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ABSTRACT 

Increased nitrogen (N) and phosphorus (P) loadings to surface waters lead to algal blooms 

which cause eutrophication and hypoxia, threatening aquatic ecosystems, human health, and 

local economies. The adoption of increasingly stringent regulations for effluent N and P 

loadings, including from wastewater treatment plants (WWTPs), is a successful strategy for 

addressing this challenge. However, existing technologies for N and P removal are inconsistent 

with sustainability goals for nutrient recovery and reduced energy consumption. Eukaryotic 

microalgae are uniquely equipped to address these challenges, with the capacity to remove 

inorganic and organic N and P from growth media to the point of non-detection and to 

accumulate carbohydrate and lipid stores which may be further converted to biofuels. While 

algal wastewater treatment and biofuels are not new lines of research, much previous work has 

focused on either pure cultures or minimally engineered open systems. Algal biotechnology, 

using highly engineered open systems, seeks a middle road between these two approaches, 

offering greater control than open ponds but requiring fewer inputs than axenic systems. The 

work presented in this thesis explores nutrient dynamics, carbon storage, and community 

dynamics of mixed algal cultures within the context of algal biotechnology with an aim toward 

filling key knowledge gaps. Three parallel photobioreactors, each inoculated with mixed 

microbial communities sourced from WWTP clarifiers and/or surface water in one of three 

different geographic locations of the United States (Florida, North Carolina, Illinois) were 

operated in sequencing batch mode with an 8-day solids residence time (SRT) and 14hr:10hr 

light:dark cycle with nighttime N-feeding and daytime N-limitation. Metrics of community function 

included nutrient dynamics and biomass composition which were monitored over the course of 

82 days and during a subsequent 10-day batch experiment to determine kinetic parameters. 

Community structure over 82 days was monitored via sequencing of the V4 and V8-V9 regions 

of the 18S rRNA gene. Structural and functional metrics showed complementary patterns. 

Functional metrics transitioned from dynamic to stable performance through time while 

community structure showed a departure from, followed by a return to, a community resembling 

the initial community. Although the communities in the three reactors remained distinct from 

each other through time, the most dominant OTUs were shared between all three reactors. The 

data presented in this experiment demonstrate how system design can induce communities 

which differ in structure to follow similar extant performance patterns. However, intrinsic storage 

parameters for carbohydrates and lipids differed widely between reactors, suggesting that more 

research is needed to elucidate structure-function relationships in microalgal communities to 

maximize carbon storage potential.  
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Chapter 1: Introduction 

 

Minimizing nutrient pollution to surface waters remains a persistent challenge for environmental 

scientists and engineers. Excess nitrogen (N) and phosphorus (P) from industrial processes, 

agriculture, and domestic waste (OIG US EPA, 2008) lead to eutrophication when released into 

surface waters, negatively impacting aquatic ecosystems, human health, recreation, and local 

economies (OW US EPA, 2015). Increasingly stringent N and P discharge limits have been 

shown to effectively prevent some of these negative water quality impacts (Conley et al., 2009), 

but new technologies are needed. The current limit of technology (LOT) for nutrient removal, 

approximately 3 mg N·L-1 and 0.1 mg P·L-1 (Bott & Parker, 2011), relies on energy-intensive and 

costly processes (OW US EPA, 2015). These technologies ultimately render much of the 

nutrients removed from the system non-bioavailable, by the biochemical conversion of inorganic 

N species to N2 gas through nitrification and denitrification or chemical precipitation and 

sequestration of PO4
3--P into metal phosphate precipitates (Metcalf & Eddy, 2014). The Haber-

Bosch process for fixing atmospheric N2 to bioavailable NH3 is an energy-intensive process 

(Cherkasov, Ibhadon, & Fitzpatrick, 2015) and mineral phosphate rock is a nonrenewable 

resource (Cordell & White, 2014), suggesting that a restructuring of nutrient removal technology 

is needed to advance sustainability goals. Recent research has begun to address this issue, 

seeking to reframe wastewater treatment plants (WWTPs) as water resource recovery facilities 

(WRRFs) (Daigger, 2017) where biosolids and dissolved nutrients are treated as resources to 

be recovered and reused rather than waste products for disposal (Guest et al., 2009). There is 

therefore a need to develop technologies which both reduce effluent nutrient loadings below the 

current LOT and accommodate nutrient recovery and reuse. 

Algae are well equipped to address both of these challenges. The biological capabilities which 

cause algae to form algal blooms leading to eutrophication and hypoxia are directly related to 

the ability to take up nutrient to the point of environmental depletion. Research seeking to apply 

and contain this functionality within wastewater treatment plants has a long history. Oswald et 

al. (1957) first proposed the use of algae in wastewater treatment lagoons, primarily to provide 

oxygenation and to reduce biochemical oxygen demand. More recently, high rate algal ponds 

(R. J. Craggs, Davies-Colley, Tanner, & Sukias, 2003) and attached growth algal systems 

(Rupert J Craggs, Adey, Jessup, & Oswald, 1996) have been used for nutrient removal. 

However, attached growth systems have lower nutrient uptake capabilities than suspended 

growth systems and both suffer from inconsistent productivity and performance (Shoener, 

Bradley, Cusick, & Guest, 2014). Coupled with its nutrient removal capacity is the ability of 
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algae to synthesize storage carbohydrates and lipids which provide excess energy for nighttime 

nutrient uptake (Gardner-Dale, Bradley, & Guest, 2017) or provide a carbon sink for 

photosynthesis in cases of longer-term nutrient limitation (Dragone, Fernandes, Abreu, Vicente, 

& Teixeira, 2011; Markou, Angelidaki, & Georgakakis, 2012). Extensive research has gone into 

the field of algal biofuels, the conversion of either whole biomass or extracted carbohydrate or 

lipid portions into biocrude (Li et al., 2017), bioethanol (Brányiková et al., 2011), or biodiesel (Hu 

et al., 2008), respectively. Some have sought to identify pure algal strains or genetically 

engineered cultures with optimal lipid or carbohydrate composition (A. Ghosh et al., 2016; 

Gomaa, Al-Haj, & Abed, 2016). However, although open outdoor cultivation systems are less 

expensive to construct and maintain than photobioreactors (US DOE, 2016), they are not 

conducive to the maintenance of axenic cultures (Hoffmann, 1998; Kazamia, Riseley, Howe, & 

Smith, 2014). Mixed culture systems are often more robust and resilient than pure culture 

systems (Kazamia et al., 2014), but need to be optimized for integration into wastewater 

treatment. While algal functional traits are readily applicable to addressing sustainability goals 

and improving wastewater treatment performance, a framework for highly controlled open mixed 

algal systems is needed. 

Environmental biotechnology harnesses knowledge of microbial metabolism to design systems 

which preferentially promote the proliferation of taxa with desirable functional traits (Rittmann & 

McCarty, 2001), and has already been applied to wastewater treatment, for example, in 

anaerobic digestion and biological nutrient removal (Rittmann & McCarty, 2001). Algal 

biotechnology could provide a middle path in algal wastewater treatment, allowing for tighter 

process control than open ponds without the challenges associated with pure culture growth. In 

a system designed based on algal biotechnology, outside strains serve merely as additional 

material on which the system might select (Mooij, Stouten, van Loosdrecht, & Kleerebezem, 

2015), rather than as invaders which would disrupt pure culture systems. Mooij et al. (2013) 

proposed the ‘Survival of the Fattest’ hypothesis which outlines methods for system design 

favoring the survival and proliferation of algal strains with high carbohydrate or lipid storage by 

harnessing the connection between nutrient limitation and carbon storage in algae via the 

combination of daytime nutrient limitation and nighttime nutrient feeding of mixed algal cultures. 

Other traits such as tolerance of harsh growth conditions, biomass characteristics, and growth 

rate might also be selected for via cultivation under appropriate environmental conditions (Mooij, 

Stouten, et al., 2015). With sufficient knowledge of algal metabolism, algal biotechnology might 

be used to design systems which simultaneously address multiple challenges in modern 

wastewater treatment. 
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Several key factors remain to be addressed including (i) the incorporation of nutrient removal 

goals into the design of engineered algal systems, (ii) the need to understand similarities and 

differences in the response of different algal communities to a common set of growth conditions, 

and (iii) the need to link community structure with community function. The study outlined in the 

following chapters addresses each of these issues. We compare performance metrics, including 

nutrient dynamics, between three algal communities sourced from surface water and 

wastewater treatment clarifiers in three geographically distinct locations in the continental United 

States. We also provide in-depth analysis and comparison of community structure via 18S rRNA 

gene sequencing. Finally, we examine relationships between metrics of community structure 

and function and look for commonalities between algal communities.   
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Chapter 2: Background 

 

2.1 Phototrophic Communities in Wastewater Treatment Systems. The results of several 

studies which have aimed to characterize algal communities present in waste treatment 

systems illustrate the inherent variability in such communities through space and time. Because 

molecular methods for describing community composition were developed only recently and are 

still in development for eukaryotic systems, most community composition data have been 

gathered via microscopy, likely resulting in a vast underreporting of rare and morphologically 

similar taxa. While high rate algal ponds (HRAPs) and retention ponds contain a variety of algae 

and zooplankton, algae tend to dominate these mixed systems (Barthel, Oliveira, & Costa, 

2008; Godos, Blanco, García-Encina, Becares, & Muñoz, 2009), the composition of which can 

be altered by system design decisions (Park, Craggs, & Shilton, 2011, 2013). For example, in a 

system designed to improve settling properties of algae by recycling settled algae back into the 

system, the community quickly became dominated by Pediastrun boryanum, in contrast to a 

control community where Dictyosphaerium sp. was dominant (Park et al., 2011, 2013). 

Micractinium and Thalassiosira were minor taxa in these systems (Park et al., 2013).  

Algal communities vary with geographic location and type of water body. For example, 

composition of dominant taxa differed in wastewater treatment plant (WWTP) communities 

sampled in Northfield, Michigan; Tampa, Florida; and Suffolk, Virginia (S. Ghosh & Love, 2011). 

Using two different primer sets for the rbcL gene, which each identified different dominant taxa 

in each system, there was little overlap between the locations. Michigan was dominated by 

Eustigmitophyceae, Cylindrotheca closterium, raphid pennate diatoms, Chlorococcum 

ellipsodium, and Chaetomorpha linum; Virginia by raphid pennate diatoms and Synechocystis, 

and Florida by Nitzschia, dinoflagellates (eg. Pridinium), and cyanobactieria such as 

Thermosynechococcus. However, a study using the V4 and V8-V9 regions of the 18S rRNA 

gene to probe community structure found many similarities between algal communities collected 

from wastewater treatment primary and secondary clarifiers, algaewheels, raceway ponds, and 

natural surface waters located in the Midwestern United States (Bradley, Pinto, & Guest, 2016). 

Stramenopiles, Chloroplastida, Alveolata, and unclassified Eukaryotes were common taxonomic 

classifications across all sample types, although with varying relative abundance. However, 

greater diversity and divergence between communities was evident when sequence data was 

classified at a finer taxonomic scale.  

Individual mixed communities also vary on a longitudinal time scale in ways which can differ 

between parallel communities (Godos et al., 2009). Two parallel HRAPs in Valladolid, Spain 
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showed differing composition through time from January through September, with greatest 

diversity occurring at the end of the experiment, which also corresponded to the highest 

productivity. Numerous factors could have contributed to the observed community dynamics 

including variation in influent strength, weather patterns, and time from inoculation. Dominant 

taxa in these studies included Chlamydomonas, Chlorella, Nitzschia, Achnanthes, Protoderma, 

Selenastrum, Oocystis, and Ankistrodesmus. 

The variation within wastewater algal communities across space and time suggests that 

numerous factors contribute to community dynamics. Only recently has sequencing technology 

afforded the ease and resolution necessary to examine these communities in-depth (Bradley et 

al., 2016; S. Ghosh & Love, 2011). A later section will discuss recent advances and persistent 

challenges in the sequencing of eukaryotic algal communities.  

2.2 Nutrient Uptake Plasticity: Nitrogen and Phosphorus. Redfield proposed that algal 

nutrient ratios were relatively stable between species and across time (Redfield, 1958). The 

proposed average ratio is commonly referred to as the Redfield ratio (molar ratio of C:N:P = 

106:16:1, mass ratio of C:N:P = 41.1:7.23:1) (Goldman, McCarthy, & Peavey, 1979). However, 

it is now well established that algal C:N:P varies significantly within and between taxa. For 

example, for algae grown in nutrient replete conditions, there is significant intraspecific variation 

in N:P between taxa (N:P of 5 to 19 molmol-1, 2.26 to 8.59 gg-1), with most values falling below 

the Redfield ratio (Geider & LaRoche, 2002). Under nutrient deplete conditions, however, the 

N:P range is much wider, from <5 to >100 molmol-1 (<2.26 to >45.2 gg-1) (Geider & LaRoche, 

2002), indicating that N and P dynamics are highly plastic. This plasticity is driven by a 

combination of nutrient supply ratio and growth rate (Klausmeier, Litchman, Daufresne, & Levin, 

2008) with slower growth rates being associated with higher carbon to nutrient ratios (e.g., 

under N-limited conditions, C:N increased from 7.1-20 molmol-1 (2.75-7.75 gg-1) with 

decreasing growth rate from 90% to 10% of maximum) (Geider & LaRoche, 2002) and nutrient 

limitation associated with decreased proportion of the limiting nutrient in comparison to other 

components (e.g., N:P increased from 15 to 115 molmol-1 (6.78 to 51.99 gg-1) under P-limited 

conditions as growth rate decreased from 90% to 10% of maximum) (Geider & LaRoche, 2002). 

For a given nutrient supply ratio, biomass N:P increases linearly with growth rate, although the 

magnitude of this relationship varies by species (Gardner-Dale et al., 2017). If the nutrient 

supply ratio falls within the N:P plasticity for a given culture, it will transition from being N-limited 

at higher N:P and growth rate to being P-limited at lower N:P and lower growth rate, passing 

through a point of N and P co-limitation, where biomass and media N:P are equal (Gardner-
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Dale et al., 2017). This N:P ratio, known as the critical ratio, varies between approximately 20 

and 50 molmol-1 (9 and 22.6 gg-1) (Geider & LaRoche, 2002) and represents a point at which 

both N and P would need to increase in order to achieve an increase in growth rate. Under 

conditions of extremely scarce N and P, biomass N:P tends to match that of the environment 

(Geider & LaRoche, 2002). To understand these relationships from a functional perspective, it is 

helpful to understand how C, N, and P are assimilated into cell biomass. 

Cellular carbon, nitrogen, and phosphorus are partitioned between structural components, 

nutrient reserves, and energy stores (Geider & LaRoche, 2002). Allocation of C, N, and P is 

related to the cellular processes required under a given nutritional status and growth rate. 

Nutrient-related cell processes and associated structures may be divided into the categories of 

uptake (proteins and chloroplasts) and assimilation (ribosomes) (Klausmeier et al., 2008). In 

nutrient replete conditions when uptake is most favorable, more energy and resources are 

allocated to maximizing assimilation and growth rate. However, under nutrient limited 

conditions, competition for scarce resources is prioritized (Klausmeier et al., 2008) and priority is 

given to nutrient uptake. Ågren (2004) determined that N:C increases linearly while P:C 

increases quadratically with growth rate, relationships which may be explained by the structural 

role of N-rich protein for the construction of new cells and of P-rich ribosomal RNA required for 

protein synthesis. While there are physiological constraints on cellular composition, relative 

proportions of major cellular components – DNA, RNA,  lipids, carbohydrates, proteins, 

pigments, and other small molecules – still vary widely in relative proportion of cellular dry 

weight (Geider & LaRoche, 2002). Range estimates for N allocation include: free amino acids 

and proteins (65-85%), RNA (1.3-13%), DNA (0.4-5%), and Chlorophyll (0.2-3%) (Lourenço, 

Barbarino, Marquez, & Aidar, 1998). For P allocation, these estimates are less well-established, 

but include RNA (30-100%) and phospholipid (<5%) (Rhee, 1978). When only one nutrient is 

limiting, luxury uptake and storage may account for a significant proportion of intracellular N (6-

36%) and P (>40%) stored as NO3
--N and polyphosphate, respectively (Lourenço et al., 1998; 

Rhee, 1978). Storage carbohydrates and neutral lipids may each account for 10-50% of cell 

biomass, but contain no N or P and thus do not impact N:P. The impact of N and P availability 

on carbon storage as carbohydrate and lipid fractions will be discussed in the following section.  

2.3 Algal Carbon Storage. The bulk of algal biomass consists of proteins, carbohydrates, and 

lipids. While proteins play a dominant structural role, carbohydrates and lipids serve both 

structural and storage functions. Storage carbohydrates and lipids consist of carbon, hydrogen, 

and oxygen and thus function as a carbon sink for photosynthesis in times of nutrient shortage.  
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The factors influencing the synthesis and function of carbohydrates and lipids are outlined 

below.  

Algal carbohydrates are comprised of a number of monomers including xylose, mannose, 

glucose, galactose, and rhamnose, which vary in relative abundance by species (Markou et al., 

2012). Algal cell walls may contain cellulose or hemicellulose as structural components 

(González-Fernández & Ballesteros, 2012). Under optimal growth conditions, algae shunt some 

fixed carbon into starch during the day to provide an energy source for respiration during the 

night (Gardner-Dale et al., 2017; González-Fernández & Ballesteros, 2012). Storage 

carbohydrates are also synthesized in response to environmental stressors including nutrient 

depletion (N, P, S, Fe), low ambient inorganic carbon, and high salinity (Markou et al., 2012). In 

one study, Chlorella vulgaris starch content increased from 5% to 60%, 55%, and 35% under S-

, P-, and N-limitation, respectively (Brányiková et al., 2011). Elsewhere, carbohydrate content of 

three algal taxa increased from 8-17% up to 70% under N-starvation (Markou et al., 2012).  

Lipids synthesized by algae include neutral and polar lipids, wax esters, sterols, hydrocarbons, 

prenyl derivatives, and phytylated pyrrole derivatives (e.g., chlorophyll) (Hu et al., 2008). The 

synthesis of fatty acids (FAs), the building blocks of lipids, begins in the chloroplast (Hu et al., 

2008). Carbon fixed by photosynthesis is shunted to the lipid pathway via the synthesis of 

malonyl CoA from acetyl CoA (Hu et al., 2008). Under optimal growth conditions, most FAs are 

converted to membrane lipids which constitute between 5% and 20% of algal dry weight (Hu et 

al., 2008). Most membrane lipids contain between 10 and 20 carbon atoms and are 

polyunsaturated (Hu et al., 2008). However, as with carbohydrates, environmental stress may 

shift algal metabolism to favor the synthesis and storage of neutral lipids, mostly triacylglycerols 

(TAGs) (Hu et al., 2008). While most algae contain TAG stores even under optimal growth 

conditions (e.g., between approximately 5% and 85% with a mean of 25.5% for green algae and 

a range of approximately 15% to 40% with a mean of 22.7% for diatoms), neutral lipid synthesis 

may be greatly enhanced (e.g., between approximately 15% and 90% with a mean of 45.7% for 

green algae and between approximately 20% and 80% with a mean of 37.8% in diatoms) in 

some algal taxa under conditions of environmental stress (Hu et al., 2008). As with 

carbohydrates, N, P, and SO4
2- depletion, as well as silicon limitation in diatoms, has been 

shown to lead to lipid accumulation (Guschina & Harwood, 2006; Hu et al., 2008; Markou et al., 

2012). Additionally, lower temperatures may induce more unsaturated FAs, lower light may lead 

to polar lipid formation for chloroplast synthesis, and higher light may cause more TAG 

production. Increased culture age is also associated with increased TAG production (Hu et al., 
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2008). Extant lipid content under ideal growth conditions and magnitude of response to 

individual stressors varies widely in magnitude among algae in a manner which is largely 

species or strain specific, and not generally predictable based on higher levels of taxonomic 

classification (Hu et al., 2008). Similarly, FA characteristics and the impacts of growth conditions 

on FA composition vary widely (Hu et al., 2008). Detailed descriptions of lipid synthesis 

pathways are included in Hu et al. (2008), Harwood and Jones (1989), and Guschina and 

Harwood (2006).  

Environmental stress, including nutrient limitation, induces algal cultures to accumulate both 

starch and lipids. However, the relative potential for carbohydrate and lipid accumulation varies 

greatly by strain. To better understand, and potentially engineer, mixed algal systems, a more 

developed understanding of the biochemical and genetic controls which drive carbon storage is 

needed.  

2.4 DNA Sequencing Technology. Due to the wide variation in functional traits among algae 

described above coupled with the need for tight control of system performance, the ability to link 

the structure and function of algal communities would be beneficial to the design and operation 

of algal systems. While the algal community composition of wastewater systems has historically 

been documented via microscopy (eg., Barthel et al., 2008), this is a time-consuming process 

which requires highly trained personnel and lacks the ability to distinguish between 

morphologically similar taxa (Eland, Davenport, & Mota, 2012). Recent advances in sequencing 

technology, however, enable collection of unprecedented quantities of sequencing data and 

generate new insights into the structure of microbial communities. However, much of this work 

has historically focused on bacterial rather than eukaryotic communities and careful data 

processing is required for accurate interpretation of the results of sequencing studies. The 

following discussion details the current state of sequencing technology as it applies to 

eukaryotic communities and highlights persistent challenges in the field. 

Sequencing technology has improved rapidly over the past several decades. Initially, Sanger 

sequencing required the assembly of clone libraries in a labor-intensive process which allowed 

for little depth of sampling and was subject to significant bias (Schloss & Westcott, 2011). More 

recently, 454 pyrosequencing provided a high-throughput platform which allowed for the 

generation of large quantities of sequencing data with comparatively little labor input (Ronaghi, 

2001). Most recently, Illumina MiSeq high-throughput sequencing technology provides higher 

throughput and more rapid data generation (Lin Liu et al., 2012). As technology has evolved, so 

has the way in which target genes for sequencing are selected. 
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All of the technologies described above rely on the polymerase chain reaction (PCR) to amplify 

DNA from a biological sample before sequencing. For sequencing of prokaryotic communities, 

well-developed sequencing methods for the 16S rRNA gene (Gu, Nerenberg, Sturm, Chul, & 

Goel, 2010) have, for example, been applied to the study of engineered systems such as 

anaerobic digesters (e.g., Vanwonterghem, Jensen, Ho, Batstone, & Tyson, 2014) and drinking 

water distribution systems (e.g., Pinto, Schroeder, Lunn, Sloan, & Raskin, 2014).  However, 

methods for eukaryotic systems are less well established and several factors must be 

considered in the selection of a region of the genome for PCR amplification. A target DNA 

region should be selected based on the intended scope of the analysis. Not only is it important 

that the gene be ubiquitous in all organisms within the group of interest but that the rate of 

mutation allow for the desired level of resolution. The trade-off between taxonomic resolution 

and universal application is illustrated in a recent study of the Bacillariophyta (diatoms) by Guo 

et al. (2015) in which genes for the cytochrome c oxidase 1 (COI), part of the rrn operon (5.8S + 

internally transcribed spacer (ITS)), 18S rRNA gene, and rbcL gene coding for RuBisCO were 

compared. They found that COI and the rrn operon allowed for accurate resolution of the 

taxonomy of closely related taxa but could not distinguish taxonomic relationships across all 

Bacillariophyta. The 18S gene, conversely, had a lower mutation rate resulting in errors in 

establishing relationships between closely related taxa but allowing for its broad application 

across more distantly related taxa. The 18S gene has the additional desirable quality of 

containing numerous alternating conserved and variable regions. While Sanger sequencing 

allowed for the sequencing of long DNA template regions (e.g., 1800 bp , 560 bp, and 950 bp of 

the 18S rRNA gene by (Bazin, Jouenne, Deton-Cabanillas, Pérez-Ruzafa, & Véron, 2014; Eland 

et al., 2012; Viprey, Guillou, Ferréol, & Vaulot, 2008), MiSeq technology is limited to segments 

of 250-300 reads in length, depending on the chemistry used (https://www.illumina.com). 

Numerous variable regions of the 18S rRNA gene have been sequenced including V1-V2 

(Mohrbeck, Raupach, Martínez Arbizu, Knebelsberger, & Laakmann, 2015), V3 (Medinger et al., 

2010), V4 + V9 (Lohan, Fleischer, Carney, Holzer, & Ruiz, 2016; Stoeck et al., 2010), V4 + V8-

V9 (Bradley et al., 2016), and V9 (Vargas et al., 2015). In cases where V4 and V8-V9 or V9 

were sequenced together, V8-V9 or V9 was found to achieve better representation across 

widely differing taxa while V4 achieved better resolution of closely related strains (Bradley et al., 

2016; Stoeck et al., 2010). 

Even with a well-selected target region and primers, sequencing is still subject to PCR bias and 

sequencing error which negatively impact data quality. Bias associated with PCR begins with 

DNA extraction, where it is possible for some methods to inadequately lyse tough cell walls 
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(Eland et al., 2012; Medinger et al., 2010). This may be minimized by selecting a DNA 

extraction method adequately tested for the type of sample being analyzed. Primer bias occurs 

when primers have unequal affinity for the suite of taxa being analyzed. Bradley et al. (Bradley 

et al., 2016) found that a universal primer designed to target the V4 region of the 18S rRNA 

gene had uneven coverage of a mock community designed to encompass a broad diversity of 

freshwater and marine algal taxa. To improve primer coverage, the primer was modified by 

removing a degeneracy at the 3’ end of the reverse primer which allowed it to bind to both 

guanine (G) and adenine (A). Others have also found that degenerate bases should be avoided 

in primers since guanine/cytosine (G/C) and adenine/thymine (A/T) base pairs differ in bond 

strength (Polz & Cavanaugh, 1998). The modified primer contained an exact match to all mock 

community members and provided a more accurate representation of the mock community 

(Bradley et al., 2016). Base composition of the target region also influences relative PCR 

efficiency, with higher GC content diminishing PCR efficiency due to greater bond strength and 

correspondingly higher melting temperature (Benita, Oosting, Lok, Wise, & Humphery‐Smith, 

2003). Bradley et al. (2016) found that high GC content was likely the cause of poor coverage of 

haptophyte algae (Prymnesium parvum and Isochrysis galbana) using modified V4 primers. A 

proposed solution is to optimize thermocycler settings for different GC content thresholds and to 

run mixed samples under the full range of settings to ensure adequate amplification of taxa 

encompassing the full range of GC content (Benita et al., 2003). PCR selection – the 

overamplification of DNA from more abundant sequences such that lower-abundance 

sequences are crowded out – may be minimized via the combination of higher concentrations of 

template DNA with decreased number of PCR cycles (Polz & Cavanaugh, 1998). PCR drift – 

the inadequate representation of a sample based on non-representative sampling of the 

template stock – may be minimized by pooling replicate PCR amplifications of a given stock 

prior to sequencing (Polz & Cavanaugh, 1998). It is possible to mitigate much PCR and primer 

bias using the techniques listed above, although specific concerns will vary with experimental 

conditions.  

In addition to influencing PCR amplification efficiency, primers and primer design also play a key 

role in sequencing. Since individual amplified PCR samples are pooled before MiSeq 

sequencing, it is important to be able to link each sequence to its original sample. This is often 

accomplished using dual index barcodes, which are unique base sequences added to the 5’ end 

of forward and reverse primers such that amplified sequences may be identified by the unique 

combination of forward and reverse primer barcodes (Huber et al., 2007). Additionally, in low-

diversity communities, highly homogenous base calls in the initial stages of sequencing on the 
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Miseq can cause instrument calibration errors which result in poor quality or absent data 

(Bradley et al., 2016). This problem may be mitigated by adding variable length linker 

sequences to primers such that the signal received by the system in the initial stages is less 

homogenous, resulting in better system calibration and higher data quality (Bradley et al., 2016).  

High throughput sequencing is designed for data quantity over quality (Schloss & Westcott, 

2011) and sequencing errors may impair accurate assessment of community composition and 

inflate diversity metrics. Improved data processing can minimize these errors and improve the 

accuracy of results (Schloss & Westcott, 2011). Types of sequencing errors may include 

ambiguous base calls, base substitution errors, abnormally long homopolymer chains, and 

chimeras. Chimeras refer to sequences which may be formed and amplified in PCR when a 

sequence extends only partially and then re-anneals with a different sequence during the 

subsequent PCR cycle, resulting in amplified sequences which are the result of multiple parent 

strands. These types of sequencing errors may largely be removed via a well-designed data 

post-processing pipeline.  

Aspects of the design of such a pipeline are described by Schloss and Westcott (2011) and 

integrated into a formalized pipeline for use with the Mothur software package by Kozich et al. 

(2013). Highlights of this pipeline, which can reduce sequence error by an order of magnitude 

(Schloss & Westcott, 2011), are outlined below. They suggest removing sequences containing 

ambiguous base calls, >1 barcode mismatch and >2 primer mismatches along with sequences 

containing homopolymer sequences exceeding 8 bases. They apply quality trimming using a 

sliding window approach to truncate sequences if they fail to meet a given quality threshold. 

Additionally, they define a minimum overlap requirement for forward and reverse reads, trim 

stitched sequences to start and end at the same position, and use denoising algorithms to 

precluster data based on maximum difference thresholds. While these steps successfully 

removed >75% of chimeras (Schloss & Westcott, 2011), they identify UCHIME as the optimal 

existing algorithm for identification and removal of remaining chimeras. UCHIME organizes 

sequences in order of abundance and divides each less abundant sequence into chunks along 

its length, comparing each chunk with more abundant sequences. Sequences are tagged as 

chimeras when they are comprised of chunks matching with two or more parent segments. 

Despite these measures, some erroneous sequences will inevitably remain in the dataset but 

their impact may be minimized via use of optimized clustering techniques to reduce spurious 

OTUs and taxonomic classifications (Schloss & Westcott, 2011).  
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Numerous clustering algorithms exist which cluster sequences into OTUs based on a user-

defined minimum similarity threshold. The current default method in Mothur is OptiClust 

(Westcott & Schloss, 2017), which outperforms other clustering methods by maximizing 

clustering quality and minimizing time and RAM required to complete the analysis. OptiClust 

maximizes the Mathews correlation coefficient (MCC, a metric of assignment quality) in real 

time by moving individual sequences from one cluster to another only if doing so increases the 

MCC. While a 97% sequence identity clustering threshold for OTU formation is commonly used 

in the literature (Huber et al., 2007; Kunin, Engelbrektson, Ochman, & Hugenholtz, 2010), some 

have suggested using a mock community to define optimal thresholds for OTU formation and 

other relevant metrics within each sequencing run such as quality threshold and sequence 

overlap (Bradley et al., 2016). Additionally, Schloss and Westcott (2011) suggest using mock 

communities to calculate rates of chimera formation, sequencing error, and drift, allowing for 

better tracking and comparison of error between runs.  

Despite these quality control techniques, a persistent issue with MiSeq sequencing is significant 

variation between technical replicates (Wen et al., 2017). Improved depth of sequencing as well 

as pooling of DNA extracts and PCR products can help minimize this effect. They also suggest 

removing OTUs containing only a single sequence and OTUs which are present in only a single 

technical replicate, as these are more likely to be errors as opposed to rare OTUs (Wen et al., 

2017).  

A persistent challenge in the use of 18S sequencing data to describe eukaryotic microbial 

communities is the wide range in 18S rRNA gene copy number between taxa, ranging from <10 

to >10,000 (Vargas et al., 2015; Zhu, Massana, Not, Marie, & Vaulot, 2005). While Viprey et al. 

(2008) confirmed that 18S gene copies within an organism are identical and will not inflate 

diversity dynamics, copy number still poses problems in describing community structure based 

on read counts. Vargas et al. (2015) determined that copy number is a better indicator of 

relative biovolume or biomass than of relative cell abundance. Zhu et al. (2005) and Vargas et 

al. (2015) attempted to fit a linear model to the log-log relationship of cell size and copy number, 

although this model has a wide confidence interval, especially at large cell sizes due to the 

logarithmic scale. The copy number problem needs to be addressed in order to more accurately 

describe eukaryotic community composition based on cell counts rather than biomass-based 

metrics. It might be worthwhile to consider other genes which have more consistent copy 

number across eukaryotic taxa. Additionally, a relevant question for environmental engineers 

might be whether the use of community composition based on cell counts to describe eukaryotic 
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communities is the most relevant metric. In community and population ecology, the individual 

organism is an important functional unit. However, from a standpoint of system function and 

biomass production, the cells which represent the greatest quantity of biomass are likely to drive 

function (biomass composition and nutrient uptake), suggesting that relative biomass 

contribution may be a sufficiently relevant metric for environmental engineers.  

Rapidly advancing high-throughput sequencing technology is a valuable tool for microbial 

ecology and has the potential to greatly enhance our understanding of microbial communities in 

natural and engineered systems. While this technology is better-developed for prokaryotes, 

significant improvements have recently been made in the sequencing of eukaryotic 

communities. New high-throughput sequencing technologies make it easier and faster to 

generate large quantities of sequence data while advances in primer design, template region 

selection, and data processing algorithms promote continual improvements in data quality. 

Continuing research will be required to resolve ongoing challenges in PCR bias, data 

processing, and the copy number problem which currently impair the capacity to quantitatively 

describe eukaryotic community composition.   
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Abstract 

Increased nutrient pollution in recent decades has been a driver of persistent eutrophication and 

hypoxia in aquatic systems, to the detriment of ecosystem function, human health, and local 

economies. These problems have been successfully addressed via regulations mandating 

reductions in effluent nitrogen (N) and phosphorus (P), including from wastewater treatment 

plants (WWTPs). However, current means of N and P removal in WWTPs render removed 

nutrients non-bioavailable and are incompatible with sustainability goals aiming for nutrient 

recovery and reuse combined with reduced energetic requirements. Eukaryotic microalgae are 

uniquely suited to address this challenge due to their ability to remove dissolved N and P to 

limiting levels and to accumulate carbohydrate and lipid stores for potential downstream 

conversion to biofuels. Research on algal use within these contexts has historically focused on 

minimally engineered open outdoor systems for nutrient removal or axenic cultures for biofuel 

production. Algal biotechnology, however, provides an alternative path by which mixed culture 

cultivation systems are designed to allow for the preferential proliferation of algal taxa with 

desirable functional traits. In this study, we tested the ability of three algal communities sourced 

from geographically distinct latitudes within the continental United States (Tampa, Florida; 

Durham, North Carolina; Urbana, Illinois) to provide consistent nutrient removal and carbon 

storage under identical growth conditions. Cultures were grown with an 8-day solids residence 

time (SRT) and 14:10 light:dark cycle. Media had a 2:1 N:P ratio and cultures were operated 

under nighttime N-feeding and daytime N-limitation for 10.25 SRT, followed by a 10-day batch 

experiment to measure kinetic storage parameters. Media and biomass properties were 

measured for the duration of the study and community composition was determined for the 

10.25 SRT experiment via 18S rRNA gene sequencing of the V4 and V8-V9 regions using 

Illumina MiSeq technology. Function and structure followed complementary patterns with similar 

transition points for the duration of the long-term experiment, at the end of which, algae 

exhibited nutrient dynamics (biomass N:P, biomass-specific PO4
3--P uptake) and storage 

characteristics (carbohydrate and lipid) which were similar between reactors, despite persistent 

differences in community structure between reactors. Intrinsic storage capacity for both lipids 

and carbohydrates, however, differed widely between reactors. Our results suggest that algal 

communities with persistently different structures can achieve consistent performance with 

respect to nutrient dynamics and extant carbon accumulation but still differ widely with regard to 

intrinsic storage parameters.  
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3.1. Introduction. The rapid increase in nitrogen (N) and phosphorus (P) loadings to surface 

waters over the past several decades (OW US EPA, 2011) has been a primary driver of 

widespread toxic algal blooms, eutrophication, and hypoxia (Conley et al., 2009; Paerl, Valdes, 

Joyner, Piehler, & Lebo, 2004; Rabalais, Turner, & Wiseman, 2002) to the detriment of aquatic 

ecosystems, human health, and local economies (OW US EPA, 2015). However, improved 

management strategies, including increasingly strict point-source discharge limits for for N and 

P, (Clark et al., 2010) can help mitigate these negative impacts (Hendriks & Langeveld, 2017; 

Paerl et al., 2004; Ruhl & Rybicki, 2010). Technological advancements which, in recent years 

have brought the limit of technology (LOT) for nutrient removal to approximately 3 mg N·L-1 and 

0.1 mg P·L-1, (Bott & Parker, 2011; OW US EPA, 2011) have also been costly and energy-

intensive (Clark et al., 2010; OIG US EPA, 2008). Thus, an important engineering challenge in 

modern wastewater treatment is to advance goals for local and regional water quality while also 

navigating tradeoffs for broader initiatives for utility and industry environmental, economic, and 

social sustainability (Guest et al., 2009). 

Phototrophic bioprocesses are a promising means of nutrient removal from waste streams 

(Shoener et al., 2014) due to the ability of microalgae to assimilate N and P to the point of 

depletion (Gardner-Dale et al., 2017; Reynolds & Likens, 2009). Integration of algae into 

wastewater treatment has historically focused on open systems such as facultative lagoons (US 

EPA, 2002) and, more recently, high rate algal ponds (HRAPs) (Shoener et al., 2014) which 

often suffer from low productivity (Chisti, 2007) and inconsistent nutrient removal (R. J. Craggs, 

Heubeck, Lundquist, & Benemann, 2011). In a comparison of lagoons, HRAPs, and more highly 

engineered cultivation systems, photobioreactors (PBRs) yielded the greatest nutrient removal 

(Shoener et al., 2014). While PBRs also required the greatest energetic input of the compared 

systems, there is potential for this to be offset in part via the conversion of algal biomass to 

biofuels (Shoener et al., 2014). Additionally, individual algal strains have been studied for 

nutrient uptake and carbon storage capabilities (Sydney et al., 2011) but pure cultures are 

susceptible to contamination and culture crash in open systems with nonsterile media (Davis, 

Markham, Kinchin, Grundl, & Tan, 2016) making them impractical for wastewater treatment. 

Environmental biotechnology, however, has the flexibility to optimize the function of any growth 

system by applying knowledge of algal metabolism to process design which favors the 

preferential proliferation of (i.e., selects for) algae exhibiting the optimal expression of ubiquitous 

algal traits such as N and P uptake and carbon storage (Guest, van Loosdrecht, Skerlos, & 

Love, 2013; Mooij et al., 2013). Mooij et al. (2013, 2015, 2016) tested such a system in which 

daytime N-limitation was used to select for algal strains exhibiting elevated carbohydrate 
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content with a goal of producing biofuel feedstock, but without a focus on tracking nutrient 

dynamics or directly comparing algal communities derived from different sources. Increased 

understanding of these phenomena will be a critical step towards the goal of using algal 

biotechnology to model and design treatment systems for reliable performance irrespective of 

geographic location.  

The objective of this work was to compare community structure and function between algal 

cultures derived from geographically diverse locations and maintained under a nutrient regime 

designed to select for carbohydrate accumulating strains (Mooij et al., 2013). System function 

was described in terms of nutrient dynamics and algal biomass composition, while 18S rRNA 

sequence data provided structural metrics. Three sequencing batch reactors (SBRs) were 

inoculated with naturally occurring algae sourced from surface water and/or wastewater 

treatment plant (WWTP) clarifiers from one of three different geographic locations within the 

United States (Tampa, Florida; Durham, North Carolina; Urbana, Illinois). In doing so, the aim 

was to incorporate the spatial heterogeneity of ambient cultures which would naturally be 

available to seed open algal cultivation systems in different locations. Reactors were operated 

under daytime N-starvation and nighttime N-feeding, after which a kinetic batch experiment was 

conducted to characterize intrinsic kinetic parameters and carbon storage capabilities of each 

culture. Results of this study will inform system design which aims to achieve consistent 

performance irrespective of geographic location.  

3.2. Methods. 

3.2.1 Photobioreactors (PBRs). Flat panel PBRs were constructed as described by Gardner-

Dale and colleagues (2017) (Figure A.1 in the Appendix) with the goal of maintaining well-

defined conditions within the reactor while also preventing cross-contamination. Briefly, PBRs 

had a total volume of 4.7 L but were operated at a working volume of 4.0 L. Lighting was 

provided from one side with a panel of alternating strips of red (630 nm) and blue (460 nm) light 

emitting diodes (BlazeTM 12V LED Tape Light, Elemental LED) with light intensity controlled by a 

microcontroller (Red Board, Sparkfun Electronics). Mixing was achieved via continuous aeration 

at approximately 0.1 Lair·Lreactor
-1·min-1 with humidified air (Guest et al., 2013). pH was 

maintained between 7.00 and 7.75 by adding 100% CO2 to the aeration mix when the pH 

reached 7.75 (Eutech Instruments, pH 190 Series). Throughout all experiments, attached 

growth was aseptically resuspended using a magnetic stirbar inside each reactor manipulated 

with a strong magnet from outside the reactor.  
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3.2.2 Inocula Collection, Preparation, and Acclimation. Inocula were sourced from natural 

surface waters (SWs) as well as primary and secondary clarifier weirs at water resource 

recovery facilities (WRRFs; a.k.a., wastewater treatment plants) in three geographically distinct 

locations in the continental United States in late October, 2015: Tampa, Florida (FL; 28° N ), ; 

Durham, North Carolina (NC; 36° N); and Urbana, Illinois (IL; 40° N)). Cell counts were 

performed on each sub-sample of inoculum, including: three SWs and one primary clarifier for 

IL; five SWs for NC; four SWs and one secondary clarifier for FL. A mixed inoculum was 

prepared for each location (FL, NC, IL) by combining sub-samples in equal cell concentrations. 

Finally, each mixed inoculum was added to PBRs to a final cell density of 110 cells mL-1. The 

low cell density was necessary to accommodate natural stream samples from NC, which had 

very low biomass concentrations. The microbial communities were acclimated to laboratory 

conditions over a two-week period (Section S1, SI), after which long-term operation and 

sampling began. 

3.2.3 Long-Term Operation and Short-Term Kinetic Assay. For long-term operation, all three 

PBRs (FL, NC, IL) were operated as sequencing batch reactors with a hydraulic retention time 

(HRT) and solids residence time (SRT) of 8 days and a 24-hour cycle. Specifically, 0.5 L of 

reactor volume was wasted at the start of each dark phase (i.e., immediately after simulated 

sunset) and was immediately replaced with the addition of 0.5 L of new medium. A sinusoidal 

light curve 14:10 (light:dark) was imposed with maximum light intensity of 190 µE·m-2·s-1, 

reactors were sampled daily for SRT 1 and 2, every two days for SRT 3 and 4, and roughly 

once per SRT for the remainder of the experiment. After 82 days (> 10 SRTs) of operation, a 

kinetic experiment was run to determine the intrinsic growth and carbon storage capabilities of 

each microbial community (Guest et al., 2013). At the end of the light period, medium was 

spiked into each reactor to achieve a final concentration of 10 mg-N·L-1 (all other media 

components were scaled to maintain previous operating concentrations). Light intensity 

increased at a rate consistent with the sinusoidal curve and, after plateauing at 190 µE·m-2·s-1, 

was maintained at 190 µE·m-2·s-1 for the duration of the kinetic study (244 hours).  

3.2.4 Sample Collection and Storage. During long-term operation, biomass (for solids 

analysis, biochemical and elemental composition, and DNA extraction) was collected at the end 

of the light phase (immediately before simulated sunset) and aqueous samples were collected 

both at the end of the light phase and the end of the dark phase. Settled and fixed growth algae 

were resuspended before effluent was sampled into a clean beaker from a port installed at the 

base of each. Algae were kept in suspension using a magnetic stirbar and stirplate while being 
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subsampled for subsequent analyses. Samples for solids analysis were analyzed immediately 

(i.e., no storage). For biochemical composition and aqueous analyses, biomass was pelleted via 

centrifugation at 10,000 xg for 10 min, after which supernatant was filtered through pre-rinsed 

0.22 µm nitrocellulose filters and stored at -20°C until analysis. Biomass pellets were stored at -

20°C until being lyophilized, ground with mortar and pestle, and stored under desiccation at 

room temperature. For DNA analysis, 4 mL samples of algal suspension were centrifuged at 

10,000 xg for 10 min, supernatant was decanted, and pellets were stored at -80°C until DNA 

extraction.  

3.2.5 Solids Analysis. Total suspended solids (TSS) concentration was measured in triplicate 

for each reactor by filtering 5 mL of well-mixed reactor effluent through a pre-rinsed, ashed, pre-

weighed glass-fiber filter (0.7 µm pore size, Fisher Scientific 09-804-142H). Filters were heated 

at 105°C for one hour before being cooled in a desiccator for 30 min and re-weighed Pruvost, 

Van Vooren, Cogne, & Legrand, 2009). Volatile suspended solids (VSS) concentration was 

determined by combusting dried filters at 550°C for 20 min, cooling and reweighing as above.  

3.2.6 Aqueous Analyses. Soluble ammonium (NH4
+) and orthophosphate (PO4

3-) were 

determined in triplicate using the phenate method (4500-NH3, F) (APHA et al., 2012) and 

ascorbic acid method (4500-P, E), (APHA et al., 2012) respectively, each modified for a 

microplate (Gardner-Dale et al., 2017). Method detection limits have been previously 

determined to be 0.012 mg NH4
+-N·L-1 and 00.011 mg PO4

3--P·L-1 (Gardner-Dale et al., 2017). 

Nitrate (NO3
-) and nitrite (NO2

-) concentrations were determined via ion chromatography (Dionex 

ICS 1000) and anion exchange column (Thermo Scientific IonPac IS14A).  

3.2.7 Biochemical and Elemental Characterization of Biomass. Lyophilized biomass 

samples were analyzed for carbon, hydrogen, and nitrogen (Perkin Elmer 2400 Series II 

CHNS/O Elemental Analyzer) and total phosphorus (Perkin Elmer SCIEX ELAN DRC-E ICP-

MS) by the Microanalysis Laboratory at the University of Illinois at Urbana-Champaign (UIUC) 

School of Chemical Sciences. Biomass protein content was estimated by multiplying the 

elemental N percentage by a conversion factor of 6.2 representing the ratio of algal protein to N 

content (Becker, 1994). Triplicate analyses of biomass carbohydrate content were conducted 

via two-step acid digestion followed by colorimetric analysis with 3-methyl-2-benzothiazolinone 

hydrazine (MBTH) (van Wychen & Laurens, 2015), modified for microplate reader (Gardner-

Dale et al., 2017). Total biomass lipid content was determined via the Folch method (Folch, 

Lees, & Stanley, 1957) as modified by Axelsson and Gentili.(2014). Datasets were compared 
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between reactors using two-tailed ANOVAs followed by Tukey’s tests with  = 0.05, unless 

otherwise specified.  

3.2.8 DNA Extraction, PCR, and Sequencing. DNA extraction, PCR, and product purification 

were conducted as previously described (Bradley et al., 2016). Briefly, DNA was extracted from 

ten samples spaced throughout long-term experiment for each of the three reactors using the 

MP BIO FastDNA SPIN extraction for soil (MP Biomedicals, Santa Ana, CA) and stored at -20 

oC.   

DNA extracts were amplified in triplicate via PCR using the KAPA HiFi Hotstart PCR kit (Kapa 

Biosystems, Wilmington, MA) using primers for the V4 and V8-V9 regions of the 18S rRNA gene 

(V4: forward (Reuk454FWD1) = CCGCASCYGCGGTAATTCC, reverse (V4r) = 

ACTTTCGTTCTTGAT, V8-V9: forward = (V8f) ATAACAGGTCTGTGATGCCCT, reverse = 

(1510r) CCTTCYGCAGGTTCACCTAC), reagent concentrations, and thermocycler settings, as 

described in Bradley et al. (2016). Mock community samples corresponding to MC4 (Bradley et 

al., 2016) and negative controls containing no added DNA were run in triplicate alongside 

samples. Gel electrophoresis was used to confirm length of PCR products and excised bands 

were purified using a QIAquick gel purification kit (Qiagen, Valencia, CA). The DNA 

concentration of each sample was measured in triplicate using Qubit 2.0 (Invitrogen). 

Sequencing was performed by the Roy J. Carver Biotechnology Center at UIUC using Illlumina 

MiSeq with v2 chemistry and 2x250 paired reads.  

3.2.9 Sequence Data Processing and Analysis. Bcl2fastq v1.8.4 Conversion Software 

(Illumina) was used to demultiplex raw sequence data. Data was processed through Casava 1.8 

(Illumina). Sickle was used to remove all bases with a phred score of less than 25 and to define 

a minimum read overlap requirement of 70 bp, these values determined via mock community 

analysis (Section S3, Figure S2). Mothur v.3 was used for sequence processing as described by 

Kozich et al. (Miseq SOP at http://www.mothur.org/wiki/MiSeq_SOP) using default settings 

unless otherwise specified (Kozich et al., 2013). Reads containing ambiguous bases were 

removed following contig formation. Sequences were trimmed using screen.seqs to remove 

sequences not starting before position 4359 and ending before position 8460. Reads were 

aligned with SILVA v123 and the alignment trimmed using vertical = T and trump=. commands. 

UChime was used to detect and remove chimeras. Singletons were removed and only 

remaining sequences were used in subsequent analyses. OTUs were clustered at 97% read 

similarity. OTUs which were present in only one of three technical replicates were omitted from 

further analysis using the vegan package in R (Oksanen et al., 2017). Silva v123 from Mothur 
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was used to assign taxonomy to the OTUs. Alpha diversity, as described by observed OTUs, 

Chao1 index, inverse Simpson index, and nonparametric Shannon index, were determined 

using the summary.single command with a subsample size equal to the smallest sample size 

(3,478 (V4) and 2,062 (V8-V9)). Beta diversity, as described by Bray-Curtis distance, was 

calculated using the summary.shared command, using the same subsample sizes listed above. 

The dist.shared command was used to produce Bray-Curtis distance matrices. NMDS plots 

were generated in Q-mode using raw data and Bray-Curtis dissimilarity with the vegan package 

in R (Oksanen et al., 2017). Sample richness was computed with the rarefy function from the 

vegan package implemented in R, based on the minimum read number on a per sample basis 

for both V4 and V8-9 regions of the 18S rRNA gene.  
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3.3. Results and Discussion. To facilitate discussion, the long-term experimental period was 

divided into three phases of operation based on performance: (Phase I, rapid change) SRT0 to 

SRT2; (Phase II, moderate change) SRT2.0 to SRT7.75; (Phase III, stable performance) 

SRT7.75 to SRT10.25.  

3.3.1 Nutrient Recovery.  

 

Figure 3.1: Performance of parallel PBRs inoculated with environmental samples from 

Florida (purple circles), North Carolina (green triangles), and Illinois (orange squares). (A) 

Biomass N:P content (mass/mass) and (B) observed specific PO4
3- uptake rate (g PO4

3--

P·g VSS-1·day-1). One SRT is equal to 8 days. Biomass N:P content varied across the 82 

days of the study, but all three reactors tended toward a similar steady-state N:P. 

Phosphate recovery performance demonstrated similar trends in all three reactors, with 

values decreasing rapidly in Phase I before beginning to stabilize in Phase II and 

becoming more stable Phase III. After two days of operation (and for the duration of the 

study), ammonia concentrations were below detection across all reactors by the end of 

the night. 

Nutrient dynamics followed similar temporal trends in the three PBRs (Figure 3.1). All reactors 

exhibited undetectable NH3-N by the end of the night after two days of operation (Table A.1) 

and maintained this performance for the remainder of the study. NO2
- and NO3

- were not 

detectable via ion chromatography when samples for the first 30 days of the experiment were 

tested. Initial biomass N:P was close to the Redfield ratio (7.26 g Ng-1 P) (Goldman et al., 1979) 

and did not differ between the three reactors (Phase I, p = 0.49). Although N:P curves differed 

during Phases II and III (p = 1.45E-11, p = 9.88E-7, respectively), they followed similar, 
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decreasing trends and stabilized in Phase III. Minimum N:P for each reactor ranged from 2.6 to 

3.3 gg-1, which approaches the proposed lower limit for cellular N:P (2.26 gg-1) (Geider & 

LaRoche, 2002). These values are substantially lower than those reported for pure cultures of 

Scenedesmus obliquus (8.5) and Chlamydomonas reinhardtii (4.5) cultivated at an 8-day SRT 

with higher media N:P (7.84:1 vs. 2:1), demonstrating the inter- and intra-specific plasticity in 

biomass N:P (Gardner-Dale et al., 2017). Specific PO4
3--P uptake rates followed similar 

decreasing trends which stabilized in Phases II and III, but did not group together statistically 

(Phase I, FL and NC together, IL separate, p=0.00062; Phases II and III, p=6.74E-10, 5.283E-

13, respectively). Culture density (VSS) continued to increase through time in all reactors. Final 

VSS values were 1,345 ± 41.59 mgL-1, 1,466 ± 8 mgL-1, and 1,679 ± 22.03 mgL-1 for FL, IL, 

and NC, respectively. During Phases I and II, VSS differed in all three reactors (p < 2.2E-16) but 

began to converge in Phase III (p = 0.000165, IL and FL grouped together, NC separate). 

Effluent PO4
3--P and VSS data are presented in Figures A.3 and A.4, respectively. Overall 

performance of the three reactors was similar with respect to NH3 and PO4
3- dynamics, and  was 

reflected in similar long-term trends in biomass N:P content.   

3.3.2 Carbon Storage. Extant (i.e., observed during operation) carbohydrate and lipid storage 

exhibited similar temporal trends across reactors (Figure 3.2; A, B), with values which initially 

increased but subsequently decreased and stabilized with time. Carbohydrate content was 

initially similar in two of three reactors (Phase I; FL, IL together, NC separate, p = 3.06E-3), but 

fully diverged in Phase II (p<2.2E-16), before partially re-converging in Phase III (NC and FL 

together, IL separate, p<2.2E-16). Final carbohydrate content consistently increased from initial 

values (FL: 0.46 ± 0.015 to 0.98 ± 0.021, IL: 0.37 ± 0.008 to 0.77 ± 0.032, NC: 0.58 ± 0.026 g 

carbg-1 protein), but was less than the maximum extant value for each reactor. Extant lipid 

content was initially similar for IL and NC, but not FL (Phase I, p = 6.06E-8), and diverged in 

Phases II and III (p<2.2E-16, p = 2.49E-5, respectively). While final lipid content in FL and IL 

had a net increase from SRT0 (FL: 0.32 ± 0.019 to 0.43 ± 0.047, IL: 0.23 ± 0.008 to 0.32 ± 

0.006 026 g lipidg-1 protein) to values less than their respective extant maxima, NC lipid content 

showed a net decrease with time (0.23 ± 0.008 to 0.22 ± 0.007 g lipidg-1 protein). Carbohydrate 

and lipid content stabilized by the end of the experiment at which time carbohydrate and lipid 

values for the three reactors were within 32% and 42% of each other, respectively. When 

compared to the maximum intrinsic carbohydrate and lipid accumulation potentials measured 

during the kinetic experiment (Figure 3.2; C, D), this inter-reactor variation was small. Final 

extant carbohydrate content in the three reactors grouped together and were statistically 
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different from the intrinsic maximum (max = NC 144 hr, p<1E-8). SRT 8.75 lipid content of the 

three reactors differed both from each other and from the intrinsic maximum (max = FL 72hr, 

p<2.2E-16). 

 

Figure 3.2: Extant (i.e., observed in the reactor) (A) carbohydrate and (B) lipid content of 

biomass through time in FL (purple circles), IL (orange squares), and NC (green 

triangles) reactors. Intrinsic (hatched) and extant (solid) (C) carbohydrate and (D) lipid 

storage, and the correlation between intrinsic carbohydrate (E) and lipid (F) storage 

capacity and maximum accumulation rate figure from the kinetic experiment. Extant 

carbohydrate and lipid storage stabilized in the three reactors by the end of the 

experiment. Variation in intrinsic storage capacity exceeded and was more variable than 

extant storage values. Maximum rate of carbohydrate or lipid accumulation and was 

positively correlated with intrinsic storage capacity of these storage products.  
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Table 3.1: Comparison of kinetic parameters from this study with literature values 

reported by Guest et al. (2013) and Mairet et al. (2011). With the exception of q_CH_max 

and f_LI_max values, which were lower, kinetic parameter values in this study were 

comparable to those reported in other studies. 

Parameter FL IL NC Guest et 
al. (2013) 

Mairet et 
al. (2011) 

Units 

Extant storage 
carbohydrate content 

(fCH,extant) 

0.17 ± 
0.081 

0.14 ± 
0.072 

0.10 ± 
0.060 

0.110 - C-mol storage carbs  
C-mol functional 

biomass -1 

Extant storage lipid 
content 
(fLI,extant) 

0.21 ± 
0.0051 

0.053 ± 
0.014 

0.027 ± 
0.0017 

0.09 - C-mol storage lipid  
C-mol functional 

biomass -1 

Maximum intrinsic 
storage carbohydrate 
accumulation capacity 

(fCH,max) 

0.76 ± 
0.051 

0.44 ± 
0.067 

1.48 ± 
0.10 

0.85 - C-mol storage carbs  
C-mol functional 

biomass -1 

Maximum intrinsic 
storage lipid 

accumulation capacity 
(fLI,max) 

0.86 ± 
0.053 

0.58 ± 
0.070 

0.18 ± 
0.0087 

1.1 - C-mol storage carbs  
C-mol functional 

biomass -1 

Maximum rate of 
storage carbohydrate 

accumulation 
(qCH,max) 

0.019 ± 
0.00095 

0.0087 
± 

0.00037 

0.020 ± 
0.00041 

0.031* 0.028** *XCHmg(XCPO as VSS)-

1h-1 

**mg carbmg 

functional biomass-1h-

1 

Maximum rate of 
storage lipid 
accumulation 

(qLI,max) 

0.0097 
± 

0.00148 

0.0087 
± 

0.00061 

0.0020 
± 

0.00019 

0.0091* 0.012** *XLImg(XCPO as VSS)-

1h-1 

**mg lipidmg 

functional biomass-1h-

1 

 

In contrast to the noted similarities in nutrient dynamics and extant carbon accumulation, 

reactors differed widely in intrinsic maximum carbohydrate and lipid accumulation rate and 

capacity (Figure 3.2 C, D). To compare the results of this experiment with other values from the 

literature (Guest et al., 2013; Mairet et al., 2011), extant carbohydrate and lipid content, 

maximum rate of accumulation of storage carbohydrate and lipid, and maximum intrinsic 

functional carbohydrate and lipid storage capacity were recalculated as in Guest et al. (2013) 

(Table 3.1). Extant carbohydrate and lipid storage varied by less than two-fold and more than 

seven-fold, respectively (Table 1), but literature values fell within these observed ranges (Guest 

et al., 2013). Maximum rate of carbohydrate and lipid accumulation varied by two- and four-fold, 

respectively, between reactors. q_CH_max (Table 1) was 29% - 72% lower than literature 
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values (Guest et al., 2013; Mairet et al., 2011) but of the same order of magnitude (Table 1) 

while the observed range of q_LI_max spanned literature values (Table 1). Maximum 

carbohydrate and lipid storage potential varied more than three- and five-fold, respectively, 

between reactors. While f_CH_max values (Table 1) spanned that reported by Guest et al.  

(2013), f_LI_max was 22%-84%, and an order of magnitude lower than in Guest et al. (2013). 

This comparison suggests that daytime N-starvation in an SBR was not more effective, and in 

some cases was less effective than continually fed cyclostats maintained in P-limitation as in 

Guest et al. (2013) at inducing high extant or intrinsic storage capacity in mixed algal cultures.   

Stronger positive correlations existed between kinetic parameters for lipids than for 

carbohydrates (Figure 3.2; E, F). Using values from Table 1, f_LI_extant correlated with 

q_LI_max and f_LI_max (r2 = 0.955, 1.000, respectively), and q_LI_max with f_LI_max (r2 = 

0.959). There was no correlation between f_CH_extant and either q_CH_max or f_CH_max (r2 

= 0.082, 0.082, respectively), but f_CH_max and q_CH_max were somewhat correlated (r2 = 

0.621). This suggests that extant lipid content might be a predictor of lipid kinetic parameters, 

but it is unclear whether this relationship might hold for carbohydrates, given the similar values 

for f_CH_extant among the three reactors. 

Reactors exhibited differences in intrinsic carbon storage rate and capacity after 10.25 SRTs, in 

contrast to nutrient dynamics and extant carbon storage which had more consistent values 

across reactors. These differences could be linked to differences in community structure which 

persisted after long-term operation under N-limited conditions. The following section presents 

the results from an 18S rRNA gene sequencing effort in which the taxonomic composition and 

culture dynamics of the reactors over the course of the long-term experiment are examined. 

3.3.3 Community Analysis. Community richness estimates using V4 data were often 

approximately equal to or slightly less than V8-V9 values (Figure A.5). V8-V9 figures may be 

found in the SI (Figures A.6-A.7). Unless otherwise noted, V4 and V8-V9 results showed similar 

patterns. Community membership in the three reactors remained distinct throughout the 

experiment (Figure 3.3.A). AMOVA comparison using Bray Curtis distances and datasets 

divided corresponding to Phases I – III, yielded p-values ≤ 0.004 for both V4 and V8-V9 (Table 

A.2). AMOVA comparisons of Phases I-III within each reactor yielded p-values ≤0.001 for both 

V4 and V8-V9 in NC, but some higher values for FL and IL (V4:FL1-FL2 p=0.01, FL1-FL3 

p=0.005; V8-V9: FL1-FL2 p=0.007, FL1-FL3 p=0.222, FL2-FL3 p=0.068, IL1-IL2, 0.004) (Table 

A.2).  
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Figure 3.3: (A) NMDS plot based on Bray-Curtis dissimilarity matrix of all sample 

replicates and (B) Bray-Curtis distance from SRT0 in each reactor. Reactor communities 

remained distinct from one another throughout the experiment, while the community 

within each reactor diverged from its initial structure and then slowly returned to a 

community more similar to the starting community.   

In all three reactors, the community rapidly diverged from SRT0 during Phase I, slowly returned 

to a community more closely resembling the starting community during Phase II, and stabilized 

during Phase III (with the exception of FL in the V8-V9 data, which shifted dramatically away 

again at SRT10.25). Indices of alpha diversity (nonparametric Shannon, Inverse Simpson, 

Chao1, Sobs) support this interpretation (Figure S8). FL and IL were similar in both number of 

observed species (Sobs) and Chao1 indices (Sobs = 16-35, Chao1=20-42), with NC ranges 

being much lower (Sobs=7-25, Chao1=7-30), corresponding with the fact that NC was 

inoculated only from surface water, while IL and FL also contained inoculum from WWTPs. Both 

the Inverse Simpson index and Nonparametric Shannon index were relatively stable with time 

for FL, but exhibited sharp transitions between Phases I and II and Phases II and III for IL and 

NC, indicating shared dominance between multiple OTUs in Phases I and III, but a community 

dominated by fewer OTUs during Phase II. These patterns are further supported by the relative 

read abundance data presented in Figure 3.4.  
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3.3.4 Taxonomic Analysis. Overall, between 88.2% and 99.7% of reads for each time point are 

included in the group comprised of the top 10 most abundant OTUs from each reactor (Figure 

3.4). FL, NC, and IL had a total of 90, 56, and 88 OTUs each, which overlapped between 

reactors as follows: FL(59), IL(56), NC(33), FL-IL(12), IL-NC(4), FL-NC(3), FL-IL-NC(16). Thus, 

13 of the 16 OTUs shared among all three reactors were in the top 10 most abundant for at 

least one reactor and the majority of OTUs contained a small cumulative fraction of reads and 

had little or no overlap between reactors. V4 OTU1, which classifies as Acutodesmus, was most 

abundant in all reactors and accounted for 45.8%, 68.2%, and 25.6% of overall reads in FL, NC, 

and IL, respectively (Figure 3.4). The most dominant V8-V9 OTU classified as Coelastrella 

(Figure A.7) which, along with Acutodesmus, is a member of the Scenedesmaceae. Other 

dominant OTUs represented a collection of green algae, diatoms, protozoa, amoeba, fungi, 

ciliates and rotifers (Table S4), indicating a multitrophic community (Arndt, 1993). For several 

OTUs, abrupt shifts in abundance occurred before SRT 2 and SRT 8, corresponding to Phases 

I-III described previously. 

Copy number for the 18S rRNA gene varies from <10 to >10,000 (Vargas et al., 2015), causing 

difficulty in relating read counts with cell counts. Copy number is positively correlated on a log-

log scale with cell diameter, although wide confidence intervals, particularly at larger cell sizes, 

prevent accurate interconversion of the two values (Vargas et al., 2015; Zhu et al., 2005). 

However, read counts may be interpreted as a proxy for cell biomass or biovolume, even among 

distantly related taxa (Vargas et al., 2015). Thus, the data in Figure 3.4 is best interpreted as 

representative of biomass distribution between OTUs within each reactor. Given that some of 

these OTUs represent taxa with larger cell sizes (eg. Rotifers, ciliates, protozoa) (Vargas et al., 

2015), it seems likely that Figure 3.4 over-represents these taxa in terms of individual cells 

relative to smaller taxa such as green algae and diatoms (Vargas et al., 2015). 
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Figure 3.4: Mean relative read abundance of top 10 most abundant OTUs (colored 

shading) from each of the three reactors. Bubble area is proportional to mean relative 

abundance. Hatched shading indicates OTUs which were present but not abundant in a 

given reactor. Vertical dashed lines delineate Phases I, II, and III. SRTs are abbreviated as 

1-10, but exact sample days are found in Table A.3 in the Appendix. The most abundant 

OTUs were shared between all three reactors and the majority of OTUs in the figure 

overlap between reactors, even if at low abundance. Shifts in relative abundance at SRT 

2 and SRT 8 are visible for several OTUs, corresponding to transitions between Phases I-

III as previously identified.  
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3.3.5 Comparison of Trends Across Datasets. All three reactors showed similar patterns of 

dynamic and stable periods with respect to many of the metrics presented in Figures 3.1-3.4. 

The first two SRTs (Phase I) were the time of greatest change in function as represented by 

nutrient dynamics (Figure 3.1) and carbohydrate content (Figure 3.2). The greatest shift in 

community structure (Figures 3.3.B, 3.4) occurred during the second SRT. PO4
3--P uptake and 

biomass composition (N:P, carbohydrate, lipid) remained dynamic for a subsequent period 

(Phase II) before stabilizing near the end of the experiment (Phase III). The community structure 

shifted back towards the starting community during Phase II (Figures 3.3.B, 3.4). Many OTUs 

strongly shifted in abundance between Phases II and III (Figure 3.4), but Bray Curtis distance 

from SRT0 increased only slightly in all reactors (Figure 3.3.B) and stabilized in Phase III. Due 

to similar patterns of change and stability observed over both structural and functional metrics, 

we sought to test for correlations between the two. However, a linear model relating taxonomic 

richness with functional metrics did not identify correlations which were consistently positive or 

negative across all three reactors using either V4 or V8-V9 data in either a combined model or 

when each functional metric was examined individually (Table A.4). This suggests that 

structure-function interactions are more complex than can be described by simple linear 

relationships. It is possible that the communities eventually reached a state of dynamic 

equilibrium characterized by stable function with continued structural dynamics, similar to those 

observed in activated sludge reactors where multitrophic microbial food webs drive 

unpredictable community dynamics while maintaining stable function (Kaewpipat & Grady, 

2002; Kooi, Boer, & Kooijman, 1997). The research presented here supports the idea that algal 

communities of shifting composition may support stable function with respect to nutrient uptake 

and extant carbon accumulation.  

3.4. Conclusions and Future Directions. 

• Our results suggest that extant reactor performance which is temporally stable and 

similar between reactors may be achieved by algal communities which remain dynamic 

and distinct from one another through time. 

• Daytime NH3-N limitation might comprise a component of an engineered selective 

system for carbon accumulators, but numerous operational parameters must be co-

optimized in order to maximize selection for carbohydrate or lipid-accumulating taxa, 

particularly in multitrophic systems. 

• Systems designed to maximize storage product production by selecting for optimized 

intrinsic carbon storage capacity will require different design considerations than those 
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considered here, as reactors with similar and stable extant performance exhibited widely 

differing intrinsic performance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*This concludes the research publication.  
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Chapter 4: Conclusions and Engineering Significance 

4.1 Nutrient Dynamics. The capacity for reliable nutrient removal is a key function of 

wastewater treatment system design, driven by both concern for environmental health and 

regulatory obligation. As has been described in previous sections, algae are well-suited to the 

task of N and P uptake, due to their flexible stoichiometry and potential to remove dissolved 

inorganic nutrients to the point of depletion. In this study, we demonstrated that three mixed 

algal cultures derived from geographically distinct locations and cultivated under identical 

laboratory conditions were capable of maintaining consistent inorganic N-limitation and 

biomass-specific PO4
3--P uptake for >10 SRTs. Integrated into a WWTP context, however, 

algae would be subject to variation in influent N:P ratios and nutrient speciation, which would be 

further influenced by the type and efficiency of other nutrient removal processes within the 

wastewater treatment system. Thus, it will be important to understand the factors dictating the 

behavior of algal systems under such varying conditions.  

One challenge is to understand the interactions between SRT, algal community composition, 

and influent N:P and the combined impact of these factors on effluent quality. The influent N:P 

ratio used in this study (2:1 gg-1 NH3-N:PO4
3--P) was selected to ensure that the culture would 

be driven into N limitation. Biomass in this study was driven near the lower physiological limit for 

biomass N:P (Geider & LaRoche, 2002), while strains cultivated at higher media N:P (7.84:1), 

also at 8-day SRT, exhibited higher biomass N:P (approximately 4.5 and 9 for C. reinhardtii and 

S. obliquus, respectively) (Gardner-Dale et al., 2017). These results are generally in line with 

previous findings that biomass N:P will tend towards media N:P at low growth rates (Klausmeier 

et al., 2008). Achieving dual N and P limitation will require that influent N:P fall within the range 

of biomass nutrient plasticity for a given strain or community (Gardner-Dale et al., 2017). It will 

also be necessary to decipher the complex interactions between community structure, influent 

N:P, and SRT. In the likely scenario that influent nutrient fluxes and community composition 

would be dynamic on both short (hours-days) and long (seasonal) timescales, the design of 

processes aimed at achieving consistent dual limitation would be difficult. However, if at least 

one of these parameters could be reliably controlled, for example by pairing algal treatment with 

other nutrient removal methods or reliably constraining community composition, more reliable 

performance might be achieved.   

4.2 Algae for Resource Recovery and Carbon Accumulation. Algal technologies have 

multiple attributes which fit nicely with novel concepts of WWTPs as ‘water resource recovery 

facilities’ (WRRFs) (Guest et al., 2009). Unlike in conventional WWTP technologies, N and P 
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assimilated into algal biomass remain bioavailable. Additionally, algal capacity for carbon 

accumulation as carbohydrate or lipid stores is reliably induced by nutrient limitation, making the 

production of carbohydrate- or lipid-rich algal biomass a natural choice of a co-process with 

algal wastewater treatment where nutrient removal is the primary goal.  

Our operating system aimed to enhance the extant carbon-accumulating capacity of mixed 

cultures by applying the ‘Survival of the Fattest’ hypothesis proposed by Mooij et al. (2013) 

which reported success in enriching long-term extant carbohydrate storage in mixed cultures via 

daytime N-limitation and nighttime N-feeding. While our cultures exhibited rapid, short-term 

increases in both extant carbohydrate and lipid storage, these gains tapered off over time, with 

cultures exhibiting only moderate long-term increases in carbon storage which were far less 

than those reported by Mooij et al. (2016, 2013). Performance of the NC reactor in Phases I and 

II was most comparable to the results published by Mooij et al. (2016, 2013) in which high 

carbohydrate content (approaching 50%) and a single OTU were dominant. The NC reactor, like 

those operated by Mooij et al. but unlike the others in this study, was inoculated only from 

surface water. The use of MiSeq sequencing technology in this experiment, in contrast to PCR-

DGGE by Mooij et al. (2013, 2015, 2016,), enabled the detection of numerous, lower-

abundance OTUs. Additionally, slower growing taxa which would have washed out of the 

systems operated by Mooij et al. (SRT = 1.4 – 6 days) may have persisted under the longer 8-

day SRT in this study. The community dynamics of the three reactors was also likely influenced 

by the startup period which, while intended to prevent algal washout due to low inoculum 

concentrations, may have initially selected for a starting community of fast-growing algae 

capable of rapid nutrient uptake and may have prevented some of the more dramatic long-term 

shifts in species composition observed by Mooij et al. (2016). While the three reactors did 

sustain moderate long-term gains in carbohydrate content and allow for stable nutrient recovery, 

application of the ‘Survival of the Fattest’ hypothesis is perhaps not the optimal means of 

maximizing carbohydrate-producing potential of a system.  

A striking finding from this study, however, was that despite similar extant carbohydrate and lipid 

storage at the end of the long-term experiment, the three cultures varied widely in intrinsic 

storage potential and in their accumulation ratios of carbohydrate to lipid. The drastic increase 

between extant and intrinsic storage values implies that stressing cells in order to achieve 

maximum storage might be a desirable process to follow nutrient removal. A system could be 

designed to select for cells with high intrinsic, rather than extant, carbon storage, if these 

physiological characteristics could be made to confer increased fitness. However, since 
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maximum intrinsic storage capacity correlated positively with maximum storage rate for both 

carbohydrates and lipids, the latter might prove a useful metric for predicting maximum 

accumulation potential of given culture. Improved understanding of community structure-

function relationships might also help to design systems with maximum storage capacity.   

4.3 Persistent Challenges and Future Work. In order for algal treatment systems to transition 

from the lab to full-scale operation, there are many variables which must be accounted for. 

Wastewater treatment systems operate with continuous flow, unlike the SBRs used in this 

experiment. However, in another study, a mixed algal system operated with continuous flow 

maintained constant P-limitation and similar carbon-storage to the system run in this study 

(Guest et al., 2013), suggesting that the extreme SBR environment was not necessary to 

achieve consistent performance. Additionally, SRT and HRT in our system were equal. While an 

8-day SRT is reasonable for algal systems, WWTP HRTs must be much shorter, often on the 

order of hours. While membrane technology is one way to decouple SRT and HRT, this option 

may be costly and clogging or fouling may present additional operational challenges. 

Full-scale outdoor algal systems must be resilient to the effects of numerous additional short- 

and long-term fluctuations in environmental conditions which were not within the scope of our 

lab-scale study. While our study illustrated that mixed algal cultures derived from different 

latitudes could achieve consistent performance when subjected to identical laboratory cultivation 

conditions, an orthogonal study might investigate how the varying environmental conditions 

characteristic of different latitudes influence the performance of a common starting culture. 

Temperature, light intensity, and photoperiod would all vary on both short- and long-term time 

scales, the magnitude of which would vary based on geographic location. Thorough 

understanding of these factors will be important to the design of robust systems capable of 

consistent performance regardless of location.  

An additional complicating factor is the presence of multiple trophic levels within mixed 

communities. While this study only examined the eukaryotic community, prokaryotes would 

undoubtedly play a role in the microbial food web and potentially in nutrient dynamics by fixing 

nitrogen in N-limited systems. While culture crash due to grazing did not occur in this study, it 

has been described as a concern by others (Kazamia et al., 2014). Multi-tiered trophic systems 

exhibit chaotic dynamics in activated sludge systems, but still support consistent reactor 

function (Kaewpipat & Grady, 2002; Kooi et al., 1997). It is possible that a similar phenomenon 

was observed in our reactors, in which fluctuating community dynamics supported stable 

nutrient uptake and extant carbon accumulation.  
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Improved capacity to link structural and functional metrics might still improve system design 

capabilities. In this study, combined and individual linear models were not able to successfully 

determine links between species richness and functional parameters. The elucidation of such 

relationships, if they exist, could provide valuable insights for system design. One factor which 

might confound this effort is that 18S rRNA gene copy number varies over four orders of 

magnitude among microbial eukaryotes (Vargas et al., 2015). While copy number scales 

roughly with cell size (Vargas et al., 2015; Zhu et al., 2005), it is difficult to make quantitative 

statements about community structure due to wide confidence intervals, making it currently 

impossible to accurately describe relative abundances of algal taxa using 18S sequencing data. 

One approach to solving this issue would be to identify another suitable gene with more stable 

copy number to use for sequencing of eukaryotic microbes, although the numerous benefits of 

the 18S gene were described in a previous section. Alternatively, a more exhaustive study of 

copy number variations between and within taxa should be undertaken in order to better model 

community structure from read count data.  

4.4 Concluding Thoughts. Modern concerns about climate change, the depletion of natural 

resources, and environmental pollution make the adoption of paradigm shifts such as those 

represented by WRRFs more pressing than ever. Algal technologies are uniquely poised to 

address many of these concerns as recent developments in sequencing technology, modeling 

capability, and real-time data collection continue to expand our capacities for system design and 

control. However, as described above, numerous challenges remain. The combination of 

laboratory experiments such as the one presented here with process modeling and pilot-scale 

studies has the potential to streamline the development of algal biotechnology. After decades of 

research, the convergence of technological and scientific maturity, environmental necessity, and 

sociopolitical will may soon allow widespread implementation of algal systems integrating 

nutrient removal and biofuel production to become a reality.   
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Appendix: Supplementary Materials for, “Impact of Daytime Nitrogen Limitation on 

Structure and Function of Mixed Microalgal Communities Derived from Three 

Geographically Distinct Sources” 

 

Figure A.1: Schematic illustrating photobioreactor and algal cultivation system design 
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A1. Reactor Inoculation and Startup Period. Inocula from each source (FL, NC, IL) were 

added to each of two PBRs (resulting in six PBRs in total during reactor startup), each 

containing 4L of modified TAP media(Tenorio, Fedders, Strathmann, & Guest, 2017) without 

TRIS buffer or acetic acid to minimize DOC, and including the following additions and 

modifications: NaHCO3 (500 mg·L-1), NH4Cl (98.2 mg-N·L-1), and PO4
3- supplied as 2:1 (g·g-1) 

K2HPO4:KH2PO4 (31.5 mg-P·L-1), and Na2SiO3-9H2O (30 mg·L-1). For acclimatization to 

laboratory lighting conditions, lighting intensity (at the surface of the reactors) was increased 

from 95 µE·m-2·s-1 to 190 µE·m-2·s-1 over the course of six days. One week after initial 

inoculation, the contents of each pair of reactors (two from FL, two from NC, two from IL) were 

mixed and re-divided. A sinusoidal light curve 14:10 (light:dark) was imposed with maximum 

light intensity of 190 µE·m-2·s-1 and reactors were transitioned to sequencing batch mode with a 

hydraulic retention time (HRT) and solids residence time (SRT) of 8 days and cycle-time of 24 

hours. Specifically, 0.5 L of reactor volume was wasted at the start of each dark phase (i.e., 

immediately after simulated sunset) and was immediately replaced with the addition of 0.5 L of 

new medium. One set of three reactors (one each of FL, NC, and IL) was operated with N-

limited medium (58.9 mg-N·L-1 and 29.5 mg-P·L-1; N:P mass ratio of 2:1) and the other with P-

limited medium (186 mg-N·L-1 and 15.5 mg-P·L-1; N:P mass ratio of 12:1). Media N:P ratios 

were set based on preliminary experiments with mixed communities (data not shown) and past 

experience with pure cultures.(Gardner-Dale et al., 2017) After seven days of operation in 

sequencing batch mode, the contents of each pair of reactors were again mixed and re-divided 

into two reactors, leaving other operating conditions unchanged. This represented time zero (t = 

0 SRTs) for long-term operation. 

A2. P-Limited Reactor Performance. P-limited reactors failed to reach P-limitation (data not 

shown), achieving minimum dissolved PO4
3--P between 0.10 and 3.14 ppm-P between 

experiment days 20 and 30 before increasing to between 12 and 14 mg PO4
3--P·L-1 by the end 

of the experiment. Similarly, reactor TSS steeply declined after 40 days of operation to 151-300 

mg TSS·L-1. Reactor washout and P-accumulation may have been due to NH3 toxicity. NH3 

reached a maximum near 100 ppm NH3-N on day 20, and maintained concentrations between 

approximately 80 and 100 ppm NH3-N for the remainder of the experiment. 100 ppm NH3-N 

(7.14 mM NH3) exceeds concentrations known to be toxic to numerous algal taxa (e.g., 

Dinophyceae, Diatomophyceae, Raphidophyceae, and Prymnesiophyceae) and inhibitory to 

others (eg. Cyanophyceae) (Collos & Harrison, 2014). While some taxa, such as 

Chlorophyceae, are reported to tolerate  NH3 levels up to 39 mM (Collos & Harrison, 2014), it 

seems probable that the combination of ammonia toxicity and stress significantly impaired 
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system function. This might be remedied in future studies by reducing the media NH3:PO4
3- 

media, or using an alternative N source such as NO3
-.  Only data collected from the N-limited 

reactors are presented here. 

A3. Mock Community Analysis. Read overlap and clustering threshold for V4-sequenced 

mock community samples corresponding to mock community M4 (Bradley et al., 2016) were 

varied between 10 and 90 base pairs (bp) and 0-9%, respectively. Sequence data was 

compared to a theoretical reference sample consisting of two sequences of each of the twelve 

MC members. The Jaccard dissimilarity index between each sequenced sample and reference 

sample at each overlap and clustering threshold was used to create a cost-benefit matrix 

(Figure A.2). The minimum clustering threshold and overlap combination yielding a Jaccard 

dissimilarity index of ≤ 0.2 was 5% clustering and an overlap of 70 bp. Sequencing error was 

calculated to be 0.00588% using the seq.error command in Mothur. When these parameters 

were used to analyze the bulk data, it was not possible to resolve closely related taxa which are 

commonly found in wastewater (eg. Acutodesmus and Monoraphidium). Since 3% clustering is 

commonly used in the literature, we used 3% clustering and 70 bp overlap for the final data 

analysis. Since community M4 was designed to encompass the wide diversity of freshwater and 

marine eukaryotic microalgae, these results highlight the need in future work to select mock 

community members based on the expected algal community to ensure adequate resolution.  
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Figure A.2: Cost-benefit analysis of read overlap (x-axis) and percent clustering (y-axis). 

Colors indicate values of Jaccard dissimilarity index between sequenced mock 

community and a theoretical sample containing two correct sequences for each mock 

community member.  

 

Table A.1: With the exception of the samples in this table, all reactors had undetectable 

NH3-N by the end of the night for the entire long-term experiment.  

Reactor 

Experiment 

Day 

End of Night 

NH3-N (ppm) 

Standard 

Deviation 

IL 0 7.55 0.021 

FL 0 0.59 0.034 

IL 1 5.62 0.092 
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Figure A.3:  PO4
3--P concentration of reactor effluent sampled at end of light period.  

 

 

Figure A.4: Effluent volatile suspended solids (VSS) measured at the end of the light 

period. 
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Figure A.5: Comparison of expected community richness of an OTU table rarefied to 

minimum sample size between V4 (filled symbols) and V8-V9 (empty symbols) through 

time in each of the three reactors shows that V4 sequencing most often yielded richness 

measurements which were approximately equal to or slightly lower than V8-V9 values.  
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Figure A.6: NMDS Plot (A) of V8-V9 Bray-Curtis dissimilarity between all sequenced 

samples and (B) Bray-Curtis distance from SRT0 in each reactor through time. With the 

exception of the last point on FL SRT10, all reactors followed similar trends of increased 

distance from SRT0 followed by slow return to a community more closely resembling the 

initial community. 
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Figure A.7: Relative abundance of top 10 most abundant OTUs (colored shading) 

identified by V8-V9 sequencing in each of the three reactors. Bubble area is proportional 

to mean relative abundance. Hatched shading indicates taxa which were present but not 

abundant in a given reactor. V8-V9 OTU1, which classifies as Coelastrella, represented 

35.4%, 65.3%, and 22.0% of reads in FL, NC, and IL, respectively. Between 82.5% and 

99.6% of reads for each sample point were accounted for in the 22 OTUs represented in 

this figure. FL, NC, and IL contained a total of 126, 54, and 100 OTUs each, respectively, 

with OTUs overlapping between reactors as follows: FL(85), IL(57), NC(26), FL-IL(17), IL-

NC(4), FL-NC(2), FL-IL-NC(22). 14 of the 22 OTUs which were shared among all reactors 

are represented in Figure S7.  
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Table A.2: V4 and V8-V9 AMOVA results using Bray Curtis distances to compare Phases 

I, II, and III within and between the three reactors. ‘Comparison’ column indicates the 

reactors and phases being compared (eg. FL_1 corresponds to FL, Phase I).  

 

 

Comparison V4 p-value V8-V9 p-value

F1-F2 0.01 0.007

F1-F3 0.005 0.222

F2-F3 <0.001 0.068

I1-I2 0.001 0.004

I1-I3 <0.001 <0.001

I2-I3 <0.001 <0.001

N1-N2 <0.001 <0.001

N1-N3 <0.001 0.001

N2-N3 <0.001 <0.001

F1-I1 0.004 0.002

F1-N1 0.001 0.001

I1-N1 0.001 0.002

F2-I2 <0.001 <0.001

F2-N2 <0.001 <0.001

I2-N2 <0.001 <0.001

F3-I3 <0.001 <0.001

F3-N3 <0.001 0.004

I3-N3 <0.001 0.001
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Figure A.8: Alpha diversity metrics including Chao1, Sobs, inverse Simpson, and 

nonparametric Shannon indices for the three reactors over the course of the long-term 

experiment using V4  and V8-V9 sequencing data.  
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Table A.3: Experiment days corresponding to x-axis OTU designations for main text 

Figure 3.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SRT label Experiment Day

0 0

1 8

2 16

3 24

4 32

5 40

7 54

8 62

9 70

10 82
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Table A.4: Taxonomic classifications for most abundant 10 OTUs  as determined by V4 

(Figure 3.4) and V8-V9 (Figure A.7) sequencing analysis.

 

Primer Set V4 Group Taxon Classification

V4 Otu001 Acutodesmus Algae

V4 Otu002 Chlorella Algae

V4 Otu003 Mychonastes Algae

V4 Otu004 Monoraphidium Algae

V4 Otu005 Chlamydomonadales_unclassified Algae

V4 Otu006 Sphaeropleales_unclassified Algae

V4 Otu007 Uronema Algae

V4 Otu008 Rotifera rotifer

V4 Otu009 Rotifera rotifer

V4 Otu010 Incertae_Sedis_unclassified unknown

V4 Otu011 uncultured_unclassified unknown

V4 Otu012 Choricystis Algae

V4 Otu013 Bacillariophyceae diatom

V4 Otu014 Hypotrichia protozoa

V4 Otu016 Nucletmycea_unclassified fungi

V4 Otu021 Eukaryota_unclassified unknown

V4 Otu026 Stramenopiles_unclassified algae or diatoms

V4 Otu035 Phyllophrangea ciliate

V8-V9 Otu001 Coelastrella algae

V8-V9 Otu002 Chlorellales unclass. algae

V8-V9 Otu003 Mychonastes algae

V8-V9 Otu004 Nucletmycea unclass. fungi

V8-V9 Otu005 Monoraphidium algae

V8-V9 Otu006 Eukaryota unclass. unknown

V8-V9 Otu007 Paraphysomonas flagellate

V8-V9 Otu008 Desmodesmus algae

V8-V9 Otu009 Chlamydomonadales unclass. algae

V8-V9 Otu010 Rotifera rotifer

V8-V9 Otu011 Uronema algae

V8-V9 Otu012 uncultured unclass. unknown

V8-V9 Otu013 Sphaeropleales unclass. algae

V8-V9 Otu014 Hypotrichia protozoa

V8-V9 Otu015 Nucletmycea unclass. fungi

V8-V9 Otu016 Gymnophrys unclass. protist

V8-V9 Otu017 Bacillariophyceae diatom

V8-V9 Otu018 Oligohymenophorea ciliate

V8-V9 Otu021 Nucletmycea unclass. fungi

V8-V9 Otu022 Nucletmycea unclass. fungi

V8-V9 Otu024 SAR unclassified unknown

V8-V9 Otu028 Eukaryota unclass. unknown



61 
 

Table A.5: Results from a combined linear model (A, B) incorporating species richness 

and functional metrics and of correlations (C, D) between species richness and each 

functional metric individually.  

 

 

 

 

 

 

A. V4 Combined Linear Model

Functional Parameter FL_slope p-value IL_slope p-value NC_slope p-value

Biomass N:P -1.40E+01 0.2922 769.19 4.07E-06 5.95E+00 3.70E-05

Biomass Carbohydrate:Protein -3.94E+01 0.0308 -32194.3 3.39E-06 -2.51E+00 0.34128

Biomamss Lipid:Protein 3.69E+01 0.3105 15991.29 3.33E-06 4.38E+01 0.00299

Biomass Normalized PO4-P uptake -1.11E+03 0.1799 -288937 3.51E-06 8.38E+02 0.00379

Volatile Suspended Solids -9.47E-02 0.2389 NA NA 5.57E-02 6.03E-08

Media Dissolved Organic Carbon -5.68E-02 0.6421 NA NA 2.06E-01 0.00382

B. V8-V9 Combined Linear Model

Functional Parameter FL_slope p-value IL_slope p-value NC_slope p-value

Biomass N:P 58.80568 0.001275 -539.3 0.00407 3.621317 0.000964

Biomass Carbohydrate:Protein 34.55246 0.098721 21352.9 0.00503 -0.53713 0.80733

Biomamss Lipid:Protein 190.0284 0.000282 -10602.1 0.00499 4.977959 0.647566
Biomass Normalized PO4-P uptake 3534.657 0.0015 193569.7 0.00485 569.8045 0.015272

Volatile Suspended Solids 0.35662 0.001195 NA NA 0.039865 5.93E-07

Media Dissolved Organic Carbon 1.04609 1.10E-06 NA NA 0.288892 3.43E-05

C. V4 Individual Correlations

Functional Parameter FL_slope p-value IL_slope p-value NC_slope p-value

Biomass Carbohydrate:Protein 0.056 0.001 0.01 > 0.05 -0.14 > 0.05

Biomass N:P 0.45 0.01 -0.31 0.05 0.1 > 0.05

Media Dissolved Organic Carbon -0.28 > 0.05 -0.51 0.001 0.47 0.001

Biomass Normalized PO4-P uptake 0.35 0.05 0.12 > 0.05 -0.42 0.01

Biomamss Lipid:Protein -0.4 0.01 -0.02 > 0.05 -0.19 > 0.05

Volatile Suspended Solids -0.37 0.01 0.34 0.05 0.64 0

D. V89 Individual Correlations

Functional Parameter FL_slope p-value IL_slope p-value NC_slope p-value

Biomass Carbohydrate:Protein -0.02 > 0.05 0.14 > 0.05 -0.01 > 0.05

Biomass N:P 0.19 > 0.05 -0.43 0.01 -0.05 > 0.05

Media Dissolved Organic Carbon 0.46 0.01 -0.72 0 0.62 0
Biomass Normalized PO4-P uptake 0.33 > 0.05 0.19 > 0.05 -0.59 0.001

Biomamss Lipid:Protein 0.08 > 0.05 -0.4 0.01 -0.17 > 0.05

Volatile Suspended Solids -0.26 > 0.05 0.3 > 0.05 0.72 0


