
© 2017 Giang Truong Khoa Nguyen

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158322465?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PERFORMANCE AND SECURITY TRADEOFFS OF PROVABLE
WEBSITE TRAFFIC FINGERPRINTING DEFENSES OVER TOR

BY

GIANG TRUONG KHOA NGUYEN

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2017

Urbana, Illinois

Doctoral Committee:

Associate Professor Nikita Borisov, Chair

Associate Professor Matthew Caesar

Associate Professor Philip Brighten Godfrey

Research Assistant Professor Rob Johnson, Stony Brook University

Abstract

The Internet has become an integral part of modern life. At the same time,

as we spend increasingly more time online, our digital trails, including the

identities of the websites we visit, can reveal sensitive personal information.

As a result, researchers have devised schemes that seek to enable users to

obfuscate the network traffic fingerprints of the websites they visit; however,

being ad hoc attempts, these schemes have all been later found to be inef-

fective against more sophisticated attacks. Thus, researchers have recently

proposed a family of provable defenses called BuFLO, or Buffered Fixed-

Length Obfuscator, that provides strong privacy guarantees at the expense

of high overhead.

Orthogonal to these defenses, the popular Tor anonymity network provides

some protection against these attacks but is nonetheless susceptible. In this

dissertation, we propose a simple design that uses BuFLO to protect web

browsing traffic over Tor: tunnel the BuFLO channel through Tor. In or-

der to evaluate the design, for both live experiments as well as large-scale

simulations, we need precise models of the traffic profiles generated by a

browser’s visiting websites. This in turn requires us to obtain a fine-grained

model of the web page loading process, two key components of which are the

browser and the web page. After diving into the immensely complex web

page loading process, we instrument the browser in order to extract bits of

information as it loads a web page; this enables us to obtain the models for

50 top Alexa-ranked global websites. Following that, we build a traffic gen-

erator framework to generate network traffic according to the models. Next,

we design and implement from scratch CS-Tamaraw, a congestion-sensitive

version of Tamaraw, the most secure member of the BuFLO family.

With all the pieces in hand, we perform live experiments to confirm that

CS-Tamaraw provides the predicted gains in privacy as in the original study.

However, when CS-Tamaraw is tunneled through Tor as we propose, its de-

ii

fense degrades significantly. We then conduct experiments to determine

whether CS-Tamaraw is at fault. Both CS-Tamaraw and a simple, bare-

bone, application-layer defense work largely as expected without Tor but are

similarly afflicted when tunneled through Tor. Further investigations sug-

gest that the unexpected results are due to artifacts in network conditions

and not due to flaws in the design or implementation of CS-Tamaraw. We

end after discussing the large-scale simulation studies with various levels of

adoption of CS-Tamaraw.

iii

To my family, for their love and support.

iv

Acknowledgments

First and foremost, I want to thank my advisor Nikita Borisov; his guidance

and support over the past eight years have been invaluable. I have benefited

tremendously from being able to take advantage of his technical expertise

and guidance. I appreciate that he allowed me the freedom to pursue my

research, and to do so in a manner that is important to me. He has been

patient with my slow research progress and numerous delays and extensions,

and he was empathetic and supportive when I was going through a difficult

period outside of research. This dissertation otherwise would not have been

possible, and for all of that, I am extremely grateful.

I am also grateful to other members on my doctoral committee, Philip

Brighten Godfrey, Matthew Caesar, and Rob Johnson. They have helped

guide this dissertation with insightful questions and feedback. I also truly

appreciate their understanding of and accommodating my numerous last-

minute requests—I cannot imagine it has been easy being on my doctoral

committee. Furthermore, I have also had the pleasure of collaborating with

Brighten and Matt on other successful research projects.

Next, I would like to thank past and present members of the Hatswitch

research group: Amir Houmansadr, Anupam Das, Gaurav Aggarwal, Joshua

Juen, Prateek Mittal, Qiyan Wang, Sonia Jahid, and Xun Gong. It was a

pleasure discussing security and privacy research and working with them; I

am also thankful for their assistance on my projects. Outside of Hatswitch, I

enjoyed collaborating with Ankit Singla, Chi-Yao Hong, Rachit Agarwal, and

Virajith Jalaparti. Outside of research, I have to thank Carol Wisniewski

and the staff at Coordinated Science Laboratory and the Computer Science

Department for helping me with administrative processes.

Outside of work, I was fortunate to have found a sense of social belonging

with other members of the Vietnamese Student Community at Illinois, with

friends who enjoy soccer and music as much as I, and with members of the

v

Urbana-Champaign Vietnamese community at large. The have enriched my

experience in Urbana-Champaign the last eight years.

Last but not least, I cannot be where I am today without my family.

Their sacrifices and hard work have allowed me to focus on my education

and pursue my interests, academic or otherwise. Their unconditional love

and support have been a solid foundation and have helped push me through

frustrating and tough times. I am eternally grateful for everything they have

done for me. Thanks, and much love, to Ba Ngoai, Ba, Me, and Truong.

vi

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Contributions . 3

CHAPTER 2 BACKGROUND . 5
2.1 Tor . 5
2.2 Website traffic fingerprinting 6

2.2.1 Attacks . 6
2.2.2 Defenses . 9

CHAPTER 3 FINE-GRAINEDMODELINGOF THEWEB PAGE
LOADING PROCESS . 11
3.1 The high-level mechanics of web page loading 12
3.2 Deep dive into web page loading process 15

3.2.1 Google Chrome architecture 15
3.2.2 Layout engine processing model 16
3.2.3 Resources and HTML elements 17
3.2.4 HTML parsing . 19
3.2.5 JavaScript . 21
3.2.6 When is a page load done? 25

3.3 Extracting the model of the web page loading process 25
3.3.1 Instrumenting Chrome 26
3.3.2 Constructing the model from the log 30

3.4 Traffic generator . 34
3.4.1 Browser simulator . 34
3.4.2 Server simulator . 36

3.5 Extracting models of top Alexa-ranked web pages 36
3.6 Validation of page models . 39

CHAPTER 4 PROVABLEWEBSITE TRAFFIC FINGERPRINT-
ING DEFENSES OVER TOR . 41
4.1 Provable defenses . 41

4.1.1 BuFLO . 41
4.1.2 Tamaraw . 42
4.1.3 CS-BuFLO . 43

4.2 Architecture for BuFLO-based defenses over Tor 44

vii

4.3 Proxy and protocol design and implementation 45
4.3.1 Defense session . 45
4.3.2 Design . 46
4.3.3 Implementation . 48
4.3.4 Sanity check experiments 50

4.4 Evaluating CS-Tamaraw over live Tor network 52
4.4.1 More rigorous sanity checks 55
4.4.2 Revisiting live Tor experiments 60

4.5 Large-scale simulations with Shadow 67
4.5.1 Shadow . 68
4.5.2 Setup and methodology 69
4.5.3 Results . 72

CHAPTER 5 CONCLUSION . 76

REFERENCES . 81

APPENDIX A MINIMAL CLIENT AND SERVER CODE 87

APPENDIX B OUR TOR EXIT NODE ON AMAZON EC2 89

viii

CHAPTER 1

INTRODUCTION

The World Wide Web has revolutionized many aspects of our daily lives;

we can now communicate, learn, teach, work, socialize, etc. over the web

platform. However, all these activities can reveal vast amounts of information

about our individuality, preferences, and habits. This has attracted pervasive

monitoring of our online activities by Internet Service Providers (ISPs) for

commercial purposes and governments in the name of national security. This

collection of data is clearly a violation of our privacy, but there are numerous

other problems it presents: the data can be leaked or stolen, potentially

causing personal and financial harm; it can be a threat to democracy if used

by governments to squelch the freedom of expression and dissent.

In the past decade, the anonymity network Tor [12] has proven a powerful

tool in the fight to protect Internet users’ privacy: it provides unlinkability

between a user’s IP address and her online activities. However, Tor is not

perfect, and due its popularity, researchers have studied and published many

attacks against the network; AlSabah and Goldberg have compiled a survey

of these attacks [4]. One class of traffic analysis attacks, called website traffic

fingerprinting, enables a passive local adversary that can observe the network

traffic generated by a user’s web browsing session to determine which web

pages the user is visiting.

Herrmann et al. were the first to present a website traffic fingerprinting

attack against Tor, albeit with little success [17]. However, two years later,

Panchenko et al. demonstrated a successful website traffic fingerprinting at-

tack against Tor [30], prompting Tor developers to implement a number of

network- and browser-level defenses into the Tor Browser Bundle [3]. The

Tor Project cautioned that they did not expect those defenses to be foolproof;

indeed, the following year, Cai et al. published a successful attack against

Tor with those defenses in place [6]. In fact, the broader website traffic fin-

gerprinting literature previously had been in a similar situation: proposed

1

defenses foiled specific known attacks—by hiding features exploited by said

attacks—but were later found to provide little protection against a newer at-

tack. With that in mind, researchers recently started to turn their attention

towards provably secure defenses that can provide tunable levels of security

against some theoretically optimal attacker.1 What these provably secure

defenses have in common is they use a pair of proxies to essentially provide

a single communication channel through which the web browsing traffic is

tunneled, enabling researchers to enforce strict rules on the observable prop-

erties of the channel—message sizes, counts, timing, and ordering—in order

to analyze its theoretical security properties.

The first such provable defense is called BuFLO (Buffered Fixed-Length

Obfuscator), due to Dyer et al. [13]. The BuFLO channel sends fixed-length

packets at a constant rate in both directions for a minimum duration, with

padding as necessary; however, BuFLO incurs high bandwidth overheads and

still leaks substantial information about the total sizes of web pages that re-

quire more than the fixed minimum duration to finish loading. Extending

BuFLO, Cai et al. proposed CS-BuFLO to address several performance

and practicality issues—including congestion insensitivity—while maintain-

ing the security-overhead tradeoff [7]. Orthogonal to CS-BuFLO, Cai et al.

also proposed another BuFLO extension called Tamaraw that achieves a sig-

nificantly better security/efficiency tradeoff [8].

A second family of provable defenses achieves better performance than

the BuFLO family by using super-traces that can cover clusters of packet

traces of web pages to be protected [29, 34]. They rely on a training phase

that obtains unprotected packet traces generated by visiting the web pages

without the defense. Then, with this knowledge on the web pages to be

protected, these defenses can compute super-traces tailored specifically for

these specific pages, enabling them to reduce the overhead compared to the

BuFLO-based defenses. During the online protection phase, when a web page

is loaded, its traffic is morphed—with packet padding, splitting, delaying,

etc.—to appear like its corresponding super-trace.

Because of their provable security properties, these defenses are compelling

1Most recently, Juarez et al. show that real-world settings—e.g., when the victim
uses a different browser than the attacker or simultaneously loads two web pages—will
significantly degrade many existing attacks [23]. While this result does cast doubt on
the severity of the threat of website traffic fingerprinting, it does not eliminate the threat
outright.

2

candidate solutions to address Tor’s website traffic fingerprinting weakness.

Indeed, in this dissertation work, we aim to adapt these defenses for use

with Tor. Specifically, we will consider the BuFLO-based defenses: CS-

BuFLO and Tamaraw. The super-trace-based defenses, on the other hand,

are hindered by practical deployment issues including the required training

phase that involves collecting many traces of the web pages and the intensive

super-trace computation [29]; therefore, we will not consider them here.

1.1 Contributions

We explore a design that adds the defenses on top of Tor by using a pair of

proxies to tunnel the BuFLO channel through Tor, with one proxy at either

end of the Tor circuit. Then we implement the design and evaluate using live

experiments and simulations. In particular, we seek to answer the following

questions:

� A deep dive into the web page loading process, and modeling

it

We take a close yet incomprehensive look at the complex web page

loading process. The lessons from this study help guide the creation of

a framework to extract a model of the process and to generate network

traffic according to the model.

� Propose a design to use BuFLO-defenses to protect web traffic

through Tor

– How will single clients perform?

We want to understand how the high latencies and low bandwidth

of the Tor environment affect the defenses. Also, this will in fact

be the first study of Tamaraw in action, for the original paper only

simulated the defense by applying transformations to unprotected

packet traces to produce protected ones.

– How will the whole network behave?

3

As with any network protocol, it is crucial to understand how

the broader network will behave with various levels of adoption.

This is especially true for the Tor network, with many relays be-

ing run by individual users contributing their bandwidth to the

network, because these defenses incur significant bandwidth over-

head. Furthermore, the defenses also have an inherent time over-

head. Therefore it is important to understand how the defenses

will affect web browsing clients, the key user population of Tor.

Previous simulation studies, including those related to Tor, have used

coarse models of web traffic, e.g., generate traffic according to certain dis-

tributions or represent a web page as a single file. Website traffic finger-

printing attacks and defenses, however, are designed to detect and conceal,

respectively, tiny differences in the network profiles of different web pages;

we must, therefore, create detailed models of web pages for our simulation

studies. Furthermore, even with live experiments over the real Tor network,

because real web pages change over time, it is also desirable to eliminate that

source of variability by capturing snapshots of the pages for use in repeated

experiments. In this thesis, we will thus also contribute a tool to create such

web page models.

The rest of the thesis is organized as follows. In Chapter 2 we will pro-

vide background on Tor and website traffic fingerprinting. Next we discuss

modeling of web pages in Chapter 3. We then describe provable website

traffic fingerprinting defenses and a simple design to bring them to Tor in

Chapter 4. Finally, we conclude in Chapter 5.

4

CHAPTER 2

BACKGROUND

2.1 Tor

Tor is a low-latency anonymity network that supports any TCP application.

The network consists of proxies called Tor relays that register themselves with

Tor’s public central directory servers. Starting with just a handful of relays

in 2005, today the network has grown to over 6000 relays, serving 2 million

users at any given time . In order to use Tor, a client first downloads from

the public Tor directory servers information (IP address, public key material,

etc.) about available relays in the network. Then, to make a connection to

a destination server, the client selects three1 relays, setups a circuit through

them, and connects to the destination server through the circuit. The three

relays are called the entry (or guard), middle, and exit relays based on their

positions on the circuit in the perspective of the client.

All communication between the client and the relays are protected using

layered encryption, i.e., a relay on the circuit can read only messages between

itself and the client, not those messages between the client and other hosts.

This ensures that, except for the client, each host along the circuit knows

of only the (IP addresses) of host(s) directly connected to it. For example,

the middle relay knows of only the entry and exit relays, and the destination

server knows of only the exit relay. It is important to note, though, that

the exit relay can potentially see the plaintext traffic between the client and

the destination server; that is, if the client chooses not to use end-to-end

encryption (e.g., HTTPS) to protect its communication with the destination

server.

To be suitable for interactive applications such as instant messaging and

1Though the client can configure shorter path lengths, the security of two-hop paths
is an open question .

5

web browsing—the most important application carried over the network, at

least evidenced by the number of connections and implicitly the number of

users [27]—Tor relays do not intentionally delay traffic. In fact, the term

“low-latency” is only with respect to other anonymity systems, such as Ba-

bel [15] and Mixminion [11], that achieve higher levels of security at the cost

of inducing high and variable delays to messages. When compared to direct

connections, Tor has significantly higher latencies because of the three addi-

tional hops on the path between the client and server, in addition to other

factors such as network capacity and congestion. From ∼1 000 tests during a

24-hour period in November 2015, the RTT over Tor is 0.41 ±0.33 seconds.2

2.2 Website traffic fingerprinting

We now describe website traffic fingerprinting and survey the attacks and

defenses in research literature.

2.2.1 Attacks

Website traffic fingerprinting, or website fingerprinting for short, refers to

the attack where the attacker observes the encrypted channel over which a

web browsing session takes place and attempts to identify visited websites

by analyzing the traffic pattern. The encrypted channel can be a direct

HTTPS connection between the browser and the web server, in which case,

the identity of the website is already available (e.g., in the IP addresses

of the connections); in these scenarios, the attacker attempts to identify the

visited pages within the site [10]. The encrypted channel can be a connection

(e.g., SSH or HTTPS) between the browser and a proxy, and the website is

downloaded over the proxied connection. In these cases, the IP addresses

of the destination web servers are not available to the attacker, making the

fingerprinting attack harder but not impossible.

Since the content of the downloaded bytes is not available to the attacker,

she relies on other observable features of the traffic, such as packet counts,

directions, sizes, and inter-arrival times, etc. First, she builds “profiles” of

web pages by browsing those pages and extracting the relevant features of the

2We ignore ∼15 samples that are over 5 seconds.

6

traffic her visits generate; this is the training phase, from which the attacker

creates a classification model. Later, given a new test traffic trace, she uses

machine learning classification algorithms and the created model to identify

the website that generated the trace in question.

Two attacks scenarios are considered: the “closed-world” experiment where

the entire world of web pages the client can visit is known a priori, and the

attacker can train on all the pages; and the more realistic “open-world” ex-

periment where the attacker optimizes her resources and/or techniques to

correctly detect visits to a small set of “monitored” pages (for which she

builds extensive profiles) while the client is allowed to also visit a much

larger set of “unmonitored” pages (for which the attacker builds less exten-

sive profiles). We will denote by M-v-U the size of an open-world experiment,

where M and U are the sizes of the sets of monitored and unmonitored pages,

respectively.

The earliest attacks in the literature are due to Hintz [18] and Sun et

al. [31]. These rely on the strong assumption that individual requested re-

sources can be differentiated in the captured traffic. This is possible, for

example, when each resource is requested using a separate non-persistent

HTTP connection or in a serial (non-pipelined) fashion on a persistent one.

Knowing the number and approximate sizes of downloaded resources helps

the attacker identify the loaded web page. In particular, for a 2 191-v-98 496

open-world experiment, Sun et al.’s attack based on the Jaccard similarity

coefficient is able to achieve an accuracy rate of 75% with a false positive

rate of 1.5%.

Bissias et al. are the first to present an attack on encrypted channels (SSH)

that do not reveal individual resource sizes, achieving a 23% accuracy using

cross-correlation of packet sizes and inter-arrival times in a 100-site closed-

world experiment [5]. Liberatore and Levine consider unique packet lengths

(with directions) in proposing two attacks, one using the Jaccard coefficient

and the other using the Naive Bayes classifier [25]. For a closed-world attack

on 1 000 pages, using only 4 training instances per page, the classifier based

on the Jaccard coefficient achieves up to 73% accuracy, and the Naive Bayes

classifier 67%. (False positive rates are not presented.)

Subsequently, Herrmann et al. [17] improved on the Naive Bayes attack by

using a multinomial naive Bayes classifier and applying optimization tech-

niques from text mining: term frequency transformation, inverse document

7

frequency transformation, and cosine normalization. Neglecting false pos-

itives, their attack achieves 94.2% success rate against SSH tunnels in a

775-site closed-world experiment; however, in a 78-by-697 open-world ex-

periment optimized for minimum false positives—incorrectly classifying an

unmonitored page as a monitored one—their technique achieves a false pos-

itive rate of 1.4% at the expense of dropping the true positive rate to 40%.

Herrmann et al. also evaluate their attack against Tor, which presents the

toughest challenge: they achieve a success rate of only 2.96%.

However, Panchenko et al. demonstrate a successful attack against Tor

clients by using Support Vector Machines (SVM) [30]. For the same 775-page

closed-world scenario and features used by Herrmann et al., simply using

SVM improves the attack accuracy from 3% to 31%. With more features

designed to capture traffic burstiness, main HTML document size, and ratios

of incoming and outgoing packets, etc., they achieve a success rate of 54.6%,

presenting a significant privacy threat for Tor web browsing clients. For a

5-by-5 000 open-world experiment where the attacker trains on 4 000 of the

unmonitored sites but is tested on the other 1 000 sites, their true positive

rates are 56-73%, and false positive rates are less than 1%. Dyer et al. show

that a Naive Bayes classifier that uses only coarse-grained features of total

bandwidth, total download time, and burst sizes, which are much simpler

than Panchenko et al.’s SVM and advanced features, can achieve similar

attack accuracies [13].

In 2012, Cai et al. further improve web page fingerprinting attack accuracy

on Tor by training SVM on optimal string alignment distances (OSAD) be-

tween packet traces [6]. This distance metric captures packet ordering, which

is useful because it reveals information about the order in which the browser

requests embedded resources, and the up-down patterns of the traffic, which

is a key contributor to their attack success. They are able to achieve an 83.7%

success rate for a closed-world attack of 100 web pages, an improvement from

the 65% success rate achieved by Panchenko et al.’s attack against the same

data set. By using a modified OSAD metric as well as more advanced data

processing, Wang and Goldberg improve Cai et al.’s attack accuracies to 91%

from 87% and 96.9% from 86.9% for a 100-site closed-world experiment and

a 4-v-860 open-world experiment, respectively [33].

Most recently, Wang et al. publishes an attack based on k-Nearest Neigh-

bors that best Cai’s method in open-world experiments [34]. They employ

8

a large feature set of 4 000 features (75% of which are for unique packet

lengths); however, the features are assigned different weights that represent

how well they are able to differentiate websites during the training phase. In

a 100-by-5 000 open-world experiment, they achieve an 85% success rate at

0.006% false positive rate, compared to Wang and Goldberg’s [33] 83% and

0.06%, respectively. Their 100-site closed-world results are not significantly

different than Wang and Goldberg’s.

2.2.2 Defenses

Fingerprinting defenses address the recognizable low-level features of en-

crypted web traffic. To obfuscate unique packet sizes, a common technique is

to pad packets [13, 25, 31] or always send fixed-size packets. There are many

possible padding schemes: pad to the maximum transmission unit (MTU),

or to the next multiple of some fixed value, or with a random amount, etc.

To obfuscate packet size distribution, Wright et al. propose traffic morph-

ing [37]. This technique first learns the packet size distribution (the target

distribution) generated by some web page. Later, when a different page is

visited, the system will pad or split packets generated by the application such

that their sizes appear to be drawn from the target distribution. Wright et

al. demonstrate that their morphing technique achieves better security and

overhead than a pad-to-MTU defense.

Panchenko et al. propose using background traffic to obfuscate the traffic

pattern [30]. Called Camouflage, the idea is load a decoy web page in the

background at the same time as the real requested page. Their experiments

show that their closed-world attack accuracy on Tor drops to 3% from 54%

at the expense of 85% bandwidth overhead.

Defenses can also be implemented at the HTTP application layer: modify

the default HTTP behavior to induce changes at the network layer. A defense

can split an original request into multiple requests by using range requests;

randomize orders of requests when pipelining; inject dummy request head-

ers that the server will ignore, etc. Luo et al. implement these obfuscation

measures in HTTPOS, a client-side proxy [26], and report significant success

defending against several attacks in a 100-site closed-world experiment. For

example, for SSH tunnels, Liberatore and Levine’s Naive Bayes classifier can

9

identify all of the 100 sites with at least 90% accuracy without HTTPOS;

when HTTPOS is applied, 98 of the sites are fully unidentifiable to the clas-

sifier, i.e., 0% accuracy. Another implementation of randomized pipelining

is the Tor Browser Bundle’s customized version of Firefox [3].

Sun et al. [31] discuss using pipelining to achieve “two-chunk transfer”

if all resources are on the same server: the first downloaded chunk is the

page HTML, and the second is all the embedded resources downloaded to-

gether. This transfer scheme obscures the boundaries among the resources

downloaded in the second chunk and thus hides their individual sizes. Fur-

thermore, a “one-chunk” transfer, which further hides the size of the page

HTML, can be achieved if a proxy downloads all files and sends to the client

in one chunk.

After showing that known efficient packet padding-based defenses and

Wright et al.’s morphing defense are still leaking coarse features like total

time and bandwidth that their simple classifier can exploit, Dyer et al. pro-

pose the first provable defense BuFLO (Buffered Fixed-Length Obfuscator)

to hide those coarse features [13]. BuFLO inspired other provably secure

defenses: CS-BuFLO and Tamaraw; we will describe them in details in Sec-

tion 4.1.

10

CHAPTER 3

FINE-GRAINED MODELING OF THE
WEB PAGE LOADING PROCESS

In many modeling applications, researchers have used coarse-grained models

of web pages, e.g., the total download size of a page [19, 22], the numbers

and sizes of objects of a page, etc. This information is readily available from

a packet capture on the network. However, web pages are becoming more

complex and dynamic, resulting in ever more complex inter-dependencies

among a page’s embedded resources. These dependency graphs influence the

timing of the browser’s discovery of and issuing requests for the embedded

resources, and thus play an increasingly larger role in determining the page

load times. Yet, it is non-trivial to extract a web page’s dependency graph

from a network packet capture. As a result, as a part of efforts to optimize

page load times, researchers have created tools to extract web pages’ resource

dependency graphs, with varying levels of precision [24, 28, 35].

Nevertheless, the focus of these previous efforts have been the web page,

i.e., create the model of the web page. In our context, however, where website

traffic fingerprinting algorithms are adept at picking out small differences in

network traffic, we need to have precise models of the entire web page

loading process. Figure 3.1 shows that conceptually, this process takes as

inputs the web page, the browser,1 and the network; its output is the sequence

HTTP requests—or more generally the sequence of byte write requests—it

makes to the underlying communication layer. This is the communication

layer with which the process interacts directly; it could be the operation

system’s standard TCP/IP stack, or it could be a proxy channel, such as

Tor, or BuFLO, that interacts with the operating system’s TCP/IP stack.

Note that the communication layer itself feeds back into the web page loading

process by, for example, rejecting or rate-limiting the page loading process’s

write requests.

1this includes any user-specific customization, browser extensions, etc. that modify
the behavior of the browser.

11

Web page

Browser

Page loading
process

Communication/

Network layer

Figure 3.1: The web page, browser, and communication/network layer are
inputs into the web page loading process, which then outputs a sequence of
write requests into the underlying communication/network layer.

Therefore, in addition to modeling the web page, we need to also model

the web browser. This means not only understanding the pertinent parts

of web standards such as HTML, DOM, JavaScript, and XMLHttpRequest,

etc.,2 but also a browser’s implementations of those standards, as well as its

own browser-specific designs and idiosyncrasies. Specifically, we are working

with the open-source Chromium browser3 (at version 38.0.2125.122), which

is at the core of Google Chrome,4 which has a more than 50% share of the

web browser market [2]. In the rest the thesis, we use Chromium and Google

Chrome interchangeably, because the additional branding and features that

Google Chrome adds on top of Chromium do not affect the core web page

loading process.

Next, we will give a general overview of web page loading process, which

is not specific to any web browser. We then take a closer look at the process,

as well as some design and implementation details that are specific to Google

Chrome. Since the full specifications of web standards are beyond the scope

of this thesis, we assume the reader is somewhat familiar with these topics,

and we only discuss aspects that are of interest to our modeling task.

3.1 The high-level mechanics of web page loading

Web pages A modern web page is conceptually a dynamic document de-

scribed by an HTML file and associated external resources. First, the page’s

2https://spec.whatwg.org/
3https://www.chromium.org/Home
4https://www.google.com/chrome/

12

https://spec.whatwg.org/
https://www.chromium.org/Home
https://www.google.com/chrome/

content, e.g., text and images, etc., is primarily specified in the HTML

markup. Second, its visual presentation or style, e.g., colors and fonts, etc.,

is specified in cascading style sheets (CSS), which can be embedded directly

in the HTML markup (internal style sheets) or linked to other files (external

style sheets). Finally, the page’s dynamism and interactability are enabled

by JavaScript: scripts can alter many aspects of the page’s content and style

as well as enable interactions with the user. Like style sheets, scripts can also

embedded in the HTML file (inline scripts) or linked to other files (external

scripts).

Browsers Notwithstanding differences in their feature sets and architec-

tures, modern browsers share a common fundamental task: to render web

pages. To perform this task, browsers contain at their core a standards com-

pliant web layout engine that provides the foundation to display a web page

on screen. The layout engine’s key components that are relevant to our dis-

cussion are an HTML parser, a CSS evaluator, and a JavaScript engine. The

layout engine delegates the task of fetching resources to a separate resource

loader, which abstracts away the network and potentially the HTTP cache;

the layout engine submits URL requests to and receives response data from

the resource loader.

Loading a web page To load a web page, a browser first loads the page’s

HTML file by submitting a request to the resource loader. HTML data can

be processed incrementally instead of requiring the entire file, and the HTML

parser does just that: it parses the HTML response data as it becomes avail-

able and incrementally constructs a Document Object Model (DOM) to rep-

resent the content of the HTML. As the parser encounters external resources

such as images and style sheets, it requests them with the resource loader

and generally continues parsing and building the DOM without blocking on

the responses.

Concurrently with the DOM construction, the browser also builds the CSS

Object Model (CSSOM) when it encounters style sheets, either in-line or after

fully receiving them from the resource loader. The CSSOM contains rules

on how to visually style the page’s content. Once the CSSOM has been fully

constructed, the layout engine periodically combines it with the DOM, even

if not fully constructed, to create a render tree to be displayed on the screen.

Note that this operation might cause additional resources to be loaded (e.g.,

13

from the network) because some content elements are displayed with CSS

styles that specify external fonts and/or background images. This represents

a dependency relationship: these external resources can only be downloaded

sometime after the style sheet referring to them has been.

As we have mentioned, scripts have the power to alter the page’s content

and styling: they have full read write access to the DOM and CSSOM. Ad-

ditionally, using document.write(), a script can write HTML data directly

into the current input of the HTML parser. Thus, there are potential race

conditions where the HTML parser, CSS evaluator, and JavaScript engine ac-

cess the DOM and CSSOM at the same time. And because generally scripts

are executed at the exact location they are referenced in the document, the

browser prevents the race conditions by adopting the following rules:

� Script download (if external) and execution block the HTML parser

(though, this does not affect the resource loader’s active resource down-

loads, including of the HTML file).

� Script execution is blocked if there is ongoing CSS activity including

external style sheet downloads and CSSOM construction.

These rules introduce dependencies that can significantly slow the page load;

for example, if a script takes a long time to download and/or execute, the

HTML parser will take that much longer to parse the rest of the page, de-

laying discovery and download of embedded resources later in the HTML

markup, etc. (To address some of the issues, the HTML spec has introduced

an async attribute for external scripts: if marked async, their download and

execution occur asynchronously with the rest of the page, i.e., they do not

block the parser.) Furthermore, a script can cause the browser to load new

resources, e.g., it can add a new image to the DOM, or it can change the style

of an existing element to a previously unused style that defines a background

image, requiring the browser to request that background image for the first

time. In both cases, the newly requested image depends on the script, and

in the latter example, also on the style sheet.

14

Main

process

Render

process

Web

layout

engine

IPCIPC

Render

process

Web

layout

engine

IPC

Figure 3.2: High level view of Google Chrome’s multi-process architecture.

3.2 Deep dive into web page loading process

In this section we go into the details of the web page loading process as well as

the Chrome browser implementations that are relevant to our modeling task.

Since these topics are inherently intertwined, oftentimes we cannot avoid

referring to concepts/components that we have not yet fully defined. We

start with describing Google Chrome’s architecture, as depicted in Figure 3.2.

3.2.1 Google Chrome architecture

The web layout engine is a CPU-bound component of a browser: parsing

arbitrary HTML and CSS as well as executing JavaScript can take signifi-

cant amount of time. In order to prevent these operations from blocking the

browser’s IO, for concurrency, browsers use a separate thread or process ded-

icated to network IO. Google Chrome uses a multi-processing architecture,

where the main process (also called the browser process) handles IO,

including the network and the disk cache, and each web page being loaded—

either in a tab or window—is handled by a separate instance of the render

process. An important advantage of this multi-processing architecture is

isolation: critical errors in one tab or window does not affect other tabs or

windows or the main browser.

The only part of the main process that is relevant for our task is the net-

15

work subsystem that handles network IO. This subsystem is responsible for

creating and maintaining connections to web servers, implementing network-

ing protocols such as HTTP, SPDY, etc., servicing the renderer’s requests

for resources.

In the renderer process, the main thread handles inter-process communi-

cation (IPC) with the browser process, while the web layout engine is run

in another thread called render thread. The main thread provides an inter-

face through which the layout engine can submit requests for resources and

receive response data. The layout engine is Blink,5 which is a fork of the

popular layout engine WebKit.6

3.2.2 Layout engine processing model

The web layout engine handles many different things: HTML parsing and

DOM construction, receiving data from the network, executing JavaScript,

interacting with the user, rendering the page, etc. It uses an event-based

processing model: events from these sources of work are placed into task

queues, and the layout engine runs an event loop to process these tasks. An

example task is when the main process sends to the render process an IPC

message containing a new chunk of data for the page’s HTML; the render

process’s main thread would queue a task on the layout engine’s task queues

to handle the new data. Another example is when the main process has

finished receiving the HTTP response for a resource, it will send the render

process a “ResourceFetchFinish” IPC message, which the render will add a

task onto the queue to be processed.

The HTML standard specifies this fully,7 but at a high level, what’s rele-

vant to us can be summarized as follows:

1. select a task from one of the task queues

2. run the task

3. update rendering

5http://www.chromium.org/blink
6https://webkit.org/
7https://html.spec.whatwg.org/multipage/webappapis.html#event-loop-processing-

model

16

http://www.chromium.org/blink
https://webkit.org/
https://html.spec.whatwg.org/multipage/webappapis.html#event-loop-processing-model
https://html.spec.whatwg.org/multipage/webappapis.html#event-loop-processing-model

4. repeat

The use of multiple task queues allow the layout engine to prioritize certain

tasks over others; for example, it might give higher priority to the task queues

that contain mouse and keyboards events over other task queues.

3.2.3 Resources and HTML elements

As discussed previously, the layout engine uses the DOM as the internal

representation of a web page. The DOM is a tree of “nodes”. The root

of the DOM corresponds to the html element in the HTML markup; other

nodes in the tree correspond to other HTML elements in the page, as well

as text nodes that are not elements but are children of other elements.

Resources, on the other hand, are not part of the DOM tree. Generally,

a resource refers to some data that is used by the web page but is (usually)

external from the HTML. A resource might not be associated with any HTML

element at all, or it can be referenced by multiple elements; we will later see

why this is relevant. Resources can be one of several types, such as HTML,

image, script, font, etc. For example, the main HTML of the page is a

resource (“main resource”) that the layout engine has to download. Each

resource is identified by a Uniform Resource Identifier (URI), which in the

case of web pages, is most often a Uniform Resource Locator (URL) that

specifies the remote location of the resource.

In the common case, a resource is fetched by sending a single HTTP GET

request and receiving the response that fulfills the request. In other cases,

additional requests are needed. For example, the response from the server

can redirect the browser to request the resource at another URL. Suppose

that the layout engine “follows” the redirect and makes another request at

the new URL, this request itself can also be redirected, and so on. The

sequence of HTTP requests made by the layout engine in order to fetch a

resource is commonly referred to as the redirect chain. Another example is

for XmlHttpRequests, for which the layout engine might send an OPTIONS

request before sending the actual request. These requests can also be redi-

rected.

The layout engine keeps an in-memory “cache” of the resources, keyed by

their URIs, and their data. This allows multiple elements that reference the

17

Listing 1 Simple web page at http://example.com
1 <html>

2 <body>

3

4

5

6 </body>

7 </html>

same resource URI to use the same resource, i.e., the layout engine does not

have to fetch the same resource repeatedly for every reference. Note that this

cache is in the renderer process and is separate from the memory-only HTTP

cache maintained by the browser process and shared by multiple renderers.

A less commonly used URI is the Data URI, which contains the actual

resource data itself, and thus the layout engine does not need to separately

fetch the resource from the remote server and can just parse the data from the

URI itself. This is useful for small resources, for which the HTTP request-

response round-trip and potentially TCP connection setup can dwarf the

data transfer time.

Consider a toy example web page at hypothetical site http://example.com

with the HTML markup in Listing 1. In the body of the page, there are three

image elements. Not counting the main HTML resource, what are the re-

sources that the layout engine will load when loading this page? The two

resources loaded by the layout engine are:

� The image resource http://example.com/cat.jpg: this resource is

referenced by the two image elements img1 and img3. In particular,

element img1 has a relative src attribute, and thus the layout engine

determines that its absolute URI is http://example.com/cat.jpg,

which is the same URI referred to by element img3. As mentioned

above, the layout engine only needs to fetch this resource once, and

both elements can be rendered using the same data.

� The image resource with a Data URI referred to by element img2; this

resource does not require a network fetch.

Key relevant elements Since we are only interested in aspects of the web

page that can induce network traffic and/or significant computation time,

18

we are mostly interested in these HTML elements: img, link (those that are

style sheets), script, and body elements. (The body element is interesting

because the layout engine will skip the rendering step if the parser has not

encountered the body element.)

3.2.4 HTML parsing

The HTML resource (e.g., the main resource) data constitutes a stream of in-

put bytes that is fed to the HTML parser. The parser consists of a module—

the “tokenizer”—that extracts HTML tokens from the input stream and

sends each extracted token to a separate module—the “tree builder”—to

construct the DOM tree. For some elements such as images, in normal oper-

ation, insertions into the DOM tree immediately result in the layout engine’s

issuing requests to fetch the corresponding resources.

Incremental parsing The layout engine tries to parse whatever HTML

data that has arrived; it does not wait until receiving the entirety of the

main resource before parsing. This means that not only the relative ordering

of elements on the page, but also the byte location of each of the key elements

is an important property that we need to model because it affects the timing

of the parser’s discovery of the element, and thus the corresponding net-

work request and/or computation. For example, consider the example page

in Listing 2. The two image elements topimg and bottomimg are near the

beginning and the end of the 100 KB HTML file, respectively. Due to incre-

mental parsing, the layout engine will discover and request top.jpg almost

immediately after starting to load the web page, regardless of the download

bandwidth. On the other hand, the delay between the start of the page load

and the layout engine’s discovery of and requesting for bottom.jpg depends

on the download bandwidth: the lower the bandwidth, the larger the de-

lay. Therefore, it is important for the page models to capture this property,

especially when loaded over Tor, where network quality is highly variable.

Preloading When the parser encounters a closing script tag (</script>),

if the script is a regular script element (without async and defer attributes),

then the layout engine pauses the parser, and thus DOM construction, until

the script has executed. If the script is inline, the layout engine can immedi-

ately execute the script; since the layout engine runs in a single thread, this

19

Listing 2 Example web page illustrating the importance of the elements’
locations. The two image elements are near the beginning and the end of an
HTML file that is approximately 100 KB.

1 <html>

2

3

4 <!-- ... 100 KB of markup ... -->

5

6

7 </html>

does not represent any idle time. If the script is external, however, while

waiting for the script resource to download, the layout engine is essentially

idle. To take advantage of this idle time, if there is more HTML data avail-

able following the script element, the parser gives the HTML to a preload

scanner, which tokenizes the HTML and looks for external resources, such

as images, style sheets, etc., to fetch. This way, once the script resource has

finished loading and has finished executing, then parser resumes and encoun-

ters the subsequent resources, they will have been in-progress or might have

even finished downloading.

Yielding Even if the entirety of the HTML data is available, the parser

might not parse it in one go: due to the single-threaded nature of the layout

engine, the parser self-imposes a time limit on each parsing session, and yields

control back to the event loop, so that the layout engine can perform other

tasks, such as a timer, or parsing a script-blocking CSS resource that has

finished downloading, allowing any script blocked by the CSS to execute.

Background parser By default, chrome uses a separate thread to run a

background parser. This parser is particularly useful when the render thread

is blocked, e.g., waiting for a script to execute: the background parser can

receive the HTML data that might be arriving during this time and tokenize

it. Note that the background parser does not modify the DOM tree; it only

sends parsed HTML tokens back to the render thread, which uses the HTML

tokens in the DOM tree construction. Also note that, this is different than

preloading scanning, which also tokenizes the HTML but only to look for

resources to preload; these tokens are otherwise discarded.

20

Listing 3 Example page http://example.com/ where JavaScript directly
and indirectly induces resource fetches

1 <html>

2 <head>

3 <style>

4 @font-face { font-family: myfontface; src: url('myfont.woff'); }

5 .myclass { font-family: myfontface; }

6 </style>

7 </head>

8 <body>

9

10

11 <div id='mydiv' class='myclass'> </div>

12

13 <script>

14 document.getElementById('myimg').src = 'NEW-img.jpg';

15 document.getElementById('mydiv').innerHTML = 'some text!';

16 </script>

17 </body>

18 </html>

3.2.5 JavaScript

JavaScript is the main method to provide dynamism and interactibility for

web pages. JavaScript code can modify the page in many ways. For example,

since the DOM tree construction happens incrementally, JavaScript code can

modify the current DOM tree at the time the script runs: it can add and

remove elements, modify attributes of existing elements, etc. There are two

main ways for web page authors to have their JavaScript code executed:

script elements and event handlers.

Script elements By default, script elements are executed in the order they

appear on the page. For more flexibility, the HTML standard recently allows

script elements to specify async and/or defer attributes, which affect when

a script can be executed and relaxes the ordering constraint. The possible

ways JavaScript can interact with the web page and the layout engine are

numerous and complex; it is not a goal of this project to study this area

comprehensively.

Still, we discuss here an example web page in Listing 3 that illustrates a

basic way and a subtle way that JavaScript can induce network fetch of re-

sources. First, the page defines on line 4 a font face named myfontface that

21

uses the remote font resource at http://example.com/myfont.woff. Line

5 declares that any element that is of class myclass will be rendered using

the font face specified in myfontface. In the body of the page, the image el-

ement myimg refers to resource http://example.com/orig-img.jpg, which

the layout engine will fetch. The body of the div8 element mydiv, which is

of class myclass, contains no text, only a few blank spaces; since there is no

text to be displayed the font resource is not needed and thus not fetched.

Next, we encounter the script element on lines 13-16. When executed, the

script does two things:

1. modifies the image element’s src attribute; the image element now

refers to another resource http://example.com/NEW-img.jpg, which

means the layout engine initiates a fetch for the new resource, while

the JavaScript engine is still running.

2. adds the text some text! to the div element. This action does not

immediately cause any resource fetches but does invalidate the style of

the div element. In a subsequent style recomputation step, after the

JavaScript engine has finished running, the layout engine updates the

style of the div and determines that some text! needs to be rendered

with the font face myfontface, causing the layout engine to initiate

a fetch for font resource http://example.com/myfont.woff. Effec-

tively, the script has indirectly induced network traffic, i.e., the font

resource depends on the script element.

Event handling JavaScript code can be registered to execute when certain

events occur, e.g., as part of the page load, or in response to user’s actions

(such as clicking on a button, entering text in an input field, etc.). Event

listeners, as they are called, can be specified in HTML markup, and they can

be added and removed in JavaScript code. Two key events associated with

the page load are:

� DOMContentLoaded: the layout engine fires this event when the parser

has finished parsing the page’s HTML markup and constructing the

DOM. This does not depend on the status of embedded resources: it

might be the case that all embedded resources are still being down-

loaded.
8A div tag defines a section of the document

22

Listing 4 Example page to illustrate JavaScript event handling
1 <html>

2 <body>

3 <script>

4 function domLoaded() { console.log("Done parsing markup"); }

5 function pageLoaded() { console.log("Done loading page"); }

6

7 document.addEventListener("DOMContentLoaded", domLoaded);

8 window.onload = pageLoaded;

9

10 function img1LoadSuccessHandler() {

11 console.log("img1 loads successfully");

12 var img = document.getElementById("img1");

13 img.src = "non-existent.png";

14 img.addEventListener("error", img1ErrorHandler);

15 }

16

17 function img1ErrorHandler() { console.log("img1 error (JS)"); }

18 </script>

19

20 <img id="img1" src="good.png"

21 onload="img1LoadSuccessHandler()"

22 onerror="console.log('img1 error (markup)')" >

23

24 </body>

25 </html>

� load: the layout engine fires this event when there are no more pending

requests embedded resources (pendingRequestCount == 0), i.e., each

embedded resource has finished loading, whether successfully or not. In

other words, as far as the layout engine is concerned, the initial page

load is considered complete at this point. At the same, not all requests

are taken into consideration by the layout engine (i.e., the request does

not affect pendingRequestCount) when determining whether to fire

this event, as we will see in the example below.

Consider the example web page in Listing 4. First, console.log() is a

built-in JavaScript function that logs the message to the browser’s JavaScript

console.

� On lines 7 and 8, domLoaded() and pageLoaded() functions are regis-

tered to log the DOMContentLoaded and load events, respectively.

23

Listing 5 JavaScript console output when browser loads page in Listing 4
1 Done parsing markup

2 img1 loads successfully

3 Done loading page

4 img1 error (markup)

5 img1 error (JS)

� On line 21, in HTML markup, using the onload attribute, we specify

that the img1LoadSuccessHandler() function will be called when the

image successfully loads.

� On line 22, similarly, in HTML markup, we register a listener to log an

error message to the JavaScript console when the image fails to load.

� When the image element successfully loads, we log to the JavaScript

console, and then also modify its src attribute to point to a non-

existent image (line 13) and register an additional listener for when the

image fails to load (line 14).

When the browser loads the web page, assuming that the image good.png

loads successfully, the sequence of events logged to the JavaScript console is

shown in Listing 5. After initiating a fetch for image good.png, while it is

still downloading, the parser reaches the end of the HTML markup and is

thus finished parsing; at this point, the layout engine fires DOMContentLoaded

and Done parsing markup is logged. When the image finishes loading, its

load event listener is called and logs img1 loads successfully as well as

modifies its src attribute, which will cause the layout engine to schedule a

request for the non-existent resource. This request, however, does not incre-

mentpendingRequestCount, and thus at this time, the page is considered

finished—no more pending resources—and the layout engine fires the page’s

load event. Soon after, the request for non-existent.jpg comes back with

an error response, and the two event listeners registered for the image’s error

event are executed and log the corresponding messages.

In the following section 3.3, we will discuss how we produce a model of

the page loading process. Then in section 3.4, we describe the design and

implementation of our traffic generator.

24

3.2.6 When is a page load done?

As discussed earlier, at the moment the layout engine fires the load event,

there might still be pending requests being downloaded. Furthermore, at or

after the time of the load event, JavaScript can create additional requests

that are very much part of the initial page load. For example, of the ∼9 400

page loads we performed on 94 of the top 100 Alexa-ranked web pages (100

loads per page) early November 2016, in over 14% of the page loads, we saw

at least one request being started after the page load event. It is plausible

that more page loads had pending requests that were started before the load

event. This means that the firing of the load event is not a reliable method

for website traffic fingerprinting defenses to be certain that the page load is

truly done. Therefore, in our experiments, we rely on heuristics to determine

when a web page is done loading: when an idle period of two seconds has

elapsed without any pending request after the page’s load event.

3.3 Extracting the model of the web page loading

process

To extract a model of the web page loading process, we instrument the

Chrome browser to log key information during the page load, and imple-

ment a tool to process the log to produce the model. There are other less

intrusive methods to extract models of web pages without modifying the

browser, but as mentioned before, for our modeling task, fine-grained details

matter, so we need to instrument the browser in order to gain visibility into

the intricate operations of a browser while it loads the web page. (The WProf

authors took this approach as well [35].)

At the most abstract level, our objective is to generate the right amount

of network traffic at the right moment in time. Resources and the requests

needed to fetch them are the primary source of network traffic,9 so we need to

model whatever components and activities of the web page and browser that

cause resources to be fetched, as well as the dependencies and timing of such

activities. Parts of the page that can cause resources to be fetched are DOM

9Web sockets are another source of network traffic, but they enable the web page to
communicate non-HTTP application-specific data, so it is beyond the scope of this thesis
to model these connections.

25

elements (which are either parsed from the page’s HTML markup, or can be

added or modified by JavaScript); style calculations (as part of rendering up-

dates, and which can fetch font and image resources); JavaScript execution,

which can add or modify DOM elements, as well as create XmlHttpRequests.

Our models contain information about the entities on the web page such

as elements, resources, timers, etc., and for some of those entities, such as

script elements and timers, what they “do.” In other words, we also model

computations since they contribute to the timing of the page load. For exam-

ple, when a script runs, how long does it take? And what relevant operations

does it perform? Does it create resources and initiate network fetches? Does

it schedule timers? etc. These same questions are applicable to other event

listeners, and timer expiration handling functions, and so on. We gener-

alize this to a concept we call execution scopes to model computations.

The simplest execution scope represents just a delay, i.e., it does not create

any resources, schedule any timers, etc. We will discuss execution scopes in

more detail, but first we go over how we instrument Chrome to handle other

relevant aspects of the page load.

3.3.1 Instrumenting Chrome

Resources: For each web page load, the resources in memory are given

unique identifiers (monotonically increasing instance numbers). Note that

resources with the same URI might be different resources; for example,

an HTTP OPTIONS request for http://example.com/path and an HTTP

GET request for http://example.com/path are two different resources. We

are able to detect this since we are operating in the Chrome code. Essentially

the two resources have two unique identifiers. In general, the layout engine

submits requests for the resources to the browser process’s network subsys-

tem, which is not aware of the resource identifiers used by the layout engine.

In order for us to associate a resource in the layout engine with the chain

of HTTP requests performed by the network subsystem, we propagate the

resource’s identifier down into the network subsystem, which can log the re-

source’s identifier when logging the HTTP requests, including the hostname

and port, and the total amounts of upstream bytes and downstream bytes.

Not all resources contribute to the pendingRequestCount that is part of

26

the check to see if the page has been loaded. We can also log this information

for each resource that is fetched. For style sheet resources, we also log how

long it takes to parse the style sheet; this can be a significant amount time,

with the main style sheet often taking tens and sometimes more than a

hundred milliseconds to parse.

Elements: Instrumenting the layout engine’s HTML parser, we can see the

relevant attribute of each element of the main page’s HTML markup that

refers to resources, e.g., src attribute for image and script elements, href

attribute for link elements that are external style sheet elements (i.e., rel

attribute is stylesheet), and so on. We log the byte locations within the

main page’s HTML of the key HTML elements such as images, style sheets,

the body element, etc. These are byte locations within the uncompressed

HTML data, which most likely do not accurately correspond to their locations

within the compressed HTTP response, which is what the network subsystem

deals with. For simplicity, not having to implement decompression, we use

proportional mapping between the two set of offsets. For example, if the

uncompressed HTML data and the compressed HTTP response are 1000

and 200 bytes respectively, then an element at location 700 in the HTML

data is assumed to be at location 140 in the HTTP response, i.e., when the

layout engine’s HTML parser reaches the 140th byte of its input stream, then

it encounters the said element. We also log the execution scopes that run

when the element’s load event fires.

Besides being created by the parser when parsing the page’s HTML re-

source, elements can also be created by the JavaScript engine using other

methods such as:

� JavaScript code can use DOMAPI such as document.createElement()

to create an element and then insert it into the DOM.

� JavaScript code can insert HTMLmarkup into the parser’s input stream

with document.write(), or insert HTML fragments using the DOM

API such as assigning or appending to an element’s innerHTML at-

tribute; in either case, the created elements, though directly created by

parser, are created while the JavaScript engine is active, so for simplic-

ity we can consider them to be created during an execution scope of

the script code.

27

For these elements, which are not from the page’s HTML markup, we do not

need their byte offsets, as they are not relevant. Elements are also identified

by their unique monotonically increasing instance numbers, though from a

difference space than resources. (All elements, documents, XmlHttpRequests,

etc.—entities that can have DOM events—share the same (event target) in-

stance number space.)

CSS style sheets: Not all style sheets block JavaScript, e.g., a style sheet

that is only used for laying out the page in “print” view. Instrumenting the

style engine we can log this information for style sheet elements.

XmlHttpRequests: XmlHttpRequests are similar to elements in that they

refer to resources and thus induce network requests, and they also fire the

load and error events that JavaScript can listen to. Different than ele-

ments, the layout engine also supports notifying applications of fine-grained

progress for XmlHttpRequests, including when the response headers have

been received, and whenever a chunk of response data has been received.

Besides logging about the load event listener, we also log about these fine-

grained events if there are listeners registered for them. XmlHttpRequests

by default are asynchronous, i.e., the layout engine can perform other tasks

while waiting for the resource to download; they can, however, be configured

to be synchronous, which means the JavaScript engine and consequently the

entire layout engine block until the resource request finishes or errors. Syn-

chronous XmlHttpRequests are not recommended and thus should be rare;

therefore we do not handle these XmlHttpRequests.

Execution scopes: Execution scopes allow us to logically link the oper-

ations performed by the layout engine during some interesting/relevant se-

quence of activities. They generally correspond to “block scopes” and “func-

tion scopes” in C/C++ programming, but only for logging purposes. An

execution scope, when created, will log its unique identifier and the current

timestamp (currently we use the timestamp at construction as the identifier

because of it has sufficiently high resolution, and the fact that the layout

engine runs in a single thread); when destructed, the scope will also log

the timestamp. In fact, all log messages associated with an execution scope

are marked up with the scope’s identifier and the current timestamp. The

execution scope identifiers are most useful in cases of recursion.

28

Listing 6 Example code to illustrate execution scopes logging.
1 void functionA(int x)

2 {

3 int tmp = 0; // some dummy statement

4 tmp = x + 1; // some dummy statement

5

6 ExecutionScope scope("msg for outer scope");

7

8 scope.logMsg("x is %d", x);

9 if (x == 0) {

10 scope.logMsg("reached base case! no more recursion.");

11 return;

12 } else {

13 ExecutionScope scope("this is inner scope");

14 functionA(x - 1);

15 }

16 }

Listing 7 Hypothetical log output of example code in Listing 6 when
functionA(1) is called. ts is the current system time in seconds, and
scopeStart identifies the execution scope that logs the message

1 ts= 1234.320: scopeStart:1234.320: msg for outer scope: begin

2 ts= 1234.350: scopeStart:1234.320: x is 1

3 ts= 1234.400: scopeStart:1234.400: this is inner scope: begin

4 ts= 1234.525: scopeStart:1234.525: msg for outer scope: begin

5 ts= 1234.555: scopeStart:1234.525: x is 0

6 ts= 1234.560: scopeStart:1234.525: reached base case! no more recursion.

7 ts= 1234.570: scopeStart:1234.525: msg for outer scope: done (dur= 0.055)

8 ts= 1234.610: scopeStart:1234.400: this is inner scope: done (dur= 0.210)

9 ts= 1234.630: scopeStart:1234.320: msg for outer scope: done (dur= 0.310)

Consider the example code in Listing 6, that shows a recursive functionA()

using an execution scope for logging a function scope as well as a block (“in-

ner”) scope. The (simplified) hypothetical log output when functionA(1)

is called is shown in Listing 7. The ts field is the current system time in

seconds, and the scopeStart field identifies the execution scope that logs

the message. The begin and done lines are automatically logged by the ex-

ecution scope, enabling us to reliably know exactly when the layout engine

enters and exits the scope.

For brevity, we have left out of the log output the other key information

that is logged with each line: the source filename, and function name, and

the line number. This information is usually sufficiently unique for us to de-

termine during the log processing phase what kind of execution scope we are

29

processing; for example, if this is a execution scope for running a JavaScript

element, or for processing a resource that finished downloading, etc. This,

along with the automatically logged messages on scope entrances and exits

simplify the task of recursion detection. It is simple to spot the recursion

from the log of this simple example, but in general recursive calls are harder

to detect when many other activities happen and messages are logged in

between the recursive calls. Detection of recursive calls enable us to make

certain assertions during the log processing phase; for example, we might

not support web pages where a certain function recurses more than, say, two

levels, because that could imply our lack of full understanding of the func-

tion’s usage, or suggest the complexity of the web page is beyond our current

ability to reasonably model it.

The ts fields enable us to determine the duration of the execution scope,

and when the various interesting activities happen relative to the beginning

of the execution scope. For example, we can say, “this script element E takes

100 milliseconds to run, and it creates and causes the fetch of resource R 15

milliseconds after it starts.”

3.3.2 Constructing the model from the log

To construct the model of a web page, we first load the page using our instru-

mented Chrome browser. Because we have not instrumented the background

HTML parser, we disable it during all of our page loads. We also disable the

use of SPDY10 in Chrome because we have not implemented SPDY in our

traffic generator (discussed in Section 3.4).

We have developed a Python program—we call it the model extractor—

to parse the log produced by our instrumented Chrome browser to produce

a combined model of the web page and the loading process. The objective

of the model extractor is to automate the process of model extraction, so

that we can scale this study to hundreds if not thousands of web pages.

However, this is a challenging task, for the very simple reason that browsers

as well as web standards are complex, and our understanding and coverage

of them have only merely scratched the surface. We liberally add assertions

in the instrumented browser as well as the model extractor to protect against

10https://developers.google.com/speed/spdy/

30

https://developers.google.com/speed/spdy/

unexpected code paths, conditions, and uncovered features, and many real

web pages fail at one or more of these assertions.

Specifically, we do not support web workers, which enable long running

JavaScript code to be run in a separate thread; message channels, which

enable communication among different frames, web workers, etc. on the

page; web sockets, which allow the page to create full-duplex connections

to and communicate application-specific (non-HTTP) data with a remote

server; CSS imports; request priorities; policies regarding preloaded requests

(e.g., preloaded requests have low priorities, and limits on the number of

concurrent preloaded requests); abortion of XmlHttpRequests; shadow DOM

tree; iframes; async or defer scripts, etc.

Example model: It is best to describe our web page loading models using

a concrete example. In Listing 8, we show an example model of http://

www.wikipedia.org that has been simplified for brevity. There are several

“sections” in the model: main HTML (lines 39-49), elements (lines 2-19),

resources (lines 50-72), and execution scopes (lines 20-37).

� For the page’s main resource (always resource 1), we see there is only

one request in the request chain (i.e., no redirects); the HTTP request

to www.wikipedia.org:443 is 334 bytes, and the HTTP response is

19379 bytes.

� The main page ("main html") contains 4 elements—element 2222 is

not part of the page’s HTML, as we will see below. Each element in

the element byte offsets array is a tuple of byte offset and element

identifier, e.g., at byte offset 19278, the HTML parser encounters the

closing tag </script> and constructs element 2185.

The execution scopes for the document’s DOMContentLoaded and load

events are 111 and 129 respectively.

� Each resource’s part of page loaded check field specifies whether it

contributes to the pendingRequestcount.

� Each script element has run scope id that specifies the execution scope

that captures the execution of the script. For simplicity, we also include

in this scope the time it takes to compile the script before it is run.

31

http://www.wikipedia.org
http://www.wikipedia.org

Listing 8 A simplified version of a model of http://www.wikipedia.org/
1 {

2 "elements": {

3 "22": { "exec_immediately": true,

4 "is_parser_blocking": false,

5 "run_scope_id": 9,

6 "tag": "script"

7 },

8 "44": { "tag": "body" },

9 "48": { "initial_resInstNum": 2,

10 "tag": "img"

11 },

12 "2185": { "exec_immediately": false,

13 "initial_resInstNum": 4,

14 "is_parser_blocking": true,

15 "run_scope_id": 101,

16 "tag": "script"

17 },

18 "2222": { "tag": "img" }

19 },

20 "exec_scopes": {

21 "9": [" __msleep(3.80);"],

22

23 "17": [" __msleep(2.85);"],

24

25 "101": [" __msleep(13.69);",

26 " __msleep(3.68);"],

27

28 "111": [" __msleep(7.40);",

29 " add_elem(2222);",

30 " __msleep(0.68);",

31 " sched_render_update_scope(124);",

32 " __msleep(0.85);"],

33

34 "124": [" __msleep(2.82);"],

35

36 "129": [" __msleep(0.02);"]

37 },

38 "initial_render_tree_update_scope_id": 17,

39 "main_html": {

40 "element_byte_offsets": [[106, 22],

41 [9843, 44],

42 [9932, 48],

43 ...

44 [19278, 2185]

45],

46 "event_handling_scopes": [["DOMContentLoaded", 111],

47 ["load", 129]

48]

49 },

50 "resources": {

51 "1": {

52 "part_of_page_loaded_check": false,

53 "req_chain": [

54 {

55 "host": "www.wikipedia.org",

56 "method": "GET",

57 "port": 443,

58 "req_total_size": 334,

59 "resp_body_size": 19379,

60 }

61],

62 "type": "main"

63 },

64 "2": {

65 "part_of_page_loaded_check": true,

66 ...

67 },

68 "4": {

69 "part_of_page_loaded_check": true,

70 ...

71 }

72 },

73 }

� If an element has initial resInstNum, then that refers to a resource

32

http://www.wikipedia.org/

identifier, and it means this reference is parsed from the page’s HTML

markup, e.g., src attribute for images and scripts. This field is not

specified for inline script element 22 and also for image element 2222,

which is added by JavaScript.

As previously discussed, each execution scope captures a block of compu-

tation in the browser. In our models, each execution scope is represented

as a snippet of source code, containing a list of commands for the layout

engine to interpret. Take execution scope 111 (line 28) for example. The

first command is msleep(7.40), which instructs the layout engine to sleep

for 7.40 milliseconds. The second command is add elem(2222), which in-

structs the layout engine to add image element 2222 into the DOM; note

that element 2222 never references any resource in this example. The fourth

command, sched render update scope(124), instructs the layout engine to

schedule the render tree update execution scope 124, which will be executed

at the next opportunity, i.e., step 3 of the layout engine processing model

(Section 3.2.2). The other supported execution scope commands are:

� fetch res(resInstNum): the layout engine will initiate a fetch for the

resource with identifier resInstNum if the resource is not already being

fetched or available. The resInstNum must be a known resource in

the model. This is used, for example, when a font resource is fetched

during a render tree update.

� set elem res(elemInstNum, resInstNum): the layout engine makes

the element elemInstNum reference the resource resInstNum. Both

elemInstNum and resInstNum must be known in the model. The en-

gine will start fetching the resource if it has not been fetched. This

is used, for example, when JavaScript code modifies (or adds) the src

attribute of an image element.

� send xhr(xhrInstNum): the layout engine will start sending the asyn-

chronous XmlHttpRequest xhrInstNum, which must be known in the

model.

� start timer(timerID), cancel timer(timerID): the layout engine

will start or stop the DOM timer with identifier timerID, which must

be known in the model.

33

Not illustrated in the example above are DOM timers, XmlHttpRequests,

CSS style sheets, and event handling scopes associated with elements, such

as images, CSS style sheets, and scripts. Also, note that the model does

not specify anything about preloading: the preloading logic will be entirely

implemented in the layout engine.

3.4 Traffic generator

To generate network traffic, we need a pair of cooperative applications: the

web server and the browser.

3.4.1 Browser simulator

As mentioned earlier, an important advantage of Chrome’s multi-processing

architecture is isolation among different browser windows and tabs. For our

purposes, since we are not a full-fledged browser—no support for multiple

concurrent web pages needed—there is no need for isolation, which means

that a multi-threading architecture is more desirable because we would not

need to use IPC, which can save development time. However, it is impor-

tant for us to be able to use the same code base as a native application

as well as a Shadow plugin; this leaves us with only one option: to use a

multi-processing architecture. This is because Shadow does not fully sup-

port multi-threading: many of the threading system calls are not supported.

Moreover, some threading system calls are missed by Shadow—i.e., Shadow

does not intercept them—and thus will fail silently when used by a plugin.

We discover this after trying to use folly,11 a popular open-source C++

library developed at Facebook, that provides many functionalities useful for

networking, threading, as well as event-based programming. Concerned that

we might lose significant time investing into using such libraries only to find

out that more system calls are missed or incorrectly simulated by Shadow, we

decide that we cannot use multiple threads and have to use a multi-processing

architecture.

11https://github.com/facebook/folly

34

https://github.com/facebook/folly

Furthermore, we also discover issues with Shadow’s handling of some as-

pects of C++, as well as a buggy simulation of the writev() system call,12

thus rendering even the networking parts of the popular library libevent,13

a relatively low-level library, suspect. Due to the uncertainties, we have

to expend a significant amount of engineering effort re-inventing the wheel,

starting with writing our own networking library on top POSIX sockets, so

that we use only the minimal set of system calls that can get the work done,

to reduce our exposure to issues in Shadow. Then we implement our own

IPC on top of our networking library; again, we cannot be confident that

other IPC frameworks, such as Apache Thrift14 and Google gRPC,15 which

are multi-threaded, will work correctly in Shadow.

Similar to Chrome, the browser simulator uses an IO process to handle

network IO on behalf of the web layout engine, which runs inside a render

process. Unlike Chrome, however, the browser simulator’s processes cannot

run separate threads to handle IPC; all of our processes use libevent for

the event loop. Each process has a single event loop to handle all events: for

IPC and networking-related events for the IO process, and for IPC and web

layout engine’s processing model (3.2.2) for the render process. Also, similar

to Chrome’s Debugging Protocol,16 the render process exposes an API that

allows another process to control it via IPC: our controller process uses

this API to send commands to the render process and to receive notifications

of various events that the renderer fires, such as when a request is about to

be sent and when it is finished, and when the load event is fired. To handle

execution scopes, we embed the AngelScript engine17 in the render process

to execute the execution scope commands by calling back into the render

process’ functions.

Because of bugs in our page models or browser simulator, or both, some-

times some resources in a page model are not fetched. We implement a

work-around for this by allowing the render process to force the loads of these

resources when the layout engine is about to go idle without any scheduled

activity, i.e., has finished parsing and there are no pending requests and no

12https://github.com/shadow/shadow/issues/317
13http://libevent.org/
14https://thrift.apache.org/
15http://www.grpc.io/
16https://developer.chrome.com/devtools/docs/debugger-protocol
17http://www.angelcode.com/angelscript/

35

https://github.com/shadow/shadow/issues/317
http://libevent.org/
https://thrift.apache.org/
http://www.grpc.io/
https://developer.chrome.com/devtools/docs/debugger-protocol
http://www.angelcode.com/angelscript/

pending timers. This ensures that our traffic generator at least generates the

expected amount of network traffic, even though the timing is likely way off.

For IPC, it is often easier to use more verbose and readable formats such as

JSON for message serialization, but for better performance, a popular library

used for serializing messages is Google’s Protocol Buffers,18 which supports

binary message formats. However, since we want to run Shadow simulations

with as many nodes as possible, we use flatbuffers,19 an even faster and

more memory efficient relative of Protocol Buffers.

Our common C++ library implementation, including classes for network-

ing, IPC, etc. are 3 200 lines of code. The IO process and the render process

total more than 7 000 lines of code, and the controller process is about 1 400

lines of code.

3.4.2 Server simulator

The server’s job is fairly straightforward: it receives requests from the client

that specify how much data to send back, and it can just send back dummy

data, since we’re only concerned with the amount of traffic, not the content.

Note that we are not modeling timing at the server, i.e., we assume the server

sends back data as fast as possible, not exhibiting unique timing patterns due

to application logic.

3.5 Extracting models of top Alexa-ranked web pages

In the website traffic fingerprinting literature, experimental studies are per-

formed on datasets containing hundreds if not thousands of the most popular

web pages from the Alexa rankings.20 Ideally we can match or approach that

scale. However, as we started to dive deep into the web page loading process

and began to better understand its complexity when we tried to construct

the model of the very first test web page, http://www.berkeley.edu, which

is a simple web page relative to many of the top Alexa-ranked sites, it be-

came clear that we had to make a tradeoff call: quality versus quantity. We

18https://developers.google.com/protocol-buffers/
19https://google.github.io/flatbuffers/
20http://www.alexa.com/topsites

36

https://developers.google.com/protocol-buffers/
https://google.github.io/flatbuffers/
http://www.alexa.com/topsites

could construct thousands of low-quality page models, or focus on extracting

higher-quality models of a smaller number of websites. With website traffic

fingerprinting, small differences in traffic patterns matter, so the quality of

the page models is more important than in other contexts.

Since several earlier papers have used 100 web pages for the closed-world

experiments, we decided to extract the models of the top 100 web pages

from the Alexa global ranking. It turned out that accomplishing even that

humble goal is a challenge. Some of these pages use web workers or message

channels, which our tools do not support. Furthermore, most of the other

web pages cause our tools to fail the numerous assertions we have added, in

either the Chrome code or in the model extractor. For each individual case,

we manually inspected the log to understand the root cause, and then we

either relaxed the requirements that the code was insisting on, or sometimes

removed the assertion altogether. In some cases, our fix would result in

the code hitting other errors, and so on. Overall, we feel the tools have

not been able to automate the page model extraction process, and, given

the complexity, they are most likely not usable by those without intimate

knowledge of the web page loading process in general and Chrome’s design

and implementation in particular.21

In the end we settled with 50 page models, the absolute minimum number

of page models we considered acceptable (Hayes and Danezis’s k-fingerprinting

attack uses 50 web pages for one of their closed-world experiments). In Ta-

ble 3.1, we list the web pages, and the various statistics about the page model

that we extracted and the 100 load instances of each of the real web pages,

which we will discuss next in the validation section.

Table 3.1: Statistics comparing the 50 page models to 100 load instances
of the corresponding real web page.

Real page (100 loads) Page model

Page Up size Down size Up size Down size

ameblo.jp 38.7 MB 2.9 MB 32.5 MB 3.7 MB

aws.amazon.com 90.3 MB 1.9 MB 88.3 MB 2.0 MB

diply.com 15.4 MB 145.9 MB 24.9 MB 692.0 MB

english.china.com 49.2 MB 943.0 MB 35.4 MB 973.8 MB

21We suspect this is one reason why WProf authors released their Chrome patches but
not the tool that analyzes the logs to produce the page models.

37

Table 3.1 cont’d

go.com 21.5 MB 1.6 MB 10.8 MB 1.6 MB

imgur.com 55.5 MB 1.1 MB 46.2 MB 1.2 MB

mail.ru 64.1 MB 316.3 MB 29.9 MB 269.7 MB

stackoverflow.com 14.2 MB 298.2 MB 8.7 MB 289.5 MB

twitter.com 48.2 MB 2.7 MB 25.9 MB 3.8 MB

vk.com 24.3 MB 835.2 MB 14.8 MB 796.1 MB

wordpress.com 26.6 MB 288.5 MB 8.7 MB 256.9 MB

www.360.com 92.8 MB 2.4 MB 51.1 MB 1.9 MB

www.alibaba.com 14.5 MB 567.0 MB 12.6 MB 573.7 MB

www.aliexpress.com 62.9 MB 5.9 MB 26.7 MB 6.3 MB

www.amazon.com 29.6 MB 509.1 MB 31.4 MB 500.9 MB

www.ask.com 7.0 MB 69.8 MB 6.3 MB 67.6 MB

www.baidu.com 7.6 MB 162.6 MB 3.9 MB 157.2 MB

www.bankofamerica.com 27.7 MB 313.8 MB 130.9 MB 492.1 MB

www.bing.com 5.5 MB 46.4 MB 2.9 MB 42.4 MB

www.booking.com 29.9 MB 1.1 MB 28.2 MB 1.6 MB

www.buzzfeed.com 13.1 MB 291.1 MB 4.6 MB 344.6 MB

www.chase.com 27.6 MB 482.5 MB 12.7 MB 449.9 MB

www.cnn.com 18.3 MB 863.8 MB 47.5 MB 1.5 MB

www.craigslist.org/about/sites 12.1 MB 218.2 MB 8.0 MB 963.6 MB

www.dropbox.com 51.3 MB 736.9 MB 22.7 MB 690.6 MB

www.ebay.com 44.6 MB 438.4 MB 66.0 MB 2.1 MB

www.google.com 8.4 MB 189.2 MB 2.3 MB 179.4 MB

www.hao123.com 69.1 MB 933.1 MB 35.1 MB 1.3 MB

www.indeed.com 7.1 MB 24.0 MB 7.4 MB 107.7 MB

www.instagram.com 6.9 MB 205.0 MB 8.2 MB 583.4 MB

www.jd.com 6.6 MB 230.6 MB 5.6 MB 253.6 MB

www.linkedin.com 21.0 MB 295.2 MB 14.1 MB 301.4 MB

www.microsoft.com/en/us 43.6 MB 924.1 MB 33.3 MB 897.9 MB

www.nytimes.com 46.1 MB 609.7 MB 29.8 MB 747.6 MB

www.office.com 33.3 MB 412.1 MB 19.1 MB 624.1 MB

www.ok.ru 49.0 MB 732.8 MB 23.8 MB 682.3 MB

www.outbrain.com 41.8 MB 1.2 MB 25.1 MB 1.2 MB

38

Table 3.1 cont’d

www.paypal.com/home 28.5 MB 991.4 MB 12.5 MB 955.6 MB

www.pixnet.net 113.9 MB 3.1 MB 58.0 MB 3.3 MB

www.popads.net 25.0 MB 232.5 MB 12.1 MB 186.5 MB

www.reddit.com 32.2 MB 453.4 MB 21.7 MB 492.1 MB

www.so.com 4.3 MB 24.5 MB 3.3 MB 154.6 MB

www.sogou.com 39.7 MB 720.9 MB 42.7 MB 1.0 MB

www.tianya.cn 7.7 MB 158.1 MB 4.1 MB 129.8 MB

www.wellsfargo.com 40.7 MB 657.2 MB 20.2 MB 606.3 MB

www.wikipedia.org 7.4 MB 61.9 MB 3.3 MB 55.6 MB

www.yandex.ru 25.8 MB 276.7 MB 13.8 MB 357.0 MB

www.youku.com 53.7 MB 1.6 MB 53.9 MB 7.7 MB

www.zillow.com 17.8 MB 1.4 MB 8.2 MB 1.2 MB

3.6 Validation of page models

Now that we have obtained the page models, the next task is to validate

the models: how accurate are they, i.e., how “close” are they to the real

pages? This requires to come up with some form of distance measure be-

tween a real web page and its model. Since ultimately the bits that matter

to us are the network traffic traces that is observable to the website traffic

fingerprinting attack, which already capture notion of similarities among net-

work traces. We use the state-of-the-art attack, k-fingerprinting of Hayes and

Danezis [16], as our validator: train the attack algorithm on real traces—

network traces captured when Chrome loads the real pages—and test on

generated traces—those generated by our traffic generator.

Experiment setup and methodology : In the website traffic fingerprint-

ing threat models, the user typically tunnels her traffic through an encrypting

proxy channel, and the attacker can observe that encrypted channel. We do

the same here: tunnel all traffic through a SOCKS5 proxy channel; one end

of the proxy channel is on our client machine on the University of Illinois at

Urbana-Champaign campus, and the other end is in Amazon EC2 Oregon.

For each web page, we obtain the real traces by using Chrome to load the

page 100 times and using tcpdump to capture the traces. During this real

39

trace collection phase, we also log the round-trip times (RTT) between the

server proxy in EC2 and the web servers. This is important because in the

next phase, to collect the generated traces, we need emulate similar RTTs

to our server simulator, to try to remove one source of difference between

the real traces and the generated traces. Also, from all the page models, the

maximum number hostnames used by a page model is 30.

To collect the generated traces, we set up the traffic generator as follows.

On the server proxy machine in EC2, we launch 30 instances of our server

simulator, placing each into a different Linux network namespace. This al-

lows each server simulator to have its own unique virtual IP address and

network link on the proxy machine. From the experiment harness script,

before loading each page model, we can assign the hostnames used by the

page model to individual server simulator by updating the /etc/hosts file

accordingly. We also configure the RTT of the virtual links accordingly by

using the median RTT values observed from the real trace collection phase.

In both phases, collecting real traces or generated traces, we employ the

heuristics discussed in Section 3.2.6 to decide when the page has finished

loading before stopping tcpdump. We collected the traces late October 2016.

Validation results : As a sanity check we perform a normal closed-world k-

fingerprinting attack on the real traces. The attack accuracy is 98%. Another

sanity check we perform is the same closed-world attack on the generated

traces, and the attack accuracy is 99%. With these results we have confidence

that we are using the attack code properly, as these high attack accuracies

are to be expected.

Next, we modify the attack code22 to be able to train on the real traces but

test on the generated traces. The resulting attack accuracy is 13%, which

is better than the 2% if randomly guessing but far from the 98+% achieved

by the normal attacks. This means that our generated traces are far from

resembling their respective real traces, which is disappointing yet at the same

time unsurprising given the challenge that is the task of modeling the web

page loading process.

22https://bitbucket.org/hatswitch/k-fingerprinting

40

https://bitbucket.org/hatswitch/k-fingerprinting

CHAPTER 4

PROVABLE WEBSITE TRAFFIC
FINGERPRINTING DEFENSES OVER

TOR

We first describe general provable website traffic fingerprinting defenses, and

then we explore a simple design to bring them to Tor.

4.1 Provable defenses

All existing provably secure defenses use a pair of proxies to essentially pro-

vide a single communication channel through which the web browsing traffic

is tunneled, enabling researchers to enforce strict rules on the observable

properties of the channel—message sizes, counts, timing, and ordering—in

order to reason about its security against a theoretical optimal attacker.

4.1.1 BuFLO

The first provably secure defense in the literature, due to Dyer et al. [13],

is specified with three parameters d, p, and τ . The BuFLO channel always

sends packets of size d (bytes) at a fixed schedule defined by inter-packet

interval p (milliseconds); if real application data is not available when a

packet needs to be sent, then dummy bytes are used instead. The channel

continues transmission until the minimum amount of time τ (seconds) has

elapsed since the start of the page load, or until the page finishes loading,

whichever is later.

BuFLO is effective at hiding packet sizes, timing, and ordering. However,

for web pages that take longer than τ to load, BuFLO still leaks two related

coarse features: page sizes and page load times. In fact, in a 128-site closed-

world simulation study, with BuFLO’s incurring a bandwidth overhead of

93.5% (τ = 0, ρ = 40, d = 1 000), Panchenko et al.’s attack still achieves

a 27.3% accuracy rate. The most secure configuration (τ = 10, ρ = 20,

41

d = 1500) reduces the attack accuracy to 5.1%—which is still significantly

higher than random guessing—but requires a 418.8% bandwidth overhead.

4.1.2 Tamaraw

Cai et al. propose an extension on BuFLO called Tamaraw that yields sig-

nificant improvement [8]. Exploiting the asymmetry in web traffic, Tamaraw

makes two changes to BuFLO to save bandwidth overhead. First, it uses

a smaller packet size d of 750 bytes, which Cai et al. observe to be suffi-

cient to cover the majority of outgoing packets when loading Alexa’s top 800

sites.1 Second, Tamaraw uses different sending rates for different directions

of traffic: typically web page loads require less frequent outgoing traffic than

incoming traffic.

Also, Tamaraw does away with BuFLO’s minimum transmission time τ ;

instead, it pads the number of sent packets to a multiple of a parameter L

(each direction is padded separately). Considering only the download direc-

tion for a moment, parameter L effectively groups web pages into equivalent

partitions based on the number of incoming packets. For example, all web

pages that require a number of incoming packets in the range (AL, (A+1)L]

for some integer A will generate (A + 1)L incoming packets when loaded

under Tamaraw and thus appear indistinguishable from one another in the

download direction. Thus, a larger L generally implies higher security but

also higher bandwidth overhead.

To compare their defense to BuFLO, Cai et al. formulates an ideal at-

tacker, which can observe only the total numbers of incoming and outgoing

packets under Tamaraw, and only the total transmission size under BuFLO.

They also computed a lower-bound on bandwidth overhead for a given se-

curity level. They show that Tamaraw achieves significantly better securi-

ty/overhead tradeoff compared to BuFLO. For example, in a closed-world

scenario using top 800 Alexa sites, at 130% bandwidth overhead, Tamaraw

is 30 times more secure than BuFLO against the ideal attacker.

1http://www.alexa.com/

42

http://www.alexa.com/

4.1.3 CS-BuFLO

Cai et al. also propose a different extension to BuFLO called CS-BuFLO [7]

(which they sketched earlier [6]). We highlight those extensions here:

� Rate adaptation: instead of using a fixed inter-packet interval ρ

throughout the entire session, CS-BuFLO uses a variable interval ρ∗,

which it tries to match to the application’s rate, to reduce wasted band-

width for slow senders and reduce latency for fast ones. However, to

avoid revealing information about the sender, CS-BuFLO implements

several rules: (1) it updates ρ∗ only after having sent 2k bytes for inte-

ger values of k (i.e., a CS-BuFLO session that sends total n bytes will

make log2 n updates); (2) on an update, it sets ρ∗ to match the median

instantaneous bandwidth value in the interval since the last update;

and (3) it rounds ρ∗ to powers of 2.

� Randomized rate: given a target interval ρ∗, CS-BuFLO randomizes

the actual interval between two consecutive writes uniformly in [0, 2ρ∗]

to reduce leaking information about the application’s real sending rate

to Fu et al.’s attack [14].

� Congestion sensitivity: CS-BuFLO uses congestion signals from

TCP to avoid sending dummy data unnecessarily, e.g., when the net-

work is congested and the TCP socket is refusing Tamaraw packets that

contain dummy bytes, Tamaraw does not need to buffer those dummy

bytes to be sent later: it can just forget about them.

� Stream padding: in order to better hide the total size of transmitted

data, CS-BuFLO continues to send dummy data after the application

has stopped sending real data.

� Early termination: stream padding means the CS-BuFLO server

(the proxy closer to the web servers) likely has to continue sending a

large amount of dummy data after the page has finished loading. Cai

et al. find that this only slightly improves security, so they introduce

a command that the CS-BuFLO client (the browser’s proxy) can send

to the CS-BuFLO server to inform the server that it no longer needs

to send stream-padding dummy data to the client.

43

4.2 Architecture for BuFLO-based defenses over Tor

BuFLO-based defenses CS-BuFLO and Tamaraw use a pair of proxies to

provide a single communication channel through which the web browsing

traffic is tunneled. Let us call the two proxies the client-side proxy and

the server-side proxy : the browser accesses the BuFLO channel through the

client-side proxy, and the web servers access the channel through the server-

side proxy. While implementation details of the Tamaraw channel are not

specified, the CS-BuFLO channel is implemented as a SOCKS tunnel [7].

We explore a simple architecture to bring BuFLO-based defenses to Tor:

tunnel the BuFLO channel through Tor (Figure 4.1). The client-side proxy

logically sits between the browser and the Tor client; it provides a SOCKS5

proxy service to the browser, and it uses the SOCKS5 proxy service provided

by Tor client. For the server-side proxy, a natural location for it is at the

Tor exit node. The advantage of this architecture is that it does not require

implementing BuFLO inside Tor. At the minimum, an exit proxy host that is

running a server-side proxy can advertise this fact out-of-band, and just needs

to configure Tor to allow streams to exit to its server-side proxy; then, clients

that want to use this specific server-side proxy can do so via a small number of

manual configurations, i.e., the MapAddress option.2 Alternatively, to reduce

the amount of manual configuration, Tor can be updated to allow exit nodes

to advertise their BuFLO server-side proxy in the directory, and to enable

Tor clients to optionally select an exit that runs a BuFLO server-side proxy

for certain or all circuits.

On the other hand, a disadvantage of this architecture is that CS-Tamaraw

is not directly above the network layer, making it less efficient. For example,

if CS-Tamaraw were integrated into Tor, operated to protect the TCP con-

nection between the user’s Tor proxy and the Tor entry guard, and supported

the ability for the browser to flag a circuit as “sensitive”—the browser would

direct sensitive page loads through this circuit—then CS-Tamaraw could po-

tentially reduce the dummy cover data overhead by using for cover the traffic

from other circuits, such as less sensitive page loads, Tor-generated commu-

nication (such as downloads of consensus data), etc. Additionally, being

directly above the network would afford CS-Tamaraw access to more accu-

rate congestion signals, making its congestion avoidance more effective.

2https://www.torproject.org/docs/tor-manual.html.en

44

https://www.torproject.org/docs/tor-manual.html.en

Client host Exit host

Tor

Tor network

Tor

CSP

Browser

SSP Web

server

host

Figure 4.1: Server-side proxy (SSP) is co-located with the Tor exit relay.
Logically sitting between the browser and the Tor client, the client-side
proxy (CSP) provides a SOCKS5 proxy interface to the browser.

4.3 Proxy and protocol design and implementation

The first step is for us to decide which protocol to consider. Conceptually,

Tamaraw is simple, which means its security guarantees can be easily ana-

lyzed. CS-BuFLO adds complexity and practicality at the expense of some

loss in security guarantees. We decide to err on the side of security—to re-

main provable—so we mostly go with Tamaraw but do adopt the congestion-

sensitivity idea of CS-BuFLO because that does not affect the security of the

protocol. For ease of discussion, we will refer to this version as CS-Tamaraw.

4.3.1 Defense session

We imagine that, in order to support real world use and not just research

lab experiments, the BuFLO client-side proxy should be able to maintain

a persistent underlying communication channel with its server-side proxy,

similar to, say, the persistent connections between pairs of Tor proxies on a

circuit. In other words, the user should not be expected to restart or reset

the client-side proxy before loading a web page if he wants the page load to

be protected from website traffic fingerprinting. Essentially, during normal

usage the BuFLO proxy should not be in the way of the user. Yet, only the

traffic generated when loading a web page needs to be protected; outside of

the page loads, other traffic such as that generated by the user’s interaction

with the web page does not need to be. Therefore, the communication chan-

nel provided by the BuFLO proxies is more of a BuFLO-capable channel,

where the BuFLO defense can be activated when needed.

45

Thus, we introduce the notion of a defense session. In our design, an

invariant that the BuFLO channel maintains at all times is the use of fixed-

size cells (though this is not inherently required). The other components of a

BuFLO defense, i.e., sending at fixed intervals, the use of dummy cells, and

padding the number of sent cells to parameter L, are by default not enabled.

A defense session is when the BuFLO channel is actively employing these

tactics to protect the TCP proxy channel’s traffic. This allows the browser,

or possibly a separate controller process, to activate the defense only when

it starts loading a web page. Once the page is loaded, the browser can notify

the proxy, which will stop the defense session once the stopping condition

is met. Or, for example, if the user starts a second web page load while a

defense session is active, the browser may choose to stop the defense session

only after both web pages have finished loading. We do not claim that this

notion of a defense session is novel; we simply explicitly codify it here for

ease of discussion.

When is a defense session really done, in the perspective of the client-side

proxy? A defense session is done when both directions of communications

have been protected, i.e., satisfied the stopping condition. However, the

client-side proxy can only guarantee the defense of its sending direction, i.e.,

it ensures the number of sent cells—or more accurately the number of send

attempts in the presence of congestion—is a multiple of L. For its receiving

direction, the client-side proxy cannot infer based on the amount of data

received whether the receiving direction has been correctly protected or not,

because potentially some of the server-side proxy’s send attempts have been

denied or partially accepted due to congestion. Therefore, after notifying the

server-side proxy to stop the defense, the client-side proxy needs to wait for

an explicit signal from the server-side proxy that it has finished defending

its send direction, i.e., the client-side proxy’s receive direction. Then, the

client-side proxy can consider a defense session done when both its sending

direction and receiving direction are done.

4.3.2 Design

The pair of proxies maintain a single TCP connection with each other. After

the initial “handshake” messages that exchange some meta-information to

46

set up the channel, the two peers effectively switch on the CS-Tamaraw-

capable channel: all communication happen in fixed-size cells—we stick with

Tamaraw’s selection of 750 bytes. (In the rest of the document, we will

use CS-Tamaraw-capable and CS-Tamaraw interchangeably unless explicitly

differentiated.) Each peer maintains a cell outbuf that contains cells that

it wants to send to the peer, i.e., write() into the TCP socket.

Above the CS-Tamaraw channel, the peers have to multiplex multiple

concurrent application TCP streams. Fortunately we do not have to im-

plement the multiplexing layer; rather, we use the SPDY protocol, which

has multiplexing support built-in. For the actual implementation we use the

open-source spdylay3 library, which is fairly mature and by design cleanly

separates the SPDY protocol logic—which it handles—and the network IO—

which it leaves to the application. This is important because once again it

allows us to perform network IO using only the system calls that have sta-

ble implementations in Shadow. Each peer maintains a spdy outbuf that

contains all the bytes that the SPDY protocol wants to send to the other

peer, including SPDY control frames (e.g., for setting up and tearing down

streams) and data frames (containing the user—i.e., browser—traffic).

Figure 4.2 illustrates the logical components of the CS-Tamaraw proxy as

well as the how output data from the browser data flows through the proxy

when there is no active defense session. The proxy logical component deals

with receiving data from the browser’s multiple connections, pushing them

through the SPDY engine, which outputs a single stream of data that can

be stored in the spdy outbuf. Whenever there is data in spdy outbuf, the

proxy component immediately forwards the data to cell outbuf to be sent—

using the write() system call—whenever the underlying TCP connection

allows.

Figure 4.3 shows the system and the data flows when there is an active

defense session. As before, the proxy component is responsible for filling the

spdy outbuf, but in this case it does not interact with cell outbuf. The CS-

Tamaraw logical component removes data from the spdy outbuf and packs it

into fixed-size cells and adds them to cell outbuf, as well as adding dummy

cells if needed. Specifically, CS-Tamaraw schedules a repeating timer with

the specified frequency. Whenever the timer fires, then it is time to attempt

3http://tatsuhiro-t.github.io/spdylay/

47

http://tatsuhiro-t.github.io/spdylay/

to write exactly one cell’s worth of data into the network socket connection,

i.e., write(fd, cell outbuf, 750). Right before making this call, CS-

Tamaraw logic ensures that cell outbuf contains at least 750 bytes: if there

are fewer than 750 bytes, then CS-Tamaraw adds to it either a (potentially

padded) data cell from spdy outbuf or a dummy cell; if there are already at

least 750 bytes in cell outbuf, then nothing needs to be added to it. This

logic captures part one of the congestion sensitivity: CS-Tamaraw does not

unnecessarily add dummy cells.

Part two of CS-Tamaraw’s congestion sensitivity is dropping dummy cells

already queued. Suppose CS-Tamaraw adds a dummy cell to cell outbuf,

and then because of network congestion, over the next several intervals, it has

not been able to drain cell outbuf, such that the dummy cell still remains.

Then suppose at the next interval, before making the write() call above,

CS-Tamaraw finds that there is now data in spdy outbuf; then CS-Tamaraw

will remove the dummy cell from the end of cell outbuf and replace it with

data from spdy outbuf. It is possible to optimize even further: replace

dummy data from a data cell that is still queued at the end of cell outbuf,

with newly available data from spdy outbuf; however, we do not implement

this optimization because it requires updating meta-data of a cell already in

cell outbuf, a more intricate operation in our implementation, and it is not

clear how much we will gain.

4.3.3 Implementation

We have implemented the CS-Tamaraw from scratch, totaling 6 400 lines of

code. The proxy is instructed to be a client-side proxy or a server-side proxy

(but not both) at start-up time. Each client-side proxy can only peer with a

single server-side proxy at a time, but each server-side proxy can serve any

number of concurrent client-side proxy peers. The client-side proxy can be

configured to reach a server-side proxy directly, or indirectly via a SOCKS

proxy such as Tor.

48

SPDY engine

spdy_outbuf

cell_outbuf

write()
userspace

kernel

Proxy logic

Browser

Figure 4.2: The high-level logical components of our CS-Tamaraw proxy
and how output data flows from the browser’s multiple connections through
the proxy to the underlying “network” when there is no active defense
session.

SPDY engine

spdy_outbuf

cell_outbuf

write()
userspace

kernel

Proxy logic

Browser

CS-Tamaraw logic dummy cells

Figure 4.3: The high-level logical components of our CS-Tamaraw proxy
and how output data flows from the browser’s multiple connections through
the proxy to the underlying “network” when a defense session is active.

49

Performance (avg per page load)

L
Attack

accuracy (%)

Bytes recv

(MiB)

Bytes sent

(MiB)

Dummy

cells recv

Dummy

cells sent

Bytes recv

overhead (%)

Bytes sent

overhead (%)

Overall

overhead (%)

50 65.1 0.43 1.68 557 754 1498 48.5 82.5

100 50.3 - - - - - - -

150 45.8 0.46 1.71 599 756 1613 51.4 88.0

200 39.4 0.48 1.74 628 799 1685 54.1 92.3

250 39.3 0.49 1.75 644 852 1727 54.6 93.8

300 34.3 0.51 1.79 668 904 1790 57.9 98.5

Table 4.1: Performance and security tradeoffs when when page models are
loaded through the CS-Tamaraw peers that are directly connected, i.e., not
through Tor. The packet rates are, for the client-side proxy, pout = 20 and
pin = 5. The security metric is the k-fingerprinting accuracy. The
performance metrics are as observed by the server-side proxy; overall
overhead is the combined send and receive bandwidth overhead. The
server-side proxy log for the L = 100 experiment is incomplete, so we do
not show it here.

4.3.4 Sanity check experiments

Before running experiments on the CS-Tamaraw design through Tor, we

run the performance-security tradeoffs experiment with the two CS-Tamaraw

peers having a direct connection. The experiment setup is similar to the setup

in Section 3.6, i.e., we use our traffic generator to load the 50 page models,

80 times each. The differences are as follows:

� The client machine, i.e., the browser simulator and client-side proxy,

is in the same Amazon EC2 region as the server-side proxy, so that we

can perform these experiments under consistent network conditions.

We use Linux tc and qdisc tools to configure the link between the

client-side proxy and server-side proxy to have 80ms RTT, 19Mb/s

upload bandwidth and 55Mb/s download bandwidth for the client.

These speeds are average US broadband speeds as of second half of

2016 [1].

� CS-Tamaraw is enabled to defend the page loads. Since this is only for

sanity checking, we need not explore a large space of parameters; thus,

we keep pout and pin fixed at 20ms and 5ms, respectively, and vary L.

The key results are shown in Figure 4.4, which clearly shows an inverse

relation between the security and bandwidth overhead, as expected. The

security metric is the k-fingerprinting attack accuracy on the traces collected

50

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300

%

L

overall overhead
attack accuracy

Figure 4.4: Overhead and security tradeoff graph when page models are
loaded through the CS-Tamaraw peers that are directly connected, i.e., not
through Tor. The log for the L = 100 experiments is incomplete, so we do
not show overhead data.

at the client, and the overall overhead is the combined send and receive

bandwidth overhead as observed by the server-side proxy at the application

level. We also look closer at other performance metrics in Table 4.1. Since

we are showing the perspective of the server-side proxy for these metrics, the

bytes it receives are what the browser sends, and since a typical web page

load requires the browser to send much smaller amount of traffic than it

receives, the overhead of the bytes received by the server-side proxy is much

larger than the bytes sent (over 1 000% versus less than 100%). However, the

overall overhead, combining both send and receive direction, is still within

the tolerable realm. L = 300 provides the strongest defense with almost

100% bandwidth overhead.

We also note that, in these experiments neither the client-side proxy nor

the server-side proxy ever reports any avoided dummy cell. It is possible that

the CS-Tamaraw channel never became congested enough to activate the

congestion avoidance logic in these experiments. However, after subsequent

investigation, we find that it is also possibly due to a bug we discover where

the proxies did not count the situation where they were able to avoid adding

51

a dummy cell to cell outbuf—the first part of the congestion sensitivity

logic; they were counting only occurrences of the second part of that logic.

To confirm the fix, we run a few quick experiments using the minimal

client and server described in Section 4.4.1, and make the server wait two

seconds before starting to send the response. During these two seconds, the

server-side proxy does not have any user data to send and thus will have to

resort to using dummy cells. Thus, with the maximum TCP send and receive

windows set to 21KB,4 we observe consistent counts of avoided dummy cells

by the server-side proxy; however, the client-side proxy still does not avoid

any dummy cells. When we set the maximum windows to 14KB, then we also

see the client-side proxy avoid dummy cells; this is because the client-side

proxy sends at a slower rate (20ms versus 5ms), and thus smaller windows

are required to cause congestion.

4.4 Evaluating CS-Tamaraw over live Tor network

To run experiments over the live Tor network, we set up in Amazon EC2

our own custom “exit” node (Figure B.1): it advertises to the world as

being only a relay node, i.e., exit policy of “reject *:*”, but secretly it

allows connections to the co-located server-side proxy: exit connections to the

special hostname buflo-tproxy-ssp are directed to the server-side proxy.

(It is worth emphasizing that we do not inspect, store, or in any way process

the relay traffic traversing our relay, other than redirecting our own special

exit traffic.) We make sure to run the Tor node for a sufficient amount of time

for it to get the Fast and Stable flags, and attract a consistent 920KB/s of

relay traffic (this seems to be the limit imposed by EC2 on small instances).

The other server-side proxy’s setup involving the server simulators is identical

to the earlier experiments.

We run the client on the University of Illinois at Urbana-Champaign cam-

pus. The Tor client is configured with the MapAddress option, such that

client connections to the special hostname buflo-tproxy-ssp will be sent

down a circuit that exits at our own Tor node. The client uses the browser

simulator to load the 50 page models, 80 times each; specifically, we collect

all 80 traces for one page before moving on to the next page. Each of these

4i.e., by setting net.ipv4.tcp rmem and net.ipv4.tcp wmem on Linux.

52

Performance (avg per page load)

L
Attack

accuracy (%)

Bytes recv

(MiB)

Bytes sent

(MiB)

Dummy

cells recv

Dummy

cells sent

Bytes recv

overhead (%)

Bytes sent

overhead (%)

Overall

overhead (%)

50 72.7 0.60 2.39 798 1743 2150 111 160

100 73.9 0.66 2.53 881 1930 2359 122 174

150 72.3 0.63 2.42 837 1782 2238 114 164

200 71.8 0.65 2.41 858 1781 2284 114 165

250 68.1 0.83 2.94 1116 2504 3031 159 224

300 70.5 0.75 2.63 1002 2157 2844 144 207

500 66.0 0.91 3.04 1234 2634 3317 165 237

1000 63.7 0.90 2.73 1213 2318 3265 157 234

Table 4.2: Performance and security tradeoffs experiment for when the
CS-Tamaraw peers are connected through Tor. The send rates are, for the
client-side proxy, pout = 20 and pin = 5. The security metric is the
k-fingerprinting accuracy. The performance metrics are as observed by the
server-side proxy.

experiments takes a significant amount of time, by virtue of being a live

Tor experiment, with lower performance and higher failure rates that would

require multiple runs in order to obtain the 80 traces for each page.

For the first batch of experiments in early January 2017, we once again

fixed pout and pin at 20ms and 5ms, respectively, and varied L. As the re-

sults come in, we began to be perplexed: increasing L did not noticeably

decrease the attack accuracy. The pattern persisted through the entire set of

values for L that we experimented with in the sanity check experiments. We

were working with the belief that, since the CS-Tamaraw channel removes

timing and size information from its output, then whatever the underlying

transport, e.g., either a direct connection between the two peers, or a prox-

ied connection through Tor, the CS-Tamaraw channel would not leak any

additional information. Thus, we had expected similar gains in security as

we increased L. Thinking that it was perhaps due to some transient issue,

we reran the experiments through the remainder of January 2017 and also

added two more runs with L = 500 and L = 1 000.

The end results are summarized in Table 4.2. First of all, due to the more

fragile nature of loading web pages over Tor, as L increases, the trends in

the metrics are not as smooth as in the direct connection, but they are clear

trends nonetheless. Clearly, the overall trends are in the expected direction:

i.e., as L increases, overall bandwidth overhead increases, and attack accuracy

decreases. However, the key metrics start off from worse positions compared

to the direct connection—i.e., at L = 50, attack accuracy is 72.7% compared

53

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500

%

L

overall overhead
downstream overhead

attack accuracy

Figure 4.5: Overhead and security tradeoff graph when page models are
loaded through the CS-Tamaraw peers that are connected through Tor

to 65.1%, the bandwidth overhead is 160% compared to 82.5%—and also

improve more slowly—i.e., at L = 300, the overhead is more than twice in

the direct connection, yet the attack accuracy is still above 70%. Finally, at

L = 1000, the attack accuracy is ∼64%, but requires three times as much

bandwidth overhead as in the direct connection.

We need to understand the cause behind CS-Tamaraw’s lackluster per-

formance when tunneled through Tor. With Tamaraw-based defense, we

expect that the only information that is leaked is the total bytes of the page

load. We want to confirm this is at least possibly the cause of the informa-

tion leak. We examine the entropy of the packet trace size, i.e., the total

sizes of the packets in a trace. We see that when the proxies are connected

through Tor, there is no noticeable change in the entropy as we increase L,

whereas it generally decreases—albeit not a smooth line—as we increase L

when the proxies are directly connected. Nevertheless, the evidence here is

insufficient to make any conclusion, e.g., it’s possible that our implementa-

tion of CS-Tamaraw proxies are erroneous. Therefore, we conduct additional

experiments to investigate this issue.

54

Entropy of total size of traces

L
Upstream+downstream,

connected through Tor

Upstream+downstream,

connected directly

Downstream only,

connected directly

50 8.418 5.389 4.365

100 8.422 5.335 4.271

150 8.423 5.353 4.124

200 8.422 4.993 3.604

250 8.422 4.890 3.639

300 8.421 5.299 4.190

500 8.420 - -

1 000 8.419 - -

Table 4.3: Entropy of the total sizes of IP datagrams, including IP
headers, in the traces. (We did not perform L = 500 and L = 1 000
experiments where the proxies were directly connected.)

4.4.1 More rigorous sanity checks

To eliminate any potential issue with our web page models as well as our

browser and server simulator, we decided to use the simplest page models

possible: each page is a single file whose size is the total download size of

the original page.5 We first ran a set of experiments using Chrome as the

browser, and a simple web server based on web.py module.6 The web server

is configured with the sizes of the responses to return to the browser, based on

the request URL. We should stress that, we are not able to control the exact

sizes of the request and the responses, since the browser includes request

headers, and the web.py layer includes response headers, etc. The network

configuration is as in the sanity check experiments 4.3.4, except in this case

we also fix the link between the server-side proxy and web server to be 80ms

RTT instead of varying based on the page. The CS-Tamaraw defense is once

again pin = 5 and pout = 20, and we vary L in increment of 50 between 0

(i.e., no defense) and 250, and then 500.

Looking at the results, as shown in Figure 4.6, we see again that as we

increase L, the k-fingerprinting attack accuracy (k-FP) generally goes down:

from from 75% with L = 50 down to 41% with L = 500. (Note that L = 0

5We are using single-file models of our page models, not of the original pages; never-
theless, this should not affect the validity of the experiments.

6http://webpy.org/

55

http://webpy.org/

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

at
ta

ck
 a

cc
ur

ac
y

(%
)

L

k-FP
theoretical

k-NN Down-IDS

Figure 4.6: Attack accuracies when each page is a single main resource,
fetched by Google Chrome over CS-Tamaraw defense tunnel, and web
server application is built on top of web.py framework. It is not possible to
precisely control the amount of application-layer data sent into the network
by either the client or the server.

means no defense is enabled, and the 80% attack accuracy is curious.) Work-

ing with the assumption that the CS-Tamaraw defense leaks only the total

download size, we also compare the k-fingerprinting result to the accuracy of

a simplified theoretical experiment and attacker outlined by Cai et al. [8] that

have only the total page size available, i.e., no network traces involved. The

corresponding theoretical attack accuracies are 66% and 22% at L = 50

and L = 500, respectively, significantly lower than k-fingerprinting is able

to achieve. We also quickly implement a simple k-NN classifier (k = 40)

that classifies the total downstream IP datagram size (IDS) of the traces.

This classifier k-NN Down-IDS also achieves higher accuracies than the

theoretical experiment.

These results suggest that the total page sizes still leak significant infor-

mation, prompting us to proceed to tighten up the experiment setup. After

several attempts, including disabling the CS-Tamaraw defense and leaving

the padding defense to the server application layer, fail to explain the discrep-

ancies, we decide to simplify the client and server even further, to something

56

that affords us precise control over the amount of transferred application

data.

Minimal protocol and applications We implement a simple custom

non-HTTP protocol where the client sends a single message that instructs

the server to send the desired amount of data back to the client, as fast as

possible. For example, if the client wants the server to send back N = 1 234

bytes, it simply sends the string 0000001234 to the server, which will send

back exactly 1 234 bytes. (The message from the client is 0-padded so that

all requests have the same size even though they request different amounts of

data.) Furthermore, depending on the experiment, the client optionally takes

care of defending the download amount: given a specific L parameter, it will

round the request size to the nearest multiple of 750 ∗ L, where 750 is the

cell-size that our CS-Tamaraw protocol uses. For example, if the page size is

40 000 bytes and L = 50, the client will request 750∗L∗2 = 75 000 bytes from

the server. Also, since each “page” is now only one resource, we consider the

“page load” done as soon as the resource completes the download, instead

of waiting for 2 additional seconds of idleness as outlined in Section 3.2.6.

(Refer to Appendix A for the client and server code.)

Direct, LAN connection In this experiment, we use the simplest network

configuration possible: the client and server are connected directly without

the proxies, eliminating CS-Tamaraw from the picture altogether—which

means we enable the client to control the defensive-padding described above.

The client and server machines are on the same local network in EC2, where

the link is 1Gb/s and 0ms RTT. The client fetches each of the 50 “pages”

80 times. Before examining the results, we describe the classifiers and the

features that we use:

� k-FP Full: This is the k-fingerprinting classification algorithm, run

with the full default feature set implemented by the code release.

� k-FP Down-IDS: for consistency, we use k-fingerprinting in the rest

of the experiments instead of our one-off k-NN classifier. The feature

vector here is a single value: the total downstream IP datagram size

(IDS) of each trace.

� k-FP Up-IDS: k-fingerprinting with the total upstream IP datagram

size as the only feature.

57

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500

at
ta

ck
 a

cc
ur

ac
y

(%
)

L

theoretical
k-FP Full

k-FP Down-IDS
k-FP Up-IDS

k-FP Down-TPS
k-FP Up-TPS

Figure 4.7: Attack accuracies by k-fingerprinting on
no-CS-Tamaraw-direct-LAN page loads where the client and server speak a
minimal stripped down non-HTTP protocol, which makes it possible to
precisely control the amount of application-layer data either side transmits.
Without CS-Tamaraw providing protection, the client controls the
defensive padding.

� k-FP Down-TPS: k-fingerprinting with the total downstream TCP

payload size (TPS) of each trace as the only feature, i.e., this means

that packets with empty TCP payload, which are typically 68- or 74-

byte IP datagrams, do not contribute towards the fingerprint of the

traces.

� k-FP Up-TPS: k-fingerprinting with the total upstream TCP payload

size of each trace as the only feature.

� theoretical: the simulated attack aforementioned that has only the

original size of each page.

We now examine the results, as shown in Figure 4.7. First, we can see

that the k-FP Up-TPS attack accuracy is consistently at 2%; this is as

expected because all request sizes are identical, so k-fingerprinting is essen-

tially making a random guess out of 50 possible choices. Furthermore, since

the server application responds with precisely the amount of data requested

58

by the client, the k-FP Down-TPS accuracy matches that of the theoret-

ical attacker exactly. After many unexpected results, this result gives us a

foundation on which we can incrementally build to get back to our desired

CS-Tamaraw-over-Tor experiments.

Next, the k-FP Up-IDS accuracy ranges between 30% and 50%, which

is not entirely expected but makes sense in retrospect, given that the IDS

feature includes the sizes of the upstream TCP ACK packets that the client’s

TCP stack sends to the server. As a result, larger pages generally cause more

upstream ACK packets, and thus the total size of upstream IP datagrams

contains some information about the size of the page. The k-FP Down-

IDS accuracy is at least as good as and often better than the k-FP Down-

TPS/theoretical baseline, once again with the only difference being the

additional information provided by IP and TCP header sizes. While we

cannot explain the unexpected jump in accuracy at L = 200, one plausible

explanation is that transient changes in network condition, e.g., congestion—

recall that we are on a shared cloud environment—can cause two pages that

are in the same theoretical bucket to generate distinct network profiles, e.g.,

there are significantly more ACK packets in one profile than the other.

Finally, we look at the k-FP Full attack. On one hand, we see that this

attack is generally better than all other attacks, which generally matches our

expectation. On the other, as in the earlier results shown in Figure 4.6, when

L = 0, i.e., there is no attempt to defend the traffic, at 60% accuracy, k-FP

Full significantly underperforms the baseline. Since this is now no longer

isolated behavior, we start to suspect it could be because k-fingerprinting

is not tuned for attacking “defenseless” traces, thus certain low-information

features negatively affect its overall performance.

Broadband-like connection over CS-Tamaraw In this experiment, we

again use the same client and server application, but the defense will be

provided entirely by CS-Tamaraw proxies, i.e., the client application now re-

quests the original size of each page. Also, the client and the server-side proxy

are about 80ms RTT apart, and about 80Mb/s download and 30Mb/s up-

load bandwidths7 are available to the client. The link between the server-side

proxy and the server has 40ms RTT but unrestricted bandwidths.

Overall, the results as shown in Figure 4.8 are surprising but in a good

7extrapolated based on the data in the broadband report [1]

59

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

at
ta

ck
 a

cc
ur

ac
y

(%
)

L

theoretical
k-FP Full

k-FP Down-IDS
k-FP Up-IDS

k-FP Down-TPS
k-FP Up-TPS

Figure 4.8: Attack accuracies on page loads where the client and the
server speak a minimal stripped down non-HTTP protocol over a
broadband-like connection that is protected by CS-Tamaraw.

way: all attack accuracies are close to theoretically predicted values (save for

the sub-par performance of k-FP Full when no defense is employed, which

we have seen in earlier experiments). k-FP Full, which is of most interest, is

never more than 7% in absolute terms more successful than the theoretical

attack. With this result, we have high confidence in the correctness of our

protocol and applications, most importantly in the CS-Tamaraw implemen-

tation. Therefore, we can now proceed to extend the experiment to tunnel

CS-Tamaraw through Tor.

4.4.2 Revisiting live Tor experiments

Since we have described the setup for these experiments earlier in this Sec-

tion, we only highlight the differences here: we use the simple client and

server to transfer single files instead of using our web page modeling ap-

plications; also we omit the 2-second idleness check when considering the

page load “done”—but we stress that this does not affect the CS-Tamaraw

client-side proxy’s determination of when the defense sessions are done. We

60

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

at
ta

ck
 a

cc
ur

ac
y

(%
)

L

theoretical
k-FP Full

k-FP Down-IDS
k-FP Up-IDS

k-FP Down-TPS
k-FP Up-TPS

Figure 4.9: Attack accuracies on page loads where the client and the
server speak a minimal stripped down non-HTTP protocol through a
CS-Tamaraw channel that is tunneled through Tor.

performed these experiments in the second half of June 2017. Because of

the large duration of each experiment (L is the only parameter here), we ran

them in parallel, using three different exit relays with essentially identical

configurations,8 after ensuring that all three have attained 920KB/s of relay

traffic. The attack accuracy results are shown in Figure 4.9.

First, the k-fingerprinting results based on only sizing information from

the traces are generally tracking the theoretical predictions. The differences

between the corresponding IDS and TPS results (e.g., k-FP Down-TPS v.s.

k-FP Down-IDS) are negligible; a possible explanation is that, since CS-

Tamaraw proxies transmit fixed-size cells at constant rates—but importantly,

not trying hard to fill up the pipe—there is little opportunity for the kernel to

coalesce multiple cells into the same TCP segment, and thus there is almost

a one-to-one mapping between a cell going one direction and a subsequent

ACK segment going in the opposite direction. More importantly, even though

these attacks are significantly more successful than theoretical predictions,

which is a surprising result on its own, they are nowhere close to the wild

8also, the three relays were all EC2 instances, in the same EC2 us-west-2a “avail-
ability zone.”

61

success of the k-FP Full attack, which hovers above 80% even as theoretical

predictions and the second best attack, k-FP Down-IDS, quickly reduce to

50% and lower starting at L = 100. Note that, as big a surprise this result

is, we see it earlier in Table 4.2.

Since the total upstream and downstream size information do not explain

the unexpected success of k-FP Full, we re-run k-fingerprinting with a few

isolated features—due to time constraints, we are not able to comprehensively

explore the feature space used in k-FP Full. First we briefly describe the

features, all of which are used in k-FP Full:

� k-FP Timing: uses only timing-based features, which we isolate fur-

ther into two sub-feature sets.

� k-FP Timing-Inter: uses only 12 features from the inter-packet tim-

ings, i.e., mean, maximum, standard deviation, and 75th percentile, for

each direction of traffic and for both directions combined. The 13th

feature is the sum of the 12.

� k-FP Timing-Quartile: uses only 12 features from the raw packet

timestamp values (specifically, offsets from the first packet in the trace),

i.e., the 25th, 50th, 75th, and 100th percentiles, for each direction of

traffic and for both directions combined. The 13th feature is the sum

of the 12.

� k-FP Ordering: uses only four features: the means and standard

deviations of downstream and upstream packet positions within the

full packet trace.

� k-FP Concentration: uses various statistics on packet concentra-

tions, e.g., the number of upstream packets in each consecutive non-

overlapping group of 20 packets.

We show the results of using these isolated features in Figure 4.10, along

with theoretical, k-FP Full, and k-FP Down-IDS for reference. We

make several observations here. First, when there is no defense, the poor

performances of k-FP Timing-Inter, k-FP Concentration, and partic-

ularly k-FP Timing-Quartile and k-FP Ordering, likely contribute to

the unexpected inferior accuracy achieved by k-FP Full as compared to

theoretical and even k-FP Down-IDS. Second, starting at L = 100, all

62

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

at
ta

ck
 a

cc
ur

ac
y

(%
)

L

theoretical
k-FP Full

k-FP Down-IDS
k-FP Timing

k-FP Timing-Inter
k-FP Timing-Quartile

k-FP Ordering
k-FP Concentration

Figure 4.10: Attack accuracies by k-fingerprinting using additional
isolated feature sets on page loads where the client and the server speak a
minimal stripped down non-HTTP protocol through a CS-Tamaraw
channel that is tunneled through Tor.

the k-fingerprinting features considered result in a stronger attack than those

based only on trace sizes. Finally, k-FP Timing-Inter is always more ac-

curate than theoretical and appears potentially largely responsible for the

strong performance of k-FP Timing, which, along with k-FP Concentra-

tion, contribute to the success of k-FP Full.

The above results are surprising, and we have yet an explanation; how-

ever, there is another angle we can investigate: how would k-fingerprinting

perform in a slightly more realistic scenario, where there is a larger tempo-

ral separation between the collections of the training data and the test data.

Thus, we start another set of CS-Tamaraw-over-Tor experiments on July 1st,

2017, approximately 10 days after the experiments above, which we started

on June 21st, 2017.

First we run k-FP Full on this second set of traces, and the attack accu-

racies are consistent with those on the June 21st traces. Then we run two

other attack scenarios: train on June 21st traces and test on July 1st traces

(Tr6-Te7), and vice versa (Tr7-Te6). As the results in Figure 4.11 show,

k-fingerprinting’s accuracy significantly degrades with temporal separation

63

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

at
ta

ck
 a

cc
ur

ac
y

(%
)

L

theoretical
k-FP Tr6-Te6
k-FP Tr7-Te7
k-FP Tr6-Te7
k-FP Tr7-Te6

Figure 4.11: Attack accuracies from two sets of traces on page loads
where the client and the server speak a minimal stripped down non-HTTP
protocol through a CS-Tamaraw channel that is tunneled through Tor.
“TrX-TeY” means the attack is trained with traceset X and tested on
traceset Y, where “6” and “7” refer to June and July, respectively, the
months in which the tracesets were collected.

between training and testing data, which is not a surprising result. Also,

consistent with the results we have seen thus far, CS-Tamaraw is not able to

provide significant improvement in privacy.

However, as we confirmed in the sanity check experiments, CS-Tamaraw

performs as expected when the proxies are directly connected. Therefore, the

surprising results for CS-Tamaraw-over-Tor here could potentially be due to

the interaction between CS-Tamaraw and Tor, or due to Tor alone (and pos-

sibly other factors). So, we perform another set of experiments to isolate the

unexpected behavior even further: once again we remove CS-Tamaraw from

the picture, and let the client and server defend their downloads over Tor.

We show the results in Figure 4.12. Once again we see that k-fingerprinting

is able to achieve significantly higher attack accuracies against the defense,

compared to theoretical predictions as well as when the client and server are

directly connected without Tor. With this result, we can largely rule out the

interaction between CS-Tamaraw and Tor as the root cause of CS-Tamaraw’s

64

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

at
ta

ck
 a

cc
ur

ac
y

(%
)

L

theoretical
k-FP Full

k-FP Down-IDS
k-FP Timing

k-FP Timing-Inter
k-FP Concentration

Figure 4.12: Attack accuracies by k-fingerprinting on page loads where the
client and server are connected through Tor and speak a minimal stripped
down non-HTTP protocol. The client controls the defensive padding.

lackluster security when tunneled over Tor.

At this point, we take a moment to summarize the macro observation thus

far of the effectiveness of the defenses in relation to the underlying transport

in Table 4.4. Whether the client and server defend themselves, or the defense

is provided by CS-Tamaraw, the strength of the defense mostly matches up

with expectations. Recall the Direct, LAN connection experiment, which

is the simplest possible scenario: even there, we can see in Figure 4.7 that the

defense is not perfect, i.e., at L = 200 and higher. Yes, it defends the TCP

payload size perfectly by application-layer padding, but k-FP Full exceeds

theoretical bounds. We speculated there that a possible cause is transient

changes in network conditions. The fact that k-fingerprinting exceeds the

theoretical bounds by even larger margins when either defense is tunneled

through Tor gives more weight to our speculation regarding the role of time-

variant network conditions.

This prompts us to re-examine our trace collection methodology, and we

realize that we are giving the attack an unlikely advantage. As described

earlier, we collect all 80 traces for one page before moving on to the next

65

Underlying Defense provider

transport Client and server CS-Tamaraw proxies

Direct /?

Tor !? !?

Table 4.4: Summary of the expected efficacy of defensive schemes relative
to theoretical bounds. When the two end points of the defensive channel
are directly connected, the defense is typically as effective as expected;
when the same defensive channel is tunneled through Tor, it significantly
loses its efficacy, i.e., k-fingerprinting attack exceeds theoretical bounds by
wide margins.

page. This means that, all 80 traces for page A are collected, for example,

around 5AM, while all 80 traces for page B might be collected around, say,

1PM. The implication is that the training traces and the test traces for a

given page are likely collected under the same network conditions, e.g., the

amount of network congestion, and thus are likely to yield similar fingerprints.

Furthermore, even if page A and page B are in fact identical pages, which

in theory should make all attacks unable to distinguish between them, the

traces for page A can look completely different than those for page B—

perhaps because the network is heavily congested when page B’s traces are

collected—making it trivial for any attack to differentiate the two pages.

As a result of this examination, we rerun the Tor experiments with a

modified trace collection strategy that is not optimal for the attacker: the

traces are collected in 80 rounds; in each round, only one trace is collected

per page. Due to time constraints, we experiment with only a few select

values of L. Table 4.5 summarizes the results.

First, consider the case where there is no CS-Tamaraw, i.e., the client

and server applications defend themselves. When L = 0, i.e., all defensive

mechanisms are disabled, we see that k-FP Down-IDS accuracy is 83%,

which generally is considered a successful attack. We also see that k-FP

Full accuracy is only 45%, but we have grown to expect this from earlier

experiments—likely because k-FP Timing is only at 25% accuracy. When

defensive padding is enabled, for all of L = 150, L = 250, and L = 500, we

can see clearly that k-FP Down-IDS accuracies closely track the theoretical

bounds! And as before, k-FP Full performance is lower than k-FP Down-

IDS likely because of weakness in k-FP Timing.

66

client & server defend CS-Tamaraw defends

L theoretical
k-FP

Full

k-FP

Down-IDS

k-FP

Timing

k-FP

Full

k-FP

Down-IDS

k-FP

Timing

0 100 45.3 83.0 25.0 - - -

150 44 23.7 41.5 18.0 - - -

250 34 16.9 32.7 13.8 26.6 24.7 27.9

500 20 12.8 19.7 12.3 - - -

Table 4.5: k-fingerprinting attack accuracies for select values of L when
the client and server applications defend themselves, and when
CS-Tamaraw provides the defense instead (we have only one traceset in this
case due to time constraints). In either case, the defended channel is
tunneled through Tor. The traces are collected in rounds, where each round
collects only one trace each for the 50 pages. L = 0 means all defensive
mechanisms are disabled.

Now consider the case where CS-Tamaraw provides the defense. At L =

250 we see that k-FP Down-IDS accuracy is significantly less than when

CS-Tamaraw is not in place; however, k-FP Timing seems to have made

up for some of the slack, enabling k-FP Full to attain higher accuracy than

when CS-Tamaraw is not used, yet at 26.6% is still less than the theoretical

bound, and compared to more than 85% as in Figure 4.10.

With only one data point (L = 250), we cannot generalize the behavior

of CS-Tamaraw under the modified trace collection strategy. At the same

time, when considered along with all the other evidence thus far, this result

suggests that the unexpected high accuracies that k-fingerprinting has been

able to achieve against both types of defenses when tunneled over Tor have

been partly due to artifacts of the experiment methodology, and not due to

flaws in the design or implementation of CS-Tamaraw.

4.5 Large-scale simulations with Shadow

In this section we discuss simulations of CS-Tamaraw-over-Tor using Shadow,

a simulation toolkit tailored for large-scale Tor network simulations, due to

Jansen and Hopper [19]. All our Shadow simulations are run on machines in

Emulab [36] with large amounts of RAM.

Before proceeding, we want to mention a key flaw in our simulations: they

contain a bug where the browser, as soon as the page load has finished,

67

immediately instructs its client-side proxy to tear down the CS-Tamaraw

channel, instead of allowing the channel to continue operating to completion,

i.e., satisfy L. This means that our performance metrics are most likely

exaggerated. Unfortunately, we discover this flaw after the experiments but

are not able to address it due to time constraints. This is because fixing

the bug requires a non-trivial amount of design and engineering work to

enable the proxies to support potentially overlapping defense sessions that

can happen on a short think-time pause.9

4.5.1 Shadow

Shadow is a discrete-event simulator that can run real applications, which

are referred to as “plugins.” Multiple simulated nodes can use the same

Shadow plugin, sharing the plugin’s code, while Shadow maintains sepa-

rate copies of each node’s application/plugin state. By the function inter-

position technique, the simulator redirects system calls such as socket(),

connect(), send(), and recv(), etc., made by the nodes to its own im-

plementations, allowing it to simulate the network environment, e.g., TCP

stack, link bandwidth, delay, etc. Being targeted at Tor studies, Shadow pro-

vides the shadow-plugin-tor,10 which includes the necessary modifications

to the Tor code in order to work in Shadow simulation environment.

However, as we have touched on previously, running real, moderately com-

plex applications in Shadow requires great care, if not impossible without

major modifications. This is because Shadow supports only a small of set of

system calls, and even those that are supported can have buggy implemen-

tations. Therefore, Shadow is only really recommended for applications one

writes from scratch or those that use the set of basic system calls that has

been well tested. An alternative to Shadow is the Direct Code Execution

framework in ns-3 [32], which can use the more mature implementations of

network stacks and protocols that are in ns-3; however, we do not have any

experience using that framework.

9in the live experiments, each page load sample is isolated, so we can simply launch a
new client-side proxy for each load.

10https://github.com/shadow/shadow-plugin-tor

68

https://github.com/shadow/shadow-plugin-tor

4.5.2 Setup and methodology

Page models We attempt to keep page models on servers in countries

that reflect the real life locations of the original web sites. For example,

for ameblo.jp, two of the hostnames used in the original page model are

act.ameba.jp and sy.amebame.com. In the page model for Shadow, we

map act.ameba.jp and sy.amebame.com randomly to, for example, virtual

hostnames serverX and serverY that are located in Japan. If there are

fewer servers available in Japan, then we sample with replacement, so the

two original hostnames might be mapped to the same virtual hostname.

Establish the baseline network model A Shadow simulation consists

of a scaled down version of the Tor network, including directory authorities,

guards, relays, exits, and even optionally bridge nodes, etc. It also consists

of clients and servers. There are two main types of clients: web clients

load web pages, with some distribution of pauses—“think times”—between

consecutive page loads, and bulk clients simply transfer large files repeatedly

without pauses.

Before embarking on experiments with new protocols, we need to estab-

lish a baseline network model, i.e., arrive at a “reasonable” model of the

network, including the number of Tor nodes, the number of web clients and

bulk clients, servers, traffic generation pattern, etc. Since accurately mod-

eling the Tor network is itself an open research topic, a proxy measure of

reasonableness commonly used in the literature is the proportion of web

traffic and bulk traffic (in total byte counts). In other words, through trial-

and-error, one finds the set of parameters that results in the desired ratio of

web traffic to bulk traffic. For this purpose, we target the 36% web traffic as

Chaabane et al. reported in September 2010 [9], which was the most recent

data available11 in Fall 2016 when we began these experiments. Note that

we cannot simply use the network models that have been used in published

studies because they are based on coarse-grained page models that are single

files, typically smaller than 500KB [19, 21, 22].

After several tries, we decide to use a network of 100 Tor nodes (12 of

which are exit nodes), 350 web clients, 150 bulk clients, and 200 servers.

Each server node runs both our server simulator plugin to serve web traffic,

11Jansen and Johnson reported newer data at CCS 2016 [20].

69

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20

C
D

F

(a) Time to first byte

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

C
D

F

(b) Page load time

Figure 4.13: CDF for time to first byte and page load time of web page
loads in the baseline Shadow experiment.

as well as the tgen plugin12 to serve bulk downloads. The bulk clients use

tgen to repeatedly download a 5MB file, selecting a random server for each

download. The web clients use our browser simulator plugin to load the 50

page models, with uniform think times in [20, 40] seconds between page loads,

and 120 seconds timeout for each page load. The hosts are scattered across

the (virtual) globe, in different countries and US states; this is taken care

of by the topology generator script provided by Shadow, which also scales

virtual network capacity accordingly. Each experiment runs for one virtual

hour, with all clients actively generating traffic by virtual minute 30.

In the end, web traffic accounts for 28.7% of the total bytes received by

all clients (10.8GiB out of 37.5GiB), and bulk the remaining 71.3%. While

this is not the 36% that we target, in the interest of time, we decide this was

sufficient.13 There were 8 102 successful page loads, and 138 timed out. We

show the CDF of the time to first byte and page load time in Figure 4.13. The

average time to first byte is 2.1 seconds, with median and 90th percentile at

1.2 second and 4.3 seconds, respectively. For the page load time, the average

is 13.6 seconds, the median is 7.4 seconds, and the 90th percentile is 31.5

seconds.

Parameter space We explore the space of the main CS-Tamaraw parame-

12https://github.com/shadow/shadow/tree/master/src/plugin/shadow-plugin-tgen
13As with all experiments, the larger the scale, the better; thus, we also attempted

to use a network with 300 Tor nodes and 1 000 clients, but the simulation would stall
for unknown reasons (i.e., the machine still had majority of its RAM available and was
otherwise behaving normally) during the early phase where the Tor network is coming
online, so we had to abandon this approach.

70

https://github.com/shadow/shadow/tree/master/src/plugin/shadow-plugin-tgen

ters, namely pin, pout, and L. For pin, we use 5, 20, and 50; larger values are of

less interest because they would likely inflate page load times beyond usable

realm. For pout, we pick among 20, 50, 75, and 100. We do not experiment

with configurations where pin > pout: because web traffic is download-heavy,

it is generally not useful to throttle download traffic more than upload traffic.

For L, we consider 50, 100, 150, and 200.

Client adoption rates Because CS-Tamaraw requires non-trivial band-

width overhead, we also study the effects on the network by different CS-

Tamaraw client adoption rates. In particular, we consider five scenarios:

100-0, 95-5, 75-25, 50-50, and 0-100, where a scenario “X-Y” means X% of

the clients are “vanilla” clients who do not use CS-Tamaraw, and Y% of the

clients use CS-Tamaraw. (In particular, 100-0 is the baseline experiment.)

During an experiment run, each client’s mode is fixed, either vanilla or CS-

Tamaraw—it does not switch between the two modes. For each adoption

scenario, we randomly pick a sample of the corresponding size from the 350

web clients and make them vanilla clients, and the remaining clients will

use CS-Tamaraw. We perform this vanilla-vs-CS-Tamaraw client assignment

once for each adoption scenario and use it in all parameter-space experiments

for that scenario.

Metrics We are interested in the usual metrics such as time to first byte and

page load time for web page loads, and bandwidth overheads. In addition,

other metrics we will be looking into include the total number of page loads

(specifically, the number of attempts), the number/ratio of successful page

loads, and the unsuccessful ones. For unsuccessful page loads, we distinguish

between hard failures where the main resources fail to download, and time-

outs. To assess the value of congestion-sensitivity, we are interested in the

statistics for the dummy cells that can be avoided; alas, the experiments are

run with the flaw described in Section 4.3.4 that undercounts the number of

avoided dummy cells. All reported metrics are only for the second half (30

minutes) of each experiment, after all clients have started to generate traffic.

71

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20

C
D

F

baseline
L = 50

L = 100
L = 150
L = 200

(a) Time to first byte (seconds)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

C
D

F

baseline
L = 50

L = 100
L = 150
L = 200

(b) Page load time (seconds)

Figure 4.14: CDF of the time to first byte and page load time for
different values of parameter L when CS-Tamaraw adoption is at 100% and
pin = 5, pout = 20, compared to the baseline (i.e., 0% CS-Tamaraw
adoption).

4.5.3 Results

Full adoption We first look at the results for the scenarios that improve

overall privacy the most: when all clients adopt CS-Tamaraw; and at the

same time, all clients want to maximize their web browsing performance, so

all use the fastest sending rates, i.e., pin = 5, pout = 20. Figure 4.14 shows

the time to first byte and page load time for all successfully web page loads

during the experiments with L from 50 to 200. The two key observations here

are: first, our expectation is that time to first byte and page load time when

using CS-Tamaraw will be higher than in the baseline, and this is mostly

true (except for the time to first byte, where CS-Tamaraw scenarios yield

slightly lower values up until approximately the 75th percentile).

Second, the four CS-Tamaraw experiments with different L values do not

differ significantly in performance. This is likely due to the aforementioned

bug in our experiments where the browser instructs its client-side proxy to

tear down the CS-Tamaraw channel prematurely as soon as the page load

is done. Even if we were not affected by this bug, consider L = 50 and

L = 200: the additional bandwidth required by L = 200 would likely be on

the order of several hundred KiB because 2 ∗ ((200 − 50) ∗ 750) = 220KiB

(the 2 multiplier accounts for both directions of traffic), which is relatively

small compared to all the other traffic generated during the page load as well

as other traffic such as bulk downloads.

In Table 4.6, we show other useful statistics regarding page load counts and

72

Page loads per client SSP byte overhead (%)

L Total Failed Timed out
Success

ratio (%)
Send Recv Overall

baseline 23.5 0 0.39 98 - - -

50 14.4 0.55 4.13 67 167 3 340 242

100 15.2 1.29 3.89 66 146 3 067 211

150 14.4 0.69 3.98 68 178 3 619 259

200 14.4 0.51 4.14 68 147 3 147 215

Table 4.6: Page load counts and overall server-side proxy byte overhead
(at the application layer, i.e., not including Tor overhead) for different
values of parameter L when CS-Tamaraw adoption is at 100% and
pin = 5, pout = 20, compared to the baseline (i.e., 0% CS-Tamaraw
adoption).

bandwidth overhead. Once again, there is no clear pattern of differentiation

among the four CS-Tamaraw scenarios. However, one thing is clear: overall,

they all result in a fairly poor page load success rate: a full one third of page

loads are unsuccessful—mostly due to reaching the two minute timeout—

compared to just 2% unsuccessful page loads in the baseline. The overall

byte overhead seen by the server-side proxies is larger than what we see in

the live Tor experiments (Table 4.2).

25% adoption We now consider the more plausible adoption rate of 25%.

We will fix L = 50 since L has little effect on our results (due to aforemen-

tioned flaw). We also fix pin = 5, our fastest downstream rate. Now, we look

at the network performance with four pout values. First, Figure 4.15(a) shows

the page load times of CS-Tamaraw page loads in the four experiments. We

see that, except for the case of pout = 75 experiment, as pout increases, the

page load time increases, as expected. For example, the median page load

times are 8.5, 9.2, 10.7, and 10.7 seconds, respectively, as we increase pout,

and the 90th percentiles are 39.7, 41.2, 57.3, and 58.4 seconds, respectively.

Recall that the corresponding values in the baseline scenario are 7.4 and 31.5

seconds.

Next, we look at Figure 4.15(b), which compares the page load times of

CS-Tamaraw page loads to vanilla loads in the same experiment, for two

experiments with pout = 20 and pout = 100. As expected, vanilla page loads

73

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

C
D

F

baseline
pout = 20
pout = 50
pout = 75

pout = 100

(a) Page load time (seconds)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

C
D

F

pout = 20: vanilla loads

pout = 20: CS-Tamaraw loads

pout = 100: vanilla loads

pout = 100: CS-Tamaraw loads

(b) Page load time (seconds)

Figure 4.15: CDF of page load time for different values of parameter pout
when CS-Tamaraw adoption is at 25% and pin = 5, L = 50. Figure (a)
shows page load times of only CS-Tamaraw page loads from four
experiments in addition to the vanilla page loads from the baseline
experiment. Figure (b) shows page load times of CS-Tamaraw page loads
compared to vanilla loads in two experiments, for two values of pout = 20
and pout = 100.

are generally faster than CS-Tamaraw ones; for example, with pout = 20,

the median and 90th percentile page load time for vanilla page loads are 7

and 31.1 seconds, respectively, and the corresponding values for CS-Tamaraw

page loads are 8.5 and 39.7 seconds.

In Table 4.7, we show other useful statistics regarding page load counts

and bandwidth overhead. As we increase pout, web pages take longer to

load, which explains the decreasing number of page loads per CS-Tamaraw

client; for the same reason, more page loads time out, and the page load

success ratios decline with larger pout. (The page load failure rate of 0.53

when pout = 20 appears to be an anomaly—compared to less than 0.06 for

other experiments—but we do not have an insight into the cause.) Also, we

see that as pout increases, client-side proxies send less dummy traffic, which

is reflected in the decreasing receiving overhead at the server-side proxies;

however, since the page loads overall take longer, and pin is fixed, the server-

side proxies sending overhead grows, and the overall overhead grows as well,

since pin = 5 means that server-side proxies send data much faster than

client-side proxies.

Next, we see that the additional bandwidth utilization by CS-Tamaraw

negatively affects vanilla clients, reducing the number of page loads they can

complete. However, the reduction is small and acceptable if it is traded for

74

Page loads

per CS-Tamaraw client

Page loads

per vanilla client

SSP byte

overhead (%)

pout Total Failed Timed out
Success

ratio (%)
Total

Success

ratio (%)
Send Recv Overall

baseline - - - - 23.5 98.3 - - -

20 17.5 0.53 2.78 81.1 22.2 95.4 139 2720 198

50 16.8 0.05 3.05 81.6 22.3 97.4 188 1688 221

75 14.6 0 3.80 74.0 21.4 98.3 318 1912 354

100 15.2 0.06 3.40 77.2 20.6 96.9 290 1339 313

Table 4.7: Per-client page load counts and overall server-side proxy byte
overhead (at the application layer, i.e., not including Tor overhead) for
different values of parameter pout when CS-Tamaraw adoption is at 25%
and pin = 5, L = 50.

significantly increased security of CS-Tamaraw page loads. Finally, we also

mention that across these four experiments, the server-side proxies are able

to avoid sending between 120 and 350 dummy cells, which is a small fraction

of the more than 1 200 page loads attempted by CS-Tamaraw clients, but

once again, these are underestimates due to the aforementioned bug.

75

CHAPTER 5

CONCLUSION

Over the last 15 years, the Internet has grown to become an integral part

of modern life. It has democratized access to information, knowledge, and

communication. It has made possible the streamlining of many interactions

between citizens and governments, between consumers and businesses, etc.

However, as we migrate more and more of our daily lives into the digital

world, there are serious privacy implications. Whereas it is impossible to

conduct large-scale monitoring and surveillance in the physical world, it is

easy to do so in the digital world: monitor our Internet connections, where

a lot of our daily activities are happening. For example, merely the meta-

data such as the identities of websites we visit can reveal sensitive personal

information. Browsing the Internet over encrypting proxies such as Tor can

help mask the identities of the websites, but only to a certain extent: each

website can have a distinctive network traffic fingerprint that gives it away

even visited over an encrypted proxy connection.

After earlier ad hoc attempts to mask websites traffic fingerprints are found

ineffective against more advanced attacks, researchers have proposed a fam-

ily of provable defenses called BuFLO, or Buffered Fixed-Length Obfuscator,

where the encrypted proxy channel transmits fixed-size packets at predeter-

mined schedules, using dummy padding data if needed. Packet-simulation

studies have shown the BuFLO-style defense Tamaraw to have the strongest

security properties, albeit at the expense of high overhead. In this dis-

sertation, we propose to use CS-Tamaraw, our version of Tamaraw with

congestion-sensitivity—which itself is borrowed from CS-BuFLO—to protect

web browsing traffic over Tor.

In order to achieve a high level of reproducibility for real life experiments

as well as conduct large-scale Tor simulation studies, we want to construct

precise models of the web page loading process. We need an unprecedented

level of modeling precision because that is inherent in this research area:

76

state-of-the-art website traffic fingerprinting attacks are adept at picking out

minute differences in network traces. (Another context where precise web

page traffic models are useful is censorship circumvention; they would enable

certain circumvention systems to generate traffic patterns according to the

model of an allowed website while in reality are loading another arbitrary

website.) Essentially, details such as computing delays, network request pat-

terns, inter-dependencies between resources, browser design and implemen-

tation idiosyncrasies, as well as opaque web page dynamism and application

logic, etc. are all crucial and have to be reflected in the models. To do this,

we perform an extensive study of the Google Chrome browser to understand

as much as we can about how it loads a web page. We start with only a

basic high-level understanding of HTML, and learn more as we dig deeper

and deeper into the Chrome codebase. After a while, we realize that our goal

is unattainable: we keep discovering more and more complex behavior as we

test with more live web pages. (In retrospect, it should have been obvious

from the beginning.)

At this point, we proceed to use what we have and try to model the top

100 Alexa-ranked global web pages. We instrument Google Chrome to log

information about the page loading process, and build a tool to parse the log

to produce the model. Alas, many of these web pages trigger assertions we

introduce into the Chrome code and/or the log parser to catch code paths or

features that we have not covered. As a result, the process requires extensive

manual inspection and working around such assertions if reasonable. In the

end we obtain the models for 50 of the 100 pages. We then implement

a traffic generator framework that includes: 1) a browser emulator modeled

after Chrome that generates network requests and emulates computing delays

as specified in the input model; 2) a simple server emulator that simply sends

back to the browser the amount of the data specified in the browser’s request.

We take a short detour here to emphasize that it is a major engineering

effort to build the traffic generator framework. This is because we want

to use the same codebase as native applications as well as for simulation

using the Shadow simulator. Shadow uses function interposition to redirect

system calls made by applications to its own implementations, enabling it to

provide a simulated network environment. In theory, this would allow real,

unmodified applications to run in Shadow; however, we find that Shadow

does not support many system calls, as well as in some cases has buggy

77

implementations. Essentially this prevents us from using any of the rich

software libraries that provide high level abstractions for networking, multi-

threading, inter-process communication, etc. because we lack visibility into

their usage of system calls. (In fact, we discover these issues after starting

to use one such library and running into incorrect behavior.) Consequently,

we have to reinvent the wheel and build on top of only a small set of system

calls that have been used extensively in other Shadow applications.

With the models and the traffic generator, we proceed to validate the

models. As part of the initial phase of loading the original web pages in order

to extract the browser logs, we already collect network traces generated by

the real browser loading the real pages; we call these the real traces. Now,

we use our traffic generator to load the page models, and collect the network

traces; we call these the generated traces. To validate the models, we use the

state-of-the-art fingerprinting attack k-fingerprinting as follows. First, we use

k-fingerprinting to perform an attack on the real traces, and then separately

an attack on the generated traces. In both cases, k-fingerprinting attack

accuracies are above 98%, as expected. Then, to validate the page models,

we train k-fingerprinting on the real traces, and test on the generated traces;

the attack accuracy is only 13%, which means that our generated traces are

far from resembling their respective real traces. This is unsurprising given

the challenging task of modeling the web page loading process.

Nevertheless, we proceed to propose the CS-Tamaraw design to protect web

browsing traffic over Tor: simply tunnel the CS-Tamaraw channel through

the Tor circuit. The CS-Tamaraw client-side proxy is located at the client

as usual, and the server-side proxy is co-located with the Tor exit. Because

the CS-Tamaraw channel removes all timing information from the web page

load, we expect that it holds true regardless of the underlying transport,

whether it is a direct TCP connection, or tunneled through Tor. We design

and implement from scratch the CS-Tamaraw protocol and proxies, and then

proceed to conduct live experiments over Tor fetching the 50 page models to

understand the performance-vs-security tradeoffs. However, we discover that

as we increase the security parameter L significantly, it results in negligible

gains security, i.e., k-fingerprinting still achieves high attack success rates

with large values of L.

Subsequently, we perform a series of experiments including starting from

the absolute minimal client-server setup where each page load simply involves

78

the client’s sending a single request for a given number of bytes, the server

sends back that exact number of bytes, and the connection is torn down.

The client controls the defense, by padding the requested amount based on

parameter L. We see that this setup results in largely expected behavior: as

L increases, k-fingerprinting attack accuracy significantly reduces. Another

set of experiment involves the same client and server, but the client does not

perform padding; instead, the client-server connection is tunneled through

CS-Tamaraw proxies, which provide the protection. The result here is also

as expected: as L increases, CS-Tamaraw is able to significantly reduce k-

fingerprinting attack accuracy.

However, when these two experiments are then extended by tunneling the

client-server connection and the CS-Tamaraw channel, respectively, through

Tor, we consistently see that their security is significantly diminished, i.e.,

k-fingerprinting is able to maintain high attack accuracies as L increases. In

particular, when L = 500, a theoretical attacker that has only information

on the total size of the server’s response, should achieve average accuracy of

20%; however, in either experiment, k-fingerprinting can still attain above

80% attack accuracy. As we isolate the features that k-fingerprinting uses,

we discover that packet timing information alone can achieve close to the

accuracy of the full k-fingerprinting. We speculate that a possible cause is

transient changes in network conditions; for example, two pages that are

identical in size can appear distinctive if the network is more congested when

one page is loaded compared to when the other is.

This prompts us to re-examine our trace collection methodology, and we

realize that we are giving the attack an unlikely advantage. We rerun the

Tor experiments with a modified trace collection strategy that does not give

the attacker such a big advantage. While not at the scale that would allow

us to make a stronger claim, the results of these experiments suggest that

the unexpected high accuracies that k-fingerprinting has been able to achieve

against both types of defenses when tunneled over Tor have been partly due

to artifacts of the earlier trace collection methodology, and not due to flaws

in the design or implementation of CS-Tamaraw.

We briefly discuss our whole-network simulations using Shadow. in our

experiments with 100 Tor nodes, 350 web clients, and 150 bulk clients, full

adoption of CS-Tamaraw by web clients results in poor and likely unaccept-

able web browsing performance. At 25% adoption, the CS-Tamaraw clients

79

can achieve much more reasonable web browsing performance, while at the

same time not significantly impacting the rest of the web clients. Since our

simulations contain a key bug, the performance results are likely exagger-

ated. It will be interesting future work to address the issue and perform a

more comprehensive analysis.

80

REFERENCES

[1] United states speedtest market report, . http://www.speedtest.net/
reports/united-states/. Accessed 01/03/2017.

[2] Top 9 browsers on dec 2016, . http://gs.statcounter.com/#all-browser-
ww-monthly-201612-201612-bar. Accessed 03/21/2017.

[3] Experimental defense for website traffic fingerprinting. https://blog.
torproject.org/blog/experimental-defense-website-traffic-fingerprinting.
Accessed 09/18/2015.

[4] M. AlSabah and I. Goldberg. Performance and security improvements
for tor: A survey. Cryptology ePrint Archive, Report 2015/235, 2015.
http://eprint.iacr.org/.

[5] G. D. Bissias, M. Liberatore, D. Jensen, and B. N. Levine. Privacy vul-
nerabilities in encrypted http streams. In Proceedings of the 5th Inter-
national Conference on Privacy Enhancing Technologies, PET’05, pages
1–11, Berlin, Heidelberg, 2006. Springer-Verlag. ISBN 3-540-34745-3,
978-3-540-34745-3. doi: 10.1007/11767831 1. URL http://dx.doi.org/
10.1007/11767831 1.

[6] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson. Touching from a dis-
tance: Website fingerprinting attacks and defenses. In Proceedings of
the 2012 ACM Conference on Computer and Communications Security,
CCS ’12, pages 605–616, New York, NY, USA, 2012. ACM. ISBN 978-1-
4503-1651-4. doi: 10.1145/2382196.2382260. URL http://doi.acm.org/
10.1145/2382196.2382260.

[7] X. Cai, R. Nithyanand, and R. Johnson. Cs-buflo: A congestion sensitive
website fingerprinting defense. In Proceedings of the 13th Workshop on
Privacy in the Electronic Society, WPES ’14, pages 121–130, New York,
NY, USA, 2014. ACM. ISBN 978-1-4503-3148-7. doi: 10.1145/2665943.
2665949. URL http://doi.acm.org/10.1145/2665943.2665949.

81

http://www.speedtest.net/reports/united-states/
http://www.speedtest.net/reports/united-states/
http://gs.statcounter.com/#all-browser-ww-monthly-201612-201612-bar
http://gs.statcounter.com/#all-browser-ww-monthly-201612-201612-bar
https://blog.torproject.org/blog/experimental-defense-website-traffic-fingerprinting
https://blog.torproject.org/blog/experimental-defense-website-traffic-fingerprinting
http://eprint.iacr.org/
http://dx.doi.org/10.1007/11767831_1
http://dx.doi.org/10.1007/11767831_1
http://doi.acm.org/10.1145/2382196.2382260
http://doi.acm.org/10.1145/2382196.2382260
http://doi.acm.org/10.1145/2665943.2665949

[8] X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Goldberg. A
systematic approach to developing and evaluating website fingerprint-
ing defenses. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’14, pages 227–238,
New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2957-6. doi:
10.1145/2660267.2660362. URL http://doi.acm.org/10.1145/2660267.
2660362.

[9] A. Chaabane, P. Manils, and M. A. Kaafar. Digging into anonymous
traffic: A deep analysis of the tor anonymizing network. In Proceedings
of the 2010 Fourth International Conference on Network and System
Security, NSS ’10, pages 167–174, Washington, DC, USA, 2010. IEEE
Computer Society. ISBN 978-0-7695-4159-4. doi: 10.1109/NSS.2010.47.
URL http://dx.doi.org/10.1109/NSS.2010.47.

[10] S. Chen, R. Wang, X. Wang, and K. Zhang. Side-channel leaks in web
applications: a reality today, a challenge tomorrow. In Proceedings of
the IEEE Symposium on Security and Privacy (Oakland). IEEE Com-
puter Society, May 2010. URL http://research.microsoft.com/apps/
pubs/default.aspx?id=119060.

[11] G. Danezis, R. Dingledine, and N. Mathewson. Mixminion: Design of a
type iii anonymous remailer protocol. In Proceedings of the 2003 IEEE
Symposium on Security and Privacy, SP ’03, pages 2–, Washington, DC,
USA, 2003. IEEE Computer Society. ISBN 0-7695-1940-7. URL http://
dl.acm.org/citation.cfm?id=829515.830555.

[12] R. Dingledine, N. Mathewson, and P. Syverson. Tor: the second-
generation onion router. In Proceedings of the 13th conference on
USENIX Security Symposium - Volume 13, SSYM’04, pages 21–21,
Berkeley, CA, USA, 2004. USENIX Association. URL http://dl.acm.
org/citation.cfm?id=1251375.1251396.

[13] K. Dyer, S. Coull, T. Ristenpart, and T. Shrimpton. Peek-a-boo, i still
see you: Why efficient traffic analysis countermeasures fail. In Security
and Privacy (SP), 2012 IEEE Symposium on, pages 332–346, May 2012.
doi: 10.1109/SP.2012.28.

[14] X. Fu, B. Graham, R. Bettati, andW. Zhao. On countermeasures to traf-
fic analysis attacks. In Information Assurance Workshop, 2003. IEEE
Systems, Man and Cybernetics Society, pages 188–195, June 2003. doi:
10.1109/SMCSIA.2003.1232420.

82

http://doi.acm.org/10.1145/2660267.2660362
http://doi.acm.org/10.1145/2660267.2660362
http://dx.doi.org/10.1109/NSS.2010.47
http://research.microsoft.com/apps/pubs/default.aspx?id=119060
http://research.microsoft.com/apps/pubs/default.aspx?id=119060
http://dl.acm.org/citation.cfm?id=829515.830555
http://dl.acm.org/citation.cfm?id=829515.830555
http://dl.acm.org/citation.cfm?id=1251375.1251396
http://dl.acm.org/citation.cfm?id=1251375.1251396

[15] C. Gulcu and G. Tsudik. Mixing email with babel. In Proceedings of the
1996 Symposium on Network and Distributed System Security (SNDSS
’96), SNDSS ’96, pages 2–, Washington, DC, USA, 1996. IEEE Com-
puter Society. ISBN 0-8186-7222-6. URL http://dl.acm.org/citation.
cfm?id=525423.830456.

[16] J. Hayes and G. Danezis. k-fingerprinting: A robust scalable web-
site fingerprinting technique. In 25th USENIX Security Symposium
(USENIX Security 16), pages 1187–1203, Austin, TX, 2016. USENIX
Association. ISBN 978-1-931971-32-4. URL https://www.usenix.org/
conference/usenixsecurity16/technical-sessions/presentation/hayes.

[17] D. Herrmann, R. Wendolsky, and H. Federrath. Website fingerprinting:
Attacking popular privacy enhancing technologies with the multinomial
näıve-bayes classifier. In CCSW ’09: ACM Workshop on Cloud Com-
puting Security, pages 31–42, November 2009. URL http://epub.uni-
regensburg.de/11919/.

[18] A. Hintz. Fingerprinting websites using traffic analysis. In R. Dingledine
and P. Syverson, editors, Proceedings of Privacy Enhancing Technologies
workshop (PET 2002). Springer-Verlag, LNCS 2482, April 2002.

[19] R. Jansen and N. Hopper. Shadow: Running tor in a box for ac-
curate and efficient experimentation. In NDSS. The Internet Soci-
ety, 2012. URL http://dblp.uni-trier.de/db/conf/ndss/ndss2012.html#
JansenH12.

[20] R. Jansen and A. Johnson. Safely measuring tor. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’16, pages 1553–1567, New York, NY, USA, 2016. ACM.
ISBN 978-1-4503-4139-4. doi: 10.1145/2976749.2978310. URL http://
doi.acm.org/10.1145/2976749.2978310.

[21] R. Jansen, P. Syverson, and N. Hopper. Throttling tor bandwidth par-
asites. In Proceedings of the 21st USENIX conference on Security sym-
posium, Security’12, pages 18–18, Berkeley, CA, USA, 2012. USENIX
Association. URL http://dl.acm.org/citation.cfm?id=2362793.2362811.

[22] R. Jansen, J. Geddes, C. Wacek, M. Sherr, and P. Syverson. Never
been kist: Tor’s congestion management blossoms with kernel-informed
socket transport. In 23rd USENIX Security Symposium (USENIX Se-
curity 14), pages 127–142, San Diego, CA, 2014. USENIX Association.
ISBN 978-1-931971-15-7. URL https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/jansen.

83

http://dl.acm.org/citation.cfm?id=525423.830456
http://dl.acm.org/citation.cfm?id=525423.830456
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/hayes
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/hayes
http://epub.uni-regensburg.de/11919/
http://epub.uni-regensburg.de/11919/
http://dblp.uni-trier.de/db/conf/ndss/ndss2012.html#JansenH12
http://dblp.uni-trier.de/db/conf/ndss/ndss2012.html#JansenH12
http://doi.acm.org/10.1145/2976749.2978310
http://doi.acm.org/10.1145/2976749.2978310
http://dl.acm.org/citation.cfm?id=2362793.2362811
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/jansen
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/jansen

[23] M. Juarez, S. Afroz, G. Acar, C. Diaz, and R. Greenstadt. A critical
evaluation of website fingerprinting attacks. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security,
CCS ’14, pages 263–274, New York, NY, USA, 2014. ACM. ISBN 978-1-
4503-2957-6. doi: 10.1145/2660267.2660368. URL http://doi.acm.org/
10.1145/2660267.2660368.

[24] Z. Li, M. Zhang, Z. Zhu, Y. Chen, A. Greenberg, and Y.-M. Wang.
Webprophet: Automating performance prediction for web services.
In Proceedings of the 7th USENIX Conference on Networked Systems
Design and Implementation, NSDI’10, pages 10–10, Berkeley, CA,
USA, 2010. USENIX Association. URL http://dl.acm.org/citation.cfm?
id=1855711.1855721.

[25] M. Liberatore and B. N. Levine. Inferring the source of encrypted http
connections. In Proceedings of the 13th ACM Conference on Computer
and Communications Security, CCS ’06, pages 255–263, New York, NY,
USA, 2006. ACM. ISBN 1-59593-518-5. doi: 10.1145/1180405.1180437.
URL http://doi.acm.org/10.1145/1180405.1180437.

[26] X. Luo, P. Zhou, E. W. W. Chan, W. Lee, R. K. C. Chang, and
R. Perdisci. Httpos: Sealing information leaks with browser-side obfus-
cation of encrypted flows. In In Proc. Network and Distributed Systems
Symposium (NDSS). The Internet Society, 2011.

[27] D. Mccoy, K. Bauer, D. Grunwald, T. Kohno, and D. Sicker. Shining
light in dark places: Understanding the tor network. In Proceedings
of the 8th international symposium on Privacy Enhancing Technologies,
PETS ’08, pages 63–76, Berlin, Heidelberg, 2008. Springer-Verlag. ISBN
978-3-540-70629-8. doi: 10.1007/978-3-540-70630-4 5. URL http://dx.
doi.org/10.1007/978-3-540-70630-4 5.

[28] R. Netravali, A. Goyal, J. Mickens, and H. Balakrishnan. Polaris: Faster
page loads using fine-grained dependency tracking. In Proceedings of the
13th Usenix Conference on Networked Systems Design and Implemen-
tation, NSDI’16, pages 123–136, Berkeley, CA, USA, 2016. USENIX
Association. ISBN 978-1-931971-29-4. URL http://dl.acm.org/citation.
cfm?id=2930611.2930620.

[29] R. Nithyanand, X. Cai, and R. Johnson. Glove: A bespoke website fin-
gerprinting defense. In Proceedings of the 13th Workshop on Privacy in
the Electronic Society, WPES ’14, pages 131–134, New York, NY, USA,
2014. ACM. ISBN 978-1-4503-3148-7. doi: 10.1145/2665943.2665950.
URL http://doi.acm.org/10.1145/2665943.2665950.

84

http://doi.acm.org/10.1145/2660267.2660368
http://doi.acm.org/10.1145/2660267.2660368
http://dl.acm.org/citation.cfm?id=1855711.1855721
http://dl.acm.org/citation.cfm?id=1855711.1855721
http://doi.acm.org/10.1145/1180405.1180437
http://dx.doi.org/10.1007/978-3-540-70630-4_5
http://dx.doi.org/10.1007/978-3-540-70630-4_5
http://dl.acm.org/citation.cfm?id=2930611.2930620
http://dl.acm.org/citation.cfm?id=2930611.2930620
http://doi.acm.org/10.1145/2665943.2665950

[30] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel. Website Finger-
printing in Onion Routing Based Anonymization Networks. In Proceed-
ings of the 10th Annual ACM Workshop on Privacy in the Electronic
Society, WPES ’11, pages 103–114. ACM, 2011. ISBN 978-1-4503-1002-
4. doi: 10.1145/2046556.2046570. URL http://doi.acm.org/10.1145/
2046556.2046570.

[31] Q. Sun, D. R. Simon, Y.-M. Wang, W. Russell, V. N. Padmanabhan, and
L. Qiu. Statistical identification of encrypted web browsing traffic. In
Proceedings of the 2002 IEEE Symposium on Security and Privacy, SP
’02, pages 19–, Washington, DC, USA, 2002. IEEE Computer Society.
ISBN 0-7695-1543-6. URL http://dl.acm.org/citation.cfm?id=829514.
830535.

[32] H. Tazaki, F. Uarbani, E. Mancini, M. Lacage, D. Camara, T. Turletti,
and W. Dabbous. Direct code execution: Revisiting library os architec-
ture for reproducible network experiments. In Proceedings of the Ninth
ACM Conference on Emerging Networking Experiments and Technolo-
gies, CoNEXT ’13, pages 217–228, New York, NY, USA, 2013. ACM.
ISBN 978-1-4503-2101-3. doi: 10.1145/2535372.2535374. URL http://
doi.acm.org/10.1145/2535372.2535374.

[33] T. Wang and I. Goldberg. Improved Website Fingerprinting on Tor.
In Proceedings of the 12th ACM Workshop on Workshop on Privacy in
the Electronic Society, WPES ’13, pages 201–212, New York, NY, USA,
2013. ACM. ISBN 978-1-4503-2485-4. doi: 10.1145/2517840.2517851.
URL http://doi.acm.org/10.1145/2517840.2517851.

[34] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg. Effective
attacks and provable defenses for website fingerprinting. In Proceedings
of the 23rd USENIX Conference on Security Symposium, SEC’14, pages
143–157, Berkeley, CA, USA, 2014. USENIX Association. ISBN 978-1-
931971-15-7. URL http://dl.acm.org/citation.cfm?id=2671225.2671235.

[35] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall.
Demystify page load performance with wprof. In Proc. of the USENIX
conference on Networked Systems Design and Implementation (NSDI),
2013.

[36] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar. An integrated experimental en-
vironment for distributed systems and networks. In Proc. of the Fifth
Symposium on Operating Systems Design and Implementation, pages
255–270, Boston, MA, Dec. 2002. USENIX Association.

85

http://doi.acm.org/10.1145/2046556.2046570
http://doi.acm.org/10.1145/2046556.2046570
http://dl.acm.org/citation.cfm?id=829514.830535
http://dl.acm.org/citation.cfm?id=829514.830535
http://doi.acm.org/10.1145/2535372.2535374
http://doi.acm.org/10.1145/2535372.2535374
http://doi.acm.org/10.1145/2517840.2517851
http://dl.acm.org/citation.cfm?id=2671225.2671235

[37] C. V. Wright, S. E. Coull, and F. Monrose. Traffic morphing: An ef-
ficient defense against statistical traffic analysis. In In Proceedings of
the 16th Network and Distributed Security Symposium, pages 237–250.
IEEE, 2009.

86

APPENDIX A

MINIMAL CLIENT AND SERVER CODE

Listing 9 Simple server code that sends back precisely the amount of data
that the client requests.
PORT = 3333

BUF_SIZE = 4096

BUF = 'B' * BUF_SIZE

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

s.bind(('', PORT))

s.listen(1)

while True:

try:

conn, _ = s.accept()

read cmd from client

request_str = conn.recv(10)

size = int(request_str)

assert size > 0, "bad size {}".format(size)

remaining = size

while remaining > 0:

to_send = min(remaining, BUF_SIZE)

sent = conn.send(BUF[:to_send])

remaining -= sent

done sending... wait for client to close

conn.recv(1)

except Exception as exc:

print('ERROR: {}'.format(exc))

87

Listing 10 Simple client code that rounds the requested amount of data and
also pads the request message.
PORT = 3333

BUF_SIZE = 4096

VALID_BUCKET_WIDTHS = {750*(i*50) for i in range(0, 11)}

def compute_new_size(bucket_width, size):

return int(math.ceil(float(size) / bucket_width)) * bucket_width

server_host = sys.argv[1]

bucket_width = int(sys.argv[2])

size = int(sys.argv[3])

if bucket_width:

size = compute_new_size(bucket_width, size)

request_str = '{:010d}'.format(size)

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.connect((server_host, PORT))

s.send(request_str.encode())

recv_size = 0

while True:

data = s.recv(BUF_SIZE)

recv_size += len(data)

if recv_size > size:

break here and we will error

break

elif recv_size == size:

break

if recv_size == size:

print('OK')

sys.exit(0)

else:

print('ERROR: requested= {} but got {}'.format(size, recv_size))

sys.exit(1)

88

APPENDIX B

OUR TOR EXIT NODE ON AMAZON EC2

Figure B.1: Description of our primary Tor “exit” relay zzzrouteraaa.

89

	CHAPTER 1 Introduction
	Contributions

	CHAPTER 2 Background
	Tor
	Website traffic fingerprinting
	Attacks
	Defenses

	CHAPTER 3 Fine-grained modeling of the web page loading process
	The high-level mechanics of web page loading
	Deep dive into web page loading process
	Google Chrome architecture
	Layout engine processing model
	Resources and HTML elements
	HTML parsing
	JavaScript
	When is a page load done?

	Extracting the model of the web page loading process
	Instrumenting Chrome
	Constructing the model from the log

	Traffic generator
	Browser simulator
	Server simulator

	Extracting models of top Alexa-ranked web pages
	Validation of page models

	CHAPTER 4 Provable website traffic fingerprinting defenses over Tor
	Provable defenses
	BuFLO
	Tamaraw
	CS-BuFLO

	Architecture for BuFLO-based defenses over Tor
	Proxy and protocol design and implementation
	Defense session
	Design
	Implementation
	Sanity check experiments

	Evaluating CS-Tamaraw over live Tor network
	More rigorous sanity checks
	Revisiting live Tor experiments

	Large-scale simulations with Shadow
	Shadow
	Setup and methodology
	Results

	CHAPTER 5 Conclusion
	REFERENCES
	APPENDIX A Minimal client and server code
	APPENDIX B Our Tor exit node on Amazon EC2

