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Abstract

Large-scale data or big data is an enormously popular word in the data science and statistics com-

munities. These datasets are often collected over periods of time - at hourly and weekly rates -

with the help of technological advancements in physical and cloud-based storage. The information

stored is useful, especially in biomedicine, insurance, and retail, where patients and customers are

crucial to business survival. In this thesis, we develop new statistical methodologies for handling

two types of datasets: continuous data and binary data.

Time-varying associations among store products provide important information to capture

changes in consumer shopping behavior. In the first part of this thesis, we propose a longitudi-

nal principal component analysis (LPCA) using a random-effects eigen-decomposition, where the

eigen-decomposition utilizes longitudinal information over time to model time-varying eigenval-

ues and eigenvectors of the corresponding covariance matrices. Our method can effectively analyze

large marketing data containing sales information for selected consumer products from hundreds

of stores over an 11-year time period. The proposed method leads to more accurate estimation

and interpretation compared to comparable approaches, which is illustrated through finite sample

simulations. We show our method’s capabilities and provide an interpretation of the eigenvector

estimates in an application to IRI marketing data.

In the second part of this thesis, we formulate the LPCA problem for binary data. We pro-

pose capturing the associations among the products or variables through the odds ratios, where a

2×2 contingency table contains probabilities representing the joint distribution of two binary prod-

ucts. The eigen-decomposition utilizes longitudinal information over time to model time-varying

eigenvalues and eigenvectors of the corresponding odds ratio matrices. These odds ratio matrices

measure the pairwise associations among the binary products and is more appropriate to use than

the Pearson correlation coefficient. Our method illustrates an improvement in visualization and in-

terpretation through simulation studies and an application to IRI panel data of individual customer
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Chapter 1

Introduction

Principal component analysis (PCA) is a widely used technique for data exploration, analysis,

and as a pre-processing tool in machine learning. PCA is quite useful for dimension reduction

and regression, and has been applied in a broad range of fields including sports, biomedicine,

marketing, imaging, and cloud computing.

Longitudinal data analysis is a field of statistics that is crucial to the development of new

methodologies in clinical trials, biomedicine, and observational studies. Recently, the data appli-

cations within longitudinal data analysis have expanded to include more technological and non-

medical sources. In longitudinal data, often observations are considered as repeated measurements

for clusters of subjects. Due to the repeated nature, the outcomes exhibit association as correlation.

This correlation presents the main challenge in statistical papers. However, developing PCA for

longitudinal approaches is still gaining attraction.

In this thesis, we offer a longitudinal methodology that tackles a correlation problem through

estimating the eigenvalues and eigenvectors as time-varying functions. We propose a longitudi-

nal PCA for continuous data in Chapter 2 and for binary data in Chapter 3. In the continuous

data case, we capture association through the covariance, whereas the association for the binary

data case is captured through the odds ratio. In Chapter 2, we incorporate random effects into

the estimation methodology, while Chapter 3 ignores the random effects. For both chapters, we

estimate time-varying eigenvalues and eigenvectors as smoothing splines. We adopt a multivariate

Newton-Raphson algorithm to estimate the eigenvectors, while the eigenvalues are estimated with

an explicit solution from an objective function based on generalized estimating equations. The

proposed methodology shows improvements over a comparable approach for both the continuous

and binary data settings. The improvements in the numerical studies are substantial for both eigen-
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value and eigenvector estimations. For the real data application, the proposed methodology offers

a refined interpretation for the eigenvectors.
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Chapter 2

Longitudinal Principal Components for Con-

tinuous Data

2.1 Introduction

Life-changing events can occur at any time, within decades or much shorter time periods.

For example, technological innovation or stagnation could affect the fates of companies and their

employees. In the first quarter of 2012, Kodak, a leading technological company well-known

for producing photography supplies such as cameras and films, filed for bankruptcy and ceased

production of digital cameras and several photography accessories. Therefore it is necessary and

important to study consumers shopping behavior and marketing trends over time to help companies

to avoid manufacturing products which are no longer attractive to consumers.

Principal component analysis (PCA) is often employed to handle large-dimensional multivari-

ate data with correlations. One particular application of the PCA is in business and marketing,

where sources of variation have been studied extensively (e.g., Jain et al., 1990; Fader & Lattin,

1993; Rossi & Allenby, 1993; Bradlow, 2002). In addition, the PCA is a powerful tool to pro-

vide dimension reduction in time series analysis (e.g., Brillinger, 1981; Ku et al., 1995; Peña &

Yohai, 2016). However, the PCA has been adapted for longitudinal data primarily in functional

data analysis, where observations are viewed as smooth functions. The functional PCA (Ram-

say & Silverman, 2005; Yao et al., 2005; Hall et al., 2006) applies covariance functions at two

time points for a single variable, where covariance operators are decomposed into eigenvalues and

eigenfunctions. The eigenfunctions could change over a time domain. One extension of the func-
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tional PCA is to estimate principal components for observations measured over two hierarchical

or longitudinal domains, such as two different levels of time (Di et al., 2009). Greven et al. (2010)

make a further extension of Di et al.’s (2009) approach and propose the longitudinal functional

PCA which allows for more levels of time and functional random effects to incorporate longitu-

dinal correlation. In addition, Jiang & Wang (2010) extend the functional PCA by considering

additional covariates, where a new covariance function depends on time and covariates.

The functional PCA approaches assume that only eigenfunctions change over time, while the

eigenvalues remain fixed. Additionally, the covariance function is calculated for a single variable

or two variables at pairs of time points. These restrictions could be limiting in our marketing

data application, since our target is to capture the associations of multiple variables across all time

points. For example, the associations among several products sold at a grocery store over a period

of 11 years show heterogeneous variation on sales volumes from different stores. For these reasons,

a new longitudinal PCA approach needs to be developed.

This paper is motivated by the IRI marketing data set, an immense collection of consumer panel

data of grocery and drug store sales, pricing, and promotion strategies (Bronnenberg et al., 2008;

Kruger & Pagni, 2008). The IRI data were created for marketing researchers to explore marketing

trends and their impact on economics. The sales data contain weekly sales information of more

than 30 product categories in over 40 regional markets in the United States.

We propose a longitudinal PCA that decomposes correlation information arising from mul-

tivariate observations over time while incorporating heterogeneity among subjects. Specifically,

subject-specific random effects are implemented to capture heterogeneous variation among stores,

while correlations among product sales are modeled through time-varying eigen-decomposition.

In modeling the eigen-decomposition, we assume that both eigenvalues and eigenvectors are time-

varying functions. The proposed method estimates these time-varying functions based on non-

parametric splines, which provides more accurate estimation and interpretation of the time-varying

eigenvectors and eigenvalues.

The proposed method has three advantages over existing approaches. First, incorporating ran-
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dom effects helps to explain the variation among different sizes of stores, thus improving the esti-

mation of eigenvalues and eigenvectors. Moreover, the random effects can account for the variation

of different products in sales from different stores. Second, modeling eigenvalues as functions of

time is more sensible when the eigenvalues are likely to change over time. Additionally, modeling

eigenvectors as functions of time utilizes the mechanics of functional PCA and the interpretation

of PCA. In standard PCA, the eigenvectors are used to describe grouping behaviors from different

product sales. In the proposed method, the time-varying eigenvectors provide longitudinal inter-

pretation of grouping behavior of product sales over time. Third, the time-varying eigenvectors

can be estimated using nonparametric splines, which are able to recover information from missing

time points by utilizing neighboring data points.

To implement the proposed method, we develop an iterative algorithm which simultaneously

estimates time-varying eigenvalues and time-varying eigenvectors. This algorithm resolves the

identifiability issue for the eigenvectors with the use of the Gram-Schmidt orthonormalization pro-

cess. In addition, we implement an Estimation-Substitution algorithm to incorporate the random-

effects estimation.

2.2 Model Framework and Methodology

2.2.1 Background and Notation

Let yijt be a response measured over a time variable t for the j-th observation from the cluster

i where i = 1, 2, . . . , N , j = 1, 2, . . . , J , and t is in the range of [0, 1]. In our application, t

represents the number of years, where the first recorded year of sales is 2001, and t is rescaled by

the total T = 11 years to fall into the range of [0, 1]. Also in our application, i represents the i-th

store, and j is the j-th product. For simplicity, a bold lowercase represents a vector, e.g., yit is a

vector of length J , and a bold uppercase represents a matrix, e.g.,X .

We provide the framework of the principal component analysis (PCA) and introduce discretized

PCA in a longitudinal setting. Let x be a vector of J random variables where the covariance
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matrix of x is Σ. The goal of the PCA is to maximize the overall variation of data,X , using linear

combinations of the observations, referred to as principal components. Let ek be a vector of length

J , and the objective function associated with the PCA be

maxek

e>k Σek
e>k ek

, k = 1, . . . , J,

s.t. e>k ek = 1 and e>i ek = 0, for i = 1, . . . , k − 1.

The principal components are the linear combinations e>k x, where the variance of the k-th principal

component is λk = e>k Σek. Following spectral decomposition, the k-th principal component’s

loading vectors are the eigenvectors, ek, and the corresponding variances are the eigenvalues, λk.

The covariance matrix has the equivalent form

Σ =
J∑
k=1

λkeke
>
k .

After maximizing the variation of the data, one often seeks to reduce the dimensionality of data.

Therefore, the PCA can be used to approximate the true covariance of x by choosing a smaller

number of components K ≤ J , where the approximate matrix Σ̂ is

Σ̂ =
K∑
k=1

λkeke
>
k .

In the longitudinal data setting, we can perform the PCA by decomposing the covariance matrix

at each time separately. We refer to this as discretized principal component analysis (DPCA). The

objective function of DPCA is similar to the standard eigen-decomposition of a covariance matrix,

but allows eigen-terms to be functions of time t. Let ekt be a vector of length J at fixed time t,

then the objective function of the DPCA can be expressed as

maxekt

e>ktΣtekt
e>ktekt

, k = 1, . . . , J,
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s.t. e>ktekt = 1 and e>itekt = 0, for i = 1, . . . , k − 1.

Maximizing the above objective function yields the k-th principal component at fixed time t, e>ktxt,

and the variance of the k-th principal component at fixed time t, λkt = e>ktΣtekt, where xt is a

vector with covariance Σt. The approximate covariance matrix at time t is represented as

Σ̂t =
K∑
k=1

λktekte
>
kt, (2.1)

where K ≤ J .

2.2.2 Time-varying models

In this section, we represent eigenvalues and eigenvectors as continuous functions of t instead of

discrete functions as in the DPCA. We assume that the time-varying eigenvalues, α(t), and time-

varying eigenvectors e(t) can be approximated by polynomial splines, and that the time variable is

in the range [0, 1].

Nonparametric splines have been extensively studied for independent and longitudinal data

by Anderson & Jones (1995), Huang et al. (2004), Durbán et al. (2005), Liang & Xiao (2006),

and Xue & Liang (2009). Additionally, semiparametric and nonparametric approaches have been

proposed for covariance and correlation matrix estimation for longitudinal data (e.g., Diggle &

Verbyla, 1998; Wu & Pourahmadi, 2003; Fan et al., 2007; Sun et al., 2007; Fan & Wu, 2008;

Maadooliat et al., 2013).

Let ξ be a partition of the interval [0, 1] with PN interior knots

ξ = {0 = ξ0 < ξ1 < · · · < ξPN
< ξPN+1 = 1}.

Consequently, using ξ as knots, the polynomial splines of orders M1 and M2 for eigenvalues and

eigenvectors are at most,M1−1 andM2−1 degrees of polynomial functions on intervals [ξi, ξi+1),

for i = 0, . . . , PN − 1, and [ξPN
, ξPN+1]; and the spline functions are M1 − 2 and M2 − 2 continu-
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ously differentiable. Note that different sets of knots are allowed for eigenvalues and eigenvectors;

however, for simplicity, we choose the same set of knots here. Then the k-th eigenvalue and the

corresponding eigenvector can be modeled as

αk(t) ≈
CN∑
l=1

βklbkl(t) , ekj(t) ≈
DN∑
m=1

νkjmgkjm(t), (2.2)

where ekj(t) is the j-th product’s loading in the k-th eigenvector, {bkl(t)}CN
l=1 and

{gkjm(t)}DN
m=1 are sets of spline bases with CN = PN + M1 and DN = PN + M2; and βk =

(βk1, . . . , βkCN
)> and νkj = (νkj1, . . . , νkjDN

)> are sets of B-spline coefficients. The construc-

tion of the basis functions depends on the order of the splines and the number of knots which can

be preselected by the user or selected through the Akaike Information Criterion (AIC) (Akaike,

1974) or Bayesian Information Criterion (BIC) (Schwarz, 1978). One attractive feature of polyno-

mial splines is that they approximate a smooth function sufficiently well without requiring a large

number of knots.

2.2.3 Estimation of Eigenvalues and Eigenvectors

In this section, we provide time-varying eigenvalue and eigenvector estimations under the frame-

work of generalized estimating equations (GEE). We denote the true variance of the response as

V 0
t = Var(yit), and the approximated variance matrix based on the first K eigenvalues and eigen-

vectors as

Vt =
K∑
k=1

αk(t)ek(t)ek(t)
>, (2.3)

where αk(t) is the k-th eigenvalue corresponding to ek(t), the k-th eigenvector over time. The

difference of the inverse of the true covariance matrix and the inverse of its approximation under

the GEE framework is

hit =

(
V −1t − V 0

t
−1
)
(yit − µt), (2.4)
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where µt represents the overall mean vector of responses at each time point. We include the

residual term (yit − µt) as a multiplier in (??) since it simplifies the objective function in the

optimization process.

Motivated by the generalized method of moments (GMM), we minimize the following objec-

tive function

T∑
t=1

N∑
i=1

h>ithit
N

=
T∑
t=1

1

N

N∑
t=1

(yit − µt)>(V −1t − Ṽ −1t )>(V −1t − Ṽ −1t )(yit − µt). (2.5)

Note that the true variance V 0
t is unknown and thus replaced with the sample covariance matrix Ṽt.

We minimize the following objective function with respect to both αk(t) and ek(t) simultaneously-

T∑
t=1

( N∑
i=1

h>ithit
N

+ φ
∑
i 6=j

‖ei(t)>ej(t)‖22
)
, (2.6)

where φ is the tuning parameter for the eigenvector penalty term, where the penalty encourages

orthogonality between any pairs of eigenvectors.

Using the Law of Large Numbers, (2.5) can be approximated by the expectation and trace

operations as follows:

∑T
t=1 E

[
Tr
{
(yit − µt)>(V −1t − Ṽ −1t )2(yit − µt)

}]
=

∑T
t=1 Tr

[
E
{
(yit − µt)(yit − µt)>(V −1t − Ṽ −1t )2

}]
≈

∑T
t=1 Tr

{
V 0
t (V

−1
t − Ṽ −1t )2

}
,

where E indicates the expectation, and Tr{·} indicates the trace of a matrix. For the purpose of

illustration, we focus on the estimation of the eigenvalues. By using the eigenvectors from the

sample covariance matrix, we approximate (2.5) in terms of the eigenvalues as

T∑
t=1

N∑
i=1

h>ithit
N

≈
T∑
t=1

K∑
k=1

α0
kt

(
1

αk(t)
− 1

α̃kt

)2

, (2.7)
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where α0
kt is the true eigenvalue, α̃kt is the sample eigenvalue, and αk(t) is the estimator of the

eigenvalues (k = 1, . . . , K; t = 1, . . . , T ). We can interpret (2.7) as a weighted square difference

for the inverse of the true and estimated eigenvalues.

We compare the proposed objective function in (2.7) to those based on the maximum likelihood

(ML) and the Frobenius norm. The objective function based on the ML is

T∑
t=1

(
log det(Vt) + Tr

{
V −1t Ṽt

})
,

where log det(·) indicates the logarithm of the determinant of a matrix. The objective function

based on the Frobenius norm of the difference between the true covariance and estimated covari-

ance matrix is
T∑
t=1

(
Tr
{
(Vt − Ṽt)(Vt − Ṽt)>

})1/2

.

Following a similar technique of expectation and trace operations as above, we can transform the

objective function of the ML to be

T∑
t=1

K∑
k=1

(
α̃kt
αk(t)

+ log(αk(t))
)
,

and the objective function corresponding to the Frobenius norm to be

T∑
t=1

K∑
k=1

(
αk(t)− α̃kt

)2

.

From our unreported simulation, the proposed norm in (2.7) produces smaller mean square errors

of the estimations compared to the ones produced by the ML or Frobenius norm approaches, espe-

cially on larger eigenvalues. In addition, the convergence rate of the algorithm using (2.7) is faster

than that of the ML and Frobenius.
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2.2.4 Incorporation of Random Effects

Random-effects modeling (Laird & Ware, 1982; Gardiner et al., 2009) are quite useful to ac-

commodate subject-specific effects from individuals. For the IRI marketing data application, the

volumes of sales show strong variations from different types of stores and products, as mentioned

in Section 2.1. Therefore, it is important to incorporate heterogeneity of the stores in our modeling.

We propose the estimated eigenanalysis with random effects (EERE) model, which assumes

that the observed response can be decomposed into two parts at time t, the true response and the

unobserved random effects. That is, yobsit = yit+γi, where γi represents a subject-specific random

effect with normal distribution, N(0,D), and D is the variance component for the random effect

γi. The corresponding variance of yobsit is

V obs
t = Var(yit) + Var(γi). (2.8)

The advantage of incorporating random effects in the proposed EERE is that it is able to re-

move the heterogeneity among different stores and products, and therefore provides more accurate

covariance estimation. Consequently, this leads to more accurate estimations of eigenvalues and

eigenvectors. In contrast, if the true response is yit + γi, then a variance of only Var(yit) produces

a biased estimator of the covariance matrix as it ignores the covariance of the random effects γi.

Similarly, the DPCA in (2.1) without incorporating the random effects also produces biased co-

variances. Therefore, the EERE model is more effective if the heterogeneous information from the

stores or products is present.

To simplify the notation, we suppress the notation on time t, and assume that the random effect

γi follows a multivariate normal distribution N(0,D), where γi is a J-dimensional random-effect

vector from the i-th store, J corresponds to the number of products, andD is the covariance matrix

of the random effects. We employ an Estimation-Substitution (ES) algorithm (Elashoff & Ryan,

2004; Xu et al., 2012) by initializing the random effects γi, the covariance matrix D, the overall
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mean µt, and the J × J residual covarianceRt. We then estimate the random effects by

γ̂ = Z
(
(1T1>T )⊗D +R

)−1(
1>T ⊗D

)>
, (2.9)

where Z =

(
yobs1 − (1N ⊗ µ>1 ),yobs2 − (1N ⊗ µ>2 ), · · · ,yobsT − (1N ⊗ µ>T )

)
is an N × JT

matrix, yobst is an N × J matrix of observations at each time point, R = diag(R1,R2, · · · ,RT )

is a JT × JT block diagonal matrix, and 1T is a T -dimensional vector of ones for t = 1, . . . , T .

Here the random-effect estimation depends on the covariance of random effects, the mean of the

products, and the residual covariance. This requires one to estimate each of these components

iteratively until their convergence. The covarianceD of random effects, the mean of the products,

and the residual covarianceRt can be estimated iteratively via

D̂(l) = D̂(l−1) −
(
1>T ⊗ D̂(l−1))((1T1>T )⊗ D̂(l−1) + R̂(l−1))−1(1>T ⊗ D̂(l−1))>;

µ̂
(l)
t = 1

N

∑N
i=1(y

obs
it −γ̂

(l−1)
i ); and R̂(l)

t = 1
N

∑N
i=1(y

obs
it −γ̂

(l−1)
i −µ̂(l−1)

t )(yobsit −γ̂
(l−1)
i −µ̂(l−1)

t )T ,

respectively.

Once the random effects are estimated through the iteration steps in (2.9), we redefine the

objective function in (2.6) by replacing V 0
t with Ṽ ∗t = Var(yobsit − γ̂i), and define

h∗it =

(
V −1t − Ṽ ∗−1t

)
(yobsit − µt − γ̂i).

That is, we minimize the following objective function

T∑
t=1

( N∑
i=1

h∗>it h
∗
it

N
+ φ

∑
i 6=j

‖ei(t)>ek(t)‖22
)
, (2.10)

with respect to the eigenvalues αk(t) and the eigenvectors ek(t) simultaneously using a Newton-

Raphson algorithm, as discussed in the following section.
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2.3 Implementation

In this section, we provide the algorithm of the EERE model (2.8) which iterates through the

Newton-Raphson and the Estimation-Substitution algorithms.

Algorithm: Estimated Eigenanalysis with Random Effects (EERE)
Step 1: Initialize γ(0)

i ,D(0), µ(0)
t , andR(0) ;

Step 2: Estimate the random effects γ(l)
i using the ES algorithm in (2.9) ;

Step 3: Estimate the parametersD(l), µ(l), andR(l) at the l-th step;
Step 4: Repeat Steps 2-3 until ‖γ(l)

i − γ
(l−1)
i ‖ < εγ , where εγ is a chosen tolerance

level.
Step 5: Set the initial values of the eigenvectors as the sample eigenvectors:
ek(t)

(0) = ẽk(t);
Step 6: Given the current eigenvectors ek(t)(m−1),
(i) update the eigenvalues αk(t)(m) by minimizing the objective function in (2.10), and
(ii) update ek(t)(m) given α(m)

k using the Newton-Raphson algorithm;
Step 7: Iterate Step 6 if
(i) ‖αk(t)(m) − αk(t)(m−1)‖ > εα, where εα is a chosen tolerance level, or
(ii)‖(ek(t)(m))(ek(t)

(m))> − (ek(t)
(m−1))(ek(t)

(m−1))>‖ > εe , where εe is a chosen
tolerance level.

The Newton-Raphson algorithm for the eigenvectors estimation in Step 6 is multivariate. Specif-

ically, at the (m)-th iteration, we update

e(t)(m) = e(t)(m−1) − J−1f
(
e(t)(m−1)

)
f

(
e(t)(m−1)

)
,

where e(t)(m−1) = (e1(t)
(m−1)> , . . . , eK(t)

(m−1)>)>, K is the number of principal components,

f(·) is a vector of the first derivatives of the objective function in (2.10), and Jf (·) is the Jacobian

matrix of the second derivatives of (2.10). In detail, f and Jf have the following forms:

f

(
e(t)

)
=

2

N

N∑
i=1

ḣ>ithit + 2λ

(∑
l 6=1

(e1(t)
>el(t))el(t), . . . ,

∑
l 6=K

(eK(t)
>el(t))el(t)

)>

and

13



Jf

(
e(t)

)
≈ 2

N

N∑
i=1

ḣ>itḣit + 2λ



∑
l 6=1

el(t)el(t)
> . . . e1(t)

>eK(t)I + e1(t)eK(t)
>

... . . . ...

. . .
∑
l 6=K

el(t)el(t)
>

 ,

where ḣit = ∂hit

∂e(t)
, and I is a J × J identity matrix. Note that

1

N

N∑
i=1

ḧ>ithit → 0 as N →∞,

since E[hit] = 0 and where ḧit = ∂ḣit

∂e(t)
.

In Step 6, the Gram-Schmidt process is applied in estimating the eigenvectors to insure their

pairwise orthonormality. Namely, the Gram-Schmidt process converts linearly dependent vectors

into orthonormal vectors which span the same space of the original vectors. That is, the eigenvector

estimator, êk(t), is transformed to an orthogonal vector e∗k(t):

e∗k(t) = êk(t)−
k−1∑
l=1

e∗l (t)
êk(t)

>e∗l (t)

e∗l (t)
>e∗l (t)

,

where e∗1(t) = ê1(t) is the time-varying first eigenvector estimator. Finally, we transform each

e∗k(t) into an orthonormal vector e∗∗k (t) as

e∗∗k (t) =
e∗k(t)(

e∗k(t)
>e∗k(t)

)1/2
.

2.3.1 Choosing the number of components

In this section, we provide the criterion for selecting the number of components in the eigen-

decomposition. Choosing the number of components remains an open problem in the PCA. One

popular approach is to create a scree plot of the eigenvalues, in which the number of components

is chosen at the elbow or the scree of the line drawn. This strategy is appealing since it provides a

14



visual representation of the majority of variation to be retained from the data. For the IRI marketing

data, which is collected longitudinally, analyzing the scree plots for each time point is inefficient,

because different time points may result in different numbers of chosen components. Instead, we

propose calculating an overall variation by averaging over the T time points.

One such numeric criterion is to choose the percentage of overall variation of the data which

determines the number of components to retain; that is, to increase the number of components until

the desired cumulative percentage of variation from the data is attained. The cumulative percentage

of variance contributed from the first K components is

∑K
k=1

1
T

∑T
t=1 αk(t)∑J

j=1
1
T

∑T
t=1 αj(t)

,

where K ≤ J .

An alternative criterion for choosing the number of components is to implement an adaptation

of the maximal eigenvalue ratio criterion proposed by Luo et al. (2009). Using the ratio of the

eigenvalues

max
1≤k≤J

αk(t)

αk+1(t)
,

where t = 1, . . . , T , we find the largest value of this ratio among the T time points, and retain up

to the k-th component corresponding to the maximum value.

2.4 Numerical Study

We evaluate the proposed methodology with simulation studies for three different settings for

the eigenvalues and eigenvectors corresponding to the longitudinal PCA. In Section 2.4.1, we let

the eigenvectors be fixed over time, while the eigenvalues are time-varying. In Section 2.4.2, we

reverse the setting, such that the eigenvalues are fixed, but the eigenvectors are changing over time.

In Section 2.4.3, we allow both eigenvalues and eigenvectors to be time-varying. For each of these

settings, we perform 500 repeated simulations and compare the EERE with the discretized PCA

15



(DPCA).

To evaluate the estimation of the time-varying eigenvalues, we examine the plots of the aver-

age estimated eigenvalues versus time. Also, we calculate the mean absolute deviation of error

(MADE) for the eigenvalues:

MADEk =
T∑
t=1

1

T

∣∣α̂k(t)− α0
kt

∣∣ /range(α0
k),

where α0
kt is the k-th true eigenvalue, α̂k(t) is the estimated k-th eigenvalue at time t, and k =

1, · · · , K representing the k-th component. The range(α0
k) = max(α0

kt)−min(α0
kt), which covers

the minimum and maximum among all time points.

We evaluate the time-varying eigenvector estimations through creating heatmaps correspond-

ing to the average estimators of eigenvector loading scores over time. The heatmaps allow us to

visualize group changes over time among different variables via color contrasts.

2.4.1 Simulation A: Fixed Eigenvectors, Time-varying Eigenvalues

In this section, we implement the EERE model with time-varying eigenvalues but fixed eigen-

vectors. We generate the first two (K = 2) eigenvalues as follows:

α0
1t =

1

(a10 + a11t+ a12t2)
and α0

2t =
1

(a20 + a21t+ a22t2)
, (2.11)

where (a10, a11, a12)
> = (0.19, 0.20, 0.20)>, (a20, a21, a22)

> = (0.30, 0.50,−0.50)>, and t is in

the range of [0, 1]. The remaining J − 2 eigenvalues are constants around 1 at each time point.

To generate the fixed eigenvectors ek, we perform an eigen-decomposition on a J × J cor-

relation matrix W , which has diagonal entries wii = 1, and off-diagonal entries wij = 0.75,

i = 1, · · · , J for i 6= j.

We generate the random effects γ from a multivariate normal distribution with mean 0 and a

J-dimensional identity matrix I for the covariance matrix. The response vector yt is generated

16



from a multivariate normal distribution with mean 0, and a covariance matrix
∑J

k=1 α
0
ktekek

> at

time t.

For the EERE estimation, the eigenvectors in (2.3) are the sample eigenvectors calculated from

the eigen-decomposition of the sample covariance matrix Ṽt, hence the penalty term of the objec-

tive function in (2.10) can be dropped. We use the cubic spline for modeling the eigenvalues in

(2.3) for the EERE model.

Table 2.1 summarizes the average MADEs for the estimators of the first and second time-

varying eigenvalues when the number of products is J = 6 and 10. It is clear that the EERE method

yields smaller averages of the MADEs compared to those obtained from the DPCA method. The

improvement of the proposed EERE is more apparent when the number of products increases. Fig-

ure 2.1 demonstrates that the proposed estimators of time-varying eigenvalues are closer to the true

eigenvalues on average, and there is a larger gap between the true eigenvalues and the eigenvalues

estimated by the DPCA method over time. The larger gap is due to the heterogeneous variation of

the data which the DPCA is not able to take into account. In contrast, the proposed EERE incorpo-

rates the random-effects estimation through integrating information from longitudinal data, which

leads to more accurate estimation.

N = 200, J = 6 1st Eigenvalue 2nd Eigenvalue
EERE 0.29 0.18
DPCA 2.55 0.33

N = 200, J = 10 1st Eigenvalue 2nd Eigenvalue
EERE 0.28 0.15
DPCA 4.21 0.37

Table 2.1: Average MADEs of the first and second eigenvalues for Simulation A
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Figure 2.1: Average estimated first and second eigenvalues for Simulation A

2.4.2 Simulation B: Fixed Eigenvalues, Time-varying Eigenvectors

In this section, we employ the EERE model with time-varying eigenvectors while assuming that

the eigenvalues are fixed. We generate the time-varying eigenvectors through decomposing a J-

18



dimensional correlation matrixWt with

Wt =



1

w21t 1

...
... . . .

wJ1t wJ2t · · · 1


, (2.12)

where wijt is a time-varying correlation function. We are able to induce time-varying eigen-

vectors that correspond to the time-varying design of Wt. For example, when J = 6 prod-

ucts, we define the time-varying correlations in (2.12) by introducing the following index sets,

I? = {1, · · · , 4}, J? = {5}, and K? = {6}. If i 6= j and i, j ∈ I?, then wijt = 0.70. If i ∈ J? and

j ∈ I?, then wijt = (c0 + c1t+ c2t
2 + c3t

3), where (c0, c1, c2, c3)
> = (−0.18, 2.10,−2.20, 1.00)>.

If i ∈ K? and j ∈ I?, then wijt = 0. If i ∈ J? and j ∈ K?, then wijt = (c0 + c1t + c2t
2 + c3t

3),

where (c0, c1, c2, c3)
> = (0.87, 0.04, 0.10,−1.00)>.

The eigenvalues are generated as in (2.11) in Section 2.4.1, but are estimated through the sam-

ple eigenvalues.

The random effects γi and the responses yit are generated similarly as in Section 2.4.1.

Figures 2.2 and 2.3 illustrate the average estimated eigenvectors for the first two components.

The EERE produces the heatmap that most closely resembles the heatmap from the true eigenvec-

tors in that the loading scores estimations are very close to those of the true time-varying eigenvec-

tors. In contrast, the positive magnitudes of Product 6 of the true first eigenvector are not captured

in the heatmap of the DPCA. Additionally, the DPCA cannot detect the group changing behavior

over time that occurs for Product 5 in Figure 2.2.
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Figure 2.2: The heatmaps of the first eigenvector over time for Simulation B

For the second eigenvector estimator, Figure 2.3 shows that the heatmap of the true eigenvector

is similar to the heatmap produced by the EERE. The DPCA approach cannot clearly detect a

gradual change of loading score patterns over time for Products 1 to 4.
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Figure 2.3: The heatmaps of the second eigenvector over time for Simulation B

2.4.3 Simulation C: Time-varying Eigenvalues, Time-varying Eigenvectors

In this section, we carry out the EERE model assuming that both eigenvalues and eigenvectors

are time-varying. We combine the data generation from Simulations A and B. In this setting, the

eigenvectors are generated with J = 10 products belonging to the following index sets: I? =

{1, · · · , 5}, J? = {6, 7}, and K? = {8, 9, 10}. If i 6= j and i, j ∈ I?, then wijt = 0.70. If i 6= j
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and i ∈ J? and j ∈ I?, then wijt = 0.10 + 0.07t. If i 6= j and i, j ∈ J?, then wijt = 0.8. If i 6= j

and i ∈ K? and j ∈ I?, then wijt = 0.10. If i 6= j and i ∈ K? and j ∈ J?, then wijt = 0.70−0.07t.

If i 6= j and i, j ∈ K?, then wijt = 0.80. The random effects γi and the responses yit are generated

in the same way as in Section 2.4.1.

Table 2.2 summarizes the average MADE values for the first and second eigenvalue estimators

when N = 200 stores, J = 10 products, and T = 10 time points which are in the range [0, 1].

It shows that the EERE method yields smaller average of MADEs compared to DPCA, and the

efficiency improvement from the EERE method is more substantial for the first eigenvalue. Figure

2.4 displays the average first and second time-varying eigenvalue estimators obtained from the

EERE and DPCA. In Figure 2.4, we notice that the time-varying eigenvalue estimators produced

by the EERE are closer to the true eigenvalue curves, while the eigenvalue estimators from the

DPCA are far from the true eigenvalue curves.
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Figure 2.4: Average estimated first and second eigenvalues for Simulation C

N = 200, J = 10 1st Eigenvalue 2nd Eigenvalue
EERE 0.44 0.35
DPCA 4.08 0.48

Table 2.2: Average MADEs of the first and second eigenvalues for Simulation C
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Likewise, the heatmaps of Figure 2.5 show that the average first eigenvector estimator from the

EERE is not much different from the true first eigenvector. On the other hand, the DPCA method,

which fails to account for the variation of the stores, results in estimates that give comparatively

more negative loading scores. Therefore, it is not able to capture the group changes over time for

Products 8 to 10 at later time points. For the second eigenvector estimation, Figure 2.6 indicates

that the heatmap of the true eigenvector is quite close to that of the EERE method, while the DPCA

is incapable of detecting the dynamic change of patterns for Products 1 to 7 over time.

23



1st Eigenvector: True

−
0.

35
−

0.
30

−
0.

25
−

0.
20

−
0.

15
−

0.
10

−
0.

05

P
ro

du
ct

 1

P
ro

du
ct

 2

P
ro

du
ct

 3

P
ro

du
ct

 4

P
ro

du
ct

 5

P
ro

du
ct

 6

P
ro

du
ct

 7

P
ro

du
ct

 8

P
ro

du
ct

 9

P
ro

du
ct

 1
0

Time 1

Time 2

Time 3

Time 4

Time 5

Time 6

Time 7

Time 8

Time 9

Time 10

1st Eigenvector: EERE

−
0.

35
−

0.
30

−
0.

25
−

0.
20

−
0.

15
−

0.
10

−
0.

05

P
ro

du
ct

 1

P
ro

du
ct

 2

P
ro

du
ct

 3

P
ro

du
ct

 4

P
ro

du
ct

 5

P
ro

du
ct

 6

P
ro

du
ct

 7

P
ro

du
ct

 8

P
ro

du
ct

 9

P
ro

du
ct

 1
0

Time 1

Time 2

Time 3

Time 4

Time 5

Time 6

Time 7

Time 8

Time 9

Time 10

1st Eigenvector: DPCA
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Figure 2.5: The heatmaps of the first eigenvector over time for Simulation C
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Figure 2.6: The heatmaps of the second eigenvector over time for Simulation C

2.5 Real Data Application: IRI Grocery Store Sales Data

In this section, we focus on grocery store sales spanning the eleven-year time period, and apply

the proposed method to the IRI marketing data set, which consists of sales units of 552 grocery

stores and 20 products collected over the years 2001 - 2011. Among the stores, 30% are located in
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the South, 28% in the West, 24% the Northeast, and 18% in the Midwest, and fewer than 1% of the

stores do not belong to any chain. The product categories include beer, razor blades, carbonated

beverages, cigarettes, cold cereals, deodorants, diapers, frozen dinners, frozen pizzas, hot dogs,

household cleaners, laundry detergent, milk, mustards and ketchups, peanut butters, photography

supplies, salty snacks, shampoos, soup, and toothbrushes. The twenty products represent a broad

spectrum of consumer packaged goods with varying amounts of sales over time. Among the prod-

ucts, milk has the largest volume of sales across time, and photography supplies have the smallest

volume of sales over time.

This longitudinal sales data presents some interesting features, but is also challenging to ana-

lyze due to the sheer size, variability, and time-varying nature of the data set. The variation among

stores can be due to several extrinsic factors, such as geographic location and store size, or due

to intrinsic factors, such as popularity and reputation of the stores. Figure 2.7 illustrates the av-

erage number of units sold at large, medium, and small stores for two products, beer and peanut

butter. We notice that smaller stores tend to have a decreasing trend in sales of beer and peanut

butter, while larger stores have an overall increase. Figure 2.8 shows that a selected group of eight

products’ average sales present quite different patterns over time. In particular, there is an obvious

decrease in average sales for photography supplies.
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Figure 2.7: Average product sales for three store sizes for beer and peanut butter products.
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Figure 2.8: Average product sales from 100 stores over time among eight products.

Since the number of products is quite large, it is also essential to investigate correlations among

product sales to capture the associations among them over time. This aids marketing researchers

who want to better understand consumer shopping behavior and marketing trends. Figure 2.9

illustrates the heatmaps for the correlation matrices among several selected products. We note
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that the magnitude among the pairwise correlations for photography supplies and other products

changes over time, and the change is more obvious in later years. This phenomenon reflects the

fact that consumers are likely to change their purchasing habits as technology progresses over time.

Incorporating time-varying information plays an important role in analyzing this type of data.
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Figure 2.9: Correlations for eight products at the years 2001, 2006, 2009, and 2011.

We implement the proposed EERE method and compare it to the DPCA approach. Figures 2.10
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and 2.11 show the first and second time-varying eigenvector heatmaps, respectively. Based on the

these heatmaps, the DPCA has an overall averaging behavior for the first eigenvector and a group-

ing behavior for the second eigenvector. The two groups indicated in the DPCA second eigenvector

form a contrast of products that are ingestible versus non-ingestible. The negative magnitudes of

the loading scores in the second eigenvector for most years correspond to the following products:

beer, carbonated beverages, cigarettes, cold cereals, frozen dinners, frozen pizzas, hot dogs, milks,

mustards and ketchups, peanut butters, salty snacks, and soup. These products are those which

consumers take into their bodies via swallowing or inhaling, hence “ingestible.” The remaining

non-ingestible products include razor blades, deodorants, diapers, household cleaners, laundry de-

tergent, photography supplies, shampoo, and toothbrushes. The non-ingestible products are the

ones obviously not taken.
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Figure 2.10: Heatmaps of the first eigenvector of the IRI marketing data containing 20 products
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2nd Eigenvector: EERE
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Figure 2.11: Heatmaps of the second eigenvector of the IRI marketing data containing 20 products

The EERE heatmap in Figure 2.10 does not provide an overall averaging behavior like the

DPCA. On the contrary, it indicates that the beer and cigarette products should be grouped together

in a different category than the remaining products. Another interpretation of the first eigenvector

from the EERE is the distinction between products for general consumers versus products for age-

restricted consumers. Beer and cigarettes are age-restricted products for which consumers must be

at least ages 21 and 18 years old, respectively, to consume and purchase.

Figure 2.11 reveals that the proposed EERE groups products differently from the DPCA. Par-

ticularly, the EERE makes a distinction between foods and non-alcoholic beverages versus the

remaining products, where the foods and non-alcoholic beverages group includes carbonated bev-

erages, cold cereal, frozen dinners, frozen pizzas, hot dogs, milk, peanut butter, salty snacks, and

soup. The remaining product group includes beer, cigarettes, razor blades, deodorants, diapers,

household cleaners, laundry detergent, photography supplies, shampoo, and toothbrushes. Incor-

porating the random effects improves the estimation efficiency of the second eigenvector in that the

contrast between groups is more specific. Although beer and cigarettes are commonly categorized

as digestible products, they are quite different from foods.
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In the heatmaps of Figure 2.10, the EERE displays photography supplies shifting from a mod-

erately negative value to a positive value as the years progress from 2001-2011. The household

cleaner category shows a change in magnitude from positive to negative values. The time-changing

behavior is almost unnoticeable for the DPCA heatmap of Figure 2.10. Notice that the sale of pho-

tography supplies in grocery stores experienced a major decline nationwide after 2005, which is

when camera phones and digital cameras gained popularity.

The strength of the EERE method lies in the interpretation of essential features and associa-

tions among products over time, which can be captured in the time-varying eigenvectors. As a

result, we can determine grouping behavior through the signs and magnitudes of the eigenvectors.

We show that our method, which incorporates random effects, leads to better overall estimation

of time-varying eigenvectors compared to the DPCA. Further, we show the advantage of the pro-

posed method in interpreting the time-varying eigenvectors. The eigenvalues act as weights of

the principal directions of the time-varying eigenvectors, but do not enhance the interpretation on

grouping products for the marketing data. In summary, the EERE method, which incorporates ran-

dom effects from stores, provides a more informative and precise grouping strategy for products

compared to methods that fail to consider random effects.

2.6 Discussion

In this chapter, we propose the EERE methodology to incorporate random effects in modeling

time-varying eigenvalues and eigenvectors for the longitudinal PCA. The proposed longitudinal

PCA performs the decomposition of covariance matrices over time, and takes store variability

into account through modeling the heterogeneous effects of product sales. This leads to improved

interpretation of the eigenvectors, which could be extremely useful in clustering grocery products

that consumers purchase.

Our simulation studies indicate that the proposed method has lower mean absolute deviation of

errors for the time-varying eigenvalue estimation, and that the proposed time-varying eigenvector
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estimators match the true eigenvectors more closely compared to the DPCA method. The algorithm

can be extended for handling a larger number of products, and the nonparametric functions can be

implemented beyond the quadratic or cubic terms for time-varying eigenvalue approximations.

In addition, the analysis of the IRI marketing data provides an illustration of insight on how

statistics and data analytics can play a role in business decision-making. Specifically, how we

can effectively utilize large marketing data over time to capture changes in consumer shopping

behavior longitudinally, and how we can extract intrinsic information about the associations among

products more accurately.

This work tackles a real data problem involving the complex correlated nature of observations

over time. While there is no definite rule for selecting the number of principal components, we

acknowledge that the proposed method relies on an ad-hoc optimum number of components based

on the cumulative percentage of total variation averaged over time. In addition, further research

might be needed in incorporating random effects from multiple sources, such as time-varying ran-

dom effects to account for temporal correlation, and block-wise random effects to capture spatial

locations of stores.
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Chapter 3

Longitudinal Principal Components for Bi-

nary Data

3.1 Introduction

Binary data abound in biomedical studies about patients and their behaviors, as well as in images

about those patients. The simple dichotomization of traits and various measures of health can be

extended to areas outside of biomedical practice, specifically to retail. Time-varying associations

among consumers and the items they purchase provide important information to capture changes

in consumer shopping behavior. Consumer-level demographics, which are often found in panel

data, can illuminate the various types of consumers that exist. Some demographic information

included in the IRI panel data are household income, age, race, marital status, education level, and

type of residence. Although demographics change infrequently over time, purchasing behavior

can change dramatically, especially for different types of product categories. When the purchases

can be dichotomized into "did purchase" or "did not purchase" categories, analysis can become

strenuous even though binary outcomes may appear simple. Thus, it is important to consider

methods that capture product associations among consumers as time changes. Among all products

included in the data set, pairs of binary variables can be stored in a 2× 2 contingency table.

Among various measures of association for 2 × 2 contingency tables, the odds ratio or cross-

product ratio has advantageous properties and lends itself to interpretation. The odds for the i-th

row of the table can be generally written as πi1/πi2, where the numerator represents a success
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probability and the denominator represents a failure. Thus, the odds ratio of the two rows is

τ =
π11/π12
π21/π22

=
π11π22
π12π21

.

The odds ratio represents the ratio of the odds of success for row 1 versus the odds of success for

row 2. The odds ratio takes values in the interval (0,∞), while τ = 1 represents independence

of two variables in a contingency table. Pairs of variables may exhibit strong association when

τ << 1 or when τ >> 1. Another property of the odds ratio is the invariance property, which

indicates that interchanging the row variable and the column variable in the table does not change

the value of θ(Bishop et al., 2007; Agresti, 2002). When considering departures from dependence,

the Pearson correlation is not fully related to the odds ratio, and thus may not always be appropriate

for comparison (Mosteller, 1968; Bishop et al., 2007). Thus, we use the odds ratio as the measure

of variation that we want to maximize in principal components analysis.

Odds ratios have been used as measures of association for binary data. In Lipsitz et al. (1991),

odds ratios are used for longitudinal observations, where the 2 × 2 contingency tables were gen-

erated from responses at pairs of time points. Ultimately, their goal was to estimate correlation

parameter α using generalized estimating equations (GEE). In Carey et al. (1993), they propose

a method of alternating logistic regressions to overcome cluster size limitations in estimating α.

Also, pairwise odds ratios are used as associations among multivariate binary data. Both papers

extend the work of Liang & Zeger (1986) and Prentice (1988) by modeling both mean and associ-

ation parameters α and β through GEEs.

There are several methods developed for principal component analysis of binary data. PCA

for binary data has been formulated with a likelihood approach for Bernoulli distributed random

variables (Collins et al., 2002; Schein et al., 2003; Leeuw, 2006; Lee et al., 2010). In those papers,

the authors generalize their modeling because the Bernoulli distribution belongs to the exponen-

tial family. Alternative modeling approaches have also been considered. PCA is modeled with

hidden variables such that the binary variables are generated via a nonlinear threshold (Lee &
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Sompolinsky, 1999). Nonlinear PCA (Gifi, 1990) has been developed for non-numerical data, in-

cluding binary, ordinal, and categorical data. This methodology is comparable to standard PCA

and achieves the same type of dimension reduction when the data are numeric. PCA is built as a

saturated model in Landgraf & Lee (2015), while only solving for principal component loadings

or eigenvectors. Although the spectrum of available approaches for PCA is broad, the existing

approaches do not extend readily to longitudinal binary data. In addition, the above methods do

not account for variation over time, while estimating both eigenvectors and eigenvalues. For these

reasons, a longitudinal PCA approach needs to be developed to account for longitudinal binary

data.

This research is motivated by the IRI marketing and panel data sets. In the previous chapter, we

discuss the IRI marketing data set. In this chapter, we apply our longitudinal PCA methodology to

the IRI panel data set, which contains weekly purchases of consumers called panelists, along with

20 demographic variables from two of the regional markets - Eau Claire, Wisconsin and Pittsfield,

Massachusetts. The panel data is available for all 31 products over the 11-year time period. This

data requires processing because all panelists do not purchase all products, and the time component

allows for irregular trajectories of panelists’ shopping behavior. See Kruger & Pagni (2008) for

more details.

We propose a longitudinal PCA for binary data that decomposes association information arising

from multivariate observations over time. Due to nature of binary data, the association information

is captured by the odds ratios of pairs of variables at each time point. Associations among product

sales are modeled through time-varying eigen-decomposition. This method is an extension of the

methodology in the previous chapter for the binary data case. The techniques and models required

for the extension are complicated due to the challenging binary data structure.
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3.2 Model Framework and Methodology

3.2.1 The Logit Model and Odds Ratio Matrix

Let yijt be a binary response measured over time t for the j-th observation from the cluster i where

i = 1, 2, . . . , N , j = 1, 2, . . . , J , and t is in the range of [0, 1]. For this outcome, yijt = 1 if the

i-th individual for the j-th variable makes a purchase at week t, and yijt = 0 otherwise. We model

E(yijt) since the binary responses are multivariate. The mean for the response vector E(yijt) =

πijt = pr(yijt = 1) contains the marginal probabilities. The logit link function log( πijt
1−πijt ) = µjt.

Because we are studying the binary data setting, the association among the variables will be

captured by the odds ratio. Let OR(yit) be a function that computes the odds ratio of the response

vector, then the EE model is

O0
t = OR(yit). (3.1)

The O0
t is a J × J matrix of true pairwise odds ratios and is generally unknown. We can replace

O0
t with a carefully designed matrix of sample pairwise odds ratios Õt. The matrix Õt = (θ)jkt

is designed to attain the properties of symmetry as a result of the invariance property.The sample

pairwise odds ratios for binary variables j and k at time t is

θjkt =
njkt(1− njt − nkt + njkt)

(njt − njkt)(nkt − njkt)
,

where njkt =
∑N

i=1(yijt + yikt)/N and njt =
∑N

i=1 yijt/N , where j = 1, . . . , J and k = 1, . . . , J.

These θjkt make up the off-diagonal elements of Õt, since the pair of variables j 6= k, and θjkt =

θkjt by the invariance property of the odds ratio. Hence for arbitrary diagonal elements, Õt = Õ
>
t .

The odds ratio matrix has two shortcomings. First, it needs to be adapted for the cases when a cell

in the 2× 2 table equals 0, because this can lead to θjkt =∞. Second, the diagonal of Õt must be

defined to attain positive semi-definiteness. A covariance matrix attains positive semi-definiteness

by definition, and since we want to capture associations, it is fruitful for our measure of association
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for binary variables to also attain this property. Additionally, the eigenvalues that we estimate are

not assumed to be negative-valued. To address these two shortcomings, we transform the odds

ratios via the Yule’s Q function ,

qjkt =
θjkt − 1

θjkt + 1
,

where the new range of qjkt is (−1, 1). This function is monotonic, maintains the same properties

as θjkt, and has a useful interpretation that parallels the interpretation Pearson correlation. Two

variables have strong association if qjkt = ±1. A pair of variables are deemed independent when

qjkt = 0. These qjkt values are off-diagonal elements of Q̃t.The diagonal elements are qjjt = 1,

and help attain the positive semi-definite property. Yule’s Q as a measure of association also has

useful asymptotic properties. See Bishop et al. (2007) for more details.

With the aforementioned properties and the measures of association, the behavior of Q̃t is

similar to a covariance matrix and correlation matrix, and we can decompose it into a linear com-

bination of eigenvalues and eigenvectors that are time-varying. The time varying models for the

eigenvalues and eigenvectors in of Chapter 2 still hold for the binary data setting.

3.2.2 Estimation of Eigenvalues and Eigenvectors

In this section, we extend the framework of generalized estimating equations (GEE) to handle

the binary data case capturing association among variables via the odds ratio. The matrix of true

pairwise odds ratios shall be approximated by 2.3, however we note that this matrix is informing

us about the association instead of the variance. Now, the difference hit in 2.4 replaces Ṽt with the

odds ratio matrix as

hit =

(
V −1t −O0

t
−1
)
(yit − µt), (3.2)

where µt represents the marginal probabilities at each time point. We minimize the following

objective function with respect to both αk(t) and ek(t)

T∑
t=1

( N∑
i=1

h>ithit
N

+ φ
∑
i 6=j

‖ei(t)>ej(t)‖22
)
, (3.3)
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We have presented the EE methodology, which does not incorporate random effects, but does in-

clude time-varying eigenvalue and eigenvector estimation techniques. The work on random effects

incorporation for binary data is ongoing.

3.3 Implementation

In this section, we provide the algorithm of the EE model 3.1 which iterates through the

Newton-Raphson and the Estimation-Substitution algorithms. To minimize the objective function

in 3.3, we replaceO0
t
−1 by its sample version Õ−1t mentioned above.

Algorithm: Estimated Eigenanalysis (EE)
Step 1: Set the initial values of the eigenvectors as the sample eigenvectors:
ek(t)

(0) = ẽk(t);
Step 2: Given the current eigenvectors ek(t)(m−1),
(i) update the eigenvalues αk(t)(m) by minimizing the objective function in (3.3), and
(ii) update ek(t)(m) given α(m)

k using the Newton-Raphson algorithm;
Step 3: Iterate Step 2 if
(i) ‖αk(t)(m) − αk(t)(m−1)‖ > εα, where εα is a chosen tolerance level, or
(ii)‖(ek(t)(m))(ek(t)

(m))> − (ek(t)
(m−1))(ek(t)

(m−1))>‖ > εe , where εe is a chosen
tolerance level.

In Step 2, the Newton-Raphson algorithm for the eigenvectors estimation takes place, followed

by the Gram-Schmidt orthonormalization process, just as in the previous chapter. We use the same

criterion for selecting the number of components to retain, where the eigenvalues αk(t) contribute

to the proportion of association in the data.

3.4 Numerical Study

In this section, we provide a simulation study to investigate the numerical performance of the

proposed method for one setting. We compare the eigenvalues and eigenvector results from the

proposed method with the discretized PCA (DPCA). In this setting, a discretized PCA has two

separate forms, DPCA which is an eigen-decomposition of a correlation matrix at each time point,
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and DPCAT, which is an eigen-decomposition of a tetrachoric correlation matrix at each time point.

The tetrachoric correlation is a justified comparable measure of association for binary data. Often

in the literature, it has been used for binary data arising from 2×2 tables (Goodman, 1981; Becker

& Clogg, 1988; Bonett, 2007). As mentioned in the numerical study of the previous chapter, we

evaluate the eigenvalue estimates through plots and the mean absolute deviation of errors, while

the eigenvector estimates are evaluated through heatmaps.

3.4.1 Simulation: Time-varying Eigenvalues, Time-varying Eigenvectors

In this section, we carry out the EE model assuming that both eigenvalues and eigenvectors are

time-varying. Just as mentioned in the numerical study of the previous chapter, we generate the

time-varying eigenvalues as 2.11, where (a10, a11, a12)
> = (0.19, 0.20, 0.20)>, (a20, a21, a22)

> =

(0.30, 0.50,−0.50)>, and t is in the range of [0, 1]. The remaining J − 2 eigenvalues are constants

around 1 at each time point.

The time-varying eigenvectors are generated by decomposing Wt in are generated with J =

10 variables belonging to the following index sets: I? = {1, · · · , 5}, J? = {6, 7}, and K? =

{8, 9, 10}. If i 6= j and i, j ∈ I?, then wijt = 0.70. If i 6= j and i ∈ J? and j ∈ I?, then

wijt = 0.10 + 0.07t. If i 6= j and i, j ∈ J?, then wijt = 0.8. If i 6= j and i ∈ K? and j ∈ I?, then

wijt = 0.10. If i 6= j and i ∈ K? and j ∈ J?, then wijt = 0.70 − 0.07t. If i 6= j and i, j ∈ K?,

then wijt = 0.80. The resulting eigenvectors from the eigendecomposition of Wt are represented

by ekt, which is a J = 10-dimensional vector for each time t and variable k. This generation setup

is the same as Simulation B of the previous chapter.

The responses yit are generated as random multivariate binary outcomes with specified marginal

probabilities πj = 0.5 for the 10 variables and correlations specified as standardized matrix

O0
t =

∑10
k=1 α

0
ktekte

>
kt. Note that α0

1t and α0
2t have a quadratic representation. The binary out-

comes are created using the R package bindata based on the work of Leisch et al. (1998).

Table 3.1 summarizes the average MADE values for the first and second eigenvalue estimators

when N = 500 stores, J = 10 products, and T = 10 time points which are in the range [0, 1]. It
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shows that the EE method yields MADEs on average that are much lower than the average MADEs

for DPCA and DPCAT for the first and second eigenvalues. Figure 3.1 displays the average first and

second time-varying eigenvalue estimators obtained from the EE, DPCA, and DPCAT. In Figure

3.1, the EE outperforms the two discretized approaches visually with similar shape and curvature

for the first and second components. The DPCA and DPCAT have quite different results and

indicate, at least in these numerical studies, that the DPCAT may be more appropriate for binary

data than the DPCA, which is purely an eigen-decomposition of a correlation matrix.

N = 500, J = 10 1st Eigenvalue 2nd Eigenvalue
EERE 0.460 0.842
DPCA 1.472 1.117

DPCAT 0.784 0.899

Table 3.1: Average MADEs of the first and second eigenvalues
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Figure 3.1: Average estimated first and second eigenvalues

The heatmaps of Figure 3.2 show that the average first eigenvector estimator from the three

EE, DPCA, and DPCAT are not much different from the true first eigenvector. Similarly, Figure

3.3 indicates that the heatmap of the true eigenvector is quite close to that of the EE, as well as the

DPCA and DPCAT methods. The biggest difference between the EE method and the discretized
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approaches is that EE incorporates smoothness, and enhances its visual appeal.
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Figure 3.2: The heatmaps of the first eigenvector over time
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Figure 3.3: The heatmaps of the second eigenvector over time

3.5 Real Data Application: IRI Panel Purchases Data

In this section, we apply our EE methodology to the monthly consumers’ purchasing behavior

in the year 2007. This dataset consists of binary observations where 1 indicates that a panelist

made a purchase that month, and 0 indicates they did not make a purchase. In terms of marketing
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information, the panelists all shop in the Pittsfield, Massachusetts market or region. There are 332

consumers and 16 products in this subset of data. There are several interesting demographics that

we know about these particular panelists. The incomes of panelists cover a wide range of salaries,

where 78% if panelists earn at least $35,000. Among families of four, only 7% of panelists’ income

are less than $25,000. A huge majority, 86%, of these consumers are homeowners in 2007, while

14% are renters . Among these panelists in 2007, roughly 11% are unemployed, while 12% are

retired, the remaining 77% are employed in some fashion. About 18% of panelists report that

they have at least graduated from college. The majority of panelists, 72%, report having at least

graduated from high school but not graduated college. Among all panelists, 77% of panelists are

married, 96% are white, and 42% have a reported family size of at least four people.

Additionally, we have insights about the product categories that these consumers purchase.

The product categories include carbonated beverages, coffees, cold cereals, deodorants, frozen

dinners, frozen pizzas, hot dogs, household cleaners, laundry detergent, paper towels, salty snacks,

shampoos, soup, spaghetti sauces, toilet tissues, and toothpastes. The 16 products represent a

broad spectrum of consumer packaged goods with varying amounts of sales over time. Among the

products, salty snacks have the largest proportion of purchases across time, and deodorants have

the smallest proportion of purchases across time.

We implement the proposed EE method and compare it to the DPCA and DPCAT approaches.

Because we want to gain better interpretations of the insights, the eigenvectors are most useful. In

the results that follow, we only show the eigenvector estimation results in the form of heatmaps.

Figures 3.4 and 3.5 show the first and second time-varying eigenvector heatmaps, respectively.

The eigenvector heatmaps of the DPCA and DPCAT display very jagged color changes. The first

eigenvector heatmap of DPCA and DPCAT shows that all 16 products have negative loadings.

In this sense, the behavior is like an overall average. The second eigenvector heatmaps of both

DPCA and DPCAT contain two groups. The group of products with loadings of mostly blue hue

are: deodorant, toothpaste, hot dogs, toilet tissue, and paper towels. The group of products with

loadings of mostly orange hue are: carbonated beverages, household cleaners, salty snacks, frozen
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pizzas, and frozen dinners. These groupings are difficult to see from the heatmaps, but can be seen

through assessing the numerical matrix of the estimates second eigenvector.
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Figure 3.4: Heatmaps of the first eigenvector of the IRI panel data containing 16 products
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2nd Eigenvector:EE
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Figure 3.5: Heatmaps of the second eigenvector of the IRI panel data containing 16 products

The EE heatmap in Figure 3.4 displays very smooth first eigenvector loadings. The second

eigenvector heatmap of the EE estimates shows product groupings similar to the DPCA and DP-

CAT heatmaps. However, the EE heatmap attains smoothness and visual appeal that allows the

product groups to be seen more clearly. The advantage of the EE heatmap is of visualization,

which aids in interpretation, and this advantage is due in large part to the time-varying models of

the eigenvectors. The discretized approaches fail to borrow neighboring information from the time
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points.

3.6 Discussion

In this chapter, we consider the longitudinal principal components analysis for binary data. It

is an extension for handling a delicate and complicated data structure of which is ever-present

in biomedical studies, imaging, and in the field of marketing and retail. The challenges of this

work are multifaceted. Generating binary data with a particular association structure becomes

increasingly difficult when that structure changes over time and when the number of variables is

large. Then, the estimation approach is quite different from standard PCA and the measure of

association, the odds ratio, is being used, which is not a standard approach in this longitudinal

dimension reduction research area. To capture associations among the binary variables, we design

a transformed odds ratio matrix with properties shared by a covariance-correlation matrix.

Our numerical studies indicate that the proposed method outperforms both discretized PCA ap-

proaches for eigenvalue estimation for the first and second components. The EE methodology also

performs as well as a discretized approaches for eigenvector estimation, but enhances visualiza-

tion through smoothness of the time-varying models of the eigenvectors. The real data application

exemplifies that our proposed method can enhance visualization and in turn, interpretation.

The proposed methodology has not addressed the heterogeneity that may be present in the

panelists through random effects, although the real data for the year 2007 has little demographic

diversity. The random effects incorporation is quite challenging in the binary data setting, because

extraction of the effects is not straight-forward. Additionally, the structure of binary data impose

limitations on how much of the heterogeneous information is transferred from the marginal and

joint probabilities. Care must be taken to ensure the marginal and joint probabilities correspond

with the association structure, especially when randomness is introduced to the marginal probabil-

ities. One future investigation to consider is the asymptotic properties of the eigenvalues.
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