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Abstract

We consider the following problem: Given an n-vertex undirected planar-embedded graph with a sim-

ple boundary cycle, non-negative edge lengths, and k pairs of terminals {(s1, t1), (s2, t2), . . . , (sk, tk)}
specified on the boundary, find non-crossing shortest paths connecting all pairs of terminals (if any

such paths exist). We present an algorithm to find such paths in O(n log log k) time which improves

upon the previous best runtime of O(n log k) by Takahashi, Suzuki, and Nishizeki [Algorithmica 1996].
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Chapter 1

Introduction

In this thesis, we consider following problem: Given an n-vertex undirected planar-embedded graph

with a simple boundary cycle, non-negative edge lengths, and k pairs of terminals specified on the

boundary, find non-crossing shortest paths connecting all pairs of terminals {(s1, t1), (s2, t2), . . . , (sk, tk)}
(if such paths exist). Before this work, Takahashi, Suzuki, and Nishizeki [1] gave an algorithm to

solve this problem which can be implemented to run in O(n log k) time using the linear time shortest

path algorithm of Henzinger et al. [2]. Over twenty years earlier, Reif [3] gave an algorithm to find

such paths when the terminals are ordered s1, s2, . . . , sk, tk, . . . , t1 clockwise around the boundary,

which can be implemented to run in O(n log k) time using the algorithm of Henzinger et al. Italiano,
Nussbaum, Sankowski, and Wulff-Nilsen [4] recently gave a new algorithm for this case that runs in

O(n log log n) time, which we note is independent of k.

Our main contribution is an algorithm for the general case that runs in O(n log log k) time found

in chapter 9. Leading up to this result, we provide a description and analysis of Takahashi et al.’s
algorithm for the general case in chapter 7, and an overview of the algorithm by Italiano et al. in
chapter 8 that we modify to run in O(n log log k) time.

Erickson and Nayerri [5] considered a generalization of this problem: Given an n-vertex undirected

planar-embedded graph G with k pairs of terminals specified on h faces, find non-crossing walks
connecting all k pairs of terminals of minimum total length (if such walks exist). They give an

algorithm to solve this problem in 2O(h2)n log k time by using the O(n log k)-time algorithm by

Takahashi et al. as a blackbox. Our O(n log log k)-time algorithm directly implies their algorithm can

be implemented to run in 2O(h2)n log log k time.

1.1 Definitions

We use the notation V(G) and E(G) to refer to the vertices and edges of a graph G. We use the

notation height(T) to denote the height of a rooted tree T , and diam(G) to denote the diameter of a

graph G. A rotation system is a combinatorial representation of an embedded graph and records the

clockwise ordering of incident edges around each vertex. In this work, we assume planar-embedded
graphs are represented by a rotation system. A walk is an ordered alternating sequence of adjacent

vertices and edges where the first and last elements are vertices. A path is a walk where each

vertex appears at most once. We refer to the first and last vertices of a path to be the source and
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destination vertices respectively. We refer to a path with source u and destination v as a u-to-v
path. The reversal of a u-to-v path P is the reversal of its underlying sequence of vertices and edges,

a v-to-u path. For a u-to-v path P1 and v-to-w path P2, we denote the concatenation of paths P1 and

P2, a u-to-w path, by P1 · P2. The boundary of a planar-embedded graph G, denoted by ∂ G, is the

subgraph induced by the edges of G incident to the outer (or infinite) face. The boundary cycle
of a planar-embedded graph G is the (potentially non-simple) cycle obtained by traversing ∂ G in

clockwise order. The boundary cycle is simple if and only if ∂ G is a cycle graph. An articulation
point (or cut vertex) v of a connected graph G is a vertex such that G − v is disconnected.

1.2 Cutting planar graphs

We define an operation to cut a simple u-to-v path P = u, . . . , v in a planar-embedded graph G for any

u, v ∈ ∂ G as follows. First, we create two copies of P, PL = uL , . . . , vL and PR = uR, . . . , vR. For each

edge wx where w ∈ P and x /∈ P, we add the edge wL x if wx emanates left of P and otherwise add

the edge wR x . We order the edges incident to the vertices of PL and PR so that they are consistent

with the orderings induced by the edges that emanate left and right of P in G respectively, then

remove P from the graph. This operation takes time linear in the number of edges incident to the

vertices in P before the incision. We denote the planar-embedded graph resulting from cutting along

a path P in a planar-embedded graph G by G QP, notation that we borrow from Cabello and Mohar

[6]. We use the notation GL and GR to refer to the components containing PL and PR respectively in

G Q P. We note that the bounded faces of G Q P are the bounded faces of G and each bounded face

of G is in exactly one component of G Q P.

1.3 r-divisions

Let G be an n-vertex planar-embedded graph, and D be a partitioning of its edges. A subgraph induced

by a partition of edges in D is a piece (also called regions in some literature). The multiplicity of a

vertex is equal to the number of pieces that contain in it with respect to D. A vertex with multiplicity

greater than one is a boundary vertex. A hole of a piece P is a face of P that is not a face of G. We

say D is an r -division if D has O(n/r) partitions (so that it induces O(n/r) pieces), and each piece

contains O(r) vertices and O(
p

r) boundary vertices. An r-division where each piece has O(1) holes

is referred to as an r -division with few holes. Italiano et al. [4] give an algorithm to compute an

r-division with few holes in O(n log r + np
r log n) time. Two years later, Klein, Mozes, and Sommer

[7] gave an O(n)-time algorithm to compute such an r-division.
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1.4 Dense distance graphs

Let G be an n-vertex planar-embedded graph and let D be an r-division of G. Consider a piece P of

D. The complete graph over the boundary vertices in P where the length of each edge uv is equal to

the shortest distance between u and v via only edges in P is referred to as the distance clique for P.

Since pieces may not be connected, edge lengths may be infinite. The union of the distance cliques

for each piece is called the dense distance graph (DDG), originally defined by Fakcharoenphol and

Rao [8]. Since each distance clique has O(
p

r
p

r) = O(r) edges and there are O(n/r) pieces, the

size of the DDG is O(n). Klein [9] describes how to construct a data structure for a given n-vertex

planar-embedded graph and one of its faces f such that the length of the shortest paths between

a vertex on f and any other vertex can be reported in O(log n) time. The data structure can also

report the edges of shortest paths between such vertices in O(log log∆) time per edge where ∆ is

the maximum degree of the vertices in the path. Given an r-division with few holes, Klein’s data

structure can be constructed for each of the O(1) holes of a piece P in O(
p

r log
p

r) = O(
p

r log r)

time. Then the lengths of the O(r) edges of the distance clique for P can be obtained in O(r log r)

time. Since there are O(n/r) pieces, it takes O( n
r · r log r) = O(n log r) time overall to compute all

edge lengths and construct the DDG.

1.5 Fast Dijkstra for dense distance graphs

The DDG is useful for a number of reasons. For our purposes, we rely on the fact that for any two

boundary vertices u and v, any shortest u-to-v path in the DDG corresponds to a shortest u-to-v

path in the underlying graph and vice-versa. For an n-vertex planar-embedded graph and r-division

of it, Fakcharoenphol and Rao [8] described a variant of Dijkstra’s algorithm [10] to compute

shortest paths between two vertices in the DDG that exploits the planarity of the pieces and runs

in O( np
r log2 n) time. This runtime is near linear in the sum of the multiplicity of the boundary

vertices, O(n/
p

r), and is sublinear in n for sufficiently large r, such as when r = log6 n. Mozes,

Nussbaum, and Weimann [11] recently described two faster implementations of their algorithm which

run in either O( np
r log2 r) time with O(n log r) preprocessing, or O( np

r log4 r) time with O( np
r log2 r)

preprocessing.

1.6 Incomparable vertices

Let T be a rooted tree. Two nodes u and v in T are called incomparable if u is not an ancestor of v

and vice-versa. We call a subset of nodes I in T pairwise incomparable if all pairs of distinct nodes
in I are incomparable.
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1.7 Heavy-path decomposition

We describe the heavy-path decomposition of rooted trees as follows, first defined by Sleator and

Tarjan [12]. Let T be an n-vertex rooted tree. Denote by Tu the subtree of T rooted at vertex u.

An edge to a child v of u is heavy if |V (Tv)| > |V (Tu)|/2 and light otherwise. Then at most one

edge incident to u in Tu may be heavy. The heavy edges of T can be identified in O(n) time using a

simple recursive algorithm to mark each vertex with the size of the subtree rooted at it. A maximal

connected subtree of T consisting of only heavy edges is a heavy path. It follows that each vertex in

a heavy path must be in different levels of T since no two edges to distinct children of a vertex are

heavy. Let the heavy path tree TH of T be the tree resulting from contracting each heavy path in T .

Now consider any path from the root vertex to a leaf in TH . Walking from the root to the leaf, at

each vertex u, the size of the subtree rooted at u is at most half the size of its parents subtree, so the

length of the path is at most log n. Thus, height(TH) = O(log n).
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Chapter 2

The Decision Problem

In this chapter we show how to determine if non-crossing paths connecting all k pairs of terminals

exists in a given n-vertex planar-embedded graph in O(n+ k) time.

Let G be an n-vertex undirected planar-embedded graph with k pairs of terminals

{(s1, t1), (s2, t2), . . . , (sk, tk)} specified on ∂ G where no terminal is an articulation point, and no

shortest path between a pair of terminals contains another terminal. We define the connection
(multi)graph C of such a graph G as follows. Recall that we define the boundary cycle to be the

clockwise traversal of ∂ G. Let B be the cycle graph whose vertices are the terminals of G and edges

are of the form uv where v is the first terminal to succeed terminal u in the boundary cycle of G.

If all vertices in ∂ G are in at least one pair of terminals, then B = ∂ G. Let D be the set of edges

composed of edges whose endpoints are si and t i for each i ∈ {1, 2, . . . , k}. We define the connection

graph C for G and its pairs of terminals to be B + D. We construct a combinatorial embedding Cπ of

C as follows. For each terminal u ∈ B, we order its incident edges in the same clockwise order as its

incident vertices appear in the boundary cycle of G starting from u. See an example in (a) and (b) of

figure 2.1.

It is easy to see that Cπ is a planar embedding if and only if there exists no pairs of terminals (si , t i)

and (s j , t j) that appear as si , s j , t i , t j in clockwise order around ∂ G. We use this fact in the proof of

the following lemma.

Lemma 2.0.1. Cπ is a planar embedding of C if and only if there exists non-crossing shortest paths in G

connecting all pairs of terminals.

Proof. The backwards direction is straightforward. Consider the geometric embedding of C where

the edges uv ∈ B follow the image of the corresponding u-to-v path in ∂ G, and the edges in D

follow along the paths images of the paths in the solution. This geometric embedding is planar and

consistent with the combinatorial embedding Cπ.

Now assume Cπ is a planar embedding. Consider an arbitrary edge si t i ∈ D. Let Pi be a shortest

si-to-t i path in G. Since Cπ is a planar embedding, from the observation above, for all other pairs of

terminals (s j , t j) where j 6= i, both of the terminals are on the same left or right side of Pi in G. Thus,

there exists a shortest s j-to-t j path Pj in G that does not cross Pi. For sake of contradiction, suppose

not. Let Pj be a shortest s j-to-t j path that crosses Pi, and let a and b be the first and last vertices of

Pj where it crosses Pi. Then the s j-to-a subpath P1 of Pj, the a-to-b subpath P2 of Pi, and the b-to-t j

subpath P3 of Pj are shortest paths. It follows that P1 · P2 · P3 is a shortest s j-to-t j path that does not

5



cross Pi in G. It follows that the lengths of the shortest paths in the component of G Q Pi that contains

them are equal to the lengths of the shortest paths in G. We note that no terminals can become

articulation points by this procedure since no shortest path between any pair of terminals contains

another terminal. It follows that the connection graphs for the components of G Q Pi are well-defined

and exactly the components of C Q si t i. See figure 2.1 for an example. By induction, repeating this

process on the left and right components of G Q Pi paired with the respective components of C Q si t i

results in finding paths which trivially project back to non-crossing shortest paths in G for all pairs of

terminals.

This lemma easily leads to an algorithm to check if a solution exists. We construct the embedding

Cπ of C by ordering the incident edges around each vertex, then count its number of faces f . Euler’s

formula implies that f = 2− c + (c + k) = 2− k if and only if Cπ is a planar embedding of C where c

is the number of distinct terminals in ∂ G. Constructing Cπ and counting its faces can be done in

O(n+ k) time [13].

6



(a) (b)

(c) (d)

Figure 2.1: (a): A graph G (in black) and shortest path Pi between a pair of terminals (si , t i) (in red).
(b): The connection graph C for G and its weak dual tree (in blue). (c): G Q Pi. (d): The connection
graphs for the components of C Q P and their weak dual trees (in blue). We refer to the weak dual
tree of a connection graph as a terminal tree which we formally introduce and discuss in chapter 5.
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Chapter 3

Problem Formulation

An instance of this problem consists of an undirected simple planar-embedded graph G with a

simple boundary ∂ G, non-negative edge lengths, and k pairs of terminals {(s1, t1), (s2, t2), . . . , (sk, tk)}
specified on ∂ G. We assume non-crossing shortest paths connecting all pairs of terminals exists since

we can determine otherwise in linear time. Under this assumption, Euler’s formula implies k = O(n)

since the corresponding connection graph has O(n) vertices and O(n+ k) edges.

Without loss of generality, we further assume any shortest path connecting a pair of terminals

contains terminals only at its endpoints and each vertex on ∂ G is in exactly one pair of terminals.

Both of these properties can be enforced by connecting a new vertex embeddded in the outer

face to each terminal with zero length edges for each pair containing them, pairing these new

vertices accordingly, then adding edges with infinite length between the newly added vertices. This

introduces exactly 2k new vertices and 3k edges and takes O(n + k) = O(n) time overall. This

modified graph maintains the other assumed properties. See figure 3.1 for an example.

Lastly, we assume an ordering over the terminals around ∂ G. For any edge si t i incident to any

leaf in the terminal tree T , si and t i are neighbors in ∂ G, and thus we can assume the terminals are

labeled so that s1 immediately succeeds t1 in clockwise order around ∂ G. Then we can label the

terminals so that for all i > 1, si precedes si+1 and t i in the boundary cycle starting from s1. Lastly,

we assume each terminal u is indexed with its position in the s1-to-t1 path clockwise around ∂ G,

which we denote by idx(u). This implies idx(s1) = 1, idx(s2) = 2, and idx(t1) = 2k. For convenience,

we use the notation [i, j] for integers i, j ≤ 2k to be the usual interval of integers from i to j when

i ≤ j, and [ j, 2k]∪ [1, i] when i > j. Then [i, j] is the subset of indices of terminals located on the

boundary cycle from the terminal with index i to the terminal with index j, inclusive.

Some algorithms presented later will assume additional properties about the input graph to

simplify their analysis. These are described at the beginning of their respective chapters.
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Figure 3.1: On the left, a connection graph (in black) for ten pairs of non-distinct terminals in an
underlying graph G. For each terminal in G, a new terminal (in blue) is added for each pair it is
contained in, i.e. for each incident solid edge in the connection graph. The new boundary consists of
infinite length edges (in blue). On the right, the connection graph for the modified graph and new
pairs of terminals.
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Chapter 4

Output Representation

Let G be an n-vertex undirected planar-embedded graph with k pairs of terminals specified on ∂ G.

The number of edges in any shortest path in G may be Ω(n), and any two shortest paths may share

any number of edges, even if they are non-crossing. Thus, the number of edges in any solution to our

problem may be Ω(nk), so explicitly constructing and outputting the solution takes longer than we

can afford. Instead, we construct an implicit representation of the solution from which a represented

path between any pair of terminals can be reported in O(log∆) time per edge. When the graph has

constant maximum vertex degree, we output a path in time proportional to its number of edges.

The representation proposed by Takahashi et al. [1] is stated to be a collection of tree subgraphs

of the input graph wherein for each pair of terminals there is a tree containing both terminals and

the unique path between them is a shortest path. They state that each edge of the input graph

is in at most two trees, so the total complexity of the forest is O(n). However, it is unclear from

the description of their algorithm how their subgraphs are constructed while maintaining these

properties. Our description of Takahashi et al.’s algorithm in chapter 7 is designed to construct

the implicit representation described by Polishchuk and Mitchell [14] who study a variation of this

problem in a geometric setting: a single subgraph of the input graph (that may contain cycles) where

each edge is marked with a constant amount of additional information. This representation uses O(n)

space overall. We describe it, how it represents the paths, and how to construct it in the following.

Let P be a collection of non-crossing shortest paths P connecting all k pairs of terminals

{(s1, t1), (s2, t2), . . . , (sk, tk)} on the boundary of a planar-embedded graph G. Let P′ be the set of

paths in P and their reversals, and let R be the union of the paths in P (without multiplicity). For

each ordered pair of adjacent vertices u and v in R, we define P′ [u, v] to contain the paths P ∈ P

where v immediately succeeds u in P. Finally, let R [u, v] be the subgraph of R that is the union of

all paths in P′ [u, v]. We define (u, v)− and (u, v)+ to be the indices of the closest terminals to v in

clockwise and counterclockwise order from v around the boundary of its containing component in

R [u, v]− u. The pair of indices (u, v)− and (u, v)+ is the constant amount of additional information

we store for each ordering of the endpoints of each edge uv in R.

The significance of these terminal indices is the following. Consider any ordered pair of adjacent

vertices u and v in R. For any shortest si-to-t i path Pi implicitly represented in R that contains u, v

immediately succeeds u in P if and only if idx(t i) ∈ [(u, v)−, (u, v)+]. This fact follows directly from

the fact that the paths implicitly represented are non-crossing. See figure 4.1 for an example.
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u
v1

v2v3v4

v5

Figure 4.1: A vertex u and its incident edges uvi in the implicit representation R of the non-crossing
shortest paths connecting all pairs of terminals. The components of subgraphs R(u,vi) − u containing
each vi are contained in the shaded regions for each i. The red terminals in each shaded region are
those with indices (u, vi)− and (u, vi)+.

It is easy to use these indices to report the edges of the si-to-t i path Pi represented for any i.

Starting at terminal si, find the adjacent vertex u such that idx(t i) ∈
�

(si , u)−, (si , u)+
�

. There must be

exactly one such vertex u, and that edge siu must be the first edge of Pi. Repeating this process until

t i is reached reveals each edge of Pi. This operation can be implemented using binary search to take

O(log∆) time where ∆ is the maximum vertex degree in the underlying graph, and thus reporting a

path P with |P| edges takes O(|P| log∆) time.

It is also easy to maintain these indices as the si-to-t i paths as they are found for each i during the

algorithms presented. We update the implicit representation to include a shortest si-to-t i path Pi that

does not cross any path already represented in R as follows. We traverse Pi from si to t i. If a vertex

or edge in Pi does not exist in R, we add it. For each vertex u and its immediate successor v in Pi, we

check if idx(t i) ∈
�

(u, v)−, (u, v)+
�

and if idx(si) ∈
�

(v, u)−, (v, u)+
�

. If either or both inequalities do

not hold, we update the stored indices accordingly. This process takes constant time per edge in Pi.
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Chapter 5

A Simple O(nk)-time Algorithm

The proof in chapter 2 that a solution exists when Cπ is a planar emebdding leads to a straightforward

algorithm for finding a solution. However, before we analyze its runtime, we formalize it below in a

form that the O(n log k)-time and O(n log log k)-time algorithms will follow. The main differences

from the previous description are that we formulate it in a recursive divide-and-conquer fashion

and its parameters. We input a connected planar-embedded graph G and the weak dual graph T of

its corresponding connection graph instead of the connection graph itself. In fact, since when C is

planar-embedded, then it is outerplanar where ∂ C = ∂ G, and thus T is a tree. We call the weak

dual tree of a connection graph the terminal tree since its edges are exactly those that represent the
pairs of terminals, si t i for each pair of terminals (si , t i). Although the algorithm presented in this

chapter does not use the tree structure of T beyond its encoding of the pairs, it is used in the faster

algorithms presented later. It is significant to observe that the weak dual trees of the components

of C Q si t i for any edge si t i ∈ T are the components of T − si t i. Thus, we can quickly obtain the

corresponding terminal trees for the recursive calls by simply removing the edge corresponding

to the pair of terminals that a shortest path between was found and cut along. We note that the

terminal tree closely resembles the genealogy tree defined by Takahashi et al. used to represent the

pairs of terminals in [1].

Simple(G, T ):
if T is a single node, terminate

let si t i be an arbitrary edge in T
find a shortest si-to-t i path Pi in G
let GL and GR be the left and right components of G Q Pi ,

and let TL and TR be their corresponding terminal trees
output Pi

call Simple(GL , TL) and Simple(GR, TR)

Simple(G, T ) outputs non-crossing shortest paths in the given n-vertex graph G between k pairs of

terminals represented by the given terminal tree T .

As per the proof of correctness from the previous section, what remains is to analyze its runtime.

Finding a shortest path in a planar graph can be done in time linear in its number of vertices using

the shortest path algorithm by Henzinger et al. [2]. Cutting along the path Pi also takes linear time

in the number of vertices in the graph. Lastly, outputting the path takes time proportional to the
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number of vertices in Pi, which is bounded by the number of vertices in the graph. Since the graph

input to each recursive call is a subgraph of the initial graph, the amount of work done in each call is

O(n), giving an overall runtime of O(nk).

We emphasize that this algorithm is correct for any choice of the pairs of terminals in each call,

and thus the order in which the paths are found and cut along is independent of the correctness.

The main ideas behind the algorithms in the following chapters are to identify an ordering of the

pairs of terminals (edges of the initial terminal tree) and implicitly represent the paths found so that

the overall runtime is improved.
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Chapter 6

Takahashi et al.’s O(n)-time Algorithm for Star Terminal Trees
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Figure 6.1: A star terminal tree (in blue) and its corresponding connection graph (in black).

In this section we present the linear time algorithm of Takahashi et al. [1] for the case when the

terminal tree is a star. This is used as a subroutine in their O(n log k)-time algorithm that we present

in the next chapter.

We begin by observing that if the terminal tree T is a star, then the terminals can be relabeled so

that they appear as s1, t1, s2, t2, . . . , sk, tk in clockwise order around ∂ G. Takahashi et al. prove the
following lemma which we rewrite using our notation and terminology.

Lemma 6.0.1. Let S be a shortest path tree in G rooted at s1. For each i > 1, denote by Si the unique
si-to-si+1 path in S. Then for each edge si t i ∈ T , there exists a shortest si-to-t i path Pi in G that does not
cross Si, i.e. is contained in G QSi.

Using this lemma, they describe the following linear time algorithm to find non-crossing shortest

paths connecting all pairs of terminals in this case. They find a shortest path tree S rooted at s1

using the linear time algorithm of Henzinger et al. [2]. Then they cut along Si for each i, and use the

algorithm of Henzinger et al. in each resulting component to find a shortest si-to-t i path for each
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i. The paths between the terminals are non-crossing in G. This is summarized in the pseudocode

below.

TSN-Star(G, T ):
label the terminals s1, t1, s2, t2, . . . , sk, tk around ∂ G
let S be a shortest path tree rooted at s1

let Si be the unique si-to-si+1 path in S for each i

for each component Gi in (. . . ((G QS1) QS2) . . .) QSk:
find a shortest si-to-t i path Pi in Gi

output Pi

TSN-Star(G, T ) outputs non-crossing shortest paths in the given n-vertex graph G between k pairs

of terminals represented by the given path terminal tree T .

To analyze the runtime, we observe that each edge in G is contained in either zero or two paths Si

and Si+1 for some i, so explicitly cutting along Si for each i takes O(n) time overall. This further

implies that the total number of vertices across the subgraphs is O(n) since each edge of G is contained

in at most two resulting components, and thus the sum of the work to find all paths Pi using the

algorithm of Henzinger et al. is O(n). Furthermore, the total complexity of the paths is O(n) since

each edge in G is contained in at most two paths in the solution so we can afford to explicitly output

the paths. The theorem below summarizes this result.

Theorem 6.0.2. Let G be an n-vertex undirected planar-embedded graph with a simple boundary cycle,
non-negative edge lengths, and k pairs of terminals {(s1, t1), (s2, t2), . . . , (sk, tk)} specified on ∂ G. Let
T be the corresponding terminal tree whose edges represent the pairs of terminals. If T is a star, then
non-crossing shortest paths connecting all pairs of terminals can be found and output in O(n) time.
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Chapter 7

Takahashi et al.’s O(n log k)-time Algorithm for Arbitrary
Terminal Trees

In this section we will show how Takahashi et al. [1] use the algorithm of the previous section to

speed up the simple O(nk) time algorithm for the general case to run O(n log k) time. First, we

describe the additional properties of G and its pairs of terminals that we assume for purposes of

analysis and convenience, and how to obtain them. We assume that G has constant maximum vertex

degree, and that all bounded faces are triangles. To obtain the former, we replace each vertex with

a binary tree gadget with zero length edges so that all vertices have degree three (see figure 7.1).

To obtain the latter, we then triangulate each bounded face of G with edges of infinite length by

“zig-zagging” which triples the degree of each vertex as worst (see figure 7.2). These transformations

take O(n) time and increase the size of the graph by O(n) vertices and edges. It is significant to note

that a path P ′ in the modified graph may have Ω(log∆) times as many edges in its corresponding

path P in the original graph. This will affect the amount of time it takes to report a path from the

implicit representation R of the paths found by a factor of log∆ in the worst case.

Next we establish the following lemma based on the observations of Takahashi et al.

Lemma 7.0.1. Let C be the connection graph and T the corresponding terminal tree T rooted at some
node r. Let I be a subset of pairwise incomparable nodes in T when rooted at r, and let C ′ be the
connection graph induced by the pairs of terminals represented by the parent edges of the nodes of I in
T . Then the terminal tree T ′ corresponding to C ′ is a star.

Proof. Consider iteratively deleting the edges of T − E(T ′) from C to obtain C ′. This is equivalent

to iteratively contracting those edges in T to obtain T ′. After the each contraction the root node

does not change and the nodes in I remain pairwise incomparable. It follows that the nodes in I are

pairwise incomparable in T ′, and thus it is a star.

We use this fact to find non-crossing shortest paths for potentially many pairs of terminal in each

recursive call while taking time linear in the number of the input graph’s vertices by using the

algorithm from the previous chapter, TSN-Star.
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Figure 7.1: On the left, a vertex u of arbitrary degree (in red) and its neighbors (in black) in a
planar-embedded graph G. On the right, the red vertex has been replaced with a binary tree gadget
(in blue) with edges with zero length so that u has degree three. The black edges are the original
edges of G.

Figure 7.2: A bounded face (in black) triangulated with blue edges by “zig-zagging” between its
vertices.

TSN-Arbitrary(G, T ):
if T is a single node, terminate

pick a node r in T and subset I of pairwise incomparable nodes in T rooted at r
let TI be the star terminal tree induced by the parent edges of the nodes in I

call TSN-Star(G, TI )
let Pi be the shortest si-to-t i path found for each edge si t i ∈ TI

for each component Gi of (. . . ((G Q P1) Q P2) . . .) Q P|I |:
let Ti be the terminal tree for Gi , i.e. the corresponding subtree of T − E(TI )
add Pi to the implicit representation R
contract all maximal paths of degree-two articulation points in Gi

by replacing each path with one edge with equal total length
call TSN-Arbitrary(Gi , Ti)

TSN-Arbitrary(G, T ) finds and cuts along non-crossing shortest paths in the given n-vertex graph

G between k pairs of terminals represented by the given terminal tree T , and adds them to a globally

accessible implicit representation R. When the initial call is made, R is initialized as the empty

subgraph of the input graph.

Except for the contraction of the degree-two articulation points in the resulting components

as paths are found and cut along and the order in which the pairs of terminals are chosen, the
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behavior of this algorithm is equivalent to that of the simple O(nk)-time algorithm. We will first give

two choices for r and I which bound the recursion depth of this algorithm, then discuss how the

contractions ensure that the amount of work in each call is O(n) while maintaining correctness of

the paths found in future calls that contain edges corresponding to contracted vertices.

The first choice of r and I is a slight generalization of the one used by Takahashi et al. in their

description of this algorithm. We let r be the (rough) midpoint of a diameter-defining path in T ,

then let I be the nodes at the median depth of T when rooted at r. Clearly these nodes are pairwise

incomparable. It follows that the subtrees of T resulting from deleting the edges of TI each have

diameter at most half that of T and thus the recursion depth is O(log diam(T )).

As an alternative, we include a second choice of r and I . Let r be a center node of T and I be

its incident edges. Then the terminal trees of the resulting components after cutting along paths

connecting each pair of terminals represented by the edges incident to r each contain at most half

the nodes in T , so the recursion depth is O(log k).

Since T has k edges, diam(T ) is at most k, and thus the recursion depth using either choice of r

and I is O(log k).

What remains is to discuss the implications of contracting all degree-two articulation points. First,

we note that the length of any shortest path connecting a pair of terminals in the subgraphs after

the contractions remain the same as before. This allows us to determine the lengths of the paths

represented in R once the algorithm terminates in only constant time as opposed to retrieving the

entire path from R to determine its length.

Observe that any articulation point v must have resulted from its two incident edges uv and vw

being cut along in at least two shortest paths, and so they were added to the implicit representation R

and the indices stored on each edge were updated. Then the index of each terminal in the subgraph

is contained in exactly one of
�

idx(v, u)−, idx(v, u)+
�

or
�

idx(v, w)−, idx(v, w)+
�

. Suppose we change

our algorithm not to contract any vertices. It follows that any shortest si-to-t i path Pi to be found

in a future recursive call on this subgraph that contains v must also contain edges uv and vw, and

the indices stored on those edges will not need to be updated when Pi is added to R. See figure 7.3

for an example. Thus, when an edge resulting from a contraction is contained in a shortest path

in some call, we simply ignore it, as the indices of the corresponding contracted edges of the input

graph do not need to be updated.

Now we show that contracting the degree-two articulation points ensures that the number of

vertices across all subgraphs of each level of recursion is O(n). Fix a level of recursion, and let G′ be a

subgraph input to a call in that level. The bounded faces of the initial graph G are triangles, thus so

are the bounded faces of G′. It follows that the average degree over each vertex in 2-edge-connected

components containing at least three vertices is at least 7/3. We are ensured that all vertices that

compose trivial 2-edge-connected components containing only themselves must have degree at least

three, so we conclude that the average degree over all vertices in G′ is at least 7/3. Euler’s formula

implies that the number of vertices in G′ equals (2 f − 2)/(δ− 2) where f is its number of bounded

faces and δ is the average vertex degree. It follows that the number of vertices in G′ is strictly less
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Figure 7.3: A degree-two articulation point v and its incident edges uv and vw in a subgraph G′

resulting from cutting along the red a-to-b and c-to-d paths. In this example,
(v, u)− = (w, v)− = idx(d), (v, u)+ = (w, v)+ = idx(a), (v, w)− = (u, v)− = idx(b), and
(v, w)+ = (u, v)+ = idx(c). The indices of all terminals in G′ are such that either
idx(u) ∈ [(v, u)−, (v, u)+] or idx(u) ∈ [(v, w)−, (v, w)+].

than six times its number of bounded faces. Euler’s formula also implies that the number of bounded

faces in G is O(n), and our cutting operation ensures that the bounded faces of the initial graph G

are found in exactly one subgraph in each level of recursion. Thus, the number of vertices across all

subgraphs in this level of recursion is O(n).

It follows that the amount of work done in each level of recursion is O(n) since r and I can be

found in linear time for either choice described, and then the paths can be found and cut along for

each pair of terminals in I using TSN-Star. The recursion depth is O(log k) using either method of

picking r and I , and thus we conclude that this algorithm takes O(n log k) time overall. The following

theorem summarizes this result.

Theorem 7.0.2. Let G be an n-vertex undirected planar-embedded graph with a simple boundary cycle,
non-negative edge lengths, and k pairs of terminals {(s1, t1), (s2, t2), . . . , (sk, tk)} specified on ∂ G. Let
T be the corresponding terminal tree whose edges represent the pairs of terminals. Then an implicit
representation R of non-crossing shortest paths connecting all pairs of terminals can be constructed in
O(n logdiam(T )) = O(n log k) time and using O(n) space. The length of any path P represented in R

can be reported in constant time, and the path itself can be reported in O(|P| log∆) time where ∆ is the
maximum degree of the vertices in P.
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Chapter 8

Italiano et al.’s O(n log log k)-time Algorithm for Path Terminal
Trees
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Figure 8.1: A path terminal tree (in blue) and its corresponding connection graph (in black).

In this section we give an overview of Italiano et al.’s algorithm [4] and slight modifications to

improve the runtime from O(n log log n) to O(n log log k).

We begin by observing that if the terminal tree T is a path, then the terminals can be relabeled so

that they appear as s1, s2, . . . , sk, tk, . . . , t2, t1 in clockwise order around ∂ G. Additionally, since the

implementation of FR-Dijkstra by Mozes et al. [11] requires that the maximum vertex degree in the

input graph has constant degree three, we ensure this in O(n) time by replacing each vertex with a

binary tree gadget as we did for TSN-Arbitrary. Italiano et al. also assume the input graph has

constant maximum vertex degree for purposes of analysis.

The main idea of their two-phase algorithm is to construct an r-division for a suitable r then

find and cut along shortest paths found using FR-Dijkstra in the dense distance graph (DDG).

The first phase is essentially the same as the previous divide-and-conquer algorithms but modified

to work in the DDG. They ensure that when the first phase terminates, each resulting subgraph

contains at most O(r) pairs of terminals and the total number of vertices across all the subgraphs
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is O(n). By replacing their r-division construction with that of Klein et al. [7] and their use of

Fakcharoenphol and Rao’s FR-Dijkstra [8] with the implementation by Mozes et al. [11], we show
their first phase can be done in O(n log log k) time overall when choosing r = log10 k. It follows that

running TSN-Arbitrary in each subgraph with its corresponding terminal tree of size O(log10 k)

takes O(n log log10 k) = O(n log log k) time so that the entire algorithm takes only O(n log log k) time.

The majority of this section will be in describing their algorithm and emphasizing the nuances of

working in the DDG. Since the global behavior is the same as iteratively finding and cutting along

paths as in our O(nk) simple algorithm for the general case, its correctness is implied directly from

the correctness of the latter.

INSW-Path(G, T ):
let r = log10 k
construct an r-division with few holes of G
for each multiple i of r in {1, 2, . . . , k}:

mark si and t i as boundary terminals
let T ′ be the path terminal tree induced by the pairs of boundary terminals
construct the DDG H of G

call INSW-DDG-Path(H, T ′)
let Pi be the shortest si-to-t i path in H found for each edge si t i ∈ T ′

reveal and cut along the corresponding paths P ′i in G for each Pi

add each path P ′i to the implicit representation R

for each resulting subgraph Gi and path terminal tree Ti with O(r) edges:
call TSN-Arbitrary(Gi , Ti)

INSW-DDG-Path(H, T ):
if T is a single node, terminate

let si t i be a median edge of T
find a shortest si-to-t i path Pi in H via FR-Dijkstra
implicitly cut H along Pi into HL and HR

let TL and TR be the corresponding path terminal trees for HL and HR, resp.
call INSW-DDG-Path(HL , TL) and INSW-DDG-Path(HR, TR)

INSW-Path(G, T ) finds and cuts along shortest paths in the given n-vertex graph G between k pairs

of terminals represented by the given path terminal tree T , then adds them to a globally accessible

implicit representation R. When the initial call is made, R is initialized as the empty subgraph of

the input graph. INSW-DDG-Path(H, T ) returns a representation of non-crossing shortest paths in

the given DDG H connecting all pairs of terminals represented by a given path terminal tree T from

which the corresponding paths in the underlying graph can be easily obtained.

To construct the r-division with few holes, we use the recent linear time algorithm of Klein et al.
[7] instead of the slower construction by Italiano et al. [4]. The latter would take O(n log log n)
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time for our choice of r, which is longer than we can afford. Constructing the DDG H of G takes

O(n log r) = O(n log log k) time; we give the details of this in section 1.4. However, in between

constructing the r-division and the DDG, we artificially mark a particular subset of terminals as

boundary vertices, henceforth referred to as boundary terminals for convenience. This ensures that
the number of terminals on ∂ G between consecutive boundary terminals is O(r), and so the terminal

trees for each resulting subgraph after finding and cutting along paths between pairs of boundary

terminals contain only O(r) pairs of terminals. We do this by artificially labeling si and t i for each i

that is a multiple of r as boundary vertices if they are not already. Those that are artificially marked

are contained in exactly one piece. To see that this does not invalidate the number of boundary

vertices in each piece P, note each component of P ∩ ∂ G is a line graph, and that the degree-one

vertices in each component in P ∩ ∂ G are boundary vertices. Thus, there are O(
p

r) components

in P ∩ ∂ G. Furthermore, each component contains O(r) vertices, so it follows that O(1) boundary

vertices are artificially marked in each component of P ∩ ∂ G, and thus O(
p

r) are marked in each

piece overall.

What remains is to discuss how Italiano et al. apply the divide-and-conquer approach of finding

and cutting along shortest paths to work in the DDG H instead of the underlying graph G. This part

of the first phase is outlined in our pseudocode for INSW-DDG-Path. Let T ′ be the path terminal

tree induced by the pairs of boundary terminals, and let si t i be a median edge of it. First, they find

a shortest si-to-t i path Pi in H using FR-Dijkstra that corresponds to a shortest si-to-t i path Pi in

G. Then they recurse on the subgraphs of H for the left and right components of G Q Pi and their

corresponding path terminal trees. However, explicitly rebuilding the DDGs for the components takes

longer than can be afforded. Instead, they show how to implicitly represent H and its subgraphs

so that they can be “cut” in time proportional to their number of vertices by maintaining cyclic

orderings of the boundary vertices around the holes of each piece. Furthermore, they show how

to ensure that the number of boundary vertices across the (implicitly represented) subgraphs of H

in each level of recursion is O(n/
p

r) so that the amount of work done in any level is proportional

to one FR-Dijkstra call in H. Their technique is similar to that of our contraction of degree-two

articulation points in TSN-Arbitrary. When this recursive procedure terminates and non-crossing

shortest paths in H between all pairs of boundary terminals have been found, they still need to

obtain and cut along the corresponding paths in the underlying initial graph G. They describe how

to do this while ensuring that the resulting subgraphs of G have O(n) vertices overall in only O(n)

time. It is easy to modify their algorithm also add these paths in G to our implicit representation R.

For the full details of each of these steps, we refer the reader to [4].

By replacing their use of the O( np
r log2 n)-time implementation of FR-Dijkstra by Fakcharoenphol

and Rao [8] with the recent O( np
r log4 r)-time implementation by Mozes et al. [11], the total amount

of work done in each level of recursion for our choice of r = log10 k is O( n log4 log k
log5 k

) = O(n/ log k).

There are O(log k) levels since the length of the path terminal tree is roughly halved in each call, so

the overall time to complete the first phase is O(n) after the O(n log log k)-time construction of the

DDG H.
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We conclude that the first phase takes O(n log log k) time overall, including the time to build the

r-division, construct the DDG, and then finding and cutting along shortest paths connecting the pairs

of boundary terminals. Since the resulting subgraphs are ensured to have O(n) total vertices, the

second phase takes O(n log log k), and thus the case where the terminal tree is a path can be done in

O(n log log k) time overall. This result is summarized in the theorem below.

Theorem 8.0.1. Let G be an n-vertex undirected planar graph with a simple boundary cycle, non-
negative edge lengths, and k pairs of terminals {(s1, t1), (s2, t2), . . . , (sk, tk)} specified on ∂ G. Let T be the
corresponding terminal tree whose edges represent the pairs of terminals. If T is a path, then an implicit
representation R of non-crossing shortest paths connecting all pairs of terminals can be constructed in
O(n log log k) time and using O(n) space. The length of any path P represented in R can be reported in
constant time, and the path itself can be reported in O(|P| log∆) time where ∆ is the maximum degree
of the vertices in P.
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Chapter 9

Our O(n log log k)-time Algorithm for Arbitrary Terminal Trees

In this section we combine the diameter-based O(n log diam(T ))-time algorithm by Takahashi et al.
[1] for the general case and the O(n log log k)-time algorithm by Italiano et al. [4] for the path case to

obtain an O(n log log k) time algorithm for the general case. Our algorithm has two phases. The first

phase identifies a subset of edges in T for which non-crossing shortest paths can be found, cut along,

and added to the implicit representation so that the terminal trees corresponding to the resulting

subgraphs are paths. Then the fast algorithm for the path case is used to find the remaining paths in

each subgraph.

Faster-Arbitrary(G, T ):
let TH be the heavy path tree of T rooted at an arbitrary node
call TSN-Arbitrary(G, TH)
for each resulting subgraph Gi and corresponding path terminal tree Ti:

call INSW-Path(Gi , Ti)

Faster-Arbitrary(G, T ) finds and cuts along non-crossing shortest paths in the given n-vertex

graph G between k pairs of terminals represented by the given terminal tree T , and adds them to a

globally accessible implicit representation R. When the initial call is made, R is initialized as the

empty subgraph of the input graph.

Specifically, we take the heavy-path decomposition of T rooted at an arbitrary node to construct its

heavy path tree TH . Let L be the light edges of T . TH is the terminal tree induced by the edges in L

since it can be obtained by contracting the edges of T − L which is equivalent to deleting them from

the connection graph corresponding to T . In the first phase, we find and cut along shortest paths

connecting each pair of terminals represented in TH using TSN-Arbitrary. When the algorithm

terminates, the terminal trees corresponding to each resulting subgraph are the components of T − L.

These components are the heavy paths of T , so our second phase consists of using INSW-Path to find

and cut along shortest paths connecting all remaining pairs of terminals in their respective subgraphs.

These two phases essentially enforce an order in which the paths are to be found and cut along for

the simple O(nk)-time algorithm, and thus its correctness follows directly from the correctness of the

blackboxed algorithms.

Since height(TH) = O(log height(T )), the first phase takes O(n log diam(TH)) = O(n log log diam(T ))

= O(n log log k) time using TSN-Arbitrary. The algorithm ensures that the number of vertices

across the resulting subgraphs is O(n), and clearly each resulting path terminal tree has at most k
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edges. It follows that the second phase takes O(n log log k) total time to find the remaining paths by

calling INSW-Path. The following theorem summarizes this result.

Theorem 9.0.1. Let G be an n-vertex undirected planar graph with a simple boundary cycle, non-
negative edge lengths, and k pairs of terminals {(s1, t1), (s2, t2), . . . , (sk, tk)} specified on ∂ G. Let T

be the corresponding terminal tree whose edges represent the pairs of terminals. Then an implicit
representation R of non-crossing shortest paths connecting all pairs of terminals can be constructed in
O(n logdiam T ) = O(n log log k) time and using O(n) space. The length of any path P represented in R

can be reported in constant time, and the path itself can be reported in O(|P| log∆) time where ∆ is the
maximum degree of the vertices in P.
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