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ABSTRACT

Word embedding is a popular representation of words in vector space, and

its geometry reveals the lexical semantics. This thesis further explores the

interesting geometric properties of word embedding, and looks into its inter-

action with the context representation. We propose an innovative method to

detect whether a given word or phrase is used literally in a specific context.

This work focuses on three specific applications in natural language process-

ing: idiomaticity, sarcasm and metaphor detection. Extensive experiments

have shown that this embedding-based method achieves good performance

in multiple languages.
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CHAPTER 1

INTRODUCTION

Idiomatic expressions are used frequently, acting as an indispensable part

of natural language. One type of such expressions is multiword expressions

(MWEs) which are semantically idiosyncratic phrases [1]. For example, kick

the bucket, last straw and a hot potato are multiword expressions. The seman-

tic meaning of these phrases cannot be inferred from its component words,

and therefore they are termed idiomatic or non-compositional phrases. In

contrast, compositional phrases are those whose meaning is a composition of

the component words’ meaning.

An challenging aspect of MWEs is that their semantics and compositional-

ity degree are highly context-sensitive [2]. For example, consider two contexts

where the phrase free lunch occurs:

(1) Travelers on highways in the United States have enjoyed what felt like a

free lunch.

(2) You can get something awesome at those pizza factory restaurants: a free

lunch or a free scrumptious, lunch buffet on Veterans Day.

In (1), free lunch carries the non-compositional meaning of “something ac-

quired without due effort or cost”, while in (2) it has the interpretation of

“lunch which is free”.

The context-sensitive compositionality of a multiword expression is re-

garded as a key problem in many applications of natural language processing

(NLP), especially for machine translation and information retrieval. In ma-

chine translation, the English phrase kick the bucket cannot be translated

word by word, since the phrasal meaning is totally irrelevant with single

words “kick” and “bucket”. As for information retrieval, the retrieved doc-

uments containing words “beans” turn out to be unrelated with the query

of “spill the beans” [3] . As such, accurate detection of non-compositional

MWEs is a necessary step for a variety of NLP tasks.

In another example, the word glad displays opposite meanings in two dif-
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ferent contexts. The first sentence is: “Glad that I spent extra money to

buy my Brad Paisley tickets so early when there’s plenty left now.” The

word has a sarcastic (hence non-compositional) sense which actually conveys

the meaning of “upset” or “disappointed”. In the second sentence: “Really

glad to hear that youthcamp was so awesome! To God be the glory!”, the

word has a literal meaning of “happy” or “pleased”. As is seen, the lexical

compositionality relies heavily on the local context.

Another special case of non-compositional usage is metaphors. Here is the

word wear used in two contexts:

(1) Teenagers wear attitude like a uniform.

(2) We always wear helmets when we are riding bikes.

In the first sentence, wear has a figurative (hence non-compositional) usage,

while in the second sentence, the word carries the literal sense of “put on”.

This example again shows that compositionality is quite sensitive to the local

context.

In this thesis, we focus on the compositionality detection of a given word

or a phrase based on its context. Our method proposes to represent the

local context as a linear subspace, and further uses the distance between the

target phrase and the context space to quantify the compositionality degree.

This approach brings two key innovations: (1) it integrates the contextual

information into the compositionality detection; and (2) it is only based

on word embeddings, not relying on other linguistic resources. We have

achieved comparable or superior performance to recent works on different

tasks including idiomaticity detection of MWEs [4], sarcasm detection [5]

and metaphor detection [6].

This work explores the geometry of word embeddings, and uses it for the

phrasal compositionality detection. Here are two primary questions in our

study:

(1) What is a good representation of a long sentence?

(2) How can we quantify the degree of compositionality given the represen-

tations of the target phrase and its context?

We answer these questions through the geometry of word/context embed-

ding in the vector space. The key insight is that word vectors in a context lie

in a linear subspace, and that the phrasal compositionality can be measured

by the distance between the target phrase embedding and its local context

space.
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We begin next with an introduction of word embeddings, and then discuss

the context representation and the geometry of compositionality which leads

to our algorithm of compositionality detection. Lastly empirical results are

shown as a key justification for our context-based approach.

3



CHAPTER 2

RELATED WORKS

2.1 Semantic Representations

2.1.1 Word Embeddings

Words are traditionally modeled as atomic units, but a real-valued repre-

sentation shows its power in many applications of natural language process-

ing (NLP). One understanding of lexical semantics comes from a linguistic

hypothesis: “a word is characterized by the company it keeps” [7]. This

hypothesis inspires some distributed representations which extraordinarily

successful in encoding semantics, and state-of-the-art works in word embed-

dings are word2vec and Glove [8, 9, 10, 11]. We use word2vec embeddings in

our work, which is introduced next.

Word2vec trains word representations based on the contexts. It provides

two models for embedding training, one is the continuous Skip-Gram model

(SG), and the other is the Continuous Bag-of-Words model (CBOW).CBOW

uses the context to predict the central word, and the training objective is to

maximize the probability of the central word given its context. Suppose that

there is a sentence denoted as a list of words, l = {wt−p, . . . , wt−1, wt, wt+1, . . . ,

wt+p}, and the context around wt is s = {wt−p, . . . , wt−1, wt+1, . . . , wt+p} .

The probability of predicting the target word wt from the context is p(wt|s).
The training objective is LCBOW =

∑
wt

log p(wt|s). Let u(·) be the embedding

of a target word, and v(·) be the embedding of a context word. The average

context vector, v̂(s), is defined as v̂(s) = 1
2p

p∑
c=−p,c 6=0

v(wt+i). The training
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objective function of the CBOW model is:

LCBOW =
∑
t

log p(wt|s) =
∑
wt

log(softmax(u(wt)
T v̂)) (2.1)

=
∑
wt

log
exp(u(wt)

Tv)∑
w′

exp(u(w′)Tv)

The Skip-Gram model, different from CBOW model, uses the central word

to predict its context. Its training objective is to maximize the probability of

context words given the central word, and context words are assumed to be

independent for simplicity. The probability of predicting words in context s

based on the central word wt is

p(s|wt) = p(wt−p, . . . , wt−1, wt+1, . . . , wt+p|wt) =

p∏
c=−p,c 6=0

p(wt+c|wt)

Further, the training objective of SG is

LSG =
∑
t

log p(s|wt) =
∑
t

p∑
c=−p,c 6=0

log p(wt+c|wt)

Denote the central word as w and its context word as c. Let σ as sigmoid

function, i.e., σ(x) = 1
1+e−x . With negative sampling, two types of probabil-

ities are re-defined as below:

p(c, w co-occur) = p(c|w) = σ(u(w)Tv(c))

p(c, w not co-occur) = 1− p(c|w) = σ(−u(w)Tv(c))

The training objective of skip-gram model with negative sample is defined

as:

LSG(u, v) =
∑
(w,c)

n(w, c) log(σ(u(w)Tv(c))) + kEc′ log(σ(−u(w)Tv(c′)))

(2.2)

where n(w, c) is the number of occurrences of word-context pairs (w, c), k is

the number of negative samples, and c′ is a randomly generated word that

does not co-occur with w through an empirical unigram distribution.
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Word embedding u is trained to maximize the objective function in (2.2).

Suppose that two words are synonyms w1 and w2. It means that w1 can be

replaced with w2 in the context which w1 occurs. In the SG model, for any

context word c, we have

u(w1)
Tv(c)− u(w2)

Tv(c) = log

(
p(c|w1)

p(c|w2)

)
≈ 0

It implies that two vectors u(w1) and u(w2) should be close. Empirically the

representations of semantically similar or relevant words are close in vector

space. This is a basic geometric property underlying our compositionality

detection algorithm.

2.1.2 Sentence Representation

Latent semantic analysis (LSA) is a classic method for representation of long

sentences such as documents [12]. After generating a document-word count

matrix, it applies singular value decomposition to generate low-dimension

vectors for each document. The weakness of LSA is that it does not work

well for short sentences since many entries in the word count matrix are 0’s.

Based on the trained word embeddings, sentence representation can be gen-

erated by averaging component words. Such an average embedding method

turns out to be a simple but robust way to encode variable-length sentences

into fixed-dimension vectors. It has applications in measuring text similarity

as well as phrase similarity [13, 14]. It is also used to predict surrounding

sentences as an input to the neural network [15]. Average embeddings are

shown to work well in answer selection for the given questions [16]. In the

part of idiomaticity detection, we use average embedding as a baseline and

show that it performs reasonably well, although the subspace representation

proposed in this work is statistically significantly superior.

Besides average vector representations, another popular sentence embed-

ding comes from the internal representations by the hidden units in neural

networks such as LSTM. These two methods are compared on different low-

level text prediction tasks in [17, 18], and it is pointed out that each method

has its strengths. The average of CBOW embeddings is effective in content

representations without considering word order, while LSTM representation
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is good at preserving the order information.

Many other sentence representations have been proposed in recent studies.

Doc2Vec, built on an idea similar to word2vec that trained word embedding

to predict co-occurring words, trains sentence embedding by the prediction of

its component words [19]. Doc2vec generates word embeddings and sentence

embeddings at the same time.

2.2 Compositionality Detection

2.2.1 Idiom Detection

Detection of idioms is the first step of semantic understanding. Take the

polysemous phrase “blue sky” as an example. It refers to “impractical things”

when used idiomatically, whereas referring to “the sky that is blue” when

used compositionally. Early approaches on idiom detection are statistical

methods which involve the computation of word co-occurrence probabilities

[20]. Some approaches make use of linguistic resources, relying on phrasal

syntactic properties for idiom detection [21, 22, 23].

Wikitionary is a popular resource, which provides a list of idiomatic phrases,

idiom tags, definitions as well as the synonyms [24]. Some recent works also

turn to multilingual resources, using machine translation to decode the real

semantics of target phrases [25, 26]. These methods are heavily resource

dependent, and they have limited applicability since they may not work for

other languages which do not have rich linguistic resources.

One resource-independent work explores compositionality with the com-

bination of word embeddings [4]. It detects idiomaticity by measuring the

difference between the phrase embedding and the component word embed-

ding. One limitation of this method is that idiomaticity does not only rely

on the phrase itself, but also on its context especially for some polysemous

phrases. This motivates us to develop a context-based detection method.
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2.3 Sarcasm Detection

Sarcasm, conveying opposite meaning to its literal sense, is a special case of

non-compositional usage of languages. As an important part of sentiment

analysis, sarcasm detection has been studied in many recent works [27]. A

semi-supervised sarcasm identification algorithm (SASI) is proposed to deal

with sarcasms in two stages: sarcastic pattern recognition and pattern clas-

sification [28]. Another method first divides training sentences and phrases

into positive and negative usages as related to sarcasms [29]. The system

classifies a test example by measuring how similar it is to the training ex-

amples. Another method takes unigram, bigram and trigrams as features

into a supervised winnow classifier for sarcasm detection [30]. Sarcasm de-

tection can also be considered as a word sense disambiguation task [31]. This

work trains word embeddings with a large labeled Twitter dataset. The dis-

ambiguation decision is based on the similarity of the test context and the

trained literal and sarcastic contexts.

2.4 Metaphor Detection

Metaphor is a figurative expression which refers to one thing by mentioning

another [32], and is another special case of non-compositional language us-

age. CorMet is a system proposed to reveal metaphorical relations among

words by establishing a mapping from a source domain to a target domain.

Some works suggest that metaphor usage is related with psychology, and

they rely on the MRC Psycholinguistic Database Machine Usable Dictionary

(MRCPD).

One method uses this psycholinguistic database to measure the abstract-

ness of sentences [33], and another work extracts lexical imaginability and

topic clustering from this resource. Besides the abstractness and imagin-

ability, a work shows that lexical supersenses are also critical features in

metaphor detection, and supersenses are obtained from WordNet [6]. These

previous works are heavily reliant on external linguistic resources.
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CHAPTER 3

COMPOSITIONALITY AND GEOMETRY
OF WORD EMBEDDINGS

In this chapter, we formulate a general method for context-based composi-

tionality detection. This algorithm is built on the geometric properties of

a word/phrase and its context embeddings. We start with the intuition of

applying principal components for sentence representation. Then we would

provide empirical evidence for the interesting geometry of contexts. Lastly,

we would introduce our detection method in details.

3.1 Sentence Subspace Representation

Empirically, embeddings of semantically similar or related words are close in

terms of cosine similarity. It indicates that the vector norm does not make

any difference to semantic similarity, and naturally word embeddings are

insensitive to scaling operations. Phrasal embeddings are shown to be well

approximated by the addition of component word embeddings. Furthermore,

phrasal embeddings can be improved by tuning the weights of its components

in the linear combination [4]. It is natural to consider a weighted linear com-

bination as the sentence representation. We allow the weights to be tunable,

and thus the sentence is actually a linear subspace specified by its component

word vectors. Suppose a sentence consisting of n words: {w1, . . . , wn}. Let

v(w) be the embedding of a given word w, and the subspace is represented

as a matrix S: S = [v(w1), . . . , v(wn)].

Later we realize that this representation is too noisy. Consider the case

that the vector dimension is 300, and that the words in a sentence are as

many as 300 words, so the linear subspace contains almost all word vectors

because the matrix S is close to full rank. This motivates us to refine the

subspace representation, specifically, we want to find a new set of m(m < n)

vectors for sentence representation T : T = [v′1, . . . , v
′
m]. The matrix T is an

9



approximation of matrix S, aiming to keep the most important information

in the original sentence representation S.

Since the matrix T represents a linear subspace, for each vector v ∈ S,

we can use a vector vapprox which lies in subspace T to approximate v with

the minimal approximation error. The approximation error is defined as

‖v − vapprox‖2. It is easy to compute that vapprox = TT Tv. For all vectors

in S, the minimal approximation error achieved by T is ‖S − TT TS‖2. We

need to find the best matrix T ∗ such that

T ∗ = arg min
T
‖S − TT TS‖2

Without loss of generality, we can assume that vectors in T are orthonormal,

i.e., tTi tj = 1[i = j]. The solution to this optimization problem is exactly the

principal directions of matrix S [34].

The top m principal directions of matrix S can minimize the reconstruc-

tion error and thus keep as much sentential information as possible. Now

we can use the linear subspace spanned by T as a refined/denoised represen-

tation of the sentence. If a word c is used compositionally, then it should

be semantically related with other words in the same sentence. Since these

words can be approximated by T with small error, its embedding w should be

close to its approximation wapprox, i.e., ‖w − wapprox‖ is small or their cosine

similarity is large. Naturally, we can use their cosine similarity as the degree

of lexical compositionality in the given context. In the next section, we will

empirically validate the proposed compostionality metric with the geometric

illustration.

3.2 Geometry of Contexts

When the target phrase carries a literal meaning, the compositional embed-

ding of this phrase should be close to its contextual linear subspace consisting

of principal directions (obtained from context word embeddings with princi-

pal component analysis). This phenomenon happens because target phrases

are usually closely related or co-occur frequently with their context words.

We illustrate this phenomenon with the following example. Here is the

phrase “acid test” occurring in two contexts:
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(1) (compositional) Like the testing of gold with nitric acid, acid test is a

chemical test for distinguishing gold from metals.

(2) (non-compositional) This is seen as an acid test of the government com-

mitment to protecting our most valuable environments.

Figure 3.1: The phrasal embedding of acid test is shown by a blue point,
and embeddings of compositional and non-compositional context words are
denoted by green and red points respectively. The compositional context
subspace is represented by the green plane, and the non-compositional
context subspace by the red plane. Note that the phrase embedding is close
to the compositional context plane while far from the non-compositional
plane.

When words like nitric, chemical and metals appear in the context, “acid

test” tends to carry a compositional sense of “specific chemical experiment”.

Conversely, when words like government, commitment and protecting are in

the context, “acid test” is more likely to be an idiom, referring to general

“verification”. We plot the embeddings of the phrase and the two contexts

in three-dimension space to visualize their geometry in Figure 3.1. As is

shown, the phrase embedding resides roughly in the same subspace as the

compositional context, whereas it is far away from the subspace of the non-

compositional context. The detailed explanation of PCA operation, context

representation and compositionality metric in this example will be discussed

next.

3.3 Algorithm

The algorithm is inspired by a geometric property of vector embeddings of

context words: they roughly occupy a linear subspace whose basis vectors can
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be empirically extracted via a standard dimensionality reduction technique:

principal component analysis (PCA) [34].

Suppose that the target phrase consists of words u1, ..., ur (r is usually

1 ∼ 4), and its contexts words are w1, . . . , wn (n is usually 10 ∼ 50). Let v(·)
denote the embedding of a given word.

Phrase representation: The phrase is represented as a vector vp: vp =

1
r

r∑
i=1

v(ui), averaging vectors of all component words as in [35].

PCA subspace representation: Given n words (w1, . . . , wn) in a sentence,

their d−dimension embeddings form an n×dmatrixX = (v(w1), . . . , v(wn)).

Given X, PCA returns a d×m (m < n) matrix X ′ to capture as much data

variance in X as possible. Here X ′ consists of m basis vectors, (v′1, ..., v
′
m),

where v′i is also a d-dimension vector, and m is a hyperparameter to control

how much information of original context should be kept. The principal

directions in X ′ are used as a subspace context representation for the given

sentence. It is a key innovation in this work to represent a sentence with

subspace instead of with a single vector. Subspace representation is shown

to be important to our empirical results in a variety of tasks.

Relevance metric: Now given the vector representation vp of the target

phrase, and the subspace representation X ′ of the context, we can find the

projection v′p of vp onto subspace X ′:

v′p = arg max
v∈X′,‖v‖=1

vTvp
‖v‖ · ‖vp‖

The relevance score rs between the target and the context is the cosine

similarity between the phrase vector and its projection:

rs =
vTp v

′
p

‖v′p‖ · ‖vp‖
(3.1)

The phrase representation vp corresponds to its literal meaning, while the

projection v′p corresponds to its true meaning in the given context. When vp

is similar to v′p, the phrase is used compositionally in the context. As such,

relevance score s measures the degree to which the word/phrase meaning is

relevant with its context: the larger the score s, the more the compositionality.

According to the distributional hypothesis in linguistics, we know that the

actual meaning of a word or a phrase can be inferred from its local context.
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As such, the neighboring words in the context play a key role in decoding

the actual sense of the target phrase. Previous works decided the phrasal

compositionality regardless of the fact that it is highly context-dependent

[36].
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CHAPTER 4

THE DETECTION OF IDIOMS,
SARCASMS AND METAPHORS

In this chapter, we evaluate the compositionality detection method empiri-

cally on three types of non-compositional language usages: idiom, sarcasm

and metaphor. Specifically, we have three different tasks: (a) lexical/phrasal

compositionality detection: deciding the literal usage or idiomatic usage of a

given word/phrase in a sentence; (b) sarcasm detection: deciding whether

a sentence conveys sarcastic meaning; (c) metaphor detection: deciding

whether a given phrase is used in a metaphoric sense. For each of these tasks,

we use standard datasets provided in recent works. Multiple languages such

as English, German and Chinese are used in the evaluation, which can show

the multilingual applicability of our algorithm.

We discuss idiomaticity detection in Section 4.1, sarcasm in Section 4.2,

metaphor in Section 4.3. Our experiments are performed on standard datasets

so as to compare our method with state-of-the-art results for each of these

tasks. We also have datasets specifically designed for this work, and include

datasets in German and Chinese besides those in English. We highlight the

multilingual applicability of our algorithm via its good performance on mul-

tilingual datasets.

The embeddings used in our experiments are trained with the word2vec

CBOW model, and the training corpus in English, German and Chinese

are provided by polyglot [37]. CBOW provides one lexical embedding for

each word. Some words have multiple senses which are quite different from

each other, and we thus consider applying multiple sense embeddings instead

of single lexical embedding. In addition to CBOW embeddings, we also

train sense embeddings with the NP-MSSG model, which provides two sense

embeddings for each word [11].
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4.1 Idiom Detection

In this section, we focus on the idiomaticity detection task – phrasal id-

iomaticity detection and lexical idiomaticity detection. Here we formulate it

as a binary classification problem, and decide whether a target word/phrase

is idiomatic or compositional in the given sentence.

4.1.1 Phrasal Idiomaticity

Table 4.1: Examples of English Phrases, Whose Idiomaticity Depends on
the Context.

Phrase Compositional Context Idiomatic Context

blue sky

Above him was a clear blue
sky and the sun floating on
the surface of that milky sea
of mist.

Unrealistic or impractical the
author shows what is testable
physics and blue sky non-
sense.

big fish

There are many fish in the
ocean. there are big fish.
there are small fish. there are
fast fish and slow fish.

He enjoys being a big fish,
playing with the politicians
who make a difference.

black box

Instead, the internet insurance
co. will have constructed a
black box it is overtly an
algorithm that weighs various
pieces of information about the
applicant.

Her luggage consisted of a
black box, and of a well worn
leather bag which she carried
in her hand.

We start with polysemous phrases whose idiomaticity are highly context

sensitive. Some examples of such phrases and their contexts are listed in

Table 4.1, where the phrase blue sky is used compositionally in the first

instance whereas used idiomatically in the second one. Here we have two

sets of embeddings (lexical embeddings by CBOW and sense embeddings by

MSSG), and two embedding composition methods for phrases ands sentences

(average representation and subspace representation).

Dataset. We have two datasets specifically constructed for this work, one

in English and one in Chinese. 1 Each dataset contains a list of phrases, and

each phrase is accompanied by two contexts where it is used compositionally

1available at: https://github.com/HongyuGong/Geometry-of-Compositionality.

git
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Table 4.2: Accuracy Values (%) for Context-Based Phrasal Idiomaticity
Detection.

English

(CBOW)

English

(MSSG)

Chinese

(CBOW)

Chinese

(MSSG)

average phrase

average context
80.3 82.7 78.1 50

subspace phrase

average context
59.1 70.2 50.7 50.7

average phrase

subspace context
82.7 84.6 80.5 75

subspace phrase

subspace context
85.6 86.1 81.3 88.3

in one sentence, while idiomatically in the other. The English dataset has

104 phrases extracted from an English idiom dictionary [38], and the Chinese

dataset has 64 phrases from a Chinese idiom dictionary [39]. Native English

and native Chinese speakers select both compositional and idiomatic contexts

for each phrase from these dictionaries and electronic books [40].

Method. We use a single vector as the phrase representation whether

average or subspace representation (only keep the first principal direction) is

used. As is defined in eq. (3.1), compositionality is the cosine similarity be-

tween the phrase vector and its projection onto the context subspace, when

sentence is represented as a subspace. If sentence representation is approxi-

mated by the average vector, then the compositionality is measured by the

cosine similarity between the phrase vector and sentence vector. Composi-

tionality threshold is a hyperparameter in our method, a phrase is compo-

sitional if its compositionality is higher than the threshold; otherwise, it is

idiomatic.

Results. We compare the predicted labels (compositional or idiomatic)

with the human-annotated labels, and show the detection accuracy achieved

by different representations and embeddings in Table 4.2. Given that av-

erage representation is shown to be good at capturing semantics in recent

works [13, 14], we include the average representation as a baseline for the

subspace representation. As is shown in both English and Chinese datasets,

the best performance is achieved by subspace representations of phrases and

sentences together with sense embeddings provided by MSSG. It validates

that subspace representation is superior to the average representation.

The reason why subspace representation outperforms average approxima-

tion might be that principal directions are more robust to noise in the context.
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Even when there are only a few contextual words related with the phrase of

interest, average sentence approximation tends to decide that the phrase is

literal. However, PCA approximation would filter the distracting noise, and

capture the main information of the context.

4.1.2 Lexical Idiomaticity

Besides phrasal idiomaticity detection, here we also study the component-

wise idiomaticity in bigram phrases. For example, “diamond” carries id-

iomatic sense whereas “wedding” carries its literal meaning in the phrase

“diamond wedding”. We have a single vector as the component word rep-

resentation, and prepare both average and subspace representations for sen-

tences. The compositionality measures are similar to that in phrasal id-

iomaticity detection. The lexical idiomaticitiy is decided via a comparison

between the compositionality degree and the threshold. Here we tune the

threshold on the training data instead of using fixed values.

Table 4.3: Experiments on ENC, EVPC and GNC Datasets.

First Component Second Component

Dataset Method Precision (%) Recall (%) F1 score (%) Precision (%) Recall (%) F1 score (%)

ENC

dataset

PMI 50.0 100.0 66.7 40.4 100 57.6

LCS 60.0 77.7 67.7 81.6 68.1 64.6

DS 62.1 88.6 73.0 80.5 86.4 71.2

ALLDEFS+SYN 81.2 88.1 84.5 87.3 80.6 69.8

ITAG+SYN 64.5 90.9 75.5 61.8 94.4 74.7

Avg Cxt (CBOW) 58.9 97.7 73.5 52.2 100 68.6

Avg Cxt (MSSG) 68.5 79.5 73.7 61.2 83.3 70.6

Subspace (CBOW) 78.4 90.9 84.2 67.44 80.6 73.44

Subspace (MSSG) 68.9 90.9 78.4 57.6 94.4 71.6

EVPC

dataset

PMI 22.2 68.4 33.5 53.0 80.2 63.8

LCS 36.5 49.2 39.3 61.5 63.7 60.3

DS 32.8 34.1 33.5 80.9 19.6 29.7

ALLDEFS+SYN 37.4 70.9 48.9 80.4 65.9 63.0

ALLDEFS 25.0 97.4 39.8 53.6 97.6 69.2

Avg Cxt (CBOW) 27.1 92.1 41.9 58.7 74.4 65.6

Avg Cxt (MSSG) 33.8 60.5 43.4 58.0 80.2 67.3

Subspace (CBOW) 34.04 84.2 48.5 53.8 97.6 69.4

Subspace (MSSG) 31.4 86.8 46.2 54.4 100 70.5

GNC

dataset

PMI 44.2 99.0 61.1 26.4 98.4 41.7

Avg Cxt (CBOW) 45.4 92.6 60.6 29.0 95.4 44.4

Avg Cxt (MSSG) 44.0 77.8 56.2 31.7 67.7 43.1

Subspace (CBOW) 45.8 95.4 61.8 32.2 75.4 45.1

Subspace (MSSG) 45.5 99.1 62.4 30.9 86.2 45.5
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Dataset. Three standard datasets used by previous works are available

for lexical compositionality detection: English Noun Compounds (ENC), En-

glish Verb Particle Constructions (EVPC) and German Noun Compounds

(GNC). The ENC dataset consists of 90 noun phrases whose compositional-

ity is scored in a continuous range of [0, 5] [36]. The EVPC dataset has 160

verb-particle phrases [41] which is assigned with binary labels either idiomatic

or compositional. The GNC dataset provides 246 noun phrases, and each one

is assigned a compositionality score on [1, 7] scale. We formulate the compo-

sitionality detection as a binary classification task by setting a threshold of

2.5 to the ENC dataset and a threshold of 4 to the GNC dataset. Instances

with compositionality higher than the threshold are taken as compositional

phrases, and others are classified as idiomatic. We use these classification

labels as gold results. On these three datasets, the task is to decide whether

a component word is used compositionally in the given phrase. We report

the precision, recall and f-score of classification results in Table 4.3.

Results. We give a comparison of different methods on the lexical id-

iomaticity detection. The following are methods of previous works shown in

Table 4.3.

1. PMI (pointwise mutual information): a statistical measure to quantify

the cohesiveness between two words. For the bigram phrase w1w2, PMI

is defined as: PMI(w1w2) = log P (w1w2)
P (w1)P (w2)

, where P (·) is the likelihood

of the word or phrase [42]. Higher PMI indicates that a phrase is more

likely to be idiomatic.

2. LCS (longest common substring): a multilingual approach based on

string similarity to idiomaticity detection [25].

3. DS (distributed similarity): a monolingual approach based on distri-

butional similarity to idiomaticity detection [26].

4. ALLDEFS / ALLDEF+SYN: two state-of-the-art methods which make

use of lexical and phrasal definitions, syntactic tags as well as synonyms

provided by Wiktionary [24].

5. Avg Cxt (CBOW) / Avg Cxt (MSSG): averaged context representation

using CBOW or MSSG embeddings.

6. Subspace (CBOW) / Subspace (MSSG): subspace context representa-

tion using CBOW or MSSG embeddings.

As we can see from empirical results in Table 4.3, the subspace representa-
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tion achieves comparable or superior performance to state-of-the-art meth-

ods. It is an important advantage of our method that it does not depend

on linguistic resources such as multilingual corpus and Wiktionary as recent

methods [24, 26].

4.2 Sarcasm Detection

In this section, we apply context subspace representation to sarcasm detec-

tion. Sarcasms, also called irony, are expressions whose actual meaning is

usually opposite to their literal meaning [28, 29]. Sarcasm is thus a special

instance of non-compositional expressions. For example, the word “great”

is used sarcastically in the sentence “Going to class on a empty stomach,

sleepy and hungry, this will be great!” The speaker made complaints and

expressed negative feelings with the positive word “great”. We can infer the

real sense of “great” from its context such as sleepy and hungray, which is

more closely related with negative sentiments. Contexts provide key infor-

mation in decoding the sarcasm, and such idea has been applied to previous

works. These works have carefully designed contextual features as a basis

of their sarcasm detection system [31]. We would use the relevance score

generated by our compositionality detection algorithm as features directly

for sarcasm detection.

4.2.1 Twitter Sarcasm

Dataset. Twitter provides an ideal forum for sarcasm to flourish, and some

tweets are explicitly tagged with #sarcasm or #sarcastic hashtags. Recent

works have collected tweets involving sarcasms, [31], of which we could down-

load a part of them (due to privacy constraints). Some examples of sarcastic

and literal usages of good in tweets are as follows:

1. Wow. Just wow. That’s some damn good decision making. Good

work ref! #sarcasm #NRLmancro

2. I better do fricken good on this midterm tomorrow based on the

amount of studying I”ve done for it.

Six words are selected: “good”, “nice”, “love”, “always”, “yeah”, and
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(a) word “good” (b) word “love” (c) word “yeah”

(d) word “nice” (e) word “always” (f) word “glad”

Figure 4.1: Sarcasm detection in tweets.

Table 4.4: Twitter Sarcasm Detection.

word “good” “love” “yeah” “nice” “always” “glad”

accuracy 0.744 0.700 0.614 0.763 0.792 0.695

F1 score 0.610 0.64 0.655 0.623 0.605 0.582

“glad”, which have enough occurrences in both literal and sarcastic senses in

our downloaded dataset. We use subspace as sentence representation, and

use compositionality detection method to derive the relevance score of the

target in the given context. We divide the score range [0, 1] into 10 equal-

length segments: [0, 0.1), [0.1, 0.2), . . ., and then count the occurrences in

each score bin to see whether our algorithm could distinguish sarcastic usage

from literal usage.

The histograms of the compositionality scores (for sarcastic and literal

usages) are plotted in Figure 4.1. We can visually see that the two histograms

(one for sarcastic usage and the other for literal usage) can be distinguished

from each other, for each of the six words studied. The bar graph of sarcastic

usage occupies the low-score region with peak at around 0.35, whereas the

bar graph of literal usage occupies the high-score region peaking at around

0.45. It shows that this simple subspace-based compositionality detection

method can be extended to sarcasm detection task.

We cast Twitter sarcasm detection as a binary classification problem. We
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Table 4.5: Sarcasm Detection on Reddit Dataset.

Baseline
Subspace

(JJ)

Subspace

(VB)

Subspace

(JJ+ RB)

Subspace (JJ+

RB+VB)

features >50,000 2 2 3 4

precision 0.315 0.278 0.289 0.279 0.278

recall 0.496 0.936 0.844 0.98 0.747

F1 score 0.383 0.426 0.396 0.434 0.393

set a threshold, and decide the target word to be sarcastic if its relevance

score is lower than the threshold. Besides the visual illustration, we also re-

port accuracy and the F1 score on each target word achieved by this simple

detection method in Table 4.4. Note that we only use a very small dataset

in this experiment to show that the our compositionality detection method

could distinguish the sarcastic and literal usage to some extent. The classifi-

cation performance can be further improved when more complicated features

and algorithms are incorporated into the current system.

4.2.2 Reddit Sarcasm

Dataset: A dataset on sarcasm detection task is made up of 3020 user

comments (10401 sentences in total) collected from the Reddit website [5].

Human annotators labeled each comment with “ironic”, “don’t know” and

“unironic”. A sarcastic instance in the Reddit dataset is “Democrats don’t

know how to manage money? Shocking!”. The task is to decide whether

a given piece of comment is ironic. The state-of-art method generates rich

linguistic features, and classifies comments using a support vector machine

(SVM) with linear kernel [5].

Method. Content words such as adjectives (e.g. “great”), adverbs (e.g.

“interestingly”) and verbs (e.g. “like”) are more likely to have ironic meaning

than functional words such as prepositions and pronouns. As such, for each

piece of user comment, we select the words with these POS tags: JJ (adjec-

tive), RB (adverb), and VB (verb) from a given comment. Their relevance

scores in the local context can be obtained by our compositionality detection

method. The lowest k (k = 2, 3, 4) scores are selected as features for sarcasm

classification. We use a SVM classifier with linear kernel and fivefold cross

validation as the recent work [5] for a fair comparison. The empirical results

of our method and state-of-the-art are shown in Table 4.5.
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Table 4.6: Metaphor Detection.

features accuracy f1 score

SVO

state-of-art 279 0.82 0.86

Subspace

original sentence
4 0.729 0.744

Subspace

longer sentence
4 0.809 0.806

AN

state-of-art 360 0.86 0.85

Subspace

original sentence
3 0.735 0.744

Subspace

longer sentence
3 0.80 0.798

Results. As can be seen, our method achieves better performance with

many fewer features in sarcasm detection, 5% higher in F1 score. The best

features come from adjectives and adverbs.

4.3 Metaphor Detection

The last task we are tackling with is metaphor detection with the context

space representation. Metaphors are figurative speech that refers to one

thing by mentioning another. Hence they are used in an abstract and non-

compositional way. For example, the word “kills” expresses the meaning of

“opposes” in the sentence “Hawaii kills proposal for home energy loans.”.

Metaphors are naturally an instance of non-compositional semantics, and

can also be studied under our framework of compositionality detection.

Dataset. There are English datasets with both metaphoric and literal

phrases provided by [6]. The datasets focus on phrases with two specific

syntactic structures: Subject-Verb-Object (SVO) structure and Adjective-

Noun (AN) structure. An SVO metaphor is “excitement filled streets” in

the sentence “For a brief moment this week, excitement filled the streets of

both Havana and Miami.” An AN metaphor is “dirty word” in the sentence

“Solidarity of the European is now a dirty word in Germany when people

talk about politics.”

Method. The state-of-the-art work [6] performed feature engineering

based on external resources like WordNet and the MRC psycholinguistic

database. We again apply the context subspace representation and obtain

relevance scores of target words. Departing from previous unsupervised clas-
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sification of relevance scores, we generate syntactic features on the basis of

relevance scores. Then we do binary classification to detect the metaphorical

usage with random forest classifier.

Now we describe the features used for instances of certain syntactic struc-

tures. When an SVO or AN expression is a metaphor, there should be at

least one word which does not agree with its context, i.e., it has a low rele-

vance score. For the subject-verb-object instance, we have relevance scores

for subject, verb and object respectively. The features we derive from these

relevance scores are the following:

1. verb score: since a verb is likely to be the word inconsistent with the

context, verb score is an informative feature.

2. the lowest score among subject, verb and object score: the lowest score

captures the metaphoric word among three words.

3. the ratio between the lowest score and the highest score: relative ratio

is more robust than the absolute score.

4. min (verb score
subj score

, subj score
verb score

, verb score
obj score

, obj score
verb score

): it selects the most metaphoric

word among subject, verb and object via the ratio.

For the adjective-noun instance, we again obtain relevance scores for the

adjective and the noun respectivey. The features we derive from them are

the following:

1. the lowest score between adjective and noun: captures the most metaphoric

word in the expression.

2. the highest score: captures the most literal word in the expression.

3. the ratio between the lowest and the highest score: relative ratio is

more robust than the absolute score.

Results. The accuracy achieved by our method and state-of-the-art is in

shown Table 4.6. In both the original SVO dataset and original AN dataset,

although our performance is below the baseline, we only use a few features

without reliance on external resources in contrast to the large number of

features generated from rich resources in the baseline method.

With a closer look into the datasets, we realize that they contain many

short sentences, e.g. “Jim closed the book”. Short sentences are not able

to provide high-quality contexts, and thus degrade the performance of the

context-based detection. We replace sentences shorter than seven words with
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longer sentences which contain the same phrase as the original sentences.

These new sentences are obtained from online books [40]. The context-based

metaphor detection has improved a lot in accuracy on the refined dataset

than in the original dataset, as is shown in Table 4.6. We note that although

our performance is still below the baseline, our method has a key advantage

of resource-independence.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

We explore the curious geometry of word embeddings within a sentence:

they are roughly lying in a linear subspace constructed by sentential princi-

pal directions. Bases on the sentence representation, we formulate a general

method to measure the compositionality of the target word/phrase in a spe-

cific context. The compositionality computed with our method can be used

directly to decide the lexical and phrasal idiomaticity. It can also be used to

generate features in sarcasm and metaphor detection systems. Our method

has achieved performance comparable or superior to state-of-the-art in these

three tasks.

This is a lightweight detection method which can be easily applied to mul-

tiple languages. We show its applicability to English, German and Chinese

in this thesis. Also, it has no reliance on external linguistic resources, which

makes it useful for some resource-limited languages.

5.2 Future Work

Applications of sentence representation. We have shown the applica-

tion of subspace representation to three applications: idiomaticity, sarcasm

and metaphor detection. We can further apply the subspace representations

to other applications such as context-based error correction, which could

automatically perform corrections on lexical usages based on contextual se-

mantics. Typos are frequently seen in online platforms. For example, “blu”

is a typo in sentence “the sky is blu”. Words “blue” and “blur” both have

only one word different from “blu”. But according to the context, we can
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easily pick “blue” as the right word. The compositionality detection method

could suggest such appropriate corrections in an efficient and accurate way.

Extensions beyond bag-of-words model. The subspace representation

proposed in this work is a bag-of-words model, i.e., it does not consider the

word order in the sentence. Word order does decide the semantics in some

cases. For example, “I have to read a book” differs from “I have a book

to read”. In the future work, we will explore how to integrate the order

information into sentence representations.

Representations from neural networks. Many recent works are applying

neural networks to sentence/paragraph/document vector representations. In

particular, Long Short-Term Memory (LSTM) is shown to well capture long

dependencies in texts and keep the sequential information [43]. Also, it

generates fixed-dimension vectors for input sentence of variable lengths. The

connection between the neural network structure and vector representation

power is a challenging avenue of future research.
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