
c© 2017 Li-Wen Chang

TOWARD PERFORMANCE PORTABILITY FOR CPUS AND GPUS
THROUGH ALGORITHMIC COMPOSITIONS

BY

LI-WEN CHANG

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2017

Urbana, Illinois

Doctoral Committee:

Professor Wen-mei W. Hwu, Chair
Professor Deming Chen
Associate Professor Nam Sung Kim
Associate Professor Steven S. Lumetta

ABSTRACT

The diversity of microarchitecture designs in heterogeneous computing sys-

tems allows programs to achieve high performance and energy efficiency, but

results in substantial software redevelopment cost for each type or genera-

tion of hardware. To mitigate this cost, a performance portable programming

system is required.

This work presents my solution to the performance portability problem.

I argue that a new language is required for replacing the current practices

of programming systems to achieve practical performance portability. To

support my argument, I first demonstrate the limited performance porta-

bility of the current practices by showing quantitative and qualitative ev-

idences. I identify the main limiting issues of conventional programming

languages. To overcome the issues, I propose a new modular, composition-

based programming language that can effectively express an algorithmic de-

sign space with functional polymorphism, and a compiler that can effectively

explore the design space and facilitate many high-level optimization tech-

niques. This proposed approach achieves no less than 70% of the perfor-

mance of highly optimized vendor libraries such as Intel MKL and NVIDIA

CUBLAS/CUSPARSE on an Intel i7-3820 Sandy Bridge CPU, an NVIDIA

C2050 Fermi GPU, and an NVIDIA K20c Kepler GPU.

ii

To my family, for their love and support.

iii

ACKNOWLEDGMENTS

I would like to thank my advisor, Professor Wen-mei W. Hwu, for his tremen-

dous mentorship, patience and support. He has always motivated my work

and been patient with me. His wisdom will keep inspiring me in my profes-

sional career and personal life.

I would like to thank all members of the IMPACT research group, past

and present, for their help and camaraderie. They are, in no particular order,

Chris Rodrigues, Sara Baghsorkhi, Alex Papakonstantinou, John Stratton,

I-Jui Sung, Xiao-Long Wu, Nady Obeid, Victor Huang, Deepthi Nandaku-

mar, Hee-Seok Kim, Nasser Anssari, Tim Wentz, Daniel Liu, Izzat El Hajj,

Steven Wu, Abdul Dakkak, Simon Garcia de Gonzalo, Wei-Sheng Huang,

Carl Pearson, Cheng Li, Sitao Huang, Tom Jablin, John Larson, Chia-Jen

Chang, Chih-Sheng Lin, Judit Planas, Jose Cecilia, Juan Gómez Luna, Javier

Cabezas, Isaac Gelado, Nacho Navarro, Hiroyuki Takizawa, Xuhao Chen,

Omer Anjum, and Mohamed El Hadedy.

Particularly, I would like to thank Izzat El Hajj, Simon Garcia de Gonzalo,

Sitao Huang, Chris Rodrigues and Abdul Dakkak for help in design and

coding development of this work. Additionally, I want to thank Carl Pearson,

Hee-Seok Kim, Juan Gómez Luna and John Stratton for help in performance

portability study and survey.

Also, I want to thank Marie-Pierre Lassiva-Moulin, Andrew Schuh, and

Xiaolin Liu for their help, and convey my gratitude to a lot of people I met

during my time here, including Wooil Kim, Deming Chen, Nam Sung Kim,

Steven Lumetta, and those people I forget to mention or do not know the

names of, especially the cleaner of my office.

Finally, I would like to thank my parents and my wife for their uncondi-

tional love and support. Thank you everyone.

iv

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

LIST OF ABBREVIATIONS . x

CHAPTER 1 INTRODUCTION . 1
1.1 Current Practice of Performance Portability 1
1.2 Challenges of Performance Portable Programming 3
1.3 Beyond Performance Portability 4
1.4 Summary of Contributions . 5
1.5 Organization of this Dissertation 6

CHAPTER 2 SURVEY OF PERFORMANCE PORTABILITY . . . 7
2.1 Performance Portability Challenges and Conventional Tech-

niques . 7
2.2 Current Status of Portable Languages 15

CHAPTER 3 TANGRAM OVERVIEW 21
3.1 Conventional Problem-solving Process 21
3.2 Design Space and Performance Portability 23
3.3 TANGRAM Programming System 26

CHAPTER 4 TANGRAM LANGUAGE 30
4.1 Design Space and Language 30
4.2 TANGRAM Language Design Objectives 32
4.3 Code Example . 35
4.4 Recommended Programming Workflow 37
4.5 Comparison of Related Composition-based Languages 37
4.6 Feature Beyond Performance Portability 39

CHAPTER 5 HARDWARE ABSTRACTION AND COMPOSITION 40
5.1 Architectural Hierarchy in Hardware Abstraction 40
5.2 Composition Rule . 42
5.3 Composition Specialization . 45

v

5.4 Model Extensibility . 49
5.5 Discussion of Hardware Abstraction 50

CHAPTER 6 TANGRAM COMPILER 51
6.1 Compiler, Design Space and Performance Portability 51
6.2 TANGRAM Compiler Design Overview 54
6.3 TANGRAM Compiler Infrastructure 55
6.4 Parser . 58
6.5 Analyzer . 58
6.6 Composition Planner . 63

CHAPTER 7 OPTIMIZATION AND CODE GENERATION 68
7.1 Optimization . 69
7.2 Code Generation . 71

CHAPTER 8 EVALUATION . 75
8.1 Setup . 75
8.2 Performance Results . 77
8.3 Discussion . 83
8.4 Performance Comparison to Existng Composition-based Lan-

guage . 84

CHAPTER 9 CONCLUSION AND FUTURE WORK 86
9.1 Conclusion . 86
9.2 Future Work . 87

REFERENCES . 90

vi

LIST OF TABLES

2.1 Overview of Performance Portability Challenges and Techniques 15
2.2 Overview of Languages and Techniques 20

4.1 Function and Data Qualifiers 34
4.2 Data Manipulation and Parallel Primitives 35

6.1 Relationship between Level Capability to Codelet Property . . 62

7.1 Codegen Preprocessors . 72

8.1 Benchmarks . 76

vii

LIST OF FIGURES

1.1 OpenCL SGEMM Performance Portability Evaluation 2

2.1 Over-decomposition and Coarsening: Performance com-
parison of AMD and Intel CPU OpenCL stacks on an i7-
3820 CPU. AMD results are used as baselines. 8

2.2 Memory Characteristics and Tiling: Performance of SGEMM
with different tiling strategies and tuning parameters on
different devices. White and black bars are normalized to
different references. Performance relative to reference is
compared, not absolute performance. 9

2.3 Atomic Efficiencies and Choices of Algorithms: Stream
compaction with shared memory atomics versus Thrust
prefix sum. 11

2.4 Reduction with Multiple Levels 12

3.1 Conventional Problem-Solving Abstraction Hierarchy and
Corresponding Tasks: At left are levels of abstraction trans-
lating a problem into a computational solution. At right
are tasks associated with their level of abstraction where
they are typically addressed, and a typical boundary be-
tween manual and automatic tasks. 22

3.2 Illustration of Relationships among Different Design Points . . 25
3.3 TANGRAM’s Problem-Solving Abstraction Hierarchy and

Corresponding Tasks: Red, bold-line boxes are different
parts from the conventional one. 26

3.4 Big Picture of TANGRAM for Various Devices 27
3.5 TANGRAM’s Workflow . 28

4.1 Example of Linear Combination 31
4.2 Vectorization for Cooperative and Autonomous Codelets . . . 33
4.3 Codelet Examples for a sum Spectrum 36

5.1 Hardware Abstraction of Architectural Levels 40
5.2 Examples and Illustrations of Simple CPU and GPU 41
5.3 Abstract Composition Rules 43

viii

5.4 Example of map Rules in OpenMP 44
5.5 Program Composition Rules and Example for Deriving Com-

position Rules . 45
5.6 Rule Specialization and Composition (CPU Example): For

the composition plan diagram on the right side, a triangle
represents distribution of work according to the partition
pattern from the indicated codelet and a circle represents
scalar compute according to the indicated codelet. 46

5.7 Rule Specialization and Composition (GPU Example): In
addition to the triangles and circles introduced in the pre-
vious diagram, a cross represents vector compute according
to the indicated codelet. 48

5.8 Example of Design Space for Composition Plans (Showing
Four Possible Composition Plans for the Block and Thread
Levels) . 49

6.1 Performance Impact for Loop Transformations of OpenCL
Compilers on an i7-3820 CPU 53

6.2 Performance Impact for Different Vectorization Strategies
of Intel CPU OpenCL . 54

6.3 TANGRAM Compiler Organization 54
6.4 Composition Algorithm with Pruning 66
6.5 Comparing Composition Rules for Pruning 67

7.1 Heuristic for Data Placement 70
7.2 Codegen for CPU Example in Figure 5.6 73
7.3 Codegen for GPU Example in Figure 5.7 74

8.1 TANGRAM Performance Results 78
8.2 Scan Results with or without the Sliding Codelet (Normal-

ized to the Corresponding Thrust Results) 79
8.3 SOP and NOP SGEMV-SF Results on GPUs (Normalized to

the Corresponding CUBLAS Results) 80
8.4 SpMV Results with and without Transposition Optimization

(Normalized to the Corresponding References) 82
8.5 BFS GPU Performance Breakdown 83
8.6 Comparison between TANGRAM and Petabricks using DGEMM

on CPU . 85

ix

LIST OF ABBREVIATIONS

AMD Advanced Micro Devices

AST Abstract Syntax Tree

AVX Advanced Vector Extension

BFS Breadth-First Search

BLAS Basic Linear Algebra Subprograms

C++AMP C++ Accelerated Massive Parallelism

CEAN C++ Extension for Array Notation

CPU Central Processing Unit

CSR Compressed Sparse Row

CUBLAS Compute Unified Basic Linear Algebra Subprograms

CUDA Compute Unified Device Architecture

CUSPARSE Compute Unified SPARSE Library

DGEMM Double-precision General Matrix to Matrix Multiplication

FPGA Field-Programmable Gate Array

GFLOPS Giga Floating Point Operations Per Second

GPU Graphics Processing Unit

I/O Input/Output

ILP Instruction-Level Parallelism

IR Intermediate Representation

JDS Jagged Diagonal Storage

x

LL/SC Load-Link/Store-Conditional

MKL Math Kernel Library

NESL Nested Data-Parallel Language

NOI Node of Interest

NOP Non-Order-Preserving

OpenACC Open Accelerators

OpenCL Open Computing Language

OpenMP Open Multi-Processing

SF Short-and-Fat

SGEMM Single-precision General Matrix to Matrix multiplication

SGEMV Single-precision General Matrix-Vector multiplication

SIMD Single-Instruction Multiple-Data

SM Streaming Multiprocessor

SOP Sequential-Order-Preserving

SpMV Sparse Matrix-Vector multiplication

SSE Streaming SIMD Extensions

STL Standard Template Library

TS Tall-and-Skinny

xi

CHAPTER 1

INTRODUCTION

Modern computing systems are transitioning to heterogeneous platforms, in-

tegrating many parallel or specialized computing devices, such as multicore

CPUs, GPUs, Intel Xeon Phis, DSPs, and FPGA, to meet computational

demands and/or energy efficiency requirements of applications. However, to

successfully adopt such computing devices, code transformations and opti-

mizations are typically necessary for gaining performance of existing appli-

cations. Ideally, programmers should be able to write in a portable language

once, and expect the compilers to automatically perform these code trans-

formations and optimizations and deliver high performance. Yet, the current

practice entails substantial effort for rewriting entire applications or core

algorithms to gain reasonable performance. Furthermore, maintaining mul-

tiple source code versions optimized for different devices could be a burden.

Therefore, single-source performance portability has become very desirable

for the adoption of heterogeneous systems.

1.1 Current Practice of Performance Portability

Multiple languages, such as OpenCL [1], C++AMP [2], OpenMP [3], and

OpenACC [4], have been proposed as a portable parallel language over mul-

tiple variants of computing devices. OpenCL, as the most popular proposal,

has received tremendous support from both hardware vendors [5, 6, 7, 8, 9,

10, 11, 12, 13] and software developers [14, 15, 16, 17, 18]. However, as a

portable language, OpenCL still delivers limited performance compared to

vendor libraries [19].

Figure 1.1 shows a quantitative study for performance portability of the

current OpenCL stacks by evaluating two versions of Parboil’s [20] OpenCL

SGEMM benchmark and corresponding vendor libraries on three NVIDIA

1

9.2	 74.0	 105.0	 2.3	
304.6	 392.5	 495.5	

55.5	

348.0	 608.1	

2469.9	

183.9	

0.0	

500.0	

1000.0	

1500.0	

2000.0	

2500.0	

3000.0	

Tesla	GPU														
(GTX	280)	

Fermi	GPU						
(C2050)	

Kepler	GPU										
(K20c)	

Sandy	Bridge	CPU	
(i7-3820)	

Pe
rf
or
m
ac
e	
(G
FL
O
PS
)	

Device	
Parboil	(default	naïve	OpenCL	version)	
Parboil	(OpenCL	version	opPmized	for	Tesla	GPU)	
Reference	(MKL	for	CPU,	CUBLAS	for	GPU)	

Figure 1.1: OpenCL SGEMM Performance Portability Evaluation

GPUs (Tesla, Fermi and Kepler microarchitectures) and an Intel CPU (Sandy

Bridge microarchitecture). Three key observations can be made from these

results. First and foremost, though the kernel optimized for a Tesla GPU out-

performs the naive version not only for a Tesla GPU but also for Fermi and

Kepler GPUs and more interestingly the Sandy Bridge CPU, the kernel op-

timized for a Tesla GPU only achieves 65% and 20% of the CUBLAS library

on the Fermi and Kepler GPUs respectively, and 30% of MKL on the Sandy

Bridge CPU. This result demonstrates that optimizations of this OpenCL

kernel are not always transferable to non-target GPU and CPU, since, com-

pared to highly optimized vendor libraries, the relative performance drops

from 87% to 65%, 20% and 30% respectively. Second, the naive version only

delivers limited performance, significantly less than the optimized version (for

the Tesla GPU) and the corresponding vendor libraries on the tested GPUs

and CPU. This result demonstrates optimizations are necessary for gaining

performance in OpenCL. Third, the absolute performance of the kernels does

indeed benefit from the architectural improvements from Tesla to Fermi, but

the achieved percentage of the vendor library performance decreases. This re-

sult demonstrates the improved performance from an architectural upgrade is

not sufficient evidence for performance portability. Through this evaluation,

we demonstrate the limited performance portability of the current OpenCL

stacks.

Qualitatively, OpenCL, as a low-level language, requires optimizations ex-

2

posed by programmers for gaining performance. Without proper optimiza-

tions, an OpenCL kernel delivers very limited performance for most devices.

This fact can also be observed by comparing the performance between the

white and grey bars on the Tesla GPU in Figure 1.1. The fine-grained thread-

level model OpenCL adopts makes performance sensible to target devices,

since parallelism becomes the main source of performance scaling. Without

carefully crafting work assignment to threads, multi-level tiling, or schedul-

ing of the threads [16, 21, 19], an OpenCL kernel might suffer from huge

inefficiency.

On the other hand, optimizations for a specific device are not always trans-

ferrable to another device. Also, features specific to the target architecture

might not be easily exploited universally. These issues eventually limit per-

formance portability. Ideally, the OpenCL compiler should be able to adapt

work assignment to threads, multi-level tiling, or scheduling of the threads

for the target device. Unfortunately, techniques for the OpenCL compiler

do not yet seem mature enough to deliver reasonable performance portabil-

ity [19, 22]. Optimizations crafted for the source device are typically coupled

together, consequentially obstructing efficient transformation for the target

device. A transformed OpenCL kernel typically suffers from huge overhead

and inefficiency.

Without architecture-specific customization, performance is limited, while

with it, performance portability becomes limited. This dilemma of architecture-

neutral programing versus architecture-specific customization becomes the

major challenge of performance portability in OpenCL.

1.2 Challenges of Performance Portable Programming

Performance portability is challenging. In the current practice, even with

rewriting, programmers still must understand and exploit a wide set of ar-

chitectural entities to utilize these devices well, not to mention compilers.

Most programs come with certain degrees of device-specific optimizations.

That makes the programs hard to be analyzed and/or transformed by com-

pilers and eventually obstructs performance portability.

We further classify the challenges of performance portable programming

into two major factors, compiler and programming language. The compiler

3

factor mainly covers the robustness of optimization in the compiler. For

example, most OpenCL compilers [10, 11] focus on loop transformations.

The reachability, efficiency and optimality of loop transformations highly

impact final performance on a particular device. As mentioned and evaluated

in Section 1.1, the OpenCL compilers do not seem robust enough. To the

best of our knowledge, even with the most robust OpenCL compiler, there is

still a reasonable performance gap between transformed OpenCL code and

architecture-specific libraries [19].

On the other hand, the language is mainly about design space. For exam-

ple, OpenCL forces programmers to express a kernel in a specific, monolithic

form. Meanwhile, as a low-level language, it requires most optimizations

exposed by programmers for gaining performance. Consequently, the design

space of a particular kernel becomes very narrow. In that sense, the optimal

design for another device might not be included in the original, narrow space,

and that eventually limits performance portability.

In this dissertation, I argue that a new language is required for replacing

the current practices of programming systems to achieve practical perfor-

mance portability. I first demonstrate the limited performance portability

of the current practices and argue how conventional optimization techniques

get obstructed in these practices. I further identify the main limiting factors

of conventional attempts. To overcome this problem, I propose a program-

ming system, called TANGRAM, with a newly-defined high-level language

with its corresponding compiler.

1.3 Beyond Performance Portability

Although performance portability is crucial in modern applications, there are

several other important factors for a programming system.

Productivity is a measure of the ease to program an application. Typ-

ically, most high-level languages provide abstractions to reduce application

complexity to achieve high productivity. Modular programming can deliver

high productivity by reusing modules.

Maintainability is a measure of the ease to modify code. It typically

includes debuggability and incremental improvement. Programs with golden

references or test data can have good debuggability. Code reusing for al-

4

gorithmic improvement and optimizations can deliver incremental improve-

ment.

These factors are not the major foci of this dissertation. Therefore, in

the rest of the chapters, we will only briefly discuss these factors, after we

introduce the proposed language.

1.4 Summary of Contributions

The following list summarizes the contributions of this dissertation.

• I present a thorough discussion of the challenges of performance porta-

bility and a comprehensive survey for existing techniques that tackle

these challenges and existing languages that attempt to deliver perfor-

mance portability.

• I demonstrate the limited performance portability of the current prac-

tices, and identify the limiting factors.

• I present a programming language that supports specification of architecture-

neutral computations and composition rules.

• I define a simple hardware abstraction model that can be used to spec-

ify different architectures with different hierarchical organizations, and

show how this model is used to guide architecture-specific composition

rules from the proposed architecture-neutral language.

• I design a generic composition algorithm that can be used to compose

architecture-specific kernels based on the abstractions.

• I develop a compiler infrastructure specialized for compositions, and

use the infrastructure to implement a holistic kernel synthesis frame-

work that leverages our generic composition algorithm, and couples it

with other portability techniques during code generation and optimiza-

tion, such as data placement and parameterization, to synthesize highly

optimized processor-specific kernels.

• I demonstrate that kernels synthesized from the same description achieve

70% performance (in the worst observed case) to multiple times per-

formance compared to vendor hand-tuned data-parallel libraries.

5

1.5 Organization of this Dissertation

The rest of this dissertation is organized as follows. Chapter 2 discusses

performance portability challenges and surveys existing corresponding tech-

niques and existing languages. Chapter 3 identifies two major limiting factors

(language and compiler) of the current practices and proposes the TAN-

GRAM programming system to resolve these factors. Chapter 4 discusses

the language factor and details the TANGRAM language. This chapter also

compares the existing languages similar to the TANGRAM language. Chap-

ter 5 introduces a hardware abstraction model, and computation rules, and

discusses the relationship between them. Chapter 6 discusses the compiler

factor, presents a compiler infrastructure, and details the implementation

of the TANGRAM compiler. Chapter 7 explains the optimizations and

code generation stages in the TANGRAM compiler. Chapter 8 evaluates

the proposed programming system against vendor hand-tuned data-parallel

libraries. Chapter 9 concludes this dissertation and outlines areas for contin-

ued development.

6

CHAPTER 2

SURVEY OF PERFORMANCE
PORTABILITY

In this chapter, I first introduce the major challenges of performance porta-

bility, and corresponding conventional techniques. Then, I briefly introduce

the status of the current portable language.

2.1 Performance Portability Challenges and

Conventional Techniques

The architectural differences among devices and mismatched optimizations

between programs and devices are major sources blocking performance porta-

bility. Five major differences, including granularity of hardware thread par-

allelism, characteristics of the memory subsystem, hierarchical organization

of the hardware, size and abundance of resources, and special instructions,

are identified. Also, the corresponding conventional techniques and possible

obstructions across these differences are discussed in each section.

2.1.1 Granularity of Parallelism

Different devices have different numbers of parallel workers with varying

execution resources. For example, multicore CPUs provide a few coarse-

grain heavyweight threads, while manycore GPUs provide many fine-grain

lightweight threads. Moreover, each CPU thread executes scalar or short

vector operations while each GPU thread executes one lane of a long vector

operation.

Difference in granularity can be handled portably through over-decomposition

and coarsening. Programmers typically describe all the parallelism in appli-

cations and leave it for the compiler to decide what to execute in parallel

and what to serialize in a single thread (coarsening). OpenCL is one ex-

7

ample of a programming interface that enables over-expressing parallelism.

OpenCL compilers do varying levels of coarsening depending on the device

type. Compilers for most GPUs do minor [23] or no coarsening of work-items.

Compilers for CPUs coarsen work-items in each work-group down to a single

thread [14, 16, 24, 25, 26, 27]. Higher-level languages [28, 29] also support

over-decomposition through mapped functions and perform varying degrees

of coarsening depending on the target architecture.

0
1
2
3
4
5
6
7
8

S
p

e
e
d

u
p

 (
n
o
rm

.)

Parboil Benchmarks

AMD (v1445.5)

Intel (v1.2.0.43)

Figure 2.1: Over-decomposition and Coarsening: Performance comparison
of AMD and Intel CPU OpenCL stacks on an i7-3820 CPU. AMD results
are used as baselines.

There are several design choices of coarsening that might impact its effi-

ciency and overhead. Figure 2.1 compares the performance of AMD’s [30] and

Intel’s [26] CPU OpenCL stacks on an i7-3820 CPU. It is evident that Intel’s

stack outperforms AMD’s. AMD’s implementation executes each work-item

as a user-level thread, while Intel’s coarsens work-items into a single thread.

Intel’s coarsening enables many optimizations such as collapsing a uniform

variable into a single register and vectorizing across multiple work-items. It

also reduces thread management overhead and provides more instructions in

the same scope for instruction scheduling.

In general, coarsening over-decomposed work can be challenging, because it

is not always easy to remove expanded scalars and redundant computations.

However, generally automatically coarsening parallel work is still simpler

than parallelizing work that is expressed serially [22].

8

2.1.2 Memory Characteristics

Different types of devices have different memory structures and favor differ-

ent kinds of locality. For example, CPUs have global memory with private

and shared caching, while GPUs - in addition to cached global memory - have

scratchpad, read-only, constant, and texture memory. Moreover, CPUs favor

intra-thread locality for cache line reuse, whereas GPUs favor inter-thread

locality for memory coalescing. Also, in general, CPUs have better temporal

locality than GPUs, since the nature of massive multithreading limits life-

time of cache lines on GPUs [31, 32]. Differences in the memory hierarchy

also exist across generations of the same device. For example, L1 caches

on NVIDIA GPUs were non-existent in the Tesla generation, added in the

Fermi generation for caching global memory, and restricted to local memory

(register spills, stack data) in the Kepler generation [33].1

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Tuned for

Tesla

Tuned for

Fermi

Tuned for

Tesla

Tuned for

Fermi

Tiled for Tesla Tiled for Fermi

G
F

L
O

P
S

(%
 o

f
cu

B
L

A
S

 r
ef

er
en

ce
)

Run on Tesla
Run on Fermi

Figure 2.2: Memory Characteristics and Tiling: Performance of SGEMM
with different tiling strategies and tuning parameters on different devices.
White and black bars are normalized to different references. Performance
relative to reference is compared, not absolute performance.

These memory characteristics could highly impact performance of classi-

cal optimizations like tiling or other loop transformations. Figure 2.2 shows

the performance of SGEMM on different devices using different tiling strate-

gies (e.g., data placement, tile dimensionality, traversal ordering of multi-

dimensional tiles) and tuning parameters (e.g., tile size, work-group size,

1Some advanced Kepler GPUs allow L1 caching of global memory via a compiler flag,
but it is disabled by default.

9

coarsening factor). The version tiled for Tesla [34] places the first matrix

in registers and the second in shared memory, while the version tiled for

Fermi [35] places both in shared memory. They also employ different coars-

ening strategies. While the version tiled and tuned for Tesla and run on

Fermi () improves when retuned for Fermi (¯ >), it improves much more

when the data placement and tiling strategy are also changed (³ > ¯). The

opposite is also true (Ê > Î > Ð). This result demonstrates the need for

proper tiling strategies and data placement (not just retuning) to achieve

good performance. Autotuning is discussed separately in Section 2.1.4..

Many techniques have been developed to achieve portability across differ-

ent memory subsystems. Different types of memories can be utilized with

automatic data placement tools such as PORPLE [36], or with heuristic

policies [37]. Satisfying different locality preferences can be done by locality-

aware scheduling of parallel tasks [16]. Most of these techniques require so-

phisticated analyses of memory access patterns which could be made easier

via built-in data containers [2]. Also, not every memory access is analyzable.

Another example of changes in the memory subsystem is latency of atom-

ics. Scratchpad atomics in Fermi and Kepler GPUs use load-link/store-

conditional (LL/SC) instructions, while Maxwell provides faster native in-

structions for integer scratchpad atomics [38].2

These different efficiencies of atomic operations might impact choices of

algorithms. Figure 2.3 compares the throughput of stream compaction [39]

for two algorithms (with and without atomics) and three different GPU gen-

erations. Maxwell’s use of native instructions instead of LL/SC significantly

improves the algorithm with atomics, causing it to overtake its non-atomics

counterpart. Profiling results show that the atomic-based Maxwell version

executes significantly fewer instructions than that for Fermi and Kepler. That

is because it does not replay instructions until success like LL/SC does. This

result further demonstrates the importance of the memory subsystem prop-

erties in performance portability. In this case, the difference in atomic la-

tency called for a fundamental change in the optimal algorithm, not just in

the placement of data. Algorithm selection is discussed separately in Sec-

tion 2.1.6.

2For floating-point scratchpad atomic operations, Maxwell uses ATOMS.CAS.

10

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

0 20 40 60 80 100

T
h

r
o

u
g

h
p

u
t

(G
B

/s
)

Percentage Conflict (%)

Atomics (Fermi) Prefix Sum (Fermi)

Atomics (Kepler) Prefix Sum (Kepler)

Atomics (Maxwell) Prefix Sum (Maxwell)

Figure 2.3: Atomic Efficiencies and Choices of Algorithms: Stream
compaction with shared memory atomics versus Thrust prefix sum.

2.1.3 Levels of Hierarchy

Different architectures are laid out with varying levels of hierarchy. A mul-

ticore CPU has two levels: the sequential thread and the thread pool where

all threads are logically equidistant to each other. A GPU has three levels:

the work-items, the work-groups, and the work-group range. Work-items

in the same work-group are scheduled closer than work-items in different

work-groups, and can share local memory and perform lightweight synchro-

nization.

Programming a hierarchical system requires defining multiple phases of

computation for each level of the hierarchy. It might impact algorithmic

structures significantly. For example, a CPU reduction typically involves a

sequential reduction on each thread followed by a collective operation across

threads. On the other hand, a GPU reduction involves a sequential reduction

in each work-item from multiple work-groups, a tree-reduction across work-

items in the same work-group, and another sequential or tree reduction on

the partial sums of each work-group.

Figure 2.4 compares the performance of two- and three-level reduction

implementations on CPU and GPU. The addition of a third level on CPU

11

has little impact on performance because a CPU only has two levels. Thus,

adding a third level breaks a sequential loop into two nested sequential loops

which has a negligible impact on this benchmark. On the other hand, the

GPU benefits significantly from the third level because it is a three-level

device. The best two-level version does a tree reduction in the work-groups

followed by a reduction of partial sums. The third level adds a sequential

reduction in each work-item which improves resource utilization. This result

demonstrates the importance of considering the hierarchical division of the

device for performance portability.

0
0.2
0.4
0.6
0.8

1
1.2
1.4

CPU GPU

S
p
e
e
d
u
p

 (
n
o
rm

.)

two-level reduction

three-level reduction

Figure 2.4: Reduction with Multiple Levels

Adapting a program with more levels of hierarchy to an architecture with

fewer levels can be done through collapsing levels and coarsening/serialization.

However, the reverse action is extremely challenging. For portability, a pro-

gramming system should remove from the programmer the burden of manag-

ing the hierarchy. An effective solution is to allow the programmer to express

all possible nested parallelism [40] through recursive and non-recursive im-

plementations of an algorithm. The system then composes these implemen-

tations in different ways depending on the underlying architectural hierarchy.

A possible challenge of this technique is that it requires sophisticated analy-

ses, transformations, and more work for programmers in many cases.

Dynamic parallelism [41, 42] is one proposal to achieve nested parallelism

for GPUs by relying on programmers expressing nested parallelism through

certain interfaces and efficiently computing those parallelism through hard-

ware techniques [43, 44, 45] or compiler transformations [46, 47, 48]. Depend-

ing on techniques, performance might vary significantly. Also, the current

dynamic parallelism only allows a certain type of nested parallelism, instead

of general, native nested parallelism.

12

2.1.4 Resource Constraints

As technology scales, generations of devices come out with different (often

increasing) hardware resource sizes and quantities. The size of a resource

impacts the tuning of a program in many ways. For example, the optimal

loop-tiling factor is usually dependent on the size of a cache, so a larger

cache necessitates re-picking the loop tile size. In a GPU, the maximum

occupancy of work-items and work-groups on compute units changes across

devices, which impacts the optimal work-group size.

Referring back to the results in Figure 2.2, it is evident that within the

same tiling strategy, the tuning parameters have a great impact on perfor-

mance. For both tiling strategies, different devices have different optimal

tuning parameters, thus no size fits all. The Tesla-tuned kernels underutilize

the maximum occupancy on Fermi (< ¯, ± < ³). On the other hand,

the Fermi-tuned kernels perform very badly on Tesla because they demand

more resources than actually exist which results in register spilling (Ì < Ê,

Ð < Î).

A common way to deal with variation of resource size is through param-

eterizing variables that are impacted by the resource size and autotuning

those variables at compile time or runtime. Plenty of work has been done

on autotuning and search space pruning [49, 50, 51]. However, for a general

program, it could be challenging to identify possible variables as parameters,

which could be made easier via annotation.

2.1.5 Special Instructions

Some devices provide special instructions to accelerate common computation

patterns. These differ across device types and generations. The aforemen-

tioned native scratchpad atomics introduced in Maxwell GPUs is an example

of such instructions. Other examples include AVX instructions introduced

in Sandy Bridge CPUs and shuffle instructions introduced in Kepler GPUs.

One way to handle special instructions is for the compiler to automatically

detect common computation patterns and replace them. Some compilers

have the ability to detect and replace basic patterns like memory copies, but

this approach is not generally applicable due to provability issues. Another

approach to handle special instructions is by hiding them behind functions

13

or language constructs that represent common computation patterns. For

example, CEAN [52] is a language extension that enables higher-level ex-

pression of vector operations and relies on the compiler to generate SSE,

AVX, or serial code depending on what is available, feasible, and efficient.

Finally, some instructions may enable completely different algorithms, which

requires more general approaches discussed in the next subsection.

2.1.6 General Approaches

Each technique listed so far handles a specific category of architectural dif-

ferences. A more general approach to performance portability is using li-

braries of basic data structures and algorithms with algorithm and imple-

mentation selection. In this approach, the programmer writes the program

using basic computational patterns as building blocks. Programming sys-

tems [53, 28, 29, 54, 55] then select the implementation of the pattern that

best matches the target device. The alternate implementations can be man-

ually or automatically generated and can differ by implementing different

algorithms or different combinations of the techniques in this section applied

to the same algorithm.

Algorithm selection can vary in power and flexibility. Computation pat-

terns can be built into the compiler, provided by a library, or defined by the

user via a special interface. Selecting between algorithms can be done based

on static analysis, static profiling, or dynamic profiling. When source code

for the implementation is available, it can be inlined and optimized by the

compiler.

2.1.7 Summary of Challenges and Techniques

A summary of the concepts in this section can be found in Table 2.1. In

the next section, many of these challenges and techniques are discussed in

multiple portable languages.

14

Table 2.1: Overview of Performance Portability Challenges and Techniques

Differences Specific Techniques General Techniques

Granularity of Parallelism
Over-decomposition

and coarsening

Basic algorithm libraries
Algorithm selection

Memory Characteristics
Auto data placement

Locality-aware scheduling
Levels of Hierarchy Nested parallelism

Resource Constraints Autotuning

Special Instructions
Language abstraction
Pattern replacement

2.2 Current Status of Portable Languages

Multiple languages have been proposed as a portable parallel language over

multiple variants of computing devices. Here, only mainstream and general-

purpose languages are discussed in detail, while some noteworthy domain-

specific, mobile-platform, or in-progress languages are briefly mentioned in

Section 2.2.5.

2.2.1 OpenCL

OpenCL is the most popular portable language. It is a low-level language,

and requires most optimizations to be expressed in kernels by programmers

for achieving performance on most devices. Although this design might

limit performance, there are still several existing techniques incorporated

in OpenCL, benefitting performance portability.

OpenCL adopts a fine-grained thread-level programming model, which na-

tively provides the functionality of over-decomposition. Most OpenCL com-

pilers provide some capabilities of coarsening for CPUs, and few or none for

GPUs. In terms of techniques for memory, some recent studies [16, 19, 36, 37]

incorporated data placement or locality-aware scheduling into OpenCL, while

most vendor compilers do not include these techniques. In terms of hierar-

chy, OpenCL natively provides a fixed three-level hierarchy, which perfectly

fits the current GPUs and applies extra coarsening/serialization to adapt

CPUs. For programs with more nested parallelism, dynamic parallelism can

be applied for GPUs with hardware techniques [43, 44, 45] or compiler trans-

formations [46, 47, 48] to deliver reasonable performance. However, for ar-

chitectures with more levels of hierarchy, OpenCL might still have limited

15

performance. In terms of techniques for resources, most OpenCL compilers

provide no such capability. Recent studies [56, 57] proposed such resource

management techniques (in CUDA) for GPUs but required either source code

or hardware modification. In terms of special instructions, vendor OpenCL

compilers might provide some capabilities for their own SIMD instructions.

For common primitives, SyCL [58] introduces group-class primitives to bridge

performance gaps across OpenCL devices, but it is still in progress. In al-

gorithm selection, OpenCL adopts monolithic expression for kernels, which

might limit such support.

As mentioned, OpenCL, as the most popular portable language, has re-

ceived tremendous hardware and software support. However, as shown in

Figure 1.1, the performance portability OpenCL can deliver is still limited.

The key reason is that the fixed three-level hierarchy in OpenCL is too GPU-

oriented. That might drive entire codebase design biased to GPUs, and

eventually limits performance portability to other devices.

2.2.2 C++AMP

C++AMP is a language designed to support data-parallel computation in

accelerators, like GPUs, in C++. It relies on concurrency APIs, such as

parallel for each, to label data-parallel code regions, and another keyword

restrict to specify a region (or a function) to the device where it executes.

Different from OpenCL, C++AMP provides a monolithic interface unifying

host and device code. Also, C++AMP provides an implicit interface for

memory space.

For a data-parallel region, C++AMP adopts fine-grained thread-level pro-

gramming model through lambda expressions. Therefore, it natively provides

the functionality of over-decomposition. Similar to OpenCL, its compilers

typically provide some capabilities of coarsening for CPUs, and few or none

for GPUs. In terms of techniques for memory, C++AMP relies built-in con-

tainers, such as array view and index, and tiling APIs to provide hints for

data placement. One exception is texture, which requires an explicit key-

word. In terms of hierarchy, C++AMP relies on parallel for each, which

natively implies a two-level hierarchy. The keyword parallel for each im-

plies independent tasks, which potentially can be scheduled freely in a multi-

16

level hierarchy. Meanwhile, the built-in tiling APIs can further extend its

support to three-level devices, such as GPUs. However, since the perfor-

mance of C++AMP programs seems sensitive to tiling for GPUs, that im-

plies code written for GPUs requires serialization/coarsening for CPUs. It

also implies possible performance issues for architectures with more levels of

hierarchy. C++AMP compilers do not have its own techniques for resource

management. For special instructions, C++AMP might have a limited sup-

port, due to no direct support from hardware vendors. Some C++AMP

compilers with source-to-source translation could take advantage of backend

compilers. Finally, so far, there is no direct support in common primitives

or algorithm selection.

In general, C++AMP provides higher-level language features than OpenCL,

and can potentially deliver better performance portability. Similar to OpenCL,

its main limiting factor is still the support for hierarchy. Different from

OpenCL, codebase of C++AMP might not be entirely biased to GPUs.

However, code written by programmers still requires explicit optimizations

(mainly through tiling) for gaining performance of either CPUs or GPUs.

This coding behavior eventually limits performance portability.

2.2.3 OpenMP

OpenMP is a language originally designed for CPU multithreading, and it

gets extended for GPUs and other architectures. OpenMP relies on pragmas

to annotate code regions for parallelism. Here data parallelism is mainly

discussed.

For a data-parallel region, a fine-grained thread-level model is also used.

Coarsening can be further controlled through schedule annotation. In terms

of techniques for memory, OpenMP relies on sophisticated analyses with help

of data-sharing attribute clauses, such as shared. In terms of hierarchy,

OpenMP natively supports a two-level of hierarchy, threads and a range of

threads. With the newly introduced teams construct, one extra level can be

added for GPUs. In terms of resources, OpenMP provides some degree of

flexibility for the number of threads (and the size of teams); the runtime or

compiler can determine these sizes. For special instructions, OpenMP might

have some degree of supports from hardware vendors. Finally, so far, there

17

is no direct support in common primitives or algorithm selection.

Commonly, the performance of an OpenMP program is very sensitive to

its annotation. In order to get good performance, different sets of annota-

tions are required for different devices, or a single set of annotations with

different conditions. In the end, no true performance portability is achieved

in OpenMP.

2.2.4 OpenACC

OpenACC is a language designed for data-parallel computation in accel-

erators using annotation like OpenMP. It also uses pragmas to annotate

code regions for data parallelism. In terms of discussion related to per-

formance portability, OpenACC is very similar to OpenMP. Compared to

OpenMP, OpenACC provides more detailed annotation for loops and data

placement. Meanwhile, OpenACC typically has better support in (NVIDIA)

GPUs. OpenACC also has limitations similar to those of OpenMP, though

it provides better performance.

2.2.5 Other Languages

Here, multiple noteworthy domain-specific, mobile-platform, or in-progress

languages are briefly covered. Only main techniques and possible limita-

tion are discussed for each language. Composition-based languages, such as

NESL [40], Sequoia [59] and Petabricks [55], are discussed in Chapter 4.

Halide [60] is a domain-specific language in C++ for digital image pro-

cessing. It adopts most existing techniques discussed in Section 2.1, such

as coarsening, auto data placement, locality-aware scheduling, autotuning,

and pattern replacement. Particularly for levels of hierarchy, most image

processing algorithms have huge independent tasks, which can be arbitrarily

scheduled and fitted in a multi-level hierarchy. Though Halide does not pro-

vide any functionality of common algorithm library or algorithm selection,

its huge number of scheduling choices already provide huge design space for

performance portability. Finally, Halide heavily relies on autotuning for se-

lecting the best design.

Surge [28, 29] is a language in C++ for tunable bested data parallelism. It

18

strongly relies on collective primitives. Each primitive has multiple schedules

for different levels of hierarchy and tunable parameters. Although general

algorithm selection is not applicable in Surge, each built-in primitive could

support algorithm selection in its own, Surge applies autotuning (through a

machine learning strategy) for selecting the best design.

Parallel Standard Template Library (Parallel STL) [61] is an in-

progress built-in library in C++17. It provides a set of parallel templates,

which are potentially performance portable across devices. Similar to Surge,

each template could have multiple implementations for different levels of

hierarchy and tunable parameters. Potentially, compilers could fuse these

templates properly and autotuners can select the best design.

RenderScript [62] is a mobile-platform language for Android systems.

Compared to OpenCL, which might support some mobile devices, Render-

Script typically provides better performance for mobile platform. Although

RenderScript provides single-source portability with better performance than

OpenCL, RenderScript does not support device selection for programmers.

It is clear RenderScript can deliver reasonable degrees of performance porta-

bility, but it is difficult to measure its performance portability.

RenderScript does not provide details of its optimization techniques. Since

its script (similar to a kernel in OpenCL) is expressed in a fine-grained thread-

level model, coarsening most likely is applied. In order to utilize mobile GPUs

efficiently, some techniques for memory management could exist.

2.2.6 Summary of Languages and Techniques

A summary of the major languages in this section can be found in Table 2.2.

In the next few chapters, I discuss how TANGRAM integrates many of these

techniques into a single framework, enables them with language extensions,

and manages interactions among them.

19

Table 2.2: Overview of Languages and Techniques

Types of Techniques OpenCL C++AMP OpenMP OpenACC
Granularity of Parallelism 3 3 3 3

Memory Characteristics 4 3 3 3

Levels of Hierarchy †
Resource Constraints ∗ ∗∗ ∗∗
Special Instructions � � � �

Basic algorithm libraries 1 2 2

Algorithm selection
3Support. 4Through third-party techniques.
†Through coarsening and dynamic parallelism with third-party techniques.
∗Only for work-item sizes. ∗∗Only for threads.
�It depends on the compiler. 1Through SyCL. 2Only for reduction pragma.

20

CHAPTER 3

TANGRAM OVERVIEW

In the previous chapter, multiple challenges, existing techniques, and status

of current portable languages were discussed. In this chapter, impact of

the above is discussed, in terms of programmers’ problems-solving processes.

Further, that process leads to the design of the TANGRAM programming

system, and how TANGRAM integrates many existing techniques into a

single framework, enabling them with language extensions, and managing

interactions among them.

3.1 Conventional Problem-solving Process

A typical process for solving a real-world problem on a computing system re-

quires multiple steps. Figure 3.1 summarizes such steps and translates them

into levels of abstraction and corresponding tasks for solving real-world prob-

lems on computing systems [22]. A problem typically can be translated to

a set of reasonable algorithms by domain specialists. Given a computer sys-

tem, the problem can be further mapped into one or a few specific algorithms

through particular algorithmic consideration, such as their algorithmic com-

plexity or corresponding efficiencies on the target system. Then, the algo-

rithm can be translated into a piece of software containing one or multiple

computing functions or kernels. Each of these functions or kernels in software

could involve multiple optimizations, which could be performed manually by

programmers or automatically by a compiler. A boundary between manual

and automatic tasks typically happens between the software and compilation

levels. Depending on the programming language and the compiler, manual

or automatic optimizations could vary. After compilation, the software can

execute in a particular computer system.

In general, the computer systems might impact the compiler optimizations,

21

Problem	

Algorithm	

So/ware	

Computer	System	

Compila7on	

Algorithm	Selec7on	

Func7onal	Decomposi7on	

Op7miza7on:	
Tiling,	Data	Placement,		

Data	Layout,		
Vectoriza7on,	etc.	

SIMD	Execu7on,		
System-specific	Libraries,	

Scheduling,	etc.	

M
an

ua
l

A
ut

om
at

ic

Figure 3.1: Conventional Problem-Solving Abstraction Hierarchy and
Corresponding Tasks: At left are levels of abstraction translating a problem
into a computational solution. At right are tasks associated with their level
of abstraction where they are typically addressed, and a typical boundary
between manual and automatic tasks.

the code expression (including manual optimizations) in software, and even

the choices of algorithms. The compiler optimizations are highly related to

performance portability [22]. Given a precise algorithm, the code expres-

sion is also highly related to the language and the compiler, since coding

typically requires the interaction between the programmer and the compiler.

As discussed in the previous chapter, different portable languages with corre-

sponding compilers might deliver different code expression, leading to various

degrees of performance portability. This kind of differences is also a common

consideration for programmers’ choices of programming languages.

Compared to the former two, the choices of algorithms are typically re-

lated to the programmers’ understanding of the computer systems, and/or

the programmers’ consideration for performance portability. For example,

given a single-core sequential system, there is no reason for a skilled pro-

grammer selecting a parallel algorithm with possibly higher overheads over

a sequential algorithm, unless he/she expects this program will be ported

to another parallel system. After all, eliminating overheads of a parallel

algorithm executing on the single-core sequential system is not trivial.

22

3.2 Design Space and Performance Portability

The problem-solving process in Figure 3.1 can be considered as a narrowing

process of a design space. When algorithms are selected by the programmer,

the design space is limited to one particular set. When a particular algorithm

is coded in a language, its design space gets narrowed down. When manual

optimizations are introduced, the design space shrinks further. Compilation

and then execution for a computer system eventually reduce the design space

into one specific design point.

Given a problem and corresponding written code in a particular language,

a design space S is defined as a set of all possible transformed versions. Since

code transformations happen in compilers, and different compilers could de-

liver different code transformations, the design space becomes a function of

a compiler. In order to rule out the effect of compilers in this analysis, we

can redefine a design space S as a set of all possible transformed versions

among all possible compilers. We can also define SX as the design space for

the code written for the computer system X, and SU as the universal set

of design space for all possible machines. Then, we further define PX|S as

the best version in the design space S with a particular kind of performance

measurement M , assuming the higher is the better, on the computer system

X:

PX|S = arg max
p∈S

MX(p),

and PX as the optimal point in the SU :

PX = PX|SU
.

By the definition, PX can deliver performance better than or equal to PX|SX

on the system X:

MX(PX) ≥MX(PX|SX
) ≥MX(P ′X|SX

),

where P ′X|SX
is defined as the final selected version. Since SX represents the

code written for the system X, MX(PX|SX
) should be reasonably close to

MX(PX), and MX(P ′X|SX
) should be also very close to MX(PX|SX

), if the

programmer performs the problem-solving process properly.

When the code with the design space S (regardless it is written for X) is

23

ported to another system Y , PY |S can be considered as the best version the

system can achieve:

MY (PY |S) ≥MY (PX|S).

Also, P ′Y |S can be defined as the selected transformed version:

MY (PY |S) ≥MY (P ′Y |S).

Typically, if transformations are profitable, we should follow:

MY (P ′Y |S) ≥MY (P ′X|S).

By the definition, PY performs better than PY |S on Y :

MY (PY) ≥MY (PY |S).

Here, we further define (absolute) performance portability (from X) to Y as

follows:

Perf PortY (S) = MY (P ′Y |S)/MY (PY) ≤ 1.

It has an upper bound:

Perf Port BoundY (S) = MY (PY |S)/MY (PY) ≤ 1.

In general, PY might not be in S, so performance portability could not get

close to 1.

Note X are not involved in the above two equations. Here, the design space

S is determined by the written source code, and our definition of performance

portability is only based on the design space S, not the machine X. However,

since the source code is written for the machine X, its design space S should

be highly biased to the machine X. This bias becomes the major limiting

source for performance portability

Depending on the difference between P ′Y |S and PY |S and whether PY is in

the design space S, performance portability could vary. The former implies

the code transformation from the compiler, while the latter comes from the

design space, which is highly related to either the written code or even the

programming language. It is obvious the code defines the design space. On

the other hand, the impact of the language is not that straightforward. Given

24

a mainstream portable programming languages, such as OpenCL or OpenMP,

the programmers might not easily express all of the algorithmic consideration

for all various devices. A classic example is that code written in an older

version of OpenMP, which only considers two levels of hierarchy for multicore

CPUs, cannot perform well on manycore GPUs, without introducing a new

teams features for three levels of hierarchy. Even with the newest OpenMP

or OpenCL, a possible device with four levels of hierarchy could fail to exhibit

performance portability.

Figure 3.2 summarizes the relationships among these design points and the

design space S. Here, PY is the optimal point users desire, while P ′Y |S is really

the final transformed version. The performance difference between P ′Y |S and

PY reflects performance portability for the system Y . In this illustration, PY

is not achievable, since it is out of the design space S. Without expanding the

design space, the gap between P ′Y |S and PY cannot be completely removed.

On the other hand, PY |S represents the best version in the design space S.

The difference between P ′Y |S and PY |S (and also between P ′X|S and PX|S)

implies the capability of a compiler for performance optimizations. This gap

can be removed by improving the compiler.

Design space S

Design space SU

P’X|S

PY

P’Y|S

PY|S

PX|S

Figure 3.2: Illustration of Relationships among Different Design Points

The coverage of a design space is defined as the cardinality (or size) of

the given design space S over that of the universal design space U :

Coverage(S) = |S|/|U |.

Here the cardinality of design space is defined as the cardinality of trans-

25

formed versions from a single codebase in the given programming language.

Multiple programming systems [53, 28, 29, 54, 55], as discussed in the pre-

vious chapter, provide some degree of support for improving the coverage of

an algorithmic design space to bridge possible performance gaps. In order

to expand the algorithmic design space, most of them rely on either fixed,

implicit functional compositions with built-in libraries, primitives, or spe-

cific rules in a domain, or flexible, explicit compositions with new language

features. These features inspire me to design a programming system, in-

cluding defining a new programming language, to natively support effective

expression of an algorithmic design space.

3.3 TANGRAM Programming System

Algorithmic	Decomposi0on,	
Design	Space	Expression	

Problem	

Algorithmic	Design	Space	

So9ware	

Computer	System	

Compila0on	

Algorithmic	Composi0on,	
Func0onal	Decomposi0on,	

Code	Synthesis	

Op0miza0on:	
Tiling,	Data	Placement,		

Data	Layout,		
Vectoriza0on,	etc.	

SIMD	Execu0on,		
System-specific	Libraries,	

Scheduling,	etc.	

M
an

ua
l

A
ut

om
at

ic

Figure 3.3: TANGRAM’s Problem-Solving Abstraction Hierarchy and
Corresponding Tasks: Red, bold-line boxes are different parts from the
conventional one.

I present TANGRAM, a kernel synthesis framework that generates highly

optimized architecture-specific kernels. TANGRAM is designed to achieve

performance portability through the following methods:

1. a modular, composition-based programming language that can effec-

tively express a design space with high coverage of implementations

26

2. a compiler that can effectively explore the design space and facilitate

many high-level optimization techniques, described in Section 2.1

In the TANGRAM system, programmers directly express algorithmic de-

sign space by writing the proposed high-level language (the TANGRAM lan-

guage). The language is designed for effective expression of design space

through algorithmic decomposition by programmers with the domain knowl-

edge. The TANGRAM compiler then performs design space exploration to

select a proper algorithmic structure and implementation, and synthesizes

the software with proper high-level optimizations.

GPU	A	CPU	B	 GPU	B	

GPU	A	
Code	

CPU	A	

CPU	A	
Code	

CPU	B	
Code	

GPU	B	
Code	

Source	
Code	

Compiler	

FPGA	

FPGA	
Code	

…	

Figure 3.4: Big Picture of TANGRAM for Various Devices

It is not trivial to introduce native support for effective expression of design

space. It might change the problem-solving process in Figure 3.1. Figure 3.3

shows the refined version of problem-solving abstraction for TANGRAM.

Different from the conventional levels of abstraction, a level of algorithmic

design space is introduced to replace conventional level of algorithm. Instead

of manually choosing the proper algorithms for a given computer system,

programmers express the generic algorithmic design space and rely on the

TANGRAM compiler to guide selection for the proper algorithms. Depend-

ing on target devices, different output languages/programming models could

27

be used in the level of software, and corresponding backend compilers in the

level of compilation are applied for low-level optimizations.

We argue our refined problem-solving abstraction does not increase com-

plexity for solving a problem compared to the conventional abstraction. In

the conventional problem-solving abstraction, programmers are still required

to consider algorithmic alternatives in their mind and then make a choice be-

fore the software stage. The refined abstraction simply requires programmers

to encode their consideration in a certain language.

Figure 3.4 illustrates the big picture of TANGRAM’s workflow for vari-

ous devices. A single copy of input source code written in the TANGRAM

language defines the design space for a computation pattern in a given ap-

plication. Given a device, the TANGRAM compiler further explores the

design space and synthesizes one or few kernels. Input source code of the

TANGRAM system natively presents a design space, instead of a specific

code expression for a machine in conventional programming systems. This

strategy potentially can deliver better performance portability.

Source	
Code	

Compiler	

Target		
Device	

Target	
Code	

Hardware	
Abstrac9on	

Figure 3.5: TANGRAM’s Workflow

Figure 3.5 zooms in and shows the workflow for each device. In the TAN-

GRAM’s system, source code is written in TANGRAM language, which will

be defined in Chapter 4. Additionally to input source code, hardware ab-

straction is given to the compiler for “understanding” the device, and further

28

guiding design space exploration. In TANGRAM, hardware abstraction en-

codes information of architectural hierarchy. It is based on a key observation

that the algorithmic structure of a program is highly sensitive to the archi-

tectural hierarchy of a device. Each device typically has its own hardware

abstraction. The detailed discussion is given in Chapter 5. Most key mech-

anisms of the TANGRAM system are discussed in the next two chapters.

Finally, the TANGRAM compiler is discussed in Chapters 6 and 7. Different

from Chapters 4 and 5, which focus on the design and theory, Chapters 6

and 7 cover the implementation details.

3.3.1 Focus of TANGRAM System

The TANGRAM system focuses on language and compiler support for per-

formance portability, and relies on a user-defined design space and hardware

abstraction to guide code generation for a highly optimized version. How-

ever, in general, given an application and an architecture, the optimal version

could depend on runtime information, such as input data distribution, data

sizes, resources consumed by co-running applications, or memory which are

not accessible statically. Our previous work, DySel [63], is proposed to resolve

the above issue by dynamically sampling the performance metrics and then

switching versions. Multiple runtime-based approaches [36, 64, 65, 66, 67, 68]

also provide the similar functionality to migrate the issue through either per-

formance models or online learning. Although TANGRAM itself does not

include runtime, it can work with every existing method, including DySel.

Even with a robust runtime that provides lightweight performance moni-

toring and version switching, a programming system still requires language

and compiler support to effectively generate highly optimized versions for

switching. TANGRAM is proposed to serve that purpose.

29

CHAPTER 4

TANGRAM LANGUAGE

In the previous chapters, the relationship between a design space and its

performance portability was discussed. The discussion also briefly included

the possible impact from the existing language. In this chapter, the detailed

relationship between design space and language design is discussed. The

design of the TANGRAM language is further defined for effective expression

of a design space with high coverage to support performance portability.

4.1 Design Space and Language

In terms of the design space, there are two important factors, coverage

and ease of expression, for a programming language. As mentioned in

Section 3.2, the coverage of a design space is defined as the cardinality of

transformed versions from a single codebase in the given programming lan-

guage. Given a language, code might be written in multiple ways, which

might deliver different degrees of coverage. In order to define the coverage

factor of a language L, the limit superior (or upper bound) is applied. That

implies Coverage(L) is defined as the best Coverage(S) among all possible

single-source code written for a particular application.

On the other hand, the ease of expression factor typically implies lines of

code for expressing a given design space. In mathematics, a space is defined

as a set. Here, a design space can be considered as a countable set, which can

be either expressed through listing all of its elements or constructed through

rules. A systematic construction is highly important for effective expression

for a design space. For example, linear combination is used to effectively

construct a linear span (which is a vector space) of vectors in another vector

Parts of this chapter appeared in the International Symposium on Microarchitec-
ture [69].The material is used with permission.

30

space. Figure 4.1 shows an example of linear combination to construct a

set containing positive integer pairs (red dots) in 2D Cartesian coordinate

system. The set can be expressed by listing all possible points:

S = {(0, 0), (2, 1), (1, 2), (4, 2), (3, 3), (2, 4), ...}.

Alternatively, the set can be also expressed by linear combination:

S = {v|v = a ∗ (2, 1) + b ∗ (1, 2), where a, b ∈ N0}.

Considering this set contains infinite elements, that makes the second method

more effective. Similar to this example, in most situations, a design space

may contain infinite design elements, making listing impossible, so it requires

a set of compositions to effectively express a space.

y

x

…

Figure 4.1: Example of Linear Combination

4.1.1 Composition-based Language

Similar to linear combination, composition-based languages [40, 59, 55] or

libraries [50, 70] are widely applied to effectively express a program through

modules. Typically, modules are defined through decomposing a program to

patterns and identifying the reusable ones. Functions or kernels within a

program can be composed by combining proper modules.

31

Multiple composition-based methods enable functional polymorphism, which

support different implementations or algorithms in the same module. In func-

tional polymorphism, the invoked version can be determined by the program-

mer, the compiler, the autotuner, or the runtime. Most automatic methods

can deliver effective expression with reasonable coverage for the design space

of a given single-source codebase.

Compared to listing all possible design elements, composition-based lan-

guages generally require an extra step to combine modules. Depending on the

method determining the invoked version, it could increase the complexity of

compilation, profiling, or runtime. Also, this step could introduce potential

overheads, degrading reachable performance.

TANGRAM adopts composition-based languages, and applies compiler-

based methods to determine invoked modules, and further inlines modules to

reduce the invocation overhead. Multiple language features are introduced to

improve coverage of design space over existing languages and the capability of

the compiler to facilitate both compile-time composition and optimizations.

4.2 TANGRAM Language Design Objectives

The TANGRAM language is built on top of one key observation that a

highly optimized parallel program can be decomposed into multiple simple

building blocks, each of which can be frequently applied across data (data

parallelism), and/or reusable within the same program and its transformed

versions across different devices. The TANGRAM language is designed to

support performance portability with the following key objectives:

1. Express equivalent computations interchangeably to expose algorithmic

choice and expand design space

2. Express compositions and computations interchangeably to best fit dif-

ferent devices

3. Provide tuning knobs

4. Express data parallelism

5. Ease the analysis of data flow and memory access patterns and the

transformation of memory accessing logic

32

In TANGRAM, the programming model is built around modules called

spectrums and codelets. A spectrum represents a unique computation with a

defined set of inputs, outputs, and side effects. A codelet represents a specific

implementation of a spectrum. A spectrum can have many codelets that

implement it. These codelets all have the same name and function signature,

but can be implemented using different algorithms or the same algorithm with

different optimization techniques. With multiple codelets in a spectrum, the

design space of this spectrum can be further extended. The interchangeability

of the codelets in a spectrum provides functional polymorphism and serves

Objective 1.

A0	 A1	 A2	 A3	

1	 1	 1	 1	

A0+1	 A1+1	 A2+1	 A3+1	

+ + + +

= = = =

x+1	

x	

1	

+

=

F(x):=

map(F, A[0:3])

(b) Autonomous codelet

x0	 x1	 x2	 x3	

x1	 x0	 x1	 x2	

F(x[0:3]):=

+ + + +

A0	 A1	 A2	 A3	

A1	 A0	 A3	 A2	

A0+A1	 A1+A0	 A2+A3	 A3+A2	

+ + + +

= = = =

F(A[0:3])

(a) Cooperative codelet

Figure 4.2: Vectorization for Cooperative and Autonomous Codelets

Codelets are classified into compound and atomic codelets. Compound

codelets compose work by invoking primitives and other spectrums (includ-

ing their own). Atomic codelets are self-contained: they compute without

further decomposing work or invoking other spectrums. Particularly, recur-

sive compound codelets provide capability to variable levels of composition

that best fits different devices. The interchangeability of compound and

atomic codelets serves Objective 2. Atomic codelets are further classified

33

into autonomous and cooperative codelets. Computations in autonomous

codelets are oblivious to other lanes in the same data parallel computation,

whereas computations in cooperative codelets can explicitly exchange data

with other lanes.

Both autonomous and cooperative codelets can enable vectorization. Fig-

ure 4.2 illustrates vectorization in these two kinds of codelets. While au-

tonomous codelets require map primitives (discussed in Table 4.2) to enable

vectorization, cooperative codelets directly express data exchange within vec-

torization.

4.2.1 Function and Data Qualifiers

Table 4.1: Function and Data Qualifiers

Qualifier Description
codelet Designates that a function declaration is a spectrum, or a function definition is a codelet
coop Designates that a codelet is a cooperative codelet

shared Designates that a variable is shared across lanes of a cooperative codelet
tunable Designates that a variable can be tuned

tag Designates the codelet’s tag (optional, useful for debugging)
env Designates which device(s), if a codelet is specific to a particular device(s)

Table 4.1 summarizes key qualifiers for spectrums, codelets and data in the

TANGRAM language. The codelet qualifier is used to designate function

declarations as spectrums and function definitions as codelets. The coop

qualifier labels cooperative codelets and the shared qualifier labels data

structures that are shared by all lanes of a cooperative codelet. The shared

qualifier provides hints for caching and SIMD intrinsics. This shared qual-

ifier is different from the shared memory in CUDA. The data structure can

be placed in global memory, shared memory in CUDA, or registers with

shuffle instructions in SSE/AVX/CUDA. The tunable qualifier annotates

parameters that the compiler can tune serving Objective 3. Through this

annotation, the compiler can recognize tunable variables and further enable

parameterization based on the granularity of the scheduling, the tiling factor,

vector size, and cache line size of the target architecture. The tag qualifier

is used to distinguish different codelets with the same function signature

in debugging. The env qualifier is optional to enable the user to write

device-specific codelets for overcoming the current limitation of the TAN-

GRAM compiler. It can either enable a codelet using an assembly language

34

for a particular device or disable a certain codelet that is written under an

architectural assumption. This qualifier is not intended as the main usage

model but is included for completeness. The results we report do not use

this feature, but we provide users with the option of using it if they wish

(particularly if they want to write device-specific intrinsics or assembly).

4.2.2 Data Manipulation and Parallel Primitives

Table 4.2: Data Manipulation and Parallel Primitives

Primitives Description
map(f, c) Returns a container where each element results from applying spectrum

f to each element in container c
partition(c, n, start, inc, end) Returns n sub-containers ci of c where ci goes from start[i] to end[i] with

increment inc[i]
sequence(a) Returns an integer sequence of the value of a (argument to partition)

sequence(start, inc, end) Returns a sequence of integers from start to end with increment inc
(argument to partition)

sequence(c, start, inc, end) Returns a sequence of integers from values of c at indexes start to end
with increment inc (arg. to partition)

Array<n, type> A n-dimensional container of values of type type

The TANGRAM language comes with several built-in primitives listed in

Table 4.2. A map primitive is used to express data parallelism by applying a

codelet to all elements of a data container, serving Objective 4. This prim-

itive is crucial to enable multithreading and vectorization with autonomous

codelets. The partition primitive is used to express the pattern used for

data partitioning. The three sequence primitives are used as arguments to

partition to express different patterns. These primitives along with the

Array container are used to facilitate memory access and data flow analysis

serving Objective 5.

4.3 Code Example

Figure 4.3 shows an example of four codelets implementing a spectrum for

computing a summation. All codelets have the same function signature and

are marked with the codelet qualifier. Figure 4.3(a) shows an atomic

autonomous codelet where each lane performs the summation sequentially.

Figure 4.3(b) shows an atomic cooperative codelet with the coop qualifier

that performs a tree-based summation among lanes of parallel execution.

35

The codelet contains multiple variables and arrays that are shared across

the lanes and are marked with the shared qualifier. Special functions

coopIdx() and coopDim() are used to obtain the lane ID and the width of

the cooperative codelet respectively.

__codelet		
int	sum(const	Array<1,int>	in)	{	
		unsigned	len	=	in.size();	
		int	accum	=	0;	
		for(unsigned	i=0;	i	<	len;	++i)	{	
				accum	+=	in[i];	
		}	
		return	accum;	
}	

(a) Atomic autonomous codelet

__codelet	__coop	__tag(kog)	
int	sum(const	Array<1,int>	in)	{	
		__shared	int	tmp[coopDim()];									
		unsigned	len	=	in.size();	
		unsigned	id	=	coopIdx();	
		tmp[id]	=	(id	<	len)?	in[id]	:	0;	
		for(unsigned	s=1;	s<coopDim();	s	*=	2)	{	
				if(id	>=	s)	
						tmp[id]	+=	tmp[id	-	s];	
		}	
		return	tmp[coopDim()-1];	
}	

(b) Atomic cooperative codelet

__codelet		__tag(asso_tiled)		
int	sum(const	Array<1,int>	in)	{	
		__tunable	unsigned	p;	
		unsigned	len	=	in.size();	
		unsigned	tile	=	(len+p-1)/p;	
		return	sum(map(sum,	partition(in,	
						p,sequence(0,tile,len),sequence(1),sequence(tile,tile,len+1))));	
}	

(c) Compound codelet using adjacent tiling

(d) Compound codelet using strided tiling

__codelet	__tag(stride_tiled)		
int	sum(const	Array<1,int>	in)	{	
		__tunable	unsigned	p;	
		unsigned	len	=	in.size();	
		unsigned	tile	=	(len+p-1)/p;	
		return	sum(map(sum,	partition(in,		
						p,sequence(0,1,p),sequence(p),sequence((p-1)*tile,1,len+1))));	
}	

Figure 4.3: Codelet Examples for a sum Spectrum

Figures 4.3(c) and 4.3(d) show compound codelets using different tiling

strategies. They both contain a tunable variable p that controls the number

of partitions in the recursive call. In Figure 4.3(c), the array is partitioned

into adjacent contiguous tiles that start tile elements apart and have an

internal stride of one. Such a partitioning is suitable for distributing data to

workers with different caches such as different CPU threads or GPU thread

blocks. In Figure 4.3(d), the array is partitioned into interleaved tiles that

are staggered to start one element apart and have an internal stride of p.

Such a partitioning is suitable for distributing data to workers that execute

36

together and in the same cache such as CPU vector lanes or GPU threads.

4.4 Recommended Programming Workflow

As discussed in Figure 3.3, in a typical TANGRAM workflow, programmers

identify the main computations in a program and declare a spectrum for

each. Programmers are encouraged to write an autonomous codelet for each

spectrum then a straightforward decomposition. After that, programmers

can revise the spectrum by exploring alternative algorithms and decompo-

sitions. Adding new codelets is the main venue for improving the achieved

performance on existing and new processors. For example, one could add

a new atomic codelet to the sum spectrum in Figure 4.3 that uses atomic

read-modify-write operations to accumulate the element values into a shared

accumulator variable. This codelet may be more efficient than the codelet

in Figure 4.3(b) if the processor supports very high-bandwidth execution of

atomic read-modify-write operations.

In TANGRAM, each codelet is intended to represent a fundamentally dif-

ferent algorithm or composition. Thus, it is unlikely that there will be more

than a handful of atomic codelets in each spectrum. We do not expect the

number of codelets to increase significantly over the lifetime of the code base.

4.5 Comparison of Related Composition-based

Languages

As discussed in Section 4.1.1, multiple composition-based languages have

attempted to deliver both high coverage and easy expression for a design

space. In this section, multiple noticeable composition-based languages are

compared with the TANGRAM language in terms of language features for

performance portability. Here, we mainly discuss the language features, un-

less a compiler feature merits mention. Multiple noticeable related libraries

and languages internally with composition capabilities will be also mentioned

and compared.

NESL [40] provides explicit composition capability with multiple inter-

changeable computations, similar to TANGRAM. Its composition is mainly

37

driven through problem (input and/or output) sizes expressed by program-

mers, while TANGRAM’s composition is commonly with tunable qualifiers

and mainly driven through the compiler. In general, NESL has no perfor-

mance tuning functionality, while TANGRAM natively supports performance

tuning through tunable qualifiers and parameterization. NESL provides

not only data manipulation/parallel primitives, but also computation prim-

itives, such as scan and reduce, while TANGRAM only provides data ma-

nipulation and parallel primitives. In terms of vectorization, NESL relies on

auto-vectorization and computation primitives, while TANGRAM provides

auto-vectorization plus cooperative codelets for natively expressing sophisti-

cated vector algorithms.

Sequoia [59] relies on compositions mainly for adapting memory hierar-

chies across architectures. Similar to TANGRAM, in Sequoia, programmers

describe inner tasks for composition rules and leaf tasks for leaf computation

of the lowest hierarchy. Multiple hierarchies can be adapted by iterating

inner tasks recursively. Sequoia also provides tunable keywords for both pa-

rameter tuning and compositions. In terms of languages, the major difference

between Sequoia and TANGRAM is the cooperative codelet for natively ex-

pressing vector algorithms. Without native support for vector algorithms,

Sequoia might not express a design space well in some applications.

Petabricks [55] applies compositions for algorithmic design space search.

Given a problem, different problem (input and/or output) sizes might prefer

different algorithms. Compositions can simplify design space search through

dynamic programming and also enable parallelism. Although Petabricks and

Sequoia have different design purposes, they share very a similar language

structure. Compared to TANGRAM, Petabricks also lacks of functionality

to express vector algorithms. It is also worth mentioning that Petabricks

only integrates few architectural optimizations in its compiler, and mainly

focuses on autotuning for the best algorithm.

Multiple libraries, such as Spiral [50] or GotoBLAS [70], apply similar

composition strategies directly using domain-specific algebras. All function-

alities, such as functional polymorphism, vectorization, parameter tuning,

and optimizations can be achieved through mapping domain-specific alge-

bras to low-level source code.

Languages like Halide [60] or Surge [28, 29] provide implicit composi-

tion rules for basic operations, such as loop scheduling or primitives, and

38

deliver functional polymorphism. Halide introduces various scheduling poli-

cies for stencil operations specifically for 2D image processing applications.

Surge adopts basic collective primitives for constructing applications. Each

collective primitive has its own set of scheduling policies and implementa-

tions. Neither Halide nor Surge provides explicit composition capability to

programmers, but internally the composition might be applied in scheduling

policies or implementations.

4.6 Feature Beyond Performance Portability

As mentioned in Section 1.3, beyond performance portability, productivity

and maintainability are also crucial for a programming system.

TANGRAM is a high-level language abstracting computation from archi-

tectural details, with a rich set of data and parallel manipulation primitives

to reduce coding complexity. Meanwhile, TANGRAM adopts modular pro-

gramming for computation patterns, which are reusable within a program

and the transformed versions across different devices. Therefore, TANGRAM

can deliver reasonable productivity.

On the other hand, TANGRAM is designed with user debugging in mind.

Since optimizations are decoupled from logic, programmers express high-

level intent rather than coding architectural details, which may introduce

bugs and limit portability. Since codelets within a spectrum are supposed to

be functionally equivalent, interchangeable codelets might be used for verifi-

cation. As mentioned in Section 4.4, codelets can be built incrementally, and

that is considered as an incremental improvement for a program, While other

languages may require programmers to rewrite the kernel to exploit a new

architectural feature, TANGRAM only requires adding new interchangeable

codelets that materialize the feature. In this process, minimal code changes

are required to adapt to new architectures. These all features serve main-

tainability.

39

CHAPTER 5

HARDWARE ABSTRACTION AND
COMPOSITION

Different architectures might prefer different compositions due to different

architectural hierarchies, leading to different implementations. A hardware

abstraction is proposed to model architectural hierarchy and to further guide

a composition plan.

5.1 Architectural Hierarchy in Hardware Abstraction

L 	:=	CL	,	(ℓL	,	SL) 	 		
L 	 	 	: 	level	
C 	 	 	: 	computational	capability	(possible	values:	SE	–	scalar	execution,	VE	–	vector	execution)	
(ℓ	,	S)	: 	(subordinate	level	,	capability	to	synchronize	subordinate	level)	

Figure 5.1: Hardware Abstraction of Architectural Levels

TANGRAM’s approach builds on the observation that a key differentiat-

ing factor between devices is their architectural hierarchy. Different devices

come with different architectural levels. For example, a simple CPU may be

modeled as two-level devices (process, thread), while a simple GPU may be

modeled as three-level devices (grid, block, thread). Here, the CPU SIMD

unit and the GPU warp are omitted for brevity and clarity, but discussed

later in Section 5.4.

Each architectural level may have the ability to execute scalar or vector

code. Such a computational capability is represented by C in Figure 5.1.

Furthermore, each level of the hierarchy having a level beneath it has the

capability to distribute workloads and synchronize across the elements of that

level. For example, a process can undergo barrier synchronization among

all its threads. The subordinate level and synchronization capability are

Parts of this chapter appeared in the International Symposium on Microarchitec-
ture [69]. The material is used with permission.

40

P 	:=	CP	=	none, 	(ℓP	,	SP)	=	(T	,	barrier/join)	 	 	 			//	P	:	process	
T 	:=	CT	=	SET		,	 	(ℓT	,	ST)	=	none	 	 	 	 	 	 	 	 			//	T	:	thread	

(a) Simple CPU Abstraction

G		:= 	CG	=	none	, 	(ℓG	,	SG)	=	(B	,	terminate/launch) 			//	G	:	grid	
B		:= 	CB	=	VEB			,		(ℓB	,	SB)	=	(T	,	__syncthreads()) 	 			//	B	:	block	
T		:= 	CT	=	SET		 	,		(ℓT	,	ST)	=	none	 	 	 	 	 	 	 	 	 	 	 	 			//	T	:	thread	

G:	Ø	

B:	VEB		 …	 B:	VEB		

…	T:	SET		 T:	SET		 …	T:	SET		 T:	SET		

P:	Ø		

…	T:	SET		 T:	SET		 T:	SET		

(b) Simple GPU Abstraction

Figure 5.2: Examples and Illustrations of Simple CPU and GPU

denoted by (`, S). Figure 5.2 shows examples of architectural hierarchies

in a simple CPU and GPU, and corresponding illustrations. The simple

CPU is treated as a two-level device (without SIMD units): the first level

being the process P and the second being the thread T . The process does

not have a computational capability, but has subordinate threads and the

ability to synchronize those threads via a barrier/join operation. The thread

has scalar execution capability and has no subordinate levels. Similarly,

the simple GPU is treated as a three-level device. The grid G level has

no computational capability, but has a subordinate block level B and can

perform a barrier synchronization across blocks via kernel termination and

launch of a new kernel. The block level has a vector execution capability, a

thread T subordinate level, and can synchronize subordinate threads using

syncthreads(). Finally, the thread level has scalar execution capability

and no subordinate level.

In TANGRAM, hardware abstraction serves two major purposes for com-

position. First, it defines legal composition rules for a given architecture.

Section 5.3 will explain this purpose in detail. Second, it also guides the

synthesis of composition plans, which will be discussed in the next chapter.

41

5.2 Composition Rule

Composition rules are the main cores of TANGRAM. They impact both the

design space and the code transformations. In TANGRAM, each codelet

typically implies a composition rule. Meanwhile, each spectrum implicitly

has a few composition rules, while every primitive also has its own built-in

composition rules. Some primitives might have more than one rule.

Before hardware abstraction is specified, composition rules are architecture-

neutral. These architecture-neutral composition rules can be classified into

two categories. They are abstract composition rules (Section 5.2.1) pre-

defined in the TANGRAM programming model and program composition

rules (Section 5.2.2) expressed by the programmer.

5.2.1 Abstract Composition Rule

Given a level of hierarchy, we can introduce multiple abstract composition

rules that are used to extract program composition rules from the codelets.

Abstract composition rules can be applied to different objectives, including a

spectrum, a codelet or a primitive. Figure 5.3 summarizes all of the abstract

composition rules, and shows corresponding notations, which will be used in

the following sections.

For a spectrum, two rules can be specified. First, Select composes a

spectrum at a level by selecting a codelet of that spectrum. Second, De-

volve composes a spectrum at a level by synchronizing then delegating the

spectrum to a single worker of that level’s subordinate level. For example,

a master thread may perform a task on behalf of all threads in a process.

These two rules can be distinguished by the level of hierarchy. Particularly,

when the Devolve rule happens for a spectrum at a level, that spectrum

will be scheduled to that level’s subordinate level, and that spectrum at the

subordinate level requires another rule to be specified.

When the Select rule happens in a spectrum at level, a codelet is chosen.

If the chosen one is a compound codelet, its body will be traversed and the

corresponding invoked spectrums in the body will be composed. On the other

hand, if the chosen codelet is an atomic codelet, the following rule might be

specified. Compute composes an atomic codelet at a level by assigning that

atomic codelet to that level’s computational capability (if possible). Note

42

For	Spectrums	only:	
Select: 	 	compose(s	,	L) 	 	 	 	 		

	 	 	→ 	 	compose(c	,	L) 	 	 	 	 	 	 	 	 	//	s	:	spectrum,	c	:	codelet	of	spectrum	s	
Devolve: 	 	compose(s,	L) 	 	 	 	 		

	 	 	→ 	 	SL	,	devolve(ℓL)	,	compose(s,	ℓL) 	 	 	 	//	s	:	spectrum	
For	Codelets	only:	
Compute: 	compose(c,	L) 	 	 	 	 		

	 	 	→ 	 	compute(c	,	CL) 	 	 	 	 	 	 	 	 	//	c	:	atomic	codelet	
For	Par55on	Primi5ves	only:	
Regroup:	 	compose(par77on(…,	p),	L) 		

	 	 	→ 	 	SL	,	regroup(p,	L) 	 	 	 	 	 	 	 	//	p	:	a	par99oning	scheme	
For	Map	Primi5ves	only:	
Distribute: 	compose(map(s,	…),	L)	 	 		

	 	 	→ 	 	distribute(ℓL)	,	compose(s,	ℓL) 	 	 	 	//	s	:	spectrum	
Serialize:	 	compose(map(s,	…),	L)	 	 		

	 	 	→ 	 	serial(L)	,	compose(s,	L) 	 	 	 	 	 	//	s	:	spectrum	
Split: 	 	 	compose(map(s,	…),	L)	 	 		

	 	 	→ 	 	split(…,L),	compose(map(map(s),	…),	L) 	//	s	:	spectrum	
For	Spectrums	and	Primi5ves:	
Cascade: 	 	compose(f(g(…),	L) 	 	 	 		

	 	 	→ 	 	compose(g(…),	L)	,	compose(f(…),	L)	 	 	//	f,	g	:	primi9ves	or	spectrum	invoca9ons	
	

Figure 5.3: Abstract Composition Rules

this rule can be specified only when the chosen atomic codelet meets the

level’s computational capability.

For a primitive, a composition rule is determined by the primitive’s type.

There are two major sets, one for partition primitives and one for map

primitives. For a partition primitive, Regroup composes the primitive at

a level by synchronizing to ensure the data is ready, then regrouping the data

at that level according to the partitioning scheme.

For a map primitive, three rules can be specified. First, Distribute com-

poses the primitive at a level by spawning multiple workers of the subordi-

nate level and distributing the spectrum to those workers. Second, Serialize

composes the primitive at a level by creating a loop at the level (if it has a

computational capability) to serialize the map operation. Third, Split com-

poses the primitive at a level by breaking the map into a composition of two

maps. Both inner and outer maps require new rules to be specified. This

strategy is typically applied to extend the reach of the original map to a

lower subordinate level by specifying the Distribute rule to the outer map.

Figure 5.4 shows an example of these rules in OpenMP. These rules of map

43

can be considered as different loop transformations for a parallelizable loop.

Therefore, we also call these rules scheduling policies. For brevity and clarity,

the Serialize and Split rules are omitted in examples of this chapter, but are

discussed in later chapters.

B = map(F, A[0:15]);

(a) Input code

#pragma omp parallel for
For(i = 0:15) {
 B[i] = F(A[i]);
}

(b) Transformed code for Distribute

For(i = 0:15) {
 B[i] = F(A[i]);
}

(c) Transformed code for Serialize

//undetermined
For(i = 0:3) {
 //undetermined
 for(j = 0:3) {
 B[i * 4 + j] = F(A[i * 4 + j]);
 }
}

(d) Transformed code for Split

Figure 5.4: Example of map Rules in OpenMP

Last, when cascaded primitive or spectrum invocations are composed at

a level, Cascade composes them sequentially at that level. The order of

compositions is the same as the order of invocations, from inner to outer

ones.

5.2.2 Program Composition Rule

The composition rules of a program are extracted by applying the abstract

rules to the codelets until none can be applied deterministically anymore.

Typically, one program composition rule is extracted per codelet. Figure 5.5

shows the rules extracted from the codelets in Figure 4.3. Rule 1 is basically

the Devolve rule. Rules 2 and 3 show how atomic codelets generate rules that

assign those codelets to computational capabilities (autonomous to scalar,

cooperative to vector). Rules 4 and 5 show how compound codelets generate

more complex rules corresponding to their functionality. Rule 1 is extracted

from the devolve abstract rule which requires no codelets.

44

Program	Composi,on	Rules:	(for	the	sum	example)	
Rule	1:	 	compose(sum	,	L)		 	 	 	 	 	 	 	 	 	 	 	 	 	//	Derived	from	Devolve	

	 	→ 	 	SL	,	devolve(ℓL)	,	compose(sum,	ℓL)	 	 	 	 	 	 	 	 	 	 	 	 		
Rule	2:	 	compose(sum	,	L)		 	 	 	 	 	 	 	 	 	 	 	 	 	//	Derived	from	codelet	a	(ca)	

	 	→ 	 	compute(ca	,	SEL) 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		
Rule	3:	 	compose(sum	,	L)		 	 	 	 	 	 	 	 	 	 	 	 	 	//	Derived	from	codelet	b	(cb)	

	 	→ 	 	compute(cb	,	VEL) 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		
Rule	4:	 	compose(sum	,	L)		 	 	 	 	 	 	 	 	 	 	 	 	 	//	Derived	from	codelet	c	(cc)	

	 	→ 	 	SL	,	regroup(pc	,	L)	,	distribute(ℓL)	,	compose(sum,	ℓL)	,	compose(sum,	L)	 	 		
Rule	5:	 	compose(sum	,	L)		 	 	 	 	 	 	 	 	 	 	 	 	 	//	Derived	from	codelet	d	(cd)	

	 	→ 	 	SL	,	regroup(pd	,	L)	,	distribute(ℓL)	,	compose(sum,	ℓL)	,	compose(sum,	L)	 		
		

Example	for	Deriving	Composi,on	Rules	from	Compound	Codelets:	(using	codelet	c	as	an	example)	
compose(sum	,	L)		 		
→ 	 	compose(cc	,	L) 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	//	Rule:	Select	
→ 	 	compose(sum(map(sum,	par::on(…,	pc))),	L) 	 	 	 	 	 	 	 	 	 	//	Expand	cc	
→ 	 	compose(map(sum,	par::on(…,	pc))	,	L)	,	compose(sum,	L)	 	 	 	 	 	 	//	Rule:	Cascade	
→ 	 	compose(par::on(…,	pc)	,	L)	,	compose(map(sum,	…)	,	L)	,	compose(sum	,	L)	 	//	Rule:	Cascade	
→ 	 	SL	,	regroup(pc	,	L)	,	compose(map(sum,	…),	L)	,	compose(sum,	L)			 	 	 	 		//	Rules:	Regroup	
→ 	 	SL	,	regroup(pc	,	L)	,	distribute(ℓL)	,	compose(sum,	ℓL)	,	compose(sum,	L) 	 	 	//	Rules:	Distribute	

Figure 5.5: Program Composition Rules and Example for Deriving
Composition Rules

An example of how rules are extracted from a compound codelet is also

shown in Figure 5.5 for codelet c (Figure 4.3(c)). In the resulting rule, the

data is first regrouped according to the scheme specified in codelet c (pc). The

inner sum (the argument to the map primitive) is then distributed to multiple

workers of the subordinate level. Finally, the outer sum is performed at the

original level. Here, as mentioned, the map primitive allows the Distribute

only for brevity and clarity. In practice, the derivation should stop at the

Regroup rule, and we label the different parts with a light blue color.

Up until this point, the composition rules have been generated from the

codelets without any consideration for the target device. This indicates the

architecture-neutrality of the programming model.

5.3 Composition Specialization

In this section, we show how the program composition rules (Section 5.2.2)

are specialized when architectures are specified through hardware abstraction

(Section 5.1). We use the CPU and GPU examples in Figure 5.2 to assist

45

with the explanation.

5.3.1 CPU Example

barrier
ca	

pc	

ca	 ca	 ca	

Hardware	Abstrac-on:	
P 	:= 	CP	=	none,	(ℓP	,	SP)	=	(T	,	barrier/join) 	 	 	//	P	:	process	
T 	:= 	CT	=	SET		,	 	(ℓT	,	ST)	=	none 	 	 	 	 	 	//	T	:	thread	
	

Specialized	Composi-on	Rules:	
P	rules: 	P1:	 	compose(sum	,	P)	 		

	 	 	 	→ 	 	SP	,	devolve(T)	,	compose(sum,	T)	
	 	 	P4:	 	compose(sum	,	P)	 		
	 	 	 	→ 	 	SP	,	regroup(pc	,	P)	,	distribute(T)	,	compose(sum,	T)	,	compose(sum,	P)	
	 	 	P5:	 	compose(sum	,	P)	 		
	 	 	 	→ 	 	SP	,	regroup(pd	,	P)	,	distribute(T)	,	compose(sum,	T)	,	compose(sum,	P)	

T	rules: 	T2:	 	compose(sum	,	T)	 		
	 	 	 	→ 	 	compute(ca	,	SET)	

	

Composi-on	Example:	
compose(sum	,	P)	 		
→ 	 	SP	,	regroup(pc	,	P)	,	distribute(T)	,	compose(sum,	T)	,	compose(sum,	P)	 	 	 	 	 	 	//	P4	
→ 	 	SP	,	regroup(pc	,	P)	,	distribute(T)	,	compute(ca	,	SET)	,	SP	,	devolve(T)	,	compose(sum,	T) 	 	//	T2	,	P1	
→ 	 	SP	,	regroup(pc	,	P)	,	distribute(T)	,	compute(ca	,	SET)	,	SP	,	devolve(T)	,	compute(ca	,	SET)		 	//	T2	

Figure 5.6: Rule Specialization and Composition (CPU Example): For the
composition plan diagram on the right side, a triangle represents
distribution of work according to the partition pattern from the indicated
codelet and a circle represents scalar compute according to the indicated
codelet.

Figure 5.6 shows how the composition rules can be specialized for the

simple CPU specified in Figure 5.2. Based on this architecture abstraction,

the extracted rules 1 through 5 in Figure 5.5 can be specialized for the CPU

architecture. For the process level P , only rules 1, 4, and 5 can be specialized.

Rules 2 and 3 cannot because the process does not have a compute capability;

it can only distribute work to its subordinate (thread) level. For the thread

level T , only rule 2 can be specialized. Rules 1, 4, and 5 cannot because

the thread does not have a subordinate level in the specification, and rule 3

cannot because the thread does not have SIMD units (vector computational

capability) needed to execute cooperative codelets. The resulting specialized

rules are P1, P4, and P5 for the process level and T2 for the thread level in

Figure 5.6.

To assist the reader with understanding the application of these rules,

46

Figure 5.6 also shows an example of one possible composition plan that they

can be used to derive. This plan takes three steps to create. First, P4 is

applied to distribute the sum to the different threads and then to sum up the

partial sums at the process level. Next, T2 is used to perform the sum in

each thread. Also, because the process cannot perform computations, P1 is

used to delegate one of its threads to perform the final sum of partial sums.

Finally, T2 is used to perform that delegated sum using a single thread. The

created composition plan is illustrated with the diagram on the right side of

Figure 5.6.

5.3.2 GPU Example

Figure 5.7 shows a similar example for the simple GPU in Figure 5.2. Similar

to the CPU example, rules 1, 4, and 5 can only be assigned to levels with

subordinate levels, rule 2 to levels with scalar execution capability, and rule

3 to levels with vector execution capability. Accordingly, we can specialize

rules 1, 4, and 5 for the grid level G, rules 1, 3, 4, and 5 for the block level

B, and rule 2 for the thread level T .

Figure 5.7 also shows an example of one possible composition plan that

these specialized rules can be used to create. A brief explanation for this

composition is given since the process is similar to that shown in the CPU

example. G4 is first applied to distribute the sum to the block levels and then

to sum up the partial sums at the grid level. B4 and G1 are then applied to

the first and second sums and distribute workloads to the thread and block

levels respectively. Next, T2 and B3 are used to perform the first and second

delegated sums in each thread and block respectively, while B4 is applied to

the third sum and distributes workloads to the thread level. Finally, T2 and

B3 are used again to perform the first and second delegated sums in each

thread and block respectively.

5.3.3 Composition and Design Space

In the previous cases, we only show one possible composition plan. In general,

multiple legal composition plans for a given architecture form a design space.

Figure 5.8 shows an example of a possible design space for composing the sum

47

Hardware	Abstrac-on:	
G 	:=	CG	=	none	, 	(ℓG	,	SG)	=	(B	,	terminate/launch)	 	 	//	G	:	grid	
B 	:=	CB	=	VEB			,	 	(ℓB	,	SB)	=	(T	,	__syncthreads()) 	 	 	//	B	:	block	
T 	:=	CT	=	SET		 	,	 	(ℓT	,	ST)	=	none 	 	 	 	 	 	 	 	 	 	//	T	:	thread	
	

Specialized	Composi-on	Rules:	
G	rules: 	G1: 	compose(sum	,	G) 		
	 	 	 	 	→	 	SG	,	devolve(B)	,	compose(sum,	B)	
	 	 	 	G4: 	compose(sum	,	G)	 		
	 	 	 	 	→	 	SG	,	regroup(pc	,	G)	,	distribute(B)	,		
	 	 	 	 	 	 	 	compose(sum,	B)	,	compose(sum,	G)	
	 	 	 	G5: 	compose(sum	,	G)	 		
	 	 	 	 	→	 	SG	,	regroup(pd	,	G)	,	distribute(B)	,		
	 	 	 	 	 	 	 	compose(sum,	B)	,	compose(sum,	G)	

B	rules: 	B1: 	compose(sum	,	B)	 		
	 	 	 	 	→	 	SB	,	devolve(T)	,	compose(sum,	T)	
	 	 	 	B3: 	compose(sum	,	B)	 		
	 	 	 	 	→	 	compute	(cb	,	VEB)	
	 	 	 	B4: 	compose(sum	,	B)	 		
	 	 	 	 	→	 	SB	,	regroup(pc	,	B)	,	distribute(T)	,	compose(sum,	T)	,	compose(sum,	B)	
	 	 	 	B5: 	compose(sum	,	B)	 		
	 	 	 	 	→	 	SB	,	regroup(pd	,	B)	,	distribute(T)	,	compose(sum,	T)	,	compose(sum,	B)	

T	rules:	 	T2: 	compose(sum	,	T)	 		
	 	 	 	 	→	 	compute(ca	,	SET)	

	

Composi-on	Example:	
compose(sum	,	G)	
→	SG	,	regroup(pc	,	G)	,	distribute(B)	,	compose(sum,	B)	,	compose(sum,	G)		 	 	//	G4	
→	SG	,	regroup(pc	,	G)	,	distribute(B)	,	SB	,	regroup(pd	,	B)	,	distribute(T)	,	 	 	 	 	//	B5	,	G1	
	 	compose(sum,	T)	,	compose(sum,	B)	,	SG	,	devolve(B)	,	compose(sum,	B)		 		

→	SG	,	regroup(pc	,	G)	,	distribute(B)	,	SB	,	regroup(pd	,	B)	,	distribute(T)	,	 	 	 	 	//	T2	,	B3,	B5	
	 	compute(ca	,	SET)	,	compute	(cb	,	VEB)	,	SG	,	devolve(B)	,	SB	,	regroup(pd	,	B)	,		
	 	distribute(T)	,	compose(sum,	T)	,	compose(sum,	B)		

→	SG	,	regroup(pc	,	G)	,	distribute(B)	,	SB	,	regroup(pd	,	B)	,	distribute(T)	,	 	 	 	 	//	T2	,	B3	
	 	compute(ca	,	SET)	,	compute	(cb	,	VEB)	,	SG	,	devolve(B)	,		
	 	SB	,	regroup(pd	,	B)	,	distribute(T)	,	compute(ca	,	SET)	,	compute	(cb	,	VEB)	

pd	

terminate/launch

cb	

pc	

ca	 ca	 ca	

cb	

pc	

ca	 ca	 ca	

cb	

pc	

ca	 ca	 ca	

cb	

pc	

ca	 ca	 ca	

Figure 5.7: Rule Specialization and Composition (GPU Example): In
addition to the triangles and circles introduced in the previous diagram, a
cross represents vector compute according to the indicated codelet.

spectrum on a single block in a GPU. By applying B3, the sum is performed by

the cooperative codelet. By applying B1 then T2, the entire sum is performed

by a single thread in the block. By applying B4 then T2 and B3, the sum is

distributed to the individual threads by the partition in codelet c, each thread

then calculates partial sums, and then the partial sums are aggregated with

the cooperative codelet. If instead of T2 and B3 we apply T2 and B1,

followed by T2, then the partial sums are aggregated by a single thread in

the thread block.

48

compose(sum	,	B)	

?	

SB,	regroup(pc	,	B)	,		
distribute(T)	,		

compose(sum,	T)	,		
compose(sum,	B)	

SB,	regroup(pd	,	B)	,	
distribute(T)	,	

compose(sum,	T)	,	
compose(sum,	B)	

SB,	devolve(T)	,	
compose(sum,	T)	

?	

compute	(cb	,	VEB)	

cb	

?	

pc	

?	 ?	 ?	

?	

pd	

?	 ?	 ?	

SB,	devolve(T)	,	
compute(ca	,	SET)	

ca	

cb	

pc	

ca	 ca	 ca	

__syncthreads()	

pc	

ca	 ca	 ca	

?	

__syncthreads()	

pc	

ca	 ca	 ca	

ca	

B1	

B3	

B4	

B5	

T2	

…	…	

…	

(T2,	B3)	

(T2,	B1)	 T2	

…	

…	

…	

SB,	regroup(pc	,	B)	,		
distribute(T)	,		

compute(ca	,	SET),	
compute	(cb	,	VEB)	

SB,	regroup(pc	,	B)	,		
distribute(T)	,		

compute(ca	,	SET),	
SB,	devolve(T)	,	
compose(sum,	T)	

(T2,	B4)	 (T2,	B5)	
SB,	regroup(pc	,	B)	,		
distribute(T)	,		

compute(ca	,	SET),	
SB,	devolve(T)	,	
compute(ca	,	SET)	

Figure 5.8: Example of Design Space for Composition Plans (Showing Four
Possible Composition Plans for the Block and Thread Levels)

5.4 Model Extensibility

To keep the previous examples simple, we have modeled CPUs as two-level

devices and GPUs as three-level devices. However, the architectural model

is extensible as we show in the following examples.

CPU SIMD Unit. The SIMD (vector) unit of a CPU can be added by

giving the thread level vector execution capability as well as a subordinate

level consisting of a vector lane with scalar execution capability.

GPU Warp. Warp-centric mapping [71] on GPUs can be achieved by

treating warps as a separate level between blocks and threads and giving

the warp level a vector execution capability. Doing so enables more op-

timal code generation for cooperative codelets featuring warp-centric map-

ping optimization techniques. Such techniques include avoiding the use of

syncthreads() as well as using shuffle instructions and registers instead of

scratchpad memory to store shared data.

49

Instruction-level Parallelism (ILP). On both CPUs and GPUs, ILP

can be achieved via a subordinate level to the thread level that executes a

serialized map loop that is unrolled. In this case, the subordinate level to the

thread is the iteration of an unrolled loop and the synchronization happens

by closing the loop.

GPU Dynamic Parallelism. Dynamic parallelism on GPUs can be

achieved by assigning the grid level as a subordinate level to the thread level.

This enables threads to decompose work and delegate to subordinate grids

through new kernel launches which creates a cycle in the architecture hier-

archy. Optimizations [46] involving dynamic parallelism can be considered

alternative choices of composition.

A modern CPU typically is modeled as four-level devices (process, thread

with SIMD unit, SIMD lane, and ILP) and a GPU is modeled as five-level

devices (grid, block, warp, thread, and ILP). We leave support for dynamic

parallelism for future work.

5.5 Discussion of Hardware Abstraction

Hardware abstraction is mainly proposed for modeling an architecture for

its architectural hierarchy and further guiding a composition plan. Com-

pared to conventional architectural models, our proposed model might be

too “coarse-grained” and be deficient in finer architectural details, such as

resource sizes, including core numbers, SIMD width, cache sizes, etc. How-

ever, as studied in Chapter 2, the architectural hierarchies mainly determine

the algorithmic structure, while the resource sizes mainly impact the fine-

grained optimizations, such as data placement and parameter tuning. These

fine-grained optimizations will be discussed in the next chapters.

50

CHAPTER 6

TANGRAM COMPILER

In the previous chapters, we mentioned that both languages and compilers

might impact performance portability, and discussed the relationship be-

tween the language and the corresponding design space. The TANGRAM

language is proposed to deliver both high coverage and easy expression by

adopting features of composition-based languages. We further discussed

TANGRAM’s composition mechanism with hardware abstraction. In this

chapter, we first discuss the compiler factor for performance portability, and

then detail the design and implementation of the TANGRAM compiler.

6.1 Compiler, Design Space and Performance

Portability

Given a codebase written in a particular language, the design space discussed

in Chapter 3 is determined, but different compilers might deliver different

performance. As defined in Section 3.2, the design space S implies a set

of all possible transformed versions among all possible compilers. Different

compilers might have different transformation capabilities, select different

transformation passes/paths, and eventually generate different output ver-

sions.

Two major kinds of issues can be observed here. First, transformation

issues are defined as all possible transformation capabilities that impact per-

formance, including (1) lack of one particular code transformation and (2)

overheads introduced by one particular code transformation. Both cases can

be considered as design space reduction. In the former case, the design space

of compilation, denoted as SC , can be considered as a set formed by sub-

Parts of this chapter appeared in the International Symposium on Microarchitec-
ture [69]. The material is used with permission.

51

tracting all missing code transformations from S:

SC = S − SM ,

where SM is defined as all transformed versions requiring the missing code

transformations. In the latter case, the versions with and without overheads,

denoted as vo and v, should be both in S due to the definition (a set of all

possible transformed versions among all possible compilers). However, in this

compiler, both are projected to vo, so consequentially SC only includes vo.

Therefore, it is also considered as design space reduction.

Second, selection issues are simply defined as suboptimal choices for the

given design space of compilation, SC . The selection issues typically belong

to a research domain called superoptimization. The issues can come from var-

ious factors, including mismatched selection criteria, analyses, or assumption

of target architectures. In the same design space SC , different applied trans-

formation passes and even different orders of transformation passes might

generate different versions, delivering different performance.

These two kinds of issues are typically coupled together, and cannot be

easily isolated in most compilers, because (1) most compilers might not be

transparent in their transformation capabilities, making SC unclear, or (2)

most compilers deliver only one output version, coming with mixed effects of

both kinds of issues. In the following two case studies, we are able to show

examples for both kinds of issues.

Figure 6.1 shows different loop transformations of three different OpenCL

compilers on an i7-3820 CPU. This is the same study discussed in Sec-

tion 2.1.1 with both Parboil [20] and Rodinia [72] benchmarks. The fig-

ure only shows geometric mean, since the detailed numbers can be found

in [19, 16] . Their loop transformations are documented in [26, 30, 19, 16],

so it is more clear than other non-transparent compilers. The AMD com-

piler iterates in-kernel loops first over work-item loops (denoted as depth-

first-order (DFO)), while the Intel compiler iterates work-item loops first in

a vector width over in-kernel loops (denoted as breadth-first-order (BFO)

within a vector). Lack of the other loop transformations might reduce the

design space of compilation, consequentially delivering limited performance.

Locality-centric scheduling proposed by Kim [19, 16] provides a compiler ca-

pability support for both DFO and BFO, further extending the design space

52

of compilation. On top of that, for selection issues, Kim also proposed an

adaptive selection process by analyzing access patterns.

0	

0.25	

0.5	

0.75	

1	

AMD	 Intel	 Kim	

Sp
ee
du

p	
	

(n
or
m
al
ize

d	
to
	fa

st
es
t)
	

Figure 6.1: Performance Impact for Loop Transformations of OpenCL
Compilers on an i7-3820 CPU

On the other hand, Figure 6.2 demonstrates different choices of the width

in vectorization of the same Intel OpenCL compiler on the same CPU. The

Intel OpenCL stack allows users to override the default heuristic by speci-

fying the vector width as a compiler parameter. This study compares the

performance of the heuristically selected vectorization [73] of SGEMM and SpMV

in Parboil [20] against that of a non-vectorized version and two vectorized

versions with different widths. The Intel compiler chooses 4-way vector for

regular and control divergence free SGEMM kernel, while it uses 8-way vector

for SpMV kernel which exercises control divergence. Under control divergence,

code generation for work-items using SIMD instructions typically comes with

a large overhead due to masking, packing and unpacking. In the end, Intel’s

heuristic has made suboptimal decisions for both cases, falling short of the

best achieved performance by factors of 2.13x and 1.24x, respectively.

In this study, the design space of compilation should be the same and only

the selection process is different due to using the same compiler. We conclude

the selection issues exist in the Intel OpenCL compilers. We also note the

Intel compiler does not use a fixed width for vectorization. That implies its

heuristic might select the vector width based on some analyses.

53

0.00

0.50

1.00

1.50

2.00

2.50

SGEMM	 SpMV	

sp
ee
du

p	
ov
er
	h
eu

ris
1c
	

(h
ig
he
r	i
s	b

e*
er
)	

heuris'c	 scalar	 4-way	vector	 8-way	vector	

Figure 6.2: Performance Impact for Different Vectorization Strategies of
Intel CPU OpenCL

6.2 TANGRAM Compiler Design Overview

Source	
Code	 Parser	 Analyzer	 Composi5on	

Planner		

Op5miza5on	Code	
Genera5on	

Target	
Code	

Figure 6.3: TANGRAM Compiler Organization

The TANGRAM compiler is designed as a source-to-source compiler to

leverage sophisticated backend compilers. Figure 6.3 shows the organization

of the TANGRAM compiler. In the compiler, the parser processes input

code and forms TANGRAM abstract syntax tree (AST). Different from the

ASTs in conventional languages, the TANGRAM AST introduces high-level

nodes, such as spectrums, codelets, and primitives, and encodes high-level

information, such as qualifiers, algorithmic choices, and scheduling policies.

The TANGRAM’s intermediate representation (IR) is also the TANGRAM’s

AST. All of the analyses, transformations, including compositions and opti-

mizations, and code generation across target devices rely on AST traversal.

The analyzer traverses ASTs, diagnoses, and collects corresponding infor-

54

mation, such as access patterns or which codelets are compound or atomic.

The composition planner traverses TANGRAM ASTs, and then constructs

an AST for the output language with a determined algorithmic structure by

driving the cloner. Finally, the optimization stage performs code optimiza-

tions on the composed AST, and the code generation stage generates the

target code. Both optimization and code generation will be discussed in the

next chapter

In the following sections, we will first introduce the TANGRAM infras-

tructure. Then we will discuss the detailed design and implementation of

the first three stages in Figure 6.3 using the infrastructure.

6.3 TANGRAM Compiler Infrastructure

Similar to most compiler infrastructures [74, 75, 76], the TANGRAM infras-

tructure is designed to simplify and modularize the TANGRAM compiler.

Different from other infrastructures, the TANGRAM infrastructure is spe-

cialized for compositions.

The TANGRAM infrastructure is implemented in C++ with an object-

oriented design. It makes the compiler extensible for new language features,

analyses, composition heuristics, compositions, optimizations, and output

languages. The infrastructure includes two core components, the TAN-

GRAM AST nodes and the AST visitors (or traversers). The former compo-

nents encode high-level information crucial for compositions, while the latter

components form compositions themselves as well as optimizations and code

generation.

6.3.1 TANGRAM AST

In the TANGRAM compiler infrastructure, a unified set of AST nodes is used

for both the TANGRAM language and output languages (OpenCL, CUDA,

or OpenMP). This unified AST is called the TANGRAM AST.

This AST adopts specialized, unique, high-level nodes to represent spec-

trums, codelets, primitives, and special functions. These specialized types

of nodes are applied only for the TANGRAM language, not for output lan-

guages. The TANGRAM AST also encodes high-level information, such as

55

qualifiers, algorithmic choices, and scheduling policies in its nodes.

It is almost one-to-one mapping between the TANGRAM objects (Sec-

tion 4.2) and TANGRAM-specialized AST nodes. The corresponding com-

position rules are discussed in Chapter 5. The spectrum call node and the

map node are the most crucial nodes. The former is specialized as a kernel or

a function to support functional polymorphism, while the latter is specialized

for a proper scheduling policy to support nested parallelism. Both of these

processes happen in the composition planner. Those nodes eventually gener-

ate different output code with different specialization in the code generation

stage. For example, a map node might be specialized with different schedul-

ing policies, such as Distribute or Serialize (Section 5.2.1). Depending on its

policies, it might generate a serial for loop, a for with parallel pragma in

OpenMP, or a hidden loop like thread or thread block in CUDA.

Moreover, the partition node and the subscript node for a TANGRAM’s

Array container are also crucial for achieving good locality. They typically

are analyzed in the analyzer and transformed in the optimization or code

generation stage. Special functions, such as coopIdx() and coopDim() in

cooperative codelets and size() in Array containers, are converted in com-

mon nodes in the code generation.

Each node is implemented as a C++ class, and inherited properly based on

the grammar. This object-oriented design makes the infrastructure extensible

for new language features.

6.3.2 AST Visitor

In terms of design for transformations, the TANGRAM infrastructure takes

a similar design philosophy as Clang [74]. Each analysis, transformation, or

code generation can be one pass of AST traversal or can be decomposed into

multiple passes.

For each node, it has its own traversing function with prefix, infix and

postfix operations. Also prefix, infix and postfix operations all have base op-

erations, which can be called across all AST nodes. All of the above functions

or operations are implemented as virtual functions and can be overridden.

A default traversing function provides generic traversal based on its type.

An optional auxiliary object as a parameter of the traversing function is also

56

provided. Furthermore, the return objects of these functions contain mul-

tiple common data structures for compiler analyses or transformations, and

they also can be overridden.

Algorithm 1 shows a generic pattern of a visitor for a TNode, and related

locations of prefix, infix, and postfix operations. It also shows return objects

(RO and newRO) and optional auxiliary objects (Aux and newAux). In the

following discussion, we will remove optional auxiliary objects, if they are

not used.

Algorithm 1 Generic Visitor

1: procedure traverseTNode(TNode,Aux) . traversing function
2: preOpTNode(...) . prefix operation
3: for all c’s in TNode’s childrenList do
4: RO ← traverse(c, newAux)
5: inOpTNode(...) . infix operation
6: end for
7: postOpTNode(...) . postfix operation
8: return newRO . return object
9: end procedure

The infrastructure provides multiple templates of AST visitor (or tra-

versers). The compiler designer only needs to write a pass by inheriting

a proper visitor template and providing minimum modification, which could

include (1) overriding traversing functions, or prefix/posfix operations for

nodes of interest (NOI), (2) specifying the base operations for all travers-

ing functions, and/or (3) using or overriding return object classes for all

traversing functions. Several AST visitors have read-only input ASTs and

construct output ASTs with modified information if there are output ASTs

They mostly operate on TANGRAM-specialized ASTs. A few AST visitors

allow in-place AST modification, and typically happen in the code generation

stage.

Since AST visitors are widely used in the TANGRAM compiler, this

object-oriented design of the AST visitors can make the infrastructure exten-

sible for new analyses, compositions, optimizations, and output languages.

The detailed discussion is given in the next sections. Passes related to opti-

mization or code generation is discussed in the next chapter.

57

6.4 Parser

The TANGRAM language is implemented as an extension of C++. We rely

on Clang to parse TANGRAM code. More specifically, containers, special

functions, and primitives are implemented as C++11 template classes, which

can be easily parsed by Clang. This design makes the TANGRAM language

extensible.

On the other hand, TANGRAM’s qualifiers are implemented as keywords,

which require modifying Clang. Potentially, the qualifiers can be imple-

mented as C++ customized attributes, avoiding modifying Clang. We leave

this for future work.

After TANGRAM code parsed by Clang, the Clang AST is constructed.

We apply the Clang AST visitor to traverse the Clang AST, and construct

the TANGRAM AST. By modifying Clang to support TANGRAM quali-

fiers, we can easily identify spectrums and codelets for the parser. All of the

remaining qualifiers, such as shared or tunable, are stored in the corre-

sponding AST node with the labeled expression. The parser also maintains

a lookup table to record all spectrums for quick accesses. For primitives and

special functions, we parse them based on class names or function names.

We currently support most C features, except for struct and union.

6.5 Analyzer

The TANGRAM analyzer is an AST visitor that traverses a read-only TAN-

GRAM AST, analyzes spectrums and codelets, and builds an information

lookup table for the spectrums and codelets.

Codelet properties are the most critical factors for composition to mini-

mize selection issues of compilers. Here, we focuses on two major kinds of

properties: parallelism and locality.

After collecting all properties, a process of level matching is performed by

binding all the codelets with each level of hardware abstraction based on their

properties and its capability. This step can provide a quick access to each

applicable codelet for each level in the later steps. Its process is very similar

to composition specialization (Section 5.3) but without deriving rules.

58

6.5.1 Parallelism

The parallelism properties are mainly determined by types of codelets, which

are determined by traversing and analyzing their bodies. A compound codelet

with map primitives generally has more parallelism than others. While an au-

tonomous codelet has no parallelism, a cooperative codelet also has a degree

of parallelism but for a level with vector execution capability. For a com-

pound codelet without a map primitive, its parallelism is determined by its

callee spectrum.

Algorithm 2 Analyzer

1: Lookup(...).converged← false
2: procedure analyzer(SList) . SList is a list for all spectrums
3: for SList iterations do
4: for all St’s in SList do
5: if Lookup(S).converged = false then
6: traverse(S)
7: end if
8: end for
9: end for

10: end procedure

On the other hand, parallelism of a spectrum is determined by all of its

codelets. Since a codelet can be recursive by calling a spectrum not analyzed

yet, it makes this analysis iterative until convergence . Each spectrum can

be considered as a vertex of a graph, and a caller/callee relationship between

two spectrums can be viewed as a directed edge. This algorithm is a brute-

force algorithm for graph traverse to form a spanning tree, and has an upper

bound of a O(N2) complexity to converge, where N is the number of spec-

trums. Each vertex converges only when all sink vertices of its all outgoing

edges converge. In this brute-force algorithm, vertices are traversed with a

fixed order, which is a declaration order in the input TANGRAM code. In

each step of traversing a spectrum (a vertex), all codelets of this spectrum

are traversed and checked for convergence. A codelet with a spectrum call

(a edge) converges only when the called spectrum converges. Here, we can

check only unconverged spectrums and codelets to reduce the complexity. It

is trivial that the worst case happens at the forward-order traversal. Algo-

rithm 2 shows pseudo code discussed above. Here, Lookup stores information

for spectrums and codelets, and traverse is a generic function interface for

59

all traversing functions.

Additional to checking convergence, each step of traversal also collects

properties of codelets and spectrums as follows:

1. A cooperative property can be determined by checking its coop qual-

ifier.

2. A compound property can de determined by checking existence of a

callee spectrum.

3. A map property can be determined by checking existence of a map prim-

itive.

4. An autonomous property can be determined by not satisfying 1 to 3.

5. Properties can be propagated through a callee spectrum in a compound

codelet.

Properties of a spectrum are also determined by all of its codelets. These

properties are finalized only when a spectrum or a codelet has converged.

This analyzer is implemented using a visitor template in the TANGRAM

infrastructure. This template is designed to traverse TANGRAM AST with

recursive spectrums and codelets. It presets the converge property for each

AST node based on the grammar. For example, in an identifier node, it

checks whether the identifier points to a TANGRAM-related node, and uses

that to set the convergence.

The analyzer first inherits the template and overrides the traversing func-

tions or prefix/postfix operations for spectrum, codelet, spectrum call, and

map AST nodes. Algorithm 3 shows pseudocode of an example that detects a

map primitive. Here, traverseSpectrum and traverseCodelet are the travers-

ing functions specific for spectrum and codelet nodes respectively, preOpMap

is the prefix operation function for map primitives, and inOpBase is the base

infix operation function for all nodes.

We simply modify traverseSpectrum and traverseCodelet to store infor-

mation for detecting map primitives. Here, we show the detailed code for

traverseSpectrum for both convergence, and map detection. While the con-

vergence property requires all children nodes to be converged, the map prop-

erty requires at least one child node to have a map. In both traverseSpectrum

60

Algorithm 3 Map Detection

1: Lookup(...).converged← false
2: Lookup(...).hasMap← false
3: procedure traverseSpectrum(S)
4: AllConverge← true
5: for all codelet C’s in S do
6: if Lookup(C).converged = false then
7: RO ← traverse(C)
8: AllCoverage← AllCoverage AND RO.getInfo(converged)
9: end if

10: end for
11: if AllConverge = true then
12: Lookup(S).converged← AllConverge
13: OneMap← false
14: for all codelet C’s in S do
15: OneMap← OneMap OR Lookup(C).hasMap
16: end for
17: Lookup(S).hasMap← OneMap
18: end if
19: NewRO.addInfo(converged)← AllCoverage
20: return NewRO
21: end procedure
22:

23: procedure traverseCodelet(C)
24: ...
25: NewRO.addInfo(converged)← Original code
26: NewRO.addInfo(converged)← Original code
27: Lookup(C).converged← NewRO.getInfo(converged) . New code
28: Lookup(C).hasMap← NewRO.getInfo(hasMap) . New code
29: return NewRO
30: end procedure
31:

32: procedure preOpMap(M)
33: NewRO.addInfo(hasMap)← true
34: return NewRO
35: end procedure
36:

37: procedure inOpBase(RO1, RO2) . Merge all RO info
38: ...
39: . Add a logic to merge RO.hasMap, which is an OR operation
40: ...
41: end procedure

61

and traverseCodelet, we update Lookup to keep information and avoid re-

dundant traversal. Then we override preOpMap by setting hasMap to true,

and add the logic for merging hasMap (the map property), by checking at

least one return object from children nodes to have a hasMap set as true.

6.5.2 Locality

Similar to parallelism, locality also requires codelets and spectrums to be con-

verged during the analysis. Different from parallelism, locality is determined

by checking access patterns, including partition primitives, corresponding

sequence primitives, and subscript indices of Array containers. Currently,

an access is determined as zero stride (constant), unit stride, or non-unit

regular stride, and irregular stride. The analysis algorithm for locality is

very similar to those for parallelism. It is implemented using the same an-

alyzer template but with different overridden functions for AST nodes. In

this analysis, the traversing functions for spectrum, codelet, spectrum call,

partition, sequence, and subscript index of Array container nodes are

overridden. For brevity and clarity, the pseudocode is omitted. Since lo-

cality and parallelism are independent, both analyses can be merged in one

pass.

6.5.3 Level Matching

Table 6.1: Relationship between Level Capability to Codelet Property

Codelet Property autonomous cooperative map

Level Capability
scalar execution 3 7 3

vector execution 7 3 7

distribute capability 7 7 3

The process of level matching binds all the codelets with each level of

hardware abstraction based on the codelets’ properties and the level’s ca-

pability. Table 6.1 summarizes the mapping between the level capabilities

and the codelet properties. The scalar execution can be matched to the au-

tonomous and map properties, while the vector execution can be matched to

the cooperative property. The distribute capability can be matched to the

62

map property. For each level, we can classify corresponding codelets based

on these three capabilities, and construct a lookup table for quick accesses.

6.6 Composition Planner

The TANGRAM composition planner is a key step of the TANGRAM com-

piler. It handles compositions discussed in Chapter 5, and contains two

components: an AST cloner to perform composition rules and a heuristic

to select composition rules. In practice, the AST cloner is universal across

architectures or objectives (e.g. performance or energy), while the heuristic

might vary across architectures or objectives. In this document, we pro-

pose a single heuristic attempting to maximize performance across different

architectures.

In the composition planner, it begins by composing the spectrum at the

top level in the architectural hierarchy and then proceeds to explore the

design space (like Figure 5.8) via a breadth-first search. At each point in the

search space, if the candidate has no more composition rules to expand, it

is considered complete and is passed to the next iteration as is. Otherwise,

the algorithm selects the set of beneficial rules (through the heuristic) to

apply at the corresponding objects and generates a new candidate for every

combination of rules (through the AST cloner). This search process iterates

for N iterations where N must be at least the number of architectural levels

in order for the composition plans to reach the lowest level. Typically, N is

a bit larger to enable a wider search.

6.6.1 AST Cloner

The AST cloner is an AST visitor that traverses a read-only TANGRAM

AST and constructs another AST. The new AST is a copy of the original

input AST with only one extra specialized node, which can be a spectrum

call or a map node.

The cloner is implemented using a visitor template that deeply clones every

node, and then overriding the traversing functions or operations for spectrum

call, codelet, and map AST nodes. Given a spectrum call node, the cloner

takes a parameter specifying which codelet is applied in this spectrum call

63

from the composition planner, then deeply clones that codelet, and finally

appends the new copy of the codelet node with the newly constructed spec-

trum call node. Meanwhile, the cloner also searches the next unspecialized

node, which is either an unspecialized spectrum call or an unspecialized map

node, and returns it to the composition planner. Since there might be multi-

ple candidates, all returned unspecialized nodes form the frontier for the next

iteration of the design space search. Therefore, it is a breadth-first search.

Similarly, given a map node, the cloner also takes a parameter specifying a

scheduling policy for this map from the composition planner, then deeply

clones the map node, and finally writes this information in the new copy of

the map node.

Algorithm 4 shows pseudocode for the AST cloner that only considers spe-

cialization of spectrum call nodes and only a single candidate for brevity and

clarity. A pointer UnSpecialized is applied to track the unspecialized node,

so the planner can use it to quickly access the analyzed results. Auxiliary

objects (Aux and newAux) are used to control the cloning phase and the

search phase of a spectrum call node. For a node other than a spectrum

call node, newAux is set as Aux in preOpBase, enabling deep search. The

algorithm simply specializes the node with isSpecializing() equal to true,

and searches the next unspecialized node in each iteration.

This AST specialization process can be considered as applying one sin-

gle composition rule (Section 5.2) to that extra specialized node. As men-

tioned, each codelet typically implies a program composition rule. Slightly

different from Sections 5.2.2 and 5.3, where we illustrate that rules are first

derived together and then specialized for levels for brevity and clarity, in

the TANGRAM compiler, we implement compositions by deriving and spe-

cializing each rule at the moment when the rule is applied for a level. The

former method can be considered as pre-deriving the rules with memoriza-

tion to avoid re-deriving, while the latter can be considered lazy deriving

and re-deriving. Although the former method seems to save computation by

a tradeoff of memory, in practice, the latter provides a much simpler com-

piler design. Also, given an architecture and an application, not every rule

is eventually applied in a composition plan, so there is no need to derive all

rules in the beginning.

64

Algorithm 4 AST Cloner

1: SClocal← the top spectrum call (SCtop)
2: UnSpecialized← SClocal
3: SClocal.isSpecializing(true)
4: procedure CompositionPlanner() . Only for caller’s behavor
5: ...
6: for ... do
7: ...
8: check analyzed results (in the Analyzer) of UnSpecialized
9: ...

10: Aux.addParameter(Choice) . Heuristic select a codetet
11: RO ← traverse(SClocal, Aux) . Specialization
12: ...
13: SClocal = RO.getNode(SClocal)
14: ...
15: Aux.addBool(true) . Enable search
16: RO ← traverse(SClocal, Aux) . Search unspecialized node
17: ...
18: SClocal = RO.getNode(SClocal)
19: ...
20: end for
21: ...
22: end procedure
23: procedure traverseSpectrumCall(SC,Aux)
24: Remove preOpSpectrumCall
25: if Aux.getBool() then . Search unspecialized node
26: UnSpecialized← SC
27: UnSpecialized.isSpecializing(true)
28: end if
29: Original code (cloning everything)
30: if SC.isSpecialzing() then
31: UnSpecialized← Null . Reset
32: Choice← Aux.getParameter() . Set by planner
33: RO ← traverse(SC.getSpectrum().getCodelet(Choice), newAux)
34: NewSC.setCodelet(RO.getNode())
35: NewSC.isSpecialzing(false)
36: NewSC.isSpecialzed(true)
37: end if
38: newRO.setNode(NewSC) . Original code
39: return newRO
40: end procedure
41: procedure preOpBase(Aux, newAux)
42: newAux← Aux
43: end procedure

65

6.6.2 Heuristic for Composition Plan

s0	 	 	is	the	spectrum	subject	to	kernel	synthesis	
L 	 	is	the	top	level	in	the	device	being	targeted	
N 	 	is	the	number	of	itera8ons	to	search	
candidates(i) 	 	is	the	set	of	composi8on	candidates	at	itera8on	i	
rules(s,	ℓ)	 	 	is	the	set	specialized	rules	for	spectrum	s	at	level	ℓ	
prune(rules,	i) 	 	sorts	and	prunes	rules	for	itera8on	i	
prune(candidates,	i)	 	sorts	and	prunes	candidates	for	itera8on	i	
	
candidates(0)	:=	{	compose(s0	,	L)	}	
for	itera8on	i	from	1	to	N	do	
				forall	c	∈	candidates(i-1)	do	
								if	no	calls	compose(s,	ℓ)	in	c	then	
												candidates(i)	←	c								//	propagate	complete	candidates	
								else	
												forall	compose(s,	ℓ)	in	c	do	
																forall	r	in	prune(rules(s,	ℓ),	i)	do	
																				mark	r	as	a	candidate	rule	for	compose(s,	ℓ)	in	c	
												B	:=	all	combina8ons	of	candidate	rules	for	c	
												forall	b	in	B	do	
																candidates(i)	←	c	with	all	rules	in	b	applied	
				candidates(i)	:=	prune(candidates(i),	i)	

Figure 6.4: Composition Algorithm with Pruning

To avoid explosion of the search space, pruning takes place throughout

the process when specialized rules are being selected as well as in between

iterations. Figure 6.4 shows the brief algorithm for the composition planner

with pruning. It is still the breadth-first search algorithm we discussed before,

but with a prune function that sorts rules or candidates according to their

expected benefit, and then drops the lowest ones. The strictness of pruning

can be set by the user and determines how many candidates to keep or drop.

In the TANGRAM compiler, the pruning policy currently used is paral-

lelism first whereby rules extracting more parallelism are prioritized. Here

parallelism is determined by the TANGRAM analyzer (Section 6.5). The

criteria for comparing two rules according to their benefit is shown in Fig-

ure 6.5. Note that we only consider applicable rules as the compared rules

(r1 and r2) for the level (`). The applicable rules per level can be accessed

through the lookup table constructed in the level matching.

If we are not in the last iteration, rules that generate distribute capability

are preferred because they extract more parallelism. Among rules that dis-

66

compare(r1	,	r2	,	ℓ,	i):	
	#	Comparing	rules	r1	and	r2	(of	level	ℓ)	for	composing	at	itera7on	i	
	if	i	is	not	the	last	itera7on	then	
	 	prefer(distributes)	
	 	if	r1	distributes	and	r2	distributes	then	
	 	 	prefer(par77oning	matches	ℓ)	
	 	else 	 	#	neither	distributes	
	 	 	prefer(vectorizes)	
	else		 	 	#	i	is	the	last	itera7on	(distribute	is	undesirable)	
	 	prefer(computes)	
	 	if	r1	computes	and	r2	computes	then	
	 	 	prefer(vectorizes)	
	prefer(came	from	tunable	codelet)	
	return	both	are	the	same	

	
prefer(cond): 	if	one	rule	sa7sfies	cond	and	the	other	doesn’t,	return	the	

	 	 	rule	that	does,	otherwise	con7nue	with	the	execu7on	

Figure 6.5: Comparing Composition Rules for Pruning

tribute, the partitioning schemes are analyzed and used to determine which

rule has more favorable locality for the level in question. The preference of

the level is determined by the architecture specification via an additional en-

try for each level that specifies whether it prefers adjacent or strided tiling. If

neither rule distributes, then rules generating vector execution are preferred

over those generating scalar execution. In the last iteration, rules that com-

pute are preferred over those that distribute because there will be no more

iterations to expand the distributed compose invocations. Among compute

rules, those that generate vector execution are preferred. When all is equal,

rules that come from codelets having tuning knobs are preferred because

they give the compiler more optimization opportunities. Candidates’ plans

are compared via pairwise comparison of the rules applied to each.

67

CHAPTER 7

OPTIMIZATION AND CODE
GENERATION

In the previous chapter, we discussed how the composition planner is de-

signed to specialize the algorithmic structure for a spectrum call and the

scheduling policy for map at a level of hierarchy on a particular architec-

ture. However, given an algorithmic structure for a function, performance

could still vary significantly due to lack of optimizations. Depending on the

(output) languages, the corresponding compilers and even the target device,

optimizations might be necessary for gaining performance. For example,

OpenCL, as a low-level language, typically requires optimizations to be ex-

pressed. Particularly for GPU, data placement is crucial for performance, but

is not included as an automatic transformation in most OpenCL compilers.

The TANGRAM compiler therefore includes multiple high-level optimiza-

tions for performance portability to bridge the performance gap of the back-

end languages and compilers. Also the TANGRAM language forces program-

mers to encode high-level information, such as the qualifiers and primitives,

which can facilitate multiple optimizations related to memory and parameter

tuning (Section 4.2).

In the TANGRAM compiler, the optimization stage typically includes mul-

tiple optimizers, each of which traverses an AST, applies corresponding opti-

mization, and then constructs another AST. The code generation stage, also

including multiple AST visitors, traverses the optimized AST and generates

output code in an output language (e.g. OpenCL, CUDA, or OpenMP). In

practice, the above two stages vary across types of architectures, languages,

or objectives.

Parts of this chapter appeared in the International Symposium on Microarchitec-
ture [69]. The material is used with permission.

68

7.1 Optimization

The current TANGRAM optimization stage includes two optimizers, one for

data placement and one for parameterization. The data placement optimizer

assigns data to proper memory spaces, such as scratchpad memory, regis-

ters, texture memory, and global memory. Data placement is crucial for high

performance because on-chip memory can deliver significantly more band-

width than global memory. However, data might not be always suitable for

on-chip memory, due to its access pattern. The parameterization optimizer

collects tunable variables, and then either assigns proper values or templa-

tizes the synthesized code with parameters. Parameterization is important

for performance tuning to improve resource utilization.

In general, an optimizer is an AST visitor that traverses an AST, then

applies the optimization, and finally either constructs a new AST or directly

modifies the old AST. In these two optimizers, we applied the latter method.

7.1.1 Data Placement

The data placement optimizer is implemented using a blank AST visitor that

simply traverses an AST without any prefix, postfix, or infix operation, and

then overrides the traversing functions for Array container, and correspond-

ing subscript index AST nodes to perform AST modification.

Figure 7.1 shows the heuristic algorithm used in the current data placement

optimizer particularly for GPUs. The information of the shared qualifier

is captured in the parser (Section 6.4) and then stored in Array container

nodes, and the stride information is also available in the TANGRAM analyzer

(Section 6.5).

If a container is shared, it is considered for on-chip caching. Otherwise, the

stride information from the analyzer is used to determine data placement. If

the stride is zero (i.e., invariant with respect to map elements) or constant

(greater than one), the containers are also considered for on-chip caching.

The constant-strided container might need a transpose on scratchpad mem-

ory. If the stride is a unit then the container is placed in the default global

memory. Hardware is already well-designed to handle stride-one accesses

(e.g., CPU caches, GPU coalescing). If the stride is irregular, the container

is placed in the cached global memory or texture memory.

69

Container

shared?
no

stride 0?

Transpose

Texture

texture?

yes

no
stride 1?

no const.
stride

no

yes yes yes

scratchpad?

Scratchpad

yes

shuffle?

Registers

yes

cache?

Global

yes

candidate for on-chip memory

yes

M
em

o
ry

 A
cc

es
s

C
h

a
ra

ct
er

is
ti

cs

M
em

o
ry

 S
y
st

em

F
ea

tu
re

s

Figure 7.1: Heuristic for Data Placement

7.1.2 Parameterization

The parameterization optimizer is implemented using a collective AST visitor

template that collects a list by merging corresponding lists of children nodes.

We then override the traversing function of declaration nodes to enqueue, and

the traversing functions of spectrum call nodes to modify the corresponding

ASTs. The modification appends the collected nodes to a spectrum call node

to enable templatization. The information of the tunable qualifier is stored

in declaration nodes. Therefore, it is trivial to recognize tunable variables.

Algorithm 5 briefly shows the mechanism of the parameterization opti-

mizer. For each declaration node with a tunable qualifier, we simply create

a new identifier, set the identifier as the initializer of the declaration, and

collect the identifiers. For each spectrum call node, we collect its descendant

parameterized identifiers.

70

Algorithm 5 Parameterization

1: procedure traverseSpectrumCall(SC)
2: Original code
3: for all node N’s in newRO.getNodeList() do
4: SC.addTemplateParameter(N)
5: end for
6: return newRO
7: end procedure
8: procedure traverseDeclare(D)
9: if D.isTunable() then

10: newID ← new Identifier()
11: D.setInitializer(newID)
12: newRO.addNode(newID)
13: end if
14: return newRO
15: end procedure

7.2 Code Generation

The current code generation stage has multiple preprocessors and one output

code generator. Each preprocessor behaves like an optimizer, and then either

targets at a small scope of AST modification, or collects specific information.

Different from an optimizer, which is optional and applied for performance,

a preprocessor is either required for correctness in code generation or applied

to simplify the code generation stage. The output code generator simply

prints out the AST in an output language.

7.2.1 Codegen Preprocessors

Table 7.1 lists the functionality of each preprocessor, its corresponding over-

ridden traversing functions, and its properties. Since they are all similar to an

optimizer but with a different degree of modification in overridden functions,

we omit the explanation for brevity. Some preprocessors are not related to

any output language, so they are universal across output languages. Some

preprocessors are specific for one output language, since they are designed to

adjust AST for satisfying the output language.

The current preprocessors can be classified into two categories in terms of

implementing mechanisms:

71

Table 7.1: Codegen Preprocessors

Preprocessors Language* Description
Index calculation U Calculate and linearize subscript indices

Address alignment U Calculate address alignment and offset for a container
Special function C,G Convert special function AST nodes to ouput AST nodes

Return promotion U Promote return nodes to parameter nodes and argu-
ments

Name mangling U Perform name mangling for identifier nodes
Function collection U Collect synthesized kernels, device functions, or func-

tions
Qualifier preparation C,G Identify and apply qualifiers for kernels, device func-

tions, or inline functions
Kernel configuration G Add OpenCL or CUDA configuration nodes
U: Universal. G: CUDA or OpenCL. C: OpenMP.

1. Modify and collect AST nodes. This has an implementing mechanism

similar to that of the parameterization optimizer.

2. Modify AST nodes without collecting nodes. This is similar to the data

placement optimizer.

If multiple preprocessors are independent, they potentially can be merged

and implemented as a larger AST visitor in order to traverse the AST fewer

times. However, that might sacrifice the clarity of the compiler implemen-

tation. Therefore, we do not apply merging. Also, a preprocessor might

depend on another or require another as a backend, so the order of preproces-

sors might be crucial. For example, in our implementation, index calculation

needs a special function preprocessor as a backend, because our implementa-

tion for the index calculation preprocessor might insert special functions into

the AST. Those special functions are required to convert to output ASTs in

a special function preprocessor.

7.2.2 Output Code Generator

In the TANGRAM design philosophy, we tend to keep the output code gener-

ator as simple as possible by moving sophisticated operations to the prepro-

cessors. The output code generator is implemented using a full customized

AST visitor, which means all of the traversing functions are overridden. The

code generator traverses a read-only AST and prints out the output code.

Each output language typically has its own code generator. Figures 7.2

and 7.3 show two examples for code generation in the simple CPU and GPU

72

SP	,	regroup(pc	,	P)	,	distribute(T)	,	compute(ca	,	SET)	,	
SP	,	devolve(T)	,	compute(ca	,	SET)	

	

SP 	:		//	No	sync	needed	at	the	beginning	
regroup(pc	,	P)	 	:		unsigned	p_c	=	omp_get_num_threads();	
regroup(pc	,	P)	 	:		unsigned	len_c	=	in_size;	
regroup(pc	,	P)	 	:		unsigned	tile_c	=	(len_c+p-1)/p_c;	
distribute(T) 	:		#pragma	omp	parallel	
distribute(T) 	:		{		
distribute(T) 	:				unsigned	j	=	omp_get_thread_num();	
compute(ca	,	SET) :				unsigned	len_a1	=	tile;	
compute(ca	,	SET) 	:				int	accum_a1	=	0;	
compute(ca	,	SET) 	:				for(int	i	=	0;	i	<	len_a1;	++i)	{	
compute(ca	,	SET) 	:						accum_a1	+=	in[j*tile_c	+	i];	
compute(ca	,	SET) :				}	
compute(ca	,	SET) 	:				ret_a1[j]	=	accum_a1;	
SP 	:		}	//	Join	omp	threads	
devolve(T)	 	:		//	No	spawn	(only	master	executes)	
compute(ca	,	SET) :		unsigned	len_a2	=	p;	
compute(ca	,	SET) 	:		int	accum_a2	=	0;	
compute(ca	,	SET) 	:		for(int	i	=	0;	i	<	len_a2;	++i)	
compute(ca	,	SET) 	:				accum_a2	+=	ret_a1[i];	
compute(ca	,	SET) 	:		ret_a2	=	accum_a2;	

Figure 7.2: Codegen for CPU Example in Figure 5.6

in Chapter 5, using OpenMP and CUDA as the output languages, respec-

tively. Here, we use the notation of composition rules instead of specialized

TANGRAM ASTs, since the full AST might not easily fit in a page. At men-

tioned, composition rules and specialized TANGRAM AST nodes are almost

a one-to-one mapping (Sections 5.2 and 5.3).

73

SG	,	regroup(pc	,	G),	distribute(B),	SB	,	regroup(pd	,	B),	distribute(T),		
compute(ca	,	SET),	compute(cb	,	VEB)	SG	,	devolve(B),	SB	,	regroup(pd	,	B),	

distribute(T),	compute(ca	,	SET),	compute(cb	,	VEB)	
	

First	kernel	
SG 	:		//	No	sync	needed	at	beginning	
regroup(pc	,	G) 	:		unsigned	p_c	=	gridDim.x;	
regroup(pc	,	G) 	:		unsigned	len_c	=	in_size;	
regroup(pc	,	G) 	:		unsigned	tile_c	=	(len_c+p_c-1)/p_c;	
distribute(B) 	:		unsigned	k	=	blockIdx.x;	
SB 	:		//	No	sync	needed	at	beginning	
regroup(pd	,	B) 	:		unsigned	p_d	=	blockDim.x;	
regroup(pd	,	B) 	:		unsigned	len_d	=	tile_c;	
regroup(pd	,	B) 	:		unsigned	tile_d	=	(len_d+p_d-1)/p_d;	
distribute(T) 	:		unsigned	j	=	threadIdx.x;	
compute(ca	,	SET) 	:		unsigned	len_a	=	tile_d;	
compute(ca	,	SET) 	:		int	accum_a	=	0;	
compute(ca	,	SET) 	:		for(unsigned	i=0;	i	<	len_a;	++i)	{	
compute(ca	,	SET) 	:				accum_a	+=	in[k*tile_c	+	j	+	p_d*i];	
compute(ca	,	SET) 	:		}	
compute(ca	,	SET) 	:		ret_a	=	accum_a;	
compute(cb	,	VEB)	:		__shared__	int	tmp[blockDim.x];	
compute(cb	,	VEB)	:		unsigned	len_b	=	p_d;	
compute(cb	,	VEB)	:		unsigned	id	=	threadIdx.x;	
compute(cb	,	VEB)	:		tmp[id]	=	ret_a;	
compute(cb	,	VEB)	:		__syncthreads();	
compute(cb	,	VEB)	:		for(unsigned	s=1;	s<blockDim.x;	s	*=	2)	{	
compute(cb	,	VEB)	:				if(id	>=	s)	
compute(cb	,	VEB) :						tmp[id]	+=	tmp[id	-	s];	
compute(cb	,	VEB)	:				__syncthreads();	
compute(cb	,	VEB)	:		}	
compute(cb	,	VEB)	:		ret_b[k]	=	tmp[blockDim.x-1];	
SG	 	:		return;	//	Terminate	kernel	
	

Second	kernel	
devolve(B) 	:		if(blockIdx.x	==	0)	
SB	un<l	end 	:						...	//	Similar	to	first	kernel	

Figure 7.3: Codegen for GPU Example in Figure 5.7

74

CHAPTER 8

EVALUATION

The performance of the proposed system is evaluated in this chapter. We

show that TANGRAM can deliver performance comparable to that of highly-

optimized libraries.

8.1 Setup

The TANGRAM language is implemented as an extension of C++. The

TANGRAM compiler is described in Chapters 6 and 7 with Clang [74] 3.6.

Here we support C with OpenMP, and CUDA as the output languages. The

generated kernels are then compiled using the Intel C compiler (icc) version

16.0.0, OpenMP version 4.0, and the NVIDIA CUDA compiler (nvcc) version

7.0 respectively. The compiled programs are evaluated on an i7-3820 Sandy

Bridge CPU, a C2050 Fermi GPU, and a K20c Kepler GPU.

8.1.1 Benchmarks

Table 8.1 summarizes the applications implemented in TANGRAM: Scan,

SGEMV (with 2 datasets, called TS and SF), DGEMM, SpMV, KMeans, and BFS,

and the corresponding datasets and numbers of codelets. In selecting the

benchmarks, we chose benchmarks associated with most impactful mod-

ern applications and meanwhile with highly optimized references. Scan is a

primitive widely applied in relational algebra and data manipulation; SGEMV,

DGEMM and SpMV are the most common tensor operators across modern ap-

plications, including deep learning; KMeans is a key algorithm of data an-

alytics and machine learning; BFS is the most important graph traversal.

Parts of this chapter appeared in the International Symposium on Microarchitec-
ture [69]. The material is used with permission.

75

Table 8.1: Benchmarks

Benchmark Reference Dataset Number of Codelets (Input Code)
Scan Thrust A 16M integer array 4, with 2 exclusive scan and 4 reduction

SGEMV-TS MKL &
CUBLAS

A 512K-by-128 (Tall-
and-Skinny) matrix

1, with 1 dot-product, and 2 reduction

SGEMV-SF MKL &
CUBLAS

A 128-by-512K (Short-
and-fat) matrix

1, with 1 dot-product, and 2 reduction

DGEMM MKL &
CUBLAS

A non-transposed 4K-by-
4K matrix & a trans-
posed 4K-by-4K matrix

1, with 2 dot-product and 1 reduction

SpMV MKL & CUS-
PARSE

bcsstk18 [77] (CSR for-
mat)

1, with 1 sparse scalar-multiply, 1
sparse dot-product, and 4 reduction

KMeans Rodinia kdd cup (default in Ro-
dinia)

1, with 1 difference, 4 reduction, 1 min-
ima selection, and 1 gemm-like opera-
tion

BFS Rodinia graph1MW 6 (default in
Rodinia)

1, with 1 edge visiting, and 1 vertex
visiting

We compare each of our generated kernels to a reference, or the best per-

forming implementation available to us: Thrust [53] version 1.9, MKL [78]

version 12.0, CUBLAS [79] version 7.0, CUSPARSE [79, 80] version 7.0, and

Rodinia [72] 3.0. In selecting the reference for each benchmark, we chose

CUBLAS, CUSPARSE and Thrust for GPUs and MKL for CPUs where

possible. Particularly, MKL, CUBLAS, and CUSPARSE come with their

own offline tuning and then heuristic version selections for parameterization

of different architectures. When using Rodinia, we chose the best known

hand-optimized version from the benchmark suite. For example, for the Ro-

dinia CPU references, we pick the best result among the OpenMP version

(with icc -O3) and the OpenCL version on top of the Intel and AMD OpenCL

CPU stacks.

The evaluated input datasets include a 16M integer array for Scan, two

512K-by-128 (tall-and-skinny, TS) and 128-by-512K (short-and-fat, SF) ma-

trices for SGEMV, a pair of 4K-by-4K and transposed 4K-by-4K matrices for

DGEMM, the bcsstk18 matrix and 100 iteration for SpMV, the kdd cup dataset

(default in Rodinia) for KMeans, and the graph1MW 6 dataset (default in Ro-

dinia) for BFS.

The evaluated codelets for each benchmark are summarized as follows.

Scan (inclusive) has 4 codelets, and reuses 2 codelets from exclusive scan

and 4 from reduction. SGEMV has 1 codelet, and reuses 1 from dot-product, 2

from order-preserving reduction, and 3 from non-order-preserving reduction.

DGEMM has 1 codelet, and reuses 2 from dot-product and 1 from reduction;

SpMV has 1 codelet, and reuses 1 from sparse scalar multiplication, 1 from

76

sparse dot-product, and 4 from reduction. KMeans has 1 codelet, and reuses

1 from difference, 4 from reduction, 1 from minima selection, and 1 from a

gemm-like operation. BFS has 1 codelet, and reuses 1 from edge visiting, and

1 from vertex visiting.

For the benchmarks with regular memory access patterns and no data-

dependent control flow, such as Scan, SGEMV, and DGEMM, we use offline pro-

filing. For iterative applications, such as SpMV and KMeans, we apply online

profiling using techniques similar to [63] and only profile the first iteration.

For irregular but non-iterative applications, such as BFS, we use offline pro-

filing on synthetic random graphs.

8.2 Performance Results

Figure 8.1 shows the performance of the six benchmarks on the three evalu-

ation architectures, comparing the TANGRAM implementation to the refer-

ence implementation for each. In presenting the results, performance is nor-

malized to the best performing implementation for each benchmark (highest

bar), thereby showing the relative performance of the implementations being

compared.

8.2.1 Scan

TANGRAM’s Scan consistently outperforms Thrust’s for all devices. TAN-

GRAM’s Scan is expressed with codelets of different simple scan algorithms,

including sequential scan, tree-structure scan, and recursive scan. Particu-

larly, each scan call in a recursive scan codelet can be mapped to different

scan codelets to fit the architectural hierarchy and to further enable high

performance portability. Given a target architecture, offline profiling can be

used to select the best version from a range of competitive ones.

Besides selecting appropriate compositions, coarsening factors, and tiling

factors, TANGRAM also benefits from fusing maps. Scan is commonly writ-

ten as either a scan-scan-add or a reduce-scan-scan algorithm [81]. In either

case, the middle scan lacks parallelism and blocks fusion. However, the three

stages can be fused by implementing the middle scan in a streaming or slid-

ing fashion using atomic operations [82, 83]. In TANGRAM, this sliding

77

0	

0.
2	

0.
4	

0.
6	

0.
8	1	

Sc
an
	

SG
EM

V-
TS
	

SG
EM

V-
SF
	

DG
EM

M
	

Sp
M
V	

KM
ea
ns
	

BF
S	

Normalized	Performance		
(higher	is	be*er)	

Ke
pl
er
	(r
ef
er
en

ce
)	

Ke
pl
er
	(T

AN
GR

AM
)	

Fe
rm

i	(
re
fe
re
nc
e)
	

Fe
rm

i	(
TA

N
GR

AM
)	

CP
U
	(r
ef
er
en

ce
)	

CP
U
	(T

AN
GR

AM
)	

Figure 8.1: TANGRAM Performance Results

78

47.9x 49.4x

0	

0.5	

1	

1.5	

2	

2.5	

3	

Fermi	 Kepler	 CPU	

N
or
m
al
iz
ed

		
Pe

rf
or
m
an

ce
	

(h
ig
he
r	i
s	b

e*
er
)		

Reference	
(Thrust)	

TANGRAM	(no	
sliding	codelet)	

TANGRAM	(with	
sliding	codelet)	

Figure 8.2: Scan Results with or without the Sliding Codelet (Normalized
to the Corresponding Thrust Results)

scan is implemented as a codelet in the scan spectrum using map, enabling

TANGRAM to automatically generate a composition that fuses the three

stages.

Figure 8.2 compares TANGRAM’s scan to the reference with and without

the sliding codelet (which enables fusion). Even without the extra codelet,

TANGRAM still outperforms Thrust, due to better choice of partition

parameters, which are labeled as tunable in TANGRAM. The addition of

the sliding codelet has more impact on GPUs than CPUs because GPU

cachelines have shorter lifetimes than CPU ones, so applying fusion is more

critical in order to avoid reloading intermediate data. Note that Thrust’s

CPU result1 is 47.9-49.4x slower than TANGRAM’s due to an inefficient

CPU implementation in Thrust version 1.9.

8.2.2 SGEMV

Parallelism of SGEMV highly depends on the height of input matrix. Therefore,

a tall-and-skinny (TS) matrix is used as a test case with high parallelism and

a short-and-fat (SF) matrix as a test case with low parallelism.

In the TS matrix, TANGRAM’s SGEMV surprisingly outperforms MKL’s

on the CPU by a factor of 2.18x while delivering comparable performance

to CUBLAS’ on Kepler and outperforms CUBLAS’ on Fermi by a factor of

2.69x. In this particular evaluation, since MKL’s SGEMV delivers only less than

half of the memory bandwidth, we believe it is mistuned. A similar conclusion

1Note that Thrust CPU Scan is confirmed as multi-threaded.

79

0	
0.5	
1	

1.5	
2	

2.5	
3	

3.5	
4	

4.5	

Fermi	 Kepler	

N
or
m
al
iz
ed

		
Pe

rf
or
m
an

ce
	

(h
ig
he
r	i
s	b

e*
er
)	

	

CUBLAS	
(NOP)	

TANGRAM	
(NOP)	

TANGRAM	
(SOP)	

Figure 8.3: SOP and NOP SGEMV-SF Results on GPUs (Normalized to the
Corresponding CUBLAS Results)

is also applied to Fermi’s SGEMV. This demonstrates that the current industry

practice falls short in keeping performance-critical libraries well tuned for

each generation of hardware.

In the SF matrix, we discover2 CUBLAS does not implement the “stan-

dard” SGEMV (denoted as SOP, sequential-order-preserving), which preserves

the sequential order of the dot-product. A “non-standard” SGEMV (denoted

as NOP, non-order-preserving) generates different rounding error from the

SOP one, and might impact some applications. The SOP SGEMV only allows

the dot-product following the sequential order, so NOP reduction codelets

(like Figure 4.3 (b), (c), and (d) but using float) must be excluded. Two

reduction codelets used in the SOP SGEMV are sequential reduction codelet

(similar to Figure 4.3 (a)) and a sliding fashion [83] sequential reduction

codelet. Therefore, the only difference between SOP and NOP is the reduc-

tion codelets used in the dot-product. This also shows the productivity of

TANGRAM framework without kernel redevelopment.

Figure 8.3 compares the SOP and NOP SGEMV with the SF matrix on

the GPUs. For NOP SGEMV, TANGRAM’s code outperforms CUBLAS’ on

Kepler and Fermi by factors of 1.97x and 4.09x respectively. It is worth

mentioning that TANGRAM’s SOP SGEMV has performance comparable to

that of CUBLAS’ NOP SGEMV on Fermi.

2by examining the output rounding errors of specially designed matrices

80

8.2.3 DGEMM

TANGRAM’s DGEMM performs within 30% difference of all reference imple-

mentations. The presented TANGRAM CPU result is based on generic

codelets, though, as mentioned in Section 4.2.1, the TANGRAM framework

allows easy integration of intrinsics through env. The version using AVX

intrinsics can gain another 7% performance improvement.

One difficulty in achieving good performance in DGEMM is that it is bounded

by instruction throughput. The current implementation of TANGRAM relies

on the backend C (icc) or CUDA compiler (nvcc) to generate good quality

code. Therefore, our TANGRAM Kepler result (717 GFLOPS) achieves 70%

performance of CUBLAS (1,027 GFLOPS). In the future, we will likely em-

ploy more optimization passes in our compiler and provide a code generation

path to PTX or assembly code to better control these low-level factors. For

example, one such factor is register bank conflicts [84], which are hard to

address at the source-code level.

8.2.4 SpMV

TANGRAM’s SpMV delivers performance comparable (within 10%) to that of

all reference implementations, doing slightly worse than CUSPARSE on the

GPUs, and slightly better than MKL on the CPU. In SpMV, two candidate

kernels are generated for each architecture. Online profiling [63] is applied

to the first iteration to select the best version, and the overhead of online

profiling is less than 0.8%.

Traditional implementations [85, 86] only consider the warp-centric dot-

product and the scalar dot-product. The former tends to have a better

memory access pattern but less parallelism than the latter. Compared to

the traditional implementations, TANGRAM explores more combinations

of compositions with built-in optimizations, such as transposition on GPU

scratchpad memory.

Figure 8.4 shows how built-in optimizations impact the final performance.

In this evaluation, the result with TANGRAM’s optimizations is a version

very similar to the scalar dot-product. As mentioned in Section 6.6.2, TAN-

GRAM’s composition process prefers higher parallelism by preferring the

rules that generate a distribute. Although the scalar dot-product might have

81

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

Fermi	 Kepler	 CPU	

N
or
m
al
iz
ed

		
Pe

rf
or
m
an

ce
	

(h
ig
he
r	i
s	b

e*
er
)	 Reference	

TANGRAM	(no	
transposiBon	opt)	

TANGRAM	(with	
transposiBon	opt)	

Figure 8.4: SpMV Results with and without Transposition Optimization
(Normalized to the Corresponding References)

a worse memory access pattern, TANGRAM’s optimizers can still improve

its performance by applying proper optimizations, such as transposition on

GPU scratchpad, or selecting a proper tile size for CPU caches. Particularly,

TANGRAM’s GPU implementation is similar to [87]. In the end, the results

show the built-in optimizations significantly improve performance of SpMV in

TANGRAM by up to 4.08x on GPUs. Note the CPU results are not sensi-

tive to TANGRAM’s optimizers, because CPUs tend to have larger caches

to tolerate different tiling sizes.

8.2.5 KMeans

TANGRAM’s KMeans consistently outperforms Rodinia’s for all devices (the

best performing CPU version among Rodinia implementations was OpenMP).

For KMeans, TANGRAM generates seven candidates (with different coars-

ening factors and data placements) for GPUs and four candidates for CPUs.

The online profiling is applied to the first iteration, and the total overhead

is less than 2%.

As mentioned in Section 6.6.2, TANGRAM applies the rules that have fa-

vorable locality among those generating a distribute, and consequently out-

performs Rodinia’s, all of which access the loops (the feature loop and the

cluster loop) in a suboptimal order.

82

8.2.6 BFS

TANGRAM’s BFS performs within 10% difference of all reference implemen-

tations, doing slightly better than Rodinia’s on the GPU, and slightly worse

on the CPU (the best performing CPU version of Rodinia BFS is the OpenCL

version on top of Intel’s stack). The evaluated BFS only includes the same

vertex-based algorithm that Rodinia uses for fair comparison.

The vertex status checking (for g graph mask) and edge index fetching

(for g graph nodes) of BFS are parallelizable. While Rodina’s parallelizes

the former one but serialize the latter one, TANGRAM’s parallelizes both,

since TANGRAM tends to apply a rule with higher parallelism.

Figure 8.5 shows the execution breakdown of each iteration for both GPU

versions. TANGRAM’s version tends to perform better than Rodinia’s when

the number of active vertices (which is proportional to workload size) is large.

However, due to a very low number of edges per vertex in some iterations,

like the 11th iteration, TANGRAM’s versions perform slightly worse than

Rodinia’s.

0	

1	

2	

3	

4	

5	

6	

7	

8	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	

Ex
ec
u&

on
	T
im

e	
(m

s)
	 Rodinia(Kepler)	

TANGRAM(Kepler)	

Rodinia	(Fermi)	

TANGRAM(Fermi)	

Figure 8.5: BFS GPU Performance Breakdown

8.3 Discussion

TANGRAM language enables expression for interchangeable codelets, allow-

ing recursive calls to adapt different architectural hierarchies and tunable

qualifiers for parameterization tuning to adapt resource sizes. Therefore,

83

the TANGRAM compiler potentially can choose alternative algorithms or

optimizations for a particular computation to achieve better performance.

Algorithms. In our evaluation, TANGRAM’s DGEMM, KMeans, and BFS

use the same algorithms as the references. TANGRAM’s SGEMV uses the

same algorithm as the standard BLAS and MKL, while CUBLAS uses a

different algorithm for the SF matrix. For Scan and SpMV, we cannot confirm

whether the algorithms are the same, since the references are close-sourced.

However, particularly for Scan, we believe TANGRAM synthesized a different

combination of scan algorithms compared to Thrust.

Synthesized Kernels. Most differences among the synthesized kernels

for different types of architectures (for example, CPUs and GPUs) are ei-

ther algorithmic or loop structure due to different hierarchies. For the same

type of architectures (for example, Fermi and Kepler GPUs), the differences

mainly come from different parameters or data placement. The only excep-

tion happens in Scan: its algorithmic combination changes from Fermi to

Kepler, due to the high efficiency of Kepler’s shuffle instructions.

Reasons for High Performance. We summarize the major reasons why

TANGRAM can achieve performance better than or comparable to the ref-

erences. TANGRAM potentially can deliver better algorithmic combination

to match the architectural hierarchy (Scan), more parallelism (SGEMV, SpMV

and BFS), better locality (Kmeans), better parameters (Scan) or better data

placement (Kmeans and SpMV). For DGEMM, TANGRAM did not outperform

MKL or CUBLAS, since the references are written in assembly.

8.4 Performance Comparison to Existng

Composition-based Language

As discussed in Section 4.5, languages [40, 59, 55] with composition rules

can potentially provide functionality of adaptation to architectural hierarchy

similar to what TANGRAM does. Petabricks [55] is the most similar work

to TANGRAM, allowing the user to define codelet-like functions (called

transforms and rules), supporting composition and parameter tuning, and

trying to achieve performance portability on CPUs and GPUs [88].

The major difference between TANGRAM and Petabricks is architec-

tural optimization. TANGRAM introduces architectural hierarchy mod-

84

0	
0.2	
0.4	
0.6	
0.8	
1	

MKL TANGRAM Petabricks
(with MKL)

Petabricks
(no MKL)

N
or
m
al
iz
ed

	
Pe

rf
or
m
an

ce
	

(h
ig
he
r	i
s	b

e)
er
)	

Figure 8.6: Comparison between TANGRAM and Petabricks using DGEMM

on CPU

els and corresponding rules to guide composition and optimization processes,

and focuses on architectural optimizations themselves. Compared to TAN-

GRAM, Petabricks directly relies on autotuning (using evolutionary algo-

rithms, particularly) for design space search, and focuses on task scheduling,

and selection of proper algorithms or libraries for particular input data. Lack

of architectural hierarchy models could obstruct possible composition and

potential architectural optimization for the target architecture, then prevent

exploration of certain versions, and possibly lead to a suboptimal result.

Meanwhile, lack of general architectural optimizations could cause catas-

trophic performance degradation for generated code.

To demonstrate this difference, a common benchmark, DGEMM, is evalu-

ated. Figure 8.6 shows Petabricks can achieve 79% and 11% of MKL per-

formance, with and without calling MKL DGEMM internally3 respectively,

while TANGRAM can achieve 70% of MKL performance (without calling

MKL DGEMM internally). These results imply that Petabricks highly relies

on high-performance base rules (atomic codelets in TANGRAM). We also

observe that the released package of Petabricks did not optimize function

inlining, thread spawning, and branch divergences of version selection, so it

achieved only 79% of MKL performance even with internal MKL DGEMM calls.

This evaluation demonstrates that architectural optimizations are crucial to

achieve high performance. Other important differences include TANGRAM’s

support for cooperative codelets, which is crucial for better utilization of

SIMD execution on modern architectures. TANGRAM also introduces static

pruning in composition to select competitive candidates before profiling.

3The DGEMM in Petabricks calls MKL by default and disables all other rules. For fair
comparison, we re-enable all of the rules and optionally enable MKL DGEMM.

85

CHAPTER 9

CONCLUSION AND FUTURE WORK

9.1 Conclusion

In this dissertation, I have discussed existing techniques tackling performance

portability challenges that result from major hardware differences, and sur-

veyed current programming systems attempting to resolve these challenges.

I have further identified the key issues of current programming systems for

achieving performance portability, classified them in two categories, language

and compiler, and investigated them in terms of the design space.

I present a programming system, TANGRAM, addressing these two major

kinds of issues, by presenting a new programming language with its com-

piler. The language is designed for effectively expressing a design space with

high coverage by enabling users to define compute patterns via atomic and

compound codelets and built-in containers and primitives. TANGRAM is a

modular, composition-based programming language that can deliver effective

expression for a design space as well as productivity and maintainability.

On the other hand, the compiler is designed to effectively explore the de-

sign space and facilitate many high-level optimization techniques. I have

developed a user-friendly compiler infrastructure that is specialized for com-

positions and design space exploration. I have further exploited the infras-

tructure to design the compiler that incorporates a series of static kernel

synthesis and selection techniques such as hierarchical composition, coarsen-

ing, data placement, and autotuning. The TANGRAM programming sys-

tem supports performance portability through compositions of user-defined

architecture-neutral code into high-performance kernels customized for dif-

ferent architectural hierarchies.

This dissertation provides comprehensive description of the architectural

hierarchy model, the composition mechanism, and the code generation. The

86

results show that TANGRAM can achieve performance of at least 70%, and in

some cases multiple times, of various well-known reference implementations

on various architectures.

9.2 Future Work

As for future work, I believe the TANGRAM programming system can be

further improved along the following major directions:

• Extending the language and compiler to support more computation

patterns in real-world applications

• Extending the language and compiler to support complex tuning con-

straints and the precision control

• Merging the language interface with C++ or other standards

• Developing more compiler passes for both analyses and optimizations

• Redesigning the current composition planner to support more sophis-

ticated design space exploration

• Introducing a new type of memory level in hardware abstraction

• Extending the compiler to support FPGAs, Integrated system, and/or

clusters

The current language is implemented as a limited extension of C++, and

the compiler is designed to focus at the kernel synthesis. Therefore, the

current language might not always fit every existing software, and the current

compiler might have a trouble handling tasks like I/O or memory transfer,

which might be important in certain applications. To achieve those goals,

we need to extend the language and the compiler.

TANGRAM currently provides tuning knobs through tunable qualifiers.

In the current implementation, these tuning knobs are parameterized during

code generation, and then specified later. However, in practice, programmers

might be able to provide information, such as a reasonable range or legitimate

values, for these parameters. Therefore, it is useful to provide this kind of in-

terface in the language level. Also, data precision transformations are widely

87

applicable for energy saving or performance boosting. TANGRAM currently

does not include optimizations related to precision-related transformations.

Programmers currently can only encode precision-related transformations us-

ing different codelets to enable these kinds of optimizations. It is useful to

provide native support for precision-related transformations by introducing

keywords in the language level, and related optimizations in the compiler

level.

TANGRAM is a new programming language, and programmers generally

resist adopting new languages. However, TANGRAM in fact shares a sig-

nificant amount of language syntax with the C++17 standard, so it can

potentially be merged with C++17. Also, if we provide parsers for existing

composition-based languages, Petabricks, Sequoia, and even Halide, theoret-

ically the TANGRAM compiler can be exploited to support compositions in

those languages.

The current compiler implementation still has a limited number of analyses

and optimizations. In order to achieve high performance across devices for

general applications, a huge number of compiler analyses and optimizations

are required. The TANGRAM compiler infrastructure should be able to

facilitate compiler development.

The current composition mechanism is driven by a heuristic that is based

on my personal understanding of high-performance parallel programming on

CPUs and GPUs. It might not be general or practical for devices that I

never studied or future devices. Therefore, we might need to develop a new

composition algorithm when the current one is not beneficial, or study a self-

guided composition algorithm through machine learning or a reconfigurable

algorithm through micro-benchmarking.

The current TANGRAM system does not support memory abstraction for

hardware. Therefore, it cannot easily describe characteristics of near-memory

processors, and guide design space exploration for them. In order to support

these energy-efficient near-memory processors, we need to extend hardware

abstraction to model memory.

Support for FPGAs, integrated systems and clusters might become very

challenging, since FPGAs have feasible hierarchies and integrated systems

and clusters are highly sensitive to communication. It might require more so-

phisticated hardware abstraction (e.g. introducing new abstraction for mem-

ory and/or communication), composition rules (e.g new composition rules to

88

split workloads for heterogeneous processors), composition algorithms (e.g

machine-learning-based or model-based composition algorithms for FPGA

due to no fixed hierarchy) and, of course, optimizations. Also, code gener-

ation requires a certain degree of modification to support efficient backends

for those devices. Hopefully, the TANGRAM compiler infrastructure should

be general enough to facilitate modification for future work.

89

REFERENCES

[1] Khronos group, “The OpenCL specification,” Version 2.0, 2015.

[2] K. Gregory and A. Miller, C++ AMP: Accelerated Massive Parallelism
with Microsoft R© Visual C++ R©. O’Reilly Media, Inc., 2012.

[3] “OpenMP application programming interface,” Version 4.5, 2015.

[4] “OpenACC,” http://www.openacc.org/.

[5] “OpenCL Zone.” [Online]. Available: http://developer.amd.com/tools-
and-sdks/opencl-zone/

[6] “Beignet.” [Online]. Available: https://01.org/beignet

[7] “NVIDIA OpenCL SDK.” [Online]. Available:
https://developer.nvidia.com/opencl

[8] “Mali OpenCL SDK.” [Online]. Available:
http://malideveloper.arm.com/develop-for-mali/sdks/mali-opencl-
sdk/

[9] “PowerVR SDK.” [Online]. Available:
http://community.imgtec.com/developers/powervr/

[10] J. Gummaraju, L. Morichetti, M. Houston, B. Sander, B. R. Gaster,
and B. Zheng, “Twin Peaks: A Software Platform for Heterogeneous
Computing on General-purpose and Graphics Processors,” in Proceed-
ings of the 19th International Conference on Parallel Architectures and
Compilation Techniques, 2010, pp. 205–216.

[11] “Intel SDK for OpenCL Applications.” [Online]. Available:
https://software.intel.com/en-us/intel-opencl

[12] “OpenCL Development Kit for Linux on Power.” [Online]. Available:
http://www.alphaworks.ibm.com/tech/opencl

[13] “OpenCL Development Kit for Linux on Power.” [Online]. Available:
http://www.alphaworks.ibm.com/tech/opencl

90

[14] P. Jääskeläinen, C. de La Lama, E. Schnetter, K. Raiskila, J. Takala,
and H. Berg, “pocl: A performance-portable OpenCL implementation,”
International Journal of Parallel Programming, pp. 1–34, 2014.

[15] “FreeOCL.” [Online]. Available: https://code.google.com/p/freeocl/

[16] H.-S. Kim, I. El Hajj, J. Stratton, S. Lumetta, and W.-M. Hwu,
“Locality-centric thread scheduling for bulk-synchronous programming
models on CPU architectures,” in Proceedings of the 13th Annual
IEEE/ACM International Symposium on Code Generation and Opti-
mization, 2015, pp. 257–268.

[17] “MAGMA.” [Online]. Available:
http://icl.cs.utk.edu/magma/software/

[18] “OpenCV.” [Online]. Available: http://opencv.org/

[19] H.-S. Kim, “Performance portable compiler techniques for bulk-
synchronous programming models on CPU architectures,” Ph.D. dis-
sertation, University of Illinois at Urbana-Champaign, 2015.

[20] J. A. Stratton, C. Rodrigues, I. Sung, N. Obeid, L. Chang, N. Anssari,
G. D. Liu, and W. W. Hwu, “Parboil: A revised benchmark suite for
scientific and commercial throughput computing,” IMPACT Technical
Report, 2012.

[21] J. Stratton, N. Anssari, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W.
Chang, G. D. Liu, and W.-m. Hwu, “Optimization and architecture ef-
fects on GPU computing workload performance,” in Innovative Parallel
Computing (InPar), 2012, 2012, pp. 1–10.

[22] J. Stratton, “Performance portability of parallel kernels on shared-
memory systems,” Ph.D. dissertation, University of Illinois at Urbana-
Champaign, 2013.

[23] A. Magni, C. Dubach, and M. F. O’Boyle, “A large-scale cross-
architecture evaluation of thread-coarsening,” in Proceedings of the In-
ternational Conference on High Performance Computing, Networking,
Storage and Analysis, 2013, p. 11.

[24] J. Kim, S. Seo, J. Lee, J. Nah, G. Jo, and J. Lee, “SnuCL: An OpenCL
Framework for Heterogeneous CPU/GPU Clusters,” in Proceedings of
the 26th ACM International Conference on Supercomputing, 2012, pp.
341–352.

[25] J. A. Stratton, S. S. Stone, and W. W. Hwu, “MCUDA: An efficient
implementation of CUDA kernels for multi-core CPUs,” in Languages
and Compilers for Parallel Computing, J. N. Amaral, Ed., 2008, pp.
16–30.

91

[26] N. Rotem, “Intel OpenCL Implicit Vectorization Module,” 2011.

[27] R. Karrenberg and S. Hack, “Improving Performance of OpenCL on
CPUs,” in Proceedings of the 21st International Conference on Compiler
Construction, 2012, pp. 1–20.

[28] S. Muralidharan, M. Garland, B. Catanzaro, A. Sidelnik, and M. Hall,
“A collection-oriented programming model for performance portability,”
in Proceedings of the 20th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2015, pp. 263–264.

[29] S. Muralidharan, M. Garland, A. Sidelnik, and M. Hall, “Designing
a tunable nested data-parallel programming system,” ACM Trans.
Archit. Code Optim., vol. 13, no. 4, pp. 47:1–47:24, Dec. 2016. [Online].
Available: http://doi.acm.org/10.1145/3012011

[30] J. Gummaraju, L. Morichetti, M. Houston, B. Sander, B. R. Gaster,
and B. Zheng, “Twin Peaks: A Software Platform for Heterogeneous
Computing on General-purpose and Graphics Processors,” in Proceed-
ings of the 19th International Conference on Parallel Architectures and
Compilation Techniques, 2010, pp. 205–216.

[31] X. Chen, L.-W. Chang, C. I. Rodrigues, J. Lv, Z. Wang,
and W.-M. Hwu, “Adaptive cache management for energy-efficient
gpu computing,” in Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-47.
Washington, DC, USA: IEEE Computer Society, 2014. [Online].
Available: http://dx.doi.org/10.1109/MICRO.2014.11 pp. 343–355.

[32] X. Chen, S. Wu, L.-W. Chang, W.-S. Huang, C. Pearson, Z. Wang, and
W.-M. W. Hwu, “Adaptive cache bypass and insertion for many-core
accelerators,” in Proceedings of International Workshop on Manycore
Embedded Systems, ser. MES ’14. New York, NY, USA: ACM, 2014.
[Online]. Available: http://doi.acm.org/10.1145/2613908.2613909 pp.
1:1–1:8.

[33] NVIDIA, “Tuning CUDA Applications for Kepler.” [Online]. Available:
http://docs.nvidia.com/cuda/kepler-tuning-guide/

[34] V. Volkov and J. W. Demmel, “Benchmarking GPUs to tune dense
linear algebra,” in High Performance Computing, Networking, Storage
and Analysis, International Conference for, 2008, pp. 1–11.

[35] J. Kurzak, S. Tomov, and J. Dongarra, “Autotuning GEMM kernels for
the Fermi GPU,” Parallel and Distributed Systems, IEEE Transactions
on, vol. 23, no. 11, pp. 2045–2057, 2012.

92

[36] G. Chen, B. Wu, D. Li, and X. Shen, “PORPLE: An extensible optimizer
for portable data placement on GPU,” in Microarchitecture (MICRO),
2014 47th Annual IEEE/ACM International Symposium on, 2014, pp.
88–100.

[37] B. Jang, D. Schaa, P. Mistry, and D. Kaeli, “Exploiting memory ac-
cess patterns to improve memory performance in data-parallel architec-
tures,” IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 1, pp. 105–118,
2011.

[38] NVIDIA, “Tuning CUDA Applications for Maxwell.” [Online].
Available: http://docs.nvidia.com/cuda/maxwell-tuning-guide/

[39] NVIDIA, “CUDA Pro Tip: Optimized Filtering with Warp-
Aggregated Atomics,” http://devblogs.nvidia.com/parallelforall/cuda-
pro-tip-optimized-filtering-warp-aggregated-atomics/.

[40] G. E. Blelloch, “NESL: A nested data-parallel language,” Pittsburgh,
PA, USA, Tech. Rep., 1992.

[41] S. Jones, “Introduction to dynamic parallelism,” in GPU Technology
Conference Presentation, 2012.

[42] W.-m. W. Hwu, Heterogeneous System Architecture: A New Compute
Platform Infrastructure. Morgan Kaufmann, 2015.

[43] J. Wang, N. Rubin, A. Sidelnik, and S. Yalamanchili, “Dynamic thread
block launch: A lightweight execution mechanism to support irregular
applications on GPUs,” in Proceedings of the 42nd Annual International
Symposium on Computer Architecture, 2015, pp. 528–540.

[44] J. Wang, N. Rubin, A. Sidelnik, and S. Yalamanchili, “LaPerm: Locality
aware scheduler for dynamic parallelism on gpus,” in The 43rd Interna-
tional Symposium on Computer Architecture (ISCA), June 2016.

[45] M. S. Orr, B. M. Beckmann, S. K. Reinhardt, and D. A. Wood, “Fine-
grain task aggregation and coordination on GPUs,” in ACM SIGARCH
Computer Architecture News, vol. 42, no. 3, 2014, pp. 181–192.

[46] I. El Hajj, J. Gómez-Luna, C. Li, L.-W. Chang, D. Milojicic, and W.-m.
Hwu, “KLAP: Kernel launch aggregation and promotion for optimizing
dynamic parallelism,” in Microarchitecture (MICRO), 2016 49th Annual
IEEE/ACM International Symposium on, 2016, pp. 1–12.

[47] Y. Yang and H. Zhou, “CUDA-NP: Realizing nested thread-level par-
allelism in GPGPU applications,” in ACM SIGPLAN Notices, vol. 49,
no. 8, 2014, pp. 93–106.

93

[48] G. Chen and X. Shen, “Free launch: optimizing GPU dynamic kernel
launches through thread reuse,” in Proceedings of the 48th International
Symposium on Microarchitecture, 2015, pp. 407–419.

[49] D. Merrill, M. Garland, and A. Grimshaw, “Policy-based tuning for per-
formance portability and library co-optimization,” in Innovative Parallel
Computing (InPar), 2012, 2012, pp. 1–10.

[50] M. Püschel, J. M. Moura, B. Singer, J. Xiong, J. Johnson, D. Padua,
M. Veloso, and R. W. Johnson, “Spiral: A generator for platform-
adapted libraries of signal processing alogorithms,” International Jour-
nal of High Performance Computing Applications, vol. 18, no. 1, pp.
21–45, 2004.

[51] R. C. Whaley, A. Petitet, and J. J. Dongarra, “Automated empirical
optimizations of software and the ATLAS project,” Parallel Computing,
vol. 27, no. 1, pp. 3–35, 2001.

[52] Intel Corporation, “C/C++ Extensions for Array Notations Program-
ming Model,” http://software.intel.com/en-us/node/522649.

[53] N. Bell and J. Hoberock, “Thrust: A productivity-oriented library for
CUDA,” GPU Computing Gems Jade Edition, p. 359, 2011.

[54] M. Steuwer, C. Fensch, S. Lindley, and C. Dubach, “Generating per-
formance portable code using rewrite rules: from high-level functional
expressions to high-performance OpenCL code,” in Proceedings of the
20th ACM SIGPLAN International Conference on Functional Program-
ming, 2015, pp. 205–217.

[55] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman,
and S. Amarasinghe, “PetaBricks: A language and compiler for algorith-
mic choice,” in Proceedings of the 2009 ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2009, pp. 38–49.

[56] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan, “Improving
GPGPU concurrency with elastic kernels,” in Proceedings of the Eigh-
teenth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2013, pp. 407–418.

[57] N. Vijaykumar, K. Hsieh, G. Pekhimenko, S. Khan, A. Shrestha,
S. Ghose, A. Jog, P. B. Gibbons, and O. Mutlu, “Zorua: A holis-
tic approach to resource virtualization in GPUs,” in 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
Oct 2016, pp. 1–14.

[58] Khronos group, “SYCL Provisional Specification,” Version 2.2, 2016.

94

[59] K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem, M. Houston, J. Y.
Park, M. Erez, M. Ren, A. Aiken, W. J. Dally, and P. Hanrahan, “Se-
quoia: Programming the memory hierarchy,” in Proceedings of the 2006
ACM/IEEE conference on Supercomputing, 2006.

[60] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Ama-
rasinghe, “Halide: a language and compiler for optimizing parallelism,
locality, and recomputation in image processing pipelines,” ACM SIG-
PLAN Notices, vol. 48, no. 6, pp. 519–530, 2013.

[61] J. Hoberock, “The Parallelism TS Should be Standardized,”
http://www.open-std.org/Jtc1/sc22/wg21/docs/papers/2016/p0024r1.

[62] H. Guihot, “Renderscript,” in Pro Android Apps Performance Opti-
mization. Springer, 2012, pp. 231–263.

[63] L.-W. Chang, H.-S. Kim, and W.-m. Hwu, “DySel: Lightweight dynamic
selection for kernelbased data-parallel programming model,” in Proceed-
ings of the Twenty-First International Conference on Architectural Sup-
port for Programming Languages and Operating Systems. ACM, 2016,
pp. 667–680.

[64] J.-F. Dollinger and V. Loechner, “Adaptive runtime selection for GPU,”
in 42nd International Conference on Parallel Processing, 2013, pp. 70–
79.

[65] L. Li, U. Dastgeer, and C. Kessler, “Adaptive off-line tuning for op-
timized composition of components for heterogeneous many-core sys-
tems,” in International Conference on High Performance Computing
for Computational Science, 2012, pp. 329–345.

[66] J. Srinivas, W. Ding, and M. Kandemir, “Reactive tiling,” in Code Gen-
eration and Optimization, 2015 IEEE/ACM International Symposium
on, 2015, pp. 91–102.

[67] J. R. Wernsing and G. Stitt, “Elastic computing: a framework for trans-
parent, portable, and adaptive multi-core heterogeneous computing,” in
ACM SIGPLAN Notices, vol. 45, no. 4, 2010, pp. 115–124.

[68] M. J. Voss and R. Eigemann, “High-level adaptive program optimization
with ADAPT,” in ACM SIGPLAN Notices, vol. 36, no. 7, 2001, pp. 93–
102.

[69] L.-W. Chang, I. El Hajj, C. Rodrigues, J. Gómez-Luna, and W.-m. Hwu,
“Efficient kernel synthesis for performance portable programming,” in
Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM Interna-
tional Symposium on, 2016, pp. 1–13.

95

[70] K. Goto and R. A. Geijn, “Anatomy of high-performance matrix mul-
tiplication,” ACM Transactions on Mathematical Software (TOMS),
vol. 34, no. 3, p. 12, 2008.

[71] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun, “Accelerating
CUDA graph algorithms at maximum warp,” in ACM SIGPLAN No-
tices, vol. 46, no. 8, 2011, pp. 267–276.

[72] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous comput-
ing,” in Workload Characterization, 2009. IISWC 2009. IEEE Interna-
tional Symposium on, 2009, pp. 44–54.

[73] Intel, “Vectorizer knobs,” https://software.intel.com/en-
us/node/540483.

[74] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Code Generation and Optimiza-
tion, International Symposium on, 2004, pp. 75–86.

[75] D. Quinlan, “ROSE: Compiler support for object-oriented frameworks,”
Parallel Processing Letters, vol. 10, no. 02n03, pp. 215–226, 2000.

[76] C. Dave, H. Bae, S.-J. Min, S. Lee, R. Eigenmann, and S. Midkiff, “Ce-
tus: A source-to-source compiler infrastructure for multicores,” Com-
puter, vol. 42, no. 12, 2009.

[77] “The Matrix Market,” http://math.nist.gov/MatrixMarket/.

[78] “Intel Math Kernel Library,” http://software.intel.com/en-
us/articles/intel-mkl/.

[79] NVIDIA, CUBLAS Library User Guide, v7.0 ed., 2015.

[80] NVIDIA, CUDA CUSPARSE Library, v7.0 ed., 2015.

[81] Y. Dotsenko, N. K. Govindaraju, P.-P. Sloan, C. Boyd, and J. Man-
ferdelli, “Fast scan algorithms on graphics processors,” in Proceedings
of the 22Nd Annual International Conference on Supercomputing, 2008,
pp. 205–213.

[82] S. Yan, G. Long, and Y. Zhang, “StreamScan: Fast scan algorithms
for GPUs without global barrier synchronization,” in Proceedings of the
18th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 2013, pp. 229–238.

[83] J. Gomez Luna, L.-W. Chang, I.-J. Sung, N. Guil Mata, and W.-M. W.
Hwu, “In-place data sliding algorithms for many-core architectures,” in
Parallel Processing, International Conference on, 2015 (in press).

96

[84] J. Lai and A. Seznec, “Performance upper bound analysis and opti-
mization of sgemm on Fermi and Kepler GPUs,” in Code Generation
and Optimization (CGO), 2013 IEEE/ACM International Symposium
on, 2013, pp. 1–10.

[85] N. Bell and M. Garland, “Efficient sparse matrix-vector multiplication
on CUDA,” NVIDIA Corporation, NVIDIA Technical Report NVR-
2008-004, 2008.

[86] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spaf-
ford, V. Tipparaju, and J. S. Vetter, “The scalable heterogeneous com-
puting (SHOC) benchmark suite,” in Proceedings of the 3rd Workshop
on General-Purpose Computation on Graphics Processing Units, 2010,
pp. 63–74.

[87] J. L. Greathouse and M. Daga, “Efficient sparse matrix-vector multipli-
cation on GPUs using the CSR storage format,” in Proceedings of the
International Conference for High Performance Computing, Network-
ing, Storage and Analysis, 2014, pp. 769–780.

[88] P. M. Phothilimthana, J. Ansel, J. Ragan-Kelley, and S. Amarasinghe,
“Portable performance on heterogeneous architectures,” in Proceedings
of the Eighteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, vol. 48, no. 4, 2013,
pp. 431–444.

97

