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Abstract

Our results are divided in three independent chapters.

In Chapter 2, we show that if g is a generic isometry of a generic subspace X of the Urysohn metric

space U then g does not extend to a full isometry of U. The same applies to the Urysohn sphere S. Let M

be a Fräıssé L-structure, where L is a relational countable language and M has no algebraicity. We provide

necessary and sufficient conditions for the following to hold: “For a generic substructure A of M , every

automorphism f ∈ Aut(A) extends to a full automorphism f̃ ∈ Aut(M).” From our analysis, a dichotomy

arises and some structural results are derived that, in particular, apply to ω-stable Fräıssé structures without

algebraicity. Results in Chapter 2 are separately published in [Pan15].

In Chapter 3, we develop a game-theoretic approach to anti-classification results for orbit equivalence

relations and use this development to reorganize conceptually the proof of Hjorth’s turbulence theorem.

We also introduce a new dynamical criterion providing an obstruction to classification by orbits of Polish

groups which admit a complete left invariant metric (CLI groups). We apply this criterion to the relation

of equality of countable sets of reals and we show that the relations of unitary conjugacy of unitary and

selfadjoint operators on the separable infinite-dimensional Hilbert space are not classifiable by CLI-group

actions. Finally we show how one can adapt this approach to the context of Polish groupoids. Chapter 3 is

joint work with Martino Lupini and can also be found in [LP16].

In Chapter 4, we develop a theory of projective Fräıssé limits in the spirit of Irwin-Solecki. The structures

here will additionally support dual semantics as in [Sol10,Sol12]. Let Y be a compact metrizable space and

let G be a closed subgroup of Homeo(Y ). We show that there is always a projective Fräıssé limit K and a

closed equivalence relation r on its domain K that is definable in K, so that the quotient of K under r is

homeomorphic to Y and the projection K → Y induces a continuous group embedding Aut(K) ↪→ G with

dense image. The main results of Chapter 4 can also be found in [Pan16].
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To Marianna, who never learned how to sing in tune.
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Chapter 1

Introduction

A Polish space is a separable topological space which admits a compatible complete metric. A Polish group

is a topological group whose underlying topology is Polish. If G is a Polish group then a Polish G-space is a

Polish space X, endowed with a continuous action Gy X. We will focus on the following families of Polish

groups.

• Let S∞ be the group of all permutations of the natural numbers. This group inherits a Polish group

topology from its action on the natural numbers, namely, the pointwise convergence topology. An

important class of Polish groups is the class of all non-Archimedean Polish groups. These are groups

which admit a neighborhood basis of the identity consisting of open subgroups. A Polish group is

non-Archimedean if and only if it is isomorphic to a closed subgroup of S∞; see [BK96, Theorem

1.5.1].

• Let (X, d) be a complete separable metric space and consider the group Iso(X, d) of all isometries of

X. We view Iso(X, d) as a Polish group endowed, as above, with the pointwise convergence topology.

• Let K be a compact metrizable space and let Homeo(K) be the group of all homeomorphisms of K.

We view Homeo(K) together with the compact-open topology, which renders it a Polish group.

In the absence of local compactness it is often difficult to study these groups using classical methods.

Nevertheless, various important results regarding large topological groups have been recently developed

starting from a simple observation, namely, that the topology of the group in all examples above is canonically

induced by its action on the associated underlying structure. A common theme behind these results is to

study how various dynamical properties of the automorphism group of a structure translate to combinatorial

properties of the structure itself and vice versa; see [Kec12] for a survey. Fräıssé theory is the core of this

area of research, acting as a bookkeeping devise for the underlying combinatorics.

Our work in Chapter 2 is of this flavor. In particular, we examine various discrete and metric Fräıssé

structures M and we study the combinatorics behind extending automorphisms of a generic substructure

N of M to a global automorphism of M . For the precise statements; see Section 1.1.
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The results in Chapter 2 make use of an infinite game played with two Players, namely the Banach-Mazur

game; see Section 2.1. In Chapter 3 we define two infinite games and use them to study obstructions in Borel

reducibility of various orbit equivalence relations. The first game is a dynamical version of a forth system

which we use to provide a new criterion for non-classifiability by CLI-group actions. Our second game is a

“generous” version of a back and forth system. We use it to reorganize conceptually the proof of Hjorth’s

turbulence theorem. For the precise statements and further applications, see Section 1.2. For the proofs of

these results; see Chapter 3.

The interplay between dynamics of non-Archimedean Polish groups and classical Fräıssé theory is es-

tablished by the correspondence between closed subgroups of S∞ and discrete Fräıssé structures M . This

correspondence was later extended to a correspondence between metric Fräıssé structures and closed sub-

groups of isometry groups Iso(X, d) of complete and separable metric spaces (X, d). Every Polish group G is

a closed subgroup of some isometry group Iso(X, d) as above; see [GK03]. However, when G is represented

as a closed subgroup of Homeo(K), for some compact metrizable space K, then it is more natural to study

G through the automorphism group of a projective Fräıssé limit. Projective Fräıssé limits were introduced

in [IS06]. Since then projective Fräıssé expressions have been found for various explicit examples of compact

spaces. In Chapter 4 we show that any space K as above admits a projective Fräıssé expression. The precise

statements and the relevant background are given in Section 1.3 below.

1.1 Extending automorphisms

The (separable) Urysohn metric space (U, ρ) was introduced in [Ury27] and it is the unique, up to isometry,

Polish metric space that satisfies the following properties:

• (ultrahomogeneity) for every two finite isometric subspaces A,B ⊂ U and for every isometry f : A→ B,

f extends to a full isometry f̃ of U;

• (universality) every Polish metric space is isometric to a subspace of U.

Huhunaǐsvili showed in [Huh55] that U satisfies a strengthening of the ultrahomogeneity property attained

by replacing the adjective “finite” in A and B above with “compact.”

There are spaces that enjoy a much stronger version of homogeneity. Consider for example the Euclidean

metric space Rm. Then, it is true that for every two, possibly infinite, metric subspaces A,B and every

isometry f : A→ B, there is an isometry f̃ of the whole space Rm that extends f . In the case of U, it was

shown by Melleray in [Mel07] that Huhunaǐsvili’s result cannot be extended further, i.e., if X is non-compact

space then there are isometric copies A,B of X in U and an isometry f : A→ B that does not extend to an
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isometry f̃ of U. On the other hand, it is worth noting here that for any separable metric space X, adopting

Uspenskij’s use of Katětov’s tower construction [Usp90, Kat86], we can find copies A,B of X in U so that

any isometry f : A→ B extends to a global isometry.

Our focus here will be on a slightly different question. For every Polish metric space (X, d) there is

canonical Polish topology for the hyperspace F(X) of all closed subsets of X, namely the Wijsman topology

[Wij64, Bee91]. We say that for a generic subspace of X a certain property holds if the set of all closed

subsets of X that have this property is a comeager subset of F(X) in the Wijsman topology. The question

which motivates our investigation is whether for a generic subspace F of U every self-isometry of F extends

to an isometry of U. It turns out as a consequence of Lemma 2.5.5 that for a generic subspace F of U the

space F is isometric to U itself. Since the generic subspace is of one isometry type, it therefore makes sense

to ask whether for a generic pair F1, F2 of subspaces of U every isometry f : F1 → F2 extends to a global

isometry. Here, we identify pairs of closed subsets of U with points in F(U)×F(U). Keeping in mind that U

is just an instance of the general problem that we are going to deal with, consider the following definitions.

For every two isometric Polish metric spaces X,Y, we write Iso(X) for the space of all isometries of X

and Iso(X,Y ) for the space of all isometries from X onto Y . The spaces Iso(X) and Iso(X,Y ) are Polish,

equipped with the pointwise convergence topology; see [Kec95, Section 9B]. If A,B are isometric subsets of

X we write E(A) to denote the set of all self-isometries of A that extend to a global isometry of X, and

similarly by E(A,B) we denote the set of all isometries from A to B that extend to a global isometry of X.

Definition. Let A be a subspace of U. We say that A is a global subspace if E(A) = Iso(A), a non-global

subspace if E(A) ( Iso(A), or a strongly non-global subspace of U if E(A) is a meager subset of Iso(A).

Similarly, we say that a pair A,B of isometric subspaces of U is a global pair if E(A,B) = Iso(A,B), a

non-global pair if E(A,B) ( Iso(A,B), or a strongly non-global pair in U if E(A,B) is a meager subset of

Iso(A,B).

In Section 2.5, we give a “strongly negative” answer to both of our initial questions. The same results

also follow for the Urysohn sphere S by adapting our methods in the bounded metric context.

Theorem 2.5.9. Let U be the Urysohn space. Then, the generic subspace F ∈ F(U) as well as the generic

pair A,B of subspaces of F(U) are strongly non-global.

Before we develop the theory for the Urysohn space we undertake the task of answering the same ques-

tions in the countable setting, where instead of a metric space we consider ultrahomogeneous countable

L-structures M of some relational language L. A structure M is called ultrahomogeneous if every isomor-

phism between finite substructures of M can be extended to a full automorphism of M . The rationals
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with their natural ordering (Q,≤) and the random graph (G, R) are two classical examples of countable

ultrahomogeneous structures. Working in this new context we can ask the same questions if we first make

the natural changes: we replace the word “subspace” with the word “substructure,” the word “isometry”

with the word “isomorphism,” and we identify the space of all substructures of M with the Cantor space

2M .

If M is a L-structure, Age(M) denotes the class of all finite L-structures that can be embedded in M .

Countable ultrahomogeneous structures are also called Fräıssé structures because each such structure M

can be attained as a limit (the so called Fräıssé limit) over Age(M). The class Age(M) is called a Fräıssé

class if M is ultrahomogeneous. This approach, introduced by Fräıssé in [Fra54], allowed the systematic

study of infinite ultrahomogeneous structures M through the study of the combinatorial properties of the

finite objects lying in Age(M).

Here, we will limit our study to structures which have no algebraicity; see [Hod93, Cam90], or Section

2.2 for a definition. One of the known consequences that we also derive here from Lemma 2.2.9 is that M

has no algebraicity if and only if for a generic substructure A of M the structure A is isomorphic to M . In

Section 2.2 we will see that for a Fräıssé structure M without algebraicity the generic substructure of M

as well as the generic pair of substructures of M is either global or strongly non-global. Moreover, we will

reflect the dividing line of this dichotomy to the following, central in this paper, property of Fräıssé classes.

Definition 2.2.4. Let K be a Fräıssé class and let C ∈ K. We say that C splits K if for every D ∈ K and for

every embedding i : C → D there are structures D1,D2 ∈ K, embeddings j1 : D → D1 and j2 : D → D2

and a bijection f : D1 → D2, such that:

• f ◦ j1 = j2;

• f�D1\C is an isomorphism between 〈D1 \ C〉D1
and 〈D2 \ C〉D2

;

• f is not an isomorphism between D1 and D2.

We say that K splits if there is a C ∈ K that splits K. In the language of graphs, a typical example of a

Fräıssé class K that splits is the age of the random graph and a typical example of a Fräıssé class that does

not split is the age of the countable complete graph. The main result of Section 2.2 will be the following

theorem.

Proposition 2.2.19. Let M be a Fräıssé structure that has no algebraicity and let K be the corresponding

Fräıssé class.
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1. If K splits then the generic substructure A of M is a strongly non-global substructure and the generic

pair A,B in M is a strongly non-global pair.

2. If K does not split then the generic substructure A of M is a global substructure and the generic pair

A,B in M is a global pair.

Structures M whose corresponding age K does not split seem to be simpler than the ones having age that

splits. In Section 2.3, we present some structural consequences for the structures M that have age which

does not split. Theorem 2.3.1 states that ω-stable Fräıssé limits with no algebraicity have ages that do not

split. We also provide an example showing that the converse is not true. Theorem 2.3.3 is a structural result

regarding automorphism groups of Fräıssé limits which have no algebraicity and an age that does not split.

The proofs of the main theorems of Section 2.2 and Section 2.5 use infinite games. In Section 2.1, we

define the Banach Mazur game and we state the main result regarding this game that we are going to use.

A short note on the Wijsman hyperspace topology is given in Chapter 2.4.

1.2 Complexity of orbit equivalence relations

Classification problems arise naturally in many areas of mathematics. Consider for example the problem of

classifying all bounded selfadjoint operators T ∈ B (H)sa on a Hilbert space H up to unitary equivalence. If

H is of finite dimension n, then we can assign to every selfadjoint operator T the tuple f(T ) = (λ0, . . . , λn−1)

of its increasingly ordered eigenvalues, counting repetition. The map f : B (H)sa → Rn has the property that

T, S are unitarily equivalent if and only if f(T ) = f(S). Moreover, since f is computed by an explicit formula,

one can recover the relation of unitary conjugacy of selfadjoint operators from the relation of equality on

Rn. The same is far from being true when H is infinite dimensional. In this case, there is no Borel map

f : B(H)sa → Y , where Y is a Polish space, so that T, S are unitarily conjugate if and only if f(T ) = f(S);

see [CN90]. The situation is actually much worse, as we discuss below.

Let E,F be two equivalence relations on a Polish spaces X,Y , respectively. A (E,F )-homomorphism

is a map f : X → Y with the property xEy ⇒ f(x)Ef(y). A (E,F )-homomorphism f is a reduction from

E to F , if xEy ⇔ f(x)Ef(y). Given E,F as above we are interested in the problem of whether there is a

reduction f from E to F that is moreover Borel as a map from X to Y . In this case, E is said to be Borel

reducible to F . Recall that E is concretely classifiable if E is Borel reducible to equality on some Polish

space Y . One can associate to every countable language L the Polish space Mod(L) of all L-structures with

domain N. For x, y ∈ Mod(L) we write x ∼=L y if x, y are isomorphic L-structures. An equivalence relation

E on a Polish space X is classifiable by countable structures if it is Borel reducible to ∼=L for some countable

5



language L. As we noted above the relation of unitary conjugacy of bounded selfadjoint operators on an

infinite-dimensional Hilbert space is not concretely classifiable. This result was then strengthened by Kechris

and Sofronidis [KS01], who proved that such a relation is not classifiable by countable structures. The same

conclusions hold for unitary operators.

Particularly interesting is the case when the equivalence relation E on X is obtained as the orbit equiva-

lence relation EXG of a continuous action of a Polish group G on X. In particular, all examples mentioned so

far are of this form. For instance, unitary equivalence of selfadjoint operators is induced by the action of the

unitary group U (H) on B (H)sa by conjugation. Similarly, the relation ∼=L of isomorphism of L-structures

is induced by the canonical logic action of S∞ on Mod(L). Finally, the equality relation on a Polish space

is induced by the action of the trivial group. Both aforementioned anti-classification results stem from the

careful study of which restrictions the topology on G puts on a G-space X. To be precise, consider the

following general problem.

Problem 1.2.1. Given a class of Polish groups C, which dynamical conditions on a Polish G-space X

ensure that the corresponding orbit equivalence relation is not Borel reducible to EYH for some Borel action

of a Polish group H in C on a Polish space Y ?

By [BK96, Corollary 5.1.6], one can assume in Problem 1.2.1 that the action of H on Y is continuous.

The property of having meager orbits and a dense orbit provides such a criterion for the class C of compact

Polish groups [Gao09, Proposition 6.1.10]. This is used in [CN90] to prove that bounded selfadjoint operators

on an infinite-dimensional Hilbert space are not concretely classifiable up to unitary conjugacy. Hjorth’s

turbulence theory, initially developed by Hjorth in [Hjo00], addresses this problem in the case when C is

the class of non-Archimedean Polish groups. Turbulence is used in [KS01] to prove that bounded selfadjoint

operators on an infinite-dimensional Hilbert space are not classifiable by countable structures up to unitary

conjugacy. Turbulence has played a key role in Borel complexity theory in the last two decades and it is

to this day essentially the only known method to prove unclassifiability by countable structures; see [Hjo97,

FTT14,FW04,Lup14,KLP15,KLP10,AM15a,AM15b,ST09a,ST09b,ST10,HL,TL12,IKT09,KTD12,Kec10,

Gao09, Hjo00, Kec02, Far12]. There has been so far little progress into obtaining similar criteria for other

interesting classes of Polish groups.

The purpose of Chapter 3 is two-fold. Our first goal is to introduce a game-theoretic approach to Problem

1.2.1. This approach consists in endowing the space X/G of orbits of a Polish G-space X with different graph

structures, and then showing that a Baire measurable (EXG , E
Y
H)-homomorphism f : X → Y induces a graph

homomorphism X/G→ Y/G after restricting to an invariant dense Gδ set. This perspective allows us to give

a short conceptual proof of Hjorth’s turbulence theorem, avoiding the substantial amount of bookkeeping of
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Hjorth’s original argument [Hjo00]; see also [Gao09, Chapter 10].

Our second goal is to use the aforementioned game-theoretic approach to address Problem 1.2.1 for the

class of CLI groups. Recall that a CLI group is a Polish group that admits a compatible, complete, left-

invariant metric. It is easy to see that a Polish group is CLI, if and only if it admits compatible, complete,

right-invariant metric. Every locally compact group, as well as every solvable Polish group—in particular,

every abelian Polish group—is CLI [HS99, Corollary 3.7]. Such a class of groups has been considered in

several papers so far. For instance, [Bec98, Corollary 5.C.6] settled the topological Vaught conjecture for CLI

groups. It is also proved in [Bec98, Theorem 5.B.2] that CLI groups satisfy an analog of the Glimm-Effros

dichotomy. In [Gao98, Theorem 1.1] it is shown that the non-Archimedean CLI groups are precisely the

automorphism groups of countable structures whose Scott sentence does not have an uncountable model.

The class of CLI groups has been further studied in [Mal11], where it is shown that if forms a coanalytic

non-Borel subset of the class of Polish groups.

A fundamental tool in the study of dichotomies for orbit equivalence relations from [Bec98] is the notion

of ι -embeddability for points in a Polish G-space. If X is a G-space then we say that ι-embeds in y, if there

is a left-Cauchy sequence (gn) in G so that gnx converges to y. Here we will work with right-embeddings—

or what we call Becker-embeddings—instead: we say that x Becker-embeds in y, if there is right-Cauchy

sequence (gn) in G so that gny converges to x. We prove that a Baire-measurable homomorphism between

orbit equivalence relations necessarily preserves Becker embeddability on an invariant dense Gδ set. From

this we extract in Theorem 3.3.4 a dynamical condition which answers Problem 1.2.1 for the class of CLI

groups.

Theorem 3.3.4. Suppose that X is a Polish G-space. If for any G-invariant dense Gδ subset C of X there

exist x, y ∈ C with different G-orbits such that x Becker-embeds in y, then for any G-invariant dense Gδ

subset C of X the relation EXC is not CLI-classifiable.

We then apply it to show that the Friedman-Stanley jump of equality =+ is not Borel reducible to the

orbit equivalence relation induced by a Borel action of a CLI group. The only proof of this fact that we are

aware of relies on meta-mathematical reasoning and involves the theory of pinned equivalence relations; see

[Kan08]. A natural reduction from this relation to the relations of unitary equivalence of bounded unitary

or selfajdoint operators on an infinite-dimensional Hilbert space, shows that the latter relations are also not

classifiable by the orbits of a CLI group actions. We note that it is still an open question whether the unitary

group U(H) of the separable infinite dimensional Hilbert space H can produce under some action on a Polish

space an orbit equivalence relation that is universal for orbit equivalence relations induced by continuous

Polish group actions. Our results show that the complexity of possible orbit equivalence relations of U(H)-
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actions is not bounded from above by the complexity of orbit equivalence relations induced by continuous

CLI group actions.

We conclude by discussing how all the results of the present paper admit natural generalizations from

Polish group actions to Polish groupoids. Turbulence theory for Polish groupoids has been developed in

[HL]. Applications of this more general framework to classification problems in operator algebras have also

been presented in [HL].

In Section 1.2, Section 3.2 and Section 3.3 we present the results regarding Becker-embeddability and

CLI groups. In Section 3.5 we present the proof of Hjorth’s turbulence theorem within our context. Finally

in Section 3.6 we recall the fundamental notions about Polish groupoids and explain how the main results

of this paper can be adapted to this more general setting.

1.3 Reversing the arrows

Projective Fräıssé structures were introduced in [IS06] and since then they have been used by several authors

in the study of the dynamics of various compact spaces such as the pseudo-arc, the Lelek fan and the Cantor

space; see [BK13], [Kwi12], [Kwi14].

There is a standard process that is implemented in all these papers. One starts with a compact metrizable

space Y where Y or Homeo(Y ) is under investigation. Then one defines an appropriate class K of finite

model theoretic L-structures which “approximate” Y . If this class K satisfies the projective Fräıssé axioms

then the projective Fräıssé limit K of K is uniquely defined and it is a compact, zero-dimensional, metrizable

space K together with closed interpretations for the model-theoretic contained L; see [IS06], or Section 4.2.

In all cases above, whenever Y is not totally disconnected [IS06, BK13], the language L contains a special

binary predicate r whose interpretation in all finite structures of K is a reflexive, symmetric graph, and

whose interpretation in K is a closed equivalence relation. Moreover, the space K/r is homeomorphic to Y

and the quotient projection map

K 7→ Y

induces a continuous group embedding Aut(K) ↪→ Homeo(Y ) whose image is dense in Homeo(Y ). This

correspondence between K and Y allows one to study Y and Homeo(Y ) through the combinatorial properties

of the finite structures in K.

The purpose of Chapter 4 is to turn these heuristics into a general theorem. The price we have to pay is

that we have to introduce dual predicates and endow our structures further with dual semantics.

Dual predicates and structures were first introduced by S. Solecki in [Sol10,Sol12], where they were used
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to institute a uniform structural approach to various Ramsey theoretic results. Dual predicates in L quantify

over dual tuples (finite clopen partitions). We will call a L-structure purely dual if L contains only dual

predicates. In Chapter 4.3 we use a standard orbit completion argument to get the following proposition.

Proposition 4.3.1. Let G be a closed subgroup of Homeo(K) where K is zero-dimensional, compact, metriz-

able space. Then there is a purely dual projective Fräıssé structure K on domain K such that Aut(K) = G.

Proposition 4.3.1 is essentially the dual of the statement that every closed subgroup of S∞ is the auto-

morphism group of a Fräıssé limit on domain N.

In Section 4.4 we show how to turn any topological L-structure into a purely dual one without losing

any information. We also show that the above theorem is false if we do not allow our structures to support

a dual structure. Therefore the context of dual structures is strictly more general than the context of direct

structures.

In Section 4.5 we fix a special binary relation symbol r whose interpretation will always be a reflexive

and symmetric closed relation. This should be paralleled with the metric Fräıssé theory where the symbol d

is reserved as a signifier for the metric. A formal relational language L will be decorated with the subscript

r whenever r belongs to L. Therefore, we always have r ∈ Lr and Lr-structures are, in particular, reflexive

r-graphs. We say that an Lr-structure K is a pre-space if rK is moreover transitive and therefore an

equivalence relation. We apply Proposition 4.3.1 to get the following result.

Proposition 4.5.2. Let G be a closed subgroup of Homeo(Y ), for some compact metrizable space Y . Then

there is a projective Fräıssé pre-space K such that K/rK is homeomorphic to Y , and the quotient projection

K 7→ Y

induces a continuous group embedding Aut(K) ↪→ G, with dense image in G.

We shall note here that R. Camerlo characterized all possible quotients M/rM of Fräıssé structures in

the language {r} to be certain combinations of singletons, Cantor spaces and pseudo-arcs [Cam10].
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Chapter 2

Extendability of automorphisms of
generic substructures

2.1 The Banach Mazur game G∗∗(E,X)

Let X be a topological space and let A be a subset of X. The set A is meager if it is a countable union of

nowhere dense in X sets. The collection of all meager sets of X forms a σ-ideal. Therefore, meager sets can

be thought of as topologically small sets and their complements, the so called comeager sets, can be thought

of as topologically large sets provided that the ambient space X is a Baire space. A topological space is a

Baire space if no open subset U of X, with U 6= ∅, is meager. In what follows the ambient space X will

always be a Polish space and Polish spaces are Baire. If X is a Baire space then we can equivalently define

comeager sets as exactly those subsets of X which contain a dense in X, Gδ subset of X. A useful technique

used to prove that a subset A of a topological space X is comeager involves an infinite game known as

Banach Mazur game G∗∗(A,X). Here, we are going to review in short the Banach Mazur game. For a more

detailed exposure on the notion of meager and comeager sets, Baire spaces, Banach Mazur games as well as

the proof of the main theorem of this chapter see [Kec95].

Let X be a topological space and let A be a subset of X. The Banach Mazur game G∗∗(A,X) is a game

played with 2 players, Player I and Player II. Player I starts by choosing an open subset U0 of X and then

Player II replies with an open subset V0 of U0. Then, Player I plays further a new open set U1 with U1 ⊂ V0

and so on. The game continues this way with the two Players alternating turns and together defining a

decreasing sequence of open sets. A run of the game looks as follows:

U0 ⊃ V0 ⊃ U1 ⊃ V1 ⊃ . . . ⊃ Um ⊃ Vm ⊃ . . . ,

and Player II wins this run of the game if and only if
⋂
n Vn(=

⋂
Un) ⊂ A. A winning strategy for Player

II is roughly a pre-established rule that tells Player II which open set Vn to reply given an initial segment

(U0, V0, . . . , Un) of any possible run of the game and that, moreover, this rule leads always to victory for

Player II. The following theorem is the main result that we are going to use regarding the G∗∗(A,X) game.
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Theorem 2.1.1 (Banach-Mazur, Oxtoby). Let X be a nonempty topological space. Then A is comeager if

and only if Player II has a winning strategy in G∗∗(A,X).

2.2 The countable discrete case

The main result of this section is Theorem 2.2.19. In what follows, L will always be a countable, relational

language and M will always be a countable L-structure. We write Age(M) for the class of all finite L-

structures that can be embedded in M . We will use lightface letters for the subsets of the domain of M

and boldface letters for the induced substructures. For example, M denotes the domain of M and for every

A ⊂ M , we write A = 〈A〉M for the substructure of M generated by A. We will also use the notation Ac

for the structure 〈Ac〉M . Notice that due to the fact that L is relational, we have a bijective correspondence

between subsets of M and substructures of M . Without any loss of generality we assume from now on that

the domain of M is the set of natural numbers N. We now have a natural bijective correspondence between

substructures A of M and points in the Cantor space C = 2N given by the characteristic function χA of A.

The Polish group S∞ is the group of all bijections of the domain of M endowed with the pointwise

convergence topology. We denote with Aut(M), the group of all automorphisms of the structure M . The

group Aut(M) is a closed subgroup of S∞ and therefore a Polish group inheriting the topology from S∞ .

If A,B are substructures of M , we write Iso(A,B) to denote the space of all isomorphisms from A to B.

Again, endowed with the pointwise convergence topology, Iso(A,B) is a Polish space.

An L-structure M is called ultrahomogeneous if every isomorphism between finite substructures A,B of

M extends to a full automorphism of M . Countable ultrahomogeneous structures are also known as Fräıssé

structures or Fräıssé limits. We will further assume here that Fräıssé structures are always of non-finite

cardinality. We will review some basic facts regarding Fräıssé structures. For a more detailed exposition

someone may want to consult [Hod93]. If M is a Fräıssé structure and K = Age(M), then K has the

following properties:

(i) Hereditary Property(HP): if A ∈ K and B is a substructure of A, then B ∈ K;

(ii) Joint Embedding Property(JEP): if A,B ∈ K, there is C in K such that both A and B embed in C;

(iii) Amalgamation Property (AP): if A,B,C in K and f : A → B, g : A → C embeddings, there is

D ∈ K and embeddings i : B →D, j : C →D, such that if = jg;

(iv) every subclass of pairwise non-isomorphic structures of K is at most countable and

(v) K contains structures of arbitrary large, finite size.
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If K is a class of finite L-structures and has the properties (i)-(v), we say that K is a Fräıssé class. Fräıssé’s

theorem [Fra54] establishes the converse direction: if K is a Fräıssé class then there is an L-structure M =

M(K), unique up to isomorphism such that M is countably infinite, ultrahomogeneous and K = Age(M).

We say that an L-structure M has no algebraicity if the pointwise stabilizer in Aut(M) of an arbitrary

finite subset A of M has no finite orbits in its natural action on M \A. Here we are going to work only with

Fräıssé structures M that have no algebraicity. A Fräıssé structure M has no algebraicity if and only if the

associated Fräıssé class K satisfies the strong amalgamation property defined as follows:

(SAP) we say that K has the strong amalgamation property if for every A,B,C ∈ K and f : A → B,

g : A → C embeddings there is D ∈ K and embeddings i : B → D, j : C → D, such that if = jg

and

i(B) ∩ j(C) = if(A) = jg(A).

For the interested reader a proof of this fact can be found in [Cam90].

Example 2.2.1. The list of countable ultrahomogeneous structures with no algebraicity includes the fol-

lowing examples.

• M1 = (N), the empty-language, countable structure.

• M2 = (ti∈NGi, R), the disjoint union of countably many countable complete graphs (M2 |= R(a, b)

if and only if a, b ∈ Gi for some i).

• M3 = (G, R), the random graph.

• M4 = (Q,≤), the countable dense linear order without endpoints.

• M5 = (QU, {di}i∈Q+), the rational Urysohn metric space.

Returning to the main question that concerns us here, notice that if we pick M to be any structure

among M2,M3,M4,M5, and N some infinite substructure of M , there are always ways of embedding N

in M so that every automorphism of N extends to a global automorphism of M and ways of embedding N

in M so that not every automorphism of N extends to a global automorphism of M . Consider for example

the random graph M3 = (G, R) and take N to be the structure that remains if we remove from G one point

x. Using a back and forth system we can create an automorphism f of N that sends all points connected

to x to the points not connected to x and vice versa. Then, f cannot be extended to an automorphism of

M3. On the other hand, using the Katětov tower construction for graphs as done in [BM13], we can embed
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any countable graph N in M3 in such a way that every automorphism of N extends to an automorphism

of M3.

Definition 2.2.2. Let A,B be two isomorphic substructures of M . We write E(A) to denote the set of all

self-isomorphisms of A that extend to a global isomorphism of M and by E(A,B) we denote the set of all

isomorphisms from A to B that extend to a global isomorphism of M .

We say that A is a global substructure if E(A) = Iso(A), a non-global substructure if E(A) ( Iso(A),

or a strongly non-global substructure if E(A) is a meager subset of Iso(A). Similarly, we say that the pair

A,B is a global pair if E(A,B) = Iso(A,B), a non-global pair if E(A,B) ( Iso(A,B), or a strongly

non-global pair if E(A,B) is a meager subset of Iso(A,B).

Recall now that we have identified with 2N the space of all substructures of M . We say that for a generic

substructure A of M a certain property holds if and only if the set of all substructures A of M that have

this property is a comeager subset of 2N. Similarly, we say that for a generic pair of substructures of M

a certain property holds if and only if the set of pairs A,B of substructures of M that have this property

form a comeager subset of 2N × 2N. In what follows, we are going to see that for a Fräıssé limit without

algebraicity the generic substructure of M as well as the generic pair of substructures of M is either global

or strongly non global. We are also going to reflect this dichotomy to the satisfiability or non-satisfiability

of a certain property of the Fräıssé class K corresponding to M . We begin by giving an example to offer

some intuition regarding the forthcoming Definition 2.2.4.

Example 2.2.3. Let K3 be the Fräıssé class of all finite graphs. Let D be any finite graph and let c ∈ D. Let

also D1 = D ∪ {w}, where w 6∈ D, and consider any graph D1 ∈ K3 with domain D1 such that D1�D = D.

Notice that whatever D1 is chosen to be, we can find another graph D2 ∈ K3 on the same domain D2 = D1,

such that:

• D2�D = D;

• D2�
(
D2 \ {c}

)
= D1�

(
D1 \ {c}

)
, and

• D2 |= R(c, w) if and only if D1 |= ¬R(c, w).

This basically says that D1 and D2 are not isomorphic, but the only way to witness this fact is by checking the

relations between c and w. Notice, moreover, that the same is not true for the Fräıssé class K2 corresponding

to M2 from Example 2.2.1 above: if D is any graph from K2 with c, u ∈ D connected and D′ ∈ K2 is

extending D, then relationship between c and any new point w of D′ is uniquely determined by the relation

between u and w.
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Definition 2.2.4. Let K be a Fräıssé class, and let C ∈ K. We say that C splits K if for every D ∈ K and

for every embedding i : C →D there are structures D1,D2 ∈ K, embeddings j1 : D →D1 and j2 : D →D2

and a bijection f : D1 → D2, such that:

• f ◦ j1 = j2;

• f�D1\C is an isomorphism between 〈D1 \ C〉D1
and 〈D2 \ C〉D2

;

• f is not an isomorphism between D1 and D2.

Where, in order to keep the notation simple we write D1 \ C instead of D1 \ j1(i(C)), etc. We say that K

splits if there is a C ∈ K that splits K.

Remark 2.2.5. If K1, . . . ,K5 are the Fräıssé classes that correspond to the structures M1, . . . ,M5 of the

Example 2.2.1 then K3,K4 and K5 split and K1,K2 do not split.

Let M = M(K) be the Fräıssé structure associated to K and let X be a finite subset of M . We denote

by LX the language obtained by adding to L a constant cx for every x ∈ X.

Definition 2.2.6. Let M be a Fräıssé structure and let X be a finite substructure of M . By a realized

quantifier free type(rqf-type) p = p(y) over X we mean a set of quantifier free LX-formulas φ in one variable

y for which there is a z ∈M such that

φ ∈ p⇔M |= φ(z).

As a slight abuse of notation, we will not exclude the possibility of X being the empty set in this definition.

Finally, we say that the rqf-type p over X is non-trivial if for all x ∈ X, the formula φ(y) ≡ (y = cx) does

not belong to p.

Notice that if M is a Fräıssé structure then p is a rqf-type over a finite substructure X of M if and

only if 〈X, z〉M ∈ K. So, it makes sense to talk about realized quantifier free types over a finite structure

X, whenever X ∈ K.

Definition 2.2.7. Let X,X ′ ∈ K be L-structures of the same size, and let f : X → X ′ be a bijection

between their domains. Let also p = p(y) be a realized quantifier free type over X. We define f [p] = f [p](y)

to be following set of LX′-formulas:

ϕ(y, cx1
, . . . , cxn

) ∈ f [p] ⇔ ϕ(y, cf−1(x1), . . . , cf−1(xn)) ∈ p.

Notice that if p is a rqf-type and f is an isomorphism between X and X ′, then the set of quantifier free

formulas f [p] is a rqf-type over X ′.
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Definition 2.2.8. Let A be a substructure of a Fräıssé structure M . We say that A absorbs points if for

every finite subset X of M and for every non-trivial rqf-type p over X there is an a ∈ A such that M |= p(a).

Notice that if A absorbs points in M then A is not empty. In particular, A is infinite and A is isomorphic

to M .

For the general Fräıssé structure we cannot hope that we can find even one subset A of M such that

both A and Ac absorb points. For example, take any Fräıssé structure M . Extend the language L to

L′ = L ∪ {u} so that it includes a new unary predicate u and turn M into a L′ structure M ′ by letting for

some x0 ∈M the following:

M ′ |= u(x0) and M ′ |= ∀x
(
(x 6= x0)⇒ ¬u(x)

)
.

This new structure is a Fräıssé limit of a new class K′, but for no subset A of M ′ both A and Ac absorb

points since then both A and Ac should contain a point that satisfies u. However, if we assume that our

Fräıssé structure has no algebraicity or equivalently if the corresponding Fräıssé class has SAP, then we get

the following result.

Lemma 2.2.9. Let M be the Fräıssé limit of the Fräıssé class K. Assume moreover that K has SAP. Then,

for a generic substructure A we have that both A and Ac absorb points.

Proof. Recall that we identify the domain M with the set of natural numbers. We will show that the set A,

of all the subsets A of M for which both A and Ac absorb points, is a dense Gδ subset of 2M . Let

I = { (X, p) : X ⊂M, finite, p a non trivial rqf-type over X},

and notice that I is countable. Let {im : m ∈ N} be an enumeration of I. For fixed i = (X, p), let Ni be

the subset of M , of all elements n such that M |= p(n). We have that

A =
⋂
i∈I

⋃
n 6=m

n,m∈Ni

{
x ∈ 2M : x(n) = 1, x(m) = 0

}
.

Therefore A is a Gδ subset of 2M . To see that A is also dense in 2M , notice that since M has no algebraicity,

for every finite substructure X of M and every rqf-type p over X there are infinitely many points a ∈ M

with M |= p(a).

Corollary 2.2.10. Let M be a Fräıssé structure. Then, M has no algebraicity if and only if for a generic

substructure A of M , the structure A is isomorphic to M .
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Proof. First assume that M has no algebraicity. Then, using the fact that the generic A absorbs points

(Lemma 2.2.9) we built a back and forth system between A and M .

For the converse, notice that if M has algebraicity then there is a finite subset B of M and some

a ∈M \B so that the orbit of a under the pointwise stabilizer Aut(M)B of B is finite. Let now B ⊂ 2M be

the set of all subsets of M that include B but exclude every point lying in the aforementioned orbit. Then

B is an open subset of 2M and every substructure Ax of M induced by the support of an x ∈ B cannot be

isomorphic to M .

It is also immediate from Lemma 2.2.4 above and the fact that Cartesian product of comeager sets is

comeager that under the assumptions of Lemma 2.2.4, for a generic pair A,B, of substructures of M , all

A,Ac,B,Bc absorb points.

A partial isomorphism of M is a map f : N → M with N ⊂ M which happens to be an isomorphism

between N and 〈f(N)〉M . We will write dom(f) to denote the domain of f . We say that f is a finite partial

isomorphism if f is a partial isomorphism with finite domain. If f1, f2 are two partial isomorphisms of M ,

we say that f1 and f2 are compatible if there is a partial isomorphism f of M that extends both f1 and f2.

Lemma 2.2.11. Let K be a Fräıssé class that splits and has the SAP and let M = M(K) be the Fräıssé

limit of K. Let also A,B ⊂ M such that all A,Ac, and B,Bc, absorb points. Then, E(A,B) is a meager

subset of Iso(A,B).

Proof. Let A,Ac and B,Bc as above and let N = Iso(A,B)\E(A,B). We will show that there is a winning

strategy for Player II in the Banach-Mazur game G∗∗
(
N , Iso(A,B)

)
. Therefore, by Theorem 2.1.1, we will

have that N is comeager subset of Iso(A,B).

Take C ∈ K such that C splits K. Since Ac absorbs points we can realize C inside Ac. Let C∗ be any

such a realization. Let also {gk : k ∈ N} be an enumeration of all finite partial isomorphisms of M which

are compatible with some h ∈ E(A,B) and whose domain includes C∗. Obviously, every h ∈ E(A,B) is

compatible with some gk in the above list. Player II will pick his moves so that no matter what Player I

does the resulting map h of the play will belong in Iso(A,B) and, moreover, h will not be compatible with

any gk. Therefore by the above observation, h will belong in N .

For the first task, notice that by incorporating additionally in the moves of Player II a “back and forth”

system between A and B we can assume without the loss of generality that the result of the play will indeed

be an isomorphism h from A to B. Assume now that the game is in its n-th step, with n ≥ 0, and Player

I has played an open set Un ⊂ Iso(A,B) which is identified with an partial isomorphism hn between finite

substructures of A and B. Player II will proceed as follows: let kn be the minimum index so that gkn is
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compatible with hn and let g be any finite partial isomorphism compatible with some h ∈ E(A,B) so that

g extends both gkn and hn. Let D be the domain of g and notice that C∗ ⊂ D. By Definition 2.2.4, and

because C splits K, there are structures D1,D2 ∈ K, embeddings j1 : D → D1 and j2 : D → D2 and a

bijection f : D1 → D2, such that:

• f ◦ j1 = j2;

• f�D1\C is an isomorphism between 〈D1 \ C〉D1 and 〈D2 \ C〉D2 ;

• f is not an isomorphism between D1 and D2.

Since A absorbs points we can extend D to D̃1 ⊂M so that D̃1 'D1 and all points of D̃1 \D lie inside A.

Similarly, since 〈g(D)〉M 'D and since B absorbs points we can extend g(D) to D̃2 ⊂M so that D̃2 'D2

and all points of D̃2 \ g(D) lie inside B. The function f can be now realized as a bijection f̃ : D̃1 → D̃2

which extends g. The function f̃ is not a partial isomorphism of M , however, if E is any subset of the

domain of f̃ that excludes C∗, f̃�E is a partial isomorphism of M .

Player II will now reply in his n-th round with the open set Vn, given by the partial isomorphism

h̃n = f̃�dom(f̃)∩A. Notice that any extension of h̃n to an h ∈ E(A,B) is not compatible with gkn . Hence, the

game will end with an isomorpism h = ∪hn = ∪h̃n between A and B, which cannot be further extended to

include C∗ in its domain and therefore h ∈ N .

Together with the Lemma 2.2.9, Lemma 2.2.11 proves the one direction of Theorem 2.2.19. For the other

direction we need first some lemmas.

Let M be the Fräıssé limit of a class K that does not split. Then, for every c ∈ M there is a finite

D ⊂ M with c ∈ D such that for every finite D1, D2 ⊃ D and every bijection f : D1 → D2 we have that:

if f�D1/{c} is an isomorphism between 〈D1/{c}〉M and 〈D2/{c}〉M , then f is an isomorphism between D1

and D2.

In other words, for every c ∈ M there is a finite K ⊂ M (K = D/{c} above) so that the rqf-type of c

over K completely determines the rqf-type of c over any finite extension F of K. It will be convenient to

settle on the following definition.

Definition 2.2.12. Let M be a Fräıssé structure, c ∈ M and K ⊂ M finite with c 6∈ K. We say that K

controls c if for every F1, F2 ⊂ M finite with K ⊂ F1, F2 and every bijection f : F1 ∪ {c} → F2 ∪ {c} with

f�K∪{c} = id we have that: if f�F1
is an isomorphism between F 1 and F 2 then f is an isomorphism between

〈F1 ∪ {c}〉M and 〈F2 ∪ {c}〉M .

In the following lemma we record some trivial facts regarding the above notion.
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Lemma 2.2.13. Let K be a Fräıssé class that does not split and let M be the Fräıssé limit of K. Let also

c ∈M . Then:

1. there is a finite K ⊂M so that K controls c;

2. if K controls c, L is a finite subset of M with K ⊂ L and c 6∈ L then L also controls c;

3. if K controls c and f ∈ Aut(M), then 〈f(K)〉M controls f(c).

Proof. All three statements follow directly from the definition 2.2.12.

Lemma 2.2.14. Let K be a Fräıssé class that does not split and let M be the Fräıssé limit of K. Assume

F ⊂ M is finite with K ⊂ F so that K controls the points c1, . . . , cn ∈ F c. Let pi be the rqf-type of ci over

K. If f : F ∪ {c1, . . . , cn} → M is an injective map with so that f�F in an embedding of F in M and the

rqf-type of f(ci) over f(K) is f [pi]. Then f is also an embedding.

Proof. We will prove this by induction. For n = 1, let g ∈ Aut(M) with g�K∪{c1} = f�K∪{c1}. The map

h : F ∪ {c1} → g−1f
(
F ∪ {c1}

)
is an injection fixing K ∪ {c1} with h�F being an isomorphism. Since K

controls c1 the map h (and therefore the map f) is an isomorphism.

Assume now that the statement holds for every n with n ≤ k and let f : F ∪{c1, . . . , ck, ck+1} →M . By

the inductive hypothesis we can enlarge F to include {c1, . . . , ck}, reducing the problem again to the n = 1

case.

For a, b ∈M we say that a is equivalent to b and we write a ∼M b if there is a finite K ⊂M such that K

controls a and a, b have the same rqf-type over K. Notice then that as a consequence of Lemma 2.2.13(3),

K controls b as well.

Lemma 2.2.15. Let K be a Fräıssé class that does not split and let M be the Fräıssé limit of K. Let also

a, b ∈ M with a ∼M b. Then, for every finite subset F of M with a, b 6∈ F , the points a and b share the

same rqf-type over F .

Proof. Let f : F ∪ {a, b} → F ∪ {a, b} be the function that fixes F and exchanges a with b and use Lemma

2.2.14.

In the additional presence of SAP we now have the following results.

Lemma 2.2.16. Let K be a Fräıssé class with SAP that does not split and let M be the Fräıssé limit of K.

Let also c1, . . . cn ∈M . Then there is K ⊂M so that K controls ci for every i ∈ {1, . . . , n}.
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Proof. From Lemma 2.2.13(1) let Ki ⊂M so that Ki that controls ci. Using SAP and Lemma 2.2.13(3) we

can arrangeK1, . . . ,Kn in such a way thatK1, . . . ,Kn, {a, b, c} are all pairwise disjoint. LetK =
⋃n
i=1Ki

Corollary 2.2.17. Let K be a Fräıssé class with SAP that does not split and let M be the Fräıssé limit of

K. Then, ∼M is an equivalence relation on M .

Proof. Reflexivity and symmetry follow directly from the definition. Transitivity, follows from Lemma 2.2.16

and Lemma 2.2.15.

Lemma 2.2.18. Let K be a Fräıssé class with SAP that does not split and let M be the Fräıssé limit of

K. Let also A,B ⊂ M such that all A,Ac and B,Bc absorb points. Then, every g in Iso(A,B) can be

extended to an automorphism g̃ ∈ Aut(M).

Proof. Let {Ni : i ∈ I} be an enumeration of all equivalence classes of ∼M in M and notice that since all

A,Ac,B,Bc absorb points the sets Ni ∩A,Ni ∩Ac, Ni ∩B,Ni ∩Bc are all infinite for every i ∈ I.

Let now c ∈ Ac and pick K ⊂ M so that K controls c. Using Lemma 2.2.13(3) and the fact that A

absorbs points we can assume that K ⊂ A. Notice then that by Lemma 2.2.15 K controls every other point

c′ ∈M with c ∼M c′ and c′ 6∈ K. In particular, if c ∈ Ni for some i ∈ I, K controls every point c′ ∈ Ni∩Ac

as well as cofinitely many points c′ ∈ Ni ∩ A. So, for every i ∈ I we can pick a finite subset Ki of A and

some ai ∈ Ni ∩A so that Ki controls ai as well as every c ∈ Ni ∩Ac.

Given now any g ∈ Iso(A,B) we have by Lemma 2.2.13(3) that 〈g(Ki)〉M controls g(ai). For every

i ∈ I, let gi be the unique j ∈ I with g(ai) ∈ Nj and pick a bijection hi : Ni ∩Ac → Ngi ∩Bc. We extend g

to an automorphism g̃ ∈ Aut(M) setting g̃(c) = hi(c) whenever c ∈ Ac with c ∈ Ni. To see that g̃ is indeed

an automorphism, notice that by Lemma 2.2.14 the restriction of g̃ to any finite substructure is a partial

isomorphism.

Theorem 2.2.19. Let M be a Fräıssé structure that has no algebraicity and let K be the corresponding

Fräıssé class.

1. If K splits, then the generic substructure A of M is a strongly non-global substructure and the generic

pair A,B in M is a strongly non-global pair.

2. If K does not split, then the generic substructure A of M is a global substructure and the generic pair

A,B in M is a global pair.

Proof. We have from Lemma 2.2.9 that for a generic substructure A of M , both A,Ac absorb points and

that for a generic pair A,B in M , all A,Ac,B,Bc absorb points. The result follows from Lemma 2.2.11

in case that K splits and from Lemma 2.2.18 in case that K does not split.
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2.3 Some structural consequences

Let K be a Fräıssé class with SAP, and let M be the corresponding Fräıssé limit. If A is a subset of M , we

denote with SM
n (A) the Stone space of all (complete) n-types over A. For every finite subset C of M we

denote by tp(C|A) the type of C over A. Let now C0 ⊂M so that C0 splits K and let n be the size of C0.

The fact that C0 ∈ K splits K can be rephrased as follows: for every finite K ⊂M with K∩C0 = ∅ there is a

finite F ⊃ K and a second copy C1 of C0 in M such that F ∩C0 = ∅, F ∩C1 = ∅ and tp(C0|F ) 6= tp(C1|F ).

Iterating this fact we produce a Cantor scheme in the compact metric space SM
n (M) which results in an

embedding of the Cantor set 2N into SM
n (M). We have just proved the following proposition.

Proposition 2.3.1. Let K be a Fräıssé class with SAP. If the corresponding Fräıssé limit M is ω-stable,

then K does not split.

Someone would hope that the above result could turn into a characterization of ω-stability for Fräıssé

limits without algebraicity. This, however, is not the case as the following example exhibits.

Example 2.3.2. Let L = {R,S} where R,S are both binary relational symbols and let M be the disjoint

union of a countable family of countable sets {Ni : i ∈ N}. We define M to be an L-structure with domain

M , where the symbols of L are interpreted as follows. For S, let

M |= S(a, b)⇔ ∃i ∈ N a, b ∈ Ni

To interpret R, equip first the set of indices {i : i ∈ N} with a structure G isomorphic to the random graph

in the language L = {R′} of one binary symbol. Let

M |= R(a, b) ⇔ a ∈ Ni, b ∈ Nj and G |= R′(i, j)

It is not difficult to see that M is a Fräıssé limit without algebraicity. For every a ∈ M , a is controlled by

〈b〉M for any b 6= a that lies in the same Ni with a. From that if follows that the corresponding Fräıssé class

K does not split. Notice, however, that M is not ω-stable because the structure G of the random graph is

not ω-stable.

We will now see that Example 2.3.2 is an archetype of how Fräıssé limits of classes K which have SAP

and do not split look like. Recall that in Section 2.2 we defined a relation ∼M between points a Fräıssé

limit M whose Fräıssé class K does not split. If moreover K has SAP, we proved in Lemma 2.2.17 that ∼M

is an equivalence relation on M . Another useful observation is that ∼M is Aut(M)-invariant. This follows

directly from Lemma 2.2.13(3).
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Let {Ni : i ∈ I} be the partition of M into the equivalence classes of ∼M , where I is a countable

(possibly finite) set of indices. From the fact that K has SAP, it is straight forward that for each i ∈ I, Ni

is infinite. Since ∼M is Aut(M)-invariant, we have a natural action of Aut(M) on the set of indices I: for

every i, j ∈ I let

g · i = j ⇔ ∃a ∈ Ni g(a) ∈ Nj ⇔ ∀a ∈ Ni g(a) ∈ Nj .

Let G0 be the kernel of the action Aut(M) y I and let H = Aut(M)/G0. H is a subgroup of SI , group

of all permutations on the set I. From the analysis above it follows that the automorphism group Aut(M)

is a subgroup of the unrestricted Wreath product G = S∞WrI H =
(∏

i∈I S∞
)
oH where the i-th copy of

S∞ is the permutation group of Ni; see for example [Cam90]. Moreover, by Lemma 2.2.14 it follows that

Aut(M) lies densely in G. Therefore since Aut(M) is a closed subgroup of S∞, the groups Aut(M) and G

are actually equal.

So, we have shown that if M is the Fräıssé limit of a class K that has SAP and does not split then

Aut(M) =
(∏

i∈I S∞
)
oH where H is a subgroup of SI and I is finite or countably infinite. Notice also

that H is a closed subgroup of SI . Working now towards the opposite direction, let I be a finite or countably

infinite set and let H be a closed subgroup of SI . Let IH be the canonical LH -structure with domain I

where the language LH = {Rnj } has one distinct n-ary symbol Rnj for each orbit Oj of the action of H on

In; see for example [Cam90].

Let L = LH ∪ {S}, where S is a new binary symbol and let M = I × N. Consider the L-structure MH

on M , where the interpretation is done as follows.

For every for every Rnj ∈ LH we have

MH |= Rnj
(
(i1,m1), . . . , (in,mn)

)
⇔ IH |= Rnj (i1, . . . , in)

and

MH |= S
(
(i1,m1), (i2,m2)

)
⇔ i1 = i2.

Let also KH = Age(MH). It is easy to check that MH is a countable, ultrahomogeneous structure

without algebraicity and that Aut(MH) =
(∏

i∈I S∞
)
o H. To see that KH does not split let C ⊂ M

finite with C = {(i1,m1), . . . , (ik,mk)} where, some ordered couples might share the same index i ∈ I. Let

m = max{mj + 1 : 1 ≤ j ≤ k} and let K = {(i1,m), . . . , (ik,m)}. Then, if D = K ∪ C, the inclusion

embedding i : C →D shows that C does not split K.

We collect in the following theorem the above results.
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Theorem 2.3.3. Let M be a Fräıssé structure without algebraicity. If Age(M) does not split then Aut(M) =(∏
i∈I S∞

)
oH, where I is a countable possibly finite set of indices, H is a closed subgroup of SI , and H

acts on I in the natural way. Moreover, if G is a group isomorphic to
(∏

i∈I S∞
)
oH where I and H as

above, then there is a countable ultrahomogeneous structure without algebraicity MH such that Age(MH)

does not split and such that G is isomorphic to Aut(MH).

The question of whether the complete inverse of the first statement of Theorem 2.3.3 holds remains open.

Question 2.3.4. Let M be a Fräıssé structure without algebraicity. Assume moreover that Aut(M) is

isomorphic as a topological group to
(∏

i∈I S∞
)
oH, where H and I as above. Is it the case that Age(M)

does not split?

2.4 The Wijsman hyperspace topology

In Section 2.2 and Section 2.3 we worked with countable relational structures. Given such a structure M ,

we viewed the set of all substructures of M as a Polish space. Namely, the cantor space 2M . In the next

chapter we are going to work with the Urysohn space and the Urysohn sphere. Both are complete metric

space of the size of the continuum. Like in Section 2.2, we will need a natural Polish space whose elements

correspond to the substructures of the space under consideration.

Let (X, d) be some metric space and let F(X) be the set of all closed subsets of X. The Wijsman

topology on F(X), introduced in [Wij64], is the weakest topology on F(X) that makes continuous the

family of distance functionals {dx}x∈X , where dx : F(X) → R with dx(F ) = d(x, F ). The proof of the

following theorem can be found in [Bee91].

Theorem 2.4.1 (Beer). If the space (X, d) is complete and separable, then the Wijsman topology of F(X)

is Polish.

From now on F(X) will always be equipped with the Wijsman topology. We will say that for a generic

subspace of X a certain property holds if the set A ⊂ F(X) of all F which have this property is comeager

in F(X). Similarly we say that for a generic pair of subspaces of X a certain property holds if the set

A ⊂ F(X)×F(X) of all (A,B) which have this property is comeager in F(X)×F(X).

2.5 The Urysohn space U and the Urysohn sphere S

Our aim here is to prove Theorem 2.5.9. The (separable) Urysohn metric space (U, ρ) is the unique, up to

isometry, Polish metric space that satisfies the following properties:
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• (ultrahomogeneity) for every two finite isometric subspaces A,B ⊂ U and for every isometry f : A→ B,

f extends to a full isometry f̃ of U;

• (universality) every Polish metric space is isometric to a subspace of U.

The Urysohn space was introduced by Urysohn in [Ury27] but the interest in this space was revived through

the work of Katětov and Uspenskij [Kat86,Usp90]. Here, in the next couple of paragraphs, we record some

definitions and facts commonly used in the study of Urysohn space. For a more detailed exposition the

reader may want to consult Melleray ([Mel07] or [Mel08]).

Let (A, dA), (B, dB) be isometric Polish metric spaces. We are going to denote with Iso(A,B) the space

of all (bijective) isometries from A to B and with Iso(A) the space of all (bijective) isometries from A to A.

A basic open set U in Iso(A,B) can be thought of as a couple [f, δ], where f is a partial isometry from A

to B with dom(f) finite and δ > 0. If U ⊂ Iso(A,B) is a basic open set corresponding to the couple [f, δ],

then g ∈ Iso(A,B) belongs to U if for every a ∈ dom(f) we have dB(f(a), g(a)) < δ.

Definition 2.5.1. Let (X, d) be a metric space. A map g : X → R is a Katětov map on X if

∀x, y ∈ X g(x)− g(y) ≤ d(x, y) ≤ g(x) + g(y).

If moreover range(g) ⊂ Q, we say that g is a rational Katětov map on X. We denote by E(X) the set of

all Katětov maps on X, and by EQ(X) the set of all rational Katětov maps on X. Following Katětov, we

introduce a distance between any pair of maps g1, g2 that belong to E(X) given by

dX(g1, g2) = sup{|g1(x)− g2(x)| : x ∈ X}.

This distance renders (E(X), dX) a complete metric space which extends (X, d) via the identification x →

gx(y) = d(x, y) ∈ E(X) for every x ∈ X. We are interested in a specific subset of E(X) which plays

important role in the study of Urysohn space. Let Y be a subset of X and g a Katětov map on Y . We can

extend g ∈ E(Y ) to g̃ ∈ E(X) by letting

g̃(x) = inf{g(y) + d(x, y) : y ∈ Y }.

We call g̃ the Katětov extension of g to X. If f ∈ E(X) and Y ⊂ X are such that f is the Katětov extension

of f�Y to X, we say that Y is a support of f . The set

E(X,ω) = {g ∈ E(X) : g has finite support}
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should be thought of as the set of all the rqf-types over every finite substructure of a structure that we saw

in Section 2.2. Katětov maps on X with finite support can be approximated by functions that belong to

EQ(X,ω) = {g ∈ EQ(X) : g has finite support}.

An easy observation that can be found also in [GK03] is that if X is separable and D ⊆ X is countable and

dense in X, then EQ(D,ω) is a countable dense subset of E(X,ω).

There is another useful characterization of Urysohn space. Let X be a metric space. We say that X has

the approximate extension property if for every finite A subset of X every g ∈ E(A) and every ε > 0, there

is a z ∈ X such that for every a ∈ A we have |d(z, a)− g(a)| ≤ ε. We say that X has the extension property

if we can take ε = 0 in the above definition. For a complete separable metric space X the following are

equivalent:

• X is isometric to the Urysohn space.

• X has the extension property.

• X has the approximate extension property.

Uspenskij in [Usp90] used Katětov’s tower construction [Kat86] to prove that for every Polish metric space

X we can find subspaces B of U isometric to X for which every isometry of B extends to a full isometry of

U. Therefore there are subspaces of U, of infinite cardinality, which are global. The following example shows

that U contains non-global subspaces too (see also [Mel07] for non-global embeddings of every non-compact

space).

Example 2.5.2. Let x0, x1, x2 be points in U such that ρ(x0, x1) = 2, ρ(x1, x2) = 1, ρ(x0, x2) = 3 let also

ε with 0 < ε < 1. Set A = U \ B(x0, ε). Then it is easy to see that A has the extension property and

therefore it is isomorphic to U. So, there is an isometry f : A→ A sending x1 to x2. This isometry cannot

be extended to a full isometry of U. Moreover, the choice of ε ensures that there is a uniform lower bound

bigger than zero (say 1− ε) between g�A and f for every isometry g of U.

Definition 2.5.3. Let D ⊆ U. We say that D absorbs points if D 6= ∅, and for every finite X =

{x1, . . . , xk} ⊂ U, for every g ∈ E(X) with ρ(xi, D) < g(xi) there is a z ∈ D such that ρ(z, xi) = g(xi).

Remark 2.5.4. Notice that if F is a closed subset of U and F absorbs points, then F is complete, separable

and has the extension property. Therefore it is isomorphic to the Urysohn space.

Lemma 2.5.5. For a generic F ∈ F(U), F absorbs points.
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Proof. Let P be a countable dense subset of U. Consider the set

A =
{
F ∈ F(U) : ∀ finite A = {a1, . . . , ak} ⊂ P ∀g ∈ EQ(A) ∀m ∈ N

ρ(a1, F ) ≥ g(a1) ∨ . . . ∨ ρ(ak, F ) ≥ g(ak) or ∃z ∈ U

such that ρ(a1, z) = g(a1) ∧ . . . ∧ ρ(ak, z) = g(ak) ∧ ρ(z, F ) <
1

m
}.

Closed conditions in a Polish space are also Gδ. So A a Gδ subset of F(U). We now show that A is also

dense in F(U). Let F ∈ F(U). We will find a sequence {Fn}n∈N of sets from A that converges to F in the

Wijsman topology. If F = U, then the sequence Fn = U for every n lies in A and converges to U. If F 6= U,

let {xn}n∈N be a dense subset of F c and dn = ρ(xn, F ) > 0. Let

Fn =
{
x ∈ U : ρ(x, x1) ≥ d1 · (1−

1

n
), . . . , ρ(x, xn) ≥ dn · (1−

1

n
)
}
.

Clearly {Fn}n∈N converges to F . Fix now a n ∈ N. We will show that Fn belongs to A. Let A =

{a1, . . . , ak} ⊂ P , g ∈ EQ(A) and m ∈ N. Assume moreover that ρ(ai, F ) < g(ai) for every i. Let g̃ be the

Katětov extension of g to A ∪ {x1, . . . xn}. The extension property of the Urysohn space gives us a point

z ∈ U that realizes the distances given by g̃. Moreover, for every j ∈ {1, . . . , n} we have that

g̃(xj) = inf{ρ(xj , ai) + g(ai) : 1 ≤ i ≤ k} >

inf{ρ(xj , ai) + ρ(ai, F ) : 1 ≤ i ≤ k} ≥

ρ(xj , F ) > dj · (1−
1

n
).

Therefore 0 = ρ(z, Fn) < 1
m , which proves that Fn belongs to A for every n ∈ N.

We showed so far that A is a comeager subset of F(U). We now proceed to prove that for every F

that belongs to A, F absorbs points. Let F ∈ A and X = {x1, . . . , xk} ⊂ U. Let also g ∈ E(X), with

ρ(xi, F ) < g(xi) for every i ∈ {1, . . . , k}. Urysohn space is complete, so it suffice to find a sequence {zn}n∈N

in U such that for every n ∈ N we have:

• |ρ(zn, xi)− g(xi)| < 2−n for every i ∈ {1 . . . , k};

• ρ(zn, F ) < 2−n, and

• ρ(zn+1, zn) < 21−n.

Let d = min{g(xi)− ρ(xi, F ) : 1 ≤ i ≤ k} > 0 and let {δn}, {δ′n} be two sequences of positive real numbers

with δn, δ
′
n < min{d, 1} · 2−(n+1). For n = 1 let P1 = {p11, p12, . . . , p1k} ⊂ P with ρ(p1i , xi) < δ1 for all
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i ∈ {1, . . . k} and let g1 ∈ EQ(P1) with |g1(p1i ) − g(xi)| < δ′1 for all i ∈ {1, . . . , k}. These conditions imply

that g1(p1i ) > ρ(p1i , F ). Therefore, by definition of A, we can find a z1 such that

• |ρ(z1, xi)− g(xi)| ≤ δ1 + δ′1 < 2−1 for every i ∈ {1 . . . , k}, and

• ρ(z1, F ) < 2−1.

Suppose now that we have defined z1, . . . , zn fulfilling the above properties. Let fn ∈ E({x1, . . . , xk}) with

fn(xi) = d(xi, zn). Then dX(fn, g) = sup{|fn(xi)− g(xi)| : 1 ≤ i ≤ k} < 2−n.

We define now Pn+1 = {pn+1
1 , pn+1

2 , . . . , pn+1
k }∪{pn+1

∗ } ⊂ P with ρ(pn+1
∗ , zn) < δn+1, ρ(pn+1

i , xi) < δn+1

for all i ∈ {1, . . . k} and gn+1 ∈ EQ(Pn+1) with |gn+1(pn+1
∗ )− dX(fn, g)| < δ′n+1 and |gn+1(pn+1

i )− g(xi)| <

δ′n+1 for all i ∈ {1, . . . , k}. Again these conditions imply that gn+1(pn+1
i ) > ρ(pn+1

i , F ) so we get a zn+1 such

that

• |ρ(zn+1, xi)− g(xi)| ≤ δn+1 + δ′n+1 < 2−(n+1) for every i ∈ {1 . . . , k};

• ρ(zn+1, F ) < 2−(n+1), and

• ρ(zn+1, zn) ≤ dX(fn, g) + δn+1 + δ′n+1 < 2−n + 2−(n+1) < 21−n.

This proves that every F ∈ A absorbs points and therefore the set of all closed subsets F of U that absorb

points is a comeager subset of F(U).

By the Lemma 2.5.5 and Remark 2.5.4 we have the following corollary. For a result similar in spirit but

on different context; see [Ver04].

Corollary 2.5.6. For a generic F ∈ F(U), F is isometric to U.

With the following lemma we establish in relation to the Definition 2.2.4 that the class of all finite metric

spaces “splits” in a uniform way.

Lemma 2.5.7. Let d∗ be a positive real number. Then for every ε < d∗ and every finite metric space (X, d)

with X = {a1, . . . , an, c} such that d(c, ai) ≥ d∗, for all i ∈ {1, . . . , n}, there are g1, g2 ∈ E(X) such that

• g1(ai) = g2(ai) for all i ∈ {1, . . . , n};

• g1(c), g2(c) ≥ d∗, and

• |g1(c)− g2(c)| > ε.

Proof. Let D = diam(X) and pick any δ ∈ (ε, d∗). Define g1, g2 : X → R with g1(ai) = g2(ai) = 2D for

every i ∈ {0, . . . , n}, g1(c) = 2D and g2(c) = 2D − δ.
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Lemma 2.5.8. Let A,B ∈ F(U) such that A,B absorb points and A,B 6= U. Then, E(A,B) is a meager

subset of Iso(A,B).

Proof. The proof is essentially the same as in Lemma 2.2.11. Therefore we will skip the details. Players I and

II take turns playing open sets in the Banach Mazur game G∗∗(N , Iso(A,B)) where N = Iso(A,B)\E(A,B).

Let c∗ ∈ Ac, let d∗ ∈ R with 0 < d∗ < ρ(c∗, A) and let ε with 0 < ε < d∗. Consider the set

C = {y ∈ Bc : ∃h ∈ E(A,B) with h(c∗) = y},

and let {Wi}i∈N be an open covering of C with diam(Wi) <
ε
2 for every i ∈ N.

Assume that in the n-th step Player I has played the open set Un = [fn, δn] ⊂ Iso(U), where fn is an

isometry between the finite subspaces An ⊂ A and Bn ⊂ B. Assume also that in is the smallest index

for which there is an h ∈ E(A,B) with h(c∗) ∈ Win and let yn = h(c∗) for any h as above. Let also

hn : An ∪ {c∗} → Bn ∪ {yn} be the unique partial isometry that extends fn to An ∪ {c∗}.

Player II will make use of Lemma 2.5.7 to get g1, g2 ∈ E(An ∪ {c∗}) with g1�An
= g2�An

and |g1(c∗) −

g2(c∗)| > ε. Moreover, by adding if necessary the same constant function to g1 and g2, he can arrange so

that gi(c∗) > ρ(c∗, A) for i ∈ {1, 2}. Due to the fact that both A and B absorb points, he will find points

zn ∈ A and z′n ∈ B such that ρ(x, zn) = g1(x) for every x ∈ An ∪ {c∗} and ρ(x, z′n) = g2 ◦ h−1n (x) for every

x ∈ Bn ∪ {yn}. Player II will play his n-th move Vn = [f ′n, δ
′
n] where

f ′n : An ∪ {zn} → Bn ∪ {z′n} with f ′n�An
= fn,

f ′n(zn) = z′n and δ′n = min{δn, ε2 , 2
−n}. As in Lemma 2.2.11 this leads to a winning strategy for Player II

and by Theorem 2.1.1 we have that E(A,B) is a meager subset of Iso(A,B).

Summarizing the above results we have the following theorem:

Theorem 2.5.9. Let U be the Urysohn space. Then for a generic F ∈ F(U), the generic isometry f ∈ Iso(F )

cannot be extended to an isometry f̃ ∈ Iso(U). Moreover, for a generic pair (A,B) ∈ F(U)2 the generic

isometry f ∈ Iso(A,B) cannot be extended to an isometry f̃ ∈ Iso(U).

Proof. By Theorem 2.5.5, we have that for a generic subspace F ∈ F(U) and for a generic pair A,B ∈ F(U)

all F,A,B absorb points. Moreover, for generic F,A,B, F,A,B 6= U. Lemma 2.5.8 proves the rest.

We want to point out here that the situation with the Urysohn sphere S is not much different. Analogous

statements to Lemmas 2.5.5, 2.5.7, 2.5.8 and Theorem 2.5.9 follow easily for S if we make the obvious
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changes. There is also a final remark that should be made. The theory of Fräıssé limits grafted with ideas

from continuous logic can be naturally generalized to the context of complete separable metric structures;

see for example [Yaa15]. In this context, the Urysohn space and the Urysohn sphere are just examples of the

general theory. A natural question arises, namely whether a dichotomy similar to the one in Section 2.2 could

possibly hold for metric Fräıssé structures. The following example suggests which types of metric structures

would belong to the “global” side of the dichotomy. However, the methods developed here face some obstacles

when we try to apply them into this context. For example, the general theory of metric Fräıssé structures

is developed for approximately ultrahomogeneous structures rather than ultrahomogeneous structures and

moreover, to my current understanding, a natural and convenient notion of SAP does not seem to exist.

Example 2.5.10. Let N = NN be the Baire space endowed with the ultrametric d with

d(α, β) =
1

m
where m = min{n : α(n) 6= β(n)},

if α 6= β and d(α, β) = 0 otherwise. The metric structure (N , d) is a metric Fräıssé structure that happens

to be ultrahomogeneous. For a generic subspace F ∈ F(N ), F is the body of a pruned tree T on N such

that for every n ∈ N there are infinitely many s ∈ T and infinitely many s 6∈ T of length n. It is easy now to

see that for a generic F ∈ F(N ), F is a global substructure and that the generic pair A,B ∈ F(N ) is also

global.
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Chapter 3

Games and obstructions to Borel
reducibility

3.1 The Becker-embedding game

Recall that a CLI group is a Polish group that admits a compatible complete left-invariant metric. It is

easy to see that a Polish group is CLI if and only if it admits a compatible right-invariant metric; see

[Bec98, 3.A.2. Proposition]. Suppose that G is a Polish group, and X is a Polish G-space. The main goal of

this section is to provide a dynamical criterion of a Polish G-space X which implies that the corresponding

orbit equivalence relation is not Borel reducible to the orbit equivalence relation induced by a Borel action

of a CLI group.

We recall the notion of ι-embeddability for points of X from [Bec98, Definition 3.D.1].

Definition 3.1.1. Let d be a left-invariant metric on G. If x, y ∈ X, then x is ι-embeddable into y if there

exists a sequence (hn)n∈ω in G such that hnx→ y and (hn)n∈ω is Cauchy with respect to the metric d.

By [Bec98, Proposition 3.B.1] the definition does not depend on the choice of the left-invariant metric d

on G. Similarly one can consider the following similar notion of ”embedding” that is also defined, but not

extensively studied in [Bec98].

Definition 3.1.2. Let d be a right-invariant metric on G. If x, y ∈ X, then x is Becker-embeddable into y

if there exists a sequence (hn)n∈ω in G such that hny → x and (hn)n∈ω is Cauchy with respect to the metric

d.

We now consider a game between two players, which captures the notion of Becker-embeddability from

Definition 3.1.2.

Definition 3.1.3. Suppose that X is a Polish G-space, and x, y ∈ X. We consider the Becker-embedding

game Emb(x, y) played between two players as follows. Set U0 = X and V0 = G.

1. In the first turn, Player I plays an open neighborhood U1 of x, and an open neighborhood V1 of the

identity of G. Player II replies with an element g0 in V0.
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2. In the second turn, Player I then plays an open neighborhood U2 of x, and an open neighborhood V2 of

the identity of G, and Player II replies with an element g1 in V1.

(n) At the n-th turn, Player I plays an open neighborhood Un of x, and an open neighborhood Vn of the

identity of G, and Player II responds with an element gn−1 in Vn−1.

The game proceed in this way, producing a sequence (gn) of elements of G, a sequence (Un) of open

neighborhoods of x in X, and a sequence (Vn) of open neighborhoods of the identity in G. Player II wins

the game if for every n > 0, gn−1 · · · g0y ∈ Un. We say that x is Becker embeddable into y—and write

x 4B y—if Player II has a winning strategy for the game Emb(x, y).

Remark 3.1.4. It is not difficult to see that, if Player II has a winning strategy for the Becker-embedding

game as described in Definition 3.1.3, then it also has a winning strategy for the same game with the

additional winning conditions that gn belongs to some given comeager subset of Vn, and gn−1 · · · g0y belongs

to some given comeager subset X0 of X, provided that the set of g ∈ G such that gy ∈ X0 is comeager. This

is a consequence of the following version of the Kuratowski-Ulam theorem: suppose that X,Y are Polish

spaces and f : X → Y is a continuous open map. Then a Baire-measurable subset A of X is comeager if

and only if the set
{
y ∈ Y : A ∩ f−1 {y} is comeager in f−1 {y}

}
is comeager; see [MT13, Theorem A.1].

One can then apply this fact to the continuous and open map G ×X → X, (g, x) 7→ gx. This observation

can be equivalently phrased in terms of properties of the Vaught transform for Polish group actions; see

[Gao09, Section 3.2].

The following Lemma is an immediate consequence of the above definitions3.1.21.

Lemma 3.1.5. Let X be a Polish G-space. If x, y are points of X, then the following statements are

equivalent:

1. x 4B y;

2. x is Becker-embeddable in y.

Suppose that X is a Polish G-space. It follows from Lemma 3.1.5 and [Bec98, Proposition 3.D.4] that

the relation of Becker-embeddability is a preorder. Furthermore, if x 4B y, x′ belongs to the G-orbit of x,

and y′ belongs to the G-orbit of y, then x′ 4B y′.

We let X/G be the space of G-orbits of points of X. The Becker-embeddability preorder defines a directed

graph structure on X/G obtained by declaring that there is an arrow from the orbit [x] of x to the orbit [y]

1We would like to thank here Alex Kruckman for pointing out a mistake in an early version of this draft, where we were
using ι-embeddings instead of r-embeddings.
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of y if and only if x 4B y. We will call this the Becker digraph B (X/G) of the Polish G-space X. Similarly,

for a G-invariant subset X0 of X we let B (X0/G) the induced subgraph of B (X/G) only containing vertices

corresponding to orbits from X0. Suppose that G,H are Polish groups, X is a Polish G-space, and Y

is a Polish H-space. Any
(
EXG , E

Y
H

)
-homomorphism f : X → Y induces a function [f ] : X/G → Y/H,

[x] 7→ [f(x)]. We will show below that, when f is Baire-measurable, such a function is generically a digraph

homomorphism with respect to the Becker digraph structures on X/G and Y/H.

We now recall an example from [Bec98], describing the notion of Becker-embedding in case of Polish

G-spaces arising from classes of countable models. Suppose that L = (Ri)i∈I is a countable first order

relational language, where Ri is a relation symbol with arity ni. Let Mod (L) be the space of countable

L-structures having N as support, F be a countable fragment of Lω1,ω, and S∞ be the group of permutations

of N. As usual, one can regard Mod (L) as the product
∏
i∈I 2(N

ni ). Any Lω1,ω formula ϕ with parameters

from N defines a subset [ϕ] of Mod (L) of the structures that satisfy ϕ. The fragment F defines a topology

tF on Mod (L) having the collections of sets of the form [ϕ], where ϕ ranges among the formulas in F

with parameters, as a clopen basis. The canonical action S∞ y Mod (L) turns (Mod (L) , tF ) into a Polish

G-space [Bec98, Proposition 2.D.2]. In the case where F is the fragment consisting of all first-order formulas

and x, y ∈ Mod (L), then x ι-embeds in y, if and only if there is an injective function f : N → N that

witnesses an elementary embedding of x in y [Bec98, Proposition 3.D.2]. It is easy to see that in the case

where when F is the fragment consisting of atomic first-order formulas and x, y ∈ Mod (L), then x Becker-

embeds in y, if and only if there is an injective function f : N→ N that witnesses a simple embedding of x

in y as an L-structure.

3.2 The orbit continuity lemma

Recall that if E,F are equivalence relations on Polish spaces X,Y respectively, then a (E,F )-homomorphism

is a function f : X → Y mapping E-classes to F -classes. In this subsection we isolate a lemma to be used in

the rest of the paper. It states that a Baire-measurable homomorphism between orbit equivalence relations

admits a restriction to a dense Gδ set which is continuous at the level of orbits, in a suitable sense. Variations

of such a lemma are well known. The starting point is essentially [Hjo00, Lemma 3.17] modified as in the

beginning of the proof of [Hjo00, Theorem 3.18]; see also [Gao09, Lemma 10.1.4 and Theorem 10.4.2].

Lemma 3.2.1. Suppose that G,H are Polish groups, X is a Polish G-space, and Y is a Polish H-space.

Let f : X → Y be a Baire-measurable
(
EXG , E

Y
H

)
-homomorphism. Then there exists a dense Gδ subset C of

X such that
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• the restriction of f to C is continuous;

• for any x ∈ C, {g ∈ G : gx ∈ C} is a comeager subset of G;

• for any x0 ∈ C and for any open neighborhood W of the identity in H there exists an open neighborhood

U of x0 and an open neighborhood V of the identity of G such that for any x ∈ U∩C and for a comeager

set of g ∈ V , one has that f(gx) ∈Wf(x) and gx ∈ C.

Proof. In the course of the proof, we will use the category quantifier ∀∗x ∈ U for the statement “for a

comeager set of x ∈ U”; see [Gao09, Section 3.2]. Fix a neighborhood W0 of the identity in H. We first

prove the following claim: ∀x0 ∈ X ∀∗g0 ∈ G, there is an open neighborhood V of the identity in G such

that ∀∗g1 ∈ V , f(g1g0x0) ∈W0f(g0x0).

Fix a neighborhood W of the identity of H such that WW−1 ⊂ W0. Let (hn) be a sequence in H such

that {Whn : n ∈ N} is a cover of H. Since Whnf(x0) is analytic, the set of elements x of the orbit of x0 such

that f(x) ∈Whnf(x0) has the Baire property. Therefore we can find a sequence (On) of open subsets of G

with dense union O and a comeager subset D of O such that ∀g ∈ D ∩ On, f(gx0) ∈ Whnf(x0). Suppose

now that g0 ∈ D. Let n ∈ N be such that g0 ∈ On. Then there exists a neighborhood V of the identity of G

such that V g0 ⊂ On. Observe that (D ∩On) g−10 ∩ V is a comeager subset of V . If g1 ∈ (D ∩On) g−10 ∩ V ,

then we have

f(g1g0x0) ∈Whnf(x0) and f(g0x0) ∈Whnf(x0).

Therefore

f(g1g0x0) ∈WW−1f(g0x0) ⊂W0f(g0x0).

This concludes the proof of the claim.

From the claim and the Kuratowski-Ulam theorem, one deduces that there exists a dense Gδ subset C0

of X such that for every x ∈ C0 there exists an open neighborhood V of the identity of G such that ∀∗g ∈ V ,

f(gx) ∈ Wf(x). Since f is Baire-measurable, we can furthermore assume that the restriction of f to C0 is

continuous.

Fix now a countable basis (Wk) of open neighborhoods of the identity of H and a countable basis (Vn) of

open neighborhoods of the identity in G. Let N : X×N→ N∪{∞} be the function that assigns to (x, k) the

least n ∈ N such that ∀∗g ∈ Vn, f(gx) ∈Wkf(x) if such an n exists and x ∈ C0, and∞ otherwise. Then N is

an analytic function, and hence one can find a dense Gδ subset C1 of X contained in C0 such that N |C1×N is

continuous. By [Gao09, Proposition 3.2.5 and Theorem 3.2.7] the set C := {x ∈ C1 : ∀∗g ∈ G, gx ∈ C1} is a

dense Gδ subset of X such that ∀x ∈ C, ∀∗g ∈ G, gx ∈ C. Therefore C satisfies the desired conclusions.
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3.3 Generic homomorphisms between Becker graphs

In this section we use the Becker-embedding game and the orbit continuity lemma to address Problem 1.2.1

for the class of CLI groups.

Definition 3.3.1. An equivalence relation E on a Polish space X is CLI-classifiable if it is Borel reducible

to EYH for some CLI group H and Polish H-space Y .

We will obtain below an obstruction to CLI-classiability in terms of the Becker digraph. This will be

based upon the following properties of the Becker digraph:

1. the Becker digraph contains only loops in the case of CLI group actions (Lemma 3.3.2), and

2. a Baire-measurable homomorphism between orbit equivalence relations induces, after restricting to an

invariant dense Gδ set, a homomorphism at the level of Becker digraphs (Proposition 3.3.3).

Lemma 3.3.2. If Y is a Polish H-space and H is a CLI group, then the Becker digraph B (Y/H) contains

only loops.

Proof. Fix a compatible complete right-invariant metric d on H. For a subset A of H we let diam (A) be the

diameter of A with respect to d. Let x, y be elements of Y with different H-orbits. We show that Player I has

a winning strategy in Emb(x, y). In the n-th round Player I plays some symmetric open neighborhood Vn+1

of the identity of H with diam (Vn+1) < 2−n and an open neighborhood Un of x such that the sequence (Un)

forms a decreasing basis of neighborhoods of x. Let (gn) be the sequence of group elements chosen by Player

II, and set hn := gn · · · g0. We claim that such a sequence does not satisfy the winning condition for Player

II in the Becker-embedding game. Suppose by contradiction that this is the case, and hence limn hny = x.

For every n > m we have by right invariance of d that

d(hn, hm) = d(gn · · · gm+1, 1) ≤ d(gn, 1) + d(gn−1, 1) + · · ·+ d(gm+1, 1) < 2−m.

Therefore hn is a d-Cauchy sequence with respect to d. Since by assumption d is complete, hn converges to

some h ∈ H. From limn hny = x and continuity of the action, we deduce that hy = x. This contradicts the

assumption that the H-orbits of x and y are different.

Using the orbit continuity lemma (Lemma 3.2.1) one can then show that a Baire-measurable homomor-

phism preserves Becker embeddability on a comeager set. This is the content of the following proposition.
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Proposition 3.3.3. Suppose that G,H are Polish groups, X is a Polish G-space, and Y is a Polish H-space.

Let f : X → Y be a Baire-measurable
(
EXG , E

Y
H

)
-homomorphism. Then there exists a G-invariant dense Gδ

subset X0 of X such that the function [f ] : X0/G → Y/H, [x] 7→ [f(x)] is a digraph homomorphism from

the Becker digraph B (X0/G) to the Becker digraph B (Y/G).

Proof. As in the proof of Lemma 3.2.1, we will use the category quantifier ∀∗x ∈ U for the statement “for

a comeager set of x ∈ U”. Let C be dense Gδ subsets of X obtained from f as in Lemma 3.2.1. Set

X0 := {x ∈ X : ∀∗g ∈ G, gx ∈ C}, which is a G-invariant dense Gδ set by [Gao09, Proposition 3.2.5 and

Theorem 3.2.7]. We claim that [f ] : X0/G → Y/H, [x] 7→ [f(x)] is a digraph homomorphism from the

Becker digraph B (X0/G) to the Becker digraph B (Y/G).

Fix x0, y0 ∈ X0 such that x0 4B y0. We want to prove that f(x0) 4B f(y0). Observe that ∀∗g ∈ G,

gx0 ∈ C ∩X0. Therefore after replacing x0 with gx0 for a suitable g ∈ G we can assume that x0 ∈ C ∩X0.

Let us consider thus the Becker-embedding game Emb(f(x0), f(y0)). At the same time we consider the

Becker-embedding game Emb(x0, y0) and use the fact that Player II has a winning strategy for such a game.

In the first turn of Emb(f(x0), f(y0)), Player I plays an open neighborhood Û1 of f(x0) and an open

neighborhood V̂1 of the identity of H. Consider an open neighborhood U1 of x0 and an open neighborhood

V1 of the identity of G such that for any x ∈ U1 ∩ C ∩ X0 and a comeager set of g ∈ V1 one has that

f (gx) ∈ V̂1f(x). Consider now the round of the game Emb(x0, y0) where, in the first turn, Player I plays

the neighborhood U1 of x0 and the neighborhood V1 of the identity of G. Since by assumption Player II

has a winning strategy for Emb(x0, y0), we can consider an element g0 of V1 which is obtained from such a

winning strategy. By Remark 3.1.4, we can also insist that g0 belongs to the comeager set of g ∈ V1 such

that gy0 ∈ U1 ∩ C ∩X0 and f (gy0) ∈ V̂1f(x). We can then let Player II play, in the first turn of the game

Emb(f(x0), f(y0)), an element h0 of V̂1 such that f (g0y0) = h0f (y0).

At the n-th turn of Emb(f(x0), f(y0)), Player I plays an open neighborhood Ûn of f(x0) and an open

neighborhood V̂n of the identity of H. Consider now an open neighborhood Un of x0 and an open neigh-

borhood Vn of the identity of G such that for any x ∈ Un ∩ C ∩X0 and a comeager set of g ∈ Vn one has

that f (gx) ∈ V̂nf(x). Let Player I play, in the n-turn of Emb(x0, y0), the open neighborhoods Un of x0

and Vn of the identity of G. Let gn−1 ∈ Vn be obtained from a winning strategy for Player II. By Remark

3.1.4 we can insist that gn−1 belongs to the comeager set of g ∈ Vn such that ggn−2 · · · g1g0y ∈ Un ∩C ∩X0

and f (gx) ∈ V̂1f(x). Therefore we can let Player II play, in the n-th turn of the game Emb(f(x0), f(y0)),

an element hn−1 ∈ V̂n−1 such that f (gn−1 · · · g0y) = hn−1f (gn−1 · · · g0y) = hn−1 · · ·h0y ∈ Ûn. Such a

construction witness that Player II has a winning strategy for the game Emb(f(x0), f(y0)).

From Lemma 3.3.2 and Proposition 3.3.3 one can immediately deduce the following criterion for showing
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that the orbit equivalence relation of a Polish group action is not Borel reducible to the orbit equivalence

relation of CLI group action.

Theorem 3.3.4. Suppose that X is a Polish G-space. If for any G-invariant dense Gδ subset C of X there

exist x, y ∈ C with different G-orbits such that x 4B y, then for any G-invariant dense Gδ subset C of X

the relation EXC is not CLI-classifiable.

Proof. Suppose that H is a CLI group, and Y is a Polish H-space. Suppose that D is a G-invariant dense

Gδ subset of X, and f : D → Y is a Borel
(
EDG , E

Y
H

)
-homomorphism. Then by Proposition 3.3.3 there exists

a G-invariant dense Gδ subset C of D such that [f ] : C/G → Y/H is a digraph homomorphisms for the

Becker digraphs B (C/G) and B (Y/H). By assumption there exist elements x, y of C with different G-orbits

such that x 4B y. Therefore f(x) 4B f(y). Since H is CLI we have by Lemma 3.3.2 that f(x) and f(y)

belong to the same H-orbit. Therefore f is not a reduction from EDG to EYH .

3.4 Applications

Suppose that E is an equivalence relation on a Polish space X. Recall that the Friedman–Stanley jump E+

of E [Gao09, Definition 8.3.1]—see also [FS89]—is the equivalence relation on the standard Borel space XN

of sequences of elements of X defined by (xn)E+ (yn) if and only if {[xn]E : n ∈ N} = {[yn]E : n ∈ N}.

In particular one can start with the relation = of equality on a perfect Polish space X. The corresponding

Friedman–Stanley jump is the relation =+ on Xω defined by (xn) =+ (yn) if and only if the sequences (xn)

and (yn) have the same range. With respect to Borel reducibility, =+ is the most complicated (essentially)

Π0
3 equivalence relation [Gao09, Theorem 12.5.5]; see also [HKL98].

Hjorth has proven in [Hjo98, Theorem 5.19] that =+ is not Borel reducible to the orbit equivalence

relation of a continuous action of an abelian Polish group. As remarked in [Hjo98, page 663], Hjorth’s proof

uses a metamathematical argument involving forcing and Stern’s absoluteness principle . Similar methods

are used in [Kan08, Theorem 17.1.3] to prove that =+ is not Borel reducible to the orbit equivalence relation

of a Borel action of a CLI group. This is obtained as a consequence of a general result concerning pinned

equivalence relations; see [Kan08, Definition 17.1.2]. To our knowledge, the argument below provides the

first entirely classical proof of this result.

Let σ : XN → XN be the unilateral shift (x1, x2, . . .) 7→ (x2, x3, . . .). We consider the restriction of =+ to

the dense Gδ subset Y of XN that consists of injective sequences. Observe that this is the orbit equivalence

relation of the canonical action of S∞ on XN obtained by permuting the indices.
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Theorem 3.4.1. Let Z ⊂ Y be a nonempty S∞-invariant Gδ set such that σ [Z] = Z. The restriction of

=+ to any S∞-invariant dense Gδ subset of Z is not Borel reducible to a Borel action of a CLI group on a

standard Borel space.

Proof. Let E be the restriction of =+ to Z. As observed before, E is the orbit equivalence relation of the

canonical action S∞ y Z ⊂ Y ⊂ XN given by permuting the coordinates. We apply Proposition 3.3.4.

Let C be an S∞-invariant dense Gδ subset of Z. We need to prove that there exist x, y ∈ C with different

orbits such that x 4B y. For x = (xn) ∈ Y we let Ran(x) be the set {xn : n ∈ N}. It is not difficult to

see directly that, for x, y ∈ Y , x 4B y if and only if Ran(x) ⊂ Ran(y). When X is the Cantor space 2N,

this assertion is a particular instance of the discussion at the end of Section 3.1. Indeed, in this case XN

can be seen as the space Mod (L) of L-structures endowed with the topology tF , where L is the language

containing a countably infinite collection of unitary relations and F is the fragment consisting of atomic

formulas. Observe that σ : Z → Z is continuous, open, and surjective. Therefore, since C is a dense Gδ

subset of Z, we have that there exists a comeager subset C0 of C such that, for every x ∈ C0, σ−1 (x)∩C is

a comeager subset of σ−1 (x); see [MT13, Theorem A.1]. Pick now x ∈ C0 and y ∈ σ−1 (x) ∩ C. It is clear

that x 4B y and x, y lie in different S∞-orbits. This concludes the proof.

We now apply Theorem 3.4.1 to obtain information about the orbit equivalence relation of some canonical

actions of the uniteray group U (H). Let H be the separable infinite-dimensional Hilbert space, and let U (H)

be the group of unitary operators on H. This is a Polish group when endowed with the weak operator

topology; see [Bla06, Proposition I.3.2.9]. The group U (H) admits a canonical action by conjugation on

itself and on the space B (H)sa of selfadjoint operators.

Theorem 3.4.2. The following relations are not Borel reducible to a Borel action of a CLI group on a

standard Borel space:

1. unitary equivalence of unitary operators;

2. unitary equivalence of selfadjoint operators.

Proof. As in Theorem 3.4.1 we consider the equivalence relation =+ on the set XN of sequences of elements

of a perfect Polish space X. Fix an orthonormal basis (en) of H. Let X be the circle group T, and Y ⊂ TN

be the set of injective sequences. The map f : Y → U(H) which sends an element (λn) ∈ Y to the unitary

operator

(en) 7→ (λnen)
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is a Borel reduction from =+ |Y to unitary equivalence of unitary operators. The proof of selfadjoint

operators is the same, where one replaces T with [0, 1].

3.5 A game-theoretic approach to turbulence

Suppose that L = (Ri)i∈I is a countable first order relational language, where Ri is a relation symbol with

arity ni. We denote as above by Mod (L) the Polish S∞-space of L-structures with support N. Recall that a

Polish group G is called non-Archimedean if it admits a neighborhood basis of the identity of open subgroups

or, equivalently, it is isomorphic to a closed subgroup of S∞; see [BK96, Theorem 1.5.1]. A relation E is

classifiable by countable structures if it is Borel reducible to the isomorphism relation in Mod (L) for some

countable first order relational language L. This is equivalent to the assertion that E is Borel reducible to

the orbit equivalence relation of a Borel action of a non-Archimedean Polish group G on a standard Borel

space by [BK96, Theorem 5.1.11] and [Gao09, Theorem 3.5.2, Theorem 11.3.8].

Turbulence is a dynamical condition on a Polish G-space X which is an obstruction of classifiability

of EXG by countable structures. We now recall here the fundamental notions of the theory of turbulence,

developed by Hjorth in [Hjo00]. Suppose that X is a Polish G-space, x ∈ X, U is a neighborhood of x, and

V is a neighborhood of the identity in G. The local orbit O(x, U, V ) is the smallest subset of U with the

property that x ∈ O(x, U, V ), and if g ∈ V , x ∈ O(x, U, V ), and gx ∈ U , then gx ∈ O(x, U, V ). A point

x ∈ X is called turbulent if it has dense orbit and, for any neighborhood U of x and neighborhood V of the

identity in G, the closure of O(x, U, V ) is a neighborhood of x. A Polish G-space X is preturbulent if every

point x ∈ X is turbulent, and turbulent if every point x ∈ X is turbulent and has meager orbit.

An equivalence relation E on a Polish space X is generically S∞-ergodic if, for any Polish S∞-space Y

and Baire-measurable
(
E,EYS∞

)
-homomorphism, there exists a comeager subset of X that is mapped by f

to a single S∞-orbit. By [Gao09, Theorem 3.5.2, Theorem 11.3.8], this is equivalent to the assertion that, for

any non-Archimedean Polish group H, Polish H-space Y , and Baire measurable
(
E,EYH

)
-homomorphisms,

there exists a comeager subset of X that is mapped by f to a single H-orbit. The following is the main

result in Hjorth’s turbulence theory, providing a dichotomy for preturbulent Polish G-spaces.

Theorem 3.5.1 (Hjorth). Suppose that X is a preturbulent Polish G-space. Then the associated orbit

equivalence relation EXG is generically S∞-ergodic. In particular, either X has a dense Gδ orbit, or the

restriction of EXG to any comeager subset of X is not classifiable by countable structure.

In this section, for each Polish G-space X, we define a graph structure H(X/G) with domain the quotient

X/G = {[x] : x ∈ X} of X via the action of G. We call this the Hjorth graph associated with the G-space
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X. An (induced) subgraph of H(X/G) is of the form H(C/G), where C is an invariant subset of X. We

view Hjorth’s turbulence theorem as a corollary of the following facts:

1. H(X/G) contains only loops if G is non-Archimedean;

2. H(X/G) is a clique if the action of G on X is preturbulent;

3. given a Polish G-space X and a Polish H-space Y , a Baire measurable (EXG , E
Y
H)-homomorphism f in-

duces, after restricting to an invariant dense Gδ set, a graph homomorphism between the corresponding

Hjorth graphs.

We start by defining a game associated with points of a given Polish G-space, which captures isomorphism

in the case of Polish S∞-spaces.

Definition 3.5.2. Suppose that X is a Polish G-space, and x, y ∈ X. We consider the Hjorth-isomorphism

game Iso(x, y) played between two players as follows. Set x0 := x, y0 := y, Uy0 := X, and V y0 = G.

1. In the first turn, Player I plays an open neighborhood Ux0 of x0 and an open neighborhood V x0 of the

identity in G. Player II replies with an element gy0 in G.

2. In the second turn, Player I then plays an open neighborhood Uy1 of y1 := gy0y0 and an open neighborhood

V y1 of the identity of G, and Player II replies with an element gx0 in G.

(2n+1) At the (2n + 1)-st turn, Player I plays an open neighborhood Uxn of xn := gxn−1xn−1 and an open

neighborhood V xn of the identity of G, and Player II responds with an element gyn of G.

(2n+2) At the (2n + 2)-nd turn, Player I plays an open neighborhood Uyn+1 of yn+1 := gynyn and an open

neighborhood V yn+1 of the identity of G, and Player II responds with an element gxn of G.

The game proceed in this way, producing sequences (xn) and (yn) of elements of X, sequences (gxn) and

(gyn) of elements of G, sequences (Uxn ) and (Uyn) of open subsets of X, and sequences (V xn ) and (V yn ) of open

neighborhoods of the identity in G. Player II wins the game if, for every n ≥ 0,

• yn+1 ∈ Uxn and xn ∈ Uyn ,

• gyn = hk · · ·h0 for some k ≥ 0 and h0, . . . , hk ∈ V yn such that hi · · ·h0yn ∈ Uyn for i ≤ k,

• gxn = hk · · ·h0 for some k ≥ 0 and h0, . . . , hk ∈ V xn such that hi · · ·h0xn ∈ Uxn for i ≤ k.

We write x ∼H y and we say that x, y are Hjorth-isomorphic if Player II has a winning strategy for the

Hjorth game H(x, y).
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Remark 3.5.3. As in the case of the Becker-embedding game—see Remark 3.1.4—it is not difficult to see

that, if Player II has a winning strategy for the Hjorth game as described above, then it also has a winning

strategy for the same game with the additional winning conditions that gxn = hk · · ·h0 for some h0, . . . , hk

from a given comeager subset of V xn such that hi · · ·h0xn belongs to a given comeager subset X0 of X for

i = 0, . . . , k, provided that the set of h ∈ G such that hx ∈ X0 is comeager. Similarly one can add the

winning conditions that gyn = hk · · ·h0 for some h0, . . . , hk from a given comeager subset of V yn such that

hi · · ·h0yn belongs to a given comeager subset X0 of X, provided that the set of h ∈ G such that hy ∈ X0

is comeager.

The relation ∼H is an equivalence relation on X which we call Hjorth isomorphism. It is clear that Hjorth

isomorphism is a coarsening of the orbit equivalence relation EG on G. Furthermore if x ∼H y, x′ belongs

to the G-orbit of x, and y′ belongs to the G-orbit of y, then x′ ∼H y′. Let as before X/G be the space of

G-orbits of elements of X. The Hjorth-graph H(X/G) associated with the Polish G-space X is symmetric,

reflexive graph on X/G given by declaring that there exists an edge between the orbit [x] of x and the orbit

[y] of y if and only if x ∼H y. We call H (X/G) the Hjorth graph associated with the Polish G-space X.

One can similarly define the Hjorth graph H (C/G) for any invariant subset C of X. A comeager subgraph

G of H (X/G) is a graph of the form H (C/G), for some invariant comeager subset C of X.

We now proceed to the proof of the properties of Hjorth graphs stated at the end of Section 3.5. In the

following, for a subset V of G and k ∈ N let V k be the set of elements of G that can be written as the

product of k elements from V .

Lemma 3.5.4. Suppose that H is a non-Archimedean Polish group, and Y is a Polish H-space. Then the

Hjorth graph H (Y/H) contains only loops.

Proof. Suppose that G is a non-Archimedean Polish group. Fix a compatible complete metric d on X,

and a compatible complete metric dG on G. We denote by diam(A) the diameter of a subset A of X with

respect to the metric d, and by cl(A) the closure of A. Suppose that Player II has a winning strategy for

the Hjorth-isomorphism game Iso (x, y). We want to show that x and y belong to the same orbit. This

can be seen by letting Player I play open subsets Uxn and Uyn of X such that cl(Uyn+1) ⊂ Uxn , cl(Uxn ) ⊂ Uyn ,

diam(Uxn ) ≤ 2−n, diam
(
Uyn+1

)
≤ 2−n, and open subgroups V xn and V yn of G such that

V xn ⊂
{
g ∈ G : dG

(
ggxn−1 · · · gx0 , gxn−1 · · · gx0

)
< 2−n

}
V yn ⊂

{
g ∈ G : dG

(
ggyn−1 · · · g

y
0 , g

y
n−1 · · · g

y
0

)
< 2−n

}
.

Let then (xn) and (yn) be the sequences of elements of X and (gxn) and (gyn) be the sequences of elements
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of G obtained from the corresponding round of the Hjorth game. Then the assumptions on Uxn and Uyn

guarantee that the sequences (xn) and (yn) converge to the same point z of X. The assumptions on V xn and

V yn guarantee that the sequences
(
gxng

x
n−1 · · · gx0

)
n∈ω and

(
gyng

y
n−1 · · · g

y
0

)
n∈ω converge in H to elements gx∞

and gy∞ such that gx∞x = z and gy∞y = z. This shows that x and y belong to the same orbit.

Lemma 3.5.5. Suppose that X is a preturbulent Polish G-space. Then the Hjorth graph H (X/G) is a

clique.

Proof. Suppose that X is a preturbulent Polish G-space. Fix x, y ∈ X. We want to prove that Player II has

a winning strategy for the Hjorth game H (x, y). We begin with a preliminary observation. Suppose that

z ∈ X, U is an open neighborhood of z, and V is an open neighborhood of the identity in G. Let I(z, U, V )

be the interior of the closure of the local orbit O(z, U, V ). Since z is turbulent, I(z, U, V ) contains z. It is

not difficult to see that, for any w ∈ I(z, U, V ), the local orbit O(w, I(z, U, V ), V ) is dense in I(z, U, V ). We

use this observation to conclude that Player II has a winning strategy, which we proceed to define. As in the

definition of the Hjorth game, we let x0 = x, y0 = y, Uy0 = X, and V y0 = G. At the (2n+ 1)-st turn Player

II plays an element gyn = hk · · ·h0 ∈ (V yn )k for some k ≥ 1 such that yn+1 = gynyn ∈ I(xn, U
x
n , V

x
n ) and

hi · · ·h0yn ∈ Uyn for i ≤ k, while at the (2n+ 2)-nd turn Player II plays an element gxn = hk · · ·h0 ∈ (V xn )
k

for some k ≥ 1 such that xn+1 = gxnxn ∈ I
(
yn+1, U

y
n+1, V

y
n+1

)
and hi · · ·h0xn ∈ Uxn for i ≤ k. Such a

choice is possible at the 1-st turn since y has dense orbit. It is possible at the (2n+ 2)-nd turn (n ≥ 0)

since yn+1 ∈ I (xn, U
x
n , V

x
n ) and for every w ∈ I (xn, U

x
n , V

x
n ) the local orbit O (w, I (xn, U

x
n , V

x
n ) , V xn ) is

dense in I (xn, U
x
n , V

x
n ). It is possible at the (2n+ 1)-st turn (n ≥ 1) since xn ∈ I (yn, U

y
n , V

y
n ) and for any

w ∈ I (yn, U
y
n , V

y
n ) the local orbit O (w, I (yn, U

y
n , V

y
n ) , V yn ) is dense in I (yn, U

y
n , V

y
n ). This concludes the

proof that Player II has a winning strategy for the Hjorth game H (x, y).

Proposition 3.5.6. Suppose that G,H are Polish groups, X is a Polish G-space, and Y is a Polish H-space.

If f is a Baire-measurable
(
EXG , E

Y
H

)
-homomorphism, then there exists a G-invariant dense Gδ subset X0 of

X such that the function X0/G→ Y/H, [x] 7→ [f(x)] is a homomorphism from the Hjorth graph H (X0/G)

to the Hjorth graph H (Y/H).

Proof. We proceed as in the proof of Proposition 3.3.3. Let C be dense Gδ subsets of X obtained from f

as in Lemma 3.2.1. Set X0 := {x ∈ X : ∀∗g ∈ G, gx ∈ C}, which is a G-invariant dense Gδ set by [Gao09,

Proposition 3.2.5 and Theorem 3.2.7]. We claim that X0/G→ Y/H, [x] 7→ [f(x)] is a graph homomorphism

from the Hjorth graph H (X0/G) to the Hjorth graph H (Y/H).

Fix x0, y0 ∈ X0 such that x0 ∼H y0. We want to prove that f(x0) ∼H f(y0). Observe that ∀∗g ∈ G,

gx0 ∈ C ∩X0. Therefore after replacing x0 with gx0 for a suitable g ∈ G we can assume that x0 ∈ C ∩X0.
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In this case one can define, similarly as in the proof of Proposition 3.3.3, a winning strategy for Player II

for Iso(f(x0), f(y0)) from a winning strategy for Player II for Iso(x0, y0) using Remark 3.5.3 and the choice

of C.

It is now easy to see that Theorem 3.5.1 is an immediate consequence of Lemma 3.5.4 and Lemma 3.5.5

together with Proposition 3.5.6.

3.6 Groupoids

The goal of this section is to observe that the proofs above apply equally well in the setting of Polish

groupoids as introduced in [Ram00, Ram90, Lup]. A groupoid G is a small category where every morphism

(also called arrow) is invertible. By identifying any object with the corresponding identity arrow, one can

regard the set G0 of objects of G as a subset of G. The source and range maps s, r : G → G0 assign to

every arrow in G its domain (or source) and codomain (or range). The set G2 of composable arrows is the

set of pairs (γ, ρ) of arrows from G such that s(γ) = r (ρ). Composition of arrows is a function G2 → G,

(γ, ρ)→ γρ. If A,B ⊂ G, then we denote by AB the set
{
γρ : (γ, ρ) ∈ G2 ∩ (A×B)

}
. If x ∈ G0 and A ⊂ G,

then we let Ax := A {x} = {γ ∈ G : s(γ) = x} and xA := {x}A = {γ ∈ G : r(γ) = x}.

A Polish groupoid is a groupoid G endowed with a topology such that

(1) there exists a countable basis B of Polish open sets,

(2) composition and inversion of arrows are continuous and open,

(3) the sets Gx and xG are Polish subspaces for every x ∈ G0, and

(4) the set of objects G0 is a Polish subspace.

A Polish groupoid is not required to be globally Hausdorff. Many Polish groupoids arising in the appli-

cations, such as the locally compact groupoids associated with foliations of manifolds, are not Hausdorff; see

[Pat99, Chapter 2].

Suppose that H is a Polish group. One can associate with any Polish H-space X a Polish groupoid

H n X—the action groupoid—that completely encodes the action. Such a groupoid has the Cartesian

product H × X as set of arrows (endowed with the product topology), and {(1H , x) : x ∈ X} as set of

objects. Source and range maps are defined by s (h, x) = (1H , x) and r (h, x) = (1H , hx). Composition is

given by (h, x) (h′, y) = (hh′, y) whenever x = h′y. In this way one can regard continuous actions of Polish

groups on Polish spaces as a particular instance of Polish groupoids. One can also consider continuous
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actions of Polish groupoids on Polish spaces, but these can be in turn regarded as Polish groupoids via a

similar construction as the one described above. The class of Polish groupoids is also closed under taking

restrictions. If X is a Gδ subset of the set of objects of a Polish groupoid G, then the restriction G|X is the

collection of arrows of G with source and range in X, endowed with the induced Polish groupoid structure.

More information about Polish groupoids can be found in [Lup].

Given a Polish groupoid G, the orbit equivalence relation EG is the equivalence relation on G0 defined

by setting xEGy if and only if x, y are source and range of an arrow from G. The orbit of an object in G is

the EG-class of x.

The notion of (pre)turbulence for Polish groupoid has been considered in [HL, Section 4]. Suppose that

G is a Polish groupoid, x is an object of G, and U is a neighborhood of x in G. The local orbit O(x, U) is

the smallest subset of U ∩G0 with the property that x ∈ O(x, U), and if γ ∈ U is such that s(γ) ∈ O(x, U),

then r(γ) ∈ O(x, U). An object x is called turbulent if it has orbit dense in G0 and, for any neighborhood U

of x, the closure of O(x, U) is a neighborhood of x in G0. A Polish groupoid is preturbulent if every object

is turbulent, and turbulent if every object is turbulent and has orbit meager in G0. It is not difficult to see

that these definitions are consistent with the ones for Polish group actions, when a Polish group action is

identified with its associated action groupoid.

Suppose that G is a Polish groupoid, and x, y ∈ G0 are two objects of G. The Hjorth-isomorphism game

Iso(x, y) can be defined similarly as in Definition 3.5.2. Set x0 := x, y0 := y, Uy0 = G, and V y0 = G. In

this case, in the first turn Player I plays an open neighborhood Ux0 of x0 in G and Player II replies with an

element γy0 of G with s (γy0 ) = y0. In the second turn, Player I plays an open neighborhood Uy1 of y1 := r (γy0 )

in G and an element γx0 of G with s (γx0 ) = x0. At the (2n+ 1)-st turn, Player I plays an open neighborhood

Uxn of xn := r
(
γxn−1

)
in G, and Player II responds with an element γyn of G with s (γyn) = yn. At the

(2n+ 2)-nd turn, Player I plays an open neighborhood Uyn+1 of yn+1 := r (γyn) in G, and Player II responds

with an element γxn of G.

The game then produces sequences (xn) , (yn) of objects of G, sequences (γxn) , (γyn) of arrows in G, and

sequences (Uxn ) , (Uyn) of open subsets of G. Player II wins the game if, for every n ≥ 0,

• yn+1 ∈ Uxn and xn ∈ Uyn ,

• γyn = ρy1ρ
y
2 · · · ρ

y
k for some k ≥ 1 and ρyi ∈ V xn for i = 1, 2, . . . , k, and γxn = ρx1 · · · ρxk for some k ≥ 1 and

ρxi ∈ V yn for i = 1, 2, . . . , k.

As in the case of Polish group actions, this defines an equivalence relation ∼H (Hjorth-isomorphism)

on the set of objects of G, by letting x ∼H y whenever Player II has a winning strategy for the Hjorth-
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isomorphism game Iso(x, y). Adding to the winning conditions in the Hjorth-isomorphism game the require-

ment that r(γxn) belongs to a given comeager subset X of G0 and that γxn belongs to a given comeager subset

of Gxn yields an equivalent game, provided that the set of γ ∈ Gx such that r(γ) ∈ X is comeager. The

same applies to y. The Hjorth-isomorphism relation on G0 defines a graph structure H (G) on the space of

G-orbits, which we call the Hjorth graph of G. The same proof as Lemma 3.5.5 shows that if G is a pretur-

bulent Polish groupoid, then the Hjorth graph H (G) is a clique. The analogue of Lemma 3.2.1 for Polish

groupoids has been proved in [HL, Lemma 4.5]. Using this one can then prove the analog of Proposition

3.5.6 and deduce the following result.

Theorem 3.6.1. Suppose that G is a preturbulent Polish groupoid. Then the associated orbit equivalence

relation EG is generically S∞-ergodic.

Theorem 3.6.1 recovers [HL, Theorem 4.3], and can be seen as the groupoid version of Theorem 3.5.1 for

Polish groupoids.

Since the operations in the groupoid G are continuous and open, one can reformulate the Hjorth-

isomorphism game Iso(x, y) as presented above by letting Player II play open sets rather than groupoid

elements. Fix a countable basis B of Polish open subsets of G. In this formulation of the game, Player I

plays elements Uxn , U
y
n+1 of B for n ≥ 0 and player II plays elements W x

n ,W
y
n of B for n ≥ 0. The winning

conditions are then, setting Uy0 = G,

• r
[
W y
n+1

]
⊂ Uxn and r [W x

n ] ⊂ Uyn ,

• W y
n ⊂ (Uyn)

k
for some k ≥ 1 and W x

n ⊂ (Uyn)
k

for some k ≥ 1,

• y ∈ s [W y
n · · ·W

y
0 ] and x ∈ s [W x

n · · ·W x
0 ].

Such a version of the Hjorth-isomorphism game fits in the framework of Borel games as described in

[Kec95, Section 2.A]. In fact, this is an open game for Player I and closed for Player II, which allows one to

define an ω1-valued rank for strategies of Player I [Kec95, Exercise 20.2]. Insisting that Player I only has

winning strategies of rank at least α ∈ ω1 (or no winning strategy at all) gives a hierarchy of equivalence

relations ∼α indexed by countable ordinals, whose intersection is the Hjorth isomorphism relation.

Similarly as for the Hjorth-isomorphism game, the Becker-embedding game Emb (x, y) can be defined

whenever x, y are objects in a Polish groupoid G. This gives a notion of Becker embedding for objects G, by

letting x 4B y if and only if Player II has a winning strategy for Emb (x, y). In turn this induces a digraph

structure B (G) on the space of G-orbits.

One can prove the groupoid analog of Proposition 3.3.3 in a similar fashion, by replacing Lemma 3.2.1 with

[HL, Lemma 4.5]. One can then deduce the following generalization of Theorem 3.3.4 to Polish groupoids.
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Theorem 3.6.2. Suppose that G is a Polish groupoid. If for any invariant dense Gδ subset C of G0

there exist x, y ∈ C with different orbits such that x 4B y, then the orbit equivalence relation EG is not

CLI-classifiable.

As for the case of the Hjorth-isomorphism game, one can also describe the Becker-embedding game

Emb (x, y) for objects x, y in a Polish groupoid G as an open game for Player I and closed for Player II.

This allows one to define an ω1-valued rank for strategies for Player I. Again, insisting that Player I only has

winning stategies of rank at least α ∈ ω1 gives a hierarchy or preorder relations 4α indexed by countable

ordinals, whose intersection is the Becker-embeddability preorder.
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Chapter 4

Compact spaces as projective Fräıssé
limits

4.1 Preliminaries

In what follows, K will always denote a zero-dimensional, compact, metrizable space. Our main objects of

study will be spaces K as above, which support both the usual model-theoretic structure as well as dual

structure. To make this precise, following S. Solecki [Sol10, Sol12], we consider the following two types of

tuples.

• In the classical model-theoretic context, a tuple of size n > 0 in K corresponds to an injection

i : {0, . . . , n− 1} → K

We will call this kind of tuple a direct tuple. We denote the set of all direct tuples in K of size n > 0

by K [n].

• In the dual context, a tuple of size n in K corresponds to a surjection

e : K → {0, . . . , n− 1}

Since our intention is to work with “topological” structures, we endow {0, . . . , n− 1} with the discrete

topology and we impose a further regularity condition, that e is also continuous. We will call this kind

of tuple a dual tuple. We denote the set of all dual tuples in K of size n by [n]K .

Notice that for K zero-dimensional, compact, metrizable space, the set [n]K is at most countably infinite

and moreover these functions suffice to separate points of K, i.e., for every x1, x2 ∈ K there is an e ∈ [n]K

such that e(x1) 6= e(x2). Notice also that the set [n]K of all dual tuples naturally corresponds to the set

CPn(K) of all clopen, ordered, n-partitions of K, i.e.,

CPn(K) =
{

(∆0, . . . ,∆n−1) : ∆i ⊂ K clopen, ∆i ∩∆j = ∅ ∪i ∆i = K
}
.
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Whenever it is convenient for notational purposes we will not distinguish between the set {∆0, . . . ,∆n−1}

and the tuple (∆0, . . . ,∆n−1). If for example P ∈ CPn(K) and ∆ is a clopen set appearing some of the n

entries of P then we will write ∆ ∈ P .

We will work with relational only languages L. The structures we describe here, with additional dual

function symbols, were introduced in [Sol10, Sol12]. To each relational symbol R in L corresponds some

natural number arity(R) > 0 which is the arity of the symbol R. Moreover, for every symbol in L we have

predetermined our intention to use it in the direct or in the dual context. We will make the convention

here of using lower case letters r, p, q, . . . for direct relational symbols, and capital letters R,P,Q, . . . for dual

relational symbols. We will call the language L purely direct if it contains only direct symbols and purely

dual if it contains only dual symbols

By a topological L-structure K we mean a zero-dimensional, metrizable, compact space K together with

appropriate interpretations for every symbol in L.

• If r ∈ L is a direct relation symbol of arity n, an appropriate interpretation for r is any closed subset

rK of K [n].

• If R ∈ L is a dual relation symbol of arity n, an appropriate interpretation for R is any subset RK of

[n]K , or equivalently, any subset of CPn(K).

We call a topological L-structure purely direct L-structure whenever L is purely direct and purely dual

L-structure whenever L is purely dual.

Following [IS06], we will be working with epimorphisms. The epimorphisms here will additionally preserve

the dual structure. Such epimorphisms were introduced in [Sol10,Sol12]. Let A,B be two dual topological

L-structure. By an epimorphism f from A to B we mean a continuous surjection f : A→ B such that:

• for every r ∈ L of arity say m and every β ∈ B[m] we have

β ∈ rB ⇐⇒ ∃α ∈ rA β = f ◦ α

• for every R ∈ L of arity say m and for every β ∈ [m]B we have

β ∈ RB ⇐⇒ β ◦ f ∈ RA

An isomorphism between A and B is a bijective epimorphism and an automorphism of A is an isomor-

phism from A to A.
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Let K be a topological L-structure, let A be a zero-dimensional, metrizable, compact space and let

f : K → A be a continuous surjection. Notice that there is a unique topological L-structure A on domain

A that renders f an epimorphism. We call this structure A, the structure induced by the map f .

Let f : K → A, h : K → B be epimorphisms. We say that f factors through h if there is an epimorphism

fh : B → A such that fh ◦ h = f .

Lemma 4.1.1. Let A,B and K be topological L-structures with A,B finite. Let also f : K → A and g :

K → B be epimorphisms. Then there is a finite topological L-structure C and an epimorphism h : K → C

such that both f and g factor through h.

Proof. Let C = (∆0, . . . ,∆n−1) a clopen partition of K whose every entry ∆i is a (nonempty) set of the

form f−1(a) ∩ g−1(b), where a ∈ A and b ∈ B. Let h : K → C be the inclusion map, i.e, h(x) = ∆i if

and only if x ∈ ∆i. This map is a continuous surjection, so, it induces a structure C on domain C. It is

immediate now that both f and g factor through h.

Given a sequence A1,A2, . . . ,Ai, . . . of finite topological L-structures together with epimorhisms πi :

Ai+1 → Ai, we can define a new structure M and epimorphisms π∞i : M → Ai through an inverse limit

construction. Let

M =
{

(a1, a2, . . .) ∈
∏
i∈N

Ai : ∀ i ≥ 1 πi(ai+1) = ai
}
.

M is a closed subset of the compact space
∏
i∈NAi and it will serve as the domain of M . We define π∞i to

be the projection map from M to Ai.

For r ∈ L of arity say m, and β ∈ M [m] we let β ∈ rM if and only if π∞i ◦ β ∈ rAi for all i ∈ N. For

R ∈ L of arity say m, and γ ∈ [m]M , notice that there is an i0 ∈ N such that γ factors through π∞i0 . Let

α ∈ [m]A be such that γ = α ◦ π∞i0 . We let γ ∈ RM if and only if α ∈ RAi0 , which happens if and only if for

every i > i0 we have (α ◦ πi0 ◦ . . . ◦ πi−1) ∈ RAi .

This turns M into a topological L-structure and every π∞i to an epimorphism. We call M the inverse

limit of the inverse system {(Ai, πi) : i ∈ N} and we write M = lim←−(Ai, πi).

4.2 Projective Fräıssé structures

In Chapter 7 of [Hod93], Hodges reviews the theory of Fräıssé limits of direct structures via direct morphisms

(embeddings). Following Hodges and [IS06] we present here the theory of Fräıssé limits of topological L-

structures via dual morphisms. To avoid confusion, we should emphasize two things. What in [IS06] is

called topological L-structure, here it falls under the name purely direct topological L-structure. Moreover,

47



in contrast with the definition that we will be using here, a projective Fräıssé class in [IS06] is not bound to

satisfy the hereditary property (HP).

We say that a topological L-structure M is projectively Fräıssé or projectively ultra-homogeneous if for

every two epimorphisms f1, f2 of M on some finite topological L-structure A there is an automorphism g

of M such that f1 ◦ g = f2. For every topological L-structure M we denote by Age(M) the class of all the

finite topological L-structures A such that M epimorphs on A. We call a class K of topological L-structures

an age if K = Age(M) for some topological L-structure M . It is immediate that if K is an age, then K is

not empty, any subclass of K of pairwise non-isomorphic structures is at most countable, and the following

two properties hold for K.

• Hereditary Property (HP): if A ∈ K and A epimorphs onto a structure B, then B ∈ K.

• Joint Surjecting Property (JSP): if A,B ∈ K then there is C ∈ K that epimorphs onto both A and

B.

The converse is also true i.e. if K is a non empty class of finite topological L-structures such that any

subclass of K of pairwise non-isomorphic structures is at most countable and the above two properties hold

for K then K is an age.

To see this, let A1,A2, . . . be a list of structures in K that up to isomorphism exhaust K. Using the JSP

we can find a new list B1,B2, . . . of structures in K such that B1 = A1 and for i > 1, Bi+1 epimorphs on

both Ai+1 and Bi. Let πi : Bi+1 → Bi be such epimorphisms and let M = lim←−(Bi, πi). Then K = Age(M)

because by construction M epimorphs to every Ai and moreover, every epimorphism of M to some finite

dual topological L-structure A factors through an epimorphism from some Bi ∈ K that was used in the

inverse system so, by HP we have that A ∈ K.

Given now that the structure M is projectively ultrahomogeneous, it is easy to see that its age K satisfies

moreover the following property.

• Projective Amalgamation Property (PAP): if A,B,C ∈ K and fA : A → C, fB : B → C are

epimorphisms, then there is D ∈ K and epimorphisms gA : D → A, gB : D → B such that

fA ◦ gA = fB ◦ gB .

To check that this is true, notice first that since A,B ∈ K, there are epimorphisms hA : M → A and

hB : M → B. But then fA ◦ hA and fB ◦ hB are both epimorphisms from M to C. So, by projective ultra-

homogeneity of M there is φ ∈ Aut(M) such that fA ◦ hA ◦ φ = fB ◦ hB . Using Lemma 4.1.1, we can find

D ∈ K and an epimorphism hD : M → D such that hA and hB ◦ φ−1 factor through hD. Let gA : D → A

48



and gB : D → B be the maps that close these diagrams, i.e., gA ◦ hD = hA and gB ◦ hD = hB ◦ φ−1. The

functions gA and gB are the required epimorphisms from D to A and B in respect.

In Theorem 4.2.3 we will see that the converse is also true, i.e., if an age K has PAP then we can built

from it a projective Fräıssé structure M with Age(M) = K. An age K that satisfies PAP is called projective

Fräıssé class.

Let M be a topological L-structure with Age(M) = K. We say that M has the finite extension property

if for every A,B ∈ K and f : B → A, g : M → A epimorphisms, there is an epimorphism h : M → B

such that f ◦ h = g. We say that M has the one point extension property if the above holds when the size

of B is one more than the size of A. Notice that for any topological L-structure M , M has the one point

extension property if and only if M has the finite extension property.

Lemma 4.2.1. Let M and N be two topological L-structure of the same age K. Let A ∈ K and let

f : M → A and g : N → A be two epimorphisms. If M and N have the finite extension property then

there is an isomorphism h : M →N such that g ◦ h = f .

Proof. We will use a back and forth type of argument. For every n ∈ N we will construct An ∈ K and

epimorphisms fn : M → An, gn : N → An, and for every n > 0 we will also construct an epimorphism

πn−1 : An → An−1. At the end of the construction M and N will be proven to be isomorphic to lim←−(An, πn).

By using these indirect isomorphisms we will get the desired isomorphism h. Let {en : n ∈ N} be an

enumeration of dual tuples [m]M of M for every m > 0 and let {e′n : n ∈ N} be an enumeration of dual

tuples [m]N of N for every m > 0.

n = 0 . Let A0 = A, f0 = f and g0 = g.

odd n > 0 . Using Lemma 4.1.1 we can find a structure An and an epimorphism fn : M → An such

that both fn−1 and en−1 factor through fn. Let πn−1 : An → An−1 be the epimorphism that closes the one

diagram, i.e., πn−1 ◦ fn = fn−1. Finally define gn : N → An to be any map such that πn−1 ◦ gn = gn−1. A

map like this exists, since N satisfies the finite extension property.

even n > 0 . Again, using Lemma 4.1.1 we can find a structure An and an epimorphism gn : N → An

such that both gn−1 and e′n−1 factor through gn. Let πn−1 : An → An−1 be the epimorphism that closes the

one diagram, i.e., πn−1 ◦gn = gn−1. Finally define fn : M → An to be any map such that πn−1 ◦fn = fn−1.

A map like this exists, since M satisfies the finite extension property.

Let now B = lim←−(An, πn). The maps µ : M → B with µ(x) = (f0(x), f1(x), . . .) and ν : N → B with

ν(x) = (g0(x), g1(x), . . .) are bijections since the families {en} and {e′n} separate points of M and N in

respect. It is moreover easy to see that µ and ν are actually isomorphisms. So, the map h : M → N with

h = ν−1 ◦ µ is also an isomorphism which by construction satisfies the desired property g ◦ h = f .
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Lemma 4.2.2. Let M be a topological L-structure with Age(M) = K then the following are equivalent:

(1) M is projectively ultrahomogeneous;

(2) M has the finite extension property;

(3) M has the one point extension property.

Proof. It is immediate that (2) and (3) are equivalent. We prove that (1) is also equivalent to (2).

(1)→ (2) Let A,B ∈ K and f : B → A, g : M → A epimorphisms. Since B ∈ K = Age(M), there is an

epimorphism j : M → B. So, f ◦ j : M → A is an epimorphism, and by the projective ultra-homogeneity

of M there is φ ∈ Aut(M) with g ◦ φ = f ◦ j. Let h = j ◦ φ−1. Then h : M → B is an epimorphism such

that f ◦ h = g.

(2)→ (1) Let f1, f2 : M → A be epimorphisms for some A ∈ K. Then by Lemma 4.2.1, there is g ∈ Aut(M)

such that f1 ◦ g = f2.

Theorem 4.2.3. For every projective Fräıssé class K there is a unique, up to isomorphism, projectively

ultra-homogeneous topological L-structure M such that Age(M) = K.

Proof. First notice that is M1,M2 share the same age and are both projectively ultra-homogeneous, by

Lemma 4.2.2 they have finite extension property. Let A any structure in K. Since K is the age of both

M1,M2, there are epimorphisms f1 : M1 → A and f2 : M2 → A. Lemma 4.2.1 gives as then an

isomorphism h between M1 and M2.

4.3 Closed subgroups of Homeo(K)

By definition and since K is compact, every automorphism of a topological L-structure K is also a home-

omorphism, therefore, Aut(K) can be seen as a subgroup of Homeo(K). We will view Homeo(K) as a

topological group equipped with the compact-open topology τco. The collection of the sets

V (F,U) = {g ∈ Homeo(K) : g(F ) ⊂ U},

where F is a compact subset of K and U is an open subset of K, provide a subbase for τco. In this topology

the group Aut(K) of automorphisms of a dual topological L-structure K is a closed subgroup of Homeo(K).

To check this, let g 6∈ Aut(K). We will find an open neighborhood Vg of g in Homeo(K) which does not

intersect Aut(K). Since g 6∈ Aut(K), one of the following holds:
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(1) there is R ∈ L of arity say m and a dual tuple e ∈ [m]K such that K |= R(e) if and only if K 6|=

R(e ◦ g−1), or

(2) there is r ∈ L of arity say m and a tuple i ∈ K [m] such that K |= r(i) but M 6|= r(g ◦ i), or

(3) there is r ∈ L of arity say m and a tuple i ∈ K [m] such that K 6|= r(i) but M |= r(g ◦ i).

In the first case notice that if g 6∈ Aut(K) then there is R ∈ L of arity say m and But then V
(
e−1(0), g ◦

e−1(0)
)
∩ . . .∩V

(
e−1(m− 1), g ◦ e−1(m− 1)

)
is an open subset of Homeo(K) containing g and lying entirely

out of Aut(K).

In the second case, because rM is closed, we can find an open rectangle U0 × . . . × Um−1 around
(
(g ◦

i)(0), . . . , (g ◦ i)(m − 1)
)

which does not intersect rM . Therefore, let Vg = V
(
{i(0)}, U0

)
∩ . . . ∩ V

(
{i(m −

1)}, Um−1
)
.

For the last case, notice that if we let (b0, . . . , bm−1) =
(
(g ◦ i)(0), . . . , (g ◦ i)(m − 1)

)
, then, as in the

previous case we can find open neighborhood Vg−1 of g−1 such that for every f ∈ Vg−1 , f(b0, . . . , bm−1) 6∈ rM .

Let then Vg = V −1g−1 = {f−1 : f ∈ Vg−1}. Using the continuity of the inversion operator f → f−1 in τco we

have that Vg is open and moreover g ∈ Vg ⊂ Aut(K)c.

The following proposition says that the inverse of the above observation is true, i.e., for every closed

subgroup G of Homeo(K) there is topological L-structure K on K such that G = Aut(K). Moreover, K

can be taken to be purely dual and projectively ultra-homogeneous.

Proposition 4.3.1. Let G be a closed subgroup of Homeo(K). Then there is a purely dual projective Fräıssé

structure K on domain K such that Aut(K) = G.

Proof. For every n > 0, the group G acts on [n]K in a natural way: for g ∈ G and e ∈ [n]K let

g · e := e ◦ g−1.

We denote this action by G y [n]K . Notice that this action corresponds to the following action G y CPn

of G on CPn: for g ∈ G and P = (∆0, . . . ,∆n−1) ∈ CPn(K) let

g · P :=
(
g(∆0), . . . , g(∆n−1)

)
.

For each n > 0 let (Oni : i ∈ In) be the collection of all orbits of Gy [n]K .

Consider now the language L =
⋃∞
i=1 Ln, where Ln in the language that consists of n-ary relational

symbols {Oni : i ∈ In}, one for every orbit Oni . We turn K into a topological L-structure K. For e ∈ [m]K
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we let

K |= Omi (e) if and only if e ∈ Omi .

It is immediate that G ⊆ Aut(K). We work now towards the converse inclusion.

Let g ∈ Aut(K) and let V (F,U) be an open neighborhood of g in Homeo(K). We can assume that

U 6= K. We will find h ∈ G ∩ V (F,U) which will prove that G ⊇ Aut(K). Because g(F ) is compact and

U is a union of clopen sets, g(F ) can be covered with finitely many of them, so we can assume without

loss of generality that U is clopen and U 6= K. Notice that g ∈ V
(
g−1(U), U

)
⊂ V (F,U). Consider the

following two dual tuples e1, e2 ∈ 2K , with e−11 ({0}) = g−1(U), e−11 ({1}) = K \ g−1(U) and e−12 ({0}) = U ,

e−12 ({1}) = K \ U . Since g is an automorphism of K and since e1 = g · e2, we have that e1 and e2 lie in

the same orbit O2
i for some i ∈ I2. Therefore, there is an h ∈ G that sends g−1(U) into U and therefore

h ∈ G ∩ V (F,U), which proves that G = Aut(K).

We prove now that K is projectively Fräıssé. First notice that for every dual tuple e ∈ [m]K , there is a

unique i ∈ Im such that K |= Omi (e). Let C ∈K and let f1, f2 be two epimorphisms of K onto C. We can

assume without the loss of generality that C = {0, . . . ,m− 1} for some m > 0 and therefore f1, f2 ∈ [m]K .

Because f1 and f2 induce the same structure C, there is a unique i ∈ Im such that K |= Omi (f1) and

K |= Omi (f2). Therefore, f1 and f2 lie in the same orbit G y [m]K , so there is g ∈ Aut(K) such that

f1 ◦ g = f2, showing that K is projectively ultra-homogeneous.

4.4 Turning a structure to a purely dual one

Here we show that it is always possible to translate the direct structure into a dual one without losing any

information. We provide a counterexample to show that the converse is not always possible. Although

purely dual structures are sufficient for the development of the general theory, in Section 4.5 it will be

convenient to make use of direct relations. Moreover, there are many examples of structures whose most

natural presentation would involve both direct and dual structure.

Let L be a language and M a topological L-structure. Let also s ∈ L be a direct relation of arity n. For

every k with 0 < k ≤ n and for every f ∈ [k]n (f is therefore a surjection), we introduce a dual relational

symbol Rfs of arity k + 1. Let

L 6s = L ∪ {Rfs : f ∈ [k]n for some 0 < k ≤ n} \ {s}.

We turn now M into an L 6s-structure M 6s on the same domain M . We encode sM using the new dual

52



symbols as follows: for f ∈ [k]n we let M 6s |= Rfs (∆0, . . . ,∆k), if and only if there are a0, . . . , an−1 ∈ M

such that

M |= s(a0, . . . , an−1) and ai ∈ ∆f(i) for every i ∈ n.

It can easily be checked that Aut(M) can be fully recovered from Aut(M 6s), that M is projectively

Fräıssé if and only if M 6s is, and that Aut(M) and Aut(M 6s) are equal as permutation groups on M .

There are cases of topological L-structures which can be turned into purely direct structures. However,

this is not the case always. The main observation is that if r is direct relation of arity k which belongs

to L and M is a topological L-structure then rM is a set-wise invariant closed subset of Mk. Let now

K = 2N and let µ be the uniform probability measure on 2N. The group Aut(K,µ) of all continuous measure

preserving bijections can be easily seen to be a closed proper subgroup of Homeo(K) which for every n > 0

leaves no proper subset of K [n] invariant. Therefore, the canonical Fräıssé structure given by an application

of Proposition 4.3.1 on Aut(K,µ) cannot be turned into a purely direct one.

4.5 Compact Polish spaces as quotients of dual Fräıssé structures

We fix a special binary relation symbol r whose interpretation will always be a reflexive and symmetric closed

relation. A formal relational language L will be decorated with the subscript r whenever r ∈ Lr. Therefore,

an Lr-structure is always going to be a reflexive r-graph perhaps with some extra structure. We say that an

Lr-structure K is a pre-space if rK is moreover transitive and therefore an equivalence relation.

As we noted in the introduction T. Irwin and S. Solecki used purely direct Fräıssé theory to express

the pseudo-arc P as a quotient of a projective Fräıssé {r}-structure P via rP. Moreover, through their

construction, the group Aut(P) naturally embedded in Homeo(P ) as a dense subgroup. In [Cam10], R.

Camerlo characterized all different projective Fräıssé classes1 of {r}-structures. Their limits are pre-spaces

with quotients M/rM which vary between certain combinations of singletons, Cantor spaces and pseudo-arcs

[Cam10]. In [BK13], D. Bartošová and A. Kwiatkowska express the Lelek fan L as the quotient of a the

projective Fräıssé limit L of a certain class of directed graphs. Their limit L can be seen again as pre-space

in some Lr. Here again the group Aut(L) naturally embedded in Homeo(L) as a dense subgroup.

In this section we show that under the notion of projective Fräıssé limit we developed here the same

representation applies to every second-countable compact space Y . Since this is trivial for finite spaces, we

will restrict ourselves to the case where Y is infinite.

The following proposition will be use in the proof of Theorem 4.5.2.

1He allows Fräıssé classes to lack hereditary property.
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Proposition 4.5.1. Let G,H be Polish groups and let S be a dense subgroup of G. Then any continuous

homomorphism f : S → H extends to a continuous homomorphism f̃ : G→ H.

The proof of Proposition 4.5.1 is an easy exercise given that every Polish admits a compatible left-

invariant metric d and given this metric we can define a new compatible complete metric D by D(x, y) =

d(x, y) + d(x−1, y−1). For more details, see page 6 of [BK96].

Theorem 4.5.2. Let G be a closed subgroup of Homeo(Y ), for some compact metrizable space Y . Then

there is a projective Fräıssé pre-space K such that K/rK is homeomorphic to Y , and the quotient projection

K 7→ Y

induces a continuous group embedding Aut(K) ↪→ G, with dense image in G.

Proof. Let Y be an infinite compact Polish space and let H be a countable, dense subgroup of G. In what

follows, we define a countable Boolean algebra (F , 0F , 1F ,∧,∨,′ ) of closed subsets of Y as well as an action

of H on F via Boolean algebra automorphisms. Every set F ∈ F will be regular closed. Recall that an

open set U is called regular open if int(U) = U and a closed set F is called regular closed if int(F ) = F . We

define 0F , 1F and the operations ∧,∨,′ as follows:

• 0F = ∅;

• 1F = Y ;

• F1 ∧ F2 = int(F1 ∩ F2);

• F1 ∨ F2 = F1 ∪ F2;

• F ′ = F c.

The boolean algebra axioms are satisfied by the above configuration since F consists of regular closed sets

(see also [GH12] for the boolean algebra of regular open sets).

To construct the boolean algebra fix first a compatible complete metric d on Y . For every n chose a finite

open cover {V n0 , . . . , V nkn} of Y such diam(V ni ) < 1/n for every i ∈ {0, . . . , kn}. Since V is regular closed

for every open V we have that the collection J = {Fni : Fni = V ni , n ∈ N, 0 ≤ i ≤ kn} consists of regular

closed sets. We define F to be the least family of closed subsets of Y such that:

(1) J ⊂ F ;

(2) F is closed under the boolean operators ∧,∨,′ and
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(3) F is closed under translation by elements of H, i.e., if h ∈ H and F ∈ F then h(F ) ∈ F .

Notice that all these operations preserve regularity and since J and H are countable F is a countable family

of regular closed sets. Notice that this implies that the only F ∈ F that has empty interior is the empty set.

The group H is acting on F with Boolean algebra automorphisms: for every h ∈ H and F ∈ F let

h · F = h(F ).

Let K = S(F) be the Stone space of all ultrafilters x on F . This space comes with a topology whose

basic clopen sets can be taken to be the sets of the form F̃ = {x : F ∈ x} for F ∈ F . The space K is a

compact, second-countable, and zero-dimensional. Let p : K → Y be the natural projection defined by:

{
p(x)

}
=
⋂
F∈x

F.

The map p is continuous surjection with p(F̃ ) = F for every F ∈ F . We can turn now K to a {r}-structure

Kr by setting Kr |= r(x0, x1) if and only if p(x0) = p(x1). It is immediate that Kr is a pre-space and that

K/rKr = Y .

Notice now that H is acting on K with homeomorphisms: for every h ∈ H and x ∈ K

h · x =
{
h(F ) : F ∈ x

}
∈ K.

This action is faithful since for every pair y0, y1 ∈ Y there are F0, F1 ∈ F such that y0 ∈ int(F0), y1 ∈ int(F1)

and F0 ∩F1 = ∅. Therefore, H embeds into Homeo(K). We will denote this copy of H inside Homeo(K) by

HK to distinguish it from H which is a subgroup of Homeo(Y ) and we will denote by T0 the inverse of this

embedding, i.e.,

T0 : HK → H with ˜T0(h)
(
F
)

= h(F̃ ), for every F ∈ F .

The map T0 is also continuous. To see that, let h ∈ HK and let V (L,U) be an open neighborhood of T0(h) in

Homeo(Y ), i.e., T0(h)(L) ⊂ U . Since the family {int(F ) : F ∈ J } constitutes a basis of Y and since T0(h)(L)

is compact, we can find F1, . . . , Fk ∈ J such that T0(h)(L) ⊆ F1∪ . . .∪Fk ⊆ U . Let F0 = F1∨ . . .∨Fk, then

both F0 and h−1(F0) belong to F . Moreover, V ( ˜h−1(F0), F̃0) is an open neighborhood of h in HK that is

mapped via T0 completely inside V (L,U), proving that T0 is continuous at h.

By applying the Proposition 4.3.1, we can endow K with a topological Fräıssé structure K0 in a purely

dual language L, such that HK = Aut(K0) (the closure here is taken in Homeo(K)). By Proposition 4.5.1
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the map T0 extends to a continuous homomorphism T : Aut(K0) → G. We denote the image of Aut(K0)

under T by Ĥ. Notice that Ĥ lies densely in Homeo(K) since H < Ĥ ≤ Homeo(K), and since the same is

true for H. Moreover, by the density of HK in HK the continuity of T and the fact that every F ∈ F has

non-empty interior we get that for every h ∈ HK and for every F ∈ F the following equality holds

˜T (h)
(
F
)

= h(F̃ ). (4.5.1)

We combine now the structures K0 and Kr into one Lr-structure K on domain K, where Lr = L∪ {r}.

Notice that rK is invariant under Aut(K0) since (x0, x1) ∈ rK if and only if for all F0, F1 ∈ F with x0 ∈ F̃0

and x1 ∈ F̃1 we have that F0 ∩ F1 6= ∅. Thus Aut(K) = Aut(K0) = HK , every A0 ∈ Age(K0) uniquely

extends to an A ∈ Age(K) and K is a also a projective Fräıssé structure. The fact that p(F̃ ) = F for every

F ∈ F and the relation (4.5.1) above let us view T : Aut(K) → G as the homomorphism induced by the

quotient p : K → Y .

We are left to show that T is injective. Let h ∈ Aut(M) so that h 6= idAut(M). By the continuity

of h we can find a non-empty F in F so that F ∧ h(F ) = ∅. Therefore, the interiors in Y of p(F ) and

p
(
h(F )

)
do not intersect and because the interior in Y of every non-empty F in F is non-empty we have

that T (h) 6= idHomeo(Y ).

We should remark here that the image Ĥ of Aut(K) under T is in general a meager subset of G. This

can be seen as follows: first notice that as a corollary of Pettis theorem we have that if f : B → D is a

Baire-measurable homomorphism between Polish groups and f(B) is not meager, then f is open (see for

example Theorem 1.2.6 [BK96]). Now notice that for F ∈ F the set V (F̃ , F̃ ) is open in Homeo(K) but the

set V (F, F ) is rarely open in G (except if Y is zero-dimensional or if G contains very few homeomorphisms).

Therefore T will fail in general to be an open map.
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[Yaa15] Itäı Ben Yaacov, Fräıssé limits of metric structures, The Journal of Symbolic Logic 80 (2015), no. 01, 100–115.

60


	Chapter 1 Introduction
	Extending automorphisms
	Complexity of orbit equivalence relations
	Reversing the arrows

	Chapter 2 Extendability of automorphisms of generic substructures
	The Banach Mazur game G**(E,X)
	The countable discrete case
	Some structural consequences
	The Wijsman hyperspace topology
	The Urysohn space U and the Urysohn sphere S

	Chapter 3 Games and obstructions to Borel reducibility
	The Becker-embedding game
	The orbit continuity lemma
	Generic homomorphisms between Becker graphs
	Applications
	A game-theoretic approach to turbulence
	Groupoids

	Chapter 4 Compact spaces as projective Fraïssé limits
	Preliminaries
	Projective Fraïssé structures
	Closed subgroups of Homeo(K)
	Turning a structure to a purely dual one
	Compact Polish spaces as quotients of dual Fraïssé structures

	Bibliography

