduction. Moreover, it is worth future research to develop supervised feature extraction through

constructing a constraint tensor decomposition conditional on outcome responses.
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4.8 Proof of Theoretical Results

Proof of Theorem 7

The proof can follow Corollary 2 of [74]. For eachXm
i,j1···jD , let ld(Θ|Xm

i,j1···jD) = l(Θ, Xm
i,j1···jD)−

l(Θ0, X
m
i,j1···jD) be the loss difference, where Θ0 corresponds to the unique true parameter. We first

define:

K(Θ,Θ0) =
1

NMp1 · · · pD

N∑
i=1

M∑
m=1

∑
j1

· · ·
∑
jD

E{ld(Θ|Xm
i,j1···jD)},

which is the expected loss difference. Since Θ0 is the unique true parameter, we haveK(Θ,Θ0) ≥

0 for all Θ ∈ S and K = 0 if and only if Θ = Θ0. Therefore, we define the distance between Θ

and Θ0 as ρ(Θ,Θ0) = K1/2(Θ,Θ0). We also define the variance of the loss difference as follows:

V (Θ,Θ0) =
1

NMp1 · · · pD

N∑
i=1

M∑
m=1

∑
j1

· · ·
∑
jD

Var{ld(Θ|Xm
i,j1···jD)}.

Under the L2-loss, it is expected thatK(Θ,Θ0) = 1
NMp1···pD

‖Θ−Θ0‖2
2, and that V (Θ,Θ0) =

4σ2

NMp1···pD
‖Θ−Θ0‖2

2, where σ2 is assumed to be the same variance of each element of the tensor,

and ‖ · ‖2 is the L2-norm of a vectoring tensor.

We consider the parameter in a small and restricted space

Ss(Ml,Mp) = {Θ ∈ S : Ml ≤ ‖Θ−Θ0‖2 ≤ 2Ml, p(Θ) ≤Mp},

and let F(Ml,Mp) = {ld(Θ|·) : Θ ∈ Ss} be the range of ld(Θ|·) that corresponds to Ss.

To verify several conditions of Corollary 2 in [74], first, it is apparent to show that

sup
Ss(Ml,Mp)

V (Θ,Θ0) ≤ c1M
2
l {1 + (M2

l +Mp)
β1}

for a constant c1 ≥ 0 and a constant β1 on the restricted space Ss(Ml,Mp).
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Second, we verify that supSs(Ml,Mp) ‖Θ−Θ0‖sup ≤ c2(M2
l +Mp)

β2 for a constant c2 ≥ 0 and

β2 ∈ [0, 1) by applying Lemma 2 of [74]. Define f0 = Θ−Θ0. Recall that

max
m
‖(wm,Bm,(1), . . . ,Bm,(D))‖∞ ≤ C2,

and maxi ‖(ui, s(1)
i , . . . , s

(D)
i )‖∞ ≤ C2. Denote γ =

∑M
m=1(

∑D
d=1 pd+N)Km+

∑N
i=1(
∑D

d=1 pd+

1) as the total number of parameters. Since f0 is a (D+1)-degree polynomial function of elements

of wm’s, Bm,(d)’s, ui’s and s(d)
i ’s, we have f0 ∈ W∞

2 [−C2, C2]γ where W∞
2 is a Sobolev space,

and ‖f0‖2 = ρ(Θ −Θ0) ≤ c3 for a constant c3 > 0. In addition, we have f (α)
0 = 0 for α = ∞.

Following Lemma 2 of Shen (1998), we have

‖f0‖∞ = ‖Θ−Θ0‖∞ ≤ 2c3.

Therefore, the required conditions are fulfilled by defining c2 = 2c3 and β2 = 0.

Next, we define the Hellinger metric entropy with L2 bracketing. Let

N(ε, q) = {f l1, fu1 , . . . , f lq, fuq }

be a set of functions from the L2 space satisfy that maxj=1,...,m ‖fuj − f lj‖ ≤ ε and for any ld ∈

F(Ml,Mp), there exists j ∈ {1, . . . , q}, such that f lj ≤ ld ≤ fuj almost surely. Then we define the

Hellinger distance as H(ε,F) = log{q : minN(ε, q)}. Let

ψ(Ml,Mp) =
1

L

∫ U

L

H1/2(δ,F)dδ

where L = c4λ(M2
l + Mp) and U = c5εN(M2

l + Mp)
(1+max{β1,β2})/2, εN = N−1/2 and c4 and c5

are two non-negative constants.

Based on Theorem 5.2 of [4], the Hellinger metric entropy can be controlled by

H(ε,F) ≤ c6ε
ω
N
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for a constant c6 ≥ 0 and a constant rate ω.

The result of Theorem 7 then follows by applying Corollary 2 of [74]. This completes the

proof.
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4.9 Tables and Figures

Table 4.1: Prediction performance of different methods on the testing set for the random-signal-
area study based on 100 replications.

Model VPL TR MeanDist MPCA HOCPD IMTL
Overall Accuracy 0.641 0.531 0.753 0.710 0.774 0.966
Sensitivity 0.873 0.525 0.680 0.753 0.782 0.981
Specificity 0.249 0.541 0.877 0.633 0.763 0.939

Table 4.2: The prediction results of different methods on the testing set for multi-random-weak-
signal study based on 100 replications.

µC = 30 µC = 20
Overall Accuracy Sensitivity Specificity Overall Accuracy Sensitivity Specificity

VPL 0.723 0.045 0.998 0.714 0.030 0.998
TR 0.767 0.585 0.852 0.667 0.505 0.740
MeanDist 0.732 0.072 1.000 0.717 0.032 1.000
MPCA 0.834 0.574 0.933 0.698 0.368 0.837
HOCPD 0.992 0.973 1.000 0.889 0.676 0.977
IMTL 0.998 0.994 1.000 0.964 0.924 0.980

Table 4.3: The prediction results on the testing data set of different models for the four-modality
imaging study based on 100 replications.

Model VPL TR MPCA HOCPD IMTL
Overall Accuracy 0.598 0.554 0.571 0.748 0.842
Sensitivity 0.105 0.544 0.314 0.638 0.805
Specificity 0.901 0.577 0.752 0.868 0.875

Table 4.4: The prediction results on the testing data set for different models, including overall
prediction accuracy rate (OPAR), sensitivity and specificity.

Model VPL TR MPCA HOCPD IMTL
Overall Accuracy 0.539 0.526 0.766 0.803 0.854
Sensitivity 0.604 0.538 0.823 0.813 0.832
Specificity 0.471 0.524 0.705 0.786 0.869
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Figure 4.1: An illustration of the individualized layers and the modality-specific layers for four-
modality optical images of the breast cancer tissues.

Figure 4.2: Simulated cancer images and normal image with random signal area in a subregion.
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Figure 4.3: A simulated cancer image (µC = 30) and a normal image. White spots are the signals.

Figure 4.4: The simulated four-modality images for a cancer image and a normal image.
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Figure 4.5: Four-modality microscope images for a normal rat’s tissue and a cancerous rat’s tissue.

Figure 4.6: Four-modality images of a normal rat’s tissue and a cancerous rat’s tumor tissue at the
lipid boundary area.
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