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Abstract

Suppose f(x, y) is a binary form of degree d with coefficients in a field K ⊆ C. The K-rank

of f is the smallest number of d-th powers of linear forms over K of which f is a K-linear

combination. We prove that for d ≥ 5, there always exists a form of degree d with at least

three different ranks over various fields. We also study the relation between the relative rank

and the algebraic properties of the underlying field. In particular, we show that K-rank of a

form f (such as x3y2) may depend on whether −1 is a sum of two squares in K. We provide

lower bounds for the C-rank (Waring rank) and for the R-rank (real Waring rank) of binary

forms depending on their factorization. We also give the rank of quartic and quintic binary

forms based on their factorization over C. We investigate the structure of binary forms with

unique C-minimal representation.
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Chapter 1

Introduction

The main results of this work concern the Waring problem for forms, sometimes called

the symmetric tensor decomposition. Recently, the symmetric tensor decomposition has at-

tracted attention with its applications in signal processing, statistics, neuroscience, chemo-

metrics, data mining and machine learning [13, 20, 22, 35, 41].

The Waring problem for forms has several different versions. In this thesis, we consider

the classical Waring decomposition of homogeneous polynomials into the powers of linear

forms over intermediate fields of C/Q.
Let Hd(K

2) denote the vector space of binary forms of degree d with coefficients in the

field K ⊆ C. Given a binary form f ∈ Hd(K
2), the K-rank of f, LK(f), is the smallest r

for which there exist λj, αj, βj ∈ K such that

f(x, y) =
r∑
j=1

λj
(
αjx+ βjy

)d
.

Note that the K-rank of a binary form f is also called the relative rank of f with respect

to K. The C-rank is commonly called the Waring rank and the R-rank is known as the

real Waring rank. Sylvester [37, 38] presented an algorithm to compute the Waring rank of

binary forms in 1851 and gave a lower bound for the real Waring rank in 1864. The Waring

rank of binary forms has been studied extensively [1, 4, 9, 12, 21, 23, 32]. Recently the real

Waring rank of binary forms has been investigated [5, 7, 10, 11, 14]. The relative ranks of

binary forms over some intermediate fields of C/Q were analyzed in [32, 34].

Let f be real binary form of degree d. If LK(f) = d, we say that f has full rank over

the field K. The case for K = C has been completely analyzed (Theorem 2.3.10). In the last

years, the case K = R has been considered in different works [11, 14, 32], and a final result

is given by Blekherman and Sinn; see Theorem 2.4.8.

We study binary forms with multiple ranks over different fields. We also study the prop-

erties of a binary form that appear to have a determining role in its rank. Some examples of
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such properties are the degree of the form; degree of the field extensions; algebraic properties

of the underlying field; factorization of the form; number of real roots; and irreducibility.

We explore the structure of the binary forms with unique C-minimal representation. We

also investigate whether there are fields besides C and R where forms with a given set of

properties have full rank.

Traditionally, the study of the rank of binary forms has been restricted to complex and

real numbers. The distinctive aspect and main contribution of this work consists in the

extension of this study to intermediate fields of C/Q as a continuation of [32].

We now outline the structure of the thesis.

In Chapter 2, after briefly discussing apolarity, we discuss the existence of the decom-

position of forms into the sums of powers of linear forms and present its connection with

apolarity. In Section 2.2, we recall Sylvester’s 1851 theorem and collect some results on the

K-rank of binary forms. Section 2.3 focuses on the set of possible different ranks of a form

over different fields. Section 2.4 discusses real Waring rank of binary forms and presents

recent improvements on the topic.

Chapter 3 is based on the paper [34] Binary forms with three different relative ranks by

B. Reznick and N. Tokcan, which has been accepted for publication in Proceedings of the

American Mathematical Society. In Section 3.1, we first give examples of binary forms with

multiple ranks (Example 3.1.2). We then show that if d ≥ 5, then there exist a binary form

of degree d which takes at least three different ranks (Theorem 3.2.7). In particular, let ζm

denote a primitive m-th root of unity. We prove that (Theorems 3.2.3 and 3.2.5) if k ≥ 3

and p2k−1(x, y) =
(
2k−1
k

)
xk−1yk−1(x− y), then

LQ(ζk+1)(p2k−1) = k, LQ(ζk)(p2k−1) = k + 1, LR(p2k−1) = 2k − 1 > k + 1.

Similarly, if k ≥ 3 and p2k(x, y) =
(
2k
k

)
xkyk, then

LQ(ζk+1)(p2k) = k + 1, LQ(ζk)(p2k) = k + 2, LR(p2k) = 2k > k + 2.

Section 3.3 investigates the relation between the relative rank of a binary form and the

algebraic properties of the underlying field. The Stufe of a non-real field F , s(F ), is the

smallest integer n such that −1 can be written as a sum of n squares in F . It is already known

that LC(x3y2) = 4 (from [9, Prop.3.1]) and LR(x3y2) = 5 (from [7, Prop.4.4]). We show in

Theorem 3.3.3 that LK(x3y2) = 4 if and only if s(K) ≤ 2 and LK(x3y2) = 5 otherwise. We

show in Theorem 3.3.4 that if m is a square-free positive integer and f(x, y) = 6x5y−20x3y3,
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then LQ(
√
−m)(f) = 4 if and only if s(Q(

√
−m)) ≤ 2 if and only if m 6≡ 7 mod 8 (see [25, 39]),

and LQ(
√
−7)(f) = 5.

Chapter 4 is based on Section 2 of the paper [40] On the Waring rank of binary forms by

N. Tokcan, which has been accepted for publication in Linear Algebra and Its Applications.

In Section 4.1, we first show that if f is a binary form of degree d, not a d-th power, and

(x − αiy) is a factor of multiplicity mi of f, then LC(f) ≥ mi + 1 (Theorem 4.1.1). It

directly follows that LC(`0
d−2`1`2) = LR(`0

d−2q) = d − 1 where the `i’s are distinct binary

linear forms and q is an irreducible quadratic (Corollaries 4.1.2 and 4.1.3). Theorem 4.1.1

combines with [32, Theorem 3.2] into Corollary 4.1.5: if f is a real binary form of degree d,

not a d-th power, with τ real linear factors (counting multiplicities), and (x−αiy) is a factor

of multiplicity mi of f, then LR(f) ≥ max(τ,mi + 1). In Section 4.2, we give the Waring

rank of binary quartics and quintics based on their factorization. In Section 4.3, we show

that if fλ(x, y) = x2k +
(
2k
k

)
λxkyk + y2k, λ 6= 0 ∈ R, k ≥ 3, then LR(fλ) ∈ {2k − 2, 2k − 1}

(Theorem 4.3.2). The minimal representations of fλ are parameterized in Theorem 4.3.3.

In Chapter 5, we study binary forms with unique C-minimal representation. Sections 5.1

and 5.2 are adapted from Section 3 of the paper [40] On the Waring rank of binary forms

by N. Tokcan. We show that if f ∈ Hd(K
2) and LC(f) = r < d+2

2
, then there exist a field

extension S/K such that LS(f) = r and [S : K] divides r! (Theorem 5.1.4). We then look

at the special case when the underlying field K is a real closed field and r = 3 (Corollary

5.1.10). In Section 5.2, we give examples of binary forms of Waring rank 3 by considering

different cases corresponding to field extensions given in Theorem 5.1.4 and an additional

example of a binary quartic form with infinitely many minimal representations of length 3

(Example 5.2.6). In Section 5.3, we introduce Sylvester fields: K ⊆ C is a Sylvester field if

every binary form of degree d ≥ 2 which splits over K and not a d-th power has full rank

over K. We then present some preliminary results on the Sylvester fields: Any subfield of

a given real closed field is a Sylvester field (Theorem 5.3.6 and Corollary 5.3.7); if K is an

algebraically closed field such that Q ⊆ K ⊆ C, then K is not a Sylvester field (Theorem

5.3.8); for any n ≥ 3, Q(ζn) is not a Sylvester field (Theorem 5.3.9).
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Chapter 2

Preliminaries

2.1 Apolarity and decomposition of forms

In this section we recall the main results in the theory of apolarity and show the connection

between the decomposition of forms and apolarity. We refer the reader to [28, 30, 33] for

additional background and detailed proofs of the results given in this section.

Let Hd(K
n) denote the N(n, d) =

(
n+d−1

d

)
-dimensional vector space of forms of degree

d in n variables with coefficients in a field K of characteristic zero. Let I(n, d) denote the

index set for monomials in Hd(K
n) :

I(n, d) = {(i1, . . . , in) : 0 ≤ ik ∈ Z,
∑
i

ik = d}. (2.1.1)

The multinomial abbreviation xi means xi11 x
i2
2 . . . x

in
n and c(i) = d!∏

ik!
is the associated

multinomial coefficient for i = (i1, . . . , in) ∈ I(n, d). If p ∈ Hd(K
n), then we write

p(x1, . . . , xn) =
∑

i∈I(n,d)

c(i)a(p; i)xi, a(p; i) ∈ K. (2.1.2)

The identification of p with N(n, d)-tuple (a(p; i)) shows that Hd(K
n) ≈ KN(n,d) as a

vector space. For p, q ∈ Hd(K
n), we define the symmetric bilinear form:

[p, q] =
∑

i∈I(n,d)

c(i)a(p; i)a(q; i) ∈ K. (2.1.3)

For α ∈ Kn, define (α.)d ∈ Hd(K
n) by

(α.)d(x) =

(
n∑
j=1

αjxj

)d

=
∑

i∈I(n,d)

c(i)αixi. (2.1.4)

It follows that for α ∈ Kn,
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[p, (α.)d] =
∑

i∈I(n,d)

c(i)a(p; i)αi = p(α). (2.1.5)

Let U be a vector subspace of Hd(K
n), and let

U⊥ = {v ∈ Hd(K
n) : [u, v] = 0 for all u ∈ U}. (2.1.6)

Clearly, U⊥ is a subspace of Hd(K
n).

Lemma 2.1.1. [30, Lemma 2.5]

If U is a vector subspace of Hd(K
n), then (U⊥)⊥ = U.

Definition 2.1.2. A field K is formally real if one of the following equivalent conditions is

satisfied:

• −1 is not a sum of squares in K.

• If any sum of squares of elements of K equals zero, then each of those elements must

be zero.

The theory of formally real closed fields is due to Artin and Schreier; see [17, Chapter

VI] for more details.

Lemma 2.1.3.

If K is a formally real field, then the bilinear form gives an inner product on Hd(K
n).

Proof. IfK is formally real, then char(K) = 0. Assume that [p, p] = 0. Then
∑

i c(i)a(p; i)2 =

0 and a(p; i) = 0 for all i ∈ I(n, d) since K is formally real. Therefore, p = 0 and the bilinear

form is an inner product.

Lemma 2.1.3 does not hold if K is not formally real. However, if K = C, then (p, q) =

[p, q̄] turns Hd(Cn) into a inner product space over C. In particular, ||p, p|| = [p, p̄] is known

as the Bombieri norm; see [2, 3, 29].

Suppose p ∈ Hd(K
n). The differential operator associated to p is given by

p(D) =
∑

i∈I(n,d)

c(i)a(p; i)

(
∂

∂x1

)i1
. . .

(
∂

∂xn

)in
. (2.1.7)

5



Let Di denote the monomial differential operator

Di =

(
∂

∂x1

)i1
. . .

(
∂

∂xn

)in
. (2.1.8)

If i 6= j ∈ I(n, d), then Dixj = 0 since ik > jk for some k; otherwise, Dixi =
∏

k ik! =
d!
c(i)
. Since ∂

∂xk
and ∂

∂xl
commute, DiDj = Di+j = DjDi for i ∈ I(n, d) and j ∈ I(n, e).

Therefore, (pq)(D) = p(D)q(D) = q(D)p(D) for any forms (possibly at different degree) by

multilinearity.

The following theorem gives the connection between the differential operator and the

bilinear product.

Theorem 2.1.4.

Let p, q ∈ Hd(K
n), then p(D)q = q(D)p = d![p, q].

Proof. It follows from bilinearity and (2.1.7) that

p(D)q =
∑

i∈I(n,d)

c(i)a(p; i)Di

 ∑
j∈I(n,d)

c(j)a(p; j)xj

 =

∑
i∈I(n,d)

∑
j∈I(n,d)

c(i)c(j)a(p; i)a(q; j)Dixj =
∑

i∈I(n,d)

c(i)c(i)a(p; i)a(q; i)Dixi =

∑
i∈I(n,d)

c(i)2a(p; i)a(q; i)
d!

c(i)
= d![p, q] = d![q, p] = q(D)p.

Lemma 2.1.5.

If d > e and p ∈ Hd(K
n), q ∈ He(K

n), then p(D)q = 0.

Proof. Note that Dixj = 0 for every i ∈ I(n, d) and j ∈ I(n, e). As in the proof of Theorem

2.1.4,

p(D)q =
∑

i∈I(n,d)

∑
j∈I(n,e)

c(i)c(j)a(p; i)a(q; j)Dixj︸︷︷︸
0

.

Thus, p(D)q = 0.

Definition 2.1.6. Suppose p ∈ Hd(K
n) and q ∈ He(K

n). Then p and q are apolar if

p(D)q = q(D)p = 0.

6



The following lemma is essential and trivial.

Lemma 2.1.7.

Assume that X = Span{qj : qj ∈ Hd(K
n)}. Then X = Hd(K

n) if and only if there is no

0 6= p ∈ Hd(K
n) which is apolar to each of the qj’s.

Proof. We first show that the bilinear form is non-degenerate. Assume that p ∈ Hd(K
n) such

that [p, q] = 0 for every q ∈ Hd(K
n). Therefore [p, xi] = 0 for every i ∈ I(n, d). This implies

that a(p; i) = 0 for every i ∈ I(n, d), i.e., p = 0 and the bilinear form is non-degenerate.

Since Hd(K
n) is a finite dimensional space, dim(X) + dim(X⊥) = dim(Hd(K

n)). Therefore,

X = Hd(K
n) if and only if X⊥ = {0}.

The following corollary shows that every form in Hd(K
n) can be written as a C -linear

combination of d-th powers of linear forms over K.

Corollary 2.1.8.

The vector space Hd(K
n) is spanned by {(α.)d : α ∈ Kn}.

Proof. Assume that q ∈ Hd(K
n) such that 0 = [q, (α.)d] = q(α) for all α ∈ Kn. Since K is a

field of characteristic zero, this implies q = 0. The rest follows from Lemma 2.1.7.

The following properties can be easily derived from the basic definitions of the differential

operator and the bilinear form; see, [28, 30] for details and proofs.

Theorem 2.1.9.

(i) If p ∈ Hd−e(K
n), q ∈ He(K

n) and h ∈ Hd(K
n), then

[pq, h] =
(d− e)!
d!

[p, q(D)h] (2.1.9)

Thus, h is apolar to every polynomial multiple of q if and only if h and q are apolar.

(ii) If p ∈ Hd(K
n), then [p, xj(α.)

d−1] = 1
d
∂p
∂xj

(α). Thus, p is apolar to (α.)d−1 if and only

if p is singular at α. More generally, p is apolar to (α.)d−e if and only if p vanishes to

e-th order at α.

(iii) If p ∈ Hd(K
n) and q ∈ He(K

n) with d ≤ e, then

p(D)q =
e!

(e− d)!

∑
`∈I(n,e−d)

c(`)

 ∑
i∈I(n,d)

c(i)a(p; i)a(q; i+ l)

x` (2.1.10)

7



Let K be a field of characteristic zero and H(Kn) =
⋃
d

Hd(K
n).

Definition 2.1.10. Let p ∈ Hd(K
n). The apolar ideal of p, which is denoted by p⊥, is the

set of forms in H(Kn) whose differential operator kills p, that is,

p⊥ = {h ∈ H(Kn) : h(D)p = 0}. (2.1.11)

This is a homogeneous ideal with the decomposition

p⊥ =
⊕
e≥0

(p⊥)e,

(p⊥)e = {h ∈ He(K
n) : h(D)p = 0}.

Suppose p ∈ Hd(K
n) and r is fixed. Define

Vp,r = {q ∈ Hr(K
n) : p(D)q = 0},

Xp,r = {f ∈ Hr(K
n) : p | f}.

Clearly, Vp,r and Xp,r are both subspaces of Hr(K
n).

Theorem 2.1.11. [30, Theorem 2.18]

Assume that p is a form in He(K
n). Then the orthogonal subspace (Vp,d)

⊥ = Xp,d.

Proof. If e > d, then p(D)f = 0 for every f ∈ Hd(K
n), then Vp,d = Hd(K

n) and (Vp,d)
⊥ =

{0}, so the result is trivial. Assume that e ≤ d. Then f ∈ Xp,d if and only if f = pg for

g ∈ Hd−e(K
n). On the other side, it follows from Theorem 2.1.9(i) that

q ∈ (Xp,d)
⊥ ⇔ [pg, q] = 0 for all g ∈ Hd−e(K

n),

⇔ [pxj, q] = 0 for all j ∈ I(n, d− e),

⇔ p(D)q = 0.

Therefore, (Xp,d)
⊥ = Vp,d and (Vp,d)

⊥ = Xp,d by Lemma 2.1.1.

SupposeK is an algebraically closed field. Let S be a set of polynomials inK[x1, . . . , xn]. The

zero locus of S is the set

Z(S) = {S = 0} = {α ∈ Kn : f(α) = 0 for all f ∈ S}. (2.1.12)

8



A subset V of Kn is called an affine algebraic set if V = Z(S) for some S. For any subset

Y ⊆ Kn, let us define the ideal of Y in K[x1, . . . , xn] by

I(Y ) = {f ∈ K[x1, . . . , xn] : f(α) = 0 for all α ∈ Y }. (2.1.13)

The radical of an ideal is defined by

√
I = {f ∈ K[x1, . . . , xn] : f r ∈ I for some r > 0}. (2.1.14)

We now recall Hilbert’s Nullstellensatz.

Theorem 2.1.12 (Hilbert’s Nullstellensatz).

Suppose K is an algebraically closed field and J is an ideal in A = K[x1, . . . , xn]. Let f ∈ A
be a polynomial which vanishes at all points of Z(J). Then f r ∈ J for some integer r > 0,

i.e., I(Z(J)) =
√
J.

The following is a variation of the Nullstellensatz.

Theorem 2.1.13. [30, Proposition 3.1]

Suppose p ∈ He(K
n), e ≥ 1, is irreducible and f ∈ Hd(K

n), 0 ≤ k ≤ d. Then Dif(α) = 0

for all i ∈ I(n, k) and all α ∈ Z(p) if and only if pk+1|f.

The following theorem gives the essence of the connection between apolarity theory and

decomposition of forms.

Theorem 2.1.14. [30, Theorem 4.1]

Let K be an algebraically closed field of characteristic 0. Suppose p ∈ He(K
n) has the

factorization p =
∏m

i=1 p
mi
i into distinct non-constant irreducible forms over K. Suppose

q ∈ Hd(K
n) and let m′i = min(mi, d + 1). Then p(D)q = 0 if and only if there exist hik ∈

Hm′i−1(K
n) and αik ∈ Z(pi) so that

q =
m∑
i=1

N(n,d)∑
k=1

hik(αik.)
d−m′i+1. (2.1.15)

Proof. We define another subspace of Hd(K
n) based on the representation given in (2.1.15):

Wp,d =
{ m∑

i=1

N(n,d)∑
k=1

hik(αik.)
d−m′i+1 : hik ∈ Hm′i−1(K

n), αik ∈ Z(pi)
}
. (2.1.16)
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We denote the set of permissible summands in (2.1.16) by Wp,d(s), i.e.,

Wp,d(s) = {hi(αi.)d−m
′
i+1 : hi ∈ Hm′i−1(K

n), αi ∈ Z(pi), 1 ≤ i ≤ m}. (2.1.17)

We shall show that Wp,d = Vp,d. First suppose mi ≥ d + 1 for some i, then deg(p) > deg(q)

and m′i = d+ 1. Therefore, Vp,d = Hd(K
n) = Wp,d. We now assume that mi ≤ d for all i and

write mi for m′i.

f ∈ (Wp,d)
⊥ ⇔ [f, g] = 0 for all g ∈ Wp,d(s),

⇔ [f, xj(αi.)
d−mi+1] = 0 for all j ∈ I(n,mi − 1) and αi ∈ Z(pi), 1 ≤ i ≤ m,

⇔ Djf(αi) = 0 for all j ∈ I(n,mi − 1) (Theorem 2.1.9(ii)),

⇔ pmii |f for 1 ≤ i ≤ m (Theorem 2.1.13),

⇔ p|f since pi’s are distinct irreducibles,

⇔ f ∈ Xp,d.

Thus, (Wp,d)
⊥ = Xp,d and it follows from Theorem 2.1.11 that Wp,d = Vp,d.

Theorem 2.1.14 was first proved for n = 2 in 1851 by Sylvester in the case of no multiple

factors, and in 1886 Gundelfinger proved it fully for n = 2. The history for n ≥ 3 is very

complicated; see e.g. [27].

We are mostly interested in the special case of Theorem 2.1.14 where n = 2 and q is a

square-free binary form, i.e., mi = 1 for all 1 ≤ i ≤ m.

It is well known that any bivariate apolar ideal is a complete intersection.

Theorem 2.1.15. [16, Theorem 1.44(iv)]

Let p(x, y) ∈ Hd(Cn). Then p⊥ is a complete intersection ideal over C, i.e. p⊥ = 〈f, g〉 such

that deg(f) + deg(g) = d + 2 and ZC(f, g) = {(0, 0)}. Also, any two such binary forms f, g

generate an ideal p⊥ for a binary form p of degree deg(f) + deg(g)− 2.

Example 2.1.16. Let n,m be positive integers. Then (xnym)⊥ = 〈xn+1, ym+1〉, (xn−yn)⊥ =

〈xy, xn + yn〉 and ((x+ y)n)⊥ = 〈x− y, yn+1〉.

The following corollary follows from Theorem 2.1.15. It shows that if p is a binary form

of degree d, then any apolar form of degree < d+2
2

for p is unique (up to a scalar multiple).
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Corollary 2.1.17.

Let p(x, y) be a nonzero binary form in Hd(K
2), not a d-th power, and suppose that k < d+2

2

is the smallest number such that (p⊥)k 6= {0}. Then there exists a projectively unique binary

form h(x, y) ∈ Hk(K
2) such that (p⊥)k = 〈h〉. Thus, p(x, y) has at most one minimal

representation of length k.

We give the proof of the corollary in Section 5.1.

2.2 The K-rank of binary forms

In Section 2.1 we discussed the existence of the decomposition of forms into the sums of

powers of linear forms and presented its connection with apolarity; see Corollary 2.1.8,

Theorem 2.1.14. In this section, we mostly focus on optimizing the decomposition of binary

forms. A more detailed account and proofs of the results given in this section can be found

in [32].

Let K be a field such that Q ⊆ K ⊆ C. Given a binary form f ∈ Hd(K
2), the K-rank of

f, LK(f), is the smallest r for which there exist λj, αj, βj ∈ K such that

f(x, y) =
r∑
j=1

λj (αjx+ βjy)d . (2.2.1)

In case K = C or R, the K-rank is commonly called the Waring rank or the real Waring

rank. A representation such as (2.2.1) is called K-minimal if r = LK(f). Two linear forms

are called distinct if they (or their d-th powers) are not proportional. A representation such

as (2.2.1) is honest if the summands are pairwise distinct; that is, if λiλj(αiβj − αjβi) 6= 0

whenever i 6= j. Two honest representations are different if the ordered set of summands

are not rearrangements of each other; we do not distinguish between `d and (ζkd `)
d where

ζd = e
2πi
d .

Suppose f is a form in Hd(C2). We let Ef denote the field generated by the coefficients

of f over Q; LK(f) is defined for fields K satisfying Ef ⊆ K ⊆ C. Of course, if K ⊆ F ⊆ C,

then f ∈ F [x, y] as well, and one may consider LF (f) to be the relative rank of f with respect

to F . The following properties are immediate:

• Any minimal representation is necessarily honest.

• Rank is invariant under invertible linear change of variables, i.e., if g is obtained from

f by an invertible linear change of variables over K, then LK(f) = LK(g).
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• If we order fields by inclusion, then the relative rank is order reversing, that is,

K1 ⊆ K2 ⇒ LK1(f) ≥ LK2(f). (2.2.2)

The Waring rank of binary forms has been studied extensively [1, 4, 9, 12, 21, 23, 32].

Sylvester [38, 37] presented an algorithm to compute LC(f) in 1851.

Theorem 2.2.1 (Sylvester’s 1851 Theorem).

Suppose

p(x, y) =
d∑
i=1

(
d

i

)
aix

d−iyi ∈ Hd(C2) (2.2.3)

and suppose r ≤ d, αj, βj ∈ C and

h(x, y) =
r∑
t=0

ctx
r−tyt =

r∏
j=1

(−βjx+ αjy) (2.2.4)

is a product of pairwise distinct linear factors. Then there exist λk ∈ C such that

p(x, y) =
r∑

k=1

λk(αkx+ βky)d (2.2.5)

if and only if 
a0 a1 . . . ar

a1 a2 . . . ar+1

...
...

. . .
...

ad−r ad−r+1 . . . ad




c0

c1
...

cr

 =


0

0
...

0

 ; (2.2.6)

that is, if and only if

r∑
i=0

ai+mci = 0, m = 0, 1, . . . , d− r. (2.2.7)

Proof. The proof of Sylvester’s Theorem in [30] is based on apolarity. If h and p are given

by (2.2.4) and (2.2.3), then h(D) =
∏r

j=1(−βj
∂
∂x

+ αj
∂
∂y

), and

h(D)p =
d−r∑
m=0

d!

(d− r −m)!m!

(
r∑
i=0

ai+mci

)
xd−r−mym. (2.2.8)

Therefore, (2.2.7) is equivalent to h(D)p = 0. The rest follows from Theorem 2.1.14.
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The (d− r + 1)× (r + 1) Hankel matrix in (2.2.6) will be denoted by Hr(p).

Definition 2.2.2. Suppose (p, h) satisfies the criterion of Theorem 2.2.1; that is, h(D)p = 0

and h is square free. Then we shall say that h is a Sylvester form for p. If every Sylvester

form of degree r is a constant multiple of h, then we say that h is the (projectively) unique

Sylvester form of degree r for p.

In the proof of Theorem 2.2.1, we show that (2.2.7) is equivalent to h(D)p = 0. Therefore,

Sylvester’s algorithm can be restated based on an apolarity argument.

Theorem 2.2.3 (Apolarity Lemma).

Let p ∈ Hd(C2). Then p can be written as p(x, y) =
∑r

i=1 λi(αix + βiy)d if and only if the

vanishing ideal of the set {(αi, βi), 1 ≤ i ≤ r} is contained in the apolar ideal p⊥.

It follows from Apolarity Lemma that if p has rank r, then the apolar ideal p⊥ contains

the vanishing ideal of r distinct points.

Corollary 2.2.4.

If h is a Sylvester form of degree r for p, then LC(p) ≤ r. Moreover, if p does not have a

Sylvester form of degree r − 1, then LC(p) = r.

The following properties are easily established.

Theorem 2.2.5.

(i) Any square free polynomial multiple of a Sylvester form is also a Sylvester form.

(ii) LC(p) ≤ deg(p) + 1.

(iii) If p has a unique Sylvester form of degree r, then LC(p) = r. Moreover, if K ⊆ C, then

LK(p) ≥ r.

Proof. (i) If h is apolar to p, then any polynomial multiple of h is also apolar to p since

(hf)(D) = h(D)f(D) = f(D)h(D). We should only make sure that the multiple is square

free.

(ii) If deg(h) > deg(p), then h(D)p = 0 automatically. That is if p is a binary form of

degree d, then any square free binary form of degree d+ 1 is a Sylvester form for p.

(iii) We shall show that p does not have a Sylvester form of degree r − 1. Assume the

contrary. Let h be a Sylvester form of degree r − 1 for p. Let γ1 6= γ2 ∈ C − Z(h), then

h(x, y)(x − γ1y) and h(x, y)(x − γ2y) are two non-proportional Sylvester forms of degree r

for p by (i). This contradiction implies that p does not have a Sylvester form of degree r−1.

Hence, LC(p) = r by Corollary 2.2.4. If K ⊆ C, then LK(f) ≥ r by (2.2.2).
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Remark 2.2.6. The upper bound given in Theorem 2.2.5(ii) can be generalized to n-ary

forms, n ≥ 1. Suppose f(x, y) ∈ Hd(Cn). It follows from Corollary 2.1.8 that LC(f) ≤(
n+d−1
n−1

)
. Landsberg and Teitler sharpened this upper bound to LC(f) ≤

(
n+d−1
n−1

)
− (n − 1);

see [23, Corollary 5.2].

Lemma 2.2.7.

Let g and h be binary forms such that ZC(g, h) = {(0, 0)} and deg(g) = deg(h). Then there

exist λ ∈ Q such that h+ λg is square free.

Proof. The discriminant ∆(h + λg) is a non-zero polynomial of λ. Therefore, it is zero for

finitely many λ and there exists λ ∈ Q such that discriminant is non-zero and h + λg has

distinct roots.

Theorem 2.2.8.

Let p(x, y) ∈ Hd(C2) with p⊥ = 〈g, h〉 such that deg(g) ≤ deg(h). Then

LC(p) =

deg(g) if g is square free

deg(h) otherwise

Proof. If g is square free, then g is the minimal degree Sylvester form and LC(f) = deg(g).

Assume that g is not square free. Every apolar form of degree < deg(h) is a multiple of g,

so LC(p) ≥ deg(h). Let `i’s be distinct linear forms so that

g̃(x, y) = g`0 . . . `i, deg(g̃) = deg(h) and ZC(g̃, h) = {(0, 0)}. (2.2.9)

By Lemma 2.2.7, there exist λ ∈ Q such that h+λg̃ is square free, i.e., h+λg̃ is a Sylvester

form of degree deg(h). Thus, LC(p) = deg(h).

Example 2.2.9. Let p(x, y) = 5x(x2 + y2)2. Then in (2.2.3), a0 = 5, a1 = a3 = a5 = 0 and

a2 = a4 = 1. First with r = 2, we see that the linear system (2.2.6) has only trivial solution:
5 0 1

0 1 0

1 0 1

0 1 0

 .

c0c1
c2

 =


0

0

0

0

 .
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It follows that LC(p) ≥ 3. On taking r = 3, (2.2.6) becomes:

5 0 1 0

0 1 0 1

1 0 1 0

 ·

c0

c1

c2

c3

 =

0

0

0

 . (2.2.10)

The system in (2.2.10) implies c0 = c2 = 0 and c1 = −c3. Thus, h(x, y) = x2y − y3 is the

projectively unique Sylvester form of degree 3 for p. This directly implies that LC(p) = 3.

Therefore, p(x, y) can be written as a C-linear combination of 3 distinct 5-th powers of

linear forms:
h(x, y) = y ∗ (x− y) ∗ (x+ y)

↓ ↓ ↓

p(x, y) = λ1x
5 + λ2(x+ y)5 + λ3(x− y)5.

Indeed, λ2 = λ3 = 1
2

and λ1 = 4 and

p(x, y) = 4x5 +
1

2
(x+ y)5 +

1

2
(x− y)5. (2.2.11)

If K ⊆ C, then LK(p) ≥ 3 by (2.2.2). Notice that LQ(p) = 3 since (2.2.11) is also a

representation over Q. Then LK(p) = 3 for any Q ⊆ K ⊆ C. It can be easily checked that

x4 − 5y4 ∈ (p⊥)4 and p⊥ = 〈x2y − y3, x4 − 5y4〉.

The following theorem is a generalization of Sylvester’s 1851 Theorem to the subfields of

C.

Theorem 2.2.10. [32, Corollary 2.2]

Assume that p ∈ Hd(K
2). Then LK(p) is the minimal degree of a Sylvester form for p which

completely splits over K.

Proof. Assume that the representation in (2.2.5) is a minimal representation over K, i.e.,

λk, αk, βk ∈ K. Then the corresponding Sylvester form h(x, y) completely splits over K by

(2.2.4). Conversely, assume that h is a Sylvester form for p of minimal degree r over K, i.e.,

satisfying (2.2.4) with αk, βk ∈ K. Then the representation in (2.2.5) holds for some λk ∈ C.
Thus, for every 1 ≤ i ≤ d, the linear system

ai =
r∑

k=1

αd−ik βikXk (2.2.12)
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has a solution {Xk = λk} over C. Then it also has a solution over K and p has a K-

representation of length r; thus, LK(p) ≤ r. It follows from minimality that LK(p) = r.

2.3 The cabinet of a binary form

In this section we leverage the arguments given in Section 2 and we study the possible

different ranks of a binary form. Suppose p is a binary form in Hd(K
2). Let Q ⊆ K ⊆ C.

Then we have

LQ(p) ≥ LK(p) ≥ LC(p). (2.3.1)

Definition 2.3.1. The cabinet of p, C(p), is the set of all possible ranks of p over different

fields, that is,

C(p) = {LK(p) : Ep ⊆ K ⊆ C}.

If p = 5x(x2 + y2)2, then (2.3.1) is an equality, i.e., LQ(p) = LC(p), so |C(p)| = 1; see

Example 2.2.9. However, the following example shows that if p(x, y) = 10x3y2 − 5xy4, then

|C(p)| = 3. Therefore, inequality and equality in (2.3.1) are both possible.

Example 2.3.2. Let p(x, y) = 10x3y2−5xy4, so that in (2.2.3), a2 = 1, a4 = −1 and ai = 0

otherwise. The vector subspace (p⊥)2 is trivial, and therefore, LC(p) ≥ 3. If we take r = 3,

then the linear system in (2.2.6) is

0 0 1 0

0 1 0 −1

1 0 −1 0

 ·

c0

c1

c2

c3

 =

0

0

0

⇒ c0 = c2 = 0, c1 = c3.

Therefore, up to a multiple, h(x, y) = x2y+ y3 = y(x+ iy)(x− iy). It follows from Theorem

2.2.10 that LK(p) = 3 if and only if Q(i) ⊆ K. In particular, LQ(i)(p) = 3 and

p(x, y) = x5 − 1

2
(x+ iy)5 − 1

2
(x− iy)5. (2.3.2)

Now set r = 4, then (2.2.6) becomes:
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(
0 0 1 0 −1

0 1 0 −1 0

)
·


c0

c1

c2

c3

c4

 =

(
0

0

)
. (2.3.3)

The linear system in (2.3.3) implies that c1 = c3 and c2 = c4, but it places no condition

on c0. In particular, we may choose c0 = c1 = c2 = c3 = c4 = 1 to get a Sylvester form over

Q(ζ5) :

h(x, y) = x4 + x3y + x2y2 + xy3 + y4 =
4∏
j=1

(x− ζj5y).

Since ζ5 6∈ Q(i), it follows that LQ(ζ5)(p) = 4 by Theorem 2.2.10. We shall see in Example

2.4.6 that LR(p) = 5.

Suppose p(x, y) is a binary form of degree d with the coefficient field Ep. Let Ep ⊆ K ⊆ C.
It follows from Corollary 2.1.8 that LK(p) ≤ d+1. In this section we present an improvement

of this upper bound from d+ 1 to d, which was originally given in [32]. We also address the

following questions to understand the cabinet of binary forms:

1. Assume that Ep ⊆ K1, K2 and LK1(p) 6= LK2(p). What can be said about LK1(p) +

LK2(p)?

2. Is there any relation between |C(p)| and the degree of p?

The following theorem shows that if p ∈ Hd(C2) is a d-th power, then the cabinet

C(p) = {1}.

Theorem 2.3.3. [32, Theorem 4.1]

If p ∈ Hd(K
2), then LK(p) = 1 if and only if LC(p) = 1.

Proof. If LK(p) = 1, then LC(p) = 1 since rank is order reversing. For the other direction,

assume that LC(p) = 1. Then p(x, y) = (αx + βy)d with α, β ∈ C. We should show that

p is a power over K. If α = 0, then p(x, y) = βdyd with βd ∈ K. If α 6= 0, then p(x, y) =

αd(x+(β/α)y)d. The coefficients of xd and xd−1y are αd and dαd−1β respectively. Therefore,

αd and αd−1β are in K. Then αd and β/α = (αd−1β)/αd are both in K and p is a d-th power

over K with LK(p) = 1.

17



The vector space of complex forms in Hd(Cn) in n variables of degree d is spanned by

the set of linear forms taken to the d-th power; see Corollary 2.1.8. The following theorem

provides a basis for Hd(C2).

Theorem 2.3.4. [32, Theorem 4.2]

Any set {(αjx + βjy)d : 0 ≤ j ≤ d} of pairwise distinct d-th powers is linearly independent

and spans the vector space of binary forms of degree d.

Proof. Let A be the representation matrix of this set with respect to the basis
(
d
i

)
xd−iyi.

Then the entry Ai,j = αd−ij βij, 0 ≤ i, j ≤ d. The determinant of the matrix is Vandermonde:∏
0≤j<k≤d

(αjβk − αkβj). (2.3.4)

The determinant is a product of non-zero terms since the (αjx+βjy)’s are distinct forms by

the hypothesis.

In order to understand the structure of the cabinet of a binary form, we shall first explore

the relation between two different honest representations of p.

Theorem 2.3.5. [32, Corollary 4.3]

Assume that p ∈ Hd(C2) has two different honest representations:

p(x, y) =
s∑
i=1

λi (αix+ βiy)d =
t∑

j=1

µj (γjx+ σjy)d . (2.3.5)

Then s+t ≥ d+2. If s+t = d+2, then the combined set of linear forms, {αix+βiy, γjx+σjy},
is pairwise distinct.

Proof. We may assume without loss of generality that the summands in (2.3.5) are distinct.

If (2.3.5) holds, then the combined set of d-th powers of linear forms, {(αix + βiy)d, (γjx +

σjy)d, 1 ≤ i ≤ s, 1 ≤ j ≤ t} is linearly dependent. Therefore, s + t ≥ d + 2 by Theorem

2.3.4.

Let s + t = d + 2 and assume that there exist i, j so that the binary forms (αix +

βiy)d and (γjx+ σjy)d are proportional; that is, αiσj = βiγj. Without loss of generality, we

can assume that i = j = 1. Then the combined set of linear forms {α1x+β1y, αix+βiy, γjx+

σjy, 2 ≤ i ≤ s, 2 ≤ j ≤ t} is a linearly dependent set of size d+ 1. This is impossible, unless

the dependence is trivial.
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Corollary 2.3.6.

Let p(x, y) be a binary form of degree d with coefficient field Ep = E. Suppose LE(p) = r.

(i) If r ≤ d
2

+ 1, then LC(p) = r, so C(p) = {r}.

(ii) If r < d
2

+ 1, then p has a unique C-minimal representation.

Proof. (i) First notice that LC(p) ≤ r since rank is order reversing. It follows from Theorem

2.3.5 that LE(p) + LC(p) ≥ d + 2, and so LC(p) ≥ r. Therefore, LC(p) = r. If E ⊆ K ⊆ C,
then r = LE(p) ≥ LK(p) ≥ LC(p) = r. This implies that C(p) = {r}.

(ii) If r < d
2

+ 1, then the length of any other honest representation is greater then r by

Theorem 2.3.5. Thus, p has a unique C-minimal representation.

As we saw in Remark 2.2.6, Landsberg and Teitler [23, Corollary 5.2] prove that if

p ∈ Hd(Cn), then LC(p) ≤
(
n+d−1
n−1

)
− (n − 1). It reduces to the following theorem for the

binary case.

Theorem 2.3.7.

If p ∈ Hd(C2), then LC(p) ≤ d.

Proof. We shall show that p has a Sylvester form of degree d. We write p as in (2.2.3). By

a change of variables, we may assume that neither x nor y divide p. Hence, a0ad 6= 0 and

h(x, y) = adx
d − a0yd is a Sylvester form.

Notice that h(x, y) = adx
d − a0yd usually does not split over K for K ( C, and so, the

proof of Theorem 2.3.7 does not apply to LK(f) for K 6= C. We now give the generalization

of the theorem.

Theorem 2.3.8. [32, Theorem 4.10]

If p ∈ Hd(K
2), then LK(p) ≤ d.

We refer the reader to [32] for a detailed proof.

Theorem 2.3.9. [32, Corollary 5.1]

Suppose p ∈ Hd(C2).

(i) If LC(p) = r, then C(p) ⊆ {r} ∪ {d+ 2− i : 2 ≤ i ≤ r}.

(ii) If LC(p) = 2, then C(p) is either {2} or {2, d}.

(iii) If |C(p)| ≥ k, then d ≥ 2k − 1.
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(iv) If d = 3, then C(p) = {1}, {2}, {3} or {2, 3}.

(v) If d = 4, then C(p) = {1}, {2}, {3}, {4}, {2, 4} or {3, 4}.

Proof. The proof immediately follows from Theorem 2.3.5 and Theorem 2.3.8.

The following theorem gives all the binary forms of degree d ≥ 3 with Waring rank d. It

is well known that LC(xd−1y) = d; however, to the best of our knowledge, the converse has

been proven only later in [4, Corollary 3] and [15, Ex.11.35].

Theorem 2.3.10.

If d ≥ 3, then LC(p) = d if and only if there are two distinct linear forms `0 and `1 so that

p = `0
d−1`1.

The following theorem gives the complete classification of K-rank of binary cubics.

Theorem 2.3.11. [32, Theorem 5.2]

Suppose p(x, y) in Ep[x, y], is a cubic form with discriminant ∆ and suppose Ep ⊆ K ⊆ C.

(i) If p is a cube, then LK(p) = 1 and C(p) = {1}.

(ii) If p has a repeated linear factor, but is not a cube, then LK(p) = 3 and C(p) = {3}.

(iii) If p does not have a repeated factor, then LK(p) = 2 if
√
−3∆ ∈ K and LK(p) = 3

otherwise, so either C(p) = {2} or C(p) = {2, 3}.

Proof. (i) If p is a cube, then C(p) = {1} by Theorem 2.3.3.

(ii) If p = `0
2`1 and not a cube, then LC(p) = 3 by Theorem 2.3.10. IfK ⊆ C, then LK(p) ≥

3 since rank is order reversing and LK(p) ≤ 3 by Theorem 2.3.8. Therefore, C(p) = {3}.
(iii) Suppose p(x, y) = a0x

3+3a1x
2y+3a2xy

2+a3y
3 is square free. Then the discriminant

of p, ∆(p) 6= 0. We consider the linear system:

(
a0 a1 a2

a1 a2 a3

)
·

c0c1
c2

 =

(
0

0

)
. (2.3.6)

This system has rank 2 and the unique Sylvester form of degree 3 is

h(x, y) = (a1a3 − a22)x2 + (a1a2 − a0a3)xy + (a0a2 − a21)y2, (2.3.7)
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which is the Hessian of p. Now we compare the discriminant of h and p.

∆(h) = (a1a2 − a0a3)2 − 4(a1a3 − a22)(a0a2 − a21) = −∆(p)

27
= −3∆(p)

92
. (2.3.8)

Thus, h splits over K if and only if
√
−3∆(p) ∈ K. This implies that LK(p) = 2 if

Q
(√
−3∆(p)

)
⊆ K, and 3 otherwise.

Example 2.3.12. The binary forms x3, x3+y3, x2y and (x+iy)3+(x−iy)3 have the cabinets

enumerated in Theorem 2.3.9(iv). It follows from Theorem 2.3.11 that if Q ⊆ K ⊆ C, then

LK(x3) = 1, LK(x3 + y3) = 2, LK(x2y) = 3 and LK((x+ iy)3 + (x− iy)3) = 2 if i ∈ K, and

3 otherwise.

Definition 2.3.13. We call a binary form p ∈ Hd(R2) hyperbolic if all its roots are real, i.e.,

it splits into linear factors over R.

We can determine the real Waring rank of binary cubic forms based on their factorization

over R. Assume that `i’s are distinct real binary linear forms and q(x, y) is an irreducible

quadratic. The following table follows from Theorem 2.3.11.

p(x, y) LR(p(x, y))

`0(x, y)3 1

`0(x, y)2`1(x, y) 3

`0(x, y)q(x, y) 2

`0(x, y)`1(x, y)`2(x, y) 3

We can conclude that if p is a real cubic, and not a cube, then LR(p) = 3 if and only if p is

hyperbolic.

Reznick showed that LC(xkyk) = k + 1 [32, Theorem 5.5]. The following example shows

that C(x2y2) = {3, 4}.

Example 2.3.14. Let p(x, y) = x2y2. It follows from Theorem 2.2.1 that (p⊥)2 = {0} and

(p⊥)3 = 〈x3, y3〉, so the possible Sylvester forms of degree 3 have the shape h(x, y) =

αx3 + βy3, αβ 6= 0. There is no Sylvester form of degree 3 which completely splits over R.
Therefore, LC(p) = 3 and LR(p) = 4 by Theorem 2.2.10.

The binary forms x4, x4 + y4, x4 + y4 + (x+ y)4, x3y, (x+ iy)4 + (x− iy)4 and x2y2 have

the cabinets enumerated in Theorem 2.3.9 (v).
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2.4 The real Waring rank of binary forms

Recently the real Waring rank of binary forms has been investigated [5, 7, 10, 11, 14].

The relation between the number of real roots and the real Waring rank of binary forms

has also received substantial attention. Extending the work of Sylvester, Reznick showed

that if p(x, y) is a binary form of degree d, not a d-th power, with τ real roots (counting

multiplicities), then LR(f) ≥ τ [32, Theorem 3.2].

We begin with Theorem 2.4.1, which was discovered by Sylvester [36] in 1864 as a part

of proving Isaac Newton’s conjectural variation on Descartes’ Rule of Signs. This theorem

also appears in [19, 26, 27].

Theorem 2.4.1. [Sylvester’s 1864 Theorem]

Suppose λk 6= 0 for all k and γ1 < · · · < γr, r ≥ 2 are real numbers such that

Q(t) =
r∑

k=1

λk(t− γk)d (2.4.1)

does not vanish identically. Suppose Q is not a d-th power and suppose that the sequence

(λ1, · · · , λr, (−1)dλ1) has C changes of sign and Q has Z zeros, counting multiplicity. Then

Z ≤ C.

The following theorem is an equivalent homogenized version of Theorem 2.4.1. The

equivalence is discussed in [30, 31].

Theorem 2.4.2. [32, Theorem 3.2]

Suppose p(x, y) is a non-zero real form of degree d, not a d-th power, with τ linear factors

(counting multiplicity) and

p(x, y) =
r∑
j=1

λj(cos θjx+ sin θjy)d (2.4.2)

where −π
2
< θ1 < · · · < θr ≤ π

2
, r ≥ 2 and λj 6= 0. If there are σ sign changes in the tuple

(λ1, λ2, · · · , λr, (−1)dλ1), then τ ≤ σ. In particular, τ ≤ r.

The following is just a restatement of Theorem 2.4.2 and gives a lower bound for the real

Waring rank.

Theorem 2.4.3.

Suppose that p is a real binary form of degree d, and not a d-th power. If p has τ real linear

factors, counting multiplicity, then LR(p) ≥ τ .
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An improvement of Theorem 2.4.3 is given in Chapter 4; see Corollary 4.1.5.

Corollary 2.4.4.

If p ∈ Hd(R2) is hyperbolic, and not a d-th power, then LR(p) = d.

Proof. It is immediate from Theorem 2.4.3 that LR(p) ≥ d. On the other hand, LR(p) ≤ d

by Theorem 2.3.8.

The following result on the real Waring rank of monomials is immediate from Corollary

2.4.4. A different proof can be found in [7].

Corollary 2.4.5.

Suppose a, b ≥ 1 and p(x, y) = xayb. Then LR(p) = a+ b.

Example 2.4.6. Let p(x, y) = 10x3y2−5xy4. It was shown in Example 2.3.2 that LQ(i)(p) =

3 and LQ(ζ5)(p) = 4. Since p is hyperbolic, then LR(p) = 5 by Corollary 2.4.4. Therefore,

C(p) = {3, 4, 5}.

Example 2.4.7. Let p(x, y) = 15x2y2(x2+y2). It follows from Theorem 2.4.3 that LR(p) ≥ 4.

On taking r = 4, (2.2.6) becomes:

0 0 1 0 1

0 1 0 1 0

1 0 1 0 0

 ·

c0

c1

c2

c3

c4

 =

0

0

0

 . (2.4.3)

Clearly, (c0, c1, c2, c3, c4) = (0, 1, 0,−1, 0) is a solution for (2.4.3), so that h(x, y) = xy(x2−y2)
is a Sylvester form for p. It follows from Theorem 2.2.10 that  LR(p) = LQ(p) = 4. Taking

r = 3, we note that the Hankel matrix

H3(p) =


0 0 1 0

0 1 0 1

1 0 1 0

0 1 0 0

 (2.4.4)

is non-singular, hence there are no representations of rank 3 and LC(p) = 4. If Q ⊆ K ⊆ C,
then LK(p) = 4 by (2.3.1), and so |C(p)| = {4}.
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The converse of Corollary 2.4.4 was conjectured and proved for d ≤ 4 in [32]. Causa and

Re [11] and Comon and Ottaviani [14] showed that the conjecture holds for any square-free

binary form, and recently Blekherman and Sinn [5] proved that the conjecture is true for

any binary form.

Theorem 2.4.8. [5, Theorem 2.2]

Let p(x, y) be a binary form of degree d ≥ 3 and suppose that p is not a d-th power. The real

Waring rank of p is d if and only if p is hyperbolic.

Example 2.4.9. Suppose d ≥ 3 and r 6= 0 ∈ R such that

p(x, y) = (x+
√
ry)d + (x−

√
ry)d ∈ Hd(R2). (2.4.5)

Then LR(p) = 2 if
√
r ∈ R and d otherwise by Theorem 2.3.9. Therefore, it follows from

Theorem 2.4.8 that p is hyperbolic if and only if r is negative.

Corollary 2.4.10.

Suppose p ∈ Hd(R2) is a hyperbolic form and not a d-th power. If h is a Sylvester form for

p, with deg(h) < d, then h is non-hyperbolic.

24



Chapter 3

Binary forms with 3 different relative
ranks

In this chapter we study binary forms with multiple ranks. We show that for every d ≥ 5,

there always exists a binary form of degree d with at least three different ranks over various

fields. We also study the relation between the relative rank and the algebraic properties of

the underlying field. In particular, we show that the K-rank of a binary form may depend

on whether −1 is a sum of two squares in K. This chapter is adapted from the paper [34]

Binary forms with three different relative ranks by B. Reznick and N. Tokcan, which has

been accepted for publication by Proceedings of the American Mathematical Society.

3.1 Binary forms with multiple ranks

Let p(x, y) ∈ Hd(C2) be a nonzero binary form. One relation between the number of different

ranks and the degree of a form is given by Theorem 2.3.9 (iii): If p has k different ranks,

then d ≥ 2k − 1.

Forms with cabinet size one are abundant in H(C2). For every d ≥ 1, there exist a binary

form p ∈ Hd(C2) so that |C(p)| = 1. We now give some examples:

• Suppose p is a d-th power, i.e., p(x, y) = (αx + βy)d, αβ 6= 0 ∈ C. Then C(p) = {1}
by Theorem 2.3.3.

• If p(x, y) = xd−1y, then C(p) = {d} by Theorem 2.3.10.

• If LQ(p) = k ≤ d+2
2
, then C(p) = {k} by Theorem 2.3.5 and (2.3.1). For example, if

p(x, y) = 5x(x2 + y2)2, then C(p) = {3}; see Example 2.2.9.

If d ≥ 3, then it is possible to have a binary form with three different ranks. The following

is a central example which illustrates the phenomenon of multiple ranks over different fields.

Example 3.1.1. Suppose p(x, y) = (x +
√

2 y)d + (x −
√

2 y)d ∈ Q[x, y], d ≥ 3. Then

it follows from Theorem 2.3.5 that LK(f) = 2 if Q(
√

2) ⊆ K and d otherwise. Therefore,

C(p) = {2, d}.
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The following is a generalized version of Example 3.1.1.

Example 3.1.2. Suppose there exists γ ∈ Q with
√
γ 6∈ Q so that

pd(x, y) =
∑

0≤2i≤d

(
d

2i

)
γixd−2iy2i, d ≥ 3. (3.1.1)

Then pd(x, y) is a binary form in Q[x, y] of Waring rank 2 with the following projectively

unique representation:

pd(x, y) =
1

2
(x+

√
γy)d +

1

2
(x−√γy)d. (3.1.2)

Notice that the summands in (3.1.2) are conjugates of each other in Q(
√
γ). It follows from

Corollary 2.3.6(ii) that p has a unique minimal representation of length 2. Then LK(pd) = 2

if Q(
√
γ) ⊆ K and d otherwise. Hence, C(p) = {2, d}.

By Theorem 2.3.9(iii), it is possible to have a binary form p of degree d ≥ 5 with 3

different ranks over different fields; see Example 2.4.6.

The first explicit example of a binary form with three different ranks was given by Reznick

[32].

Example 3.1.3. Suppose p(x, y) = 3x5 − 20x3y2 + 10xy4. We can write p as

p(x, y) =

(
5

0

)
· 3x5 +

(
5

1

)
· 0x4y +

(
5

2

)
· (−2)x3y2

+

(
5

3

)
· 0x2y3 +

(
5

4

)
· 2xy4 +

(
5

5

)
· 0y5.

The vector subspace (p⊥)2 is trivial, so LC(p) ≥ 3. By taking d = 5, r = 3, the linear system

in (2.2.6) becomes  3 0 −2 0

0 −2 0 2

−2 0 2 0

 ·

c0

c1

c2

c3

 =

0

0

0

 . (3.1.3)

The only solution to (3.1.3) is c1 = c3 and c0 = c2 = 0, so that p has a unique Sylvester form

of degree 3:

h(x, y) = y(x2 + y2) = y(x− iy)(x+ iy).
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It can be easily checked that the representation of p corresponding to h is

p(x, y) = x5 + (x+ iy)5 + (x− iy)5. (3.1.4)

It follows that LK(p) = 3 if and only if Q(i) ⊆ K.

Let d = 5, r = 4. If (c0, c1, c2, c3, c4) is a solution of the 2 × 5 system in (2.2.6), then

(c0, c1, c2, c3, c4) = r1(2, 0, 3, 0, 0) + r2(0, 1, 0, 1, 0) + r3(0, 0, 1, 0, 1). Then a Sylvester form of

degree 4 is of the following form:

hr(x, y) = r1x
2(2x2 + 3y2) + y(x2 + y2)(r2x+ r3y). (3.1.5)

We need to consider different choices of r = (r1, r2, r3) and the splitting field of the

corresponding hr; see [32, Example 2.1] for details. It follows that LQ(
√
−d)(p) = 4 for several

values of d ≥ 2. Since p is hyperbolic, LR(p) = 5 by Corollary 2.4.4.

3.2 Binary forms with three different ranks

In this section we show that the three-rank phenomenon occurs in all degrees d ≥ 5 by

Theorem 3.2.7. We prove that if k ≥ 3 and p2k−1(x, y) = xk−1yk−1(x− y), then

LQ(ζk+1)(p2k−1) = k, LQ(ζk)(p2k−1) = k + 1, LR(p2k−1) = 2k − 1 > k + 1.

Similarly, if k ≥ 3 and p2k(x, y) = xkyk, then

LQ(ζk+1)(p2k) = k + 1, LQ(ζk)(p2k) = k + 2, LR(p2k) = 2k > k + 2.

We need to consider the rank of a hyperbolic binary form over cyclotomic fields. The

following theorem is an elementary result in algebraic number theory. We include the proof

for completeness (See [8, p.158(Lemma 3)] for a different proof). Let ζd = e
2πi
d .

Theorem 3.2.1.

Suppose m,n are integers. Then ζm ∈ Q(ζn) if and only if m | n or n is odd and m | 2n.

Proof. Note that ζm = ζtmt. If n is odd and m divides 2n but not n, then m = 2u and n = tu

with odd t, u, so ζm = ζt2n = −ζt+tu2n = −ζt(u+1)/2
n ∈ Q(ζn). Conversely, let g = gcd(m,n)

so that m = gr, n = gs, where gcd(r, s) = 1, and let q = grs = lcm(m,n). Then ζm = ζsq

and ζn = ζrq . Now choose integers e, f so that es + fr = 1. We have ζemζ
f
n = ζes+frq = ζq.
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Since ζm ∈ Q(ζn), it follows that ζq ∈ Q(ζn), so Q(ζq) ⊆ Q(ζn), but since n | q, the converse

inclusion holds as well, and so Q(ζq) = Q(ζn). This in turn implies that Φ(n) = Φ(q). Since

n | q, this implies that n = q (and gs = grs, so r = 1 and m | n) or n is odd and q = 2n

(and grs = 2gs, so r = 2 and m | 2n).

Corollary 3.2.2.

If m ≥ 3, then ζm 6∈ Q(ζm±1).

Let h be a binary form of degree r ≥ 3. Corollary 3.2.2 guarantees that if the smallest

splitting field of h is Q(ζm±1), then h does not split over Q(ζm). Therefore, it becomes possible

to find a binary form p ∈ Hd(C2) such that LQ(ζm±1)(p) 6= LQ(ζm)(p).

Our approach to find a binary form with three different ranks is simple and straightfor-

ward. Suppose d = 2k− 1 is odd. Choosing r = k, we see that (2.2.6) is a k× (k+ 1) linear

system, which in general has a unique solution. We consider a form p of degree 2k− 1 which

is hyperbolic so that LR(p) = 2k − 1. We also choose K to be the field generated by the

coefficients of this unique representation of p over C, so LK(p) = k; necessarily, p ∈ K[x, y].

Finally, we somehow find a representation of rank between k and 2k− 1 over a non-real field

which does not contain the rank k representation. If d = 2k, the same approach applies,

but there will be, in general, infinitely many representations of rank k + 1. In certain cases

though, each of these representations must contain a specific non-real root of unity ζ.

Theorem 3.2.3.

Suppose k ≥ 3 and p2k−1(x, y) =
(
2k−1
k

)
xk−1yk−1(x− y). Then the cabinet C(p2k−1) ⊇ {k, k+

1, 2k − 1}.

Proof. Let p2k−1(x, y) =
(
2k−1
k

)
xk−1yk−1(x − y), so that in (2.2.3), ak−1 = 1, ak = −1 and

ai = 0 otherwise. First, with r = k − 1, we see that (2.2.6) has a trivial null space:

0 0 · · · 0 1

0 0 · · · 1 −1
...

...
...

...
...

−1 −1 · · · 0 0

−1 0 · · · 0 0


·


c0

c1
...

ck−1

 =


0

0
...

0

 .
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It follows that LC(p2k−1) > k − 1. On taking r = k, (2.2.6) becomes:
0 0 · · · 0 1 −1

0 0 · · · 1 −1 0
...

...
. . .

...
...

...

1 −1 · · · 0 0 0

 ·

c0

c1
...

ck

 =


0

0
...

0

 . (3.2.1)

Clearly, the only solution to (3.2.1) has ci = c for all i, so that up to multiple,

h(x, y) =
k∑
t=0

xk−tyt =
xk+1 − yk+1

x− y
=

k∏
j=1

(x− ζjk+1y),

and so LK(p2k−1) = k if and only if ζk+1 ∈ K; in particular, LQ(ζk+1)(p2k−1) = k. Since p2k−1

is hyperbolic, it follows from Corollary 2.4.4 that LR(p2k−1) = 2k − 1.

Now set r = k + 1, so that (2.2.6) becomes:
0 0 0 · · · 0 1 −1 0

0 0 0 · · · 1 −1 0 0
...

...
...

. . .
...

...
...

...

0 1 −1 · · · 0 0 0 0

 ·


c0

c1
...

ck+1

 =


0

0
...

0

 . (3.2.2)

The system (3.2.2) implies c1 = · · · = ck, but places no conditions on c0 and ck+1 . In

particular, we may choose c0 = ck+1 = 0 and c1 = · · · = ck = 1, to get a Sylvester polynomial

over Q(ζk):

h(x, y) =
k∑
t=1

xk+1−tyt = xy

(
xk − yk

x− y

)
= xy

k−1∏
j=1

(x− ζjky).

It follows that LQ(ζk)(p2k−1) ≤ k + 1. Since ζk+1 /∈ Q(ζk) by Corollary 3.2.2, it follows that

LQ(ζk)(p2k−1) = k + 1.

Since
c0x

k+1 + c1(x
ky + · · ·+ xyk) + ck+1y

k+1 =

(c0x+ (c1 − c0)y)(xk + · · ·+ yk) + (ck+1 − c1 + c0)y
k+1,

it is not hard to show that the apolar ideal of p2k−1 is generated by xk+1−yk+1

x−y and yk+1; note

that k + (k + 1) = (2k− 1) + 2. It seems to be a quite difficult question to determine which

fields K have the property that, for a suitable choice of ci’s, a form such as this is square-free

and splits over K.
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The following example gives the explicit representations of p5, p7 as sums of powers of

linear forms.

Example 3.2.4. For k = 3, the following two formulas may be directly verified (as usual,

ω = ζ3 and i = ζ4):

p5(x, y) = 10x2y2(x− y)

= 1
4
·
(
(−1− i)(x+ iy)5 + 2(x− y)5 + (−1 + i)(x− iy)5

)
∈ Q(ζ4)[x, y]

= x5 − y5 + 1
ω−ω2 ·

(
ω2(x+ ωy)5 − ω(x+ ω2y)5

)
∈ Q(ζ3)[x, y].

The expressions seem to get more complicated for larger values of k. For example,

(1 + 2ζ5 + 3ζ25 − ζ35 )p7(x, y) =

ζ45 (x+ ζ5y)7 − ζ25 (1 + ζ5 + ζ25 )(x+ ζ25y)7 + ζ5(1 + ζ5 + ζ25 )(x+ ζ35y)7 − ζ5(x+ ζ45y)7.

Here, 1 + 2ζ5 + 3ζ25 − ζ35 = i
√

5
2
(5 +

√
5) ≈ 4.25i.

Theorem 3.2.5.

Suppose k ≥ 3 and p2k(x, y) =
(
2k
k

)
xkyk. Then C(p2k) ⊇ {k + 1, k + 2, 2k}.

Proof. Suppose that p2k(x, y) =
(
2k
k

)
xkyk, so ak = 1 and ai = 0 otherwise. (This example is

also discussed in [32, Theorem 5.5].) Taking r = k, we note that the matrix
0 · · · 0 1

0 · · · 1 0
...

. . .
...

...

1 · · · 0 0

 (3.2.3)

is non-singular, hence there are no representations of rank k. For r = k + 1,
0 0 · · · 0 1 0

0 0 · · · 1 0 0
...

...
. . .

...
...

...

0 1 · · · 0 0 0

 ·


c0

c1
...

ck+1

 =


0

0
...

0

=⇒c1 = · · · = ck = 0. (3.2.4)

Thus every Sylvester form of degree k + 1 has the shape h(x, y) = αxk+1 − βyk+1 and the
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apolar ideal of p2k is generated by xk+1 and yk+1. If h has distinct factors, then αβ 6= 0 and

h(x, y) = α
k∏
j=0

(x− ζjk+1uy),

where αuk+1 = β. If h splits over K, then u, ζk+1u ∈ K, hence ζk+1 ∈ K and Q(ζk+1) ⊆ K.

In particular, by taking α = β = 1, we see that xk+1 − yk+1 is a Sylvester form for p2k over

Q(ζk+1), and so LQ(ζk+1)(p2k) = k + 1. Since xkyk is hyperbolic, LR(p2k) = 2k.

Any expression of rank k + 2 over K would have a Sylvester form of shape

(αx+ βy)xk+1 + (γx+ δy)yk+1.

In particular, xy(xk − yk) = xk+1y − xyk+1 splits over Q(ζk), which does not contain ζk+1

and so we have LQ(ζk)(p2k) = k + 2.

Example 3.2.6 gives the representation of p6 as sums of powers of linear forms.

Example 3.2.6. The representations of p2k of rank k + 1 are given in [32, Theorem 5.5].

For k = 3, taking w = 1 in [32, (5.6)], we obtain after some simplification,

p6(x, y) = 20x3y3

= 1
4
·
(
(x+ y)6 + i(x+ iy)6 − (x− y)6 − i(x− iy)6

)
∈ Q(ζ4)[x, y]

= 1
3
·
(
(x+ y)6 + (x+ ωy)6 + (x+ ω2y)6 − 3x6 − 3y6

)
∈ Q(ζ3)[x, y].

The evident patterns shown above are easily proved, using the methods of [32]; see also

Thoeorem 4.2.3.

Theorem 3.2.7.

If d ≥ 5, then there exists a binary form pd of degree d which takes at least three different

ranks.

Proof. The proof follows from Theorem 3.2.3 and 3.2.5.

3.3 Relative rank and the Stufe

In this section we show that the relative rank can depend on the algebraic properties of the

underlying field.
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Definition 3.3.1. The Stufe of a non-real field F , s(F ), is the smallest integer n such that

−1 can be written as a sum of n squares in F .

We show in Theorem 3.3.3 that LK(x3y2) = 4 if and only if s(K) ≤ 2 and LK(x3y2) = 5

otherwise. We show in Theorem 3.3.4 that if m is a square-free positive integer and f(x, y) =

6x5y − 20x3y3, then LQ(
√
−m)(f) = 4 if and only if s(Q(

√
−m)) ≤ 2 if and only if m 6≡ 7

mod 8 and LQ(
√
−7)(f) = 5.

The following theorem is based on the works of Nagell and Szymiczek; see [25, 39].

Theorem 3.3.2.

Suppose F = Q(
√
−m), where m is a square-free positive integer. Then there exist solutions

to either of the equations

r2 + s2 = −1, rs(r2 − s2) 6= 0, r, s ∈ F (3.3.1)

t2 + u2 = −2, tu(t2 − u2) 6= 0, t, u ∈ F (3.3.2)

if and only if m 6≡ 7 mod 8.

Proof. First note that if (3.3.1) holds and (t, u) = (r+s, r−s), then t2+u2 = 2(r2+s2) = −2

and tu(t2 − u2) = 4rs(r2 − s2), so (3.3.2) holds. This argument goes the other way with

(r, s) = ( t+u
2
, t−u

2
), and so it suffices to prove the theorem for (3.3.1).

Nagell [25] proves that s(Q(
√
−m)) ≤ 2 (that is, there is a solution to r2 + s2 = −1

in Q(
√
−m)) if and only if m 6≡ 7 mod 8, so all we need to do is consider the additional

condition rs(r2 − s2) 6= 0. If r2 + s2 = −1 and rs(r2 − s2) = 0, then up to permutation,

(r, s) = (±i, 0) or (±
√
−2
2
,±
√
−2
2

). These solutions are relevant to Q(
√
−m) only when

m = 1, 2, in which case the following alternatives suffice:

Q(
√
−1) :

(
3
4

)2
+
(
5i
4

)2
= −1, Q(

√
−2) : 72 + (5

√
−2)2 = −1.

Theorem 3.3.3.

Suppose that f(x, y) =
(
5
2

)
x3y2. Then LK(f) = 4 iff s(K) ≤ 2; otherwise, LK(f) = 5.

Proof. We already know from [9] that LC(f) = 4, hence LK(f) ≥ 4. This can also be shown
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directly via Theorem 2.2.1. We omit the details. Suppose now that LK(f) = 4. Then,

(
0 0 1 0 0

0 1 0 0 0

)
·


c0

c1

c2

c3

c4

 =

(
0

0

)
=⇒c1 = c2 = 0. (3.3.3)

and h(x, y) = c0x
4 + c3xy

3 + c4y
4 is a Sylvester form for f over K. Thus, we are led to the

question: for which choices of ci and which fields K can such a square-free form split into

distinct factors over K?

If c0 = 0 then h is not square-free, so we scale to take c0 = 1. Then LK(f) = 4 if and

only if there exist distinct ri ∈ K so that

x4 + c3xy
3 + c4y

4 = (x− r1y)(x− r2y)(x− r3y)(x− r4y);

that is, if and only if the Diophantine system

r1 + r2 + r3 + r4 = r1r2 + r1r3 + r1r4 + r2r3 + r2r4 + r3r4 = 0 (3.3.4)

has a solution in K with distinct ri’s.

We solve (3.3.4), first ignoring the restriction to distinct elements. Putting r4 = −(r1 +

r2 + r3) into the second equation yields

r21 + r22 + r23 + r1r2 + r1r3 + r2r3 = 0 =⇒

r3 = −r1 + r2
2

±
√
−3r21 − 2r1r2 − 3r22

2
.
.

Choose r1, r2 ∈ K. We see that r3 ∈ K (and so r4 ∈ K) if and only if

−3r21 − 2r1r2 − 3r22 = −2(r1 + r2)
2 − (r1 − r2)2 = w2

is a non-zero square in K. Let (X, Y, Z) = (w, r1 − r2, r1 + r2) ∈ K3. We have (as in the

proof of Theorem 3.3.2)

−2Z2 − Y 2 = X2 =⇒
(
X

Z

)2

+

(
Y

Z

)2

= −2 =⇒
(
X + Y

2Z

)2

+

(
X − Y

2Z

)2

= −1.
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Thus, if LK(f) = 4, then s(K) ≤ 2. The converse is almost immediate.

If (3.3.4) has repeated ri’s, we may assume without loss of generality that r1 = r2, hence

r3, r4 = r1(−1±
√
−2). The only fields in which this solution might occur contain

√
−2, so if

we can find an alternate solution to (3.3.4) in Q(
√
−2), we will be done. It may be checked

that

{r1, r2} = {5
√
−2± 6}, {r3, r4} = {−5

√
−2± 8}

is such an alternate solution to (3.3.4) with distinct ri.

The following result presents another sextic with three different ranks.

Theorem 3.3.4.

Suppose f(x, y) =
(
6
1

)
x5y −

(
6
3

)
x3y3 = 2x3y(3x2 − 10y2). Then LK(f) = 4 if and only if

s(K) ≤ 2. In particular, if m is a positive square-free integer, and m 6≡ 7 mod 8, then

LQ(
√
−m)(f) = 4. Further, LQ(

√
−7)(f) = 5.

Proof. Again, taking (2.2.6) for r = 3 gives a non-singular matrix
0 1 0 −1

1 0 −1 0

0 −1 0 0

−1 0 0 0

 , (3.3.5)

so LC(f) > 3. Moving up one,

0 1 0 −1 0

1 0 −1 0 0

0 −1 0 0 0

 ·

c0

c1

c2

c3

c4

 =

0

0

0

=⇒c0 = c2, c1 = c3 = 0, (3.3.6)

so the possible Sylvester polynomials over K have the shape h(x, y) = c0x
4 +c0x

2y2 +c4y
4. If

c0c4 = 0, then h is not square-free, so we may scale to c0 = 1. Since h is an even polynomial,

if x − ry is a factor with r 6= 0 (since c4 6= 0), then so is x + ry, hence if h splits over K,

then there exist r, s ∈ K (r2 6= s2 6= 0) so that

x4 + x2y2 + c4y
4 = (x2 − r2y2)(x2 − s2y2).
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Thus, LK(f) = 4 if and only if K is a field in which the equation

r2 + s2 = −1 (3.3.7)

has a solution, r2 6= −1
2
, 0,−1. As we have seen in the proof of Theorem 3.3.2 , this is true

precisely when s(K) ≤ 2, so if K = Q(
√
−m), precisely when m 6≡ 7 mod 8.

Since f is hyperbolic, LR(f) = 6. The previous paragraph shows that the apolar ideal

for f is generated by x4 + x2y2 and y4. We now wish to find at least one field K for which

LK(f) = 5. Since K must be non-real with s(K) > 2, we take K = Q(
√
−7) and look

for a representation with relative rank 5. To this end, observe that y(x4 + x2y2) − 2xy4 =

x4y + x2y3 − 2xy4 = xy(x− y)
(
x+ 1+

√
−7

2
y
)(

x+ 1−
√
−7

2
y
)

splits over Q(
√
−7).
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Chapter 4

Rank with respect to factorization of
forms

In this chapter we give a lower bound for the Waring rank of binary forms based on their

factorization over C and improve the lower bound for the real Waring rank of binary forms

which is given by Theorem 2.4.3. We also give the rank of quartics and quintics based on

their factorization over C. This chapter is adapted from Section 2 of the paper [40] On the

Waring rank of binary forms by N. Tokcan, which has been accepted for publication by

Linear Algebra and Its Applications.

4.1 A lower bound for the rank

The following theorem shows the relation between the C-rank of a binary form and the

factorization of the form over C.

Theorem 4.1.1.

Let f(x, y) be a nonzero binary form of degree d with the factorization

f(x, y) =
r∏
i=0

`i(x, y)mi (4.1.1)

where r ≥ 1 and the `i’s are distinct linear forms and m0 ≥ m1 ≥ . . . ≥ mr. Then LC(f) ≥
m0 + 1.

Proof. We use the fact that rank is invariant under invertible linear change of variables.

After a linear change of variables we may assume `0 = y, then we have

f̃(x, y) = ym0g(x, y) such that y - g(x, y). (4.1.2)

The first m0 coefficients of f̃ are zero, i.e., a0 = . . . = am0−1 = 0 and am0 6= 0. Note that
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deg(f̃) ≥ m0 + 1, so by setting r = m0, (2.2.6) becomes:
0 0 . . . 0 am0

0 0 . . . am0 am0+1

...
...

...
...

...

 ·

c0
...

cm0

 =


0
...

0

 .

Hence, am0cm0 = am0cm0−1 +am0+1cm0 = 0. It follows that cm0−1 = cm0 = 0 and every apolar

form of degree m0 is divisible by x2 and LC(f) ≥ m0 + 1 by Theorem 2.2.1.

Landsberg and Teitler [23, Corollary 4.5] and Boij, Carlini and Geramita [7] have sepa-

rately computed that LC(xayb) = max(a+ 1, b+ 1) if a, b ≥ 1.

Corollary 4.1.2.

Let f(x, y) = `0(x, y)d−2`1(x, y)`2(x, y) such that d ≥ 3 and the `i’s are distinct binary linear

forms. Then LC(f) = d− 1.

Proof. It follows from Theorem 4.1.1 that d − 1 ≤ LC(f) and LC(f) ≤ d − 1 by Theo-

rem 2.3.10. Thus, LC(f) = d− 1.

By using Corollary 4.1.2 and Corollary 2.4.4, we can generate forms with two different

relative ranks. For example, let r 6= 0 ∈ R and d ≥ 3, then LC(xd−2y(x + ry)) = d − 1 and

LR(xd−2y(x+ ry)) = d.

Corollary 4.1.3.

Suppose f(x, y) = `(x, y)d−2q(x, y) is a real binary form of degree d ≥ 3 where `(x, y) is a

real linear form and q(x, y) is an irreducible real quadratic form. Then LR(f) = d− 1.

Proof. The Waring rank of f is d − 1 by Corollary 4.1.2; therefore, d − 1 ≤ LR(f). On the

other hand, it follows from Theorem 2.4.8 that LR(f) ≤ d− 1.

Remark 4.1.4. Notice that if f(x, y) = `(x, y)d−2q(x, y) as in Corollary 4.1.3, then the real

rank and complex rank of f coincide, i.e., LR(f) = LC(f) = d− 1.

Theorem 4.1.1 combines with Theorem 2.4.3 into Corollary 4.1.5.

Corollary 4.1.5.

Let f(x, y) be a nonzero real binary form of degree d and not a d-th power, with the factor-

ization

f(x, y) =
r∏
i=0

`i(x, y)mi
s∏

k=0

pk(x, y)nk , (4.1.3)
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where the `i’s are distinct real binary linear forms and pk’s are distinct irreducible real

quadratics. Then LR(f) ≥ max
( r∑
i=0

mi,max(m0, . . . ,mr, n0, . . . , ns) + 1
)
.

Example 4.1.6. Let p(x, y) = x6 + 15x2y4 + 3y6, then p is square-free and irreducible over

R. It can be checked that (p⊥)3 = {0}.

 1 0 0 0 1

0 0 0 1 0

0 0 1 0 3




c0

c1

c2

c3

c4

 =

 0

0

0

⇐⇒ (c0, c1, c2, c3, c4) = (c0, c1, 3c0, 0,−c0)

and (p⊥)4 consists of all the scalar multiples of h(x, y) = x4 + rx3y+ 3x2y2− y4. Note that a

square-free hyperbolic form must have a positive discriminant. The discriminant of h(x, y)

is −27r4 + 540r2 − 2704 = −27(r2 − 10)2 − 4 and it is negative for all r ∈ R. Then h does

not split over R and LR(p) ≥ 5. Since p is non-hyperbolic, LR(p) = 5 by Theorem 2.4.8.

4.2 Rank of quartic and quintic binary forms

Theorem 2.3.11 gives the rank of binary cubics based on their factorizations:

p(x, y) LC(p(x, y))

`0(x, y)3 1

`0(x, y)2`1(x, y) 3

`0(x, y)`1(x, y)`2(x, y) 2

Theorem 2.3.10 and Theorem 4.1.1 suggest a unique Waring rank for binary quartics

with repeating roots based on their factorization. However, these theorems do not suggest a

unique Waring rank for square-free binary quartics.

Theorem 4.2.1.

Suppose pλ(x, y) = x4 + 6λx2y2 + y4. Then LC(pλ) = 2 if λ = 0,±1 and 3 otherwise.

Proof. Notice that p0(x, y) = x4 + y4, p1(x, y) = 1
2
(x + y)4 + 1

2
(x − y)4 and p−1(x, y) =

1
2
(x + iy)4 + 1

2
(x − iy)4; therefore, LC(pλ) = 2 for λ = 0,±1. If λ 6= 0,±1, then the Hankel

matrix 1 0 λ

0 λ 0

λ 0 1

 (4.2.1)
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is non-singular and LC(pλ) ≥ 3. It follows from Theorem 2.3.10 that LC(pλ) = 3.

Theorem 4.2.2.

Let p(x, y) = 4ax3y+6bx2y2 +4cxy3 = xy(4ax2 +6bxy+4cy2), ac 6= 0 ∈ C. Then LC(p) = 2

if b2 = 2ac and 3 otherwise.

Proof. We already know that LC(p) ≥ 2 since p is not a fourth power. Then the Hankel

matrix H3(p) 0 a b

a b c

b c 0

 (4.2.2)

is non-singular if b2 6= 2ac. If b2 = 2ac, then the Sylvester form of degree 2 is h(x, y) =

cx2 −
√

2acxy + ay2 and LC(p) = 2.

Note that p does not have a root of multiplicity 3, therefore LC(p) ≤ 3 by Theorem

2.3.10. Hence, if b2 6= 2ac, then LC(p) = 3.

C-rank of binary quartics: Assume that `i’s are distinct binary linear forms. The first

three case of the following table directly follows from Theorem 2.3.10 and Theorem 4.1.1.

We provide supporting examples for the last case.

p(x, y) LC(p(x, y))

`0(x, y)4 1

`0(x, y)3`1(x, y) 4

`0(x, y)2`1(x, y)2 3

`0(x, y)2`1(x, y)`2(x, y) 3

`0(x, y)`1(x, y)`2(x, y)`3(x, y) 2,3

Theorem 4.2.1 and Theorem 4.2.2 show that a square-free binary quartic form can have

Waring rank 2 or 3. In particular, LC(4x3y + 6x2y2 + 4xy3) = LC(x4 + 4x2y2 + y4) = 3 and

LC(8x3y + 36x2y2 + 36xy3) = LC(x4 + y4) = 2.

It follows from the above table and Theorem 2.4.8 that LC(p(x, y)2) = LR(p(x, y)2) =

3 where p(x, y) is an irreducible real quadratic. This result is also a consequence of the

following theorem by Reznick.

Theorem 4.2.3. [32, Corollary 5.6]

For k ≥ 2, LC(x2 + y2)k = k + 1, and LK(x2 + y2)k = k + 1 if and only if tan π
k+1
∈ K. The

C-minimal representations of (x2 + y2)k are given by
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(
2k

k

)
(x2 + y2)k =

1

k + 1

k∑
j=0

(
cos

(
jπ

k + 1
+ θ

)
x+ sin

(
jπ

k + 1
+ θ

)
y

)2k

, θ ∈ C. (4.2.3)

First note that after an invertible linear change of variables, we may assume that if p is

an irreducible quadratic, then p(x, y) = (x2 + y2). Then, it is immediate from Theorem 4.2.3

that if k ≥ 2, then LC(p(x, y)k) = LR(p(x, y)k) = k + 1.

We now have enough tools at our disposal to determine the Waring rank of a binary

quintic based on its factorization over C.

Example 4.2.4. Suppose p(x, y) = `0(x, y)2`1(x, y)2`2(x, y) such that the `i’s are distinct

binary linear forms. Then 3 ≤ LC(p) ≤ 4 by Theorem 2.3.10 and Theorem 4.1.1. After an

invertible linear change of variables, we may assume that p(x, y) = 10x2y2(x+αy), α 6= 0 ∈
C. If we let d = 5 and r = 3, then the linear system (2.2.6) becomes:

0 0 1 α

0 1 α 0

1 α 0 0

 ·

c0

c1

c2

c3

 =

0

0

0

 . (4.2.4)

Therefore, (c0, c1, c2, c3) = s(α3,−α2, α,−1), s ∈ C, so that up to a multiple,

h(x, y) = α3x3 − α2x2y + αxy2 − y3

= (αx− y)(αx+ iy)(αx− iy).
(4.2.5)

The corresponding unique C-minimal representation is

10x2y2(x+ αy) =
−1

4α2

(
−2(x+ αy)5 + (1− i)(x+ αiy)5 + (1 + i)(x− αiy)5

)
.

Therefore, LK(p) = 3 if only if Q(α, i) ⊆ K; in particular, LC(p) = 3.

The following is a generalization of Example 4.2.4.

Theorem 4.2.5.

Suppose p(x, y) = `0(x, y)k`1(x, y)k`2(x, y) such that the `i’s are distinct linear forms. Then

LC(p) = k + 1.
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Proof. As in the example above, after invertible linear change of variables, we may assume

that p(x, y) =
(
2k+1
k

)
xkyk(x + αy). Theorem 4.1.1 suggests that LC(p) ≥ k + 1. It follows

from Theorem 2.2.1 that h(x, y) =
∑k+1

i=0 (−1)i(αx)k+1−iyi is a Sylvester form of degree k+ 1

for p. Therefore, LC(p) = k + 1.

C-rank of binary quintics: Assume that the `i’s are distinct binary linear forms. The

following table gives the rank of binary quintics based on their factorization over C.

p(x, y) LC(p(x, y))

`0(x, y)5 1

`0(x, y)4`1(x, y) 5

`0(x, y)3`1(x, y)2 4

`0(x, y)3`1(x, y)`2(x, y) 4

`0(x, y)2`1(x, y)2`2(x, y) 3

`0(x, y)2`1(x, y)`2(x, y)`3(x, y) 3,4

`0(x, y)`1(x, y)`2(x, y)`3(x, y)`4(x, y) 2,3,4

For the first four case, we get a unique rank directly from Theorem 2.3.10 and Theorem

4.1.1. However, these theorems do not suggest a unique rank for the last three factoriza-

tions. Example 4.2.4 shows that LC(`0(x, y)2`1(x, y)2`2(x, y)) = 3. We leverage Sylvester’s

algorithm and provide examples for the last two cases:

• LC(x5 + 10x2y3) = 3 and LC(x5 + 5x4y + 10x3y2 + 10x2y3) = 4.

• LC(x5 + y5) = 2, LC(3x5 + 20x3y2 + 10xy4) = 3 and LC(x5 − 5xy4) = 4.

The following theorem shows that the real Waring rank is not invariant under small

perturbation of the coefficients of a binary form.

Theorem 4.2.6.

Suppose r 6= 0 ∈ Q and p(x, y) = 10x2(x+y)(rx2 +y2). Let r0 be the real root of 2r3−77r2−
16r − 1 = 0, r0 ≈ 38.707. Then LC(p) = 3 and the real Waring rank depends on r:

(i) If r > r0, then LR(p) = 3.

(ii) If r ∈ (0, r0), then LR(p) = 4.

(iii) If r < 0, then LR(p) = 5.
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Proof. It is immediate from Theorem 4.1.1 that LC(p) ≥ 3. We can show by Theorem 2.2.1

that p has a unique Sylvester form of degree 3:

hr(x, y) = x3 − x2y + (1− 2r)xy2 − (1 + 6r)y3. (4.2.6)

We check the discriminant of h to understand the behavior of the roots. The discriminant

∆(hr) = 16(2r3 − 77r2 − 16r − 1). First notice that ∆(h) does not have any rational root,

and so LC(p) = 3. If r0 is the unique real root of the discriminant, then ∆(hr) is positive

when r > r0. Therefore, h splits over R if r > r0 and LR(p) = 3. Note that p is hyperbolic if

and only if r < 0, then (ii) and (iii) are immediate from Theorem 2.4.8.

Lemma 4.2.7. Suppose p(x, y) = `0(x, y)q1(x, y)2 such that `0 is a real linear form and

q(x, y) is a real irreducible quadratic. Then LR(p) = 3.

Proof. The proof follows from Corollary 4.1.5 and Theorem 2.4.8.

Comon and Ottaviani studied the real rank of square-free binary quintics; see [14]. A

hyperbolic binary quintic, which is not a 5-th power, has real rank 5 by Corollary 2.4.4. We

now give the real rank of non-hyperbolic binary quintic forms with repeating roots depending

on their factorizations.

Assume that the `i’s are distinct real linear forms and q(x, y) is an irreducible quadratic.

The following table follows from Lemma 4.2.7, Corollary 4.1.3 and Theorem 4.2.6.

p(x, y) LR(p(x, y))

`0(x, y)q(x, y)2 3

`0(x, y)3q(x, y) 4

`0(x, y)2`1(x, y)q(x, y) 3,4

Notice that if p(x, y) = `0(x, y)2`1(x, y)q(x, y), then after an invertible linear change of

variables, we may assume that p(x, y) = 10x2(x+ y)(rx2 + y2), r > 0. Thus, LR(p) ∈ {3, 4}
by Theorem 4.2.6.

4.3 The real rank of positive definite forms

Let p(x, y) be a square-free positive definite binary form. Theorem 4.1.1 and Corollary 4.1.5

do not suggest a lower bound for the complex and real rank of p.
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Let fλ(x, y) = x2k +
(
2k
k

)
λxkyk + y2k, λ 6= 0 ∈ R. If |

(
2k
k

)
λ| < 2, then fλ is a square-

free definite form. In the following theorem, arguments employing Descartes’ Rule of Signs

provide a lower bound for LR(fλ).

The next tool is an application of Descartes’ Rule of Signs; see [27, Problem 49, p.43].

Theorem 4.3.1. Let a0 6= 0, an 6= 0, and assume that 2m consecutive coefficients of the

polynomial a0 + a1t+ . . .+ ant
n vanish, where m is an integer, m ≥ 1. Then the polynomial

has at least 2m non-real zeros.

Theorem 4.3.2.

Let fλ(x, y) = x2k +
(
2k
k

)
λxkyk + y2k, where λ 6= 0 ∈ R and k ≥ 3. Then LR(fλ) ∈ {2k −

2, 2k − 1}.

Proof. First notice that if k ≥ 3, then fλ(x, y) is not hyperbolic by Theorem 4.3.1. Thus, it

follows from Theorem 2.4.8 that LR(fλ) ≤ 2k − 1. We then let r = k + j, 0 ≤ j ≤ k − 1 and

look for a Sylvester form of degree r. If k = 4, j = 1, then (2.2.6) becomes:
1 0 0 0 λ 0

0 0 0 λ 0 0

0 0 λ 0 0 0

0 λ 0 0 0 1




c0

c1
...

c5

 =


0

0

0

0

 .

Then, (c0, c1, c2, c3, c4, c5) = (−λc4, c1, 0, 0, c4,−λc1). Instead if k = 5, j = 2, then

(c0, c1, c2, c3, c4, c5, c6, c7) = (−λc5, c1, c2, 0, 0, c5, c6,−λc2)

is the solution of the linear system:
1 0 0 0 0 λ 0 0

0 0 0 0 λ 0 0 0

0 0 0 λ 0 0 0 0

0 0 λ 0 0 0 0 1




c0

c1
...

c7

 =


0

0

0

0

 .

In general for r = k + j, we can see that if (c0, c1, . . . , ck+j) is a solution for (2.2.6), then

ci = 0, j + 1 ≤ i ≤ k − 1,

c0 = −λck, ck+j = −λcj.
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Therefore, hk+j(x, y), the corresponding Sylvester form of degree k+ j, has at least k− j− 1

consecutive missing coefficients. If hk+j splits over R, then k−j ≤ 2 by Theorem 4.3.1; thus,

2k − 2 ≤ LR(fλ).

The following theorem gives a parametrization for a C-minimal representation of fλ(x, y)

as λ varies over all non-zero complex numbers.

Theorem 4.3.3.

Suppose fλ(x, y) = x2k +
(
2k
k

)
λxkyk + y2k, λ 6= 0. Then LC(fλ) = k if λ = ±1 and k + 1

otherwise. The following is a minimal representation of fλ,

x2k +
(
2k
k

)
λxkyk + y2k = (1− λ2)y2k +

1

k

k−1∑
i=0

(x+ λ
1
k ζ iky)2k. (4.3.1)

Proof. We first evaluate the right-hand side of (4.3.1):

(1− λ2)y2k +
1

k

k−1∑
i=0

(x+ λ
1
k ζ iky)2k = (1− λ2)y2k +

1

k

2k∑
j=0

(
2k
j

)
x2k−jyjλ

j
k

( k−1∑
i=0

ζ ijk
)
. (4.3.2)

The sum
k−1∑
i=0

ζ ijk = 0 unless k | j, in which case it equals to k. The only multiples of k in the

set {j : 0 ≤ j ≤ 2k} are 0, k, 2k. The right-hand side of (4.3.2) reduces to the left-hand side

of (4.3.1). If we let r = k − 1, then the linear system in (2.2.6) has only the trivial solution,

so k ≤ LC(fλ) ≤ k + 1.

If λ ∈ {1,−1}, then the first summand in (4.3.2) is zero and fλ has a unique minimal

representation which is given by (4.3.1) and LC(fλ) = k.

Let λ 6= ±1 and r = k, then the matrix in (2.2.6) is non-singular, so LC(fλ) = k+ 1. (We

search that the minimal representation given by (4.3.1) is not necessarily unique.)
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Chapter 5

C-minimal representations and
Sylvester fields

Suppose Q ⊆ Ep ⊆ C. Let p be a binary form of degree d with the coefficient field Ep. If

LC(p) < d+2
2
, then p has a unique C-minimal representation by Corollary 2.3.6 (ii). Assume

that F/Ep is a finite degree field extension such that LF (p) = LC(p). In this chapter we study

the relation between [F : Ep] and LC(p) and investigate the structure of unique C-minimal

honest representations of p. Sections 5.1 and 5.2 are adapted from Section 3 of the paper [40]

On the Waring rank of binary forms by N. Tokcan, which has been accepted for publication

by Linear Algebra and Its Applications.

5.1 Structure of C-minimal representations

If p ∈ Hd(K
2), then any apolar form of minimal degree k < d+2

2
is unique (up to a scalar

multiple) by Corollary 2.1.17. We now provide a proof of the corollary.

Corollary 5.1.1. (Corollary 2.1.17)

Let p(x, y) be a nonzero binary form in Hd(K
2), not a d-th power, and suppose that k < d+2

2

is the smallest number such that (p⊥)k 6= {0}. Then there exists a projectively unique binary

form h(x, y) ∈ Hk(K
2) such that (p⊥)k = 〈h〉. Thus, p(x, y) has at most one minimal

representation of length k.

Proof. We first prove uniqueness: If g(x, y) is a binary form which is apolar to p and non-

proportional to h, then deg(g) > k by Theorem 2.1.15. It follows that (p⊥)k has a unique

element (up to a scalar multiple).

We now prove that h ∈ K[x, y]: If we take r = k, then the linear system in (2.2.6) has

at least one nonzero solution over C, since h(x, y) corresponds to a solution. Thus, it must

have a solution over K as well and by uniqueness h(x, y) ∈ K[x, y].

The following is a restatement of Theorem 2.2.10.
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Theorem 5.1.2.

Suppose h(x, y) is a Sylvester form of degree r for p(x, y). If S is a splitting field of h, then

LS(p) ≤ r. If furthermore there is no Sylvester form of degree r − 1, then LS(p) = r.

Proof. The length of the shortest representation of p over S is LS(p). If h splits over S, then

it follows from Theorem 2.2.1 that there exist λk, αk, βk ∈ S such that

p(x, y) =
r∑

k=1

λk(αkx+ βky)d. (5.1.1)

Therefore, LS(p) ≤ r. If there is no Sylvester form of degree r−1, then (5.1.1) is a C-minimal

representation and LS(p) = LC(p) = r.

We shall need the following result on the splitting fields [18, Ex.3, p.30]. Let [L : K]

denote the degree of the field extension L/K.

Theorem 5.1.3.

Let p be a polynomial of degree d with coefficients in K. Let L be the splitting field of p over

K. Then [L : K] is a divisor of d!.

Theorem 5.1.4.

Suppose r < d+2
2

and p(x, y) ∈ Hd(K
2) with LC(p) = r. Then there exists a field extension

S/K such that LS(p) = r and [S : K] divides r!.

Proof. Let h(x, y) be a Sylvester form of degree r for p. Then h(x, y) ∈ K[x, y] by Corol-

lary 2.1.17. There is no Sylvester form of degree r − 1 since LC(p) = r. If S is a splitting

field of h, then LS(p) = r by Theorem 5.1.2. Moreover, it follows from Theorem 5.1.3 that

[S : K] | r!.

Suppose p ∈ Hd(K
2), d ≥ 3 with LC(p) = 2 and LK(p) ≥ 3. Then there exist a field

extension S/K such that [S : K] = 2 with LS(p) = 2 by Theorem 5.1.4. The classification

of binary forms with Waring rank 2 is presented in [32].

Theorem 5.1.5. [32, Theorem 4.6]

Let p(x, y) be a nonzero binary form of degree d ≥ 3, and not a d-th power, with λi, αi, βi ∈ C
so that

p(x, y) = λ1(α1x+ β1y)d + λ2(α2x+ β2y)d ∈ K[x, y]. (5.1.2)
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If (5.1.2) is honest and LK(p) > 2, then there exists u ∈ K with
√
u 6∈ K so that LK(

√
u)(p) =

2. The summands in (5.1.2) are conjugates of each other in K(
√
u).

It was shown in Example 3.1.2 that if d ≥ 3 and γ is a square-free rational, then pd(x, y) =

(x+
√
γy)d+(x−√γy)d has a unique C-minimal representation with LQ(

√
γ)(pd) = 2. Notice

that in this example Ep = Q and [Q(
√
γ) : Q] = 2.

In the following example, the coefficient field Ep is a quadratic field.

Example 5.1.6. Let p(x, y) = 2(x3 − 3
√

5x2y + 36xy2 − 26
√

5y3) ∈ Q(
√

5)[x, y]. Then it

follows from Theorem 2.2.1 that

p(x, y) = (x− (
√

5−
√

7)y)3 + (x− (
√

5 +
√

7)y)3. (5.1.3)

By Corollary 2.3.6(ii), p has a unique representation of rank 2. Thus, LK(p) = 2 if and only

if Q(
√

5,
√

7) ⊆ K. In particular, LQ(
√
5,
√
7)(p) = 2 and [Q(

√
5,
√

7) : Q(
√

5)] = 2. Moreover,

LQ(
√
5)(p) = 3 by Theorem 2.3.8.

Lemma 5.1.7.

Suppose d ≥ 5 and there exist nonzero λi, α1, β1 ∈ C so that

p(x, y) = λ1(α1x+ β1y)d + λ2x
d + λ3y

d ∈ K[x, y]. (5.1.4)

Then LK(p) = 3, and (5.1.4) is the projectively unique representation of p of length 3.

Proof. The Sylvester form corresponding to (5.1.4) is h(x, y) = (β1x − α1y)yx by Theorem

2.2.1. It follows from Corollary 2.1.17 that h ∈ K[x, y]; thus, h splits over K and LK(p) =

3.

Corollary 5.1.10 concerns a special case of Theorem 5.1.4 where r = 3 and K is a real

closed field. We first give a simple property of real closed fields.

Definition 5.1.8. A real closed field F is a real field that has no non-trivial real algebraic

extension F1 ⊃ F.

Theorem 5.1.9. [6, Theorem 1.2.2]

Let F be a real closed field. Then every odd-degree polynomial of F [x] has a root in F.
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Corollary 5.1.10.

Suppose d ≥ 5, K ⊆ C is real closed field and there exist λi, αi, βi ∈ C such that

p(x, y) = λ1(α1x+ β1y)d + λ2(α2x+ β2x)d + λ3(α3x+ β3y)d ∈ K[x, y] (5.1.5)

is a honest representation and LK(p) > 3. Suppose

u = (β1α2 − β2α1)
2(β1α3 − β3α1)

2(β2α3 − β3α2)
2.

Then LK(
√
u)(p) = 3. One of the summands in (5.1.5) is in K[x, y] whereas the other two

summands are conjugates of each other in K(
√
u)[x, y].

Proof. It follows from Theorem 2.2.1 and Corollary 2.1.17 that the projectively unique

Sylvester form of degree 3 for p is given by

h(x, y) = (β1x− α1y)(β2x− α2y)(β3x− α3y) ∈ K[x, y].

Notice that u equals the discriminant of h(x, 1). By the hypothesis h does not split over K;

therefore,
√
u 6∈ K. Since h is an odd degree form over a real closed field, it must have a

factor in K[x, y] by Theorem 5.1.9. Thus, only one factor of h(x, y) is in K[x, y] and the

other two are conjugates of each other in K(
√
u). Note that every field automorphism which

fixes K permutes the summands in (5.1.5). If we consider the conjugation with respect to
√
u, then (5.1.5) has two summands which are conjugates of each other in K(

√
u)[x, y] and

a summand in K[x, y].

The following theorem in [32] gives the structure of the summands of a unique C-minimal

representation.

Theorem 5.1.11. [32, Corollary 4.8]

Suppose K is an extension field of Ep, r <
d+2
2
, and

p(x, y) =
r∑
i=1

λi(αix+ βiy)d (5.1.6)

with λi, αi, βi ∈ K. Then every automorphism of K which fixes Ep permutes the summands

in (5.1.6).

Proof. If σ is an automorphism of K which fixes Ep, then σ(λ(αx + βy)d) = σ(λ)(σ(α)x +

σ(β)y)d. Since σ(p) = p, the action of σ gives a representation of p. It follows from Corollary
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2.3.6(ii) that p has a unique minimal representation of length r, and so σ permutes the

summands of p.

In the above results, we have p ∈ Hd(K
2) with LC(p) = r < d+2

2
, i.e., with a unique

C-minimal representation. In Theorem 5.1.13 we remove the condition r < d+2
2

and set

λi = αi = 1. We first need to give simple definitions and properties concerning symmetric

functions.

Definition 5.1.12. The k-th elementary symmetric polynomial in n variables x1, . . . , xn is

defined by

ek(x1, . . . , xn) =
∑

1≤i1<i2<...<ik≤n

xi1 . . . xik , 0 ≤ k ≤ n.

The k-th power sum symmetric polynomial in n variables is defined by

pk(x1, . . . , xn) =
k∑
i=1

xki .

The following property is well known:

Q[e1, . . . , en] = Q[p1, . . . , pn]. (5.1.7)

The coefficients of a polynomial can be given in terms of elementary symmetric polynomials:

d∏
i=1

(x− αi) =
d∑
i=0

(−1)iei(α1, . . . , αd)x
d−i. (5.1.8)

More details about symmetric functions and the proofs of above mentioned properties

can be found in [24, Chapter 1].

Theorem 5.1.13.

If the polynomial p(x, y) =
k∑
j=1

(x + γjy)d ∈ K[x, y], then γ1, . . . γk are roots of a polynomial

in K[x].

Proof. Let

p(x, y) =
d∑
i=0

(
d

i

)
aix

d−iyi, ai ∈ K.
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Then the coefficients of p(x, y) can be written as, 0 ≤ i ≤ d,

ai =
k∑
j=1

γij := pi(γ1, . . . , γk) ∈ K. (5.1.9)

It follows from (5.1.7) that elementary symmetric polynomials can be written as Q-linear

combinations of power sum symmetric polynomials. Hence, ei(γ1, . . . , γk) ∈ K for 0 ≤ i ≤ d.

Then by (5.1.8),

k∏
i=1

(x− γi) =
k∑
i=0

(−1)iei(γ1, . . . , γk)x
k−i ∈ K[x]. (5.1.10)

5.2 Binary Forms of Waring rank 3

Let f be a binary form of degree d ≥ 5 in K[x, y] and LC(f) = 3. Then it follows from

Theorem 5.1.4 that there exist a field extension S/K with LS(f) = 3. Either S = K or

else S/K has degree 2, 3, or 6. In this section, we give examples for each case of S/K and

additional one showing that if d ≤ 4, there can be infinitely many representations of length 3.

Example 5.2.1. Let d ≥ 5, λ 6= 0, γ ∈ Q with
√
γ 6∈ Q such that

p(x, y) =
∑

0≤2i≤d

(
d

2i

)
γixd−2iy2i + λxd ∈ Q[x, y]. (5.2.1)

Then p has a representation of length 3 by Example 3.1.2:

p(x, y) =
1

2
(x+

√
γy)d +

1

2
(x−√γy)d + λxd. (5.2.2)

Any other honest representation of p has length at least d− 1 ≥ 4 by Theorem 2.3.5; thus,

LC(p) = LQ(
√
γ)(p) = 3. Notice that [Q(

√
γ) : Q] = 2.

Example 5.2.2. Let d ≥ 5 and

p(x, y) = 3
∑

0≤3k≤d

(
d

3k

)
2kxd−3ky3k ∈ Q[x, y]. (5.2.3)
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It follows from Theorem 2.2.1 that LC(p) = 3 and the unique C-minimal representation is

p(x, y) = (x+
3
√

2y)d + (x+
3
√

2ωy)d + (x+
3
√

2ω2y)d, ω = e
2πi
3 . (5.2.4)

Thus, LK(p) = 3 if and only if Q( 3
√

2,
√
−3) ⊆ K. In particular, LQ( 3√2,

√
−3)(p) = 3 and

[Q( 3
√

2,
√
−3) : Q] = 6.

Example 5.2.3. This example displays a form falling into the case where S/K has degree 2.

Let f(x, y) = (1 + 2
√

2)x5 − 25x4y + (60
√

2 + 10)x3y2 − 170x2y3 + (90
√

2 + 5)xy4 − 53y5.

First, with r = 2, the (2.2.6) becomes
1 + 2

√
2 −5 6

√
2 + 1

−5 6
√

2 + 1 −17

6
√

2 + 1 −17 18
√

2 + 1

−17 18
√

2 + 1 −53

 ·
c0c1
c2

 =


0

0

0

0

⇔ (c0, c1, c2) = (0, 0, 0).

Therefore, LC(f) ≥ 3. On taking r = 3, the linear system in (2.2.6) becomes:

 1 + 2
√

2 −5 6
√

2 + 1 −17

−5 6
√

2 + 1 −17 18
√

2 + 1

6
√

2 + 1 −17 18
√

2 + 1 −53

 ·

c0

c1

c2

c3

 =

0

0

0

 . (5.2.5)

The only solution to (5.2.5) is, up to a multiple, (c0, c1, c2, c3) = (3,−3,−1, 1), so that

h(x, y) = 3x3 − 3x2y − xy2 + y3 = (y −
√

3x)(y +
√

3x)(y − x).

We arrive the following conclusion: LS(f) = 3 if and only if Q(
√

2,
√

3) ⊆ S with the corre-

sponding representation:

f(x, y) = (
√

2 +
√

3)(x−
√

3y)5 + (
√

2−
√

3)(x+
√

3y)5 + (x+ y)5.

Notice that the above representation has two summands which are conjugates of each other

under the conjugation with respect to
√

3 in Q(
√

2) and a summand in Q(
√

2)[x, y]. In

particular, if S = Q(
√

2,
√

3), then [S : Q(
√

2)] = 2 and LS(f) = 3.

Example 5.2.4. Let f(x, y) = −15x5 + 90x4y − 30x3y2 + 60x2y3 + 3y5. If we set r = 2,
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then the solution to the linear system in (2.2.6) is trivial, so LC(f) ≥ 3. If we set r = 3 in

(2.2.6), then up to a scalar multiple h(x, y) = x3− 3xy2 + y3. We factor h(x, y) by using the

trigonometric identity 4 cos3 θ − 3 cos θ = cos 3θ:

h(x, y) = (x− 2 cos 2π
9
y)(x− 2 cos 4π

9
y)(x− 2 cos 8π

9
y).

Therefore, LS(f) = 3 if and only if Q(cos 2π
9

) ⊆ S with the C-minimal representation:

f(x, y) = (y + 2x cos 2π
9

)5 + (y + 2x cos 4π
9

)5 + (y + 2x cos 8π
9

)5.

If we let S = Q(cos 2π
9

), then we have [S : Q] = 3 and LS(f) = 3.

Example 5.2.5. Let f(x, y) = 3x7 + 735x4y3 + 1029xy6. Then, (f⊥)2 is empty by Theo-

rem 2.2.1; thus, the Waring rank of f is at least 3. If r = 3, then the linear system in (2.2.6)

becomes 
3 0 0 21

0 0 21 0

0 21 0 0

21 0 0 147

0 0 147 0

 ·

c0

c1

c2

c3

 =


0

0

0

0

0

 .

Therefore, the projectively unique Sylvester form of degree 3 is

h(x, y) = y3 − 7x3 = (y − 3
√

7x)(y − 3
√

7ωx)(y − 3
√

7ω2x), ω = e
2πi
3 .

Note that h splits over Q( 3
√

7,
√
−3). The C-minimal representation of f is given by

f(x, y) = (x+
3
√

7y)7 + (x+
3
√

7ωy)7 + (x+
3
√

7ω2y)7.

Let S = Q( 3
√

7,
√
−3), then [S : Q] = 6 and LS(f) = 3.

If the degree of a binary form is less than 2k − 1, then the Sylvester form of degree k

does not need to be unique. A binary quartic can have infinitely many representations of

length 3.

Example 5.2.6. Let f(x, y) = (x2 + y2)2, then by Theorem 4.2.3, LS(f) = 3 if and only if
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Q(
√

3) ⊆ S with the infinitely many minimal representations

(x2 + y2)2 =
1

18

2∑
j=0

(cos( jπ
3

+ θ)x+ sin( jπ
3

+ θ)y)4, θ ∈ C.

5.3 Sylvester fields

Let f be real binary form of degree d. If LK(f) = d, we say that f has full rank over the

field K. The case for K = C has been fully studied; see Theorem 2.3.10. In the last years,

the case K = R has been considered in different works [11, 14, 32]. A final result has been

recently achieved by Blekherman and Sinn: LR(f) = deg(f) if and only if f is hyperbolic

and not a d-th power (Theorem 2.4.8).

It is natural to wonder whether there are fields besides C and R where forms with a given

set of properties have full rank.

Definition 5.3.1. Let K ⊆ C. If every binary form of degree d ≥ 2 which splits over K and

not a d-th power has K-rank d, then we say that K is a Sylvester field.

Proposition 5.3.2. [5, Proposition 2.6]

A binary form f ∈ Hd(R2) of degree d ≥ 3 is hyperbolic if and only if all its directional

derivatives are hyperbolic.

Remark 5.3.3. The above proposition does not generalize to other fields, but this part

does: if a real polynomial splits over R, then its derivative does as well. We call this field

property Rolle’s property. Not all the fields have a notion of differentiable function, but the

elements in the polynomial ring K[x1, . . . , xn] can be symbolically differentiated.

The question of which fields satisfy Rolle’s property was raised in [18]. It holds for any

algebraically closed field and any real closed field (we are only interested in infinite fields).

It does not hold for rational numbers. For example,

f(x, y) = x3 − 4xy2 = x(x− 2y)(x+ 2y) splits over Q, but

∂xf = 3x2 − 4y2 = (
√

3x− 2y)(
√

3x+ 2y) does not.

We need the following extension of the first side of the Proposition 5.3.2.

Proposition 5.3.4.

Let K be a field with Rolle’s property. If a binary form f ∈ Hd(K
2) of degree d ≥ 3 splits

over K, then all its directional derivatives also split over K.
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Proof. Let f be a binary form in Hd(K
2) which splits over K. Let Dv(f) = v1∂xf + v2∂yf

and v = (v1, v2) ∈ K2. After a change of coordinates and dehomogenizing, we can assume

that f is a univariate polynomial of degree d and it splits over K. Thus, we can let Dv be

the usual derivative f ′. Then the derivative splits over K by Rolle’s property.

Lemma 5.3.5.

Let K be a real closed field and f be a binary cubic form, not a cube, in H3(K
2). If f splits

over K, then LK(f) = 3.

Proof. If f has a repeated factor, then it follows from Theorem 2.3.11(ii) that LK(f) = 3.

Assume that f does not have a repeated factor. If f splits over K, then
√

∆ ∈ K. Since K

is a real closed field,
√
−3∆ 6∈ K. Therefore, LK(f) = 3 by Theorem 2.3.11(iii).

Theorem 5.3.6.

If K is a real closed field, then K is a Sylvester field.

Proof. Let f ∈ Hd(K
2) be a product of d linear forms in K, and not a d-th power. We need

to show that LK(f) = d. We prove the theorem by induction on the degree of f . Notice

that Lemma 5.3.5 proves the base case d = 3. Let f be a binary form of d ≥ 4 and suppose

that f splits over K. Then every directional derivative of f splits over K by Proposition

5.3.4. By induction, K-rank of directional derivatives is d− 1. However, if the K-rank of f

was less than d, then at least one of the directional derivatives would have K-rank less than

d− 1. Therefore, LK(f) = d.

Corollary 5.3.7.

Let F ⊆ K where K is a Sylvester field. Then F is also a Sylvester field.

Proof. Let f be a binary form in Hd(K
2) and not a d-th power. It follows from (2.2.2) and

Theorem 2.3.8 that d ≥ LF (f) ≥ LK(f). If f splits over F , then it must also split over

K. Then LK(f) = d since K is a Sylvester field. Hence, LF (f) = d and F is a Sylvester

field.

Theorem 5.3.8.

Let K be an algebraically closed field such that Q ⊆ K ⊆ C. Then K is not a Sylvester field.

Proof. We prove the theorem with an example. Let f(x, y) = x3 + y3, then f splits over K.

However, LK(f) = LQ(f) = 2 by Theorem 2.2.10.
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The following theorem shows that a cyclotomic field can not be Sylvester.

Theorem 5.3.9.

Let n ≥ 3, then Q(ζn) is not a Sylvester field.

Proof. Suppose f(x, y) = xn−yn and n ≥ 3. Then f splits over Q(ζn). However, LQ(ζn)(f) =

LQ(f) = 2.
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