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ABSTRACT 

In the United States, western corn rootworm (Coleoptera: Chrysomelidae; Diabrotica 

virgifera virgifera LeConte) larvae have been managed using transgenic Bt (Bacillus 

thuringiensis Berliner) corn hybrids expressing insecticidal Cry proteins since 2003.  To slow the 

evolution of resistance to Cry proteins, the Environmental Protection Agency mandated an insect 

resistance management (IRM) plan requiring the planting of non-Bt refuges as structured blocks 

or randomly distributed (seed blends) within Bt cornfields.  Refuges allow susceptible larvae to 

develop without exposure to Cry proteins expressed elsewhere in the field.  The modest 

populations of susceptible beetles from the refuge are expected to disperse across cornfields and 

mate with most of the rare, potentially resistant, beetles that survived Bt exposure.  These 

“mixed-matings” are expected to produce heterozygous Bt susceptible offspring, delaying 

resistance because few resistant individuals will have opportunities to mate and produce 

homozygous Bt resistant offspring.  Because the efficacy of the rootworm refuge strategy relies 

heavily on western corn rootworm movement and mating behavior, it is important to understand 

these behaviors in Bt cornfields.  This dissertation presents data on daily movement within Bt 

cornfields and details of western corn rootworm mating relevant to resistance management. 

The spatial and temporal distribution of beetle mating activity and movement were 

measured in four refuge treatments 1) 20% structured refuge, 2) 5% structured refuge, 3) 5% 

seed blend refuge and 4) 0% refuge from 2010 to 2012.  By testing beetle gut contents for the 

presence of specific Cry proteins and comparing them to the Cry proteins expressed by plants at 

their collection site, recent movement could be detected.  These findings are presented in 

Chapters 2 and 3 of this dissertation. 
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In Chapter 2, gut content analysis revealed that 8.5% of mating pairs were mixed-

matings: they included a beetle that moved between refuge and Bt corn prior to mating.  Most 

mixed-matings occurred in refuge corn, meaning that most resulted from an individual traveling 

from Bt to refuge corn before it mated.  Dissection of mating females confirmed that most mated 

while they were newly emerged and that at least 4.5% of females mated more than once in short 

succession or more than a week after their initial mating.   

Chapter 3 of this dissertation revealed that the daily proportion of beetles moving 

between refuge and Bt corn was 17 to 25% collected during the vegetative period but dropped 

off dramatically to 3 to 10% during the pollination and post-pollination periods.  When beetles 

moved within cornfields, they traveled at a rate of 26 to 31 m/day.   

In Chapter 4, the effect of high and low beetle density with three different M:F sex ratios 

(1:3, 1:1 and 3:1) on mating frequency was evaluated.  Sex ratio significantly influenced mating 

regardless of density.  More matings per female were recorded in male skewed treatments and 

more matings by males were recorded in female skewed treatments.  Female dissections revealed 

that matings occurred throughout the five day experiment. 

Chapter 5 describes a sperm precedence study, in which females were given the 

opportunity to mate with a new male each day and paternity was assessed for family groups of 

egg batches as well as the female beetle and her two mates using microsatellite genotyping.  Of 

the females in the study, 8.5% of females accepted a second mate and the mean interval between 

the first and second mating was 7.5 days.  Genotyping results were inconclusive. 

 The assumptions of the high-dose refuge strategy are poorly matched to the reality of 

western corn rootworm biology.  Structured refuges do not facilitate movement and mating 

patterns that favor production of heterozygous susceptible offspring.  A seed blend generated a 



iv 
 

more even distribution of beetles and mating activity; yet, detailed mating analyses suggest seed 

blends may not promote more desirable mixed-matings than structured refuges.  

  



v 
 

 

 

 

 

 

 

 

 

 

 

 

This dissertation is dedicated to Michael Hughson, Nancy Hughson and Evan Taylor for their 

love, support and kindness throughout my graduate research.   



vi 
 

ACKNOWLEDGEMENTS 

I thank my advisor Dr. Joseph Spencer for his invaluable insight, guidance and 

encouragement over the past seven years!  Our hours of brainstorming have been invaluable in 

my growth and understanding of this research and have allowed us to reveal the important 

meaning behind some of the western corn rootworm’s seemingly random behaviors.  I thank Dr. 

May Berenbaum, Dr. Lawrence Hanks, Dr. Marianne Alleyne, Dr. Christian Krupke and Dr. 

Michael Gray for their valuable advice and suggestions while serving on my Dissertation and 

Master’s committees.  I thank Gérald Bermond and Nick Miller for their collaboration.  I thank 

Brodie Dunn whose creativity, inquisitiveness and hard work has been invaluable!  I thank Carl 

Carman, Theresa Emmerling, Charlie Keegan, Merilin Barahona, Ashley Higgins, Andrew 

Kumler, Johnny McQuillan, Andrew Nelson, Matt Olin, Kyle Rockershousen, Travis Wilkinson, 

Jungkoo Kang, Patrick Olin, Kirk Beutke, Jacob McQuaid, Sam Moses, Eliana Rosales, Sarah 

Buhmann, Dario Aguilar, Adam Olin, Miles Henderson, Ted Brown, Louisa Burgos, Horace 

Zeng and John Rhee for their help in collecting and processing nearly 30,000 beetles. 

I thank the University of Illinois at Urbana-Champaign Department of Entomology and 

Illinois Natural History Survey for making my graduate studies possible.  I thank John 

Chamberlain at EnviroLogix Inc. for facilitating the research use of tens of thousands of 

EnviroLogix™ QuickStix™.  I thank Susan Moser and Tim Nowatzki at Pioneer Hi-Bred 

(DuPont) for providing corn seed and shared enthusiasm for this research.  I thank Jeff Warren, 

Mike Kleiss, Bob Dunker and Tim Lecher for planting, harvesting and maintaining our research 

sites.   

This research was supported by USDA-NIFA grant # 2009-65104-05976 to JLS, with 

additional support from Illinois Natural History Survey and UIUC Department of Entomology.  



vii 
 

TABLE OF CONTENTS 

CHAPTER 1: WESTERN CORN ROOTWORM (DIABROTICA VIRGIFERA VIRGIFERA 

LECONTE) MATING AND MOVEMENT BEHAVIOR RELATED TO INSECT 

RESISTANCE MANAGEMENT IN BT CORNFIELDS ............................................................ 1 

 

CHAPTER 2: CHARACTERISTICS AND ABUNDANCE OF MATING WESTERN CORN 

ROOTWORMS (COLEOPTERA: CHRYSOMELIDAE) IN BT CORNFIELDS WITH 

STRUCTURED AND SEED BLEND REFUGES...................................................................... 29 

 

CHAPTER 3: INTRAFIELD MOVEMENT OF WESTERN CORN ROOTWORMS 

(COLEOPTERA: CHRYSOMELIDAE) IN BT CORNFIELDS WITH STRUCTURED AND 

SEED BLEND REFUGES .......................................................................................................... 68 

 

CHAPTER 4: EFFECTS OF SEX RATIO AND BEETLE DENSITY ON WESTERN CORN 

ROOTWORM (COLEOPTERA: CHRYSOMELIDAE) MATING BEHAVIOR ................... 106 

 

CHAPTER 5: ASSESSING SPERM PRECEDENCE IN WESTERN CORN ROOTWORM 

(DIABROTICA VIRGIFERA VIRGIFERA LECONTE) USING MICROSATELLITE 

GENOTYPING .......................................................................................................................... 127 

 

APPENDIX A: ADDITIONAL MEASUREMENTS OF MATING CHARACTERISTICS AND 

ABUNDANCE .......................................................................................................................... 155 

 

APPENDIX B: SEX RATIO OF BEETLE EMERGENCE AND ABUNDANCE .................. 162 

 



1 
 

 

CHAPTER 1: WESTERN CORN ROOTWORM (DIABROTICA VIRGIFERA 

VIRGIFERA LECONTE) MATING AND MOVEMENT BEHAVIOR RELATED TO 

INSECT RESISTANCE MANAGEMENT IN BT CORNFIELDS 

 

INTRODUCTION 

Western corn rootworm (Diabrotica virgifera virgifera LeConte) is the most 

economically important pest of corn in the United States (US; Gray et al. 2009) and has been 

called the world’s most expensive pest to control (Cock 2011).  In the mid-1980s it was 

estimated that, together with the northern corn rootworm (Diabrotica barberi Smith and 

Lawrence), western corn rootworms may cost US$1 billion annually in yield losses and control 

costs (Metcalf 1986).  Today, this cost is thought to be greater (Dun et al. 2010, Tinsley et al. 

2013).   

Western corn rootworm was first identified as a pest of corn in 1909 (Gillette 1912).  The 

larvae feed on corn roots and are responsible for most of the yield loss and costs associated with 

this species while the adults feed on the foliage, tassels, silks and kernels of corn plants (Branson 

and Krysan 1981, Moser and Vidal 2005) and usually do not cause economic losses (Levine and 

Oloumi-Sadeghi 1991).  The univoltine rootworm life cycle is closely tied to corn and they have 

few alternate hosts (Branson and Ortman 1967, 1970, 1971; Clark and Hibbard 2004).  Their 

strong ovipositional fidelity to corn and the larval inability to survive on other crops led to the 

suggestion that rootworms could be easily controlled using an annual crop rotation to a non-host 

crop (Forbes 1883, Gillette 1912), which is still one of the primary methods used to control 

rootworms in the Corn Belt (Shaw et al. 1978, Levine and Oloumi-Sadeghi 1991, Wilson et al. 

2005).  However, the great efficacy of crop rotation was its undoing, it selected for females with 

reduced ovipositional fidelity to cornfields creating a pest whose eggs could be found in almost 
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any crop (including corn) (Onstad et al. 1999, 2001; Levine et al. 2002).  The evolution of 

behavioral resistance to crop rotation resulted in reports of severe injury in first-year corn 

(Levine and Oloumi-Sadeghi 1991, Levine et al. 2002).  As rotation resistance spread to the 

surrounding areas, corn growers began to rely heavily on soil applied insecticides and foliar 

sprays (Levine and Oloumi-Sadeghi 1991, Rice 2004).  Rotation resistance has expanded from 

its IL-IN epicenter into MI, OH, WI, IA and Ontario, Canada (Gray et al. 2009).  However, 

recent data indicate that rotation-resistant WCR densities are currently below economic 

thresholds in Iowa (Dunbar and Gassmann 2013).  

The first Bt (Bacillus thuringiensis Berliner) corn hybrids, targeting root-feeding larvae 

were introduced in 2003 (US EPA OPP 2001) and offered efficacy similar to that of soil applied 

insecticides (Rice 2004).  Bt technology proved to be an effective management tool and was 

rapidly adopted by farmers.  By 2015, 92% of corn in the US expressed one or more Bt toxins to 

manage rootworm and lepidopteran pests (USDA ERS 2016).  Because if the inherent risk of 

resistance evolution, the Environmental Protection Agency (EPA) required a refuge of non-Bt 

corn to be planted in each Bt cornfield (US EPA OPP 2001, US EPA BPPD 2012).  This Insect 

Resistance Management (IRM) plan was adapted from the high-dose refuge strategy already 

employed to delay resistance in lepidopteran pests, including European corn borer (Ostrinia 

nubilalis Hübner; US EPA 1998) which have very different biology and behavior than corn 

rootworms.  While the body of literature regarding the western corn rootworm is broad, there are 

still gaps that require better understanding.  This review, outlines western corn rootworm 

movement and mating behavior and explore the role this pest’s biology plays in insect resistance 

management.  
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LIFE CYCLE AND MATING BEHAVIOR 

Life cycle  

The western corn rootworm is a univoltine species, with individuals overwintering in the 

soil of agricultural fields as eggs (Ball 1957) in an obligate diapause (Krysan and Branson 1977).  

Larvae begin to eclose from their eggs between late May and early June (Levine et al. 2002), 

then quickly begin to feed on the roots of young corn plants (Krysan and Branson 1983).  Larval 

feeding injury can cause reductions in yield by rendering the plants susceptible to disease 

(Palmer and Kommedahl 1969) and disrupts water and nutrient flow (Kahler et al. 1985).  It can 

also reduce the structural integrity of stabilizing roots, causing the plants to lodge, which makes 

them difficult to harvest, further reducing yield.  Adult feeding does not usually cause economic 

damage, but when populations are high, excessive silk feeding may disrupt pollination which 

prevents kernel formation and reduces yield (Levine and Oloumi-Sadeghi 1991). 

After completing three instars (George and Hintz 1966, Hammack et al. 2003), larvae 

form an earthen cell in which they pupate (Chiang 1973).  Adult emergence begins in late June 

and early July (Murphy et al. 2010, Hughson and Spencer 2015) and continues until mid to late 

August (Hughson and Spencer 2015).  Western corn rootworms are protandrous.  Males typically 

emerge before females, reaching peak cumulative emergence before females (Darnell et al. 2000, 

Nowatzki et al. 2002), although 97.8% of male and female emergence periods overlaps (Quiring 

and Timmins 1990).  Hughson and Spencer (2015) reported that males emerged 5.2 to 6.0 days 

before females based on mean emergence date, which is consistent with the five to seven day 

difference in emergence previously reported (Branson 1987, Quiring and Timmins 1990).  

Delays in emergence between the sexes are thought to be caused by differences in the rates of 

post-diapause embryonic development and post-hatch larval development between males and 
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females (Branson 1987).  Time differences in emergence are also thought to allow males time to 

reach sexual maturity before most females emerge and become available to mate (Guss 1976).  

Emergence from Bt corn is also delayed compared to refuge corn (Storer et al. 2006, Murphy et 

al. 2010, Hughson and Spencer 2015).  This delay can be 4.5 to 7.8 days, creating a 9.6 to 12.9 

day difference between the emergence of refuge males and Bt females (Hughson and Spencer 

2015).   

Because of the delay in emergence between males and females, populations tend to have 

a male biased sex ratio early in the season, which shifts to a female bias as the season progresses 

(Short and Hill 1972).  Bt cornfields often have a female biased sex ratio (Al-Deeb and Wilde 

2005, Meinke et al. 2009, Murphy et al. 2010).  Female biased sex ratios in emergence from Bt 

corn are thought to be caused by slower development on Bt plants (Beckler 2006). 

 

Mating behavior 

Western corn rootworms females usually mate shortly after emergence, often within 12 to 

24 hours, while they are still teneral (Cates 1968, Quiring and Timmins 1990).  While males may 

require time to reach sexual maturity (Guss 1976), females are mature upon emergence and 

begin to release sex pheromone (calling) to attract males shortly thereafter (Hammack 1995).  

Female sex pheromone is primarily composed of 8R-methyl-2R-decenyl-proponoate (Guss et al. 

1982) and is recognizable by males five to seven days after emergence (Guss 1976).  On their 

first day after emergence, 54% of females began calling, on the second day 96.4% began calling 

and by the third all of the females had begun to call (Hammack 1995).  When males detect sex 

pheromone, they engage in mate-seeking flight and move toward the source of the pheromone 

(Ball and Chaudhury 1973, Guss 1976, Lew and Ball 1979, Marquardt and Krupke 2009).  When 
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males and females encounter one another, they have a brief period of courtship which may 

include up to one hour of mounting and mate-guarding prior to mating (Lew and Ball 1979).  

Mating occurs for three to four hours (Ball 1957, Lew and Ball 1979, Sherwood and Levine 

1993).  During the first hour of mating, the male produces a spermatophore in the female’s bursa 

copulatrix (Lew and Ball 1980).  Spermatozoa (hereafter referred to as sperm) from the 

spermatophore migrate to the female’s spermatheca within two to four hours (Lew and Ball 

1980), where they can be stored for 40 to greater than 76 days after mating (Branson and 

Johnson 1973, Hill 1975, Lew and Ball 1980).  The spermatophore is a nutrient rich nuptial gift, 

consisting of an ampulla containing enough sperm that a female may not need to remate (Hill 

1975) and a spermatophylax containing proteins and carbohydrates (Murphy and Krupke 2011) 

that can be absorbed by the female (Lew and Ball 1980).  The spermatophore can be completely 

absorbed by a female after five to 7 days (Lew and Ball 1980) and some compounds from the 

spermatophore are incorporated into the eggs (Murphy and Krupke 2011).  The size of the 

spermatophore is substantial, on average, equivalent to up to 9% of the male’s mass, making 

each mating a significant investment for males (Quiring and Timmins 1990, Tallamy et al. 

2000).  Without a quality food source, males mated less frequently and produced smaller 

spermatophores (Quiring and Timmins 1990), reinforcing the idea that spermatophore 

production is a significant investment for males. 

Classic literature on western corn rootworms suggests that females mate only once (Ball 

1957) and males may mate as many as 8 or 14 times throughout their life (Branson et al. 1977).  

While recent research has shown that males have a reproductive life span of ten days after their 

initial mating, during which they mate, on average, an additional 2.24 times (Kang and Krupke 

2009).  Determining the number of times a female mates can be quite difficult (Chapter 2 and 
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chapter 5 of this dissertation).  Branson et al. (1977) reported 23% of females mated more than 

once in the laboratory based on an egg viability study using females that were mated to sterile 

males followed by unaltered males.  Hughson (Chapter 2 of this dissertation) reported 4.5% of 

females mating more than once in the field, based on dissection of females collected while 

mating and analysis of the number of spermatophores or combination of spermatophore and 

sperm presence in each individual.  In a mating study, Hughson (Chapter 5 of this dissertation) 

also reported that 8% of females were observed mating a second time when presented with a new 

male each day after emergence.  When females mate more than once, it is unclear which male 

will fertilize all or a proportion of the resulting eggs (Chapter 5 of this dissertation) although 

research on southern corn rootworm (Diabrotica undecimpunctata Howardii) suggests they may 

have last male sperm precedence (Oyediran et al. 2007). 

 

Oviposition  

Female western corn rootworms may begin ovipositing 12 to 21 days after emergence 

(Short and Hill 1972, Branson and Johnson 1973, Hill 1975).  On average females produce 266 

to 441 viable eggs in their lifetime (Ball 1957, Elliott et al. 1990, Fischer et al. 1991, Boetel and 

Fuller 1997).  However, they are capable of producing over 1000 total eggs in their lifetime 

under ideal laboratory conditions (Branson and Johnson 1973, Hill 1975). 

Most oviposition occurs in the morning between 8.00 h and 12.00 h (Ball 1971).  Females 

preferentially oviposit on moist soil (Gustin 1979), depositing most of their eggs within the first 

10 cm of the soil (Ball 1957, Hein et al. 1988, Pierce and Gray 2006).  Females have also been 

observed entering drought cracks to oviposit (Kirk 1979).  Within the drought cracks, females 

were recorded ovipositing at a variety of depths depending on the moisture content of the soil 
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(Kirk 1979).  Females may prefer locations with moist soil because the young within the eggs 

require moisture to complete development (Krysan 1978). 

Females were reported to deposit eggs almost exclusively in cornfields from July to 

August (Ball 1957).  However, a proportion of the population leaves their natal cornfield 

(Spencer et al. 2005) and can be found in weedy field margins, volunteer corn and other crops 

where they may feed on available pollen (Shaw et al. 1978).  Since rootworms oviposit wherever 

they feed (Branson and Krysan 1981), this portion of the population likely played an important 

role in the evolution of behavioral resistance to crop rotation.  While the offspring of females 

that oviposited in cornfields could not survive when soybeans were planted in the field during 

the following year, rotation from soybeans to corn provided a fitness advantage to females with 

reduced ovipositional fidelity to corn.  High adoption of rotation in portions of the Corn Belt and 

the resulting increase in the proportion of beetles entering soybeans prior to oviposition led to 

behavioral resistance to crop rotation in western corn rootworm (Levine and Oloumi-Sadeghi 

1996, Levine et al. 2002). 

 

ADULT MOVEMENT BEHAVIOR 

Intrafield distributions and movement 

Intrafield movement in western corn rootworms is a topic of particular importance to the 

success of the high-dose refuge strategy and sustainability of Bt technology.  Movement within 

cornfields is usually discussed in terms of mate-seeking movement.  Factors influencing beetle 

distributions within fields are not well understood (Meinke et al. 2009).  Measures of population 

distributions and density have shown that beetle populations are often aggregated within 

cornfields (Midgarden et al. 1993, Park and Tollefson 2006a).  Adult distributions are closely 
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related to the distributions of larvae in cornfields, suggesting that adults may remain near their 

emergence sites (Toepfer et al. 2007).  Similarly, within Bt cornfields, measures of beetle 

abundance and mating activity revealed that beetle populations were concentrated in refuge corn 

throughout the season (Hughson and Spencer 2015, Chapter 2 of this dissertation).  These 

distributions suggest that few beetles move out of the refuge after emergence or prior to mating 

and may remain near their emergence sites. 

In addition to direct observation in the field and laboratory, a variety of methods have 

been used to mark beetles and measure their movement (Nowatzki et al. 2003, Spencer et al. 

2003, Taylor et al. 2016).  Mark-release-recapture studies have proven difficult to use because 

high population densities prevent adequate recapture (Spencer et al. 2003).  By placing 
15

N 

(Taylor et al. 2016) or rubidium (Nowatzki et al. 2003) in soil where refuge corn is planted, the 

materials are taken up by the plants and can be detected in the herbivorous insects that feed on 

them.  Insects feeding on untreated plants do not have detectable concentrations of the applied 

materials in their bodies.  When insects that fed on treated plants emerge from the soil as adults, 

they can be collected and tested for the isotope or rare earth element allowing the distribution of 

or distance traveled by refuge origin beetles to be determined (Nowatzki et al. 2003, Taylor et al. 

2016).  While placing isotopes or rare earth elements in the field can be expensive and difficult 

to detect in small subjects like insects (Hagler and Jackson 2001), these methods allow 

researchers to be sure of each beetle’s larval origin. 

The crystalline (Cry) proteins expressed by the Bt plants can also be used to detect beetle 

movement (Spencer et al. 2003).  Using this method, adult beetles mark themselves by feeding 

on Bt corn.  When they are collected their gut contents can be tested for the presence of ingested 

Cry proteins using ELISA test strips sensitive to specific proteins.  This allows a variety of Cry 
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proteins expressed in both refuge and corn rootworm Bt corn plants to be detected.  Because the 

proteins are only detectable in a beetle’s gut for 12 to 48 hours (Chapter 2 of this dissertation), 

this cannot confirm an individual’s larval host (refuge or Bt corn) but it does reveal a snapshot of 

approximately daily movement activity based on where an individual was feeding.  If a beetle’s 

collection location and the Cry proteins expressed by corn plants in that location are known, the 

presence of Cry proteins not expressed in that location can allow the researcher to determine 

distributions of moving beetles, proportion of beetles collected that have moved and calculate 

daily movement rates of beetles that have recently fed on refuge and Bt corn within a Bt 

cornfield (Spencer et al. 2003, Chapter 2 of this dissertation).   

Field observations have revealed that females usually do not disperse from their 

emergence location prior to mating (Ball 1957, Cates 1968, Lew and Ball 1979) although they 

may walk a short distance from their emergence site prior to mating (Marquadt and Krupke 

2009).  Males are thought to move readily through a cornfield in mate-seeking flight (Ball 1957, 

Spencer et al. 2009), although few publications have measured this movement.  Mate-seeking 

movement occurs when males move toward sex pheromone produced by females.  Studies using 

sticky traps, have shown that more males are collected from traps baited with virgin females than 

unbaited traps (Marquardt and Krupke 2009).  However, because female baited traps are biased 

toward the collection of mate-seeking males (Meinke et al. 2009), these counts cannot determine 

the proportion of the population represented by mate-seeking males.  

By analyzing Cry proteins in the gut contents of beetles collected on sticky traps in a 

cornfield with a 20% structured refuge, Marquardt and Krupke (2009) determined that there was 

no difference in the proportion of refuge beetles collected on sticky traps near the refuge-Bt 

interface or in the center of a Bt cornfield, ~200 m from the refuge.  Spencer et al. (2003) 
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analyzed the gut contents of beetles collected from refuge and Bt corn in cornfields planted with 

refuge strips and determined that beetles traveled a maximum of 13.9 to 27.4 m/day.  Similarly, 

Hughson (Chapter 2 of this dissertation) calculated rates of travel using Cry protein detection in 

Bt cornfields with 20% and 5% structured refuges and found that beetles traveled 26 to 31 

m/day.  Both of these values were similar to the < 30 m/day recorded by Coats et al. (1987) using 

tethered flight mills.  In both the Spencer et al. (2003) and Hughson (Chapter 2 of this 

dissertation) studies, there were no difference in the movement rates of males and females.  And 

in the Hughson (Chapter 2 of this dissertation) study, there was no difference in the proportions 

of moving males and females.  Similarly, there were no differences in the number or duration of 

flights between males and females in tethered flight mills (Naranjo 1990, Coats et al. 1986). 

Based on these observations, it seems that there is little detectable difference in intrafield 

movement behavior between males and females, suggesting males may not readily distribute 

themselves across fields.  Given that males, on average, mate 3.24 times within their ten day 

reproductive lifespan (Kang and Krupke 2009), a period of mate-seeking movement may 

represent a brief portion of their lives.  Males emerging in an area of high beetle abundance, such 

as a refuge, may only need to move a short distance to encounter calling females, making the 

scale of mate-seeking movement smaller than anticipated.  If these hypotheses are true, mate-

seeking movement would be difficult to detect without using methods specifically targeting 

mate-seeking males.  However, without additional study, the movement capabilities of mate-

seeking males within cornfields remains unclear. 
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Interfield movement and long-distance dispersal 

During the mornings and evenings, western corn rootworm adults can be observed 

ascending and dispersing from cornfields (Isard et al. 2004).  Among dispersing beetles, 

collected from 10 m tall scaffolding towers, 85% were female and, among those females, 84% 

contained a spermatophore, indicating that a majority of interfield dispersers were recently mated 

females (Isard et al. 2004).  In flight mill studies, females did not engage in sustained flight more 

than six to nine days after emergence (Naranjo 1990, Coats et al. 1986) and physiological 

research revealed that post-mating dispersal is influenced by juvenile hormone (Coats et al. 

1987). 

Studies of interfield movement often focus on movement between corn and soybean 

fields (Isard et al. 2000, Levine et al. 2002; O’Neal et al. 1999, 2004, Spencer et al. 2005, Pierce 

and Gray 2006).  Beetles that enter soybeans are unable to survive on soybean foliage and may 

return to corn to feed (Mabry and Spencer 2003).  Beetles may initially be enticed to leave 

maturing corn by pollen from other plants, including weeds (Moeser and Vidal 2005), or 

volatiles from pollen and silks in late-planted (less mature) cornfields (Naranjo 1994, O’Neal et 

al. 2004).  Beetles are capable of moving up to 300 m into soybean fields (Toepfer et al. 2006) 

and travel 4.6 to 9.1 m/day, up to a maximum estimate of 36.5 to 73.0 m/day within soybean 

fields (Spencer et al. 2003). 

In studies of long-distance dispersal, females under direct observation in tethered flight 

mills were recorded to fly up to 24 km in a single flight or 39 km in a series of flights (Coats et 

al. 1986).  There is documentation of western corn rootworms traveling tens of kilometers in 

thunderstorms (Grant and Seevers 1989).  This capacity for long-distance flight may explain 

their ability to spread to new locations (Onstad et al. 1999).  
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BT CORN HYBRIDS 

Introduction and adoption 

After the discovery of rotation resistance in the Corn Belt, corn growers in affected areas 

began to rely more heavily on soil applied and foliar insecticides (Spencer et al. 2011, Rice 

2004), highlighting the need for a new means of managing western corn rootworm.  Bt hybrids 

were an attractive option because they offered an efficacy similar to insecticides, reduced 

occupational exposure to chemicals, specific targeting of pest species and promised a reduction 

in broad-spectrum insecticide application (Rice 2004). 

Bt corn hybrids targeting root-feeding western and northern corn rootworm larvae were 

first commercialized in 2003 (US EPA OPP 2001).  Bt hybrids are genetically engineered to 

express Cry proteins normally produced in the inclusion bodies of the soil microbe Bacillus 

thuringiensis during sporulation (Schnepf et al. 1998).  The Cry proteins expressed by Bt crops 

are active toxins rather than the protoxins found in whole bacteria (Clark et al. 2005) which 

require processing in the alkaline larval gut to be converted to their active form (Schnepf et al. 

1998).  When rootworm larvae feed on corn roots expressing Cry proteins, the Cry proteins bind 

with receptors on the insect’s midgut epithelial cells and insert themselves into the microvillus 

membrane (de Maagd et al. 2001).  When multiple Cry proteins penetrate the microvillus 

membrane, they form a pore in the tissue (Xu et al. 2014) and, eventually kill the larvae.  Cry 

proteins are most effective in killing neonate larvae and are less effective on later instars 

(Binning et al. 2010). 

Bt hybrids were first commercialized in1996 to control European corn borer and, with 

high rates of adoption, have achieved area-wide suppression of their populations in portions of 

the Mid-west (Hutchison et al. 2010).  In MN, IL and WI, European corn borer populations were 
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suppressed to the point that both Bt and non-Bt corn growers gained economic benefits 

(Hutchison et al. 2010).  With hopes of similar success, Bt hybrids targeting corn rootworms 

were commercialized in 2003.  Since the introduction of rootworm active Bt traits, low beetle 

populations have been reported in corn and soybeans in IL (Gray 2013, Hughson and Spencer 

2015) which may also be a result of an area-wide effect of Bt hybrids adoption. 

Initially, only Bt hybrids expressing single corn rootworm targeting Bt traits were 

introduced, but over time, combinations of traits became commercially available (see Tabashnik 

et al. 2009, Table 1).  In 2005, stacked hybrids were commercialized, expressing a corn 

rootworm targeting Bt trait and a lepidopteran targeting Bt trait.  By 2008, pyramided hybrids 

were introduced, expressing two or more rootworm traits and/or two or more lepidopteran traits.  

Following their introduction, Bt hybrids were rapidly adopted and now represent 89% of all corn 

grown in Illinois (USDA ERS 2016).  Long term area-wide adoption of Bt technology (USDA 

ERS 2016) and incomplete compliance with refuge requirements (Jaffe 2009) increased the 

selection pressure on western corn rootworm populations and played an important role in the 

evolution of Bt resistance.  

The first case of field-evolved rootworm resistance to a Bt trait was identified in 2009 

(Gassmann et al. 2011).  The fields in this study had a history of planting continuous Bt corn and 

had experienced unexpected injury (Gassmann et al. 2011).  Beetles were collected from the 

fields and their offspring were tested in plant-based bioassays, comparing the survival or larvae 

on Bt and non-Bt plants.  Assays revealed that the population had reduced susceptibility to the 

Cry3Bb1 trait (Gassmann et al. 2011), which was the first commercialized and the most 

commonly used rootworm Bt trait.  Since then, Cry3Bb1resistance in western corn rootworm has 

been detected in fields throughout the Corn Belt (Gassmann et al. 2014, Wangila et al. 2015, 



14 
 

 

Schrader et al. 2016, Zukoff et al. 2016, Ludwick et al. 2017).  Cross-resistance, a reduced 

susceptibility to one Bt trait caused by exposure to a different Bt trait, is a problem caused by the 

structural similarities among several rootworm Bt toxins (Jakka et al. 2016).  Populations that 

have been reported as resistant to Cry3Bb1 have also had a reduced susceptibility to mCry3A 

and eCry3.1Ab (all are Cry3 toxins; Gassmann et al. 2014, Wangila et al. 2015, Jakka et al. 

2016, Zukoff et al. 2016, Ludwick et al. 2017).  While some populations maintained 

susceptibility to Cry34/35Ab1 (Gassmann et al. 2014, Wangila et al. 2015, Jakka et al. 2016), 

significantly reduced susceptibility to Cry34/35Ab1 was documented for other populations 

(Zukoff et al. 2016, Ludwick et al. 2017). 

 

High-dose refuge strategy 

The inherent risk of insect resistance from control methods with high efficacy and 

adoption led the EPA to adapt the high-dose refuge strategy (Tabashnik 1994, Gould 1998) to 

prolong the lifetime of Bt technology targeting corn rootworms (US EPA OPP 2001).  Using this 

strategy, which was previously employed to delay resistance in European corn borer, growers of 

Bt corn were required to plant a specific percentage of their Bt cornfield with non-Bt corn.  

Refuges are intended to preserve insect susceptibility within Bt cornfields, by allowing a portion 

of the insect population to develop without exposure to Cry proteins and survive to adulthood 

(Tabashnik 1994, Gould 1998).  The abundant susceptible adults of refuge origin, are expected to 

distribute themselves across Bt cornfields and mate with any potentially resistant adults that 

survived Bt exposure as larvae (Tabashnik 1994, Gould 1998).  Because susceptible insects are 

expected to be homozygous dominant and resistant insects are expected to be homozygous 
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recessive for resistance alleles, matings between these individuals should result in heterozygous 

susceptible offspring, slowing the evolution of resistance (Tabashnik 1994, Gould 1998). 

The high-dose refuge strategy for European corn borer required a 20% structured refuge 

to be planted up to 0.5 mi away from its corresponding Bt cornfield (US EPA 1998, US EPA 

OPP 2001).  To compensate for the reduced dispersal capability of coleopterans compared to 

lepidopterans, in the rootworm version of the strategy planting a structured refuge was required 

within or immediately adjacent to a Bt cornfield expressing traits that targeted corn rootworms 

(US EPA OPP 2001).  Initially, a 20% structured refuge was required for Bt hybrids expressing a 

single trait (US EPA OPP 2001), but as stacked and pyramided hybrids were introduced, refuge 

requirements were reduced to 10% and 5%.  In addition, refuges could be planted in a variety of 

new configurations, depending on the number or combination of Bt traits expressed by the 

hybrids, including structured row-strips and seed blends (also called “refuge-in-a-bag”).  Seed 

blends were introduced (US EPA BPPD 2010), in part, to address concerns about falling grower 

compliance with refuge regulations (Jaffe 2009).  They are sold with the appropriate amount of 

refuge seed pre-mixed in each bag of Bt corn, offering growers the convenience of deploying the 

appropriate amount of refuge without handling separate bags of Bt and refuge seed.  

The success of high-dose refuge strategy for rootworms relies on satisfying four main 

assumptions: 1) Bt traits targeting corn rootworms are high-dose, 2) resistance alleles are initially 

rare in a population, 3) resistance alleles are monogenic and recessively inherited, and 4) beetles 

from refuge and Bt corn move readily across the field and intermate (Gould 1998, Tabashnik 

2008).  While each of these assumptions are met for European corn borer (Bourguet et al. 2003, 

Huang et al. 2011, Tabashnik et al. 2013, Siegfried et al. 2014), they are not met for western corn 

rootworm. 
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The EPA defines a high-dose trait as allowing the survival of < 0.01% of feeding 

individuals (US EPA 1998).  While high-dose Bt traits exist for lepidopteran pests, none of the 

currently available corn rootworm Bt traits express Cry proteins at a high-dose (Meihls et al. 

2008, Binning et al. 2010, Clark et al. 2012, Frank et al. 2015).  In studies using susceptible 

populations, 1.51% and 3.79% of the insects survived exposure (Meihls et al. 2008, Clark et al. 

2012).  These moderate doses ensure the survival of some Bt origin beetles each generation, 

which can accelerate the rate of resistance evolution by increasing the frequency of resistance 

alleles in subsequent generations (Gould 1998, Tabashnik et al. 2013).  Alleles for rootworm 

resistance to Bt traits should be rare in a population prior to Bt exposure and those alleles should 

be recessively inherited.  However, resistance models by Onstad and Meinke (2010) suggest that 

resistance allele frequencies are 20 to 200 times greater than have been observed in pests that 

have been successful in delaying resistance and 2000 times greater than is standard for use in 

IRM modelling.  Studies examining the inheritance of resistance suggest that in some 

populations resistance is non-recessive while in other populations resistance is polygenic 

(Petzold-Maxwell et al. 2012, Thompson 2014).   

Recent studies have illustrated a lack of synchrony in the emergence of male and female 

beetles (Hughson and Spencer 2015) and beetles from refuge and Bt corn (Murphy et al. 2010, 

Hughson and Spencer 2015), which created a delay of 9.6 to 12.9 days between refuge male and 

Bt female emergence (Hughson and Spencer 2015).  The ten day reproductive lifespan of males 

(Kang and Krupke 2009) may widen the temporal barrier, prevent them from intermating.   

After emergence, beetles appear to reside near their location of emergence (Toepfer et al. 

2007, Hughson and Spencer 2015) and do not move far prior to mating (Chapter 2 of this 

dissertation).  Modest daily intrafield movement rates (Spencer et al. 2003, Chapter 2 of this 
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dissertation) and lack variation between male and female movement capabilities (Naranjo 1990, 

Coats et al. 1986, Spencer et al. 2003, Chapter 2 of this dissertation) suggest that male intrafield 

movement is less extensive than anticipated and may be insufficient to ensure the adequate 

mixing of beetles from refuge and Bt corn to delay Bt resistance.  Seed blends were thought to 

provide better mixing of refuge and Bt beetles (Pan et al. 2011) because they would integrate 

refuge plants within the Bt crop.  However, the proportion of beetles collected in mixed-matings 

(including a beetle from refuge and a beetle from Bt corn), was no different in seed blends 

compared to structured refuges of the same percentage (Chapter 2 of this dissertation).  Mate-

seeking movement may be inadequate to delay resistance. 

Among the assumptions of the high-dose refuge strategy, corn rootworm behavior 

features most prominently in the assumption that males will move extensively across Bt 

cornfields before they mate.  At the time this strategy was developed for use against corn 

rootworms in Bt corn, the available literature supported this assumption.  Rootworm males 

moved significant distances in search of mates and that males were capable of mating many 

times (Ball 1957, Branson et al. 1977).  However, these studies were carried out long before Bt 

hybrids became available and dominated the Midwest’s agricultural landscape.  These changes 

have made it essential to revisit and expand upon our assumptions about basic western corn 

rootworm biology and ecology associated with Bt corn exposure and cultivation.  
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CHAPTER 2: CHARACTERISTICS AND ABUNDANCE OF MATING WESTERN 

CORN ROOTWORMS (COLEOPTERA: CHRYSOMELIDAE) IN BT CORNFIELDS 

WITH STRUCTURED AND SEED BLEND REFUGES  

 

INTRODUCTION 

Since 2003, western corn rootworm (Diabrotica virgifera virgifera LeConte) has been 

controlled throughout the United States and Canada using transgenic Bt (Bacillus thuringiensis 

Berliner) corn hybrids (US EPA OPP 2001).  Bt hybrids were engineered to express toxic Cry 

proteins that target young root-feeding larvae (Binning et al. 2010), offering a specific and 

effective method of controlling rootworms that was intended to reduce reliance on, and exposure 

to, chemical insecticides (Rice 2004).  Bt hybrids were rapidly adopted by corn growers and 

represented 92% of corn grown in the United States in 2015 (USDA ERS 2016).   

To delay the evolution of rootworm resistance to Bt hybrids, the US Environmental 

Protection Agency required growers to plant a non-Bt refuge within each Bt cornfield as part of 

an insect resistance management (IRM) plan (US EPA OPP 2001).  A refuge is an area of non-Bt 

corn where Bt susceptible rootworms can develop without exposure to Bt toxins expressed 

elsewhere in the field.  Beetles emerging from refuges are expected to disperse broadly across Bt 

cornfields and mate with rare potentially resistant beetles that survived Bt exposure yielding 

susceptible heterozygous offspring (Tabashnik 1994, Gould 1998); the proportion of the 

population needed to engage in this behavior is undefined.  Unfortunately, grower compliance 

with the size of the required refuge (initially 20% of field area) was never high which may have 

left many Bt cornfields with fewer refuge beetles than were needed (Jaffe 2009).  Based on the 

high-dose refuge strategy (Gould 1998), it was assumed that > 99.9% of susceptible larvae would 

die after feeding on the Bt crop (US EPA 1998).  This dosage assumption proved to be 
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optimistic; none of the Bt hybrids targeting rootworms meet this criterion (Meihls et al. 2008, 

Clark et al. 2012).  The lack of high-dose efficacy, wide-spread use of Bt technology and poor 

refuge compliance all increased the risk that rootworms would rapidly evolve resistance to this 

technology.   

In addition to concerns about product efficacy and refuge compliance, the adequacy of 

the refuge-based IRM plan for corn rootworm was limited by inadequate knowledge of pest 

biology.  Expectations about beetle movement and mating in the field were integral to the 

success of refuge strategy, leaving it vulnerable to erroneous assumptions about western corn 

rootworm behavior and reproductive ecology.  Despite a long pest history going back for more 

than a century (Gillette 1912, Spencer et al. 2011), western corn rootworm field biology remains 

poorly understood, particularly in the context of the changing agricultural landscape. 

Western corn rootworms overwinter as eggs in the soil of cornfields (Ball 1957) and 

larvae begin to hatch in central Illinois during late May or early June (Levine and Oloumi-

Sadeghi 1991, Levine et al. 2002).  The larvae feed on corn roots (Krysan and Branson 1983) 

and have the potential to cause extensive economic damage (Metcalf 1986, Dun et al. 2010, 

Tinsley et al. 2012).  After pupation, adults begin to emerge from the soil in late June or early 

July (Levine and Oloumi-Sadeghi 1991, Murphy et al. 2010, Hughson and Spencer 2015) and 

feed on corn foliage, silks, tassels and kernels (Ball 1957, Moser and Vidal 2005).  Rootworms 

are protandrous, with males emerging 5.2 to 6.0 days before females (Branson 1987, Hughson 

and Spencer 2015).  Males may require this interval to reach sexual maturity (Guss 1976), but 

females are sexually mature upon emergence (Hammack 1995).  After emergence, females begin 

to release sex pheromone (Hammack 1995) and males orient their movements toward the 

pheromone in mate-seeking flights (Ball and Chaudhury 1973, Guss 1976, Marquardt and 
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Krupke 2009).  Females usually do not disperse before mating (Ball 1957, Cates 1968, Lew and 

Ball 1979), although short distance movement near the emergence site has been recorded 

(Marquardt and Krupke 2009).  The females are usually mated within 12 to 24 hours after 

emergence, many while they are still teneral (Cates 1968, Quiring and Timmins 1990).  Females 

are thought to mate only once in the field (Ball 1957, Cates 1968), although they have been 

recorded mating a second time in the laboratory (Branson et al. 1977).   

Mating is completed in three to four hours (Ball 1957, Lew and Ball 1979, Sherwood and 

Levine 1993).  During the first hour of mating, the male produces a spermatophore in the 

female’s bursa copulatrix (Lew and Ball 1980).  Within two to four hours, spermatozoa 

(hereafter sperm) acquired from the spermatophore migrate to the female’s spermatheca, where 

they are stored (Lew and Ball 1980).  The spermatophore is a significant contribution from the 

male.  It can be equivalent in size to up to 9% of the male’s mass (Quiring and Timmins 1990, 

Tallamy et al. 2000) and consists of proteins, carbohydrates and water (Murphy and Krupke 

2011), which may be absorbed by the female during the following five to seven days (Lew and 

Ball 1980). 

Hughson and Spencer (2015) found that western corn rootworm adults were concentrated 

in the refuge portions of Bt cornfields with structured refuges for much of the growing season.  

Apparently, many beetles remain near the location where they emerge, rather than dispersing 

across the fields (Hughson and Spencer 2015).  Persistent aggregations of beetles in structured 

refuges may result in a high likelihood of mating between beetles of refuge origin rather than 

mixing between refuge and Bt beetles.  The extent to which areas with concentrated female 

abundance (and many calling females) may attract mate-seeking beetles from nearby areas of 

low abundance needs investigation.  Uniform distributions of mating across Bt cornfields would 
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suggest that beetles are readily moving and mating within Bt cornfields as expected in high-dose 

refuge strategy.  Studying the reproductive characteristics of mating beetles and spatial and 

temporal patterns of mating activity in Bt cornfields may reveal whether adequate mixing of 

susceptible and potentially resistant beetles, required for the success of refuge strategy, occurs in 

the field. 

This study examines physiological characteristics of mating beetles to confirm that 

measures recorded in laboratory studies (i.e. age of mating, number of matings, size preferences 

of males and females) are consistent with field populations and whether they may provide 

insights about mating distributions that are relevant to IRM.  This study also examines the spatial 

and temporal distributions of mating activity in Bt cornfields with structured and seed blend 

refuges and reveals the proportion and distribution of matings that include one individual from 

refuge and one of Bt origin, a condition necessary for the success of refuge strategy.  Based on 

the distributions of adults reported in Hughson and Spencer (2015), I predict that most mating 

activity in Bt cornfields with structured refuges will occur in refuge rows and that mating activity 

will be uniformly distributed in fields with seed blend refuges.  In addition, because beetles were 

evenly distributed in seed blend refuges (Hughson and Spencer 2015), I expect to find more 

mixed-matings will be identified in seed blend refuge treatments. 

 

MATERIALS AND METHODS 

Location and treatments 

The research site was located at the University of Illinois’ “Shaw Farm” in Urbana, IL.  

Four 1.66 ha cornfields were each subdivided into three 0.53 ha plots separated by 8 m 

alleyways.  Each of the twelve plots was randomly assigned one of four unique refuge treatments 
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in a completely randomized design with three replicates; treatment locations were randomized 

each year (Hughson and Spencer 2015).  Each plot was 110 to 116 rows wide planted on a north-

south axis and each row was 0.76 m wide.  Planting dates were similar to the planting dates in 

the surrounding commercial fields (see Hughson and Spencer 2015 for planting dates). 

The refuge treatments were 1) 20% structured refuges (22 rows of refuge corn and 88 

rows of Bt corn), 2) 5.2% structured refuges (6 rows of refuge corn and 109 rows of Bt corn), 3) 

5.2% seed blend refuges and 4) 0% refuge treatments as positive controls.  The 5.2% refuge 

treatments will be referred to as 5% refuge treatments for simplicity.  In structured refuge 

treatments, the refuge rows were always located on the west side of their respective plots 

(Hughson and Spencer 2015).  Refuge percentage and configurations were selected based on the 

refuge standards when the experiment was developed.  Cornfields planted with a single 

rootworm active Bt trait required a 20% structured refuge within or adjacent to the field (US 

EPA OPP 2001), while pyramided hybrids could be planted in a 5% structured refuge adjacent to 

or 5% seed blend refuge with the refuge seeds randomly distributed across the Bt cornfield (US 

EPA OPP BPPD 2010). 

The rootworm active Bt portion of each plot was planted with Herculex
®
 XTRA (Pioneer 

Hi-Bred International, Inc., Johnston, IA; 2010: Hybrid 34B41, RM 109 days; 2011 and 2012: 

Hybrid 33W84, RM 111 days) which expressed Cry1F protein, targeting lepidopteran larvae, and 

Cry34/35Ab1 protein, targeting corn rootworm larvae.  The refuge portion of each treatment was 

planted with YieldGard
®
 Corn Borer (Monsanto Company, St. Louis, MO; 2010: Hybrid 34B94, 

RM 110 days; 2011 and 2012: Hybrid 33B54, RM 113 days) which expressed Bt Cry1Ab 

targeting lepidopteran larvae (Hughson and Spencer 2015).  A non-Bt refuge for lepidopteran 

pests was planted adjacent to the research fields.  Corn phenology was recorded based on 
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observations of plant development in the Bt hybrids which comprised 80 to 100% of the plants in 

each plot.  Phenology stages (Ritchie et al. 1993, Abendroth et al. 2011) were defined and 

recorded as vegetative, pollination and post-pollination each year (Hughson and Spencer 2015).  

 

Single adult and mating pair collections 

Western corn rootworm mating pairs and single adults were collected in 11 designated 

sampling rows in each of the 12 plots.  Collections began at the center of each row to avoid 

collecting beetles from the edge of the field, where beetle populations may have been inflated by 

movement between fields (see Hughson and Spencer 2015 for the details of plot labeling).  

Mating pair and individual adult collections were carried out three to five days per week 

in each plot and sampling row.  To ensure that the earliest emerging insects were not overlooked, 

collections began when third instar larvae were observed on corn roots excavated from the field.  

Collections occurred from 8:30 to 11:00 a.m., when mating activity was at its peak (Bartelt and 

Chiang 1977, Dobson and Teal 1986) and newly emerged beetles were still teneral (Cates 1968).  

Collections were carried out in each sampling row for four minutes but shortened to three or two 

minutes when beetles were abundant to avoid collecting excessively large samples (Hughson and 

Spencer 2015).  Collection duration was recorded so mating abundance could be reported as 

mating pairs collected per minute (mating pairs/min).  During collections, single adults and 

mating pairs were hand collected by knocking them from corn foliage into collection jars.  

Collection jars consisted of a funnel fixed to the top of a 0.95 L glass jar (Ball Corporation, 

Bloomfield, CO) which contained a small piece of dry ice.  The beetles were killed on contact by 

freezing or asphyxiated by the CO2 gas emitted by the dry ice (Hughson and Spencer 2015).  

When an apparent mating pair was killed, those in copula remained attached to one another, 
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making it possible to differentiate mating from single or mate-guarding beetles and identify the 

individual members of each mating pair.  If an apparent mating pair was only engaged in mate-

guarding, the beetles separated in the jar.  At the end of each collection, the samples were 

transferred to plastic bags where data including the number of observed mating pairs collected 

and their corresponding refuge treatment, sampling row identification, date, collection duration 

and collection time, were recorded.  The bags were placed in a cooler of dry ice for 

transportation to the laboratory, where they were sorted and stored in a freezer to await 

processing (Hughson and Spencer 2015). 

 

Reproductive characteristics 

To assess relative size, single and mating beetles (males and females) were weighed and 

the length of the left elytron was measured (the right was measured if the left was damaged or 

missing).  Female maturity (teneral or mature) was recorded to determine whether partner size 

played a significant role in mate selection.  To understand the mating status and reproductive 

development of female beetles, single and paired females were dissected.  During dissections, 

mating status (individual or paired), number of apparent matings and an ovary development 

rating were recorded.  A mating was confirmed if a female 1) was in copula, 2) had a 

spermatophore in her bursa copulatrix, 3) had sperm in her spermatheca or 4) had any 

combination of those characteristics.  Presence of a spermatophore was confirmed visually using 

a stereo microscope (StereoZoom 4, Leica Microsystems Inc., Buffalo Grove, IL).  Relative size 

was recorded for each spermatophore.  A large spermatophore (Figure 2.1) included both an 

ampulla and a larger spermatophylax with little apparent degradation, indicating that mating had 

occurred recently.  A small spermatophore had a spermatophylax that was partially absorbed 
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(similar in size to the ampulla) or completely absorbed and absent with only the ampulla 

remaining.  Since spermatophores are completely absorbed in five to seven days (Lew and Ball 

1980), a large spermatophore indicated recent mating, a small spermatophore indicated that 

mating occurred at least a few days prior to collection and the absence of a spermatophore when 

sperm was present indicated that mating occurred more than five to seven days prior to 

collection.  Sperm presence was determined by removing the spermatheca, placing it on a slide 

in a droplet of saline solution (0.75% NaCl) and crushing it beneath a cover slip.  The slide was 

inspected through a compound microscope (Microstar 10, American Optical Company, Buffalo, 

NY) under 200 x magnification, to confirm the presence of sperm, which resemble a mass of 

hair-like structures.  Ovary development was rated using a modification of the ovary maturity 

scale developed by Short and Hill (1972).  According to this scale, stage 1 ovaries have no egg 

development, stage 2 ovaries have only small ovules, stage 3 ovaries have some full-size eggs 

that had not completed choriogenesis, and stage 4 ovaries contain some mature eggs with 

chorions.  If present, the mature eggs were removed and the total number of eggs was recorded.   

In some circumstances it was possible to determine that a paired or individual female had 

mated more than once.  A female was assumed to have mated at least twice if she was collected 

with more than one spermatophore in her bursa copulatrix or if her spermatheca contained sperm 

but she was in copula with a male that had not yet produced a spermatophore.  All paired 

females collected from 2010 to 2012 were dissected and their mating characteristics were 

recorded.   

Many individually collected females were also dissected.  Because 132 row samples 

containing 0 to > 50 beetles were collected each day, subsets of individual beetles were taken 

from the row samples for processing in 2010 and 2011.  In 2010, no more than ten male and ten 
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female beetles were randomly selected, weighed and their elytra were measured for each row 

collection.  In 2011 each of these females were also dissected.  However, in 2010 the females 

were subsampled further; only females from one replicate of each treatment (randomly selected) 

per collection day were dissected. 

 

Detection of ingested Bt proteins in rootworm gut contents 

The specific Bt proteins found in the insect gut were used to infer patterns of beetle 

movement when compared to those expressed in corn plants at the beetle’s collection location 

(Spencer et al. 2003).  Spencer et al. 2003 found that in two to four hour long laboratory 

observations, western corn rootworm beetles fed 35 to 60% of the time they were on corn tissues.  

This suggested that beetles in Bt cornfields likely spend a significant portion of their time 

feeding on tissues expressing Cry proteins which can be detected in their gut contents using 

EnviroLogix™ QuickStix™ (EnviroLogix Inc., Portland, ME) ELISA test strips and regularly 

renewing that detectable material.  The high proportion of individuals that tested positive for the 

tissue in the field and the ability to easily detect the Cry proteins expressed by those tissues 

confirmed the efficiency of using Cry proteins as markers.   

A feeding calibration experiment was conducted to determine how long the Cry1Ab and 

Cry1F proteins expressed in corn tissue could be detected after beetle feeding.  Groups of beetles 

were fed on Bt corn plants expressing either Cry1Ab or Cry1F in a greenhouse.  Each plant was 

enclosed with a mesh bag and the beetles inside were allowed to feed for 24 hours.  At the end of 

the Bt feeding period, the beetles were gently shaken off the foliage, then moved within the mesh 

bags and slipped over fresh non-Bt plants.  Groups of eight beetles were removed from each 

bagged non-Bt plant at 0, 2, 4, 8, 12, 16, 24, 36 and 48 hours and tested for the presence of 
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Cry1Ab or Cry1F proteins using EnviroLogix™ QuickStix™ test strips.  This procedure 

generated a binary dataset that was analyzed to identify how long each Cry protein could be 

detected after feeding. 

Before dissection and gut content analysis, beetles were rinsed to remove Bt plant debris 

or frass, preventing surface contamination.  Care was taken not to disturb the gut during 

dissection so the contents could be analyzed afterward.  The Cry proteins detected in a beetle’s 

gut contents allowed us to determine whether a beetle was feeding on refuge or Bt corn within 

the last day, but cannot confirm the corn type of the larval host.  To determine if beetles had 

previously consumed refuge or Bt corn, EnviroLogix™ QuickStix™ test strips (EnviroLogix 

Inc., Portland, ME) were used to detect the presence of the Cry1Ab protein, expressed 

exclusively by refuge plants, and Cry1F, expressed exclusively by Bt plants.  Beetles were 

individually placed in a microcentrifuge tube (Fisherbrand, Hampton, NH) with 0.5 mL of 

QuickStix™ Extraction Buffer and pulverized using the Sonifier
®
 Cell Disruptor (Branson 

Ultrasonics Corporation, Danbury, CT).  Male beetles were tested for three Cry proteins: 

Cry1Ab, indicating the beetle had recently fed on refuge corn, Cry1F, indicating feeding on Bt 

corn and Cry3Bb1.  Cry3Bb1 was expressed by the Bt hybrids planted in all of the commercial 

cornfields surrounding the research site but was not expressed by the hybrids planted for this 

experiment.  The presence of this Cry3Bb1 in beetle gut contents indicated that the male entered 

the research site after feeding in a different cornfield.  Female beetles were tested for two Cry 

proteins: Cry1Ab and Cry1F.  Based on the original assumptions of refuge strategy for corn 

rootworms that males from refuge corn would move broadly across Bt cornfields and mate with 

potentially resistant females from Bt corn, females were not tested for the Cry3Bb1 Bt protein 

from the surrounding landscape.   
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By testing the gut contents of individual beetles collected in mating pairs for the presence 

of Cry proteins, it was possible to identify “mixed-matings.”  Mixed-matings were defined as a 

mating pair including one individual from refuge corn (testing positive for Cry1Ab) and the other 

from Bt corn (testing positive for Cry1F); this type of mating is essential for the success of 

western corn rootworm IRM in Bt cornfields.  Using this method, the proportion of mixed-

matings among all of the mating pairs collected from 2010 to 2012 was identified. 

In addition to identifying whether mating pairs were mixed-matings, this method revealed 

which member(s) of a mixed-mating had moved and the direction of travel (from refuge to Bt 

corn or vice versa).  If the Cry protein(s) in a beetle’s gut differed from the proteins expressed by 

the corn plants where it was collected, the beetle was designated a “mover.”  When the mover in 

a mixed-mating was identified, the sex and direction of travel were recorded.  Mixed-matings 

were identified that included nearly every possible combination of movers (e.g. male, female, 

both as movers) and direction of travel (e.g. refuge to Bt corn, Bt to refuge corn, entry from a 

nearby field).  These descriptive measures are referred to as the “composition” of mixed-

matings.  The composition breakdown of mixed-matings collected in each treatment was 

presented as the proportion of mixed-matings represented by each combination.  

 

Statistical analyses  

Mating pair abundance was calculated as mating pairs collected per minute (mating 

pairs/min) in each sampling row.  Abundance data for each sampling row were non-normal and 

log (x + 0.5) transformed.  The transformed abundance data were analyzed among treatments, 

corn phenology and sampling rows using three-way analysis of variance (ANOVA) and pairwise 
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multiple comparisons using the Tukey-Kramer method in JMP Pro 10 (SAS Institute Inc. 2012).  

All three years differed and were analyzed separately. 

The measures of reproductive characteristics (maturity, number of spermatophores, 

presence of sperm in spermatheca and ovary rating) were non-normal and log (x + 0.5) 

transformed.  The characteristics of paired females were compared to individual females to 

determine whether mating females differed in these measures, using t-tests (JMP Pro 10, SAS 

Institute Inc. 2012).  The mean weights and elytron lengths of paired and individual males and 

females were tested for normality and log (x + 0.5) transformed.  The mean weights and elytron 

lengths of paired males and females were compared to individually collected males and females 

to determine whether the size of actively mating or individual beetles differed, using t-tests (JMP 

Pro 10, SAS Institute Inc. 2012). 

The binary data produced by the feeding calibration experiment were converted to 

proportions of Bt positive beetles per time interval for each Bt protein and replicate tested.  Each 

proportion per replicate represented eight beetles (a total of 432 beetles were used) with each Bt 

protein treatment and time interval.  The proportions of Bt positive beetles were analyzed using 

ANOVA to compare the time intervals (JMP Pro 10, SAS Institute Inc. 2012).  The longest time 

intervals within which positive tests were read for each protein were reported. 

Very few mixed-matings were detected during this experiment so mixed-matings from all 

three years were pooled for analysis.  The Kruskal-Wallis test and Steel-Dwass test of multiple 

comparisons (JMP Pro 10, SAS Institute Inc. 2012) were used to determine whether refuge 

treatment or corn phenology had an impact on the total number of mixed-matings collected.  

There were too few mixed-matings to analyze their abundance by sampling row.  However, the 

total numbers of mixed-matings and mating pairs were presented in a figure depicting the year, 
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refuge treatment and sampling row where they were collected.  The composition (Bt origin and 

direction of male and female movement) of individuals in mixed-matings were summarized for 

each treatment to reveal the direction that moving individuals in each pair traveled.  

 

RESULTS 

Mating pair abundance 

In 2010, 2011 and 2012, 3,990, 3,036 and 4,354 row samples were collected, yielding 

290, 319 and 218 mating pairs, respectively.  During sampling, 11,469, 17,901 and 30,219 single 

adults were collected in 2010, 2011 and 2012, respectively, for a total of 59,589 single adults. 

The distribution of mating pair abundance (mating pairs/min) among sampling rows 

differed by refuge treatment and phenology (2010: df = 8, F = 3.49, P = 0.0005; 2011: df = 8, F 

= 8.87, P < 0.0001; 2012: df = 8, F = 20.20, P < 0.0001).  In structured refuge treatments, the 

mating abundance was greater in refuge rows than in Bt rows during the vegetative and 

pollination phenology periods all three years (Figures 2.3 through 2.5).  However, during post-

pollination, refuge rows did not differ from Bt rows except in the 5% structured refuge in 2010 

(Figures 2.3 through 2.5).  In seed blend and 0% refuge treatments, mating abundance did not 

differ and was evenly distributed across the fields in all three phenology periods from 2010 

through 2012 (Figures 2.3 through 2.5).  These data are presented in numerical detail in Tables 

(A.1 through A.3). 

 

Reproductive characteristics 

Paired females were more likely to be young compared to individual females.  In 2010 

and 2011, many more paired females were teneral than individually collected females (2010: t = 
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15.53, P < 0.0001; 2011: t = 18.96, P < 0.0001; Table 2.1).  The mean stage of ovary 

development for paired females was lower than that of individual females (2010: t = 6.36, P < 

0.0001; 2011: t = 11.06, P < 0.0001; Table 2.2).  Paired females were more likely to contain a 

spermatophore than individual females (2010: t = -12.44, P < 0.0001; 2011: t = -13.74, P < 

0.0001; Table 2.1).  Individual females were more likely to have sperm in their spermathecae 

(2010: t = 6.71, P < 0.0001; 2011: t = 9.33, P < 0.0001; Table 2.1).  The mean proportions and 

means for paired females in 2012 were reported in Tables A.4 and A.5. 

Evidence of multiple mating was found during dissections; some females possessed more 

than one spermatophore.  On average, mating females had more spermatophores than single 

females (2010: t = -12.60, P < 0.0001; 2011: t = -13.38, P < 0.0001; Table 2.2).  Among paired 

females, 1.5% had more than one spermatophore.  In addition, some paired females were 

discovered with stored sperm; however, the fact that their current mate had not yet transferred a 

spermatophore indicated that the sperm was the result of a previous mating.  These females, 

which apparently mated more than once over a longer period of time, represented 3.0% of all 

paired females.  Combining these two types of multiple matings, at least 4.5% of females mated 

more than once.  The corresponding measures for paired females collected in 2012 are presented 

in Tables (A.4 and A.5). 

Elytron length and weight between individual and paired males or females were variable 

among the years, groups and measurements (Table 2.3) preventing a consistent pattern from 

being identified. 
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Detection of ingested Bt proteins in rootworm gut contents  

The calibration experiment revealed that the Cry1Ab protein could be detected using 

EnviroLogix™ QuickStix™ in the western corn rootworm gut for up to 12 hours and the Cry1F 

protein could be detected for up to 48 hours (Figure 2.2).  This allowed beetle movement to be 

detected based on recent herbivory.   

Although 827 mating pairs were observed, 52 had to be excluded from gut content 

analysis because they were damaged or the individuals had been separated in storage making 

them indistinguishable from the individually collected beetles stored in the same vial.  Of the 775 

intact mating pairs, 66 were categorized as mixed-matings (a mating pair with two beetles of 

different field location origins based on the Cry proteins detected in their guts), representing 

8.5% of all mating pairs collected.   

The refuge treatment significantly influenced the proportion of mixed-matings that were 

recovered (χ
2
 = 21.15, df = 3, P < 0.0001).  There was no difference in the proportion of mixed-

matings collected in the 20% structured, 5% structured or 5% seed blend treatments, although 

fewer were collected in the 0% refuge treatment.  Of all mating pairs collected, 9.2% were 

mixed-matings in the 20% structured refuge treatments, 16.5% were mixed-matings in 5% 

structured refuge treatments, 12.8% were mixed-matings in 5% seed blend treatments and 0.0% 

were mixed-matings in the 0% refuge treatments.  Phenology also influenced the proportion of 

mixed-matings recovered (χ
2
 = 58.66, df = 2, P < 0.0001).  A greater proportion of mixed-

matings were recovered during the vegetative period (0.284) than the pollination (0.050) and 

post-pollination periods (0.052), which did not differ. 

In the 20% structured refuge treatment, 88.9% of mixed-matings in refuge corn rows 

(Figure 2.6) included a male that moved from Bt to refuge corn, while just 11.1% included a 
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female that moved from Bt to refuge corn.  No mixed-matings included either a male or female 

that moved from refuge to Bt corn.   

In the 5% structured refuge treatment, 61.1% of mixed-matings were collected in refuge 

corn and included a male that moved from Bt to refuge corn and 5.6% included a female that 

moved from Bt to refuge corn (Figure 2.6).  In 8.3% of the mixed-matings, the male and female 

tested positive for both Cry proteins and were collected in refuge corn, indicating they each 

moved from Bt to refuge corn and fed there before mating.  The remaining mixed-matings in 5% 

structured refuge treatments were collected in Bt corn rows, one included a male that moved to 

Bt corn from refuge corn and the other pair included a female that moved from refuge to Bt corn 

(Figure 2.6). 

In the 5% seed blend treatments, mixed-matings were more evenly distributed across the 

cornfields than in structured refuge treatments (Figure 2.6).  Because Bt and refuge plants are 

randomly distributed across the field, gut content analysis cannot indicate the direction of 

movement in seed blend fields. 

Some mating pairs included a male that had entered the research site from another 

location (n = 12), representing 1.5% of all matings.  Of these matings, 66.7% included a male 

positive for Cry3Bb1 and a female positive for Cry1F, indicating that both individuals had Bt 

corn origins.  Because these matings resulted from interfield movement rather than intrafield 

movement, the did not meet the criterion of a mixed-mating because neither partner contained 

Cry1Ab, refuge corn.  The remaining 33.3% were mixed-matings, including a male from another 

field (Cry3Bb1 positive) and a female from refuge corn.  One of these mixed-matings was 

collected in the 20% structured refuge, two were in the 5% structured refuge and one was in the 

5% seed blend.  
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DISCUSSION 

Mating characteristics 

These analyses of female reproductive characteristics suggest that mating female western 

corn rootworms are younger compared to the general field population of females.  Fewer mating 

females were teneral (~ 50%) than reported in laboratory studies (96%; Quiring and Timmins 

1990) which may be a result of ecological variability in the field rather than ideal laboratory 

conditions or emergence in an area where rootworm populations have been suppressed by Bt 

hybrids.  Accordingly, females may require additional time to attract a mate at low beetle 

densities (Spencer et al. 2012).  Most of the individually collected females in the field were 

mature and had characteristics indicating that they were mated.  They were also more likely to 

have mature eggs than mating females.  No gravid females were collected in mating pairs. 

 The first record of field-collected females mating multiple times was discovered during 

dissections.  While females have been recorded mating more than once in a laboratory setting 

(Branson et al. 1977), there was no previous evidence that they may mate multiple times in a 

dynamic field environment.  Based on dissections, it was estimated that at least 4.5% of females 

mated more than once in the field, either in short succession or more than five to seven days after 

the first mating.  This is only a minimum estimate because multiple mating is difficult to detect.  

Based on dissections, multiple matings could be confirmed only by direct observation of a 

combination of mating activity (a pair in copula), spermatophore presence and sperm presence in 

the spermatheca.  However, beetles remain in copula only for three to four hours (Ball 1957, 

Lew and Ball 1979, Sherwood and Levine 1993) and spermatophores are absorbed after five to 

seven days (Lew and Ball 1980) making it likely that some multiply mated females were not 

identified because they no longer had a spermatophore in their body or were not actively mating 



46 
 

 

when collected.  The proportion of females mating more than once in the field may be even 

greater than observed in this study; a laboratory study suggested that 23% of females may take a 

second mate (Branson et al. 1977).  Confirmation of multiple mating in a field population may be 

more precisely explored using genomic methods to analyze the allelic admixture of sperm in a 

female’s spermatheca.  

A concern arising from the identification of polyandrous females, is that they may have 

additional opportunities to mate with putative-resistant males from Bt corn.  While this risk may 

seem small, it has not been explored in resistance management modeling.  Because Bt emergence 

is delayed compared to refuge corn (Storer et al. 2006, Murphy et al. 2010, Hughson and Spencer 

2015) and males have a limited reproductive lifespan (Kang and Krupke 2009b), a female may 

be more likely to encounter a Bt emerging male than an early emerging refuge male if she takes a 

second mate over a week after her initial mating.  If western corn rootworms have second male 

sperm precedence, as has been recorded in southern corn rootworm (Diabrotica 

undecimpunctata Howardii; Oyediran et al. 2007), the possibility that alleles from a potentially 

resistant second male are being passed to all or a majority of a female’s offspring should be 

considered. 

Some researchers have shown that rootworm adults prefer larger beetles as mates (Kang 

and Krupke 2009a, French and Hammack 2010).  However, in the present study, body size did 

not appear to be a significant factor in mate choice.  In previous studies, individual beetles were 

given the option between partners designated large and small (Kang and Krupke 2009a, French 

and Hammack 2010).  In the field, perhaps individuals are less likely to encounter two potential 

mates of noticeably different sizes.  It may be that partner size is not the deciding factor in mate 
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selection in the field, but one of a variety of trait criteria an individual may assess when selecting 

a mate. 

 

Mating pair abundance 

In structured refuge treatments, mating pair abundance was greater in refuge rows 

compared to Bt corn rows during the vegetative and pollination periods, while in seed blend and 

0% refuge treatments, mating abundance was evenly distributed across fields all season.  These 

patterns closely reflect the patterns of single adult abundance reported in Hughson and Spencer 

(2015), suggesting that adult beetles did not distribute themselves broadly across fields while 

mate-seeking.  The differences in distributions between structured and seed blend treatments for 

both mating activity and adult abundance suggest that the distribution of refuge and Bt plants, 

may play an important role in establishing beetle distributions (Hughson and Spencer 2015).   

In the 5% seed blend and 0% structured refuge treatments during 2011 and 2012, some 

rows along the west side of the plots had apparently increased, although not significantly greater, 

mating abundance.  This likely occurred because one of those treatments was planted where a 

structured refuge treatment had been located during the previous year.  The west sides of the 

fields corresponding to former refuge must have had more oviposition leading to elevated 

emergence, abundance (Hughson and Spencer 2015) and mating activity.  In 2010 weather may 

also have affected mating abundance.  Heavy rains early in the season submerged portions of 

refuge corn for nearly two weeks, killing some of the larvae in the soil and causing lower beetle 

and mating abundance in 20% structured refuges compared to the 5% refuges.  Low abundance 

in these areas later in the season suggests that beetles did not move back into these locations 
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when the standing water was gone.  Thus, not only the refuge treatment, but other factors that 

affect beetle abundance, such as flooding, may influence mating patterns. 

Examination of the gut contents of individuals in mating pairs revealed that 8.5% of all 

mating pairs were mixed-matings.  This number may be lower than expected given that the 

success of refuge strategy was predicated on the idea that males emerging from refuge corn 

move readily throughout Bt cornfields and mate with potentially resistant females that emerged 

from Bt corn.  This number is much lower than the 43.3 ± 6.1% of mixed-matings collected in 

20% structured refuges by Taylor et al. (2016) in a study using 
15

N labeling of experimental plots 

inside 3.65 x 3.65 x 2.13 m screen tents.  In the present study, a smaller proportion of mixed-

matings were collected in larger areas (0.53 ha), which may indicate that mate-seeking 

movement occurred on a smaller scale than previously anticipated.  This suggests that beetles 

may be more likely to move one to four rows to cross the refuge-Bt interface prior to mating, 

rather than dozens of rows.  In commercial cornfields many times the size of these plots, the 

proportion of mixed-matings may be even smaller. 

Taylor et al. (2016) also reported 35.1 ± 7.6% mixed-matings collected in 5% seed blend 

refuges.  Regardless of plot size, seed blends with the same percent refuge should, 

hypothetically, yield a similar proportion of mixed-matings.  The discrepancy between these 

studies may have occurred because the Taylor et al. (2016) beetles were unable to disperse from 

the experimental plots, inflating the local frequency of interactions between refuge and Bt corn 

beetles. 

In structured refuge plots, most mixed-matings occurred in the refuge rows, early in the 

season, constituting 28% of all matings, compared to 5% during the pollination and post-

pollination periods.  This pattern suggests that mixed-matings occurred where and when beetle 
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emergence, abundance (Hughson and Spencer 2015) and mating activity were greatest, 

reinforcing the conclusion that beyond the vegetative period, little movement occurred among 

the mate-seeking populations.   

Analyzing the composition of mixed-matings revealed that most mixed-matings in 

structured refuge treatments included males that moved from Bt corn to refuge corn.  While this 

finding is consistent with the assumption that most mate-seeking movement is carried out by 

males (Ball and Chaudhury 1973, Guss 1976, Marquardt and Krupke 2009), the absence of many 

refuge males paired with Bt females in Bt corn rows contradicts the related expectation that 

abundant refuge males would be moving out of refuge and mating with Bt females.  The 

combination of delayed female emergence compared to males (Ball 1957, Hughson and Spencer 

2015) and delayed rootworm emergence from Bt corn compared to refuge emergence (Storer et 

al. 2006, Murphy et al. 2010, Hughson and Spencer 2015) may have increased the synchrony of 

emergence between Bt males and refuge females that made those pairings more likely.  

Furthermore, the greater female density in refuges may create a higher concentration of sex 

pheromone than the more sparsely distributed Bt females emerging from Bt corn.  The higher 

concentration could attract mate-seeking Bt males from nearby Bt rows into refuge.  If mate-

seeking refuge males are encountering abundant calling females in the refuge, they may be 

unlikely to disperse and encounter sparse Bt females.  Attraction of some mate-seeking Bt males 

into nearby refuge rows, could leave potentially resistant Bt emerging females isolated, 

prolonging their pre-mating interval and delaying oviposition.  

Analysis of mixed-mating composition also revealed that some unmated females moved 

across the refuge-Bt interface prior to mating.  A female that emerged within a structured refuge 

has entered a habitat with high abundance and mating activity making it possible for her to 
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encounter multiple mate-seeking males before accepting one.  Conversely, a female emerging 

from Bt corn, an area of low beetle abundance and low mating activity, may not encounter a 

male for some time.  While unmated Bt emerging females may continue to call for multiple days 

(Hammack 1995) and wait for a male, they may also begin to move within the field until they 

encounter a mate-seeking male (Spencer et al. 2012).   

Homogeneity of the Bt and refuge plant landscape in seed blends appears to contribute to 

homogeneous beetle distributions (Hughson and Spencer 2015) and mating activity.  The random 

distribution of refuge plants among Bt plants in seed blends were expected to yield more mixed-

matings because they increased the effective area of refuge-Bt interface in these fields, allowing 

beetles to encounter mates of different corn origins without broad dispersal (Hughson and 

Spencer 2015).  However, this research revealed that, while matings are more evenly distributed 

across the fields, the patterns of recent feeding revealed that seed blends did not produce a 

greater proportion of mixed-matings than a structured refuge of the same size.   

Although seed blends did not result in a greater proportion of mixed-matings, they 

provided lower overall beetle abundance (Hughson and Spencer 2015) and fewer total mating 

beetles than structured refuges.  Seed blends also provided a uniform distribution of mating 

beetles and more diverse combinations of individuals in mixed-matings which may make seed 

blends a better long-term option compared to structured refuges.  While planting structured 

refuges in the same location year after year was viewed as beneficial to IRM since it would 

promote establishment of a persistent susceptible population (Pan et al. 2011), this research 

suggests that the heterogeneous distribution of refuge and Bt plants across structured refuge 

treatments may increasingly concentrate beetle abundance and mating in the refuge portion of 

the field, producing a preponderance of matings between refuge beetles. 
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Interestingly, mixed-matings were not collected from any 0% refuge treatments and, 

overall, only four mixed-matings involved a male that entered from outside the research site (i.e. 

a male positive for Cry3Bb1 protein).  The experimental plots used in this research were 

separated from the other experimental plots and neighboring cornfields by 8 m alleyways; the 

absence of mixed-matings on 0% refuge and the presence of few offsite males suggests that 

interfield movement contributed little to mating activity.  The lack of males from other cornfields 

means that male mate-seeking movement may contribute little to the spread of Bt resistance.  

Post-mating long-distance dispersal by females has the potential to spread Bt resistance over 

long-distances.  Coates et al. (1986) found that 15% of females in tethered flight mills engaged in 

sustained flight with an average rate of 10 km/hour, representing a greater percentage of the 

population than was recorded for interfield movement by males in this research.  Given the rate 

at which long-distance dispersing beetles travel and the proportion of the population they 

represent, it will be important to determine whether beetles emerging from refuge and Bt corn 

share similar capabilities for long-distance dispersal to those recorded in the laboratory. 

Recent reports of Bt resistance in multiple locations (Gassmann et al. 2011, 2014; Gray 

2012, 2013; Wangila et al. 2015, Schrader et al. 2016, Zukoff et al. 2016, Ludwick et al. 2017) 

highlight concerns that rootworm behavior may not meet the expectations of refuge strategy.  

This research revealed that only 8.5% of mating pairs included individual beetles with different 

Bt origins and most mating was concentrated around refuge plants suggesting that many beetles 

did not move significant distances prior to mating.  When mate-seeking beetles moved prior to 

mating, most moved early in the season and they traveled from Bt corn to refuge corn.  

While some simulation models suggest that seed blends may provide longer durability of 

Bt traits than structured refuges when rootworm reproductive biology is incorporated (Pan et al. 
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2011, Spencer et al. 2012), this research does not support the expectation that seed blends would 

produce a greater proportion of mixed-matings.  Without the detailed analyses of where the 

partners in mating pairs originated, the more even distribution of mating pairs in the seed 

treatment versus block refuges presents an overly optimistic picture of mating in seed blends. 

Regardless of whether a particular refuge configuration facilitates desirable or 

undesirable beetle behavior, none of the currently available Bt traits expressed in Bt corn hybrids 

satisfy high-dose expectations (Meihls et al. 2008, Clark et al. 2012) that are fundamental to the 

use of high-dose refuge strategy.  The problem of field evolved Bt resistance in western corn 

rootworm populations is growing (Gassmann et al. 2011, 2014; Gray 2012, 2013; Wangila et al. 

2015, Schrader et al. 2016, Zukoff et al. 2016, Ludwick et al. 2017), in part, because the 

expectations of technology developers, scientists and corn growers for beetle behavior were 

unrealistic.  Although the reality of beetle behavior in Bt corn was not known when the 

rootworm IRM plans were established, this research has revealed that rootworm biology does not 

meet any of the assumptions required by high-dose refuge strategy to delay resistance to Bt 

technology.  Expanding the body of knowledge about rootworm behavior and ecology in the 

field may ultimately enhance the remaining efficacy of current technology and help develop new 

IRM and management plans that are better suited to this pest’s biology. 
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TABLES 

Table 2.1.  Proportions of paired and individual female western corn rootworms that were mature, had at least one spermatophore 

present in their bursa copulatrix or had sperm in their spermatheca upon collection in 2010 and 2011. 

    2010   2011 

  Paired  Individual  Paired  Individual 

 Reproductive measure   n
 a
 Proportion

 b
   n Proportion   n Proportion   n Proportion 

                 

Maturity
 c
  278 0.37 b  5066 0.78 a  298 0.51 b  5317 0.89 a 

Spermatophore Presence  278 0.87 a  2293 0.49 b  298 0.85 a  3223 0.45 b 

Sperm in Spermatheca  278 0.46 b  2286 0.66 a  298 0.38 b  3214 0.65 a 

                                  
a 
Number of paired and individual females dissected and observed in 2010 and 2011. 

b 
Proportion of females testing positive for a given measure within the same mating status and year combination. Proportions in the same row, 

within the same year, followed by the same letter are not significantly different (α = 0.05).  T-tests were performed on log (x + 0.5) transformed 

data.  Untransformed proportions are shown.  Paired females from 2012 are presented in the Table A.4. 
c 
Proportion of females that were non-teneral.  
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Table 2.2.  Mean (± SE) ovary development, number of spermatophores and number of mature eggs observed in paired and individual 

female western corn rootworms collected in 2010 and 2011. 

    2010   2011 

  Paired  Individual  Paired  Individual 

Reproductive measure  n
 a
 Mean ± SE

 b
   n Mean ± SE  n Mean ± SE  n Mean ± SE 

             

Ovary Development
 c
  278 1.10 ± 0.02 b  2294 1.38 ± 0.02 a  298 1.03 ± 0.01 b  3223 1.58 ± 0.02 a 

No. Spermatophore  278 0.89 ± 0.02 a  2293 0.49 ± 0.01 b  298 0.86 ± 0.02 a  3224 0.46 ± 0.01 b 

Mature Eggs  0 --  41 99.4 ± 3.67  0 --  128 73.7 ± 3.04 

                                  
a 
Number of paired and individual females dissected and observed in 2010 and 2011. 

b 
Means (mean ± SE) in the same row, within the same year, followed by the same letter are not significantly different (α = 0.05).  T-tests were 

performed on log (x + 0.5) transformed data.  Untransformed means are shown.  Paired females from 2012 are presented in the Table A.5. 
c 
Scored on a scale of 1 to 4 based on Short and Hill 1972.  During stage 1 no ovary development was observed and during stage 4 mature eggs 

were observed.  
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Table 2.3.  Mean (± SE) weight and elytron length of paired and single western corn rootworm males and females collected in 2010 

and 2011. 

    2010   2011 

  Paired  Individual  Paired  Individual 

Sex Size Measure n
 a
 Mean ± SE

 b
   n Mean ± SE   n Mean ± SE   n Mean ± SE 

             

Male Weight 283 0.0082 ± 0.0001 b  4943 0.0083 ± 0.0000 a  307 0.0093 ± 0.0001 a  4657 0.0071 ± 0.0000 b 

 Elytron Length 282 3.78 ± 0.02 a  4741 3.70 ± 0.00 b  307 3.86 ± 0.01 a  4657 3.85 ± 0.00 a 

             

Female Weight 278 0.0084 ± 0.0001 b  5068 0.0092 ± 0.0001 a  297 0.0093 ± 0.0001 a  5333 0.0089 ± 0.0001 a 

 Elytron Length 278 3.93 ± 0.02 a  5050 3.84 ± 0.00 b  298 3.93 ± 0.02 b  5331 4.05 ± 0.00 a 

                          
 

            
a 
n represents the number of paired and individual male or female beetles measured in 2010 and 2011. 

b
 Means (mean ± SE) in the same row, within the same year, followed by the same letter are not significantly different (α = 0.05).  T-tests were 

performed on log (x + 0.5) transformed data.  Untransformed means are shown.  
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FIGURES 

 

Figure 2.1.  A spermatophore, removed from a female’s bursa copulatrix.  The spermatophore 

consists of two major portions, the spermatophylax, on the left and the ampulla, which contains 

sperm, on the right.  
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Figure 2.2.  Proportions (± SE) of beetles testing positive for Cry1Ab and Cry1F proteins 

expressed specifically by the refuge or Bt corn hybrids, respectively, by time interval after 

feeding.  Beetles were fed the Cry1Ab or Cry1F proteins for 24 hours and then moved to non-Bt 

corn plants and tested for the presence of Cry1Ab or Cry1F in their gut contents at regular 

intervals for 48 hours.  Gray bars and dark bars represent the proportion of beetles testing 

positive for Cry1Ab or Cry1F, respectively, at each post-feeding interval.  ANOVA and Tukey-

Kramer test of multiple comparisons were performed (α = 0.05).  Bars of the same color with the 

same letter are not significantly different.   
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Figure 2.3.  The mean number of mating pairs collected per minute (mating pairs / min ± SE) in 

each sampling row of each refuge treatment and period of corn phenology in 2010.  ANOVA 

was performed on log (x + 0.5) transformed means and the Tukey-Kramer of multiple 

comparisons were performed to determine differences in mating pair abundance among sampling 

rows. Bars bearing the same letter are not significantly different (α = 0.05).  Untransformed 

means are shown.  Corn phenology was determined based on Ritchie et al. 1993 and Abendroth 

et al. 2011. See Hughson and Spencer (2015) for row labeling details.  
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Figure 2.4.  The mean number of mating pairs collected per minute (mating pairs / min ± SE) in 

each sampling row of each refuge treatment and period of corn phenology in 2011.  ANOVA 

was performed on log (x + 0.5) transformed means and the Tukey-Kramer of multiple 

comparisons were performed to determine differences in mating pair abundance among sampling 

rows. Bars bearing the same letter are not significantly different (α = 0.05).  Untransformed 

means are shown.  Corn phenology was determined based on Ritchie et al. 1993 and Abendroth 

et al. 2011.  See Hughson and Spencer (2015) for row labeling details.  
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Figure 2.5.  The mean number of mating pairs collected per minute (mating pairs / min ± SE) in 

each sampling row of each refuge treatment and period of corn phenology in 2012.  ANOVA 

was performed on log (x + 0.5) transformed means and the Tukey-Kramer of multiple 

comparisons were performed to determine differences in mating pair abundance among sampling 

rows. Bars bearing the same letter are not significantly different (α = 0.05).  Untransformed 

means are shown.  Corn phenology was determined based on Ritchie et al. 1993 and Abendroth 

et al. 2011.  See Hughson and Spencer (2015) for row labeling details.  
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Figure 2.6.  Total number of mating pairs and mixed-matings in each sampling row across each 

refuge treatment from 2010 through 2012.  Height of bars represents the total number of mating 

pairs collected in each sampling row, refuge treatment and year combination. In each bar, the 

black portion of the bar represents the total number of mixed-matings, while the gray portion 

represents the total number of non-mixed-matings. These were not analyzed because too few 

mixed-matings were collected to compare among the sampling rows.  See Hughson and Spencer 

(2015) for row labeling details.  
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CHAPTER 3: INTRAFIELD MOVEMENT OF WESTERN CORN ROOTWORMS 

(COLEOPTERA: CHRYSOMELIDAE) IN BT CORNFIELDS WITH STRUCTURED 

AND SEED BLEND REFUGES 

 

INTRODUCTION 

Western corn rootworm (Diabrotica virgifera virgifera LeConte) is one of the most 

economically important pests of corn in North America (Gray et al. 2009) and Europe (Baca 

1994, Kiss et al. 2005).  In the United States and Canada, western corn rootworms are controlled 

using Bt (Bacillus thuringiensis Berliner) corn hybrids, engineered to express Cry proteins that 

are toxic to young root-feeding larvae (Binning et al. 2010).  This pest has a long history of 

evolving resistance to previous chemical (Bigger 1963, Metcalf 1983, Spencer et al. 2011) and 

cultural control methods (Levine et al. 2002).  Just as it had for the 1996 commercialization of Bt 

corn hybrids targeting European corn borer (Ostrinia nubilalis Hubner, Lepidoptera: 

Crambidae), the Environmental Protection Agency (US EPA) also mandated an insect resistance 

management (IRM) plan for rootworm resistant Bt corn hybrids.  All growers of rootworm 

resistant Bt corn were required to plant a non-Bt refuge within or adjacent to all Bt cornfields 

(US EPA OPP 2001).  The refuge provides a location where Bt susceptible rootworm larvae can 

develop without exposure to Bt proteins.  The susceptible beetles emerging from refuge will 

mate and pass susceptible alleles to the following generation.  Refuges have been deployed in a 

variety of sizes and configurations including structured refuges consisting of 20% or 5% 

(depending on whether there was expression of one or more rootworm active traits in the Bt 

hybrid) blocks of refuge planted adjacent to, or strips planted at regular intervals within, Bt 

cornfields.  As adoption of Bt hybrids increased and the deployment of refuges became more 

complicated, refuge compliance began to decline (Jaffe 2009) because growers may view the 
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refuge as an area of the field that does not receive the yield benefits of Bt hybrids (Hurley and 

Mitchell 2011).  Concerns about farmer compliance were addressed by approval of seed blend 

refuges where refuge and Bt seeds are pre-mixed in bags of seed and refuge plants become 

randomly distributed across Bt cornfields at planting (US EPA OPP BPPD 2010). 

The theoretical basis for the successful application of the refuge strategy to delay 

resistance is predicated on the fulfillment of four major assumptions: 1) resistance alleles are 

initially rare in the pest population, 2) resistance alleles are inherited recessively, 3) the Bt toxin 

are expressed in plant tissues at a high-dose and 4) the movement of mate-seeking adults leads to 

a broad distribution of beetles and facilitates mating between refuge and Bt corn individuals, that 

will produce heterozygous susceptible offspring (Tabashnik 1994, Gould 1998).   

While these assumptions were well-suited for Bt hybrids targeting a highly mobile 

lepidopteran species such as the European corn borer, not all of the assumptions are met for Bt 

traits targeting corn rootworms.  Resistance allele frequencies in rootworm populations are 

estimated at 0.2, which is 20 to 200 times greater than that estimated for other pests and 2000 

times greater than is standard in successful IRM modelling (Onstad and Meinke 2010).  When 

western corn rootworm resistance was selected for in the laboratory, its inheritance was found to 

be non-recessive, dominant or polygenic rather than recessive (Meihls et al. 2008, Petzold-

Maxwell 2012, Thompson 2014).  Ingber and Gassmann (2015) reported that Cry3Bb1 resistance 

in a field western corn rootworm population (Hopkinton) was non-recessive.  A high-dose Bt 

trait is defined as having a susceptible beetle survival rate of < 0.01% of the population (US EPA 

1998).  However, mortality studies carried out by Clark et al. (2012) and Meihls et al. (2008) 

determined that 1.51 to 3.79% of western corn rootworms survived exposure to Bt proteins, 

indicating that Bt traits targeting corn rootworms are not high-dose.  In addition, plant-based 
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resistance bioassays using beetles from field populations revealed that resistance was present in 

multiple populations (Gassmann et al. 2011, 2014; Gray 2012, 2013; Wangila et al. 2015, 

Schrader et al. 2016, Zukoff et al. 2016, Ludwick et al. 2017).  This is not surprising; laboratory 

studies have demonstrated that Bt resistance can be selected in the laboratory for all 

commercialized Bt traits in as few as three generations (Meihls et al. 2011, 2012; Oswald et al. 

2011).  While some studies have shown that mating is non-random (Taylor et al. 2016, Chapter 2 

of this dissertation). the assumption of broad movement across Bt cornfields has not been 

evaluated on a field-scale.  This study is focused on evaluating the accuracy of western corn 

rootworm movement assumptions by measuring patterns of beetle movement within Bt 

cornfields with different refuge configurations. 

Western corn rootworms engage in two types of movement, long-distance migratory 

flight and short-distance flight within fields or between nearby fields.  During long-distance 

flight, western corn rootworms may be carried tens of kilometers by storms (Grant and Seevers 

1989) and females have been recorded in tethered flight for an equivalent of 24 km in a single 

flight or 39 km in a series of flights during a single night (Coats et al. 1986).  Substantive long-

distance dispersal capabilities have been invoked to explain the rootworm’s ability to spread to 

new locations (Onstad et al. 1999).  Rootworms are also capable of movement among 

neighboring corn and soybean fields (Isard et al. 2000, Levine et al. 2002; O’Neal et al. 1999, 

2004).  Certainly, these insects have the capacity to disperse readily across a single cornfield but 

different types of movement may have unique motivations or occur at different times in the 

insect’s life.  The ability to disperse long distances may not reflect the actual likelihood of flight 

or the rate of travel achieved by beetles moving within Bt cornfields. 
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Intrafield movement is associated with mate-seeking and reproductive behavior in 

western corn rootworm adults and is largely unexplored on a field scale with some notable 

exceptions (Coats et al. 1986; Naranjo 1990a, b; Stebbing et al. 2005, Marquardt and Krupke 

2009).  Because male intrafield movement is mate-seeking, it is important to evaluate the 

ecology and behavior that occur prior to mating, such as emergence and mate attraction.  Males 

emerge from the soil on average 5.2 to 6.0 days before females (Branson 1987, Hughson and 

Spencer 2015) and may require five to seven days to reach sexual maturity (Guss 1976).  

Females are sexually mature upon emergence (Hammack 1995) and begin to release sex 

pheromone shortly thereafter (Ball 1957, Hill 1975).  Males are attracted to the pheromone (Ball 

and Chaudhury 1973, Guss 1976, Marquardt and Krupke 2009) and engage in mate-seeking 

flight, orienting themselves toward calling females, which usually are mated within 12 to 24 

hours of emergence (Quiring and Timmins 1990).  Females usually do not disperse prior to 

mating (Ball 1957, Cates 1968, Lew and Ball 1979) although their movement prior to mating has 

been recorded (Marquardt and Krupke 2009).  Males were thought to move readily in the field 

while mate-seeking, but they were less likely to engage in sustained flight in the field (Isard et al. 

2004) and there was no difference in the number or duration of flights in tethered flight mills 

between the sexes (Naranjo 1990b, Coats et al. 1986).  No research has explored the proportions 

of rootworm populations that move within cornfields, the timing of movement or the rate of 

intrafield movement.   

The field research presented here, examines the distributions of moving beetles in Bt 

cornfields, proportions of beetles that move between refuge and Bt corn within cornfields and 

estimates the daily movement rates of beetles collected in Bt cornfields with different refuge 

percentages and configurations.  Based on the heterogeneous distributions of beetle abundance 
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(Hughson and Spencer 2015) and mating activity (Chapter 2 of this dissertation) recorded in 

structured refuge cornfields and the uniform distributions recorded in seed blends, I expect to 

find greater proportions of moving beetles and uniform distributions of moving beetles across 

fields with seed blend refuges.  Developing a better understanding of western corn rootworm 

activity in Bt cornfields is necessary to assess whether their ecology and intrafield movement 

matched the widely-held literature-based assumptions about their behavior.   

 

MATERIALS AND METHODS 

Location and treatments 

The field study was carried out on the University of Illinois’ “Shaw Farm” in rural 

northeast Urbana, IL (Champaign County; 40° 09’ N, 88° 08’ W) from 2010 to 2012.  This 

location was planted with twelve 0.53 ha plots separated by 8 m alleyways.  Each plot was 

randomly assigned one of four refuge treatments as a completely randomized design with three 

replicates, treatment locations were randomized each year (see Hughson and Spencer 2015 for 

additional planting details).   

The refuge treatments consisted of a 20% structured refuge (22 rows of refuge corn and 

88 rows of Bt corn), a 5.2% structured refuge (6 rows of refuge corn and 109 rows of Bt corn), 

5.2% seed blend refuge, and 0% refuge treatment.  The 5.2% refuges will, hereafter, be referred 

to as 5% refuge treatments for simplicity.  In structured refuge treatments, the refuge rows were 

always located on the west side of the plots.  The 0% refuge treatment served as a Bt positive 

control.  The 5% seed blend treatment was prepared by weighing out and thoroughly mixing the 

appropriate amounts of refuge and Bt seed (Hughson and Spencer 2015).  These refuge 
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percentages and configurations were chosen based on those available to commercial growers 

during 2010 (US EPA OPP BPPD 2010), when this experiment began. 

The Bt transgenic portion of each treatment was planted with a Herculex
®

 XTRA hybrid 

(Pioneer Hi-Bred International, Inc., Johnston, IA; 2010: Hybrid 34B41, RM 109 days; 2011 and 

2012: Hybrid 33W84, RM 111 days) which expressed the Cry1F and Cry34/35Ab1 Bt proteins 

that targeted lepidopteran larvae and corn rootworm larvae, respectively.  The rootworm refuge 

portion of each field was planted with YieldGard
®
 Corn Borer (Monsanto Company, St. Louis, 

MO; 2010: Hybrid 34B94, RM 110 days; 2011 and 2012: Hybrid 33B54, RM 113 days) that 

expressed Bt Cry1Ab targeting lepidopteran larvae.  The commercial cornfields adjacent to  the 

study location were planted with a variety of YieldGard
®
 Rootworm hybrids (Monsanto 

Company, St. Louis, MO) expressing the Cry1Ab and Cry3Bb1 proteins that targeted 

lepidopteran larvae and corn rootworm larvae, respectively (Hughson and Spencer 2015).  The 

stages of corn phenology (Ritchie et al. 1993, Abendroth et al. 2011) were recorded throughout 

the study as vegetative, pollination and post-pollination each year (Hughson and Spencer 2015).  

Plant maturity and phenology were estimated based on the Bt corn plants alone because they 

represented the vast majority (80 to 100%) of the plants per plot (Hughson and Spencer 2015).   

 

Adult field collections 

Western corn rootworms were collected from 11 sampling rows in each plot (see 

Hughson and Spencer 2015 for details about row labeling).  Adult field collections were carried 

out in each sampling row and plot three to five times per week, beginning when third instar 

larvae and pupae were first detected in cornfield soil at the field site.  Collections occurred 

between 8:30 and 11:00 a.m., when adult activity and mating were high (Bartelt and Chiang 
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1977, Dobson and Teal 1986) and newly emerged beetles were still teneral (Cates 1968).  Each 

collection was timed for two to four minutes during which single beetles and mating pairs were 

hand collected from corn foliage into collection jars with dry ice, where they were killed by the 

CO2 liberated from the ice or frozen in contact with the ice (as described by Hughson and 

Spencer 2015, Chapter 2 of this dissertation).  The samples from each row were stored in a 

cooler with dry ice and returned to the laboratory, where they were stored in a freezer (-20º C) 

until they could be processed.  At the time of collection, date, collection time, collection 

duration, refuge treatment and sampling row identification code were recorded for each sample.  

Sampling row location and treatment were later used to identify the corn type (refuge or Bt corn) 

available in the sampling row where each beetle was recovered and to determine the distance 

between each beetle’s collection location and the nearest interface between refuge and Bt corn. 

 

Adult gut protein identification of beetle distributions 

Beetle movement between the refuge and Bt portions of a plot was confirmed by 

identifying the Cry proteins in beetle gut contents and determining whether they differed from 

the refuge or Bt corn specific Cry proteins expressed by the plants in the sampling row where the 

beetle was collected (Spencer et al. 2003, Chapter 2 of this dissertation).  After corn tissue had 

been ingested, the Cry proteins expressed by the plants could be detected in a beetle’s gut 

contents using EnviroLogix™ QuickStix™ ELISA test strips (EnviroLogix Inc., Portland, ME).  

Spencer et al. (2003) determined that western corn rootworm beetles actively fed on corn tissue 

30 to 65% of the time they were on corn plants.  Thus beetles continually marked themselves and 

replenished the Cry protein markers in their guts through normal feeding activity (Spencer et al. 

2003, Chapter 2 of this dissertation).  The presence of Cry1Ab proteins, expressed exclusively by 
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refuge plants, or Cry1F proteins, expressed exclusively by Bt plants targeting corn rootworms, in 

beetle guts were used to identify where individual beetles had been feeding in each plot prior to 

capture.  By testing beetles for the presence of Cry proteins at regular intervals after feeding, 

Hughson (Chapter 2 of this dissertation) identified that Cry1Ab was detectable in the insects’ 

guts up to 12 hours after feeding and Cry1F could be detected up to 48 hours after feeding.  

Beetles collected in Bt corn that were later found to have refuge-specific Cry proteins in their 

guts must have recently moved from refuge to the Bt portion of a field or vice versa.   

Identification of the specific Cry protein(s) in beetle gut contents was accomplished using 

EnviroLogix™ QuickStix™ test strips as described in (Spencer et al. 2003, Chapter 2 of this 

dissertation) at a cost of US $0.90 for each QuickStix™ test strip.  Female beetles were tested for 

Cry1Ab and Cry1F while males were tested for Cry1Ab, Cry1F and a third Cry protein, 

Cry3Bb1.  A positive test for Cry1Ab indicated that a beetle had recently fed on refuge corn, 

whereas a positive test for Cry1F indicated a beetle had recently fed on Bt corn.  Because corn in 

all of the nearby commercial cornfields expressed the Cry3Bb1 protein, which was not present at 

the study site, the detection of Cry3Bb1 in the gut contents of males provided a way to detect 

interfield movement from an offsite cornfield.  Males were tested for Cry3Bb1 in 2011 and 2012 

(Chapter 2 of this dissertation).   

The determination of beetle movement depended on knowing where an individual had 

been collected.  The protein(s) detected in each beetle’s gut contents was compared to the protein 

expressed by the plants in the row where it was collected to determine whether it had moved 

between corn types.  If the Cry protein from corn tissue in the beetle’s gut differed from that 

expressed by the corn at its collection location, that beetle was designated a “mover”.  The mean 

proportions of movers were estimated relative to the abundance in each row.  Because an 
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assumption of the refuge strategy for corn rootworm was that males moved widely while mate-

seeking (Ball 1957, Spencer et al. 2009) and females mated shortly after emergence before any 

significant movement takes place (Marquardt and Krupke 2009), only males were tested for the 

presence of Cry3Bb1 proteins that could reveal interfield movement. 

Each day of collections generated 132 row samples containing 0 to > 50 beetles per 

sample.  Because time and resource constraints prevented every beetle from being analyzed, a 

subset of those in a collection were processed to detect ingested Cry proteins each year.  In 2010 

and 2011, up to ten males and ten females from each row sample were processed.  As a result of 

higher beetle populations and time limitations at the time of processing for Cry protein detection, 

in 2012, up to three male and three female beetles were processed from each row sample.  Even 

with subsampling, a total of 23,099 beetles were processed and analyzed in this study, producing 

detailed datasets. 

Distribution of Cry positive adults 

When male and female beetles from 2010 through 2012 were tested for the presence of 

Cry1Ab and Cry1F, they were given a Cry positive or Cry negative score producing binary 

datasets.  These datasets were used to calculate the mean proportion of Cry1Ab and Cry1F 

positive beetles in each row sample.  The mean proportions were tested for homogeneity using 

the Shapiro-Wilk test and found to be non-normal.  The mean proportions were then analyzed 

using the Kruskal-Wallis test to determine whether treatment and phenology were significant 

main effects (JMP Pro 10, SAS Institute Inc. 2012).  The Steel-Dwass test of multiple 

comparisons was used to identify which phenologies and treatments had greater mean 

proportions of Cry positive beetles (JMP Pro 10, SAS Institute Inc. 2012).  Pairwise multiple 

comparisons of the mean proportions of Cry1Ab and Cry1F positive beetles were also carried out 
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using the Marascuilo procedure (R version 3.2.1, R Core Team 2015) among sampling rows in 

each treatment and phenology.  

Interfield movement 

Male beetles from 2011 through 2012 were also tested for the presence of Cry3Bb1 and 

given a Cry positive or Cry negative score producing a binary dataset.  The mean proportion of 

Cry3Bb1 positive males was calculated.  The Shapiro-Wilk, Kruskal-Wallis and Steel-Dwass 

analyses were also carried out for the mean proportion of Cry3Bb1 positive males and used to 

evaluate interfield movement by phenology and refuge treatment. 

The proportions of intrafield movers 

Beetles in structured refuge treatments that tested positive for a Cry protein that was not 

expressed by the corn plants in the row where they were collected, were designated as “movers.”  

The proportions of movers were calculated for structured refuge treatments, representing the 

proportion of all beetles collected in a treatment that moved across the refuge-to-Bt interface 

within the 12 (Cry1Ab) to 48 hours (Cry1F) each Cry protein could be detected in their bodies 

(Chapter 2 of this dissertation).  The proportions of movers were tested for homogeneity using 

the Shapiro-Wilk test (JMP Pro 10, SAS Institute Inc. 2012).  The proportions were non-normal 

each year and analyzed using the Kruskal-Wallis test (JMP Pro 10, SAS Institute Inc. 2012) for 

main effects of phenology and treatment.  The Steel-Dwass test of multiple comparisons was 

used to determine which levels of phenology and treatment had the greatest proportions of 

movers (JMP Pro 10, SAS Institute Inc. 2012).  

When beetles tested positive for both Cry1Ab and Cry1F, they were designated as 

“double positive”.  In structured refuge treatments, these beetles must have moved between and 

recently fed in both refuge and Bt corn areas.  They could have moved across a wide distance or 
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across the 0.76 m wide interface between the refuge and Bt areas of each plot.  In the 5% seed 

blend, where there was no identifiable refuge-Bt interface, beetles could become double positives 

by moving very little and feeding on adjacent refuge and Bt plants.  These double positive 

beetles were used to investigate short distance plant-to-plant movement.  The proportions of 

double positive beetles per sampling row were also analyzed using the Kruskal-Wallis test and 

Steel-Dwass test of multiple comparisons (JMP Pro 10, SAS Institute Inc. 2012) to determine 

whether the proportion of double positive beetles differed among refuge treatments.   

 

Estimations of daily movement rates 

Intrafield movement rates in the structured refuge treatments were reckoned relative to 

the interface between refuge and Bt corn. Because the seed blend refuge treatment and the 0% 

refuge treatment lacked a defined refuge-to-Bt corn interface, movement rates could not be 

calculated for those treatments.  To estimate the minimum daily movement rate among movers 

collected at various distances from the nearest sources of Cry protein, both their distance traveled 

and the longest post-ingestion time interval during which beetles could test Cry positive were 

identified (Chapter 2 of this dissertation).  The distance each beetle had traveled (in meters) was 

calculated by multiplying the number of rows between the location where the individual was 

collected and the nearest source of that Cry protein detected in that beetle’s gut by the 0.76 m 

row width.  Hughson (Chapter 2 of this dissertation) identified that Cry1Ab (refuge corn) could 

be detected for up to 12 hours after feeding and Cry1F (Bt corn) could be detected for up to 48 

hours after feeding.  Minimum daily movement rates for each mover were calculated by dividing 

the distance the individual traveled (m) by the post-ingestion detection interval (in hours).  

Movement rate estimations were calculated for beetles that traveled from refuge to Bt corn but 
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were not calculated for beetles traveling from Bt corn into refuge corn because 5% and 20% 

structured refuge treatments only had 6 and 24 rows of refuge corn, respectively. Calculating 

movement rates over these short distances that many beetles could easily traverse would 

significantly underestimate their movement rates.   

The daily movement rates were tested for normality using the Shapiro-Wilk test and log 

(x + 0.5) transformed. The transformed movement rates were analyzed to determine whether 

phenology, treatment and beetle sex influence the rate of travel, using ANOVA and the Tukey-

Kramer test of multiple comparisons (JMP Pro 10, SAS Institute Inc. 2012). 

 

RESULTS 

Distribution of Cry positive adults  

The proportions of beetles positive for Cry1Ab (refuge corn) were greatest in 20% 

structured refuge treatments and lowest in 0% structured refuge treatments each year; in 2011 

and 2012, there was no difference between the 5% structured refuge and 5% seed blend 

treatments, while in 2010 the proportion of Cry1Ab positive beetles was greater in 5% structured 

refuge than 5% seed blend treatments (2010: χ
2
 = 374.03, df = 3, P < 0.0001; 2011: χ

2
 = 330.82, 

df = 3, P < 0.0001; 2012: χ
2
 = 326.55, df = 3, P < 0.0001).  The proportions of Cry1Ab positive 

beetles were greater during the vegetative period than the pollination period and lowest during 

the post-pollination period each year (2010: χ
2
 = 328.19, df = 2, P < 0.0001; 2011: χ

2
 = 203.83, 

df = 2, P < 0.0001; 2012: χ
2
 = 222.77, df = 2, P < 0.0001).  Row-by-row multiple comparisons 

revealed that, in structured refuge treatments, the proportions of beetles testing positive for 

Cry1Ab were greatest in refuge rows throughout the season (Figures 3.1 through 3.3).  Cry1Ab 

positive beetles were collected in some Bt rows during the vegetative period of corn phenology, 
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but the proportion of beetles testing positive for refuge corn diminished as the distance between 

each sampling row and the refuge increased (Figures 3.1 through 3.3).  As corn phenology 

progressed, the proportions of Cry1Ab positive beetles collected in Bt rows diminished (Figures 

3.1 through 3.3).   

The proportions of beetles positive for Cry1F (Bt corn) were greatest in 0% structured 

refuge treatments and lowest in 20% structured refuge treatments each year (2010: χ
2
 = 275.44, 

df = 3, P < 0.0001; 2011: χ
2
 = 322.54, df = 3, P < 0.0001; 2012: χ

2
 = 334.31, df = 3, P < 0.0001).  

In 2010 and 2011, the proportions of Cry1F positive beetles were greater during the pollination 

period than the post-pollination period and lowest during the vegetative period each year (2010: 

χ
2
 = 111.88, df = 2, P < 0.0001; 2011: χ

2
 = 171.91, df = 2, P < 0.0001).  In 2012, there were no 

differences in the proportions of Cry1F positive beetles during the pollination and post-

pollination periods, but they were significantly lower during the vegetative period (2012: χ
2
 = 

222.77, df = 2, P < 0.0001).  Row-by-row multiple comparisons revealed that the proportions of 

beetles positive for Cry1F were greatest in Bt rows and did not differ among the rows throughout 

the pollination and post-pollination periods.  During the vegetative period, the proportions of 

beetles positive for Cry1F were also greater in Bt rows although there was some variation among 

Bt rows with low beetle abundance (Figures 3.1 through 3.3).   

In 5% seed blend treatments, low proportions of Cry1Ab positive beetles were collected 

in nearly every corn row throughout the season; those proportions did not differ among the rows 

(Figures 3.1 through 3.3).  Few Cry1Ab positive beetles were collected in any 0% refuge 

treatment sampling rows; most were collected during the vegetative period (Figures 3.1 through 

3.3).  The proportions of Cry1Ab positive beetles in 0% refuge treatments diminished during the 

pollination and post-pollination periods (Figures 3.1 through 3.3).  The proportions of Cry1F 
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positive beetles collected in the 5% seed blend and 0% refuge treatments did not differ among 

sampling rows and remained high across the phenology periods (Figures 3.1 through 3.3).  As 

with structured refuge treatments, the row-to-row variability in the proportion of Cry1F positive 

beetles in 5% seed blend and 0% refuge was greatest during the vegetative period. 

 

The proportions of intrafield movers 

Each year, there was no difference in the mean proportion of beetles that were “movers” 

between refuge and Bt corn in 20% and 5% structured refuge treatments (2010: χ
2
 = 0.72, df = 1, 

P = 0.3950; 2011: χ
2
 = 0.25, df = 1, P = 0.6136; 2012: χ

2
 = 0.10, df = 1, P = 0.7477; Table 3.1).  

However, significantly more movers were identified during the vegetative period than during 

pollination or post-pollination (2010: χ
2
 = 92.38, df = 2, P < 0.0001; 2011: χ

2
 = 171.23, df = 2, P 

< 0.0001; 2012: χ
2
 = 52.83, df = 2, P < 0.0001; Table 3.2). 

The direction of travel was also considered.  With respect to movement from refuge to Bt 

corn in structured refuges, the mean proportion of movers was greater in 20% structured refuges 

than 5% structured refuges in 2010 and 2011 (2010: χ
2
 = 7.10, df = 1, P = 0.0077; 2011: χ

2
 = 

4.34, df = 1, P = 0.0372; Table 3.1) but there was no difference in the proportion of movers 

between those treatments in 2012.  A greater proportion of beetles also moved from refuge to Bt 

corn during the vegetative period when compared to the pollination and post-pollination periods 

(2010: χ
2
 = 118.50, df = 2, P < 0.0001; 2011: χ

2
 = 108.89, df = 2, P < 0.0001; 2012: χ

2
 = 56.63, 

df = 2, P < 0.0001; Table 3.2). 

Regarding beetles moving from Bt corn into the refuge, the mean proportion traveling 

from Bt corn to refuge corn was greater in the 5% structured refuge than the 20% structured 

refuge each year (2010: χ
2
 = 4.19, df = 1, P = 0.0406; 2011: χ

2
 = 20.24, df = 1, P < 0.0001; 2012: 
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χ
2
 = 17.44, df = 1, P < 0.0001; Table 3.1) and there was no impact of corn phenology on these 

proportions (Table 3.2).   

The mean proportion of double positive beetles (those testing positive for both refuge and 

Bt corn Cry proteins) was influenced by refuge treatment each year (2010: χ
2
 = 45.62, df = 3, P < 

0.0001; 2011: χ
2
 = 166.44, df = 3, P < 0.0001; 2012: χ

2
 = 201.30, df = 3, P < 0.0001).  In 2010, 

there was no difference in the mean proportion of double positives among the 20% structured, 

5% structured or 5% seed blend refuge treatments and each was greater than the proportion in the 

0% refuge treatments (Table 3.3).  In 2011 and 2012, the 5% seed blend treatments had the 

greatest mean proportion of double positive beetles (Table 3.3).  The 20% structured and 5% 

structured refuge treatments did not differ and the 0% refuges had the lowest proportion of 

double positive beetles (Table 3.3). 

 

Estimations of daily movement rates 

When beetles moved from refuge to Bt corn, they traveled at 26.23 ± 3.09 m/d in 2010, 

30.31 ± 2.34 m/d in 2011 and 31.22 ± 2.43 m/d in 2012.  Rate of movement did not differ 

between 20% and 5% structured refuge treatments, except in 2010, when the movement rate for 

the 20% structured refuge treatments, 32.28 ± 4.46 m/d, was greater than that for 5% structured 

refuge treatments, 19.43 ± 4.10 m/d (F = 4.43, df = 1, 135, P = 0.04).  During 2011, movement 

rates in 20% and 5% structured refuge treatments were 29.60 ± 3.00 m/d and 31.30 ± 3.74 m/d, 

respectively.  During 2012, movement rates in 20% and 5% structured refuge treatments were 

30.38 ± 2.81 m/d and 32.62 ± 4.50 m/d, respectively.  Corn phenology did not affect the rate of 

travel in 2010 but was a significant factor in 2011 (F = 5.90, df = 2, P = 0.0032) and 2012 (F = 

4.16, df = 2, P = 0.0170).  In 2010, beetles traveled 28.35 ± 4.28 m/d during the vegetative 
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period, 25.07 ± 6.52 m/d during the pollination period and 21.91 ± 6.07 m/d during post-

pollination.  In 2011, the rate of travel was greatest during the pollination period when they 

moved 50.33 ± 7.17 m/d compared to the vegetative and post-pollination periods when beetles 

moved 24.58 ± 2.49 m/d and 28.93 ± 4.78 m/d, respectively.  In 2012, beetles traveled at the 

greatest rate during the post-pollination period at 42.24 ± 5.77 m/d and at the lowest rate during 

the vegetative period at 24.76 ± 3.15 m/d.  During the pollination period, beetles traveled 32.32 ± 

4.36 m/d, which did not differ from either the vegetative or post-pollination periods. 

 

Interfield movement 

The mean proportion of males collected in sampling rows that originated from an offsite 

location (Cry3Bb1 positive males) was annually influenced by the phenology (2011: χ
2
 = 32.41, 

df = 2, P < 0.0001; 2012: χ
2
 = 63.72, df = 2, P < 0.0001).  The greatest proportion of Cry3Bb1 

positive males was collected during the vegetative period while the Cry3Bb1 positive 

proportions collected in the pollination and post-pollination periods did not differ (Table 3.2). 

 

DISCUSSION 

Cry detection and beetle movement 

Based on detection of ingested Cry proteins specific to refuge and Bt portions of refuge 

treatments, the proportions of beetles that moved between refuge and Bt corn changed 

dramatically during the growing season.  The greatest proportions of beetles moved between 

refuge and Bt corn during the vegetative period of corn phenology; significantly lower 

proportions moved during the pollination and post-pollination periods.  During the vegetative 

period in structured refuge treatments, refuge (Cry1Ab) positive beetles were concentrated in 
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sampling rows within and immediately adjacent to refuge rows with few detected in Bt rows; 

fewer refuge positive beetles were detected in Bt rows during the pollination and post-pollination 

periods.  Likewise, Bt (Cry1F) positive beetles were concentrated in Bt rows and proportions of 

Bt positive beetles collected in refuge corn decreased as the season progressed (Figures 3.1 

through 3.3).  This pattern was observed again in the mean proportions of beetles that crossed the 

refuge-Bt interface in structured refuge treatments (movers).  Movers represented a greater 

proportion of the population during the vegetative period, 17 to 25% of the beetles collected, and 

dropped to 3 to 10% during pollination and post-pollination periods.  These spatial and temporal 

distributions of Cry positive beetles were very similar to the distributions of free-moving beetles 

(Hughson and Spencer 2015) and mating activity (Chapter 2 of this dissertation) collected in the 

same fields in which most mating activity occurred during the vegetative period.  These pattern 

suggest that a majority of the beetle movement occurs early in the season with much less 

movement occurring later in the season.  Even when beetle movement is at its peak, only up to a 

quarter of the beetles moved between refuge and Bt corn on a daily basis. 

 

Movement rates 

 Moving western corn rootworm adults traveled at an average rate of 26 to 31 m/day.  

This rate is close to the range of maximum intrafield movement rates (18.3 to 36.6 m/day) 

estimated by Spencer et al. (2003), but larger than a later average intrafield movement rate 

estimate of 6 to 17 m/day (Spencer et al. 2009).  While this means that a beetle could travel 

nearly one third the length of the 0.53 ha fields used in this experiment within a day, in the 

context of Illinois farms, which averaged 145 ha in 2014 (Illinois Dept. of Agriculture 2014), 

beetles travel a relatively short distance each day.  Considering that only 17 to 25% of the beetles 
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moved at this rate daily during the vegetative period, and many fewer did so during the 

pollination and post-pollination periods, only small proportions of the population are moving at 

even modest rates.  This finding makes it apparent that many western corn rootworms do not 

readily distribute themselves across these research fields because movement behavior has strong 

seasonality.  The lack of significant movement is also evident in the adult abundance 

distributions for these same fields (Chapter 2 of this dissertation, Figures 2.2, 2.3, and 2.4).  

Based on beetle abundance patterns over the season (Hughson and Spencer 2015) and these 

movement patterns, it is clear that many beetles did not cross the refuge-to-Bt interface in 

structured refuge treatments.  It is difficult to imagine that beetles would travel the distance 

required to cross the refuge-Bt interface to encounter a mate in a commercial cornfield more than 

250 times larger.  With low intrafield movement rates, the distance between refuge and Bt 

portions of commercial cornfields with structured refuges would prevent many refuge and Bt 

origin beetles from encountering one another.  Given the limited intrafield movement and mixing 

of refuge and Bt beetles on a small scale, an important assumption of the high dose refuge 

strategy, it is not surprising that field-evolved resistance has been documented across a broad 

geographic range (Gassmann et al. 2011, 2014; Gray 2012, 2013; Wangila et al. 2015, Schrader 

et al. 2016, Zukoff et al. 2016, Ludwick et al. 2017). 

Despite evidence that the highest proportions of beetles moved early in the season, the 

greatest movement rates among movers were observed among the low proportions of beetles 

later in the season.  This movement may occur when late emerging beetles from Bt corn 

(Murphy et al. 2010, Hughson and Spencer 2015) are seeking mates in areas with a low 

abundance of potential mates and may travel much farther than an early season beetles before 

encountering a mate (Spencer et al. 2012).  Some beetles may also disperse later in the season in 
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search of better quality food as local plants mature (O’Neal et al. 2002).  After pollination, corn 

plants redirect energy and nutrients from vegetative growth of foliage and production of pollen to 

maturing ears (Ritchie et al. 1993, Abendroth et al. 2011); nitrogen content in foliage begins to 

decline as corn enters reproduction and nitrogen is moved into reproductive tissues such as 

kernels (Abendroth et al. 2011).  At this time, the moisture content in foliage and preferred 

foods, such as pollen and silks (Ball 1957) also declines (Abendroth et al. 2011).  Western corn 

rootworm females that fed on silks and pollen were more fecund than females that fed on other 

corn tissues like foliage, suggesting that synchrony between female emergence and pollination 

improves their fitness (Elliott et al.1990).   

Given the significant investment males make while producing a spermatophore (Tallamy 

et al. 2000), they likely also require high-quality food to produce nutrient rich spermatophores 

(Quiring and Timmins 1990).  Later emerging beetles may seek pollinating plants to benefit from 

these high-quality foods.  Studies of western corn rootworm interfield dispersal into trap crops 

showed that flying beetles oriented themselves toward pollinating corn (Darnell et al. 2000, 

O’Neal et al. 2004).  Similarly, in studies of interfield movement from corn to soybean fields, 

more beetles were recorded dispersing from cornfields during post-pollination (O’Neal et al. 

2004, Pierce and Gray 2006).  These studies support the idea that movement later in the season 

may be related to finding better quality food (Darnell et al. 2000, O’Neal et al. 2004).  Although 

the above studies were intended to quantify aspects of interfield movement, intrafield movement 

may be similarly influenced by the changing nutritional quality of maturing corn since western 

corn rootworm adults are generally attracted to plant volatiles associated with corn pollination 

(Naranjo 1994). 
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Short-distance movement and seed blends  

While structured refuges created marked heterogeneity of beetle distributions and 

dramatic changes in proportions of movers as the season progressed, seed blend refuges showed 

little variation in the proportions of Cry positive beetles across the fields and throughout the 

season (Figures 3.1 through 3.3) which may indicate that these populations are staying near their 

site of emergence or that there could be ongoing movement throughout the seed blend 

treatments.  Identifying the proportions of beetles positive for both refuge and Bt Cry proteins 

(double positives) allowed for a comparison of short-distance plant-to-plant movement among 

structured and seed blend refuge treatments, revealing that more plant-to-plant movement was 

detected in the seed blend treatments than in the structured refuge treatments in 2011 and 2012.  

Assuming that refuge plants are randomly distributed in the 5% seed blends, the higher 

proportions of double positive beetles may indicate that the refuge plants are encountered with 

some greater than expected probability, or that a portion of beetles emerging from refuge plants 

may remain near their emergence site and encountered the same refuge plant more than once as 

they visited and fed upon adjacent Bt plants.  The homogeneous distribution of refuge plants in 

seed blends, rather than the quantity of refuge plants, may have facilitated more detectable plant-

to-plant movement because it maximized the amount of refuge-to-Bt interface in the field 

providing beetles with more opportunities to move between individual refuge and Bt expressing 

plants.  Increased plant-to-plant movement in seed blends may increase the likelihood that 

beetles move between refuge and Bt plants over a short time scale, potentially resulting in more 

mixed-matings.  However, Hughson (Chapter 2 of this dissertation) reported no difference in the 

proportion of mixed-matings collected in seed blends compared to structured refuge treatments 

of the same size.  This result supports the idea that adults tend to remain near the plant from 
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which they emerged.  Since adults do not incapable of distinguishing between refuge and Bt 

expressing plants (Spencer et al. 2003), they may be encouraged to linger near refuge plants by 

chemical cues from newly emerged calling females or because they are females attempting to 

attract a mate.  This seeming tendency for beetles to remain near refuge plants may also explain 

why most mixed-matings identified by Hughson (Chapter 2 of this dissertation) were found in 

the refuge and included an individual that entered refuge corn from Bt corn prior to mating 

(Chapter 2 of this dissertation).  These behaviors suggest that the scale at which mate-seeking 

movement is occurring is much smaller than many anticipated.  These refuge strategies, even 

when seed blends are deployed, seem to be a poor fit with western corn rootworm ecology.  

 

Interfield movement 

Very small proportions of males were detected as interfield movers (Table 3.2).  The 

proportions of males testing positive for Cry3Bb1 were greatest during the vegetative period 

suggesting that male interfield movement, like intrafield movement, occurred more frequently 

early in the season and dropped off during the pollination and post-pollination periods.  Even 

during the vegetative periods when interfield movement was greatest, the proportions of 

interfield movers were lower than the proportions of intrafield movers (Table 3.2).  However, the 

fact that both inter- and intrafield movement were greater during the vegetative period, may 

suggest that both types of movement are similarly motivated by either mate-seeking or food-

seeking early in the season. 

In 2012, the proportions of interfield movers were noticeably higher than in 2011, while 

proportions of intrafield movers were consistent between the years.  This difference between 

interfield movers in 2011 and 2012, likely occurred because the adjacent commercial fields were 
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planted with corn in 2012 and soybeans in 2011.  In 2012, the minimum distance these beetles 

would have to travel to enter the research site was an 8 m (the width of the alleyway between the 

fields), while interfield movers in 2011 would have had to cross the surrounding soybean fields 

to enter the research site, suggesting that interfield movers are more likely to be observed 

crossing short distances during a single day.   

 

Conclusions  

This research shows that western corn rootworm intrafield movement had strong 

seasonality, the proportions of movers detected in the field were limited and individuals that did 

move, had only modest daily movement rates.  This suggests that the assumption of extensive 

intrafield movement across Bt cornfields, which is essential to the success of high-dose refuge 

strategy in delaying the evolution of resistance to Bt hybrids, is not met. 

In structured refuges, the distribution of refuge beetles across Bt cornfields suggested that 

most beetles emerged, resided (Hughson and Spencer 2015) and mated (Chapter 2 of this 

dissertation) in the same locations, indicating that little movement occurred.  Seed blends 

generated uniform distributions of beetles and the potential for more short-distance plant-to-plant 

(refuge-to-Bt plant) movement suggesting that seed blends might produce substantially more 

mixed-matings than structured refuge treatments.  However, seed blends produced no more 

mixed-matings than a structured refuge treatment of the same size (Chapter 2 of this 

dissertation), suggesting that seed blends may not be any more effective in delaying resistance 

than structured refuges. 

Although integrating refuge eliminates the spatial heterogeneity and concentrated areas of 

high beetle abundance, at the scale of beetle-to-beetle mating interactions, the desirable 
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interactions do not occur between beetles of refuge and Bt corn origins even when 5% refuge is 

maximally integrated into Bt corn as part of a seed blend.  If such intimate integration did not 

increase the proportion of mixed-matings, perhaps the percentage of the refuge corn is too small.  

However, achieving a level of interaction between mate-seeking refuge and Bt beetles that 

generates a significantly higher level of intermating may not be achievable, even with a larger 

refuge, as long as rootworm development on refuge and Bt plants exacerbates the lack of 

synchrony in emergence of an already protandrous species.  Ultimately, the evolution of Bt 

resistance may not be a result of lack of grower compliance with refuge regulations or 

inadequate refuge size, but the lack of a high-dose Bt trait and the fact that western corn 

rootworm ecology is ill-matched with this IRM strategy.  

Based on extensive field sampling, the expectations of rapid western corn rootworm 

dispersal and extensive intermating between refuge and Bt beetles were not met in any of the 

refuge treatments in this research.  Failure of a key IRM plan assumption about rootworm 

behavior along with the other failed IRM assumptions have done nothing to protect the long term 

durability of Bt traits for corn rootworm management.  A limited future for the current Bt traits is 

supported by increasing numbers of reports of field evolved resistance to various Bt traits 

(Gassmann et al. 2011, 2014; Gray 2012, 2013; Wangila et al. 2015, Schrader et al. 2016, Zukoff 

et al. 2016, Ludwick et al. 2017).  While it may be attractive to improve Bt performance, 

geographically widespread reports of Bt resistance suggest that we are arguably approaching the 

end of the Bt era of pest management (Porter 2016).  It may be wise to invest in expanding 

studies of western corn rootworm behavior and ecology and use those results to design a 

biologically inspired IRM plan reflecting the most effective deployment of a highly effective 
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mode of action, rather than an operationally convenient deployment that imposes unrealistic 

expectations on pest biology.  
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TABLES 

Table 3.1.  Mean proportions of moving western corn rootworm adults detected in 20% versus 5% structured refuge treatments during 

2010, 2011 and 2012. A mover was defined as a beetle testing positive for a Cry protein that was not expressed by the corn growing in 

the sampling row where it was collected.   

  

2010 

 

2011 

 

2012 

  

20% Struc Ref  

 

5% Struc Ref 

 

20% Struc Ref 

 

5% Struc Ref 

 

20% Struc Ref 

 

5% Struc Ref 

Direction 

moved   n 
a
 

Prop.  

movers
 b
   n 

Prop.  

movers   n 

Prop.  

movers   n 

Prop.  

movers   n 

Prop.  

movers   n 

Prop. 

moved 

                   Overall  569 0.07 a  578 0.05 a  702 0.08 a  715 0.10 a  447 0.11 a  444 0.14 a 

                   

Refuge to Bt 
c
  357 0.08 a  426 0.04 b  363 0.09 a  441 0.06 b  312 0.11 a  354 0.11 a 

Bt to refuge 
d
  212 0.14 b  152 0.16 a  182 0.10 b  125 0.21 a  135 0.12 b  90 0.24 a 

                                      
a 
Number of beetles tested for Cry proteins in each corn type, structured refuge treatment and year. 

b
 Proportions within the same row and year with the same letter designation were not different (α = 0.05).  Comparison of structured refuge 

treatment effects on proportions of movers were performed with a Kruskal-Wallis test. 
c 
Proportion of beetles collected in Bt sampling rows that tested positive for Cry1Ab, the protein expressed by refuge corn. 

d
 Proportion of beetles collected in refuge sampling rows that tested positive for Cry1F, the protein expressed by Bt corn.   
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Table 3.2. Mean proportions of moving western corn rootworm adults detected in structured refuge treatments by corn phenology 

periods during 2010, 2011 and 2012. A mover was defined as a beetle testing positive for a Cry protein that was not expressed by the 

corn growing in the sampling row where it was collected.   

  

2010 

 

2011 

  

Vegetative 
a
 

 

Pollination 

 

Post-

pollination 

 

Vegetative 

 

Pollination 

 

Post-

pollination 

Direction of 

movement   n 
b
 

Prop. 

movers
 c
   n 

Prop. 

movers   n 

Prop. 

movers   n 

Prop. 

movers   n 

Prop. 

movers   n 

Prop. 

movers 

                   Overall  217 0.17 a  336 0.05 b  594 0.03 c  237 0.23 a  431 0.05 b  749 0.07 b 

                   

Refuge to Bt 
d
 

 

117 0.27 a 

 

234 0.04 b 

 

432 0.01 b 

 

136 0.27 a 

 

284 0.01 b 

 

381 0.06 b 

Bt to refuge 
e
 

 

100 0.16 a 

 

102 0.14 a 

 

162 0.15 a 

 

98 0.17 a 

 

89 0.14 a 

 

120 0.14 a 

                   

Interfield 

movement 
f
 

  

--- 

  

--- 

  

--- 

 

230 0.03 a 

 

373 0.01 b 

 

501 0.01 b 

                                      
a 
Phenology was determined based on Ritchie et al. (1993) and Abendroth et al. (2011). 

b 
Number of beetles tested for Cry proteins in structured refuge treatments during each phenology period. 

c
 Proportions within the same row and year with the same letter designation were not different (α = 0.05).  The Kruskal-Wallis test and Steel-

Dwass test of multiple comparisons were performed to evaluate the effect of corn phenology on the proportions of movers. 
d 
Proportion of beetles collected in Bt sampling rows that tested positive for Cry1Ab, the protein expressed by refuge corn. 

e
 Proportion of beetles collected in refuge sampling rows that tested positive for Cry1F, the protein expressed by Bt corn.   

f
 Proportion of male beetles in any sampling row that tested positive for Cry3Bb1, a Bt trait that was not expressed by corn plants at the study site. 

These beetles engaged in interfield movement. This test was not performed in 2010.  
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Table 3.2 (Cont.). Mean proportions of moving western corn rootworm adults detected in structured refuge treatments by corn 

phenology periods during 2010, 2011 and 2012. A mover was defined as a beetle testing positive for a Cry protein that was not 

expressed by the corn growing in the sampling row where it was collected. 

  

2012 

  

  

Vegetative 

 

  

Pollination 

 

Post-

pollination 

Direction of 

movement   n 

Prop. 

movers   n 

Prop. 

movers   n 

Prop. 

moved 

          Overall  201 0.25 a  296 0.08 b  394 0.10 b 

          

Refuge to Bt 
d
 

 

141 0.27 a 

 

221 0.07 b 

 

304 0.07 b 

Bt to refuge 
e
 

 

60 0.18 a 

 

75 0.12 a 

 

90 0.20 a 

          

Interfield 

movement 
f
 

 

187 0.14 a 

 

279 0.03 b 

 

378 0.04 b 
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Table 3.3. Mean proportions of western corn rootworms testing positive for both refuge (Cry1Ab) and Bt (Cry1F) proteins in each 

refuge treatment during 2010, 2011 and 2012. 

 2010  2011  2012 

Refuge treatment  n 
a
 Prop. 

b
 

 
n Prop. 

 
n Prop. 

                  

         20% Structured Refuge 568 0.06 a 
 

568 0.06 b 
 

447 0.07 b 

5% Structured Refuge 578 0.04 a 
 

590 0.07 b 
 

444 0.07 b 

5% Seed Blend 510 0.06 a 
 

594 0.14 a 
 

468 0.20 a 

0% Structured Refuge 475 0.01 b 
 

546 0.03 c 
 

448 0.02 c 

                  
a 
Number of beetles tested for Cry proteins in each corn type in structured refuge treatments. 

b 
Proportions of beetles testing positive for both refuge and Bt Cry proteins in each refuge treatment, each year.  Proportions within the same 

column with the same letter designation were not different (α = 0.05).  The Kruskal-Wallis test and Steel-Dwass test of multiple comparisons were 

performed to analyze the effect of refuge treatment on the proportions of double positive beetles. 
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FIGURES 

 

Figure 3.1.  Proportion of adult western corn rootworms that tested positive for the indicated Cry 

proteins (± SE) in each sampling row by corn phenology and treatment.  Black bars indicate the 

proportion of beetles testing positive for refuge corn (Cry1Ab) in the sampling row where they 

were collected.  Gray bars indicate the proportion of beetles testing positive for Bt corn (Cry1F) 

in the sampling row where they were collected.  Bars bearing the same letter are not significantly 

different based on multiple comparisons using the Marascuilo test, untransformed means are 

shown.  See methods for row labeling explanation.  Corn phenology was determined based on 

Ritchie et al. 1993 and Abendroth et al. 2011.  
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Figure 3.2.  Proportion of adult western corn rootworms that tested positive for the indicated Cry 

proteins (± SE) in each sampling row by corn phenology and treatment.  Black bars indicate the 

proportion of beetles testing positive for refuge corn (Cry1Ab) in the sampling row where they 

were collected.  Gray bars indicate the proportion of beetles testing positive for Bt corn (Cry1F) 

in the sampling row where they were collected.  Bars bearing the same letter are not significantly 

different based on multiple comparisons using the Marascuilo test, untransformed means are 

shown.  See methods for row labeling explanation.  Corn phenology was determined based on 

Ritchie et al. 1993 and Abendroth et al. 2011.  
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Figure 3.3.  Proportion of adult western corn rootworms that tested positive for the indicated Cry 

proteins (± SE) in each sampling row by corn phenology and treatment.  Black bars indicate the 

proportion of beetles testing positive for refuge corn (Cry1Ab) in the sampling row where they 

were collected.  Gray bars indicate the proportion of beetles testing positive for Bt corn (Cry1F) 

in the sampling row where they were collected.  Bars bearing the same letter are not significantly 

different based on multiple comparisons using the Marascuilo test, untransformed means are 

shown.  See methods for row labeling explanation.  Corn phenology was determined based on 

Ritchie et al. 1993 and Abendroth et al. 2011.  
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CHAPTER 4: EFFECTS OF SEX RATIO AND BEETLE DENSITY ON WESTERN 

CORN ROOTWORM (COLEOPTERA: CHRYSOMELIDAE) MATING BEHAVIOR 

 

INTRODUCTION 

Western corn rootworm (Diabrotica virgifera virgifera LeConte; Coleoptera: 

Chrysomelidae) is a serious pest of corn throughout North America and is controlled 

predominantly, using Bt (Bacillus thuringiensis Berliner) corn hybrids that express Cry 

proteins toxic to rootworm larvae.  To delay the evolution of rootworm resistance to Bt corn, 

the United States Environmental Protection Agency has mandated an insect resistance 

management (IRM) plan, based on the the high-dose refuge strategy, that requires growers of 

Bt corn to plant a non-Bt refuge as a structured block, multi-row strips or as a seed blend, 

within each Bt cornfield (US EPA OPP 2001, US EPA OPP BPPD 2010).  Among the 

assumptions of the high-dose refuge strategy, mate-seeking rootworm beetles emerging from 

refuge and Bt plants are expected to readily move across these fields and intermate (Tabashnik 

1994, Gould 1998).  Many aspects of rootworm reproduction have been well investigated in 

the laboratory and the field (see reviews Spencer et al. 2009, Chapter 1 of this dissertation).  

However, portions of the literature may be due for re-examination because the studies were 

carried out long before the Bt hybrids were commercialized, and thus do not reflect the effects 

of Bt corn on the spatial and temporal landscape of rootworm abundance.  For example, delays 

of 4.5 - 7.8 days between emergence from Bt corn compared to refuge corn (Storer et al. 2006, 

Murphy et al. 2010, Hughson and Spencer 2015) create seasonally variable areas of high and 

low beetle density within Bt cornfields with structured refuges, which may affect the ability of 

beetles to encounter mates from either refuge or Bt corn (Spencer et al. 2012, Hughson and 

Spencer 2015, Chapters 2 and 3 of this dissertation).  The behavioral and physiological 
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consequences of mating under such heterogeneous conditions in Bt cornfields with structured 

refuges were not studied prior to commercialization of rootworm Bt corn.  Understanding how 

field population characteristics, like sex ratio and density, affect western corn rootworm 

reproductive ecology, will help refine efforts to  model the durability of control methods in 

IRM strategies which rely on rootworm mating behavior for success. 

Western corn rootworms are univoltine pests that overwinter as eggs in the soil of corn 

or soybean fields (Levine and Oloumi-Sadeghi 1991, Levine et al. 2002).  Egg hatch begins in 

late May and early June (Levine and Oloumi-Sadeghi 1991) and larvae begin to feed on young 

corn roots, which can result in significant economic damage (Metcalf 1986, Dun et al. 2010, 

Tinsley et al. 2012).  After pupation, rootworm adults emerge from the soil beginning in late 

June (Ball 1957, Murphy et al. 2010, Hughson and Spencer 2015) and feed on the above-

ground portions of the corn plants (Ball 1957).   

Males emerge from the soil, on average, 5.2 to 6.0 days before females (Branson 1987, 

Hughson and Spencer 2015) and may require this post-emergence period to reach sexual 

maturity (Guss 1976).  Males were previously thought to mate many times (Branson et al. 

1977, Quiring and Timmins 1990).  However, recent research has suggested that males mate on 

average only 2.24 times during the ten day period after their initial mating and few males 

mated thereafter (Kang and Krupke 2009). 

Females are sexually mature upon emergence and begin releasing sex pheromone 

(“calling”) to attract males shortly thereafter.  Hammack (1995) reported that 54% of females 

begin calling on the first day after emergence, 96% begin calling by the second day and by the 

third day, 100% had begun calling.  Within the first 24 hours of emergence, 70% of females 

mated (Quiring and Timmins 1990).   
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The duration of mating is three to four hours (Ball 1957; Lew and Ball 1979, 1980; 

Sherwood and Levine 1993), during which the male requires at least 1.5 hours to pass a 

spermatophore to the female (Lew and Ball 1980).  In addition to providing the female with 

spermatozoa (hereafter referred to as sperm), the spermatophore is a nutrient rich nuptial gift 

containing protein, carbohydrates and water (Murphy and Krupke 2011) that is absorbed by the 

female after five to seven days (Lew and Ball 1980).  The spermatophore is metabolically 

costly for a male to produce, representing up to 9% of the male’s mass (Quiring and Timmins 

1990, Tallamy et al. 2000).  After deposition, sperm from the spermatophore migrate to the 

female’s spermatheca after two to four hours (Lew and Ball 1980).  A single mating likely 

provides enough sperm that a female does not need to mate again (Branson and Johnson 1973, 

Hill 1975).  Although females were previously thought to mate only once in the field (Ball 

1957, Cates 1968), they have been reported mating more than once in the laboratory (Branson 

et al. 1977) and in the field (Chapter 2 of this dissertation).   

Mating studies have the potential to generate new insights that have significant 

implications for IRM because the success of the current strategy relies on several assumptions 

about western corn rootworm behavior related to mating.  This research investigates the role of 

population characteristics such as insect density and sex ratio in rootworm mating success.  

While male skewed sex ratios are often associated with greater female mating success 

(Arnqvist and Nilsson 2000), Bt cornfields often produce female skewed sex ratios compared 

to non-Bt cornfields (Al-Deeb and Wilde 2005, Meinke et al. 2009, Murphy et al. 2010).  It is 

unclear how variation in sex ratio might affect rootworm mating behavior.  Population 

densities vary greatly between the refuge and Bt portions of the same cornfield (Hughson and 

Spencer 2015).  It has been suggested that low population density in Bt portions of a field 
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might influence mate selection; sparsely distributed beetles emerging in Bt corn may wait 

longer to encounter a potential mate (Spencer et al. 2012).  If they wait long, the aging females 

may begin to feed and move, activities that may bring a female closer to a refuge where mate-

seeking males may be encountered more frequently (Spencer et al. 2012, Hughson and Spencer 

2015).  The experiment described here investigated the role of high and low population 

densities, three sex ratio treatments and other factors (including some female reproductive 

characteristics) in the mean number of matings by female western corn rootworm beetles.  The 

goal was to identify whether females in areas of low density and female skewed sex ratios mate 

less frequently than females held at higher density with male skewed sex ratios.  Cultivation of 

Bt cornfields with vast acreage of refuge and Bt corn creates areas of high and low beetle 

density with female skewed sex ratios.  I hypothesize that newly emerged females in areas with 

low beetle densities and female skewed sex ratios will be less likely to mate than females in 

areas with higher density or male skewed sex ratios. 

 

MATERIALS AND METHODS 

Field location and planting  

The field location for this study was at University of Illinois at Urbana-Champaign 

(UIUC) Ag Engineering Farm in southeast Urbana, IL (40° 07’ N, 88° 21’ W).  In 2015, the 

location was planted with a Roundup Ready
®
 Pioneer hybrid (P0987R, RM 109 days, Pioneer 

Hi-Bred International, Inc. Johnston, IA) that expressed no lepidopteran or coleopteran 

management traits was planted.  On May 22, 2016, a Pioneer AcreMax
®
 hybrid (P1197AM, RM 

111 days) expressing both Cry1Ab and Cry1F traits for lepidopteran management was planted in 
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the study area. Corn rows were planted on a north-south axis at a rate of 84,014 seeds/ha (34,000 

seeds per acre) with 0.76 m between each row.   

Screen emergence tents (3.7 x 3.7 x 2.1 m; Redwood Empire Awning and Furniture Co. 

Inc., Santa Rosa, CA) spanning four corn rows were erected in the cornfields on June 13, 2016.  

All but eight or nine plants inside the emergence tents were cut off 0.5 m above the ground.  

This allowed the plants and beetles feeding on their roots to survive while removing the 

majority of the foliage in the tents so emerging beetles could be easily observed and collected.  

The tops of the remaining plants were trimmed to ca. 2 m to prevent them from pushing on the 

tops of the tents and to reduce the locations where beetles could hide.   

 

Beetle collection and treatments 

Newly emerged, field beetles were collected from screen tents daily using an insect 

vacuum (BioQuip Products Inc., Rancho Dominguez, CA) from June 20 through August 4, when 

beetle emergence from the tents ceased.  After collection, adults were separated into single-sex 

reservoir cages (22 x 22 x 22 cm, BioQuip Products Inc., Rancho Dominguez, CA) and labeled 

with the date, so insect age was known.  The experimental cages were 22 x 22 x 22 cm screen 

cages (MegaView Science, Taichung, Taiwan and BioQuip Products Inc., Rancho Dominguez, 

CA).  Insects in cages were furnished with a water source and corn foliage, tassels and corn silks 

or ears to match the field phenology of the surrounding corn plants.  Water was refreshed once or 

twice daily and food was replaced every other day.   

To test the influence of population density and sex ratio on the likelihood of mating, a 

factorial experiment with treatments that combined two population densities, low density (n = 

4 beetles / cage) and high density (n = 8 beetles / cage), with three sex ratios, 3:1, 1:1 and 1:3 
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(M:F), was developed.  The six treatments were: 1) low density 3:1 (3M:1F), 2) low density 

1:1 (2M:2F), 3) low density 1:3 (1M:3F), 4) high density 3:1 (6M:2F), 5) high density 1:1 

(4M:4F), and 6) high density 1:3 (2M:6F).  Each time enough beetles had emerged to complete 

one replicate (n = 36), males and females were distributed among cages housing the six 

treatments.  Female beetles were placed in the experiment on their first or second day after 

emergence because most females begin to release sex pheromone during this interval 

(Hammack 1995).  Males were placed in the experiment five to 15 days after emergence 

because males are thought to require five to seven days after emergence to reach sexual 

maturity (Guss 1976) and have, on average, a ten day reproductive lifespan (Kang and Krupke 

2009).  The treatment cages were then placed inside the screen tents in the field (Figure 4.1).  

The experiment was carried out in the field to provide natural temperature and humidity 

conditions as well as a background of pheromone and plant volatile cues that would be 

experienced by a field population.  Enclosure in screen tents also prevented disturbance by 

birds and small mammals.  The cages were positioned so a screen panel, rather than the 

impermeable cage floor panel, was on the bottom of the cage, thereby allowing rain to pass 

through the cages, rather than pooling to prevent the beetles from drowning. 

Beetles remained in the treatment cages and were allowed to mate over a five day 

period.  At the end of the fifth day, the beetles were removed from each treatment cage, placed 

in vials and stored in a freezer at -20° C until they could be processed.  A total of 12 replicates 

were completed in 2016 (n = 432 beetles).  The beetles from each treatment cage were weighed 

and the length of their left elytron was measured.  The females were dissected under a stereo 

microscope (StereoZoom 4, Leica Microsystems Inc., Buffalo Grove, IL) in a drop of saline 

solution (NaCl 0.75%) and their mating characteristics were recorded as described by Hughson 
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(Chapter 2 of this dissertation), including the presence of a spermatophore in the bursa 

copulatrix, number of spermatophores, presence of sperm in the spermatheca and stage of 

ovarian development.  Spermatophores break down completely after five to seven days (Lew 

and Ball 1980) and sperm may be stored in the spermatheca until the end of a female’s natural 

life (Branson and Johnson 1973, Hill 1975).  This sequence of events allowed the observation 

of new whole spermatophores (recorded as large), older degraded spermatophores (recorded as 

small) and the detection of sperm in the spermathecae of females in which a spermatophore 

had degraded completely. 

When beetles were retrieved from the freezer for dissection, it was discovered that a 

power outage left some of the specimens desiccated or with mold growth.  This prevented 

reliable weight measurements, so elytron length was used as a measure of size.  

Many of the methods described above were developed and tested in an initial feasibility 

study conducted in 2015 using beetles from the USDA non-diapause population (USDA-

ARS North Central Agricultural Research Laboratory (NCARL), Brookings, SD).  Concerns 

and limitations associated with the use and field relevance of laboratory colony subjects led to 

an improved design based on a field population in which beetles could be collected as they 

emerged in screen tents adjacent to those used to house the treatment replicates. 

 

Statistical analyses 

During dissection of female beetles, the presence of a spermatophore and stored sperm 

confirmed that mating had occurred.  Reproductive characteristics of mated and unmated 

females, including mean elytron length, weight and ovary rating (Short and Hill 1972), were 

compared using t-tests in JMP Pro 10 (SAS Institute Inc. 2012).  The mean proportions of 

http://www.ars.usda.gov/Main/docs.htm?docid=2357
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females with spermatophores, with large spermatophores, with sperm in the spermatheca and 

the mean ovary development ratings were compared among density and sex ratio treatments to 

assess the role of these population characteristics in female behavior and physiology.  Among 

the females with spermatophores, the proportions of females with large and small 

spermatophores were compared to determine if most mating occurred at the beginning of or 

throughout the experiment.  Comparisons were performed using the Kruskal-Wallis test and 

the Steel-Dwass test of multiple comparisons (JMP Pro 10, SAS Institute Inc. 2012).  

The mean numbers of matings per male and female among treatments were analyzed to 

determine whether the likelihood of mating was influenced by population density and sex ratio 

using the Kruskal-Wallis test (JMP Pro 10, SAS Institute Inc. 2012).  The Steel-Dwass test of 

multiple comparisons (JMP Pro 10, SAS Institute Inc. 2012) was also used to analyze whether 

the likelihood of mating was significantly affected by treatment levels.   

 

RESULTS 

Body size, measured as mean female elytron length did not differ between mated and 

unmated females averaging 3.96 ± 0.04 mm and 3.94 ± 0.06 mm, respectively.  Females had 

ovary development ratings that ranged from 1 to 3, 81% had stage 1 ovaries with no visible 

oocyte development, 17% had stage 2 ovaries with some small but visible oocytes in the 

vitellarium and 2% had stage 3 ovaries with some large oocytes characterized by advanced yolk 

deposition in the vitellarium (Short and Hill 1972).  Ovary development was greater in mated 

females than unmated females averaging 1.28 ± 0.05 and 1.12 ± 0.05, respectively (t = 2.38, P = 

0.0195).   
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Three females were found with two spermatophores, representing 1.4% of all females.  

One female had two large spermatophores and was in a high density 3:1 treatment.  A second 

female had two small spermatophores and was in a high density 1:1 treatment.  A third female 

had one large and one small spermatophore and was in a low density 1:1 treatment.  Both large 

and small spermatophores were found in females after the experiment.  Among females with a 

spermatophore present, 52% had small and 57% had large spermatophores, indicating that 

mating occurred throughout the experiment; there was no difference in the number of females 

with large or small spermatophores.  The mean proportions of females with a spermatophore 

present were not affected by the population density but were affected by the male to female sex 

ratio in the population (χ
2
 = 8.42, df = 2, P = 0.0148).  The mean proportion of females with a 

spermatophore was greatest in 3:1 sex ratio treatments and lowest in the 1:3 sex ratio treatments, 

while the 1:1 treatments did not differ from either the 3:1 or 1:3 treatments (Table 4.1).  Mean 

proportions of females with large spermatophores did not vary based on population density or 

sex ratio (Table 4.1).  More than half of the females with a spermatophore had a large 

spermatophore, indicating that the females had mated recently and thus had little time for 

absorption of the spermatophore.  The mean proportion of females with sperm present in their 

spermathecae varied with both population density (χ
2
 = 4.29, df = 1, P = 0.0384) and sex ratio (χ

2
 

= 6.70, df = 2, P = 0.0351).  Mean proportions of females with sperm present were greater in 

treatments with low population densities (Table 4.1).  The proportions with sperm present were 

greater in populations in the 3:1 sex ratio, lowest in the 1:3 sex ratio treatments and the 1:1 sex 

ratio treatments did not differ between the 3:1 and 1:3 sex ratio treatments (Table 4.1).  The 

mean ovary development did not differ between density or sex ratio treatments (Table 4.1). 
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The mean number of matings per female in each treatment were not influenced by 

population density but they were influenced by sex ratio (χ
2
 = 11.77, df = 2, P = 0.0028; Figure 

4.2).  The mean numbers of matings per female were greater in treatments with 3:1 sex ratios, 

while the 1:1 and 1:3 did not differ (Figure 4.2).  Similarly, mean numbers of matings among 

males in each treatment were influenced by sex ratio (χ
2
 = 35.08, df = 2, P < 0.0001; Figure 4.2) 

but not population density.  The mean numbers of matings per male differed among all three sex 

ratios with the greatest mean numbers of matings per male occurring in 1:3 treatments and the 

fewest numbers of mean matings in the 3:1 treatments (Figure 4.2). 

 

DISCUSSION 

A male biased sex ratio led to a greater number of matings per female.  Females in 

treatments with a female biased sex ratio had the lowest matings per female.  Thus, it is 

surprising that female biased sex ratios in beetle emergence and abundance were consistently 

observed in Bt cornfields (Tables B.1 and B.2; Al-Deeb and Wilde 2005, Meinke et al. 2009).  In 

the Bt portions of structured refuge treatments, emergence sex ratios averaged less than 0.5 (1:2), 

while refuge areas were still female biased at 0.768 (3:4; Tables B.1 and B.2).  Sex ratios in field 

collections of free-moving adults in the same treatments were also female biased (Tables B.1 and 

B.2).  Western corn rootworm emergence patterns were female biased throughout the 2010 to 

2012 field experiment.  Sex ratios of free moving adults were less skewed (some were male 

biased in structured refuge), but still generally female biased.  Thus western corn rootworm 

females must overcome a relative scarcity of males to mate.  Releasing sex pheromones is an 

effective way for females to attract mate-seeking males and increase the operational sex ratio in 

their immediate vicinity. 
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The fact that a male skewed sex ratio increased the females’ probability of encountering 

potential mates may be especially important for females in areas where males are locally scarce.  

Pheromone release may allow females to increase their opportunities to encounter mate-seeking 

males, overcoming mate finding problems for isolated females.  However, in female skewed 

treatments, some females went unmated during the five days after emergence, when the literature 

indicates they are most likely to mate (Ball 1957, Quiring and Timmins 1990).  These females 

may be typical of females that have been isolated in the field; if they are unable to increase the 

operational sex ratio in their vicinity by releasing sex pheromone, they may remain unmated. 

Males mated more often in treatments with female skewed sex ratios, than males in 

treatments with an equal or male skewed sex ratios.  In the 1:3 sex ratio treatments, about half of 

the males mated a second time during the five day experiment, at an age when they were most 

likely to mate (Guss et al. 1972, Kang and Krupke 2009).  The presence of both small and large 

spermatophores in females indicates that some were mated at the beginning of the experiment 

allowing time for the spermatophores to be partially absorbed (Chapter 2 of this dissertation) and 

others were mated near the end of the experiment.  These observations suggest that, even within 

their reproductive lifespan, males may be limited in their ability to mate multiple times in short 

succession.  Males may require time to feed and replenish nutrients before they are capable of 

mating and producing a second spermatophore (Quiring and Timmins 1990).  As host plants 

begin to mature and their quality declines (Abendroth et al. 2011) males may be unable to 

consume enough nutrients to produce an adequate spermatophore.  In addition, if males are 

concentrated in refuge corn where female abundance is high, males may encounter nearby 

calling females and expend their reproductive capabilities before leaving the refuge to encounter 

calling females from Bt corn. 
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In areas with greater beetle abundance like refuges, males may have multiple 

opportunities to mate with calling females.  Similarly, a calling female in a high density area may 

be approached by multiple males.  The phenomenon of multiple mating, as evidenced by the 

presence of two spermatophores in a female’s reproductive tract, may also be related to male 

skewed sex ratios.   

Unlike the conditions faced by a calling female who just emerged on an isolated host 

plant, females in a cornfield are surrounded by an abundance of potential mates who are 

competing for numerous calling females.  Alternatively, under high competition circumstances, a 

mating male may be dislodged from his mate by another male before completing a mating.  

Males require up to1.5 hours to transfer a complete spermatophore to a female (Lew and Ball 

1980) and when matings are terminated after less than one hour sperm usually is not transferred 

(Sherwood and Levine 1993).  When mating was interrupted at one hour, the subsequent ovarian 

development of these females was reduced compared to females whose matings went to natural 

completion (Sherwood and Levine 1993).  Accordingly, a female separated from her mate before 

she receives an adequate spermatophore may retain receptivity and accept another mate (Leopold 

et al. 1971) to gain the developmental benefits of the spermatophore. 

Western corn rootworm spermatophores also provide nutritional benefits such as 

carbohydrates, water and a high percent protein content compared to some other species that 

have been analyzed (Murphy and Krupke 2011).  Nutrients from the spermatophore have been 

detected in the eggs (Murphy and Krupke 2011) and fat body of mated females (Tallamy et al. 

2000) suggesting that females benefit both indirectly, in increased fitness from egg production, 

and directly, in nutrient absorption, from receiving a spermatophore (Arnqvist and Nilsson 

2000).  Although food-limitation was not evaluated in this study, it is conceivable that some 



118 
 

twice-mated females may accept a second mate because they lack nutritional resources that could 

be supplemented by acquiring a second spermatophore.  

Lower survival of male larvae on Bt plants is likely responsible for the shift in sex ratios 

reported for insects emerging from Bt cornfields (Al-Deeb and Wilde 2005, Meinke et al. 2009).  

Coupled with delayed emergence of beetles from Bt plants (Storer et al. 2006, Murphy et al. 

2010, Hughson and Spencer 2015), this shift in male abundance and availability could reduce 

opportunities for females to mate shortly after emergence, despite their calling behavior.  If the 

probability of calling decreases over time among unmated females or they release pheromone at 

lower rates or less consistently, aging early-emerging females may become less attractive than 

newly emerged females and may not have as many opportunities to mate.  Some may mate later 

or not at all (Spencer et al. 2012, Chapter 2 of this dissertation).  

Females that had mated during the experiment had greater mean ovarian development 

than same-aged females that had not, which was consistent with Hill (1975) and Sherwood and 

Levine (1993) in which western corn rootworm females had differences in ovarian development 

based on the duration of mating.  Females mating for two hours had greater ovarian development 

compared to females interrupted after one hour (Sherwood and Levine 1993), thus it is not 

surprising to find that mated females had greater ovarian development, even a short time after 

mating.  In many insects, physical or chemical cues that stimulate female reproductive 

development are passed from male to female during mating (Spencer et al. 1992, Miller et al. 

1994, Sherwood and Levine 1993, Klowden 2007).  These cues include compounds produced by 

male accessory glands, physical cues from stretch receptors in the female reproductive tract, or a 

combination of cues (Spencer et al. 1992, Miller et al. 1994, Sherwood and Levine 1993, 

Klowden 2007) providing females with an additional benefit of mating.  
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Refuge males are expected to move across cornfields to mate with newly emerged Bt 

females (Tabashnik 1994, Gould 1998), an assumption derived from research conducted well 

before Bt corn hybrids were commercialized.  While classic literature has paved the way for 

current research, the local agroecosystem has changed and the western corn rootworms and 

management strategies within it have evolved.  Because the landscape of corn production has 

changed dramatically, it was critical to revisit some of the field biology behind the expectations 

that are fundamental to IRM.  Exploring fine points of male-female mating interactions, in this 

case population density and sex ratios, expands upon mere basic biology to provide a more 

mechanistic understanding of western corn rootworm behavioral dynamics. 

This research has demonstrated that changes in population dynamics created by pest 

control methods may alter western corn rootworm mating behavior to the detriment of our IRM 

goals.  The combination of a general delay in emergence of females relative to males (Ball 1975, 

Hughson and Spencer 2015), delays in emergence from Bt corn (Crowder et al. 2005, Storer et 

al. 2006, Murphy et al. 2010, Petzold-Maxwell et al. 2013, Hughson and Spencer 2015) and 

sparse abundance in Bt corn may result in isolated Bt females that are unable to mate rapidly.  

Even if isolated females are in the presence of males, delays in emergence from Bt corn 

(Crowder et al. 2005, Storer et al. 2006, Murphy et al. 2010, Petzold-Maxwell et al. 2013, 

Hughson and Spencer 2015) and the short male reproductive lifespan (Kang and Krupke 2009) 

may limit the operational sex ratio in Bt corn (Spencer et al. 2012) and ultimately result in 

undesirable matings between males and females that emerged from Bt corn.  While the current 

IRM plan is not well suited to western corn rootworm biology, the knowledge gained from 

applying this strategy and exploring basic aspects of pest biology can shape future investigations 

and improvement of management strategies.  
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TABLES 

Table 4.1.  Mean (± SE) reproductive characteristics of mating female western corn rootworms held at different densities and sex 

ratios. 

                                

  Population Density  Population Sex Ratio 

  Low  High  3:1  1:1  1:3 

Reproductive Measure  n Mean ± SE
 a
  n Mean ± SE  n Mean ± SE  n Mean ± SE  n Mean ± SE 

                               

                

Spermatophore Present  34 0.69 ± 0.06 a  36 0.61 ± 0.05 a  23 0.78 ± 0.08 a  24 0.62 ± 0.07 ab  23 0.55 ± 0.05 b 

Large Spermatophore Present
 b
  31 0.54 ± 0.07 a  34 0.63 ± 0.07 a  20 0.60 ± 0.11 a  24 0.62 ± 0.07 a  21 0.54 ± 0.09 a 

Sperm Present  35 0.64 ± 0.07 a  36 0.48 ± 0.05 b  24 0.70 ± 0.08 a  24 0.51 ± 0.08 ab  23 0.47 ± 0.05 b 

Ovary Development
 c
  30 1.19 ± 0.07 a  30 1.21 ± 0.06 a  19 1.18 ± 0.08 a  23 1.23 ± 0.09 a  18 1.11 ± 0.05 a 

                                
a
 Means (± SE) in the same row and population measure (density or sex ratio) with the same letter designation are not significantly different (Steel-

Dwass test of multiple comparisons , α = 0.05). 
b
 Among females with a spermatophore, the mean proportion of females with a large spermatophore in in their bursa copulatrix. 

c
 Mean ovary development was scored on a scale of 1 to 4 based on Short and Hill (1972).  During stage 1 no ovary development was observed 

and during stage 4 mature eggs were observed.
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FIGURES 

 

Figure 4.1.  A screen emergence tent (3.7 x 3.7 x 2.1 m) spanning four corn rows.  
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Figure 4.2.  Mean number of matings (± SE) per male (gray bars) and female (dark bars) held in 

cages with 3:1, 1:1 or 1:3 M:F sex ratios. The mean number of matings per treatment was 

calculated based on the total number of matings based on spermatophores and/or presence of 

sperm observed in dissected females.  The Kruskal-Wallis test was performed to determine 

whether population density influence the mean number of matings.  Bars of the same shade 

bearing the same letter are not significantly different (α = 0.05). 
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CHAPTER 5: ASSESSING SPERM PRECEDENCE IN WESTERN CORN 

ROOTWORM (DIABROTICA VIRGIFERA VIRGIFERA LECONTE) USING 

MICROSATELLITE GENOTYPING 

 

INTRODUCTION 

Western corn rootworm (Diabrotica virgifera virgifera LeConte) is a serious pest of corn 

in the United States (US), costing growers more than $1 billion in management costs and yield 

losses annually (Metcalf 1986, Dun et al. 2010).  Corn hybrids expressing proteins from Bt 

(Bacillus thuringiensis Berliner) that are toxic to root-feeding larvae have been used to control 

rootworm populations since 2003 (US EPA OPP 2001).  To slow the evolution of resistance to 

Bt toxins expressed in Bt corn hybrids, the US Environmental Protection Agency mandated use 

of an insect resistance management (IRM) plan (US EPA 1998, US EPA OPP 2001) based on 

the high-dose refuge strategy where Bt corn was grown.  According to this strategy, a ‘refuge’ of 

non-Bt corn must be planted in a portion of every Bt cornfield, providing a location where Bt 

susceptible beetles can develop without exposure to Bt toxins.  These susceptible beetles are 

expected to move across cornfields and mate with rare potentially resistant beetles that survived 

larval exposure to Bt corn, producing heterozygous susceptible offspring (Tabashnik 1994, 

Gould 1998).   

Because this IRM strategy relies on rootworm movement and mating behavior to create 

the conditions that delay resistance, understanding these behaviors is important to ensure the 

strategy’s efficacy.  Using simulation models, researchers evaluate the durability of Bt hybrids 

based on parameters including the dose of the Bt trait, refuge size, refuge configuration and pest 

biology (e.g. Pan et al. 2011, Spencer et al. 2012, Kang et al. 2013).  Field research leading to 

insights regarding movement, mate choice, mating frequency, sperm precedence and oviposition 

in Bt cornfields can broaden the information base used by modelers to refine their predictions. 
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Adult male western corn rootworms emerge from the soil, on average, 5.2 to 6.0 days 

before females (Branson 1987, Hughson and Spencer 2015) and may require five to seven days 

to reach sexual maturity (Guss 1976).  Adult females are sexually mature upon emergence 

(Hammack 1995) and usually mate during the first 24 hours while they are still teneral (Cates 

1968, Quiring and Timmins 1990).  Mating lasts for three to four hours on average (Ball 1957, 

Lew and Ball 1979, Sherwood and Levine 1993), during which the male deposits a 

spermatophore in the female’s bursa copulatrix (Lew and Ball 1980).  Males make a significant 

contribution to mating when they provide a spermatophore, which amount to up to 9% of the 

male’s mass (Tallamy et al. 2000).  The spermatophore is a nuptial gift that has two major 

components (pictured in Chapter 2 of this dissertation, Figure 2.1).  The first is the ampulla, 

which contains spermatozoa (hereafter referred to as sperm) that migrate to the female’s 

spermatheca (Lew and Ball 1980), where they can be stored for 40 to more than 76 days 

(Branson and Johnson 1973, Hill 1975, Lew and Ball 1980). The second component is the 

spermatophylax, which is rich in proteins (Gillott 2003, Murphy and Krupke 2011), 

carbohydrates and water (Murphy and Krupke 2011).  A spermatophore can be absorbed by the 

female within five to seven days (Lew and Ball 1980).  Egg-laying begins when females are 

between 12 and 21 days old (Short and Hill 1972, Branson and Johnson 1973, Hill 1975).  

During their lifetime, females that mated once produced an average of 266 to 441 viable eggs 

(Ball 1957, Elliott et al. 1990, Fischer et al. 1991, Boetel and Fuller 1997) but some individuals 

are capable of producing more than 1000 total eggs (Branson and Johnson 1973, Hill 1975). 

Western corn rootworm females were thought to mate only once in the field (Ball 1957, 

Cates 1968), but studies have shown that a portion of the population mates more than once in the 

field (Chapter 2 of this dissertation) and in the laboratory (Branson et al. 1977, Chapter 4 of this 
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dissertation).  The proportion of females that mate more than once may range from 4.5% in field 

populations (Chapter 2 of this dissertation) to 23% of the population in the laboratory (Branson 

et al. 1977).  Females do not accept mates while gravid (Chapter 2 of this dissertation) or 

actively ovipositing (Branson et al. 1977), although they may accept a second mate before 

oviposition or during intervals between dates of oviposition (Branson et al. 1977). 

Multiple mating by females is common among insects and usually occurs with different 

partners (polyandry), rather than repeated matings with the same male because insects typically 

lack pair bonds (Thornhill and Alcock 1983).  Polyandrous behavior may not occur in all western 

corn rootworm females, but because matings between Bt resistant and Bt susceptible individuals 

are fundamental to the success of rootworm IRM, variation in the timing and frequency of 

female mating could change the abundance of Bt susceptible offspring.  If multiple matings are 

occurring, the type of sperm precedence could further affect the likelihood of Bt susceptible 

offspring.   

No research specifically examining sperm precedence in western corn rootworm has been 

published, but three studies (Branson et al. 1977; Oyediran 2002, 2007) suggest that the second 

or last male to mate may have precedence in fertilizing the offspring.  Branson et al. (1977) 

carried out an experiment with three treatment groups in which females were first mated to a 

sterile irradiated male and were then housed continuously with an unaltered male beginning 1) 

immediately after the first mating, 2) before the first oviposition or 3) after the first oviposition.  

Females introduced to the unaltered male immediately after mating produced viable eggs as did 

females introduced to unaltered males after first oviposition, but none of the females introduced 

to unaltered males before first oviposition appeared to mate a second time (Branson et al. 1977).  

While this finding suggests last male sperm precedence, or mixed paternity, it cannot rule out 
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first male sperm precedence because none of the females were mated first to an unaltered male 

followed by a sterile male (Branson et al. 1977).  The use of sterile males also raises questions 

about the possibilities that females may respond differently to the presence or absence of viable 

sperm (Gromko et al. 1984) or that the sperm themselves are unable to migrate to the female’s 

spermatheca. 

Genotyping may allow sperm precedence to be evaluated without raising questions about 

the capabilities of irradiated males or how females respond to them.  Oyediran (2002 Chapter 2, 

Chapter 4; 2007) evaluated sperm precedence in two studies using southern corn rootworm 

(Diabrotica undecimpunctata Howardi).  In the first study, females were mated to two males 

with different abdominal color phenotypes.  Their offspring’s abdominal phenotypes were 

evaluated to determine sperm precedence (Oyediran 2002 Chapter 2).  In the second study, 

RAPD-PCR and electrophoresis were used to compare DNA fragments from the offspring and 

parents (Oyediran 2002 Chapter 4). In both studies, Oyediran (2002 Chapter 2, Chapter 4; 2007) 

concluded that southern corn rootworm had second male sperm precedence. 

Last male sperm precedence in western corn rootworm may further complicate 

management of insect resistance especially if multiple mating is fairly common among females.  

Delays in female emergence compared to males (Ball 1957, Hughson and Spencer 2015), delays 

in adult emergence from Bt corn compared to non-Bt corn (Storer et al. 2006, Murphy et al. 

2010, Hughson and Spencer 2015), female-biased sex ratios in Bt corn versus non-Bt corn (Al-

Deeb and Wilde 2005, Meinke et al. 2009) and the 10 day reproductive lifespan of males (Kang 

and Krupke 2009) already create a situation where late-emerging females are more likely to 

encounter and mate with Bt emerging (potentially resistant) males (Spencer et al. 2012, Hughson 

and Spencer 2015, Chapter 2 and chapter 3 of this dissertation).  In addition, simulation models 
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suggest that these conditions may reduce the durability of Bt traits (Spencer et al. 2012).  The 

possibility that some proportion of females may mate more than once with the last male 

fertilizing the offspring may create two different scenarios.  If the female mates twice early in the 

season while mate-seeking refuge-emerging males are present, the offspring are likely to be 

susceptible to Bt.  If the female mates again later in the season, however, there is a risk that she 

will mate with a male that may carry Bt resistance alleles, passing them to her offspring.  In 

contrast, if the first male’s sperm have precedence, polyandry may have little additional impact 

on resistance management. 

This study was designed as a field and laboratory experiment with an associated genomic 

experiment.  The field and laboratory portions were intended to identify the proportion of 

females that accept a second mate, identify the interval between acceptance of a first and a 

second mate, as well as providing measures of fecundity.  The genomic portion of the study was 

intended to evaluate sperm precedence among the offspring of twice-mated females, by 

comparing the genotypes among the offspring, parent beetles and sperm stored in the female’s 

spermatheca using known western corn rootworm microsatellite loci.  The operative hypothesis 

was that there would be last male sperm precedence in western corn rootworm and thus sperm 

from the most recent mate would fertilize all or a majority of the resulting eggs.  

 

MATERIALS AND METHODS 

 Field location and beetle collection 

The University of Illinois at Urbana-Champaign Ag Engineering Farm (AEF; 40° 07’ N, 

88° 21’ W) was selected as the site of this experiment.  In 2015, the field was late-planted with 

corn and pumpkins, creating a cornfield that pollinated after the surrounding fields, to attract 
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egg-laying western corn rootworm beetles and increase the rootworm population the following 

year.  In 2016, a Pioneer AcreMax
®
 hybrid (P1197AM, RM 111 day, Pioneer Hi-Bred 

International, Inc., Johnston, IA, USA) expressing both Cry1Ab and Cry1F traits for 

lepidopteran management was planted at the AEF field site on May 22.  Four screen emergence 

tents (3.7 x 3.7 x 2.1 m; Redwood Empire Awning and Furniture Co. Inc., Santa Rosa, CA, 

USA) were installed over vegetative corn on June 13, 2016.  The emergence tents spanned four 

0.762 m wide rows of corn; all but nine plants per emergence tent were cut off at 0.5 m above the 

ground to reduce the complexity of vegetation within the cages to facilitate beetle collection.  

Trimmed plants continued to grow and support developing larvae; tents eventually produced 

several thousand beetles.   

Beetles emerged from the emergence tents from Jun. 20 through Aug. 4.  Newly emerged 

beetles were collected from the emergence tents each day during this period.  Because the 

emergence tents were emptied of beetles each day, all beetles encountered in the emergence tents 

had emerged fewer than 24 hours prior to collection (day one).  Single adults were collected 

from each emergence tent using an insect vacuum (BioQuip Products Inc., Rancho Dominguez, 

CA, USA); males and females were separated into single-sex reservoir cages (22 x 22 x 22 cm; 

BioQuip Products Inc., Rancho Dominguez, CA, USA; MegaView Science, Taichung, Taiwan) 

and labeled with the date of emergence so their age was known.  All reservoir cages and 

experimental cages (described below) were maintained in the field within the large emergence 

tents (pictured in Chapter 4 of this dissertation) to provide protection from local wildlife.  Food 

and water were continuously available to the beetles.  Foliage, tassels, silks and corn ears were 

provided as food, matching the phenology of the surrounding cornfield.  Water containers were 

refreshed once or twice daily and food was replaced every other day.  The screen cages were 
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turned so a screen, rather than solid, side was on the bottom of the cage, allowing rain to pass 

through the cage and preventing the beetles from drowning in pooled water. 

 

Mating arrangements 

Each female in the mating study was housed in a 17.5 x 17.5 x 17.5 cm screen 

experimental cage (MegaView Science, Taichung, Taiwan).  The experimental cages were 

maintained inside an emergence tent in the cornfield where the female emerged for the duration 

of the mating portion of the experiment.  Insects thus could be maintained under field 

temperature and humidity conditions while experiencing normal field stimuli, such as host plant 

volatiles and western corn rootworm pheromones that may influence the insects’ behavior. 

Each newly emerged female was originally collected while mating in an emergence tent 

and assigned an individual identification number, thereby allowing the first mating to be initiated 

and confirmed with minimal handling and disruption.  When a mating pair was encountered, they 

were gently coaxed to walk into a vial and allowed to rest for a short time to minimize stress, 

after which the vial was opened and placed inside an experimental cage.  When the initial mating 

ended naturally, the male was removed from the cage with a vial, labeled to correspond to the 

female identification number and stored in the laboratory freezer at -20º C.  The female was left 

in the cage and a new male was introduced each day thereafter.  

The subsequent new males were between five and 15 days old, to ensure they had 

completed post-emergence maturation (Guss 1976) but had not exceeded their 10 day 

reproductive life span (Kang and Krupke 2009).  Each morning a new male was introduced into 

a female’s cage between 7:00 and 9:00 am, when mating activity was greatest (Bartelt and 

Chiang 1977, Dobson and Teal 1986).  Mating lasts on average between three and four hours 
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(Ball 1957; Lew and Ball 1979, 1980; Sherwood and Levine 1993), therefore the cages were 

observed to confirm mating at two hour intervals until late afternoon or early evening.  

Observations were made without disturbing the cage whenever possible, to avoid interrupting 

courtship behavior or mating.  Because western corn rootworm males may mount females and 

remain in place for up to an hour prior to mating (Lew and Ball 1979), mounted pairs required 

close inspection to confirm mating (visual confirmation of aedeagus insertion).  If mating was 

not observed, the male was removed from the cage and released at the end of the day.  When 

mating was observed, the beetles were allowed to continue until mating ended naturally.  After 

mating ended, the male was removed, labeled as the second male for that individual female and 

stored in the freezer.  After the second mating, the female was transferred to an oviposition 

container in a climate-controlled laboratory chamber (Percival Scientific Inc., Perry, IA, USA) 

maintained at 24º C and 13L:11D schedule.  Females may begin to oviposit six to ten days after 

mating (Sherwood and Levine 1993) and do not mate while gravid (Chapter 2 of this 

dissertation).  Therefore, females that did not mate a second time within ten days or became 

visibly gravid, were removed from the experiment.  The ages of females at the first mating, 

second mating and death were recorded.  The age of males accepted in the first and second 

matings were recorded. 

 

Egg collection 

The oviposition containers consisted of a stacked pair of 6 cm diameter Petri dishes 

(ThermoFisher Scientific, Waltham, MA, USA).  The top petri dish contained a small amount of 

corn tissue as a food source and a piece of moist cotton as a water source; each had a 1 cm hole 

cut in the bottom, allowing the female to move into the bottom Petri dish.  The bottom surface 
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and the sides of the lower 6 cm petri dish were colored with permanent marker to create a dark 

area for oviposition.  This dish contained a smaller 3.5 cm diameter Petri dish (Falcon, Corning, 

NY, USA) of 80 mesh field soil for oviposition (Figure 5.1). The soil was moistened, spread 

evenly in each oviposition dish and scored three or four times to simulate natural fractures in the 

soil where females prefer to oviposit.   

Females were observed twice weekly to determine whether oviposition had occurred and 

to provide fresh food, water and clean containers.  The entire container, including the small 

oviposition dish, was observed using a stereomicroscope at 6 - 12 x magnification (StereoZoom 

4, Leica Microsystems Inc., Buffalo Grove, IL, USA) to detect oviposition and to assure that 

even eggs deposited in small crevices or on food items were not overlooked.  When eggs were 

present, the oviposition dish was replaced with a fresh dish of soil.  The dish containing eggs was 

lidded, labeled with the female identification number, oviposition date and held at room 

temperature (ca. 21º to 22º C) for 14 days to allow completion of early embryonic development.  

After 14 days, the oviposition dish lids were secured with rubber bands, placed in a plastic bag 

and moved to a chamber maintained at 6º C in 24 hours darkness.  Eggs could then naturally 

enter diapause so they could be stored for at least five months.   

Egg data were recorded as weekly egg batches.  Females were maintained and allowed to 

oviposit until they died naturally.  After death, females were placed in vials with their 

identification number and stored in the laboratory freezer at -20º C.  The age at which twice-

mated females began oviposition, duration of oviposition, weekly egg data and total eggs 

produced were recorded for each female. 
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Sample preservation 

Before DNA extraction, the eggs were separated from the soil in each oviposition dish.  

The soil was washed through an 80 mesh sieve with tap water; the soil passed through and the 

eggs were collected in the sieve.  If two oviposition dishes with eggs were collected from a 

female during the same week, they were pooled during the washing step to create a single 

weekly egg batch.  After washing, the eggs were rinsed from the sieve into a container and 

observed under a stereomicroscope at 6 - 12 x magnification (StereoZoom 4, Leica 

Microsystems Inc., Buffalo Grove, IL, USA).  The eggs were counted, any remaining soil or 

debris was removed using a fine probe and the eggs were transferred into a microcentrifuge tube 

in a small amount of water with a disposable 7 mL pipette.  The egg batches were stored in a 

refrigerator overnight before they were transported to Illinois Institute of Technology in Chicago, 

IL in coolers. 

 

Dissection of spermathecae and isolation of sperm 

After allowing the frozen females to thaw at room temperature, their spermathecae were 

isolated under a stereomicroscope at 6 - 12 x magnification by pulling away the pygidium of 

each female’s abdomen with a pair of fine forceps (Dumont #5/45, Fine Science Tools Inc., 

Forest City, CA, USA) and iridectomy scissors (BioQuip Products, Inc., Rancho Dominguez, 

CA, USA) and picking up the dark, question mark shaped spermatheca with the forceps.  Each 

spermatheca was placed on a microscope slide in a 5 μL droplet of 0.065% NaCl aqueous 

solution.  Under a stereomicroscope at 50 x magnification (Wild M5-53540, Heerburgg, 

Switzerland), the spermatheca was cut into two pieces using two fine steel probes, a coverslip 

was placed on top of the pieces and gently tapped to expel sperm (Bermond et al. 2014).  Under 
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the microscope, sperm resembled a cloud of small hairs emanating from the spermatheca 

fragments.  The coverslip was carefully removed and 5 μL of 0.065% NaCl was added to 

facilitate the transfer of the sperm into a micro-centrifuge tube for DNA extraction using a P20 

micropipette as described in Bermond et al. (2014). 

 

DNA extraction 

DNA was extracted from sperm using the commercial kit prepGeM (ZyGeM Ltd, 

Hamilton, New Zealand) according to the manufacturer’s instructions with an elution volume of 

20 μL.  The DNA from adults was extracted from the head and the thorax of each beetle with the 

DNAzol method (Molecular Research Center, Inc., Cincinnati, OH, USA) using an elution 

volume of 100 μL (TE buffer, 10 mM Tris-HCl, 0.1 mM EDTA, pH 8).  This method relies on 

the use of a single extraction buffer to solubilize the different cellular components and on the 

precipitation of DNA in the presence of ethanol (Chomczynski et al. 1997).  The abdomen of an 

adult was removed and the head and thorax of each adult was crushed with a pestle in 100 μL of 

DNAzol.  The abdomens of females were saved for subsequent sperm extraction.  Each pestle 

was rinsed with 880 μL of DNAzol and 10 μL of PolyAcryl Carrier (Molecular Research Center, 

Inc., Cincinnati, OH, USA), 10 μL of RNase A added and the sample allowed to incubate at 37º 

C for one hour.  Then 10 μL of proteinase K (Qiagen, Germany) was added to the homogenate, 

the mixture was stored at room temperature on the bench for three hours, then centrifuged at 

13,200 rpm for ten minutes.  DNA was precipitated from the kept supernatant at room 

temperature with 0.5 mL of 100% ethanol and centrifuged at 13,200 rpm for ten minutes. The 

pellets of DNA were subsequently washed twice in 0.8 mL of 70% ethanol, with two steps of 

centrifugation at 5,000 rpm for five minutes after each wash.  Ethanol was then removed from 
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the DNA pellets using a P20 micropipette.  Finally, the pellets were resuspended in 60 μL of TE 

buffer (10 mM Tris-HCl, 0.1 mM EDTA, pH 8).  

 

Genotyping 

Thirteen microsatellite loci of WCR (DVV-D2, DVV-D4, DVV-D8, DVV-D9, DVV-D 

11, DVV-D12bis, DVV-T1, DVV-T2, DVV-T3, Dba-01, Dviz11, Dba-05 and Dba-07; Kim et 

al. 2008) were used to genotype individual beetles, egg batches and spermathecae contents.  

These loci were selected because they could be reliably amplified and many had previously been 

used in western corn rootworm population genetics studies (Ciosi et al. 2008). 

These loci were amplified using three multiplex PCR performed in a T100 Thermal 

Cycler (Bio-rad Laboratories, CA, USA) and were subsequently analyzed by replicating some of 

the conditions described in Miller et al. (2007): the multiplex PCR was carried out in a total 

volume of 25 μL containing 2 μL of template DNA solution, 2X Type-It Qiagen Multiplex 

Master mix (Qiagen, Germany) and each primer at 0.2 μM.  Forward PCR primers were 5’ 

labelled with a fluorescent dye, allowing the PCR products to be detected on an automated DNA 

capillary sequencer.  The thermal cycling program for all three multiplex PCRs was 95° C for 15 

minutes followed by 25 cycles of 94° C for 30 seconds, 55° C for 90 seconds and 72° C for 60 

seconds followed by a final incubation at 60° C for 30 minutes.  DNA amplification consisted of 

25, 35 and 43 PCR cycles for beetles, eggs and sperm samples, respectively.  Amplified 

microsatellites were analyzed by capillary electrophoresis in combination with GeneScan-600 

LIZ size standards (Applied Biosystems, Foster City, CA, USA) on an ABI 3730 XL automated 

DNA sequencer (Applied Biosystems, Foster City, CA, USA) at University of Illinois at 

Chicago.  The calculation of the sizes of amplified microsatellites and their assignment to allele 
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classes was partially automated using the Geneious version 10.05 (http://www.geneious.com, 

Kearse et al. 2012).  The primers used for DVV-D12 amplified were modified from those 

described by Kim et al. (2008; primers used here were F: 5’- 

GATTCTCAGTAATGGGGAAACG-3’; R: 5’- CACACGCTTTCTCGTAATCTATC-3’), to 

decreased the frequency of null allele detection at this locus.  All individual beetles were 

assigned to a diploid multilocus genotype showing two peaks per individual per locus, 

maximum.  When spermathecae contained the sperm of two males, four peaks at maximum were 

expected to be detected (tetraploid profile).  When egg batches were assigned, up to six peaks 

were expected because the egg batches contained multiple offspring produced by three potential 

parents.  

 

RESULTS AND DISCUSSION 

Female mating, longevity and oviposition measures 

During the experiment, 71 females were collected in a mating pair within 24 hours of 

emergence (designated day 1).  Of these females, 8.5% (n = 6) eventually mated a second time 

(designated Fam02 - F to Fam07 - F), with a different male.  The mean age at which these 

females accepted a second mate was 7.5 ± 1.6 days (mean ± SE; range 3 to 12 days; Table 5.1).  

This interval is similar to the five day interval used in the laboratory by Hughson (Chapter 4 of 

this dissertation) showing that females mated twice within their first week as adults.  The 

Branson et al. (1977) laboratory study also showed that females mated twice, those females 

accepted a second male either during the interval between the first mating and beginning of 

oviposition or during intervals between dates of oviposition.  These studies have shown that 
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western corn rootworm females will mate a second time, although this can be difficult to observe 

and quantify. 

The mean age of the second male mated by the females was 9.0 ± 0.9 days (range 6 to 11 

days; Table 5.1).  Detailed information about male age at mating is lacking in the available 

western corn rootworm literature, stating only that males require five to seven days to reach 

sexual maturity (Guss 1976) and that males mate 2.24 times during the ten days after their first 

mating (Kang and Krupke 2009) although old publications suggest may mate many times (Ball 

1957, Branson et al. 1977).  While five to 15 days old unmated males were placed in the 

experiment to improve the likelihood of a second mating, only day one males were collected in 

first matings, contradicting the literature-based expectation that all males require a post-

emergence maturation period to reach sexual maturity (Guss 1976).  The proportion of the male 

population represented by these males could not be quantified here because the total number of 

males that had emerged were not recorded but it was estimated that several thousand beetles 

were collected from the emergence tents.  It is notable that Guss’s (1976) experiment did not 

measure mating activity, but focused on the timing of male response to sex pheromone.  Guss 

(1976) found that within the first 24 hours, 0% of males responded to sex pheromone, at one to 

two days 10% responded and the response percentages increased progressively until five to 

seven days when 80% of males responded.  The large population of emerging insects may have 

increased the likelihood of observing an uncommon behavior such as mating by western corn 

rootworm males within one day of adult emergence.  In addition, Hammack (1995) reported that 

some males attempted courtship with females they encountered before the females began to 

release sex pheromone (based on visual observation of female calling posture), which may 

indicate that females have other cues (e.g. contact pheromones in epicuticular waxes; Chung and 
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Carroll 2015) that are attractive to males or that males may simply attempt courtship when they 

encounter females.  Further research to document male mating propensity by age would clarify 

the common assumptions based on the work of Guss (1976). 

 Twice-mated females began oviposition at 22.6 ± 4.2 days (range 15 to 39 days; Table 

5.2), a finding consistent with other studies that reported oviposition beginning 20 to 23 days 

post-emergence (Short and Hill 1972).  It is important to note that the date of first oviposition 

may have been prolonged in the present study because females were not provided with an 

oviposition substrate until the second mating was complete.   

The mean duration of oviposition was 41.2 ± 11.3 days (range 6 to 74 days; Table 5.2).  

Females oviposited for a mean of 5.4 ± 1.3 weeks (Table 5.2).  The oviposition duration was 

variable and some females ceased oviposition for one or more weeks within the oviposition 

range, an observation mentioned elsewhere in the literature (Short and Hill 1972, Branson et al. 

1977, Sherwood and Levine 1993).  Most of the females laid eggs until their death, although 

some ceased oviposition a week or two prior to death (Branson and Johnson 1973).  The females 

produced an average of 31.2 ± 9.5 eggs / week and a lifetime mean total of 145.4 ± 49.5 eggs / 

female (Table 5.2).  This mean total eggs laid per female was within the mean range of 66 to 173 

eggs laid by field females collected and maintained in the laboratory by Short and Hill (1972), 

albeit far less than the 1023 eggs presented by Branson and Johnson (1973).  This wide variation 

may be a product of the small sample size.   

The mean female lifespan was 57.0 ± 15.8 days (range 11 to 101 days; Table 5.1) was 

similar to the 64 to 67 days recorded by Short and Hill (1972) and later emerging females 

appeared to have shorter longevity (Boetel and Fuller 1997).  In some insects, females may gain 

fitness in terms of longevity and fecundity from an additional mating while in others multiple 
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mating may lead to a loss in fitness due to risks associated with mating such as predation 

(Arnqvist and Nilsson 2000).  In western corn rootworm, an initial mating is beneficial and can 

stimulate egg production (Sherwood and Levine 1993) and may reduce longevity (Murphy and 

Krupke 2011) but it is unclear whether multiple mating may be beneficial or detrimental in terms 

of longevity and egg production.  For late emerging females, this may not matter, if they cannot 

oviposit until they are 20 days old; they may not have the opportunity to find adequate food 

resources to provision eggs and oviposit before cornfields mature and become poor foraging 

locations.  If late emerging females oviposit and produce a mean of only 31.2 eggs per week, 

they may be contributing very little to the next generation. 

 

Female dissection  

During dissection, a small amount of sperm was collected from the spermatheca of each 

female except Female 2, whose spermatheca lacked any visible sperm.  Female 6 was the only 

female with eggs remaining in her body at death; her ovaries contained 67 mature eggs.  Only 

small quantities of sperm were collected from each female’s spermatheca, possibly because it 

had been depleted during oviposition or because the sperm had been stored within the females 

for a long period of time.  Some studies suggest that viable sperm can be stored for 40 to greater 

than 76 days (Branson and Johnson 1973, Hill 1975, Lew and Ball 1980); however, some of 

these females stored sperm within or beyond that range.  Collecting sperm from within these tiny 

sclerotized organs (much smaller than the period at the end of this sentence) is also a technically 

difficult task and sperm could be lost during the collection process.  It is recommended that 

researchers allow adequate time to practice the dissection prior to working with the test samples.  

This will ensure that the spermathecae and their contents to be handled deftly, to avoid the 
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samples drying onto the slide or being lost on the surface of the slide. 

 

DNA extraction and genotyping 

DNA was extracted successfully from egg batches containing more than ten eggs.  DNA 

extractions for all of the beetles were successful, although three of the females had DNA 

quantities that may have been too low to be successfully amplified and genotyped.  Only one of 

the sperm samples was successfully extracted.  Despite this problem, two family groups had 

DNA quantities great enough to evaluate the parent beetles and the egg batches.  If this 

experiment were to be repeated, the male and female beetles would be killed in liquid nitrogen 

and stored at -80° C until processing to ensure the highest level of DNA preservation.   

Genotyping was completed but the results were unclear.  Some of the samples did not 

include any readable allele peaks.  Others samples that had readable allele peaks but did not have 

the expected number of alleles for that sample type (i.e. beetles, egg batches or sperm).  In some 

cases samples that had previously been identified as containing genomic DNA did not produce 

peaks after genotyping, in other cases the opposite occurred.  Females and their eggs often 

contained the same diploid genotypes, despite the egg batch samples containing multiple 

individual offspring.  When male samples had readable peaks, they often had the same genotypes 

as the females, making it difficult to differentiate the male and female contributions to the eggs.  

One or two males showed four clear allele peaks indicating tetraploid profiles.  A tetraploid 

profile would be a reasonable observation in a sperm sample, when the females mated twice and 

contributions from two males would be present, or in egg batches, because they contained 

multiple offspring.  The various discrepancies suggest that there may have been inconsistencies 

between the sample location in the electrophoresis capillary system and the original sample 
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identification during genotyping.  The genotyping facility indicated that there were damaged 

electrophoresis capillaries and that the sample locations had been shifted.  However, that was 

accounted for and did not resolve all of the discrepancies in the results. 

Successful amplification and genotyping should be possible for the beetle and egg batch 

samples from the two family groups from which adequate quantities of DNA were extracted.  

While genotyping and determining sperm precedence in two families would not produce strong 

conclusions, they could provide a proof of method.  Previous research has shown that both 

beetles and sperm collected from the spermathecae can be genotyped using this method and the 

same microsatellite loci (Bermond et al. 2014).  Results from egg batches in this experiment 

demonstrated that they can also be genotyped using this method.  If a greater sample size of 

twice-mated females could be collected (possibly by leaving females housed continuously with 

males of known genotypes), this genotyping method and these microsatellite loci could be used 

to identify sperm precedence.  In addition, this method could be used to genotype field females 

and their offspring to produce, not only an estimation of the proportion of the population that 

mates more than once, but also a minimum estimation of the number of mates a female accepts 

based on the number of alleles present at a given locus in the offspring. 

 

Conclusions 

Multiple mating by females is difficult to identify because visible evidence of a mating 

(the spermatophore) can be completely absorbed by the female within five to seven days (Lew 

and Ball 1980).  Unless a female was directly observed mating twice or was collected shortly 

after a second mating, it could be nearly impossible to determine the number of times a female 

had mated without using genomic methods.  Since the mean interval between first and second 
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matings was similar to the time required for the spermatophore to be absorbed, the absorption of 

the spermatophore may play a role in determining when or if a female mates again.  In some 

species, the presence of the spermatophore is a physical barrier to an additional mating 

(Thornhill and Alcock 1983).  Observation of some western corn rootworm females with two 

spermatophores, including two large spermatophores in their bursa copulatrix, suggests the 

presence of a rootworm spermatophore may not physically prevent all subsequent matings.  If 

females may mate again when a spermatophore is completely or partially absorbed (Chapter 2 

and chapter 4 of this dissertation) and the females live on average 57 days, they may have the 

capacity to mate several times before and between oviposition. 

This research has shown that 8.5% of females mated more than once.  While multiple 

mating was observed in a small proportion of females, it highlights the fact that there is still 

much to be learned about western corn rootworm reproduction.  One of the major benefits of 

polyandry is that females may gain advantages from nuptial gifts, like spermatophores, which 

provide sperm as well as nutrients that can be absorbed by females (Arnqvist and Nilsson 2000).  

The large size of the male’s spermatophore (equivalent to up to 9% of their body mass; Tallamy 

et al. 2000) and the need to replenish resources contributed to the female during mating may 

explain why males mate fewer times than was previously thought. Western corn rootworm 

spermatophores have a fairly high protein content when compared to other insects (Murphy and 

Krupke 2011)..  Western corn rootworm spermatophores have a fairly high protein content when 

compared to other insects (Murphy and Krupke 2011).  Nutrients and other compounds provided 

to females in spermatophores have been identified in their developing eggs (Murphy and Krupke 

2011) and in fat body surrounding the ovaries (Tallamy et al. 2000). 
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Detecting females that remate later in life may be particularly difficult by direct 

observation of dissection, yet these females could still benefit greatly from remating.  Females 

require a continuous source of energy and nutrients to continue producing eggs (Branson and 

Krysan 1981).  As the growing season progresses and host plant quality begins to decline 

(Darnell et al. 2000), the nutrients gained from mating and absorbing a spermatophore may 

provide nutritional benefits to the female.  Evidence for this type of late mating may come from 

mating activity observed late in the season when adult emergence is low (Chapter 2 of this 

dissertation, Figures 2.3 through 2.5).   

The refuge strategy for Bt corn targeting corn rootworm beetles relies heavily on our 

understanding of western corn rootworm mating behavior.  By investigating rootworm mating 

behavior in the field, practical knowledge about the efficacy of our current IRM strategies can be 

obtained.  A deeper understanding of beetle reproductive capabilities (i.e. mating frequency) 

should also inform the modeling and design of future IRM plans.   

Use of microsatellites to genotype beetles and their offspring to identify sperm 

precedence eliminates the subjectivity of using sterile males (Branson et al. 1977) and time 

intensive nature of breeding a population of beetles to express marker phenotypes (Oyediran 

2002 Chapter 2).  While polyandrous females may represent only a small proportion of the 

population, twice-mating females may be more likely to encounter Bt emerging males during 

their second mating.  If last male sperm precedence is the rule in western corn rootworm, even Bt 

susceptible females that initially mated a refuge male may eventually produce offspring carrying 

resistance alleles.  Understanding western corn rootworm sperm precedence and the proportion 

of females likely to mate more than once will enhance the prospects for effective insect 

resistance management.  
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TABLES 

Table 5.1. Date of emergence, age (d) at mating and death for each female western corn rootworm that mated twice and the age of the 

second male in each family group. 

Female ID 

Female emergence 

date 
  Age of female at 

1st mating (d)
 a

 
  Age of female at 

2nd mating (d) 
  Age of 2nd 

male (d) 
  Age of female 

at death (d) 
          

Fam02 - F 6/24/2016 
 

1  
 

12  
 

  7  
 

101  

Fam03 - F 7/07/2016 
 

1  
 

  5  
 

10  
 

 58  

Fam04 - F 7/07/2016 
 

1  
 

  5  
 

11  
 

 93  

Fam05 - F 7/14/2016 
 

1  
 

  9  
 

10  
 

 51  

Fam06 - F 7/22/2016 
 

1  
 

  3  
 

  6  
 

 28  

Fam07 - F 7/12/2016 
 

1  
 

11  
 

10  
 

 11  

a
 Age dates were recorded based of the date of adult emergence, “1 d” represents day one which included the first 24 hours after emergence. 
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Table 5.2. Age of first oviposition (d), duration of ovipositional period (d), weeks within ovipositional period when eggs were laid, 

mean eggs laid per week and total fecundity of female western corn rootworms that mated twice. 

Female ID 

Age of first 

oviposition (d) 

 

Ovipositional 

period (d) 

 

Weeks with 

oviposition
 a
 

 

Mean eggs 

per week 

 

Total eggs 

laid 

                    
Fam02 - F 39 

 
54  

 
5 / 8 

 
 8.0 

 
 40 

Fam03 - F 20 
 

39  
 

5 / 6  
 

31.0 
 

155 

Fam04 - F 20 
 

74  
 

10 / 11 
 

30.5 
 

305 

Fam05 - F 19 
 

33  
 

5 / 5 
 

65.4 
 

185 

Fam06 - F 15 
 

6 
b
 

 
2 / 2 

 
21.0 

 
  42 

Fam07 - F
 c
 - 

 
- 

 
- 

 
- 

 
- 

          
a 
The number of weeks a female oviposited with the oviposition range, excluding weeks when oviposition did not occur. 

b 
Female 6 oviposited over a 6 day period but the dates of oviposition spanned on two different designated collection weeks. 

c 
This female died before oviposition. 
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FIGURES 

 

 

 

 

 

 

 

Figure 5.1.  Western corn rootworm oviposition container. Consisting of two stacked 6 cm petri 

dishes, the lower dish contained a 3.5 cm diameter petri dish of moistened 80 mesh field moist 

soil for oviposition.  A 6 cm petri dish containing food and a water in a cotton wick with a 1.5 

cm hole was stacked atop the lower dish.  Individual beetle housed in each dish accessed the 

darkened lower petri dish through the 1.5 cm hole.  When in use, the top dish was covered with a 

clear lid.  
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APPENDIX A: ADDITIONAL MEASUREMENTS OF MATING CHARACTERISTICS 

AND ABUNDANCE 

 

1) Statistical analyses 

The distribution of western corn rootworm (Diabrotica virgifera virgifera LeConte) 

mating abundance in four refuge treatments is presented in Tables A.1 through A.3.  The mating 

pairs collected per minute (mating pairs / min ± SE) each year, during the vegetative, pollination 

and post-pollination periods within each refuge treatment were analyzed by sampling row 

location.  The data were log (x + 0.5) transformed and analyzed using ANOVA and the Tukey-

Kramer test of multiple comparisons using SAS 9.3
®
 PROC MIXED (SAS Institute Inc., Cary, 

NC, 2011). 

In 2012, only paired females were dissected to record reproductive characteristics 

because of time constraints.  As a result, the reproductive characteristics could not be compared 

to those of individually collected females and are presented here.  The proportion of paired 

females that were mature, had one or more spermatophores in their bursa copulatrix and had 

sperm in their spermatheca are presented in Table A.4.  The mean ovarian development, number 

of spermatophores and number of mature eggs collected in paired females in 2012 are presented 

in Table A.5. 

 

2) Patterns of mating abundance among rows 

Mating abundance in 20% and 5% structured refuge treatments was greatest in refuge 

rows during the vegetative and pollination periods form 2010 through 2012 (Tables A.1 through 

A.3).  During post-pollination in 20% and 5% structured refuge treatments, there was no 

difference in mating abundance among refuge and Bt sampling rows (Tables A.1 through A.3), 
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except in the 5% structured refuge treatments in 2010, then mating activity remained higher in 

refuge rows compared to Bt sampling rows (Table A.1).  Mating activity in 5% seed blend and 

0% refuge treatments was low each year and evenly distributed across the fields all three years 

(Tables A.1 through A.3). 

 

3) Reproductive measures for paired females in 2012 

Among paired females collected in 2012, 74% were mature (non-teneral) at the time of 

mating suggesting that they were over 24 hours old, 87% had a received a spermatophore, 

indicating that they had been mating at least 1.5 hours (Lew and ball 1980), and 42% had sperm 

in their spermatheca, indicating that they had been mating at least two hours (Lew and Ball 

1980) at the time of collection (Table A.4).  Paired females collected in 2012 had a mean ovary 

development rating of 1.08 ± 0.02 indicating that these females were young.  They contained an 

average of 0.89 ± 0.02 spermatophores, indicating that most females had only one spermatophore 

in their bodies, although some were collected with two spermatophores (Table A.5).  None of the 

paired females had stage 4 ovaries or mature eggs (Table A.5).   
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TABLES 

Table A.1.  The spatial and temporal abundance of mating western corn rootworms (mating pairs 

/ min; mean ± SE) analyzed by sampling row in each refuge treatment and corn phenology in 

2010. 

  

  
  Vegetative a   Pollination   Post-Pollination 

Treatment Row b n c Mating pairs /min (± SE) n Mating pairs /min (± SE) n Mating pairs /min (± SE) 

        

                

20% W20-Rfg 30 0.04 ± 0.02ab 19 0.10 ± 0.04ab 41 0.04 ± 0.02a 

Structured W12-Rfg 30 0.06 ± 0.02a 19 0.11 ± 0.04a 41 0.03 ± 0.02a 

Refuge W3-Rfg 30 0.02 ± 0.01ab 19 0.03 ± 0.02abc 41 0.01 ± 0.01a 

 E3-Bt 30 0.00 ± 0.00b 19 0.01 ± 0.01bc 41 0.01 ± 0.01a 

 E12-Bt 30 0.00 ± 0.00b 19 0.00 ± 0.00bc 41 0.02 ± 0.01a 

 E24-Bt 30 0.00 ± 0.00b 19 0.00 ± 0.00bc 40 0.00 ± 0.00a 

 E36-Bt 30 0.00 ± 0.00b 19 0.03 ± 0.02abc 40 0.01 ± 0.01a 

 E48-Bt 30 0.01 ± 0.01b 19 0.00 ± 0.00c 40 0.01 ± 0.01a 

 E60-Bt 30 0.01 ± 0.01b 19 0.00 ± 0.00c 40 0.01 ± 0.01a 

 E72-Bt 30 0.00 ± 0.00b 19 0.00 ± 0.00c 40 0.03 ± 0.02a 

 E84-Bt 29 0.00 ± 0.00b 19 0.00 ± 0.00c 40 0.02 ± 0.01a 

        

5% W4-Rfg 30 0.08 ± 0.03a 19 0.15 ± 0.04a 43 0.13  ± 0.04a 

Structured W2-Rfg 29 0.05 ± 0.02ab 19 0.14 ± 0.05a 43 0.08 ± 0.03ab 

Refuge E3-Bt 30 0.01 ± 0.01bc 19 0.00 ± 0.00b 43 0.02 ± 0.01c 

 E12-Bt 30 0.00 ± 0.00c 19 0.02 ± 0.02b 43 0.02 ± 0.01c 

 E24-Bt 30 0.00 ± 0.00c 19 0.02 ± 0.02b 42 0.01 ± 0.01c 

 E36-Bt 30 0.00 ± 0.00c 19 0.02 ± 0.02b 43 0.00 ± 0.00c 

 E48-Bt 30 0.00 ± 0.00c 19 0.01 ± 0.01b 44 0.01 ± 0.01c 

 E60-Bt 30 0.00 ± 0.00c 19 0.00 ± 0.00b 44 0.04 ± 0.02abc 

 E72-Bt 30 0.00 ± 0.00c 19 0.01 ± 0.01b 44 0.00 ± 0.00c 

 E84-Bt 30 0.00 ± 0.00c 19 0.01 ± 0.01b 44 0.00 ± 0.00c 

 E96-Bt 30 0.00 ± 0.00c 19 0.00 ± 0.00b 44 0.02 ± 0.01c 

        

5% W4-Sb 30 0.00 ± 0.00b 19 0.01 ± 0.01a 41 0.05 ± 0.02a 

Seed Blend W2-Sb 30 0.00 ± 0.00b 19 0.03 ± 0.02a 41 0.04 ± 0.02a 

 E3-Sb 30 0.01 ± 0.01ab 19 0.00 ± 0.00a 41 0.02 ± 0.01a 

 E12-Sb 29 0.00 ± 0.00ab 19 0.00 ± 0.00a 41 0.02 ± 0.01a 

 E24-Sb 29 0.00 ± 0.00ab 19 0.01 ± 0.01a 41 0.02 ± 0.01a 

 E36-Sb 29 0.03 ± 0.01a 19 0.00 ± 0.00a 41 0.01 ± 0.01a 

 E48-Sb 29 0.00 ± 0.00ab 19 0.04 ± 0.02a 41 0.02 ± 0.01a 

 E60-Sb 29 0.00 ± 0.00ab 19 0.00 ± 0.00a 41 0.04 ± 0.02a 

 E72-Sb 29 0.01 ± 0.01ab 19 0.00 ± 0.00a 41 0.03 ± 0.02a 

 E84-Sb 29 0.00 ± 0.00ab 19 0.01 ± 0.01a 41 0.02 ± 0.02a 

 E96-Sb 29 0.00 ± 0.00ab 19 0.00 ± 0.00a 41 0.01 ± 0.01a 

        

0% W4-Bt 29 0.00 ± 0.00a 19 0.03 ± 0.02a 43 0.04 ± 0.02a 

Refuge W2-Bt 30 0.00 ± 0.00a 19 0.00 ± 0.00a 43 0.02 ± 0.02a 

 E3-Bt 30 0.01 ± 0.01a 19 0.00 ± 0.00a 43 0.01 ± 0.01a 

 E12-Bt 30 0.00 ± 0.00a 19 0.00 ± 0.00a 43 0.01 ± 0.01a 

 E24-Bt 30 0.00 ± 0.00a 19 0.00 ± 0.00a 43 0.02 ± 0.01a 

 E36-Bt 30 0.00 ± 0.00a 19 0.00 ± 0.00a 43 0.04 ± 0.02a 

 E48-Bt 30 0.00 ± 0.00a 19 0.00 ± 0.00a 43 0.01 ± 0.01a 

 E60-Bt 30 0.00 ± 0.00a 19 0.00 ± 0.00a 43 0.03 ± 0.01a 

 E72-Bt 30 0.00 ± 0.00a 19 0.01 ± 0.01a 43 0.01 ± 0.01a 

 E84-Bt 30 0.00 ± 0.00a 19 0.00 ± 0.00a 43 0.02 ± 0.01a 

 E96-Bt 30 0.00 ± 0.00a 19 0.04 ± 0.03a 43 0.03 ± 0.01a 

The mean number of mating pairs collected per minute (mating pairs / min ± SE) in each sampling row for each refuge treatment and 

period of corn phenology in 2010.  ANOVA and the Tukey-Kramer of multiple comparisons were performed on log (x + 0.5) 

transformed means to determine differences in mating pair abundance among sampling rows, illustrating the spatial distribution of 

mating activity within each refuge treatment and phenology.  Means followed by the same letter are not significantly different (α = 0.05).  

Untransformed means are shown. 
a 
Phenology was determined based on Ritchie et al. 1993 and Abendroth et al. 2011. 

b 
Letters and numbers indicate the location of each sampling row relative to the interface between refuge and Bt corn types.  The suffixes 

Rfg, Sb and Bt indicate that the sampling row contained refuge, seed blend or Bt corn, respectively.  See text for further explanation. 
c 
n indicates the number of mating pair collections in each sampling row within each refuge treatment and phenology period.  
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Table A.2.  The spatial and temporal abundance of mating western corn rootworms (mating pairs 

/ min; mean ± SE) analyzed by sampling row in each refuge treatment and corn phenology in 

2011. 

      Vegetative a   Pollination   Post-Pollination 

Treatment Row b n c Mating pairs /min (± SE) n Mating pairs /min (± SE) n Mating pairs /min (± SE) 

        

                

20% W20-Rfg 27 0.21 ± 0.06a 18 0.21 ± 0.07a 24 0.00 ± 0.00a 

Structured W12-Rfg 27 0.11 ± 0.04ab 18 0.08 ± 0.04ab 24 0.01 ± 0.01a 

Refuge W3-Rfg 27 0.06 ± 0.03bc 18 0.05 ± 0.02b 24 0.00 ± 0.00a 

 E3-Bt 27 0.01 ± 0.01bc 18 0.06 ± 0.03b 24 0.01 ± 0.01a 

 E12-Bt 27 0.00 ± 0.00c 18 0.03 ± 0.02b 24 0.02 ± 0.01a 

 E24-Bt 27 0.01 ± 0.01bc 18 0.06 ± 0.03b 24 0.02 ± 0.01a 

 E36-Bt 27 0.00 ± 0.00c 18 0.00 ± 0.00b 24 0.02 ± 0.01a 

 E48-Bt 27 0.00 ± 0.00c 18 0.06 ± 0.03b 24 0.01 ± 0.01a 

 E60-Bt 27 0.00 ± 0.00c 18 0.04 ± 0.03b 24 0.00 ± 0.00a 

 E72-Bt 27 0.00 ± 0.00c 18 0.00 ± 0.00b 24 0.01 ± 0.01a 

 E84-Bt 27 0.00 ± 0.00c 18 0.01 ± 0.01b 24 0.02 ± 0.02a 

        

5% W4-Rfg 30 0.14 ± 0.06a 19 0.08 ± 0.05ab 43 0.06 ± 0.03a 

Structured W2-Rfg 29 0.14 ± 0.05a 19 0.15 ± 0.05a 43 0.04 ± 0.02a 

Refuge E3-Bt 30 0.01 ± 0.01b 19 0.04 ± 0.02ab 43 0.01 ± 0.01a 

 E12-Bt 30 0.00 ± 0.00b 19 0.00 ± 0.00b 43 0.02 ± 0.01a 

 E24-Bt 30 0.01 ± 0.01b 19 0.01 ± 0.01b 42 0.03 ± 0.02a 

 E36-Bt 30 0.00 ± 0.00b 19 0.01 ± 0.01b 43 0.03 ± 0.02a 

 E48-Bt 30 0.00 ± 0.00b 19 0.03 ± 0.02b 44 0.00 ± 0.00a 

 E60-Bt 30 0.00 ± 0.00b 19 0.01 ± 0.01b 44 0.03 ± 0.02a 

 E72-Bt 30 0.01 ± 0.01b 19 0.01 ± 0.01b 44 0.01 ± 0.01a 

 E84-Bt 30 0.00 ± 0.00b 19 0.00 ± 0.00b 44 0.00 ± 0.00a 

 E96-Bt 30 0.00 ± 0.00b 19 0.01 ± 0.01b 44 0.03 ± 0.02a 

        

5% W4-Sb 27 0.02 ± 0.01a 18 0.07 ± 0.03a 24 0.09 ± 0.03ab 

Seed Blend W2-Sb 27 0.01 ± 0.01a 18 0.03 ± 0.02a 24 0.07 ± 0.02ab 

 E3-Sb 27 0.01 ± 0.01a 18 0.01 ± 0.01a 24 0.13 ± 0.04a 

 E12-Sb 27 0.00 ± 0.00a 18 0.06 ± 0.04a 24 0.06 ± 0.02ab 

 E24-Sb 27 0.00 ± 0.00a 18 0.03 ± 0.02a 24 0.10 ± 0.03ab 

 E36-Sb 27 0.02 ± 0.01a 18 0.00 ± 0.00a 24 0.02 ± 0.02ab 

 E48-Sb 27 0.01 ± 0.01a 18 0.01 ± 0.01a 24 0.01 ± 0.01b 

 E60-Sb 27 0.00 ± 0.00a 18 0.01 ± 0.01a 24 0.00 ± 0.00b 

 E72-Sb 27 0.01 ± 0.01a 18 0.01 ± 0.01a 24 0.02 ± 0.01ab 

 E84-Sb 27 0.00 ± 0.00a 18 0.01 ± 0.01a 24 0.01 ± 0.01b 

 E96-Sb 27 0.02 ± 0.01a 18 0.00 ± 0.00a 24 0.04 ± 0.02ab 

        

0% W4-Bt 27 0.01 ± 0.01a 18 0.06 ± 0.03a 24 0.08 ± 0.04a 

Refuge W2-Bt 27 0.01 ± 0.01a 18 0.05 ± 0.02a 24 0.09 ± 0.04a 

 E3-Bt 27 0.00 ± 0.00a 18 0.00 ± 0.00a 24 0.01 ± 0.01a 

 E12-Bt 27 0.00 ± 0.00a 18 0.07 ± 0.03a 24 0.01 ± 0.01a 

 E24-Bt 27 0.01 ± 0.01a 18 0.01 ± 0.01a 24 0.01 ± 0.01a 

 E36-Bt 27 0.00 ± 0.00a 18 0.01 ± 0.01a 24 0.01 ± 0.01a 

 E48-Bt 27 0.00 ± 0.00a 18 0.01 ± 0.01a 24 0.00 ± 0.00a 

 E60-Bt 27 0.01 ± 0.01a 18 0.00 ± 0.00a 24 0.01 ± 0.01a 

 E72-Bt 27 0.00 ± 0.00a 18 0.00 ± 0.00a 24 0.00 ± 0.00a 

 E84-Bt 27 0.00 ± 0.00a 18 0.01 ± 0.01a 24 0.05 ± 0.03a 

 E96-Bt 27 0.00 ± 0.00a 18 0.03 ± 0.02a 24 0.00 ± 0.00a 

The mean number of mating pairs collected per minute (mating pairs / min ± SE) in each sampling row are presented for each 

refuge treatment and period of corn phenology in 2011.  ANOVA and the Tukey-Kramer of multiple comparisons were 

performed on log (x + 0.5) transformed means to determine differences in mating pair abundance among sampling rows, 

illustrating the spatial distribution of mating activity within each refuge treatment and phenology.  Means followed by the same 

letter are not significantly different (α = 0.05).  Untransformed means are shown. 
a Phenology was determined based on Ritchie et al. 1993 and Abendroth et al. 2011. 
b Letters and numbers indicate the location of each sampling row relative to the interface between refuge and Bt corn types.  The 

suffixes Rfg, Sb and Bt indicate that the sampling row contained refuge, seed blend or Bt corn, respectively.  See text for further 

explanation. 
c n indicates the number of mating pair collections in each sampling row within each refuge treatment and phenology period. 
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Table A.3.  The spatial and temporal abundance of mating western corn rootworms (mating pairs 

/ min; mean ± SE) analyzed by sampling row in each refuge treatment and corn phenology in 

2012. 

      Vegetative a   Pollination   Post-Pollination 

Treatment Row b n c Mating pairs /min (± SE) n Mating pairs /min (± SE) n Mating pairs /min (± SE) 

        

               

20% W20-Rfg 39 0.06 ± 0.03a 18 0.17 ± 0.06abc 45 0.00 ± 0.00a 

Structured W12-Rfg 39 0.03 ± 0.02ab 18 0.19 ± 0.07ab 45 0.01 ± 0.01a 

Refuge W3-Rfg 38 0.05 ± 0.03ab 18 0.21 ± 0.07a 45 0.00 ± 0.00a 

 E3-Bt 39 0.00 ± 0.00ab 18 0.08 ± 0.04abc 45 0.01 ± 0.01a 

 E12-Bt 39 0.01 ± 0.01b 18 0.04 ± 0.02abc 45 0.00 ± 0.00a 

 E24-Bt 39 0.01 ± 0.01b 18 0.00 ± 0.00c 45 0.01 ± 0.01a 

 E36-Bt 39 0.00 ± 0.00ab 18 0.01 ± 0.01abc 45 0.01 ± 0.01a 

 E48-Bt 39 0.00 ± 0.00b 18 0.03 ± 0.02abc 45 0.00 ± 0.00a 

 E60-Bt 39 0.00 ± 0.00b 18 0.01 ± 0.01abc 45 0.00 ± 0.00a 

 E72-Bt 39 0.00 ± 0.00b 18 0.01 ± 0.01abc 45 0.01 ± 0.01a 

 E84-Bt 39 0.01 ± 0.01b 18 0.01 ± 0.01abc 45 0.01 ± 0.01a 

        

5% W4-Rfg 39 0.11 ± 0.04a 18 0.16 ± 0.08a 42 0.01 ± 0.01a 

Structured W2-Rfg 39 0.02 ± 0.01b 18 0.09 ± 0.04ab 42 0.01 ± 0.01a 

Refuge E3-Bt 39 0.00 ± 0.00b 18 0.06 ± 0.04ab 42 0.01 ± 0.01a 

 E12-Bt 39 0.00 ± 0.00b 18 0.06 ± 0.03ab 42 0.01 ± 0.01a 

 E24-Bt 39 0.00 ± 0.00b 18 0.00 ± 0.00b 42 0.01 ± 0.01a 

 E36-Bt 39 0.00 ± 0.00b 18 0.01 ± 0.01ab 42 0.00 ± 0.00a 

 E48-Bt 39 0.00 ± 0.00b 18 0.01 ± 0.01ab 42 0.00 ± 0.00a 

 E60-Bt 39 0.01 ± 0.01b 18 0.00 ± 0.00b 42 0.01 ± 0.01a 

 E72-Bt 39 0.00 ± 0.00b 18 0.02 ± 0.02ab 42 0.00 ± 0.00a 

 E84-Bt 39 0.00 ± 0.00b 18 0.00 ± 0.00b 42 0.00 ± 0.00a 

 E96-Bt 39 0.00 ± 0.00b 18 0.00 ± 0.00b 42 0.01 ± 0.01a 

        

5% W4-Sb 39 0.00 ± 0.00a 18 0.04 ± 0.02a 41 0.01 ± 0.01a 

Seed Blend W2-Sb 39 0.00 ± 0.00a 18 0.03 ± 0.02a 41 0.00 ± 0.00a 

 E3-Sb 39 0.01 ± 0.01a 18 0.05 ± 0.03a 41 0.01 ± 0.01a 

 E12-Sb 39 0.01 ± 0.01a 18 0.01 ± 0.01a 41 0.01 ± 0.01a 

 E24-Sb 39 0.00 ± 0.00a 18 0.03 ± 0.02a 41 0.01 ± 0.01a 

 E36-Sb 39 0.00 ± 0.00a 18 0.03 ± 0.02a 41 0.00 ± 0.00a 

 E48-Sb 39 0.01 ± 0.01a 18 0.01 ± 0.01a 41 0.01 ± 0.01a 

 E60-Sb 39 0.00 ± 0.00a 18 0.01 ± 0.01a 41 0.01 ± 0.01a 

 E72-Sb 39 0.00 ± 0.00a 18 0.00 ± 0.00a 41 0.01 ± 0.01a 

 E84-Sb 39 0.01 ± 0.01a 18 0.04 ± 0.03a 41 0.00 ± 0.00a 

 E96-Sb 39 0.01 ± 0.01a 18 0.06 ± 0.03a 41 0.00 ± 0.00a 

        

0% W4-Bt 39 0.00 ± 0.00a 17 0.01 ± 0.01a 41 0.00 ± 0.00a 

Refuge W2-Bt 39 0.01 ± 0.01a 17 0.04 ± 0.02a 41 0.00 ± 0.00a 

 E3-Bt 39 0.01 ± 0.01a 17 0.08 ± 0.03a 41 0.01 ± 0.01a 

 E12-Bt 39 0.00 ± 0.00a 17 0.04 ± 0.02a 41 0.01 ± 0.01a 

 E24-Bt 39 0.00 ± 0.00a 17 0.06 ± 0.03a 41 0.01 ± 0.01a 

 E36-Bt 39 0.00 ± 0.00a 17 0.05 ± 0.03a 41 0.01 ± 0.01a 

 E48-Bt 39 0.01 ± 0.01a 17 0.01 ± 0.01a 41 0.01 ± 0.01a 

 E60-Bt 39 0.00 ± 0.00a 17 0.00 ± 0.00a 41 0.01 ± 0.01a 

 E72-Bt 39 0.01 ± 0.01a 17 0.00 ± 0.00a 41 0.00 ± 0.00a 

 E84-Bt 39 0.00 ± 0.00a 17 0.00 ± 0.00a 41 0.00 ± 0.00a 

 E96-Bt 39 0.00 ± 0.00a 17 0.00 ± 0.00a 41 0.00 ± 0.00a 

The mean number of mating pairs collected per minute (mating pairs / min ± SE) in each sampling row are presented for each 

refuge treatment and period of corn phenology in 2012.  ANOVA and the Tukey-Kramer of multiple comparisons were 

performed on log (x + 0.5) transformed means to determine differences in mating pair abundance among sampling rows, 

illustrating the spatial distribution of mating activity within each refuge treatment and phenology.  Means followed by the same 

letter are not significantly different (α = 0.05).  Untransformed means are shown. 
a Phenology was determined based on Ritchie et al. 1993 and Abendroth et al. 2011. 
b Letters and numbers indicate the location of each sampling row relative to the interface between refuge and Bt corn types.  The 

suffixes Rfg, Sb and Bt indicate that the sampling row contained refuge, seed blend or Bt corn, respectively.  See text for further 

explanation. 
c n indicates the number of mating pair collections in each sampling row within each refuge treatment and phenology period.  
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Table A.4.  The proportions of paired female western corn rootworms that were mature, had at 

least one spermatophore present in their bodies or had sperm in their spermathecae upon 

collection in 2012. 

  Paired  

Reproductive measure  n
 a
 Proportion

 c
  

     

Maturity
 b

  238 0.74  

Spermatophore Presence  238 0.87  

Sperm in Spermatheca  238 0.42  

            
a 
Number of paired females dissected and observed in 2012. 

b 
Proportion of females testing positive for a given measure within the same mating status and year 

combination. 
c 
Proportion of females that were non-teneral.  
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Table A.5.  The mean (± SE) ovary development, number of spermatophores and mature eggs 

observed in paired female western corn rootworms upon collection in 2012. 

  Paired  

Reproductive measure  n
 a
 Mean ± SE  

     

Ovary Development
 b

  238 1.08 ± 0.02  

No. Spermatophores  238 0.89 ± 0.02  

Mature Eggs  0 --  

            
a 
Number of paired females dissected and observed in 2012. 

b 
Ovary development was scored on a scale of 1 to 4 based on Short and Hill 1972.  During stage 1, no 

ovary development was observed and during stage 4, mature eggs were observed.  
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APPENDIX B: SEX RATIO OF BEETLE EMERGENCE AND ABUNDANCE 

 

Table B.1.  The total western corn rootworm adults collected from single-plant emergence traps 

by plant type and refuge treatment and male:female sex ratios from 2010 through 2012. 

  

Refuge plants 

 

Bt plants 

Year 

Refuge 

treatment 

Total 

males 

Total 

females 

M:F 

sex 

ratio 
a
 

Total 

males 

Total 

females 

M:F sex 

ratio 

2010 20% Structured 30 86 0.349 6 8 0.750 

 

5% Structured 176 126 1.397 12 20 0.600 

 

5% Seed Blend 40 92 0.435 16 28 0.571 

 

0% Refuge 
b
 N.A. N.A. N.A. 18 36 0.500 

        2011 20% Structured 140 290 0.483 26 66 0.394 

 

5% Structured 92 160 0.575 4 48 0.083 

 

5% Seed Blend 68 206 0.330 32 68 0.471 

 

0% Refuge N.A. N.A. N.A. 98 200 0.490 

        2012 20% Structured 310 434 0.714 66 146 0.452 

 

5% Structured 508 570 0.891 74 124 0.597 

 

5% Seed Blend 70 188 0.372 60 130 0.462 

 

0% Refuge N.A. N.A. N.A. 148 254 0.583 
a 
Sex ratios > 1.0 are male biased and those < 1.0 are female biased.  Refer to Hughson and Spencer 2015 

for details about emergence and field abundance collections. 
b 
There are no refuge plants in 0% refuge.  
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Table B.2.  The total free-moving western corn rootworm adults collected from refuge, Bt and 

seed blend refuge treatments and male:female sex ratios from 2010 through 2012. 

  

Refuge rows 

 

Bt or seed blend rows 

Year 

Refuge 

Treatment 

Total 

males 

Total 

females 

M:F 

sex 

ratio 
a
 

Total 

males 

Total 

females 

M:F 

sex 

ratio 

2010 20% Structured 955 666 1.434 622 680 0.915 

 

5% Structured 966 784 1.232 895 971 0.922 

 

5% Seed Blend 
b
 N.A. N.A. N.A. 1188 1387 0.857 

 

0% Refuge 
c
 N.A. N.A. N.A. 1085 1266 0.857 

        2011 20% Structured 1143 2361 0.484 741 1099 0.674 

 

5% Structured 737 1734 0.425 807 1514 0.533 

 

5% Seed Blend N.A. N.A. N.A. 1622 2667 0.608 

 

0% Refuge N.A. N.A. N.A. 1149 2327 0.494 

        2012 20% Structured 2141 2323 0.922 3008 2601 1.156 

 

5% Structured 1388 1274 1.089 2353 2334 1.008 

 

5% Seed Blend N.A. N.A. N.A. 3264 3166 1.031 

 

0% Refuge N.A. N.A. N.A. 3034 3333 0.910 
a 
Sex ratios > 1.0 are male biased and those < 1.0 are female biased. 

b 
Seed Blend rows contain both Refuge and Bt plants; beetle collections cannot be assigned to one plant 

type in particular. Refer to Hughson and Spencer 2015 for details about emergence and field abundance 

collections. 
c 
There are no refuge plants in 0% refuge. 


