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Abstract

PART I

G. H. Hardy and S. Ramanujan established an asymptotic formula for the number of

unrestricted partitions of a positive integer, and claimed a similar asymptotic formula for

the number of partitions into perfect kth powers, which was later proved by E. M. Wright.

Recently, R. C. Vaughan provided a simpler asymptotic formula in the case k = 2. In the

first part of the thesis, we study the number of partitions into parts from a specific set

Ak(a0, b0) :=
{
mk : m ∈ N,m ≡ a0 (mod b0)

}
, for fixed positive integers k, a0, and b0. Using

the Hardy-Littlewood circle method, we give an asymptotic formula for the number of such

partitions, thus generalizing the aforementioned results of Wright and Vaughan. We also

consider the parity problem for such partitions and prove that the number of such partitions

is even (odd) infinitely often, which generalizes O. Kolberg’s theorem for the ordinary par-

tition function. This material builds on the joint work with B. C. Berndt and A. Zaharescu.

PART II

The Riemann Hypothesis implies that the zeros of all the derivatives of the Riemann-ξ

function lie on the critical line. Results on the proportion of zeros on the critical line of

derivatives of ξ(s) have been investigated before by B. Conrey, and I. Rezvyakova. The

percentage of zeros of ξ(k)(s) on the critical line approaches 100% percent as k increases.

The second part of this thesis builds on the joint work with S. Chaubey, N. Robles, and

A. Zaharescu. We study the zeros of combinations of derivatives of ξ(s). Although such

combinations do not always have all their zeros on the critical line, we show that the pro-
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portion of zeros on the critical line still tends to 1.

PART III

The third part of this thesis focuses on the work on Apéry-like numbers joint with Armin

Straub. In 1982, Gessel showed that the Apéry numbers associated to the irrationality of

ζ(3) satisfy Lucas congruences. Our main result is to prove corresponding congruences for

all known sporadic Apéry-like sequences. In several cases, we are able to employ approaches

due to McIntosh, Samol–van Straten and Rowland–Yassawi to establish these congruences.

However, for the sequences labeled s18 and (η) we require a finer analysis. As an application,

we investigate modulo which numbers these sequences are periodic. In particular, we show

that the Almkvist–Zudilin numbers are periodic modulo 8, a special property which they

share with the Apéry numbers. We also investigate primes which do not divide any term of

a given Apéry-like sequence.
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1.3 Apéry numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Chapter 2 Parity for partitions into powers of a fixed residue class . . . 17
2.1 Auxiliary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Proof of Theorem 1.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Chapter 3 Asymptotics for partitions into powers of a fixed residue class 26
3.1 Auxiliary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Proof of Theorem 1.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Main contribution from part of a major arc . . . . . . . . . . . . . . 42
3.2.2 Estimates over remaining major arcs and minor arcs . . . . . . . . . 51

Chapter 4 Zeros of normalized combinations of the Riemann ξ-function
on the critical line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.1 Zero free region and N~c,a(T ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 An upper bound for N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3 Asymptotics for J/U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.4 Proof of Theorem 1.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Chapter 5 Divisibility properties of sporadic Apéry-like numbers . . . . 93
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Chapter 1

Introduction

1.1 Partitions

The number of partitions of a natural number has been studied extensively for over a century

but there remain some open problems.

For a positive integer n, partition λ ` n is a non-increasing sequence of positive integers

λ1 > · · · > λm for some positive integer m such that

n = λ1 + · · ·+ λm.

The integers λjs are referred as parts of the partition. The partition function p(n) counts

the number of ways n can be represented in this form with the convention that p(0) = 1.

Thus, for example, for n = 5, we have 7 such representations given below

5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1,

(1.1)

so p(5) = 7. In 1921, S. Ramanujan [48] studied the partition function modulo 5, 7, and 11,
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and showed that

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11).

For certain generalizations, it is natural to restrict the set of parts for the partitions.

For any non-negative integer n, and A ⊆ N, let pA(n) denote the number of partitions of

n with parts in the set A. Note that for A = N, the quantity pA(n) counts the number of

unrestricted partitions of n, denoted by p(n). Some of the interesting special cases studied

before include A as the set of primes or the set of kth powers.

In the first part of this thesis, we study such restricted partitions. For fixed positive

integers k, a0, and b0, define the subset Ak(a0, b0) of positive integers by Ak(a0, b0) :={
mk : m ∈ N,m ≡ a0 (mod b0)

}
. Denote by pAk(a0,b0)(n) the number of partitions of n where

the parts are taken from the subset Ak(a0, b0). As an example, let us consider k = 2, a0 =

1, b0 = 1, and n = 5 i.e. we consider the partitions of 5 into squares. From all the 7 possible

partitions in (1.1), the only 2 partitions which are now valid are

4 + 1 + 1, 1 + 1 + 1 + 1 + 1,

and with k = 2, a0 = 1, b0 = 2, we have only one partition given by 1+1+1+1+1. However,

there are no partitions of 5 into into even squares. So, pA(2,2)(5) = 0 since in this case a0

and b0 are not coprime. We will discuss this in more details in the remarks stated after the

main results.

Even though, the partition function p(n) has been studied extensively, it was not known

that p(n) takes even (odd) values infinitely often until 1959, when Kolberg [31] established

these facts. Other proofs of Kolberg’s theorem were later found by M. Newman [38], and
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by J. Fabrykowski and M. V. Subbarao [25]. It is conjectured that p(n) is even (odd)

approximately half the time. Even though many results have been proved in this direction;

for example, see K. Ono [43], J. L. Nicolas, I. Z. Ruzsa and A. Sárközy [40], and S. Ahlgren

[1], the best known results are far from the estimates expected.

We focus our attention on the general function pAk(a0,b0)(n). In Chapter 2, we work in

the ring of formal power series in one variable over the field of two elements Z/2Z. Using

elementary differential equations and algebraic tools such as Hensel’s lemma, we develop a

new method to prove that this partition function assumes even (odd) values for infinitely

many positive integers. This generalizes the result of Kolberg [31] for the ordinary partition

function p(n). In fact, our method works in more generality and can be applied to certain

other restricted partition functions, including plane partitions for which there are no con-

gruence results known, to obtain corresponding parity results. A. J. Yee along with the first

and third authors [9] obtained a similar result in the case of k = 1 using more advanced tools

such as the Prime Number Theorem for arithmetic progressions and properties of Dirichlet

L-functions.

Now we state our main result on these partitions. We reiterate definitions from the

second paragraph above. For fixed positive integers k, a0, and b0, define Ak(a0, b0) ⊆ N by

Ak(a0, b0) :=
{
mk : m ∈ N,m ≡ a0 (mod b0)

}
. (1.2)

Also, let

pAk(a0,b0)(n) := #{partitions of n into parts from Ak(a0, b0)}. (1.3)

The first result is about the parity of pAk(a0,b0)(n).

Theorem 1.1.1. Let k, a0, and b0 be fixed positive integers satisfying a0 6 b0, and (a0, b0) =

1. Let Ak(a0, b0) and pAk(a0,b0)(n) be defined as in (1.2) and (1.3), respectively. Then, there

are infinitely many positive integers n such that pAk(a0,b0)(n) is even, and there are infinitely

many positive integers m for which pAk(a0,b0)(m) is odd.
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Hardy and Ramanujan [29] initiated the study of p(n) from an analytic point of view.

They proved an asymptotic formula for p(n), as n approaches infinity, and stated (without

proof) a similar result for pAk(1,1)(n), the number of partitions of n into perfect kth powers,

for any k > 2. Later a proof was supplied for the case k > 2 by Wright [63] in 1934.

His proof uses the ideas of Hardy and Ramanujan for the case k = 1, but relies heavily

on a transformation for the generating function of pAk(1,1)(n) involving generalized Bessel

functions. In the case k = 2, a simpler aymptotic formula has recently been given by Vaughan

[61], and has been generalized for any integer k > 2 by A. Gafni [27]. For asymptotics of

some other restricted partitions, the reader is referred to [41] and [42]. In Chapter 3, we

provide an asymptotic expansion for pAk(a0,b0)(n), as n approaches infinity. This extends

results of Hardy and Ramanujan [29], Vaughan [61], and Wright [63]. Our proof is based on

the Hardy-Littlewood circle method. A fine analysis and modification of results pertaining

to exponential sums help us overcome the complications posed by the general arithmetic

progression a0 (mod b0) when b0 > 1. Moreover, following similar arguments as in the proof

of Theorem 1.1.2, one can also obtain asymptotics for the difference of the number of such

partitions of two consecutive positive integers as they grow large.

In the next result, we show that

pAk(a0,b0)(n) ∼ L exp
(
Mn

1
k+1

)
n
− b0+b0k+2a0k

2b0(k+1) ,

where L and M are constants depending on the parameters a0, b0 and k > 2.

Theorem 1.1.2. Fix positive integers k, a0, and b0 with k > 2, a0 6 b0, and (a0, b0) = 1,

let Ak(a0, b0) and pAk(a0,b0)(n) be defined as in (1.2) and (1.3), respectively. Set β0 = a0/b0,

and let ζ(s) and ζ(s, β0) denote the Riemann zeta function and the Hurwitz zeta function,

respectively. Let M be a fixed positive integer with

M 6
1

2016k2

(
1

b0k2
ζ

(
k + 1

k

)
Γ

(
1

k

))− k
k+1

n
1
k+1 .
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Then, for any positive integer J , there exist constants µ1, . . . , µJ−1 such that as n→∞,

pAk(a0,b0)(n) =
exp

(
k+1
b0k2

ζ
(
k+1
k

)
Γ
(

1
k

)
X

1
k + ζ(0, β0)(1− log bk0) + kζ ′(0, β0)

)
2
√
π
√
Y X1−ζ(0,β0)

× exp

(
M−1∑
m=1

b2mk
0

(2m)!
(1− 2m)ζ(1− 2m)ζ(−2mk, β0)X−2m

)

×

(
1 +

J−1∑
j=1

µj
Y j

+ Ok,a0,b0

(
Y −J

)
+ Ok,a0,b0

(
X−2M+1

))
,

where X and Y satisfy

n

X
=

1

b0k2
ζ

(
k + 1

k

)
Γ

(
1

k

)
X1/k + ζ(0, β0)− bk0

2
ζ(−k, β0)

1

X

−
M∑
m=1

b2mk
0

(2m− 1)!
ζ(−2m+ 1)ζ(−2km, β0)

1

X2m
, (1.4)

Y =
k + 1

2b0k3
ζ

(
k + 1

k

)
Γ

(
1

k

)
X1/k +

ζ(0, β0)

2

+
M∑
m=1

m(2m− 1)b2mk
0 ζ(−2m+ 1)ζ(−2mk, β0)

(2m)!X2m
, (1.5)

and the terms (including the error term) involving M occur only when β0 6= 1/2, 1.

Remarks:

• For (a0, b0) = d0 > 1, the number pAk(a0,b0)(n) is zero unless n is a multiple of dk0. In

fact, pAk(a0,b0)(n) = pAk(a0/d0,b0/d0)(n/d
k
0). Also, note that a0/d0 and b0/d0 are relatively

prime. Therefore, it is sufficient to consider only those integers a0, b0 which are coprime

to each other and satisfy 1 6 a0 6 b0.

• Note that in Theorem 1.1.2, X ∼ SY k ∼ T nk/(k+1), for some constants S and T . In

fact, these constants can be computed explicitly from (1.4) and (1.5). Moreover, one

can show that M 6 (2(4π/5)k+1X)1/k/(4k2), which is used in Section 4.
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• Following the arguments in the proof of Theorem 1.1.2, one can obtain an asymptotic

result for the difference pAk(a0,b0)(n+ 1)− pAk(a0,b0)(n) as n approaches infinity.

• In the case β0 = 1, we recover Gafni’s result [27, Theorem 1], and if we further set

k = 2, we recover Vaughan’s result [61, Theorem 1.5]. In these cases, β0 = 1, and

therefore as mentioned in Theorem 1.1.2, the expression for pAk(1,1)(n) becomes much

simpler since all the terms involving M disappear.

1.1.1 Future directions

In this thesis, we are concerned with partitions into parts of the form (a0 +mb0)k, for some

fixed positive integers k, a0, and b0 with (a0, b0) = 1. It would be interesting to know whether

there are versions of Theorems 1.1.1 and 1.1.2 for a more general partition function, say,

where parts are of the form of a general polynomial,
∑k

j=1 ajm
j for some fixed positive

integers aj. Other similar problems of interest would be to consider partitions into primes,

or partitions into binary quadratic forms.

Y. Yang [64] considered the partition function pΛ(n) given by

∞∑
n=1

pΛ(n)xn =
∞∏
m=1

(1− xm)−Λ(m),

where Λ(m) denotes the von Mangoldt function. Improving an asymptotic formula of

L. B. Richmond [51] for pΛ(n), Yang proved that the Riemann Hypothesis holds if and

only if the error term in Richmond’s theorem can be improved to a certain order. One may

ask if Theorem 1.1.2 can be used to provide further insight into representations of integers

as sums of kth powers, in analogy with Yang’s theorem.

Several lower bounds have been obtained for the number of times the ordinary partition

function p(n) is even (odd) for n 6 N , as N approaches infinity (for example, see Ono [44],

and Nicolas [39]). With regard to Theorem 1.1.1, it would be nice to obtain similar results

for the function pAk(a,b0)(n) studied in this thesis. In fact, numerical experiments suggest
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that like p(n), this function also assumes even values about half the time in almost all the

cases, as explained below.

For positive integers n up to 100000, and for certain values of a0, b0, and k, we provide

two tables with the number of times pAk(a,b0)(n) is even, and odd, respectively.

k a0 b0 even odd k a0 b0 even odd k a0 b0 even odd

1 1 1 49800 50200 1 5 6 49850 50150 1 1 9 50133 49867

1 1 2 99484 516 1 1 7 50103 49897 1 2 9 50040 49960

1 1 3 49991 50009 1 2 7 49845 50155 1 4 9 50356 49644

1 2 3 50082 49918 1 3 7 49861 50139 1 5 9 50306 49694

1 1 4 49815 50185 1 4 7 50048 49952 1 7 9 49899 50101

1 3 4 49945 50055 1 5 7 50050 49950 1 8 9 50129 49871

1 1 5 49715 50285 1 6 7 50009 49991 1 1 10 49801 50199

1 2 5 50044 49956 1 1 8 49867 50133 1 3 10 50231 49769

1 3 5 50066 49934 1 3 8 50007 49993 1 7 10 50246 49754

1 4 5 49668 50332 1 5 8 50130 49870 1 9 10 49852 50148

1 1 6 50021 49980 1 7 8 50104 49896 1 1 11 49929 50071

Table 1.1: Counting the number of even and odd values of selected partition functions

k a0 b0 even odd k a0 b0 even odd k a0 b0 even odd

2 1 1 50299 49701 2 1 7 50362 49638 3 1 5 49606 50394

2 1 2 49696 50304 2 2 7 49971 50029 3 2 5 50475 49525

2 1 3 49581 50419 2 3 7 50110 49890 3 3 5 51020 48980

2 2 3 50013 49987 2 4 7 50333 49667 3 4 5 54063 45937

2 1 4 50059 49941 2 5 7 50201 49879 4 1 1 50084 49916

2 3 4 50001 49999 2 6 7 50695 49305 4 1 2 50235 49765

2 1 5 50333 49667 3 1 1 50286 49714 4 1 3 49385 50614

2 2 5 49809 50191 3 1 2 50066 49934 4 2 3 54628 45372

2 3 5 50043 49957 3 1 3 49931 50069 5 1 1 50202 49798

2 4 5 50540 49460 3 2 3 50459 49541 5 1 2 48596 51404

2 1 6 50134 49866 3 1 4 50283 49717 6 1 1 49869 50131

2 5 6 50174 49826 3 3 4 52350 47650 7 1 1 50456 49544

Table 1.2: Counting the numbers of even and odd values of selected partition functions.

We pose the following two conjectures.

7



Conjecture 1.1.3. For positive integers a0 6 b0 with (a0, b0) = 1, let pA1(a0,b0)(n) be as in

(1.3) with A1(a0, b0) defined in (1.2). Then, for b0 6= 2, pA1(a0,b0) is even (odd) approximately

half the time, i.e. for N ∈ N,

lim
N→∞

1

N
#{1 6 n 6 N : pA1(a0,b0)(n) is even} =

1

2
. (1.6)

It is clear from Table 1.1 that for b0 = 2 (hence a0 = 1) and k = 1, (1.6) is nowhere close

to being true. In fact, in this case by first applying Euler’s theorem (number of partitions

into distinct parts equals number of partitions into odd parts), and then Euler’s pentagonal

number theorem (modulo 2), we obtain that for some positive constant ν,

#{1 6 n 6 N : pA1(1,2) is odd} ∼ ν
√
N,

as N tends to infinity.

Conjecture 1.1.4. For positive integers a0, b0 and k with (a0, b0) = 1, a0 6 b0, and k >

2, let pAk(a0,b0)(n) be as in (1.3) with Ak(a0, b0) defined in (1.2). Then, pAk(a0,b0) is even

approximately half the time.

Notice that pAk(a0,b0)(n) equals zero for all n with 1 < n < ak0. Thus for “large” a0k,

one needs to compute this function for n up to a “large” number N before one can start to

witness this phenomenon, as is clear from the two tables above.

Note that after Conjecture 1.1.3 we discussed a case for which (1.6) is invalid. However,

Theorem 1.1.1 has no such exceptions, and our proof is uniform for all k and for all arithmetic

progressions.

8



1.2 Zeros

Let ζ(s) =
∑∞

n=1 n
−s, for s = σ + it, σ > 1 and t ∈ R, denote the Riemann zeta-function.

The analytic continuation of ζ(s) to a meromorphic function is achieved by the functional

equation

ξ(s) = ξ(1− s),

where, for any s ∈ C, the Riemann ξ-function is defined as

ξ(s) =
1

2
s(s− 1)π−s/2Γ

(
s

2

)
ζ(s).

Indeed, this continuation shows that ζ(s) has only one simple pole at s = 1 with residue

equal to 1. Moreover, it shows that ζ(s) = 0 for s = −2n for n ∈ N. These are called the

trivial zeros of ζ(s). For σ > 1, the Euler product is

ζ(s) =
∏
p

(1− p−s)−1,

where the product is taken over all primes p. This links the Riemann zeta-function to

multiplicative number theory [58, §1 and §2]. It is well understood from the work of Riemann

and von Mangoldt that the non-trivial zeros ρ = β+ iγ of ζ(s) are located inside the critical

strip 0 < β < 1; see [58, §3]. From the fact that Γ has no zeros, and has simple poles at the

trivial zeros of ζ(s), it follows that the zeros of ξ are the same as the non-trivial zeros of ζ.

The Riemann hypothesis states that all the non-trivial zeros of ζ(s) lie on the vertical line

Re(s) = 1/2.

Let N(T ) denote the number of zeros of ξ(s) in the rectangle 0 < σ < 1 and 0 < t ≤ T ,

each zero counted with multiplicity. It is well-known that

N(T ) =
T

2π

(
log

T

2π
− 1

)
+

7

8
+ S(T ) +O

(
1

T

)
, (1.7)
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where

S(T ) =
1

π
arg ζ

(
1

2
+ iT

)
� log T,

as T → ∞; see [58, §9]. Let us now define N (0)(T ) to be the number of zeros of ζ(s) with

β = 1
2

on 0 < t ≤ T , where each zero is counted with multiplicity. Another reformulation of

the Riemann hypothesis is that N (0)(T ) = N(T ) for all values of T . We further set

κ = lim inf
T→∞

N (0)(T )

N(T )
.

In 1942, Selberg [54] showed that κ > 0, and later Levinson [33] showed that κ > 0.34.

This was improved by Conrey [19] to κ > 0.4088. The history of these results and the current

best bound can be found in [13, 26].

For a positive integer k, let ξ(k)(s) denote the kth derivative of the Riemann ξ-function.

The Riemann hypothesis implies that for any positive integer k, all the zeros of ξ(k)(s) lie on

the critical line. Suppose, in analogy to the above, that Nk(T ) denotes the number of zeros

β + iγ of ξ(k)(s) in the rectangle 0 < β < 1 and 0 < γ ≤ T and that N
(0)
k (T ) denotes the

number of zeros of ξ(k)(s) with β = 1
2

and 0 < γ ≤ T . A result of Conrey [17] states that if

T is positive and sufficiently large, L = log T
2π

and U = TL−10, then

lim inf
T→∞

κk(T, U) = 1 +O(k−2) (1.8)

as k →∞, where

κk(T, U) :=
N

(0)
k (T + U)−N (0)

k (T )

Nk(T + U)−Nk(T )
.

Moreover, in [18], following the observations from Anderson [6] and Heath-Brown [30], Con-

rey showed that these zeros are simple. The coefficient of k−2 was computed in [17] for zeros

with multiplicity and in [18] for simple zeros. It was remarked that the proportion of simple

zeros is always a bit smaller than that of zeros with potential multiplicity. This is due to the

fact that a polynomial of degree one was used in the computation of κ, as it will be argued
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below. Nonetheless, from (1.8) as the order of the derivative of ξ increases, the proportion

of zeros on the critical line increases to one.

Rezvyakova [49, 50] computed the coefficients of k−2 in 2005 and her result holds uni-

formly for the parameters T and k. In particular, she showed that the coefficient of k−2

could be taken to be 3
5

for both simple as well as higher order zeros.

In the late 1990’s, Selberg considered combinations of Dirichlet L-functions on the critical

line. More specifically, let

L(s, χ) =
∞∑
n=1

χ(n)n−s,

be a Dirichlet L-function of modulus q and where χ denotes a primitive character. The

functional equation of L(s, χ) is given by

φ(s, χ) = επ−s/2qs/2Γ

(
s+ a

2

)
L(s, χ) = φ(1− s̄, χ),

where

a =
1− χ(−1)

2
and |ε| = 1;

see e.g. [22]. If we have n distinct even characters (a similar result holds for odd characters)

and form the function

F (s) =
n∑
j=1

cjεjq
s/2
j L(s, χj),

for real cj 6= 0, then

π−s/2Γ

(
s

2

)
F (s)

is real for s = 1
2

+ it. In a series of his unpublished lectures, Selberg proved a beautiful result

on the zeros of F (s) in which he derived a formula analogous to (1.7) for F (s), and also

showed that N (0)(T, F ) > c(n)N(T, F ) for T > T0(F ), where c(n) is a positive constant that

depends on n only, and N(T, F ), N0(T, F ) are defined for F in the same spirit as before.
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Moreover, in those lectures, he mentions a conjecture that almost all the zeros have real part

equal to 1
2
.

To state our results, we need to introduce some further notation. For a fixed positive

integer M , let us fix a vector ~c = (c0, c1, . . . , cM) such that cj ∈ R for all j and define

c∗ :=
M∑
j=0

(−1)jcj
4j

. (1.9)

For all large numbers T , we set

L = log
T

2π
and U = TL−10.

For each positive integer a, consider the function

G~c,a,T (s) :=
M∑
j=0

cj(−1)j

L2j
ξ(a+2j)(s). (1.10)

The presence of Lj has the effect of balancing the size of ξ(j)(s) in G~c,a,T (s), so that no one

particular term dominates the entire combination.

Inspired by the earlier mentioned results of Selberg and the techniques of Levinson and

Conrey, our object of study here is the number of zeros of G~c,a,T (s) on the critical line σ = 1
2

with imaginary part between T and T + U . With this in mind, we define the counting

functions N~c,a(T ) and N
(0)
~c,a (T ) by

N~c,a(T ) =
∑

G~c,a,T (ρ)=0
0<Im ρ≤T

1, and N
(0)
~c,a (T ) =

∑
G~c,a,T (ρ)=0

Re ρ=1/2
0<Im ρ≤T

1.

Moreover, the proportion of zeros of G~c,a,T (s) in the above rectangle on the critical line is

12



given by the quotient

κ~c,a,T :=
N

(0)
~c,a (T + U)−N (0)

~c,a (T )

N~c,a(T + U)−N~c,a(T )
. (1.11)

Now we are ready to state our main result.

Theorem 1.2.1. For any positive integer M , fix a vector ~c = (c1, · · · , cM) with real com-

ponents such that c∗ as defined in (1.9) is nonzero. Also, for G~c,a,T (s) defined in (1.10), let

κ~c,a,T be as in (1.11). Then

κ~c,a,T ≥ 1− e2 + 2

16a2
+O~c

(
1

a3

)
, (1.12)

as a and T tend to infinity such that

a ≤ 1

2

log log T

log log log T
.

The above result maintains the uniformity achieved in [49, 50] and it shows that up to

imposing that c∗ defined in (1.9) is nonzero, the first two leading terms on the right-hand

side of (1.12) are not affected by the specific coefficients cj of the combination.

1.3 Apéry numbers

In his surprising proof [7], [59] of the irrationality of ζ(3), R. Apéry introduced the sequence

A(n) =
n∑
k=0

(
n

k

)2(
n+ k

k

)2

, (1.13)
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which has since been referred to as the Apéry sequence. It was shown by I. Gessel [28,

Theorem 1] that, for any prime p, these numbers satisfy the Lucas congruences

A(n) ≡ A(n0)A(n1) · · ·A(nr) (mod p), (1.14)

where n = n0 +n1p+ · · ·+nrpr is the expansion of n in base p. Initial work of F. Beukers [12]

and D. Zagier [65], which was extended by G. Almkvist, W. Zudilin [5] and S. Cooper [20],

has complemented the Apéry numbers with a, conjecturally finite, set of sequences, known

as Apéry-like, which share (or are believed to share) many of the remarkable properties of

the Apéry numbers, such as connections to modular forms [56], [11], [3] or supercongruences

[10], [21], [15], [45], [46], [47]. After briefly reviewing Apéry-like sequences in Section 5.1,

we prove in Sections 5.2 and 5.3 our main result that all of these sequences also satisfy the

Lucas congruences (1.14). For all but two of the sequences, we establish these congruences

in Section 5.2 by extending a general approach provided by R. McIntosh [36]. The main

difficulty, however, lies in establishing these congruences for the sequence (η). For this

sequence, and to a lesser extent for the sequence s18, we require a much finer analysis, which

is given separately in Section 5.3. This is based on the joint work [35] with Armin Straub.

In the approaches of Gessel and McIntosh, binomial sums, like (1.13), are used to derive

Lucas congruences. Other known approaches to proving Lucas congruences for a sequence

C(n) are based on expressing C(n) as the constant terms of powers of a Laurent polynomial

or as the diagonal coefficients of a multivariate algebraic function. However, neither of these

approaches is known to apply, for instance, to the sequence (η). In the first approach, one

seeks a Laurent polynomial Λ(x) = Λ(x1, . . . , xd) such that C(n) is the constant term of

Λ(x). In that case, we write C(n) = ct Λ(x)n for brevity. If the Newton polyhedron of Λ(x)

has the origin as its only interior integral point, the results of K. Samol and D. van Straten
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[53] (see also [37]) apply to show that C(n) satisfies the Dwork congruences

C(prm+ n)C(bn/pc) ≡ C(pr−1m+ bn/pc)C(n) (mod pr) (1.15)

for all primes p and all integers m,n > 0, r > 1. The case r = 1 of these congruences is

equivalent to the Lucas congruences (1.14) for the sequence C(n). For instance, in the case

of the Apéry numbers (1.13), we have [57, Remark 1.4]

A(n) = ct

[
(x+ y)(z + 1)(x+ y + z)(y + z + 1)

xyz

]n
,

from which one may conclude that the Apéry numbers satisfy the congruences (1.15), gener-

alizing (1.14). Similarly, for the sequence (η), one may derive from the binomial sum (5.15),

using G. Egorychev’s method of coefficients [24], that its nth term is given by ct Λ(x, y, z)n,

where

Λ(x, y, z) =

(
1− 1

xy(1 + z)5

)
(1 + x)(1 + y)(1 + z)4

z3
.

However, Λ(x, y, z) is not a Laurent polynomial, and it is unclear if and how one could

express the sequence (η) as constant terms of powers of an appropriate Laurent polynomial.

As a second general approach, E. Rowland and R. Yassawi [52] show that Lucas congruences

hold for a certain class of sequences that can be represented as the diagonal Taylor coefficients

of 1/Q(x)1/s, where s > 1 is an integer and Q(x) ∈ Z[x] is a multivariate polynomial. Again,

while such representations are known for some Apéry-like sequences, see, for instance, [57],

no suitable representations are available for the sequences (η) or s18.

It was conjectured by S. Chowla, J. Cowles and M. Cowles [16] and subsequently proven

by I. Gessel [28] that

A(n) ≡

 1, if n is even,

5, if n is odd,
(mod 8). (1.16)
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The congruences (1.16) show that the Apéry numbers are periodic modulo 8, and it

was recently demonstrated by E. Rowland and R. Yassawi [52] that they are not eventually

periodic modulo 16, thus answering a question of Gessel. The Apéry numbers are also

periodic modulo 3 (see (5.40)) and their values modulo 9 are characterized by an extension

of the Lucas congruences [28]; see also the recent generalizations [32] of C. Krattenthaler

and T. Müller, who characterize generalized Apéry numbers modulo 9. As an application

of the Lucas congruences established in Sections 5.2 and 5.3, we address in Section 5.4

the natural question to which extent results like (1.16) are true for Apéry-like numbers in

general. In particular, we show in Theorem 5.4.3 that the Almkvist–Zudilin numbers are

periodic modulo 8 as well.

The primes 2, 3, 7, 13, 23, 29, 43, 47, . . . do not divide any Apéry numberA(n), and E. Row-

land and R. Yassawi [52] pose the question whether there are infinitely many such primes.

While this question remains open, we offer numerical and heuristic evidence that a positive

proportion of the primes, namely, about e−1/2 ∼ 0.6065, do not divide any Apéry number. In

Section 5.5, we investigate the analogous question for other Apéry-like numbers, and prove

that Cooper’s sporadic sequences [20] behave markedly differently. Indeed, for any given

prime p, a fixed proportion of the last of the first p terms of these sequences is divisible by

p. In the case of sums of powers of binomial coefficients, such a result has been proven by

N. Calkin [14].
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Chapter 2

Parity for partitions into powers of a
fixed residue class

In this chapter, we give a proof of Theorem 1.1.1. The chapter consists of two sections, with

the first one containing two results needed to prove the main theorem in the later section.

2.1 Auxiliary results

In the first section, we prove two propositions which are later used in the proof, but are also

interesting in their own right. For brevity, we also set A = Ak(a0, b0), defined in (1.2).

For any positive integer l, and any set A ⊆ N, define

σA(l) :=
∑
d|l
d∈A

d.

Proposition 2.1.1. Let c be an odd positive integer such that c ≡ a0 (mod b0). Suppose that

for any positive integer B, there are distinct primes q1, . . . , qB, and a positive integer lj such

that for each j = 1, . . . , B,

qj > B + 1, q
lj
j ≡ 1 (mod b0),

c2k + j ≡ 0 (mod q
k(2lj−1)
j ), and c2k + j 6≡ 0 (mod q

2k(2lj−1)
j ). (2.1)

Then, σA(c2k) is odd, and σA(c2k + j) is even for all j = 1, . . . , B.
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Proof. Note that

σA(l) =
∑
d

d : d ∈ N, d|l, d = mk,m ≡ a0 (mod b0)

≡ #
{
d ∈ N : d|l, d is odd and d = mk,m ≡ a0 (mod b0)

}
(mod 2)

≡ #
{
m ∈ N : mk|l,m is odd and m ≡ a0 (mod b0)

}
(mod 2). (2.2)

Also, let l have the prime factorization

l = 2α0pα1
1 · · · pαrr ,

where p1, . . . , pr are distinct odd primes, α1, . . . , αr are positive integers, and α0 is a non-

negative integer. We consider the function fk : N→ N given by

fk(l) := p
[α1/k]
1 · · · p[αr/k]

r .

Therefore, using (2.2), we can rewrite σA(l) as

σA(l) ≡ # {m ∈ N : m ≡ a0 (mod b0),m|fk(l)} (mod 2). (2.3)

First, we show that σA(c2k + j) is even for each j = 1, . . . , B. Note that (2.1) implies the

exponent of qj in c2k + j is at least k(2lj − 1) but at most 2k(2lj − 1)− 1, i.e., the exponent

of qj in fk(c
2k + j) is exactly 2lj − 1. In other words, for fixed j ∈ {1, . . . , B}, there exists a

positive integer mj, coprime to qj, such that

fk(c
2k + j) = mjq

2lj−1
j . (2.4)
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Let dj be any divisor of fk(c
2k + j) satisfying dj ≡ a0 (mod b0). Therefore,

dj = d̃jq
βj
j ≡ a0 (mod b0),

for some d̃j coprime to qj, and 0 6 βj < 2lj. If βj < lj, then from (2.4), we see that d̃jq
βj+lj
j

also divides fk(c
2k + j), and

d̃jq
βj+lj
j 6= d̃jq

βj
j , and d̃jq

βj+lj
j = d̃jq

βj
j q

lj
j ≡ a0 (mod b0).

Similarly, if βj > lj, then djq
βj−lj
j ≡ a0 (mod b0), and is a factor of fk(c

2k + j). Thus the

divisors congruent to a0 (mod b0) of fk(c
2k + j) appear in pairs, and from (2.3) we conclude

that σA(c2k + j) is even for all j = 1, . . . , B.

Next, we show that σA(c2k) is odd. Note that since c is odd, fk(c
2k) = c2. Let u be any

divisor of fk(c
2k) so that u ≡ a0 (mod b0). Then, uv = c2 for some v ∈ N. Also,

a2
0 ≡ c2 = uv ≡ a0v (mod b0).

Since (a0, b0) = 1, we conclude that v0 = a0 (mod b0). Moreover, u 6= v unless u = c.

Therefore, once again by (2.3), we deduce that σA(c2k) is odd. This completes the proof of

the proposition.

Proposition 2.1.2. For fixed positive integers k, a0, and b0 such that (a0, b0) = 1, let

A :=
{
mk : m ∈ N,m ≡ a0 (mod b0)

}
. For any positive integer l, let

σA(l) :=
∑
d|l
d∈A

d.

Then, for any fixed positive integer B, there exists an odd positive integer lB such that σA(lB)

is odd, and σA(lB + j) is even for j = 1, . . . , B.
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Proof. Notice that once the existence of c, qj for j = 1, . . . , B, as in Proposition 2.1.1,

are established, we can simply let lB = c2k, and conclude the proof by invoking Proposition

2.1.1. Therefore, we only need to show that for each j = 1, . . . , B, there exist distinct primes

q1, . . . , qB, and positive integers lj satisfying

qj > B + 1, q
lj
j ≡ 1 (mod b0), c ≡ a0 (mod b0), (2.5)

c2k + j ≡ 0 (mod q
k(2lj−1)
j ), and c2k + j 6≡ 0 (mod q

2k(2lj−1)
j ). (2.6)

We construct qj’s inductively. For a fixed j ∈ {1, . . . , B}, assume q1, . . . , qj−1 are already

chosen, and set q0 := 1. Define

Kj :=
∏
pr -j

pr−prime
pr|B!2kb0q1...qj−1

pr.

Fix any prime factor qj of K2k
j + j. Then,

• (qj, j) = 1, for if qj|j, then qj|Kj, which further implies qj = pr - j,

• qj > B + 1, as qj 6 B implies qj divides Kj, and hence j,

• qj /∈ {q1, . . . , qj−1},

• qj - k,

• (qj, b0) = 1.

Thus, for each j = 1, . . . , B, the congruence x2k+j ≡ 0 (mod qj) has a solution; for example,

one can take x = Kj. Also, let lj ∈ N so that q
lj
j ≡ 1 (mod b0).

Next, for a fixed j ∈ {1, . . . , B}, we define a polynomial gj(x) ∈ Z[x] by

gj(x) := x2k + j + q
k(2lj−1)
j . (2.7)
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Then,

gj(Kj) ≡ 0 (mod qj), and g′j(Kj) = 2kK2k−1
j 6= 0 (mod qj).

Therefore, by Hensel’s Lemma, for mj ∈ N, there exists βj,mj ∈ Z such that

βj,mj ≡ Kj (mod qj), and gj(βj,mj) ≡ 0 (mod q
mj
j ).

In particular, set mj = k(2lj − 1) + 1. Thus using (2.7) in the last congruence above, we

deduce that βj,k(2lj−1)+1 satisfies

β2k
j,k(2lj−1)+1 + j ≡ 0 (mod q

k(2lj−1)
j ), and β2k

j,k(2lj−1)+1 + j 6≡ 0 (mod q
k(2lj−1)+1
j ).

Using the Chinese Remainder Theorem, choose a positive integer c such that for all

j = 1, . . . , B,

• c ≡ 1 (mod 2),

• c ≡ a0 (mod b0),

• c ≡ βj,k(2lj−1)+1 (mod q
k(2lj−1)+1
j ).

Note that if b0 is even, a0 must be odd, and therefore c ≡ a0 (mod b0) implies that c ≡

1 (mod 2), and thus the Chinese Remainder Theorem does apply here. This implies that

there exists an odd positive integer c such that c ≡ a0 (mod b0), and for j = 1, . . . , B,

c2k + j ≡ β2k
k(2lj−1)+1 + j (mod q

k(2lj−1)+1
j ).

This shows the existence of c and qj’s as claimed in (2.5) and (2.6). From the discussion in

the beginning of the proof, we are done.
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2.2 Proof of Theorem 1.1.1

Now, we give a proof of Theorem 1.1.1.

Proof. Recall that the generating function for pA(n) is given by

FA(q) :=
∞∑
n=0

pA(n)qn =
∏
m∈A

1

(1− qm)
.

Consider the formal power series F (X) in the variable X defined as

F (X) :=
∏
m∈A

1

1−Xm
.

Taking the logarithmic derivative of F (X) and then multiplying both sides by X, we obtain

X
F ′(X)

F (X)
=
∑
m∈A

m
∞∑
n=1

Xmn

=
∞∑
l=1

X l
∑
m|l
m∈A

m

=
∞∑
l=1

σA(l)X l

=: H(X), (2.8)

where for any positive integer l, σA(l) :=
∑

d|l,d∈A d. Therefore,

XF ′(X) = F (X)H(X). (2.9)

Claim 2.2.1. pA(n) is odd for infinitely many n ∈ N.

Proof. Assume the contrary, and let, if possible, pA(n) be odd only for ni, i = 1, . . . , r,

for some fixed positive integer r. Also, without loss of generality, we can assume that
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n1 < · · · < nr. Therefore,

F (X) ≡
r∑
j=1

Xnj (mod 2).

Using this in (2.9), and the definition of H(X) in (2.8), we see that

r∑
j=1

njX
nj ≡

r∑
j=1

Xnj

∞∑
l=1

σA(l)X l (mod 2). (2.10)

For B = nr in Proposition 2.1.2, we obtain a positive integer lnr such that σA(lnr) is odd,

and σA(lnr + j) is even for all j = 1, . . . , nr. Therefore, comparing the coefficients of X lnr+nr

on both sides of (2.10) yields

0 ≡
r∑
j=1

l+nj=lnr+nr

σA(l) (mod 2)

≡
r∑
j=1

σA(lnr + nr − nj) (mod 2)

≡ σA(lnr) ≡ 1 (mod 2),

which is a contradiction. This completes the proof of Claim 2.2.1.

Claim 2.2.2. pA(n) is even for infinitely many n ∈ N.

Proof. Assume that pA(n) is even only for n = m1 < · · · < mv for some fixed positive integer

v. Therefore,

F (X) ≡
v∑
j=1
n 6=mj

Xn (mod 2).

In other words,

F (X) ≡
∞∑
n=0

Xn +
v∑
j=1

Xmj (mod 2).
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This implies

(1−X)F (X) ≡ 1− (1−X)
v∑
j=1

Xmj (mod 2). (2.11)

Differentiating, and then multiplying both sides by (1−X), we observe that

(1−X)2F ′(X)− (1−X)F (X) ≡ (1−X)
v∑
j=1

Xmj − (1−X)2

v∑
j=1

mjX
mj−1 (mod 2).

Using (2.11), we find that the above congruence becomes

(1−X)2F ′(X) ≡ 1− (1−X)2

v∑
j=1

mjX
mj−1 (mod 2). (2.12)

Also, recall from (2.9),

X(1−X)2F ′(X) = (1−X)2F (X)H(X).

Employing this along with (2.8), (2.11) and (2.12), we obtain

X − (1−X)2

v∑
j=1

mjX
mj ≡ (1−X)

{
1− (1−X)

v∑
j=1

Xmj

}
∞∑
l=1

σA(l)X l (mod 2)

≡

{
1 +X +

v∑
j=1

Xmj +
v∑
j=1

Xmj+2

}
∞∑
l=1

σA(l)X l (mod 2).

Let B = mv + 2 in Proposition 2.1.2. So, we can find a positive integer lmv+2 so that

σA(lmv+2) is odd, while σA(lmv+2 + j) is even for j = 1, . . . ,mv + 2. Hence, a comparison of
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coefficients of X lmv+2+mv+2 on both sides above yields

0 ≡ σA(lmv+2 +mv + 2) + σA(lmv+2 +mv + 1) +
v∑
j=1

σA(lmv+2 +mv + 2−mj)

+
v∑
j=1

σA(lmv+2 +mv −mj) (mod 2)

≡ σA(lmv+2) (mod 2),

which is a contradiction. Thus, pA(n) is even for infinitely many positive integers n, which

completes the proof of Claim 2.2.2.

From Claim 2.2.1 and Claim 2.2.2, we obtain Theorem 1.1.1.

25



Chapter 3

Asymptotics for partitions into
powers of a fixed residue class

In this chapter, we prove two lemmas to be used in the following section in order to compute

an asymptotic formula for pAk(a0,b0)(n), as n → ∞. Recall that for a fixed integer k > 2,

pAk(a0,b0)(n) denotes the number of partitions of n with parts in Ak(a0, b0), where for integers

k, a0, and b0 satisfying 0 < a0 6 b0, (a0, b0) = 1, and k > 2,

A := Ak(a0, b0) =
{
mk ∈ N : m ≡ a0 (mod b0)

}
. (3.1)

Also, recall that the generating function Ψ(z;A) is given by

Ψ(z;A) =
∞∑
n=0

pA(n)zn =
∏
m∈A

1

1− zm
, |z| < 1. (3.2)

For |z| < 1, define the function Φ(z;A) by

Ψ(z;A) = exp(Φ(z;A)). (3.3)

Therefore,

Φ(z;A) =
∞∑
j=1

∑
m∈A

zjm

j
, |z| < 1. (3.4)

Throughout the remainder of the chapter, we use the standard notation e(x) for exp(2πix)

for any real number x.
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3.1 Auxiliary results

In the current section, we state and prove the results used in the proof of Theorem 1.1.2 in

the next section.

Lemma 3.1.1. For each sufficiently large positive real number X, and Θ ∈ [−3/(8πX), 3/(8πX)],

define

∆ = (1 + 4π2Θ2X2)−1/2.

Let R := R(k,X, θ) be defined as

R =
(2(π∆)k+1X)1/k

2k2
. (3.5)

Let ρ = e−1/X , and for a0, b0 ∈ N with 1 6 a0 6 b0 and (a0, b0) = 1, let β0 = a0/b0. For

any complex number s = σ + it, let ζ(s) and ζ(s, β0) denote the Riemann zeta function and

the Hurwitz zeta function, respectively. Then, for A and Φ(z;A) defined in (3.1) and (3.4),

respectively, as X →∞,

Φ(ρe2πiΘ;A) =
1

b0k
ζ(1 + 1/k)Γ(1/k)

(
X

1− 2πiXΘ

)1/k

+ ζ(0, β0) log

(
b−k0 X

1− 2πiXΘ

)
+ kζ ′(0, β0) +

bk0
2
ζ(−k, β0)

(
1− 2πiXΘ

X

)
+

bR/2c∑
m=1

b2mk
0

(2m)!
ζ(−2m+ 1)

× ζ(−2km, β0)

(
1− 2πiXΘ

X

)2m

+ Ok,a0,b0

(
exp

(
−(2(4π/5)k+1X)1/k

2k

))
,

where the expression immediately before the error term occurs only when β0 6= 1/2, 1.

Proof. The series for the Riemann zeta function ζ(s + 1) and the Hurwitz zeta function

ζ(ks, β0) converge absolutely and uniformly for Re s > 1/k+ δ for any fixed positive number
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δ. Therefore, using Mellin’s transform, we have, for a real number c > 1/k,

Φ(ρe(Θ);A) =
∞∑
j=1

∞∑
m=1,

m≡a0 (mod b0)

ρjm
k
e(jmkΘ)

j

=
∞∑
j=1

∞∑
m=1,

m≡a0 (mod b0)

1

j
exp

(
−jmk

X
+ 2πijmkΘ

)

=
∞∑
j=1

∞∑
m=1,

m≡a0 (mod b0)

1

j
exp

(
−jmk 1− 2πiXΘ

X

)

=
1

2πi

∞∑
j=1

1

j

∞∑
m=1,

m≡a0 (mod b0)

∫ c+i∞

c−i∞

(
jmk 1− 2πiXΘ

X

)−s
Γ(s) ds

=
1

2πi

∫ c+i∞

c−i∞
b−ks0

(
1− 2πiXΘ

X

)−s
Γ(s)

∞∑
j=1

1

js+1

∞∑
m=0

1

(m+ a0/b0)ks
ds.

We notice that the series above can be written in terms of the Riemann and the Hurwitz

zeta functions. Thus,

Φ(ρe(Θ);A) =
1

2πi

∫ c+i∞

c−i∞
b−ks0 ζ(s+ 1)ζ(ks, β0)Γ(s)

(
X

1− 2πiXΘ

)s
ds

=:
1

2πi

(∫ c−iR

c−i∞
+

∫ c+iR

c−iR
+

∫ c+i∞

c+iR

)
Js ds, (3.6)

where R is defined in (3.5). We compute these integrals using the residue theorem. For

the middle integral on the far right side of (3.6), consider the rectangle Rm with vertices

−R± iR and c± iR. Therefore, by the residue theorem,

1

2πi

∫ c+iR

c−iR
Js ds =

∑
poles in Rm

ResJs −
(∫ −R+iR

c+iR

+

∫ −R−iR
−R+iR

+

∫ c−iR

−R−iR

)
Js ds. (3.7)

In order to compute the first integral on the far right side of (3.6), for any real number L > 0,

we define the rectangle RL with vertices −R− i(R+L),−R− iR, c− iR, and c− i(R+L).
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Thus, by the residue theorem,

1

2πi

∫ c−iR

c−i(R+L)

Js ds =
∑
poles
in RL

ResJs −

(∫ −R−iR
c−iR

+

∫ −R−i(R+L)

−R−iR
+

∫ c−i(R+L)

−R−i(R+L)

)
Js ds. (3.8)

Finally, for the last integral on the far right side of (3.6), for any real number U > 0, we

define the rectangle RU given by the vertices −R+ iR,−R+ i(R+U), c+ i(R+U), c+ iR.

Once again, by the residue theorem,

1

2πi

∫ c+i(R+U)

c+iR

Js ds =
∑
poles
in RU

ResJs −

(∫ −R+i(R+U)

c+i(R+U)

+

∫ −R+iR

−R+i(R+U)

+

∫ c+iR

−R+iR

)
Js ds. (3.9)

The rectangles Rm, RL, and RU are chosen so that the integrand has no zeros on their sides.

The only possible poles of the integrand Js are at s = 1/k, 0,−1, and −2j, for each

positive integer j. Thus, all the poles are real, which means Js is holomorphic within the

rectangles RL and RU . Therefore, the sum of the residues in (3.8) and (3.9) is zero. Thus,

by letting L and U tend to infinity, we have

∫ c−iR

c−i∞
Js ds = −

∫ −R−iR
c−iR

Js ds− lim
L→∞

(∫ −R−i(R+L)

−R−iR
+

∫ c−i(R+L)

−R−i(R+L)

)
Js ds, (3.10)

and

∫ c+i∞

c+iR

Js ds = −
∫ c+iR

−R+iR

Js ds− lim
U→∞

(∫ −R+i(R+U)

c+i(R+U)

+

∫ −R+iR

−R+i(R+U)

)
Js ds. (3.11)

Using (3.7), (3.10), and (3.11) in (3.6), we deduce that

Φ(ρe(Θ);A) = − lim
L→∞

(∫ −R−i(R+L)

−R−iR
+

∫ c−i(R+L)

−R−i(R+L)

)
Js ds+

∑
poles in Rm

ResJs

−
∫ −R−iR
−R+iR

Js ds− lim
U→∞

(∫ −R+i(R+U)

c+i(R+U)

+

∫ −R+iR

−R+i(R+U)

)
Js ds. (3.12)
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Now, we show that the two integrals along the horizontal lines above approach zero as

U and L approach infinity. Also,

∣∣∣∣( X

1− 2πiXΘ

)s∣∣∣∣ = (X∆)σ exp(−tφ),

where φ is the argument of Xs/(1 − 2πiXΘ)s. Therefore, tan(π/2 − φ) = 1/(2πXΘ), and

sin(π/2 − φ) = ∆. Using estimates for the sine function, we see that π/2 − φ > ∆, and

therefore,

∣∣∣∣( X

1− 2πiXΘ

)s∣∣∣∣ 6 (X∆)σ exp(|t|(π/2−∆)). (3.13)

Also, by Stirling’s formula in a vertical strip, for s = σ + it and α 6 σ 6 β,

|Γ(s)| � |s|σ−1/2 exp(−π|t|/2). (3.14)

Combining this with (3.13) and standard bounds for ζ(s) and ζ(s, β0) (for example, see [58,

p. 81], [8, p. 270]), we deduce that there exist constants B and C such that

∫ c−i(R+L)

−R−i(R+L)

Js ds� (R + L)Be−(R+L)∆+R,

and

∫ −R+i(R+U)

c+i(R+U)

Js ds� (R + U)Ce−(R+U)∆+R,

which both tend to zero as L and U approach infinity, since R and ∆ are both fixed, positive
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real numbers. Therefore, from (3.12),

Φ(ρe(Θ);A) = −
∫ −R−i∞
−R−iR

Js ds+
∑

poles in Rm

ResJs −
∫ −R−iR
−R+iR

Js ds−
∫ −R+iR

−R+i∞
Js ds

=
∑

poles in Rm

ResJs +

(∫ −R−iR
−R−i∞

+

∫ −R+iR

−R−iR
+

∫ −R+i∞

−R+iR

)
Js ds. (3.15)

Next, we find bounds for the integrand Js in order to estimate the integrals in (3.15).

Using the functional equation (in its asymmetric form) for the Riemann zeta function [22,

p. 73], [58, p. 16] and the functional equation for the Hurwitz zeta function [22, p. 72], [58,

p. 37], we have

ζ(s+ 1)ζ(ks, β0) = 4

{
sin

(
πks

2

) ∞∑
m=1

cos(2mπβ0)

m1−ks + cos

(
πks

2

) ∞∑
m=1

sin(2mπβ0)

m1−ks

}

× (2π)(k+1)s−1 cos(πs/2)ζ(−s)Γ(−s)Γ(1− ks). (3.16)

Using the functional equation and reflection formula for the gamma function,

Γ(1− ks) = −ks Γ(−ks), −s sin(πs)Γ(−s)Γ(s) = π,

we can write (3.16) in the form

ζ(s+ 1)ζ(ks, β0)Γ(s) = 2k(2π)(k+1)sζ(−s)Γ(−ks)cos(πs/2)

sin(πs)

×
∞∑
m=1

{
sin

(
πks

2

)
cos(2mπβ0)

m1−ks + cos

(
πks

2

)
sin(2mπβ0)

m1−ks

}
.

(3.17)

Also note that

cos(πs/2)

sin(πs)
sin(πks/2) =

sin(πks/2)

2 sin(πs/2)
� e(k−1)|t|π/2,
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and

cos(πs/2)

sin(πs)
cos(πks/2) =

cos(πks/2)

2 sin(πs/2)
� e(k−1)|t|π/2.

Using these bounds along with (3.13), (3.14), and (3.17), for the integrand Js in (3.15), we

find that

Js � (2π)(k+1)σk−kσ|s|−1/2−kσ(X∆)σe−∆|t|

=

(
kk

(2π)k+1X∆

)R
|R + it|−1/2+kRe−∆|t|, (3.18)

since σ = −R here. For the middle integral on the far right side of (3.15), we have |t| 6 R.

Therefore, using the foregoing estimates for the integrand Js, we arrive at

∫ −R+iR

−R−iR
Js ds�

(
kk

2πk+1X∆

)R
R−1/2+kR

∫ R

0

e−∆t dt

�
(

(2k2)k

2πk+1X∆

)R
R−1/2+kR

� exp

(
−(2(π∆)k+1X)1/k

2k

)
, (3.19)

where in the penultimate step above, we have used the definition of R. For the first and

the last integrals in (3.15), we have the inequality |t| > R. Therefore, invoking (3.18), and
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making a change of variable y = ∆t, we deduce that

(∫ −R−iR
−R−i∞

+

∫ −R+i∞

−R+iR

)
Js ds�

(
kk

2πk+1X∆

)R ∫ ∞
R

t−1/2+kRe−∆t dt

�
(

kk

2(π∆)k+1X

)R ∫ ∞
∆R

y−1/2+kRe−y dy

�
(

kk

2(π∆)k+1X

)R
Γ(kR + 1/2)

�
(

(2k2)k

2(π∆)k+1X

)R
e−kRRkR

� exp

(
−(2(π∆)k+1X)1/k

2k

)
, (3.20)

where in the penultimate step above, Stirling’s formula is invoked, and in the last step, we

have used the definition of R. Using the fact that ∆ > 4/5 when Θ lies in the interval

[−3/(8πX), 3/(8πX)], and the estimates in (3.19) and (3.20) in (3.15), we obtain

Φ(ρe(Θ);A) =
∑

poles in Rm

ResJs + O

(
exp

(
−(2(4π/5)k+1X)1/k

2k

))
. (3.21)

Now, we compute the residues in the above sum. From [62, p. 267], we know that for

any non-negative integer m,

ζ(−m,β0) = −Bm+1(β0)

m+ 1
, (3.22)

where Bm(x) denotes the Bernoulli polynomial of degree m, and in particular, Bm(0) is the

mth Bernoulli number. In particular,

ζ(0, β0) =
1

2
− β0. (3.23)

Nörlund showed that B2m+1(x) has only two real zeros, 1/2 and 1, in the interval (0, 1].

Therefore, for any positive integer m, (3.22) implies that ζ(−2m,β0) is zero if and only if β0
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equals 1/2 or 1.

Therefore, for β0 = 1/2, 1, and any positive integer m, because Γ(s) has a simple pole and

ζ(s, β0) has a simple zero at s = −2m, the product Γ(s)ζ(s, β0) has a removable singularity

at s = −2m. Moreover, from (3.23), we know that ζ(0, β0) = 0 if and only if β0 = 1/2.

Also, for any positive integer m, the product Γ(s)ζ(s+ 1) has a removable singularity at

s = −2m+ 1 because of the trivial zeros of the Riemann zeta function at the negative even

integers.

Thus for β0 = 1/2, and the integrand Js, defined in (3.6), the only poles are at s =

1/k, 0,−1, and all are simple. For β0 = 1, there is a double pole at s = 0, and there are

simple poles at s = 1/k and −1. And for β0 6= 1/2, 1, there is a double pole at s = 0, and

there are simple poles at s = 1/k,−1, and −2l 6 R, where l is any positive integer.

The residue of Js for the pole at s = 1/k is given by

ResJs|s=1/k =
ζ(1 + 1/k)

b0k
Γ(1/k)

(
X

1− 2πiXΘ

)1/k

. (3.24)

The function ζ(s+ 1)Γ(s) has a Laurent expansion of the form, (see [58, p. 16])

(
1

s
− γ +

∞∑
j=1

ajs
j

)(
1

s
+ γ +

∞∑
j=1

bjs
j

)
=

1

s2
+
∞∑
j=0

cjs
j,

where aj, bj and cj are constants, and γ is Euler’s constant. Thus, the residue of Js for the

pole at s = 0 can be written as

ResJs|s=0 = ζ(0, β0) log

(
X

1− 2πiXΘ

)
− kζ(0, β0) log b0 + kζ ′(0, β0).

Also, the residue at s = −1 is given by

ResJs|s=−1 = −bk0ζ(0)ζ(−k, β0)

(
1− 2πiXΘ

X

)
.
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Lastly, for each positive integer l 6M , where M is defined in the statement of this lemma,

the residue at the pole at s = −2l lying inside the rectangle Rm is given by

ResJs|s=−2l =
b2lk

0

(2l)!
ζ(−2l + 1)ζ(−2kl, β0)

(
1− 2πiXΘ

X

)2l

. (3.25)

Recall from the discussion above that ζ(−2kl, β0) equals zero for β0 = 1/2, 1. Therefore, for

these values of β0, the expression on the right side of (3.25) has the value zero. With this in

mind, and using (3.24)–(3.25) in (3.21), we obtain the desired result.

Lemma 3.1.2. For any two natural numbers q and l with (q, l) = 1, define

S(k; q, l) :=

q∑
m=1

e(lkm/q).

Suppose that X,Θ ∈ R, X > 1, u ∈ Z, q ∈ N, (u, q) = 1 and θ = Θ − u/q. Then, for any

ε > 0, and Φ(z;A) defined in (3.4), as X →∞,

Φ(ρe(Θ);A) =
1

b0

Γ(1 + 1/k)

(
X

1− 2πiXθ

)1/k ∞∑
j=1

S(k; qj, uj)

j1+1/kqj

+ Oε

(
q1/2+ε(1 + |θ|1/2X1/2) logX

)
,

where qj = q/(q, j), uj = uj/(q, j).

Proof. Recall the definition of Φ(z;A) given in (3.4),

Φ(ρe(Θ);A) =
∞∑
j=1

1

j

∞∑
n=1

n≡a0 (mod b0)

e−jn
k/Xe(jnkΘ).

Employing

e−jn
k/X =

∫ ∞
n

kxk−1jX−1e−jx
k/X dx (3.26)
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in the above sum, we obtain

Φ(ρe(Θ);A) =
∞∑
j=1

1

j

∫ ∞
0

kxk−1jX−1e−jx
k/X

∑
n6x

n≡a0 (mod b0)

e(jnkΘ) dx. (3.27)

Using trivial bounds, integrating by parts, and lastly, making the substitution y = jxk/X,

we obtain

∫ ∞
0

kxk−1jX−1e−jx
k/X

∑
n6x

n≡a0 (mod b0)

e(jnkΘ) dx

�
∫ ∞

0

x(kxk−1jX−1e−jx
k/X) dx

=

∫ ∞
0

e−jx
k/X dx =

(
X

j

)1/k ∫ ∞
0

e−y
k

dx�
(
X

j

)1/k

.

Therefore, invoking the estimates above in (3.27), for a fixed positive integer N , we find that

∞∑
j=N+1

1

j

∫ ∞
0

kxk−1jX−1e−jx
k/X

∑
n6x

n≡a0 (mod b0)

e(jnkΘ) dx

�
∞∑

j=N+1

1

j

(
X

j

)1/k

�
(
X

N

)1/k

.

Using this in (3.27), we have

Φ(ρe(Θ);A) = ΣN + O

((
X

N

)1/k
)
, (3.28)

where

ΣN :=
N∑
j=1

1

j

∫ ∞
0

kxk−1jX−1e−jx
k/X

∑
n6x

n≡a0 (mod b0)

e(jnkΘ) dx. (3.29)

By a variation of Theorem 4.1 [60, p. 43], (which can be justified using the Euler-Maclaurin
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summation formula and standard techniques), we can write, for any real number ε > 0,

∑
n6x

n≡a0 (mod b0)

e(jnkΘ) =
S(k; qj, uj)

b0qj

∫ x

0

e(jγkθ) dγ + Oε

(
q

1/2+ε
j (1 + xkj|θ|)1/2

)
.

Employing the above estimate in (3.29), and applying (3.26) after interchanging the order

of integration below, we obtain

ΣN =
1

b0

N∑
j=1

S(k; qj, uj)

jqj

∫ ∞
0

kxk−1jX−1e−jx
k/X

∫ x

0

e(jγkθ) dγ dx+ Oε (EN(X))

=
1

b0

N∑
j=1

S(k; qj, uj)

jqj

∫ ∞
0

e−jγ
k/Xe(jγkθ) dγ + Oε (EN(X)) , (3.30)

with

EN(X) :=
N∑
j=1

q
1/2+ε
j

j

∫ ∞
0

kxk−1jX−1e−jx
k/X(1 + xkj|θ|)1/2 dx

�
N∑
j=1

q
1/2+ε
j

j

(
1 +

∫ ∞
0

j|θ|kxk−1

2
√
xkj|θ|

e−x
kj/X√

1 + 1/(xkj|θ|)
dx

)

�
N∑
j=1

q
1/2+ε
j

j

(
1 +

k

2

√
j|θ|

∫ ∞
0

xk/2−1e−x
kj/X dx

)
, (3.31)

where in the second step, we have integrated by parts. Using the substitution y = jxk/X in

the integral above, we deduce that

∫ ∞
0

xk/2−1e−x
kj/X dx = (X/j)1/kk−1

∫ ∞
0

(yX/j)1/2−1/ke−yy1/k−1 dy

=
1

k

(
X

j

)1/2 ∫ ∞
0

y−1/2e−y dy =
1

k

√
πX

j
.
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Using this in (3.31), we see that

EN(X)�
N∑
j=1

q
1/2+ε
j

j
(1 +

√
πX|θ|/4)

� q1/2+ε(1 +
√
|θ|X) logN. (3.32)

We now turn our attention to the main term of the expression on the far right side of

(3.30). First, we rewrite the integrand there as

e−jγ
k/Xe(jγkθ) = exp(−jγkX−1(1− 2πiXθ)),

and set

z = (jγkX−1|1− 2πiXθ|eiφ)1/k,

where φ is the argument of 1− 2πiXθ, and |φ| 6 π/2. This gives

∫ ∞
0

e−jγ
k/Xe(jγkθ)) dγ =

∫ ∞
0

exp(−jγkX−1e(jγkXθ)) dγ

=

(
X

j(1− 2πiXθ)

)1/k ∫
L
e−z

k

dz, (3.33)

where L is the ray {z = ueiφ/k : 0 6 u <∞}. By Cauchy’s theorem, the integral along L is

given by

∫
L
e−z

k

dz =

∫ ∞
0

e−u
k

du

=
1

k

∫ ∞
0

t
1
k
−1e−t dt =

1

k
Γ

(
1

k

)
.
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Combining this evaluation along with (3.33), (3.30), and (3.32), we obtain

ΣN =
1

b0k
Γ

(
1

k

)(
X

1− 2πiXθ

)1/k N∑
j=1

S(k; qj, uj)

j1+1/kqj

+ Oε

(
q1/2+ε(1 +

√
|θ|X) logN +

(
X

N

)1/k
)
. (3.34)

Since |S(k; qj, uj)| 6 qj, for each j, we have

1

b0k
Γ

(
1

k

)(
X

1− 2πiXθ

)1/k ∞∑
j=N

S(k; qj, uj)

j1+1/kqj
�
(
X

N

)1/k

.

Using this in (3.34), we conclude that

ΣN =
1

b0k
Γ

(
1

k

)(
X

1− 2πiXθ

)1/k ∞∑
j=1

S(k; qj, uj)

j1+1/kqj

+ Oε

(
q1/2+ε(1 +

√
|θ|X) logN +

(
X

N

)1/k
)
.

Setting N = bXc in the above expression and invoking (3.28), we obtain the desired result.

To obtain an upper bound for the contribution from the minor arcs, we first prove the

following lemma.

Lemma 3.1.3. For X defined in (1.4), and m in (3.38), let ρ = e−1/X , Θ ∈ m. Then for

Φ(z;A), defined in (3.4),

Φ(ρe(Θ);A)�ε X
1/k−21−k/k+ε.
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Proof. Let K be a positive integer. As in the proof of Lemma 3.1.2, we have

Φ(ρe(Θ)) =
K∑
j=1

1

j

∫ ∞
0

kxk−1jX−1e−x
kj/X

∑
n6x

n≡a0 (mod b0)

e(jnkΘ) dx+ O
(
(X/K)1/k

)

=
K∑
j=1

1

j

∫ ∞
0

kxk−1jX−1e−x
kj/X

m=b(x−a0)/b0c∑
m=0

e(jΘ(a0 + b0m)k) dx

+ O
(
(X/K)1/k

)
. (3.35)

For each j, we use Dirichlet’s approximation theorem to choose uj ∈ Z>0, qj ∈ N, so that

∣∣∣∣jbk0mkΘ− uj
qj

∣∣∣∣ 6 q−1
j X1/k−1, and qj 6 X1−1/k.

By Weyl’s inequality [60, Lemma 2.5],

m=b(x−a0)/b0c∑
m=0

e(jΘ(a0 + b0m)k)�ε x
1+ε−2−(k+1)

+ x1+εq−2−(k−1)

j + x1+ε(qj/x
k)2−(k−1)

.

Note that for any λ > 0, an integration by parts gives

∫ ∞
0

xλ(jkxk−1X−1e−x
kj/X) dx�

(
X

j

)λ/k
. (3.36)

Also, since Θ /∈M, we have jbk0m
kqj > X1/k. Furthermore, recall that qj 6 X1−1/k. Invoking
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(3.36), and using these bounds for qj in (3.35), we conclude that

K∑
j=1

1

j

∫ ∞
1

kxk−1jX−1e−x
kj/X

m=b(x−a0)/b0c∑
m=0

e(jΘ(a0 + b0m)k) dx

�e

K∑
j=1

1

j

(X
j

) 1+ε
k
− 1
k2k−1

+

(
X

j

) 1+ε
k

q−2−(k−1)

j +

(
X

j

) 1+ε
k
− 1

2k−1

q2−(k−1)

j


�e X

1+ε
k
− 1

k2k−1

K∑
j=1

(
j−1− 1+ε

k
+ 1

k2k−1 + j−1− 1+ε
k

+ 1

k2k−1

)
+

(
X

K

)1/k

�e X
1
k

+ε− 1

k2k−1 +

(
X

K

)1/k

.

Letting K approach infinity, we obtain the desired bounds.

3.2 Proof of Theorem 1.1.2

In this section, we give a proof of Theorem 1.1.2. The proof relies on the Hardy-Littlewood

circle method. First, we write the function pA(n) as an integral, i.e., by (3.2), (3.3), and

Cauchy’s theorem,

pA(n) =

∫ 1

0

ρ−n exp(Φ(ρe(Θ);A)− 2πinΘ) dΘ

=

∫
U
ρ−n exp(Φ(ρe(Θ);A)− 2πinΘ) dΘ, (3.37)

where in the last step, using the periodicity of the integrand, we have replaced the unit

interval (0, 1] by the unit interval U = (−X−1+1/k, 1 − X−1+1/k], with X as in (1.4). Now,

we define the major and the minor arcs. For u, q ∈ N with (u, q) = 1, define the major arcs

by

M(q, u) = {Θ ∈ U : |Θ− u/q| 6 q−1X1/k−1},
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and let

M = ∪16u6q6X1/kM(q, u).

The minor arcs m are defined to be the complement of the major arcs in the interval U , i.e.,

m = U \M. (3.38)

3.2.1 Main contribution from part of a major arc

First, we compute the integral in (3.37) over the sub-interval [−3/(8πX), 3/(8πX)], a portion

of the major arc M(1, 0), i.e., we consider

∫ 3/(8πX)

−3/(8πX)

ρ−n exp(Φ(ρe(Θ);A)− 2πinΘ) dΘ. (3.39)

By Lemma 3.1.1,

ρ−n exp(Φ(ρe(Θ);A)) = ρ−n exp(Ξ̃(ρe(Θ);A))

(
1 + Ok,a0,b0

(
exp

(
−(2(4π/5)k+1X)1/k

2k

)))
,

(3.40)
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where

Ξ̃(ρe(Θ);A) =
1

b0k
ζ(1 + 1/k)Γ(1/k)

(
X

1− 2πiXΘ

)1/k

+ ζ(0, β0) log

(
b−k0 X

1− 2πiXΘ

)
+ kζ ′(0, β0) +

bk0
2
ζ(−k, β0)

(
1− 2πiXΘ

X

)
+

bR/2c∑
m=1

b2mk
0

(2m)!
ζ(−2m+ 1)

× ζ(−2km, β0)

(
1− 2πiXΘ

X

)2m

=
1

b0k
ζ(1 + 1/k)Γ(1/k)

(
X

1− 2πiXΘ

)1/k

+ ζ(0, β0) log

(
b−k0 X

1− 2πiXΘ

)
+ kζ ′(0, β0) +

bk0
2
ζ(−k, β0)

(
1− 2πiXΘ

X

)
+

M−1∑
m=1

b2mk
0

(2m)!
ζ(−2m+ 1)

× ζ(−2km, β0)

(
1− 2πiXΘ

X

)2m

+ Ok,a0,b0

(
1

X2M−1

)
=: Ξ(ρe(Θ);A) + Ok,a0,b0

(
1

X2M−1

)
, (3.41)

with

R =
(2(π∆)k+1X)1/k

2k2
, ∆ = (1 + 4π3Θ2X2)−1/2,

and a fixed positive integer M satisfying M 6 R/2. This can be seen by combining the fact

that ∆ > 4/5 for Θ ∈ [−3/(8πX), 3/(8πX)], and that M 6 (2(4π/5)k+1X)1/k/(4k2) as per

the remark following the statement of Theorem 1.1.2. Also, from Lemma 3.1.1, note that

the terms (including the error term) in (3.41) involving M disappear when β0 equals 1/2 or

1.

Thus, using (3.41), we can rewrite exp(Φ(ρe(Θ);A)) in (3.40) as

ρ−n exp(Φ(ρe(Θ);A)) = ρ−n exp(Ξ(ρe(Θ);A))

(
1 + O

(
exp

(
−(2(4π/5)k+1X)1/k

2k

))

+ Ok,a0,b0

(
1/X2M−1

))
, (3.42)
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Also,

X

1− 2πiXΘ
= X∆eiφ,

where φ = arg(1 + 2πiXΘ). Note that 0 < |φ| 6 π/2, so 0 < cos(φ/k) < 1. Hence,

∣∣∣∣∣
(

X

1− 2πiXΘ

)1/k
∣∣∣∣∣ = (X∆)1/k. (3.43)

Therefore, for the first error term in (3.42), we note that, by (3.41) and (3.43),

ρ−n exp(Ξ(ρe(Θ);A)) exp

(
−(2(4π/5)k+1X)1/k

2k

)
= Xζ(0,β0) exp

(
n

X
+

1

b0k
ζ

(
k + 1

k

)
Γ

(
1

k

)
(X∆)1/k +

bk0
2
ζ(−k, β0)(X∆)−1

+
M∑
m=1

b2mk
0

(2m)!
ζ(−2m+ 1)ζ(−2km, β0)(X∆)−2m − 1

2k
(2(4π/5)k+1X)1/k

)

� Xζ(0,β0) exp

(
n

X
+

1

b0k
ζ

(
k + 1

k

)
Γ

(
1

k

)
X1/k − δX1/k

)
, (3.44)

where δ := 1
2k

(2(4π/5)k+1)1/k > 0. Similarly, for the second error term in (3.42), we have

ρ−n exp(Ξ(ρe(Θ);A))X−2M+1 �k,a0,b0 X
−2M+1 exp

(
n

X
+

1

b0k
ζ

(
k + 1

k

)
Γ

(
1

k

)
X1/k

)
.

(3.45)

Therefore, by (3.44), (3.45), (3.39), and (3.42), we deduce that

∫ 3/(8πX)

−3/(8πX)

ρ−n exp(Φ(ρe(Θ);A))− 2πinΘ) dΘ

= ρ−n
∫ 3/(8πX)

−3/(8πX)

exp(Ξ(ρe(Θ)))− 2πinΘ) dΘ

+ Ok,a0,b0

(
Xζ(0,β0) exp

(
n

X
+

1

b0k
ζ

(
k + 1

k

)
Γ

(
1

k

)
X1/k − δX1/k

))
+ Ok,a0,b0

(
X−2M+1 exp

(
n

X
+

1

b0k
ζ

(
k + 1

k

)
Γ

(
1

k

)
X1/k

))
. (3.46)
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We now turn our attention to the main term in (3.46). Since |Θ| < 1/(2πX), we can

rewrite the expression

Ξ(ρe(Θ);A)− 2πinΘ

in the integrand as a power series in Θ by expanding the terms in (3.41) using the binomial

formula and the Taylor series expansion for the logarithm. Using the definition of X in (1.4),

we note that the coefficient of Θ in this power series is equal to zero. Hence, with Y defined

in (1.5), the main term in (3.46) is given by

ρ−n
∫ 3/(8πX)

−3/(8πX)

exp(Ξ(ρe(Θ);A))− 2πinΘ) dΘ

= ρ−neC
∫ 3/(8πX)

−3/(8πX)

exp(−Y (2πXΘ)2 +G(Θ)) dΘ

=: I, (3.47)

where

C :=
1

b0k
ζ

(
k + 1

k

)
Γ

(
1

k

)
X1/k + ζ(0, β0) log(b−k0 X) + kζ ′(0, β0) +

bk0
2
ζ(−k, β0)X−1

+
M∑
m=1

b2km
0

(2m)!
ζ(−2m+ 1)ζ(−2km, β0)X−2m, (3.48)

and

G(Θ) :=
∞∑
j=3

(ajY + bj)(2πiXΘ)j,

with

aj :=

(
j − 1 + 1/k

j

)(
1 + 1/k

2

)−1

,

bj := ζ(0, β0)

(
1

j
− aj

2

)
+

M∑
m=1

b2mk
0 ζ(−2m+ 1)ζ(−2mk, β0)

(2m)!X2m

((
2m

j

)
− aj

(
2m

2

))
.
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Note that since X is large, and M is a fixed positive integer,

bj = ζ(0, β0)

(
1

j
− aj

2

)
+ Ok,a0,b0

(
1

X

)
.

Thus,

bj
aj

= ζ(0, β0)

(
1

jaj
− 1

2

)
+ Ok,a0,b0

(
1

X

)
.

Also, jaj > 1 for any j > 3, and since ζ(0, β0) = 1/2 − β0 [8, p. 264], we deduce that

|ζ(0, β0)| 6 1/2, since 0 < β0 6 1. Hence,

∣∣∣∣ζ(0, β0)

(
1

jaj
− 1

2

)∣∣∣∣ 6 3

4
.

Therefore, for X large, we conclude that |bj/aj| 6 1, i.e., |bj| 6 |aj| for all j > 3.

We rewrite the integral on the right side in (3.47) as

ρne−CI =

∫ 3/(8πX)

−3/(8πX)

exp(−Y (2πXΘ)2 +G(Θ)) dΘ

=

∫ 3/(8πX)

0

(exp(G(Θ)) + exp(G(−Θ))) exp(−Y (2πXΘ)2) dΘ

= 2

∫ 3/(8πX)

0

R exp(G(Θ)− Y (2πXΘ)2) dΘ

=
1

2πX
√
Y

∫ 9Y/16

0

t−1/2e−t R exp(H(t)) dt, (3.49)

where in the last step, we made the substitution t = Y (2πXΘ)2, and where

H(t) :=
∞∑
j=3

ij(aj + bjY
−1)tj/2Y 1−j/2

=
2J+2∑
j=3

ij(aj + bjY
−1)tj/2Y 1−j/2 +

∞∑
j=2J+3

ij(aj + bjY
−1)tj/2Y 1−j/2

=: HJ(t) +
∞∑

j=2J+3

ij(aj + bjY
−1)tj/2Y 1−j/2, (3.50)
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for any fixed positive integer J . Note that for j > 2,

|b2j| 6 a2j 6 a4 =
6k2 + 5k + 1

12k2
.

Therefore, for 0 6 t 6 9Y/16, where Y is sufficiently large, and k > 2,

RHJ(t) = R

2J+2∑
j=3

ij(aj + bjY
−1)tj/2Y 1−j/2 =

J+1∑
j=2

(−1)j(a2jY + b2j)t
jY −j

6 a4(Y + 1)
2J+2∑
j=2

(
t

Y

)j
6 a4(Y + 1)

∞∑
j=2

(
t

Y

)j
=

6k2 + 5k + 1

12k2
(Y + 1)

(t/Y )2

1− t/Y

6
9

7
× 6k2 + 5k + 1

12k2
(1 + Y −1)t =

18k2 + 15k + 3

28k2
(1 + Y −1)t

=

(
18

28
+

15

28k
+

3

28k2

)
(1 + Y −1)t <

(
18

28
+

15

56
+

3

112

)
(1 + Y −1)t

=
105

112
(1 + Y −1)t <

105

112

(
1 +

1

105

)
t <

(
1− 1

2016

)
t, (3.51)

where now we assume, at least, that Y > 105. Note that by the definition of HJ(t) in (3.50),

as we let J →∞, HJ(t) approaches H(t). Thus, for a fixed positive real number Z < 9Y/16,

by (3.51),

∫ 9Y/16

Z

t−1/2e−tR exp(H(t)) dt 6
∫ 9Y/16

Z

t−1/2e−teRH(t) dt

6
∫ 9Y/16

Z

t−1/2e−t exp

(
t− t

2016

)
dt

� Z−1/2

∫ 9Y/16

Z

e−t/(2016) dt� Z−1/2e−Z/(2016).

We let Z = 2016J log Y in the above estimates to obtain

∫ 9Y/16

Z

t−1/2e−t R exp(H(t)) dt� Y −J .
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This, combined with (3.49) and (3.50), gives

2πX
√
Y ρne−CI =

∫ Z

0

t−1/2e−t R exp(H(t)) dt+ O
(
Y −J

)
=

∫ Z

0

t−1/2e−t R exp

(
HJ(t) +

∞∑
j=2J+3

ij(aj + bjY
−1)tj/2Y 1−j/2

)
dt

+ O
(
Y −J

)
. (3.52)

For 0 6 t 6 Z,

∞∑
j=2J+3

ij(aj + bjY
−1)tj/2Y 1−j/2 � tJ+3/2Y −1/2−J

1− (t/Y )1/2
� tJ+3/2Y −1/2−J .

Therefore,

exp

(
∞∑

j=2J+3

ij(aj + bjY
−1)tj/2Y 1−j/2

)
= 1 + O

(
tJ+3/2Y −1/2−J) .

Employing this in (3.52), we deduce that

2πX
√
Y ρne−CI =

∫ Z

0

t−1/2e−tR exp(HJ(t))
(
1 + O

(
tJ+3/2Y −1/2−J) ) dt. (3.53)

From (3.51), we see that

RHJ(t) <

(
1− 1

2016k2

)
t.

So, for the error term in (3.53), we find that

∫ Z

0

tJ+1e−t R exp(HJ(t))Y −1/2−J dt� Y −1/2−J
∫ ∞

0

e−t/(2016k2)tJ+1 dt� Y −J .

48



Using this in (3.53), we find that

2πX
√
Y ρne−CI =

∫ Z

0

t−1/2e−t R exp(HJ(t)) dt+ O
(
Y −J

)
=

∫ Z

0

t−1/2e−t R
∞∑
j=0

HJ(t)j

j!
dt+ O

(
Y −J

)
. (3.54)

Next, for 0 6 t 6 Z = 2016J log Y,

HJ(t) =
2J+2∑
j=3

ij(aj + bjY
−1)tj/2Y 1−j/2 �

∞∑
j=3

Y (t/Y )j/2 � Y −1/2t3/2 6 Y −1/4.

Therefore, ∣∣∣∣∫ Z

0

t−1/2e−t R(HJ(t)j) dt

∣∣∣∣ 6 Y −j/4.

This yields
∞∑

j=4J+4

1

j!

∫ Z

0

t−1/2e−tR(HJ(t)j) dt� Y −J .

Using this in (3.54), we obtain

2πX
√
Y ρne−CI =

∫ Z

0

t−1/2e−t R
4J+3∑
j=0

1

j!
HJ(t)j dt+ O

(
Y −J

)
. (3.55)

Recall from (3.50) that

HJ(t) =
2J+2∑
l=3

(al + blY
−1)Y 1−l/2(it1/2)l =

2J+2∑
l=3

(
al(Y

−1/2)l−2 + bl(Y
−1/2)l

)
(it1/2)l. (3.56)

So, for a fixed Y , HJ(t) can be viewed as a polynomial in it1/2 of degree 2J + 2 with real

coefficients. Therefore,

4J+3∑
j=0

1

j!
(HJ(t))j =

(2J+2)(4J+3)∑
r=0

fr(Y
−1/2)(it1/2)r, (3.57)
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where fr(x) is a real polynomial in x of degree not larger than r. Also, from (3.56) it is not

hard to verify that

f0(x) = 1, f1(x) = f2(x) = 0, and fr(0) = 0,

for r > 3, and the polynomial fr(x) is even (odd) when r is even (odd). So, fr(x) is indeed

a polynomial in Y −1 when r is even. Using these facts and (3.57) in (3.55), and replacing r

by 2r below, we conclude that

2πX
√
Y ρne−CI =

∫ Z

0

t−1/2e−t R

(2J+2)(4J+3)∑
r=0

fr(Y
−1/2)(it1/2)r dt+ O

(
Y −J

)
=

∫ Z

0

t−1/2e−t
(J+1)(4J+3)∑

r=0

(−1)rf2r(Y
−1/2)tr dt+ O

(
Y −J

)
=

(J+1)(4J+3)∑
r=0

(−1)rf2r(Y
−1/2)

∫ Z

0

tr−1/2e−t dt+ O
(
Y −J

)
=

(J+1)(4J+3)∑
r=0

αrY
−r
∫ Z

0

tr−1/2e−t dt+ O
(
Y −J

)
, (3.58)

for certain real numbers αr, with α0 = 1. Note that, since Z = 2016k2J log Y ,

∫ Z

0

tr−1/2e−t dt =

∫ ∞
0

tr−1/2e−t dt−
∫ ∞
Z

tr−1/2e−t dt

= Γ

(
r +

1

2

)
+ O

(
e−Z/2

∫ ∞
Z

tr−1/2e−t/2 dt

)
= Γ

(
r +

1

2

)
+ O

(
e−Z/2Γ

(
r +

1

2

))
= Γ

(
r +

1

2

)
+ O

(
Y −J

)
,
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since J is fixed. Using this in (3.58), we conclude that

2πX
√
Y ρne−CI =

(J+1)(4J+3)∑
r=0

(
αrY

−r (Γ(r + 1/2) + O
(
Y −J

))
+ O

(
Y −J

))
=

J−1∑
r=0

αrY
−rΓ

(
r +

1

2

)
+ Ok,a0,b0

(
Y −J

)
=
√
π +

J−1∑
r=1

αrY
−rΓ

(
r +

1

2

)
+ Ok,a0,b0

(
Y −J

)
, (3.59)

as α0 = 1. Since ρ = e−1/X , we deduce from (3.59) that

I =
1

2πX
√
Y

exp
( n
X

+ C
)(√

π +
J−1∑
r=1

αrY
−rΓ

(
r +

1

2

)
+ Ok,a0,b0

(
Y −J

))
.

Therefore, by (3.46) and (3.47),

∫ 3/(8πX)

−3/(8πX)

ρ−n exp(Φ(ρe(Θ);A)− 2πinΘ) dΘ

=
1

2πX
√
Y

exp
( n
X

+ C
)(√

π +
J−1∑
r=1

αrY
−rΓ

(
r +

1

2

)
+ Ok,a0,b0

(
1

Y J

)

+ Ok,a0,b0

(
1

X2M−1

))
. (3.60)

3.2.2 Estimates over remaining major arcs and minor arcs

The remainder of the proof consists of showing that the contributions from the remaining

major arcs and the minor arcs are negligible. In other words, it suffices to show that

∫
U\[−3/(8πX),3/(8πX)]

ρ−n exp(Φ(ρe(Θ);A)− 2πinΘ) dΘ�k,a0,b0 exp
( n
X

+ C
) 1

XY J+1/2
.

Suppose that Θ ∈M(1, 0) \ [−3/(8πX), 3/(8πX)], so that Θ > 3/(8πX). Thus,

∆ = (1 + 4π2Θ2X2)−1/2 6 4/5.
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Invoking Lemma 3.1.2 with q = 1 and u = 0, we see that, for Θ ∈M(1, 0),

θ = Θ, |Θ| 6 X1/k−1, qj = 1, uj = 0, S(k; qj, uj) = 1,

and

Φ(ρe(Θ);A) =
1

b0k
Γ

(
1

k

)(
X

1− 2πiXΘ

)1/k

ζ

(
1 +

1

k

)
+ Oε

(
(1 +X1/2|θ|1/2) logX)

)
=

1

b0k
Γ

(
1

k

)
ζ

(
k + 1

k

)
(X∆)1/k + Oε

(
X1/(2k)+ε

)
,

where ε > 0. Therefore, for ρ = e−1/X ,

exp(Φ(ρe(Θ);A)) = exp

(
1

b0k
Γ

(
1

k

)
ζ

(
k + 1

k

)
(X∆)1/k

)(
1 + Oε

(
X

1
2k

+ε
))

� exp

(
1

b0k
Γ

(
1

k

)
ζ

(
k + 1

k

)
(X∆)1/k

)
� exp

((
4

5

)1/k
1

b0k
Γ

(
1

k

)
ζ

(
k + 1

k

)
X1/k

)
. (3.61)

In other words,

exp(Φ(ρe(Θ);A))� exp

(
1

b0k
Γ

(
1

k

)
ζ

(
k + 1

k

)
X1/k − γkX1/k

)
=: exp(D),

where

γk :=
(
1− (4/5)1/k

) 1

b0k
Γ

(
1

k

)
ζ

(
k + 1

k

)
> 0.
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Now we rewrite D in terms of C defined in (3.48) as follows:

D = C − γkX1/k − ζ(0, β0) log(b−k0 X)− kζ ′(0, β0)− bk0
2
ζ(−k, β0)X−1

−
M∑
m=1

b2km
0

(2m)!
ζ(−2m+ 1)ζ(−2km, β0)X−2m

= C − γkX1/k − ζ(0, β0) log(b−k0 X)− kζ ′(0, β0) + Ok,a0,b0

(
1

X

)
.

Therefore,

exp(D) = exp
(
C − γkX1/k − ζ(0, β0) log(b−k0 X)− kζ ′(0, β0)

)(
1 + Ok,a0,b0

(
1

X

))
� Xζ(0,β0) exp

(
C − γkX1/k

)
� X−L exp(C),

for any L > 0, since X is large. Using this in (3.61), we have

exp(Φ(ρe(Θ);A))� X−L exp(C). (3.62)

Choose L large enough so that X−L � X−1Y −J−1/2, which is possible since X can be written

as a monomial in Y . Therefore, for ρ = e−1/X , we can conclude that

∫
M(1,0)\[−3/(8πX),3/(8πX)]

ρ−n exp(Φ(ρe(Θ);A)− 2πinΘ) dΘ�
exp

(
n
X

+ C
)

XY J+1/2
. (3.63)

We now investigate the integral on the remaining major arcs. Let Θ ∈ M(q, u) with

q > 1. So, q 6 X1/k, and θ := Θ− u/q satisfies |θ| 6 q−1X1/k−1. This gives

q1/2+ε(1 +X1/2|θ|1/2) logX � q1/2+εX1/2+ε|θ|1/2

� q1/2+εX1/2+εq−1/2X1/(2k)−1/2

� qεX1/(2k)+3ε � X1/(2k)+3ε.
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Once again, by an application of Lemma 3.1.2, we have

exp (Φ(ρe(Θ);A)) = exp

(
1

b0k
Γ

(
1

k

)(
X

1− 2πiXΘ

)1/k ∞∑
j=1

S(k; qj, uj)

j1+1/kqj

)

×
(
1 + Oε

(
X1/(2k)+ε

))
. (3.64)

Recall, from Lemma 3.1.2 the notation

S(k; qj, uj) =

qj∑
l=1

e(ukj l/qj), qj = q/(q, j), uj = uj/(q, j).

If q|j, then we have q = (q, j), i.e., qj = 1 and S(k; qj, uj) = 1. On the other hand, if q - j,

then qj > 1 and it is not difficult to see ([27, Lemma 1]) that there is a constant δk > 0 such

that |S(k; qj, uj)| 6 (1− δk)qj. Thus,

∞∑
j=1

|S(k; qj, uj)|
j1+1/kqj

=
∞∑
j=1
q|j

|S(k; qj, uj)|
j1+1/kqj

+
∞∑
j=1
q-j

|S(k; qj, uj)|
j1+1/kqj

6
∞∑
j=1
q|j

1− δk
j1+1/k

+
∞∑
j=1
q-j

1

j1+1/k

= (1− δk)(1− q−(k+1)/k)ζ(1 + 1/k) + q−(k+1)/kζ(1 + 1/k)

= (1− δk + δkq
−(k+1)/k)ζ(1 + 1/k)

< (1− δk/2)ζ(1 + 1/k),

where in the third step, we have used the fact that
∑

q|j j
−α = q−αζ(α), α > 1. Employing

this in (3.64), we have

exp (Φ(ρe(Θ);A))� exp

(
1

b0k
(1− δk/2)ζ(1 + 1/k)Γ(1/k)X1/k

)
� exp (C)X−1Y −J−1/2,
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which can be justified using the arguments as in (3.61) leading up to (3.62). Let M̃ =

M \M(1, 0). Then, the bounds above imply that for ρ = e−1/X ,

∫
M̃

ρ−n exp(Φ(ρe(Θ);A)− 2πinΘ)dΘ�
exp

(
n
X

+ C
)

XY J+1/2
. (3.65)

For Θ ∈ m, by Lemma 3.1.3,

Φ(ρe(Θ);A)� X
1
k
− 1

22017k .

Therefore, for some positive constant ν < 1,

Φ(ρe(Θ);A) 6 ν
1

b0k
Γ

(
1

k

)
ζ

(
k + 1

k

)
X1/k.

Using the argument in (3.61) leading to (3.62), we conclude that

∫
m

ρ−n exp(Φ(ρe(Θ);A)− 2πinΘ) dΘ� exp
( n
X

+ C
)
X−1Y −J−1/2. (3.66)

Combining (3.37), (3.60), (3.63), (3.65), and (3.66), we deduce that

pA(n) =
1

2πX
√
Y

exp
( n
X

+ C
)(√

π +
J−1∑
r=1

Γ(r + 1/2)
αr
Y r

+ O

(
1

Y J

)
+ O

(
1

X2M−1

))
.

Substituting the values of C and n/X from (3.48) and (1.4), respectively, in the foregoing

expression, we obtain the desired bounds for pA(n). The remark about the disappearance of

the terms involving M follows from our earlier discussion after (3.41). This completes the

proof of Theorem 1.1.2.
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Chapter 4

Zeros of normalized combinations of
the Riemann ξ-function on the critical
line
In this chapter, we prove Theorem 1.2.1 about the proportion of the zeros on the critical

line for the function G~c,a,T (s). Recall the definition

G~c,a,T (s) :=
M∑
j=0

cj(−1)j

L2j
ξ(a+2j)(s).

Observe that the zeros of G~c,a,T (s) are the same as the zeros of the function

F~c,a,T (s) := (i/L)aG~c,a,T (s),

where L := log(T/2π). We use the above function F~c,a,T (s) to perform all our computations.

Let N~c,a(T ) and N
(0)
~c,a (T ) be defined by

N~c,a(T ) := {ρ = β + iγ : F~c,a,T (ρ) = 0 and 0 < γ ≤ T} (4.1)

and

N
(0)
~c,a (T ) := {ρ = 1/2 + iγ : F~c,a,T (ρ) = 0 and 0 < γ ≤ T}. (4.2)
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4.1 Zero free region and N~c,a(T )

Lemma 4.1.1. The function F~c,a,T (s) satisfies the functional equation given below

F~c,a,T (s) = (−1)aF~c,a,T (1− s). (4.3)

Moreover, if all the zeros of F~c,a,T (s) satisfy σ1 ≤ Re(s) ≤ σ2 for some σ1, σ2 ∈ R, then so do

the zeros of all its higher order derivatives. In particular, if F~c,a,T (s) satisfies the Riemann

Hypothesis, then the same is true for all its higher order derivatives.

Proof. For any non-negative integer k, using the functional equation for ξ(s) = ξ(1− s) for

ξ(s), and differentiating it k times, we obtain

ξ(k)(s) = (−1)kξ(k)(1− s).

Using this in the definition of F~c,a,T (s), we have

F~c,a,T (s) =

(
i

L

)a M∑
j=0

cj(−1)j

L2j
ξ(a+2j)(s)

=

(
−i
L

)a M∑
j=0

cj(−1)j

L2j
ξ(a+2j)(1− s)

= (−1)aF~c,a,T (1− s).

This yields the functional equation (4.3) for F~c,a,T (s).

We use induction on the order of the derivative of F~c,a,T (s) to prove the statement on

zeros. By our assumption, the statement is true for the zeroth derivative. Let us assume it

is true for a derivative k = m for some nonnegative integer m. We now show that it also

holds for m+ 1. Using the Weierstrass product formula [22] for F
(m)
~c,a,T (s), which is an entire

function of order one, we can write its logarithmic derivative in terms of its zeros ρ = β+ iγ
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as
F

(m+1)
~c,a,T (s)

F
(m)
~c,a,T (s)

=
∑
ρ

1

s− ρ
.

Let β1 + iγ1 be a zero of the quotient on the left side of the above equation. For any zero

ρ1 = β1 + iγ1 of F
(m)
~c,a,T (s) with real part less than σ1, comparing the real parts on both sides

of the above equality, we see that

0 =
∑

ρ=β+iγ

β1 − β
(β1 − β)2 + (γ1 − γ)2

6 (β1 − σ1)
∑

ρ=β+iγ

1

(β1 − β)2 + (γ1 − γ)2
< 0,

which is absurd. This implies that β1 > σ1. In a similar way, we can prove that β1 6 σ2.

Hence, all zeros of F
(m+1)
~c,a,T (s) have real part between σ1 and σ2. This completes the induction

argument.

For σ1 = σ2 = 1/2, we obtain the particular case of the Riemann Hypothesis.

Next, we obtain a zero free region for the function F~c,a,T (s) before we find an asymptotic

formula for the number of zeros N~c,a(T ).

Lemma 4.1.2. Let s = σ + it with σ > 1 and T 6 t 6 T + U . For some β~c � a,

F~c,a,T (s) 6= 0 whenever σ~c > β~c or σ~c < 1− β~c.

Proof. Writing ξ(s) = ζ(s)H(s) with

H(s) :=
s

2
(s− 1)π−s/2Γ

(s
2

)
,

we can rewrite F~c,a,T (s) as

F~c,a,T (s) =
M∑
j=0

cji
a+2j

La+2j

a+2j∑
l=0

(
a+ 2j

l

)
ζ(a+2j−l)(s)H(l)(s),
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Using the relation [49, Lemma 2]

H(k)(s)

H(s)
=

(
1

2
log

s

2π
+ O

(
1

|t|

))k
+ O

(∣∣∣∣12 log
s

2π

∣∣∣∣k−2

|t|−1

)
, (4.4)

gives

F~c,a,T (s) = H(s)
M∑
j=0

cji
a+2j

La+2j

a+2j∑
l=0

(
a+ 2j

l

)
ζ(a+2j−l)(s)

×
((

1

2
log

s

2π
+O

(
1

t

))l
+O

(∣∣∣∣12 log
s

2π

∣∣∣∣l−2))
= H(s)

M∑
j=0

cji
a+2j

La+2j

a+2j∑
l=0

(
a+ 2j

l

)
ζ(a+2j−l)(s)

(
1

2
log

s

2π

)l(
1 + O

(
1

log2 t

))

= H(s)
M∑
j=0

cji
a+2j

La+2j

(
1

2
log

s

2π

)a+2j a+2j∑
l=0

(
a+ 2j

l

)
ζ(l)(s)

(
1

2
log

s

2π

)−l
×
(

1 + O

(
1

log2 t

))
= H(s)

M∑
j=0

cji
a+2j

La+2j

(
1

2
log

s

2π

)a+2j (
1 +Ra+2j,~c(s)

)
= H(s)

M∑
j=0

cji
a+2j

2a+2j

(
1 + O

(
1

log2 t

))
(1 +Ra+2j,~c(s))

= H(s)
ia

2a

M∑
j=0

cj(−1)j

4j

(
1 +Ra+2j,~c(s) + O

(
1

log2 t

))

= H(s)
ia

2a
c∗

(
1 +

1

c∗

M∑
j=0

cj(−1)j

4j
Ra+2j,~c(s) + O

(
1

log2 t

))
, (4.5)

where the remainder term Ra+2j,~c is given by

Ra+2j,~c(s) = ζ(s)− 1 +

a+2j∑
l=1

(
a+ 2j

l

)(
1

2
log

s

2π

)−l
ζ(l)(s)

(
1 +O

(
1

log2 t

))
+O

(
1

log2 t

)
.
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Also note that

|Ra+2j,~c(s)| 6
a+2j∑
l=0

(
a+ 2j

l

) ∣∣∣∣12 log
s

2π

∣∣∣∣−l (log 2)l

2β~c−2

(
1 + O

(
1

log2 t

))
+O

(
1

log2 t

)
6

1

2β~c−2

(
1 +

2 log 2

log(t/2π)

)a+2j (
1 + O

(
1

log2 t

))
+O

(
1

log2 t

)
6 2a+2j−β~c+2

(
1 + O

(
1

log2 t

))
+O

(
1

log2 t

)
<

1

2
,

for β~c � a. Using this in (4.5), we conclude that

F~c,a,T (s) 6= 0 for Re(s) > β~c,

The functional equation (4.3) yields,

F~c,a,T (s) = (−1)aF~c,a,T (1− s) 6= 0 for Re(s) < 1− β~c.

This completes the proof of the lemma.

In the following lemma, we compute the number of zeros of F~c,a,T (s) with imaginary part

between 0 and T for some fixed large real number T . More precisely, we have the following

lemma.

Lemma 4.1.3. For any positive real number T , let N~c,a(T ) be defined by (4.1). For large T ,

N~c,a(T ) =
T

2π
log

T

2π
− T

2π
+O~c (a log T ) .

Proof. The proof follows from the Hardy-Littlewood lemma using the standard arguments

as for the zeros of the Riemann zeta function ζ(s), and we omit the details.

We now prove an inequality involving zeros of a certain arithmetic function V (s) used in

the proof of Theorem 1.2.1 later.
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Lemma 4.1.4. Let T be large and L = log(T/2π), U = TL−10, and N~c,a(T ), N
(0)
~c,a (T ) be as

defined in (4.1) and (4.2), respectively. Then,

N
(0)
~c,a (T + U)−N (0)

~c,a (T ) ≥ N~c,a(T + U)−N~c,a(T )− 2N +O~c (a log T ) ,

where N denotes the number of zeros of V (s) inside the rectangle R with vertices 1/2 +

iT,B + iT,B + i(T + U) and 1/2 + i(T + U), for some B > β~c, of the function V (s) defined

by

V (s) :=
M∑
j=0

cji
a+2j

La+2j
Va+2j(s) and Va+2j(s) := Qa+2j(s)/H(s), (4.6)

where

Qk(s) :=
k∑

m=0

(
k

m

)
H(m)(s)

∫
0↙1

z−seπiz
2

2i sin(πz)
(− log z)k−m

(
1− log z

L

)
dz

+
k∑

m=0

(−1)m
(
k

m

)
H(m)(1− s)

∫
0↘1

zs−1e−πiz
2

2i sin(πz)
(log z)k−m

log z

L
dz,

and, as before, H(s) is given by

H(s) =
s(s− 1)

2
π−s/2Γ

(
s

2

)
.

The notation
∫

0↘1
denotes an integral along a line directed from the upper right to lower left

which is inclined at an angle of π/4 to the real axis and intersects it between 0 and 1; see

[55] and [58, §2.10].

Proof. For T ≤ t ≤ T + U and 0 ≤ σ ≤ A log log T for some constant A, define

P (s) := H(s)V (s)
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with V (s) and H(s) as defined in the statement of the lemma. Recall that

F~c,a,T (s) =
M∑
j=0

cji
a+2j

La+2j
ξ(a+2j)(s).

From [49, Lemma 8] and differentiating, we can rewrite F~c,a,T (s) as

F~c,a,T (s) = P (s) + P (1− s̄), (4.7)

We now use (4.4) and apply Lemma 9 from [49] to estimate the integrals appearing in the

sums in Qa+2j(s). Using (4.7), we find

N
(0)
~c,a (T + U)−N (0)

~c,a (T ) ≥ 1

π

(
argP

(
1

2
+ i(T + U)

)
− argP

(
1

2
+ iT

))
. (4.8)

Note that from (4.6), argP (s) = argH(s) + arg V (s). Lemmas 2 and 7 from [49] yield

1

π

(
argH

(
1

2
+ i(T + U)

)
− argH

(
1

2
+ iT

))
= N~c,a(T + U)−N~c,a(T ) +O~c (a log T ) .

Combining this along with (4.8), we have

N
(0)
~c,a (T + U)−N (0)

~c,a (T ) ≥ N~c,a(T + U)−N~c,a(T ) +
1

π
arg V

(
1

2
+ i(T + U)

)
− 1

π
arg V

(
1

2
+ iT

)
+O~c (a log T ) . (4.9)

From the argument principle applied to V (s) in the rectangular contour defined by R, we

obtain

1

π
var arg V

(
1

2
+ it)

)∣∣∣∣T+U

t=T

= −2N +O~c (a log T ) , (4.10)

where N is the number of zeros of V (s) inside the contour R and on its upper side, excluding
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the point 1/2+i(T+U). Combining (4.9) and (4.10), we complete the proof of the lemma.

4.2 An upper bound for N

In this section, we give an upper bound on N , the number of zeros of V (s) inside the contour

R as in Lemma 4.1.4.

Lemma 4.2.1. Let N be as in the previous lemma, Lemma 4.1.4. Then the following

inequality holds

N ≤ UL

4π
log

(
J

U

)
+O~c (aU) ,

where d∗ := (i/2)ac∗, and

J =
1

|d∗|2
M∑
j,l=0

b̃∑
r,m=ã

ia+2j(−i)a+2lcjclc̃rc̃m
4a+j+l

×
∫ T+U

T

(
BjψrBlψm + |χ∗|2DjψrDlψm + χ∗DjψrBlψm +Bjψrχ∗Dlψm

)
(σa + it) dt,

and for all a ≤ k ≤ b,

Bk(s) :=
∑

n≤
√
T/(2π)

bk(n)

ns
:=

∑
n≤
√

T
2π

(
1− log n

L

)(
1 +

πi

2L
− 2 log n

L

)k
n−s,

Dk(s) :=
∑

n≤
√
T/(2π)

dk(n)

n1−s :=
∑

n≤
√

T
2π

log n

L

(
2 log n

L
+
πi

2L
− 1

)k
ns−1,

χ∗(t) = eei(
π
4
−t log( t

2πe)),

with y = T 1/2L−20 and constants c̃r so that
∑b̃

r=ã c̃r = 1, and

ψu(s) :=
∑
n≤y

au(n)

ns
:=
∑
n≤y

µ(n)

n1/L

(
log y/n

log y

)u
n−s for all ã ≤ u ≤ b̃. (4.11)
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Proof. We define the mollifier ψ(s) by

ψ(s) :=
b̃∑

r=ã

c̃rψr(s),

with ψr(s) defined as in (4.11). Then, N , the number of zeros of V (s) inside the contour

R, is bounded by the number of zeros of 1
d∗V (s)ψ(s) therein where ψ(s) is a mollifying

function which on average approximates the behavior of the inverse of the function F~c,a,T (s).

Therefore, in order to bound N , we bound the number of zeros of 1
d∗V (s)ψ(s). We apply

the Hardy-Littlewood lemma to 1
d∗V (s)ψ(s) on the rectangle Ω with vertices σa + iT, σ1 +

iT, σ1 + i(T +U) and, σa + i(T +U), where σ1 = logL/ log 2 and σa = 1/2− 1/L. This gives

2πi
∑

ρ=β+iγ

(β − σa) = −
∮

Ω

log

(
1

d∗
ψ(s)V (s)

)
ds, (4.12)

where the summation is performed over all the zeros ρ of V (s)ψ(s) inside Ω and on its upper

side. Using the definitions of V (s) from (4.6), d∗, and c∗, the fact that
∑b̃

r=ã c̃r = 1, and

estimates for the integral ∮
Ω

log

(
2

L

)k
ψk(s)Vk(s) ds

from [49, §3], we get approximations for the integrals in (4.12) along the right and horizontal

sides of the contour Ω. In fact,

∫
log

(
1

d∗
ψ(s)V (s)

)
ds = O~c

(
aUL−1

)
along the right vertical line, and satisfies O~c (σ2

1L) along the horizontal lines of Ω. Now the

number of zeros of the product V (s)ψ(s) in a larger domain Ω is greater than or equal to

the number of zeros of V (s) in a smaller domain R. Thus the imaginary part of the left
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hand side of (4.12) is at least N/L. Putting all these facts together, we conclude

N ≤ L

2π

∫ T+U

T

log

∣∣∣∣ 1

d∗
ψ(σa + it)V (σa + it)

∣∣∣∣ dt+O~c (aU)

Using log-concavity in the above integral, we get

N ≤ UL

2π
log

(
I

U

)
+O~c (aU) , (4.13)

where

I :=
1

|d∗|

∫ T+U

T

∣∣∣∣ψ(σa + it)V (σa + it)

∣∣∣∣ dt.
Now, we concentrate on the integral I. As in [49], with

χ(s) :=
H(1− s)
H(s)

,

we first write V (σa + it) as

V (σa + it) = B(σa + it) + χ(σa + it)D(σa + it),

where

B(σa + it) :=
M∑
j=0

cji
a+2j

La+2j

∑
n≤
√

t
2π

(
1− log n

L

)
n−σa−it

×
(

1

2
log

(
σa + it

2π

)
− log n+ O

(
1

|t|

))a+2j

,
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and

D(σa + it) :=
M∑
j=0

cji
a+2j

La+2j

∑
n≤
√

t
2π

log n

L
nσa+it−1

×
(

log n− 1

2
log

(
1− σa − it

2π

)
+ O

(
1

|1− t|

))a+2j

.

We rewrite B(σa + it) as

B(σa + it) =
M∑
j=0

cji
a+2j

La+2j

∑
n≤
√

t
2π

(
1− log n

L

)
n−σa−it

×
(

1

2
log

(
t

2π

)
+
iπ

4
− log n+ O

(
1

t

))a+2j

+O~c

(
(a+ 2j)T−3/4

(
L

2

)a+2j
)
.

Next we break the sum over n in the expressions for B(σa + it) above into three parts and

use approximations from [49, §3] to estimate each of them. Extracting 1
2

log
(
t

2π

)
out of the

sum over n and using the fact that L = log(T/2π), we get

B(σa + it) =
M∑
j=0

cji
a+2j

2a+2j

∑
n≤
√

T
2π

(
1 +

πi

2L
− 2 log n

L

)a+2j (
1− log n

L

)
n−σa−it

+
M∑
j=0

cji
a+2j

2a+2j

∑
n≤
√

T
2π

((
log(t/2π)

L
+
πi

2L
− 2 log n

L

)a+2j

−
(

1 +
πi

2L
− 2 log n

L

)a+2j

×
(

1− log n

L

)
n−σa−it

)
+

M∑
j=0

cji
a+2j

2a+2j

∑
√

T
2π
≤n≤
√

t
2π

(
log(t/2π)

L
+
πi

2L
− 2 log n

L

)a+2j

×
(

1− log n

L

)
n−σa−it +O~c

(
aT−3/4

)
. (4.14)

Note that the first sum over n in the above expression is indeed Bj(σa + it) as defined in the

statement of the lemma. From [49, §3], the squares of the integrals of the latter two inner
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sums over n inside B(σa + it) are estimated as

∫ T+U

T

∣∣∣∣ ∑
n≤
√

T
2π

((
log(t/2π)

L
+
πi

2L
− 2 log n

L

)a+2j

−
(

1 +
πi

2L
− 2 log n

L

)a+2j )

×
(

1− log n

L

)
n−σa−it

∣∣∣∣2 dt� (a+ 2j)2 U

L19
,

and

∫ T+U

T

∣∣∣∣ ∑
√

T
2π
≤n≤
√

t
2π

(
log(t/2π)

L
+
πi

2L
− 2 log n

L

)a+2j (
1− log n

L

)
n−σa−it

∣∣∣∣2 dt� U

L10
,

as well as

∫ T+U

T

|ψj(σa + it)|2 dt� UL.

Hence, on applying the Cauchy-Schwarz inequality for the latter two sums in (4.14), we

obtain

∫ T+U

T

ψ(σa + it)B(σa + it) dt (4.15)

=
b̃∑

r=ã

c̃r

M∑
j=0

cji
a+2j

2a+2j

∫ T+U

T

ψr(σa + it)Bj(σa + it) dt+O~c

(
U

L9/2

)
.

We perform an argument similar to B(σa + it) for D(σa + it) and consequently obtain,

∫ T+U

T

χ∗(t)ψ(σa + it)D(σa + it) dt

=
b̃∑

r=ã

c̃r

M∑
j=0

cji
a+2j

2a+2j

∫ T+U

T

χ∗(t)ψr(σa + it)Dj(σa + it) dt+O~c

(
U

L9/2

)
. (4.16)

Now for the other term in V (σa + it), we first estimate the function χ(σa + it) by adding
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and subtracting to it

χ∗(t) = ee1+i(π4−t log( t
2πe)).

This gives,

|χ(σa + it)| ≤ |χ∗(t)|+ |χ(σa + it)− χ∗(t)| ≤ |χ∗(t)|+ O
(
L−11

)
.

the Cauchy-Schwarz inequality along with (4.15) and (4.16), yields

I =
1

|d∗|

∫ T+U

T

∣∣∣∣ψ(σa + it)V (σa + it)

∣∣∣∣ dt
=

1

|d∗|

∫ T+U

T

∣∣∣∣ b̃∑
r=ã

c̃r

M∑
j=0

cji
a+2j

2a+2j
ψr(σa + it) (Bj(σa + it) + χ∗(t)Dj(σa + it))

∣∣∣∣ dt
+O~c

(
U

L9/2

)
.

Denote by J the double sum given by

J :=
U

|d∗|2
M∑
j,l=0

cjcli
a+2j(−i)a+2l

4a+j+l
Aj,l, (4.17)

where

Aj,l :=
1

U

∫ T+U

T

(
(Bj + χ∗Dj)

b̃∑
r=ã

c̃rψr(σa + it)

)((
Bl + χ∗Dl

) b̃∑
m=ã

c̃mψm(σa + it)

)
dt

=:
b̃∑

r,m=ã

c̃rc̃mEj,l,r,m, (4.18)

with

Ej,l,r,m :=
1

U

∫ T+U

T

(
BjψrBlψm + χ∗χ∗DjψrDlψm +Bjψrχ∗Dlψm + χ∗DjψrBlψm

)
dt.

(4.19)

68



Employing the Cauchy-Schwarz inequality and using the above notations, we get

I ≤
√
JU +O~c

(
U

L9/2

)
.

Thus, using the above inequality and (4.13), we conclude that the number of zeros is bounded

by

N ≤ UL

4π
log

(
J

U

)
+O~c (aU) ,

which completes the proof of the lemma.

4.3 Asymptotics for J/U

Lemma 4.3.1. With the notations from Lemma 4.2.1,

J

U
= 1 +

e2 + 2

16a2
+O~c

(
1

a3

)
.
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Proof. First, we consider the following integral appearing in J in Lemma 4.2.1, i.e.

∫ T+U

T

BjψrBlψm(σa + it) dt

= U
∑

n1,n2,n3,n4

n1,n2≤
√
T/2π

n3,n4≤y

bj(n1)bl(n2)ar(n3)am(n4)

(n1n2n3n4)σa

∫ T+U

T

(
n2n4

n1n3

)it
dt

= U
∑

n1,n2,n3,n4
n2n4=n1n3

n1,n2≤
√
T/2π

n3,n4≤y

bj(n1)bl(n2)ar(n3)am(n4)

(n2n4)2σa

+
∑

n1,n2,n3,n4
n2n4 6=n1n3

n1,n2≤
√
T/2π

n3,n4≤y

bj(n1)bl(n2)ar(n3)am(n4)

(n1n2n3n4)σa

(
(n2n4

n1n3
)i(T+U) − (n2n4

n1n3
)iT

log(n2n4

n1n3
)

)
.

(4.20)

Note that, bj(n1), bl(n2), ar(n3), am(n4) � 1, and σa = 1/2 − 1/L. This implies that the

second sum above in the last equality can be bounded by a constant multiple of

∑
n1,n2,n3,n4
n2n4 6=n1n3

n1,n2≤
√
T/2π

n3,n4≤y

1

(n1n2n3n4)1/2

1

| log
(
n2n4

n1n3

)
|
.

Rewriting n1n3 = m and n2n4 = n, we obtain that this sum can further be bounded as

∑
n1,n2,n3,n4
n2n4 6=n1n3

n1,n2≤
√
T/2π

n3,n4≤y

1

(n1n2n3n4)1/2

1

| log
(
n2n4

n1n3

)
|
�

∑
m,n≤y

√
T
2π

m 6=n

d(m)d(n)

(mn)1/2

1

| log(m/n)|
,

where d(n) denotes the number of positive divisors of n. Also, note that for any positive

ε > 0, we have d(m) = O (mε) = O (T ε). Let h = n −m. One may assume without loss of
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generality that m < n. This gives,

∑
m,n≤y

√
T
2π

m 6=n

d(m)d(n)

(mn)1/2| log(m/n)|
� T 2ε

∑
1≤m<n≤T 1/2+θ

1

(mn)1/2| log(m/n)|

� T 2ε
∑

2≤n≤T 1/2+θ

1≤h≤n−1

1

(n(n− h))1/2| log(1− h
n
)|

� T 2ε
∑

2≤n≤T 1/2+θ

1≤h≤n−1

n1/2

h(n− h)1/2

� T 2ε
∑

1≤h≤T 1/2+θ

1

h

∑
1+h≤n≤T 1/2+θ

1(
1− h

n

)1/2

� T 2ε+1/2+θ log2 T.

The first sum in the second equality in (4.20) can be written as

∑
n1,n2,n3,n4

n2n4=n1n3=n

n1,n2≤
√
T/2π

n3,n4≤y

bj(n1)bl(n2)ar(n3)am(n4)

(n2n4)2σa
(4.21)

=
∑

n≤y
√

T
2π

1

n2σa

( ∑
k1|n

n
√

2π
T
≤k1≤y

ar(k1)bj

(
n

k1

))( ∑
k2|n

n
√

2π
T
≤k2≤y

am(k2)bl

(
n

k2

))
.

We now reverse the order of summation so that the partial sums of bj(x)bl(x) on the inside

are fairly easier to handle. In order to do so, we let d = gcd(k1, k2) and n = k1k2
d
w, where

w ≤

√
T
2π
d

max(k1, k2)
.

Using the above relations and interchanging the sums over k1, k2 and n, we can rewrite the
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right-hand side of equation (4.21) as

∑
k1,k2≤y

ar(k1)am(k2)

(k1k2)2σa
d2σa

∑
w≤
√

T
2π

d
max(k1,k2)

bj

(
k2

d
w

)
bl

(
k1

d
w

)
w−2σa .

Therefore, employing this in (4.20), we obtain

∫ T+U

T

BjψrBlψm(σa + it) dt (4.22)

= U
∑

k1,k2≤y

ar(k1)am(k2)

(k1k2)2σa
d2σa

∑
w≤
√

T
2π

d
max(k1,k2)

bj

(
k2

d
w

)
bl

(
k1

d
w

)
w−2σa

+ O
(
T ε+1/2+θ log2 T

)
.

In a similar fashion, we can estimate the second term of the integral in J in Lemma 4.2.1 to

obtain

∫ T+U

T

χ∗χ∗DjψrDlψm(σa + it) dt

= e2U
∑

r1,r2≤y

ar(r1)am(r2)

r1r2

D2−2σa

×
∑

w≤

√
T
2πD

max(r1,r2)

dj

(r2

D
w
)
rl

(r1

D
w
)
w2σa−2 + O

(
T ε+1/2+θ log2 T

)
, (4.23)

where D = gcd(r1, r2). Next, one can see that the following integral from J in Lemma 4.2.1
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becomes

∫ T+U

T

χ∗DjψrBlψm(σa + it) dt

= e1+iπ/4
∑

n1,n2,n3,n4

n1,n2≤
√
T/2π

n3,n4≤y

dj(n2)bl(n1)ar(n3)am(n4)

(n1n3n4)σa(n2)1−σa

∫ T+U

T

e−it log( t
2πe)

(
n1n2n4

n3

)it
dt

= e1+iπ/4
∑

n1,n2,n3,n4

n1,n2≤
√
T/2π

n3,n4≤y

dj(n2)bl(n1)ar(n3)am(n4)

(n1n3n4)σa(n2)1−σa

∫ T+U

T

e
−it log

(
t

2πe

(
n3

n1n2n4

))
dt

= e1+iπ/4
∑
n3,n4
n3,n4≤y

ar(n3)am(n4)

(n3n4)σa

∑
n1,n2

n1,n2≤
√

T
2π

dj(n2)bl(n1)

nσa1 n
1−σa
2

∫ T+U

T

e
−it log

(
t

2πe

(
n3

n1n2n4

))
dt.

(4.24)

Using Lemma 3.4 from [33] for

T

2π
6
n1n2n4

n3

≤ T + U

2π
,

we have

∫ T+U

T

e
−it log

(
t

2πe

(
n3

n1n2n4

))
dt = 2π

(
n1n2n4

n3

)1/2

e
2πi

(
n1n2n4
n3

)
e−iπ/4 + E, (4.25)

where for T ′ = T or T ′ = T + U

E =


O (1) , if 2πn1n2n4

n3
≤ 3T

4
or 2πn1n2n4

n3
≥ 5T

4
.

O
(

T ′

T ′−2πr+T 1/2

)
, otherwise.

As in [33] and [49], when E = O (1), the four sums in (4.24) over n1, n2, n3, n4 times E gives

a contribution� L−10 and for the other case, it is� L−7. Substituting these error estimates
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in (4.24) and using (4.25), we have

∫ T+U

T

χ∗DjψrBlψm(σa + it) dt

= 2πe
∑
n3,n4
n3,n4≤y

ar(n3)am(n4)

n
σa+1/2
3 n

σa−1/2
4

∑
n1,n2

n1,n2≤
√

T
2π

T
2π

6n1n2n4
n3

≤T+U
2π

dj(n2)bl(n1)

n
σa−1/2
1 n

1/2−σa
2

e
2πi

(
n1n2n4
n3

)
+O~c

(
aU

L7

)
.

(4.26)

For the next step we split the above main term into two sums depending on whether
n2n4

n3

∈ N

or
n2n4

n3

/∈ N. The latter case contributes an error of O (L−8) to the sums over n1, n2, n3 and

n4. The former case can be examined in the following way. Let m∗ denote the gcd of n3 and

n4. When
n2n4

n3

∈ N, one has

n2 ≡ 0 mod
n3

m∗
.

Let n2 = n∗ n3

m∗
for some n∗ ∈ N. We first find the range of n∗ and n1. Since n1n2n4

n3
≤ T+U

2π

and n1 ≤
√

T
2π

, we have

n1 ≤
T + U

2π

n3

n2n4

=
(T + U)

2π

m∗

n∗n4

.

Thus,

n1 ≤ min

{√
T

2π
,
(T + U)

2π

m∗

n∗n4

}
,

and

n1 ≥
T

2π

n3

n2n4

=
T

2π

m∗

n∗n4

.

Using the above inequalities and the bounds n1, n2 ≤
√

T
2π

, we obtain the following inequal-

ities √
T

2π

m∗

n4

≤ T

2π

m∗

n1n4

≤ n2

n3

m∗ = n∗ =
n2

n3

m∗ ≤
√

T

2π

m∗

n3

.

The sum over n2 for which T+U
2π

m∗

n∗n4
>
√

T
2π

contributes an error term bounded by O (L−7)
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and so we consider only the terms for which

n1 ≤ min

(√
T

2π
,
(T + U)

2π

m∗

n∗n4

)
=

(T + U)

2π

m∗

n∗n4

.

We rewrite the sum in equation (4.26) as a sum over n∗ and n1 with the above bounds and

substitute n2 = n∗ n3

m∗
. This yields

∫ T+U

T

χ∗DjψrBlψm(σa + it) dt

= 2πe
∑
n3,n4
n3,n4≤y

ar(n3)am(n4)

n
σa+1/2
3 n

σa−1/2
4

∑
n1,n2

n1,n2≤
√

T
2π

T
2π

6n1n2n4
n3

≤T+U
2π

dj(n2)bl(n1)

n
σa−1/2
1 n

1/2−σa
2

e
2πi

(
n1n2n4
n3

)

= 2πe
∑

n3,n4≤y
n3≥n4

ar(n3)am(n4)m∗1/2−σa

n
σa+1/2
3 n

σa−1/2
4

∑
√

T
2π

m∗
n4
≤n∗≤
√

T
2π

m∗
n3

dj
(
n∗n3

m∗

)
n∗1/2−σan3

1/2−σa

×
∑

T
2π

m∗
n∗n4

≤n1≤ (T+U)
2π

m∗
n∗n4

bl(n1)

n1
σa−1/2

+ O

(
aU

L7

)
. (4.27)

Applying the mean value theorem for the function bl(x)

xσa−1/2 on the interval [n1,
T
2π

m∗

n∗n4
], we get

bl(n1)

n1
σa−1/2

= bl

(
T

2π

m∗

n∗n4

)(
T

2π

m∗

n∗n4

)1/2−σa
+ O

(
n1n

∗n4

TLm∗

)
.

Now, (
T

2π

)1/2−σa
= e and bl

(
T

2π

m∗

n∗n4

)
= dl

(
n∗n4

m∗

)
.

Therefore,

∑
T
2π

m∗
n∗n4

≤n1≤ (T+U)
2π

m∗
n∗n4

bl(n1)

n1
σa−1/2

= e
U

2π

(
m∗

n∗n4

)3/2−σa
dl

(
n∗n4

m∗

)
+ O

(
n∗n4

m∗L11

)
.
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Substituting these in equation (4.27), we obtain

∫ T+U

T

χ∗DjψrBlψm(σa + it) dt (4.28)

= e2U
∑

n3,n4≤y
n3≥n4

ar(n3)am(n4)m∗2−2σa

n3n4

∑
√

T
2π

m∗
n4
≤n∗≤
√

T
2π

m∗
n3

dj
(
n∗n3

m∗

)
dl
(
n∗n4

m∗

)
n∗2−2σa

+ O

(
aU

L7

)
.

A similar computation enables us to write

∫ T+U

T

χ∗BjψrDlψm(σa + it) dt (4.29)

= e2U
∑

n3,n4≤y
n3≤n4

ar(n3)am(n4)m∗2−2σa

n3n4

∑
√

T
2π

m∗
n3
≤n∗≤
√

T
2π

m∗
n4

dj
(
n∗n3

m∗

)
dl
(
n∗n4

m∗

)
n∗2−2σa

+ O

(
aU

L7

)
.

Combining (4.28) and (4.29), we obtain

∫ T+U

T

(
χ∗DjψrBlψm + χ∗BjψrDlψm

)
(σa + it) dt (4.30)

= e2U
∑

n3,n4≤y

ar(n3)am(n4)m∗2−2σa

n3n4

∑
√

T
2π

m∗
max (n3,n4)

≤n∗≤
√

T
2π

m∗
min (n3,n4)

dj
(
n∗n4

m∗

)
dl
(
n∗n3

m∗

)
n∗2−2σa

+ O

(
aU

L7

)
.

The three integrals in (4.22), (4.23) and (4.30) upon substitution in (4.19) give the following
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equality for Ej,l,r,m

Ej,l,r,m =
∑

k1,k2≤y

ar(k1)am(k2)

(k1k2)2σa
d2σa

∑
w≤

√
T
2π d

max(k1,k2)

bj

(
k2

d
w

)
bl

(
k1

d
w

)
w−2σa

+ e2
∑

r1,r2≤y

ar(r1)am(r2)

r1r2

D2−2σa
∑

w≤

√
T
2πD

max(r1,r2)

dj

(r2

D
w
)
dl

(r1

D
w
)
w2σa−2

+ e2
∑

n3,n4≤y

ar(n3)am(n4)m∗2−2σa

n3n4

∑
√

T
2π

m∗
max (n3,n4)

≤n∗≤
√

T
2π

m∗
min (n3,n4)

dj
(
n∗n4

m∗

)
dl
(
n∗n3

m∗

)
n∗2−2σa

+ O
( a
L7

)
,

where d = gcd(k1, k2), D = gcd(r1, r2) and m∗ = gcd(n3, n4). After combining the second

and third sums in the above estimate, we obtain

Ej,l,r,m =
∑

n3,n4≤y

ar(n3)am(n4)

(n3n4)2σa
m∗2σa

∑
n∗≤

√
T
2πm

∗

max(n3,n4)

bj

(
n∗n4

m∗

)
bl

(
n∗n3

m∗

)
n∗−2σa

+ e2
∑

n3,n4≤y

ar(n3)am(n4)

n3n4

m∗2−2σa
∑

n∗≤

√
T
2πm

∗

min (n3,n4)

dj

(
n∗n4

m∗

)
dl

(
n∗n3

m∗

)
n∗2σa−2

+O~c

( a
L7

)
.

Using Euler’s summation formula for the sums over n∗ in the above expression, and after

the change of variable

Θ1 =
1

Θ

( T
2π

(m∗)2

n3n4

)
and dk

(
T

2πΘ

)
= bk(Θ), the integral containing dj’s can be written in terms of bj’s. All these
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simplifications amount to

Ej,l,r,m =
∑

n3,n4≤y

ar(n3)am(n4)

(n3n4)2σa
m∗2σa

(∫ √ T
2πm

∗

max(n3,n4)

1

bj

(xn4

m∗

)
bl

(xn3

m∗

)
x−2σa dx

+

∫ T
2π

m∗2
n3n4√
T
2πm

∗

max(n3,n4)

bj

(xn4

m∗

)
bl

(xn3

m∗

)
x−2σa dx

)
+O~c

( a
L7

)

=
∑

n3,n4≤y

ar(n3)am(n4)

(n3n4)2σa
m∗2σa

∫ T
2π

m∗2
n3n4

1

bj

(xn4

m∗

)
bl

(xn3

m∗

)
x−2σa dx+O~c

( a
L

)
. (4.31)

Note that for a polynomial P (u) of degree k in the variable u, the following (which can be

obtained using integration by parts) holds

∫ B

A

P (log u) du =
k∑

n=1

(−1)n
P (n)(logB)

(1 + α)n+1
B1+α −

k∑
n=1

(−1)n
P (n)(logA)

(1 + α)n+1
A1+α.

For 0 ≤ k ≤M , define

φk(x) := (1− x)

(
1− 2x+

πi

2L

)a+2k

, (4.32)

which implies that

bk(x) = φk

(
log x

L

)
is a polynomial in log x/L. On applying the above identity to φj(log x/L) and φl(log x/L),

we express the integral in (4.31) as the sum

Ej,l,r,m = S1 − S2 +O~c (a/L) ,
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where

S1 :=
Le2

2

∑
n3,n4≤y

ar(n3)am(n4)

n3n4

m∗2−2σa

×
2a+2j+2l+2∑

n=0

(−1)n

2n

n∑
v=0

(
n

v

)
φj

(v)

(
1− 1

L
log

(
n3

m∗

))
φl

(n−v)

(
1− 1

L
log

(
n4

m∗

))
,

and

S2 :=
L

2

∑
n3,n4≤y

ar(n3)am(n4)

(n3n4)2σa
m∗2σa

×
2a+2j+2l+2∑

n=0

(−1)n

2n

n∑
v=0

(
n

v

)
φj

(v)

(
1

L
log

(
n3

m∗

))
φl

(n−v)

(
1

L
log

(
n4

m∗

))
.

The Taylor series expansions of φj
(v)(x) and φl

(n−v)(x) at x = 1 in S1 and at x = 0 in S2

give

S1 =
Le2

2

2a+2j+2l+2∑
n=0

(−1)n

2n

n∑
v=0

(
n

v

){
φ

(v)
j (1)φl

(n−v)(1)
∑

n3,n4≤y

ar(n3)am(n4)

n3n4

m∗2−2σa

−
(
φj

(v)(1)φl
(n−v+1)(1) + φj

(v+1)(1)φl
(n−v)(1)

) ∑
n3,n4≤y

ar(n3)am(n4)

n3n4

m∗2−2σa

L
log

(
n4

m∗

)

+ φj
(v+1)(1)φl

(n−v+1)(1)
∑

n3,n4≤y

ar(n3)am(n4)

n3n4

m∗2−2σa 1

L
log

(
n4

m∗

)
1

L
log

(
n3

m∗

)}

+O~c

(
(2a)2a+4 log5 L

L

)
,
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and

S2 =
L

2

2a+2j+2l+2∑
n=0

(−1)n

2n

n∑
v=0

(
n

v

){
φj

(v)(0)φl
(n−v)(0)

∑
n3,n4≤y

ar(n3)am(n4)

(n3n4)2σa
m∗2σa

+
(
φj

(v)(0)φl
(n−v+1)(0) + φj

(v+1)(0)
)
φl

(n−v)(0)
) ∑
n3,n4≤y

ar(n3)am(n4)

(n3n4)2σa

m∗2σa

L
log

(
n4

m∗

)

+ φj
(v+1)(0)φl

(n−v+1)(0)
∑

n3,n4≤y

ar(n3)am(n4)

(n3n4)2σa
m∗2σa

1

L
log

(
n4

m∗

)
1

L
log

(
n3

m∗

)}

+O~c

(
(2a)2a+4 log5 L

L

)
.

In order to estimate the inner sums we use extensions of Lemmas 18 and 20 from [49].

Lemma 4.3.2. With the notations used earlier, the following bounds hold:

∑
n3,n4≤y

(
ar(n3)am(n4)

n3n4

m∗2−2σa

)
=

1

L

((
1

2(r +m+ 1)

)
+ 1 +

(
2rm

r +m− 1

))
+O(L−2 log5 L).

∑
n3,n4≤y

(
ar(n3)am(n4)

n3n4

m∗2−2σa 1

L
log
( n4

m∗

))
= − 1

L

((
1

2(r +m+ 1)

)
+

(
r

r +m

))
+O(L−2 log5 L).

∑
n3,n4≤y

(
ar(n3)am(n4)

n3n4

m∗2−2σa 1

L
log
( n4

m∗

) 1

L
log
( n3

m∗

))
=

(
1

2(r +m+ 1)

)
1

L

+ O
(
L−2 log5 L

)
.
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∑
n3,n4≤y

(
ar(n3)am(n4)

n3n4

m∗2−2σa 1

L
log
( n3

m∗

))
= − 1

L

((
1

2(r +m+ 1)

)
+

(
m

r +m

))
+O(L−2 log5 L).

∑
n3,n4≤y

(
ar(n3)am(n4)

(n3n4)2σa
m∗2a

)
=

1

L

((
1

2(r +m+ 1)

)
− 1 +

(
2rm

r +m− 1

))
+ O

(
L−2 log5 L

)
.

∑
n3,n4≤y

(
ar(n3)am(n4)

(n3n4)2σa
m∗2a

1

L
log
( n4

m∗

))
= − 1

L

((
−1

2(r +m+ 1)

)
+

(
r

r +m

))
+O(L−2 log5 L).

∑
n3,n4≤y

(
ar(n3)am(n4)

(n3n4)2σa
m∗2σa

1

L
log
( n4

m∗

) 1

L
log
( n3

m∗

))
=

(
1

2(r +m+ 1)

)
1

L

+ O
(
L−2 log5 L

)
.

∑
n3,n4≤y

(
ar(n3)am(n4)

(n3n4)2σa
m∗2σa

1

L
log
( n3

m∗

))
= − 1

L

((
−1

2(r +m+ 1)

)
+

(
m

r +m

))
+O(L−2 log5 L).

Proof. Following Lemmas 18 and 20 from [49], and employing the fact that log y = L/2 +
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O (logL) , it is not difficult to prove these estimates, and we omit the details here.

Using the above lemma, we have

Ej,l,r,m = S1 − S2 +O~c

( a
L

)
=
e2

2

2a+2j+2l+2∑
n=0

(−1)n

2n

(
(φj(x))φl(x))(n)

∣∣∣∣
x=1

(
1

2(r +m+ 1)
+ 1 +

2rm

r +m− 1

)
+(φj(x))φl

′(x) + φj
′(x))φl(x))(n)

∣∣∣∣
x=1

1

2(r +m+ 1)
+ (φj

′(x))φl
′(x))(n)

∣∣∣∣
x=1

1

2(r +m+ 1)

+(φj(x))φl
′(x))(n)

∣∣∣∣
x=1

r

r +m
+ (φj

′(x))φl(x))(n)

∣∣∣∣
x=1

m

r +m

)
− 1

2

2a+2j+2l+2∑
n=0

(−1)n

2n

(
(φj(x))φl(x))(n)

∣∣∣∣
x=1

(
1

2(r +m+ 1)
− 1 +

2rm

r +m− 1

)
+(φj(x))φl

′(x) + φj
′(x))φl(x))(n)

∣∣∣∣
x=0

1

2(r +m+ 1)
+ (φj

′(x))φl
′(x))(n)

∣∣∣∣
x=0

1

2(r +m+ 1)

−(φj(x))φl
′(x))(n)

∣∣∣∣
x=0

r

r +m
− (φj

′(x))φl(x))(n)

∣∣∣∣
x=0

m

r +m

)
+O~c

(
(2a)2a+4 log5 L

L

)
.

Denote by

U :=
e2

2

j+l+2∑
n=0

(−1)n

2n
×

×
(

(φj(x))φl(x))(n)

∣∣∣∣
x=1

+ (φj(x))φl
′(x))(n)

∣∣∣∣
x=1

r

r +m
+ (φj

′(x))φl(x))(n)

∣∣∣∣
x=1

m

r +m

)
+

1

2

j+l+2∑
n=0

(−1)n

2n

×
(

(φj(x))φl(x))(n)

∣∣∣∣
x=0

+ (φj(x))φl
′(x))(n)

∣∣∣∣
x=0

r

r +m
+ (φj

′(x))φl(x))(n)

∣∣∣∣
x=0

m

r +m

)
.

(4.33)
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On rearranging and using the definition of U given above, we get

Ej,l,r,m =
1

2

j+l+2∑
n=0

(−1)n

2n

(
e2(φj(x)φl(x))(n)

∣∣∣∣
x=1

− (φj(x)φl(x))(n)

∣∣∣∣
x=0

)
×
(

1

2(r +m+ 1)
+

2rm

r +m− 1

)
+

1

2

j+l+2∑
n=0

(
e2(φj(x)φl

′(x) + φj
′(x)φl(x))(n)

∣∣∣∣
x=1

− (φj(x)φl
′(x) + φj

′(x)φl(x))(n)

∣∣∣∣
x=0

)
× 1

2(r +m+ 1)

+
1

2

j+l+2∑
n=0

(−1)n

2n

(
e2(φj

′(x)φ′l(x))(n)

∣∣∣∣
x=1

− (φj
′(x)φl

′(x))(n)

∣∣∣∣
x=0

)
1

2(r +m+ 1)

+ U +O~c

(
(2a)2a+4 log5 L

L

)
.

Using Lemma 28 from [49] and the earlier estimates for U , we have

Ej,l,r,m =

(
1

2(r +m+ 1)
+

2rm

r +m− 1

)∫ 1

0

e2xφj(x)φl(x) dx

+
1

2(r +m+ 1)

∫ 1

0

e2xφj
′(x)φl

′(x) dx+
1

2(r +m+ 1)

∫ 1

0

e2x(φj(x)φ′l(x)

+ φj
′(x)φl(x)) dx+ U +O~c

(
(2a)2a+4 log5 L

L

)
. (4.34)

Note that the last integrals can be written in terms of the first one as follows

∫ 1

0

e2x(φj(x)φ′l(x) + φj
′(x)φl(x)) dx = −1− 2

∫ 1

0

e2xφj(x)φl(x) dx+ O
(
aL−2

)
.

Therefore (4.34) becomes

Ej,l,r,m =

(
2rm

r +m− 1
− 1

2(r +m+ 1)

)∫ 1

0

e2xφj(x)φl(x) dx

+
1

2(r +m+ 1)

∫ 1

0

e2xφj
′(x)φl

′(x) dx− 1

2(r +m+ 1)
+ U +O~c

(
(2a)2a+4 log5 L

L

)
.

(4.35)
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Using the definitions of the function φj and φl from (4.32) in the integral and using binomial

expansions, we estimate the first two integrals in the above expression. For the first integral,

we have

∫ 1

0

e2xφj(x)φl(x) dx =

∫ 1

0

e2x(1− x)2(1− 2x)2a+2j+2l dx+ O
(
aL−2

)
.

Using integration by parts repeatedly, we rewrite the integral on the right-hand side as

∫ 1

0

e2x(1− x)2(1− 2x)2a+2j+2l dx

=
1

2(2a+ 2j + 2l + 1)
+

e2 − 1

4(2a+ 2j + 2l + 1)(2a+ 2j + 2l + 2)(2a+ 2j + 2l + 3)

− e2 + 1

4(2a+ 2j + 2l + 1)(2a+ 2j + 2l + 2)(2a+ 2j + 2l + 3)(2a+ 2j + 2l + 4)

+ O
(
1/(a+ j + l)5

)
=

1

2(2a+ 2j + 2l)
− 1

2(2a+ 2j + 2l)2
+

(e2 + 1)

4(2a+ 2j + 2l)3
− 9e2 − 3

4(2a+ 2j + 2l)4
+ O

(
1/a5

)
.

(4.36)
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Similarly, for the second integral in (4.35), we have

∫ 1

0

e2xφj
′(x)φl

′(x) dx

=

∫ 1

0

e2x(1− 2x)2a+2j+2l−2

× ((1 + 2a+ 4j)− (2a+ 4j + 2)x)((1 + 2a+ 4l)− (2a+ 4l + 2)x) dx

=
(−1)a+2j+le2 + (2a+ 4l + 1)(2a+ 4l + 1)

2(2a+ 2j + 2l − 1)

+
−e2(2a+ 2j + 2l + 3)− (2a+ 2j + 2l + 1)

2(2a+ 2j + 2l − 1)(j + l)

− 3e2 + 1

4(2a+ 2j + 2l + 1)(2a+ 2j + 2l + 2)(2a+ 2j + 2l + 3)(2a+ 2j + 2l + 4)

+ O
(
1/(a+ j + l)4

)
=

2(a+ 2j)(a+ 2l)

2a+ 2j + 2l
+

2(a+ 2j)(a+ 2l)

(2a+ 2j + 2l)2
+ 1

+

(
(a+ 2j)(a+ 2l)

(2a+ 2j + 2l)2
+ 1 +

(a+ 2j)(a+ 2l)((−1)2a+2j+2le2 − 1)

(2a+ 2j + 2l)2

)
1

2a+ 2j + 2l

+

(
−2((−1)2a+2j+2l3e2 + 1)(a+ 2j)(a+ 2l)

(2a+ 2j + 2l)2
+ (−1)2a+2j+2le2 − 1 +

4(a+ 2j)(a+ 2l)

(2a+ 2j + 2l)2

)
× 1

2(2a+ 2j + 2l)2
+O~c

(
1/a3

)
. (4.37)

We also expand the terms in r and m in (4.35) as follows

2rm

r +m− 1
=

2rm

r +m
+

2rm

(r +m)2
+

2rm

(r +m)3
+

2rm

(r +m)4
+

2rm

(r +m)4(m+ r − 1)
, (4.38)

and

1

r +m+ 1
=

1

r +m
− 1

(r +m)2
+

1

(r +m)3
− 1

(r +m)4
+

1

(r +m)4(r +m+ 1)
. (4.39)
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Substituting (4.36), (4.37), (4.38), and (4.39) in (4.35), we obtain

Ej,l,r,m =
(rm+ (a+ 2j)(a+ 2l))

(2a+ 2j + 2l)(r +m)
+

{
(rm− (a+ 2j)(a+ 2l))

(2a+ 2j + 2l)(r +m)

(
1

r +m
− 1

2a+ 2j + 2l

)}
+

{
rm

(2a+ 2j + 2l)(r +m)3
− rm

(2a+ 2j + 2l)2(r +m)2
+

(e2 + 1)rm

2(2a+ 2j + 2l)3(r +m)

− 1

4(2a+ 2j + 2l)(r +m)
+

(a+ 2j)(a+ 2l)

(2a+ 2j + 2l)(r +m)3
−
(

2jl

(2a+ 2j + 2l)2
+ 1

)
1

2(r +m)2

+

(
2(a+ 2j)(a+ 2l)

(2a+ 2j + 2l)2
+ 1 +

(a+ 2j)(a+ 2l)(e2 − 1)

(2a+ 2j + 2l)2

)
1

2(2a+ 2j + 2l)(r +m)

+
1

2(r +m)2

}
+ U +O~c

(
1

a3

)
= U +

(rm+ (a+ 2j)(a+ 2l))

(2a+ 2j + 2l)(r +m)
+
e2 + 2

16

1

a2
+O~c

(
1

a3

)
, (4.40)

where in the last equality, we have used the facts

rm− (a+ 2j)(a+ 2l)

(2j + 2l + 2a)(r +m)

(
1

r +m
− 1

2j + 2l

)
= O~c

(
1

a3

)
,

and

rm

(2j + 2l + 2a)(r +m)3
− rm

(2j + 2l + 2a)2(r +m)2
+

(e2 + 1)rm

(2j + 2l + 2a)32(r +m)

− 1

4(2j + 2l + 2a)(r +m)
+

(a+ 2j)(a+ 2l)

(2j + 2l + 2a)(r +m)3
−
(

2(a+ 2j)(a+ 2l)

(2j + 2l + 2a)2
+ 1

)
× 1

2(r +m)2
+

(
2(a+ 2j)(a+ 2l)

(2j + 2l + 2a)2
+ 1 +

(a+ 2j)(a+ 2l)(e2 − 1)

(2j + 2l + 2a)2

)
1

2(2j + 2l + 2a)(r +m)
+

1

2(r +m)2

=
e2 + 2

16

1

a2
+O~c

(
1

a3

)
.

Recall from (4.18) that Aj,l =
∑b̃

r,m=ã c̃rc̃mEj,l,r,m. First, we compute the term corresponding
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to U in Aj,l separately below. Recall from the definition of U from (4.33),

b̃∑
r,m=ã

c̃rc̃mU

=
e2

2

b̃∑
r=ã

c̃2
r

2a+2j+2l+2∑
n=0

(−1)n

2n

(
(φj(x)φl(x))(n) +

1

2

(
(φj(x)φl

′
(x))(n) + (φj

′(x)φl(x))(n)
))∣∣∣∣

x=1

+
e2

2

b̃∑
r=ã

b̃∑
m=ã
m 6=r

c̃rc̃m

2a+2j+2l+2∑
n=0

(−1)n

2n

×
(

(φj(x)φl(x))(n) +
r

r +m
(φj(x)φl

′
(x))(n) +

m

r +m
(φj
′(x)φl(x))(n)

)∣∣∣∣
x=1

+
1

2

b̃∑
r=ã

c̃2
r

2a+2j+2l+2∑
n=0

(−1)n

2n

×
(

(φj(x)φl(x))(n) +
1

2

(
(φj(x)φl

′
(x))(n) + (φj

′(x)φl(x))(n)
))∣∣∣∣

x=0

+
1

2

b̃∑
r=ã

b̃∑
m=ã
m6=r

c̃rc̃m

2a+2j+2l+2∑
n=0

(−1)n

2n

×
(

(φj(x)φl(x))(n) +
r

r +m
(φj(x)φl

′
(x))(n) +

m

r +m
(φj
′(x)φl(x))(n)

) ∣∣∣∣
x=0

. (4.41)

With the use Lemma 29 from [49], first and third term in the above expression combine as
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follows.

e2

2

b̃∑
r=ã

c̃r
2

2a+2j+2l+2∑
n=0

(−1)n

2n

(
(φj(x)φl(x))(n) +

1

2

(
(φj(x)φl

′
(x))(n) + (φj

′(x)φl(x))(n))
)) ∣∣∣∣

x=1

+
1

2

b̃∑
r=ã

c̃r
2

2a+2j+2l+2∑
n=0

(−1)n

2n

(
(φj(x)φl(x))(n) +

1

2

(
(φj(x)φl

′
(x))(n) + (φj

′(x)φl(x))(n)
)) ∣∣∣∣

x=0

=
b̃∑

r=ã

c̃r
2

(
e2

2
φj(1)φl(1) +

1

2
φj(0)φl(0)

)

=
1

2

b̃∑
r=ã

c̃r
2

(
1 +

iπ

2L

)a+2j (
1− iπ

2L

)a+2l

=
1

2

b̃∑
r=ã

c̃r
2 +O~c

( a
L

)
,

where we obtain the last equality using Lemma 1 from [49]. Similarly, the second and fourth

sum in (4.41) combine as

1

2

b̃∑
r=ã

b̃∑
m=ã
m 6=r

c̃rc̃m

(
1 +

iπ

2L

)a+2j (
1− iπ

2L

)a+2l

=
1

2

b̃∑
r=ã

b̃∑
m=ã
m6=r

c̃rc̃m +O~c

( a
L

)
.

Thus, employing the fact that
∑b̃

r=ã c̃r = 1, we conclude

b̃∑
r,m=ã

c̃rc̃mU =
1

2

b̃∑
r=ã

c̃r
2 +

1

2

b̃∑
r=ã

b̃∑
m=ã
m6=r

c̃rc̃m +O~c

( a
L

)
=

1

2

b̃∑
r,m=ã

c̃rc̃m +O~c

( a
L

)

=
1

2

( b̃∑
r=ã

c̃r

)2

+O~c

( a
L

)
=

1

2
+O~c

( a
L

)
.
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Employing this estimate in (4.40), we have

Aj,l =
b̃∑

r,m=ã

c̃rc̃mEj,l,r,m

=
1

2
+
e2 + 2

16

1

a2
+

b̃∑
r,m=ã

c̃rc̃m(rm+ (2j + a)(2l + a))

(2j + 2l + 2a)(r +m)
+O~c

(
1

a3

)
. (4.42)

Let r = a+ u,m = a+ v for some −X ≤ u, v ≤ X. Then,

b̃∑
r,m=ã

c̃rc̃m
rm+ (2j + a)(2l + a)

(2j + 2l + 2a)(r +m)

=
∑

−X≤u,v≤X

˜ca+u ˜ca+v
2a2 + a(u+ v + 2j + 2l) + (uv + 4jl)

4a2(1 + 2j+2l
2a

)(1 + u+v
2a

)

=
∑

−X≤u,v≤X

˜ca+u ˜ca+v

(
1

2
+

(
−(u+ v)(2j + 2l)

4
+
uv + 4jl

4

)
1

a2

)
+O~c

(
1

a3

)
=

1

2

∑
−X≤u,v≤X

˜ca+u ˜ca+v +
jl

a2

∑
−X≤u,v≤X

˜ca+u ˜ca+v −
(j + l)

2a2

∑
−X≤u,v≤X

˜ca+u ˜ca+v(u+ v)

+
1

4a2

∑
−X≤u,v≤X

˜ca+u ˜ca+vuv +O~c

(
1

a3

)
. (4.43)

Now let S denote the sum

S :=
∑

−X≤t≤X

t ˜ca+t.

Using this notation and the fact
∑b̃

r=ã c̃r = 1 in (4.43), we see that

b̃∑
r,m=ã

c̃rc̃m
rm+ (2j + a)(2l + a)

(2j + 2l + 2a)(r +m)
=

1

2
+

4jl − 2(j + l)S + S2

4a2
+O~c

(
1

a3

)
.

Using the above estimates in (4.42), we arrive at

Aj,l = 1 +
e2 + 2

16

1

a2
+

4jl − 2(j + l)S + S2

4a2
+O~c

(
1

a3

)
.
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Also recall from (4.17) that

J

U
=

1

|d∗|2
M∑
j,l=0

cjcli
a+2j(−i)a+2l

22a+2j+2l
Aj,l.

On substituting Aj,l here and using the definition of d∗, we obtain

J

U
= 1 +

e2 + 2

16a2
+

( M∑
j,l=0

cjcli
a+2j(−i)a+2l4jl

22a+2j+2l
−

M∑
j,l=0

cjcli
a+2j(−i)a+2l2(j + l)

22a+2j+2l
S + |d∗|2S2

)
× 1

|d∗|24a2
+O~c

(
1

a3

)
. (4.44)

Although one has flexibility in choosing S, the expression inside the parenthesis on the right

side of (4.44) cannot be decreased below zero. Its minimum is actually zero, and it is attained

at

S =
1

2|d∗|2
M∑
j,l=0

cjcli
a+2j(−i)a+2l(2j + 2l)

22a+2j+2l
.

Also, the mollifier in this case does allow one to arrange for such a condition to hold: there

exist coefficients c̃a+t such that the minimum is attained and such that c̃a+t also satisfies

∑
−X≤t≤X

˜ca+t = 1.

Therefore after substituting the minimum value of S in (4.44) we arrive at

J

U
= 1 +

e2 + 2

16a2
+

1

4a2|d∗|2
M∑
j,l=0

cjcli
a+2j(−i)a+2l4jl

22a+2j+2l

− 1

4a2

(
1

2|d∗|2
M∑
j,l=0

cjcli
a+2j(−i)a+2l(2j + 2l)

22a+2j+2l

)2

+O~c

(
1

a3

)
.

90



The two sums involving cj, cl cancel each other since

(
1

2|d∗|2
M∑
j,l=0

cjcli
a+2j(−i)a+2l(2j + 2l)

22a+2j+2l

)2

=

(
1

|d∗|2
M∑
j,l=0

jcjcli
2a+2j+2l

22a+2j+2l
+

1

|d∗|2
M∑
j,l=0

lcjcli
2a+2j+2l

22a+2j+2l

)2

=
4

|d∗|4

( M∑
j,l=0

jcjcli
2a+2j+2l

22a+2j+2l

)2

=
4

|d∗|4

( M∑
j=0

jcji
a+2j

2a+2j

)2( M∑
l=0

cli
a+2l

2a+2l

)2

=
4(−1)a

|d∗|4

( M∑
j=0

jcji
a+2j

2a+2j

)2( M∑
j=0

cji
a+2j

2a+2j

M∑
l=0

cl(−i)a+2l

2a+2l

)

=
4(−1)a

|d∗|4

( M∑
j=0

jcji
a+2j

2a+2j

)2

|d∗|2 =
4(−1)a

|d∗|2

( M∑
j=0

jcji
a+2j

2a+2j

)2

=
1

|d∗|2
M∑
j,l=0

cjcli
a+2j(−i)a+2l4jl

22a+2j+2l
.

Consequently, this yields

J

U
= 1 +

e2 + 2

16a2
+O~c

(
1

a3

)
,

which completes the proof of the lemma.
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4.4 Proof of Theorem 1.2.1

Proof of Theorem 1.2.1. Finally, putting Lemmas 4.1.4, 4.2.1, and Lemma 4.3.1 together,

we obtain

N
(0)
~c,a (T + U)−N (0)

~c,a (T )

≥ N~c,a(T + U)−N~c,a(T )− 2N +O~c (a log T )

> N~c,a(T + U)−N~c,a(T )− UL

2π
log

(
J

U

)
+O~c (aU)

> N~c,a(T + U)−N~c,a(T )− UL

2π
log

(
1 +

e2 + 2

16a2
+O~c

(
1

a3

))
+O~c (aU)

> N~c,a(T + U)−N~c,a(T )− UL

2π

(
e2 + 2

16a2
+O~c

(
1

a3

))
+O~c (aU) .

From Lemma 4.1.3, one notes that

N~c,a(T + U)−N~c,a(T ) =
UL

2π
+O~c (U) =

UL

2π

(
1 +O~c

( a
L

))
.

Using this in the above inequality, we obtain

κ~c,a,T =
N

(0)
~c,a (T + U)−N (0)

~c,a (T )

N~c,a(T + U)−N~c,a(T )

≥ 1− 1

1 +O~c (L−1)

(
e2 + 2

16a2
+O~c

(
a−3
))

+O~c

( a
L

)
≥ 1− e2 + 2

16a2
+O~c

(
1

a3

)
.

This completes the proof of Theorem 1.2.1.

Remark 4.4.1. Using the same techniques, one can get an identical result on the proportion

of simple zeros of F~c,a,T (s) on the critical line.
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Chapter 5

Divisibility properties of sporadic
Apéry-like numbers

In this chapter, we state and prove our results on sporadic Apéry-like numbers. We start

with a review of the Apéry-like numbers.

5.1 Review of Apéry-like numbers

Recall form (1.13) that the Apéry numbers are defined as

A(n) =
n∑
k=0

(
n

k

)2(
n+ k

k

)2

.

Along with the Apéry numbers A(n), defined in (1.13), R. Apéry also introduced the sequence

B(n) =
n∑
k=0

(
n

k

)2(
n+ k

k

)
,

which allowed him to (re)prove the irrationality of ζ(2). This sequence is the solution of the

three-term recursion

(n+ 1)2un+1 = (an2 + an+ b)un − cn2un−1, (5.1)

with the choice of parameters (a, b, c) = (11, 3,−1) and initial conditions u−1 = 0, u0 = 1.

Because we divide by (n+ 1)2 at each step, it is not to be expected that the recursion (5.1)

should have an integer solution. Inspired by F. Beukers [12], D. Zagier [65] conducted a

systematic search for other choices of the parameters (a, b, c) for which the solution to (5.1),
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with initial conditions u−1 = 0, u0 = 1, is integral. After normalizing, and apart from

degenerate cases, he discovered four hypergeometric, four Legendrian as well as six sporadic

solutions. It is still open whether further solutions exist or even that there should be only

finitely many solutions. The six sporadic solutions are reproduced in Table 5.1. Note that

each binomial sum included in this table certifies that the corresponding sequence indeed

consists of integers.

Table 5.1: The six sporadic solutions of (5.1)

(a, b, c) [65] [4] A(n)

(7, 2,−8) A (a)
∑
k

(
n

k

)3

(11, 3,−1) D (b)
∑
k

(
n

k

)2(
n+ k

n

)

(10, 3, 9) C (c)
∑
k

(
n

k

)2(
2k

k

)

(12, 4, 32) E (d)
∑
k

(
n

k

)(
2k

k

)(
2(n− k)

n− k

)

(9, 3, 27) B (f)
∑
k

(−1)k3n−3k

(
n

3k

)
(3k)!

k!3

(17, 6, 72) F (g)
∑
k,l

(−1)k8n−k
(
n

k

)(
k

l

)3

Similarly, the Apéry numbers A(n), defined in (1.13), are the solution of the three-term

recurrence

(n+ 1)3un+1 = (2n+ 1)(an2 + an+ b)un − n(cn2 + d)un−1, (5.2)

with the choice of parameters (a, b, c, d) = (17, 5, 1, 0) and initial conditions u−1 = 0,

u0 = 1. Systematic computer searches for further integer solutions have been performed

by G. Almkvist and W. Zudilin [5] in the case d = 0 and, more recently, by S. Cooper [20],

who introduced the additional parameter d. As in the case of (5.1), apart from degenerate

cases, only finitely many sequences have been discovered. In the case d = 0, there are again

six sporadic sequences, which are recorded in Table 5.2. Moreover, by general principles

94



(see [20, Eq. (17)]), each of the sequences in Table 5.1 times
(

2n
n

)
is an integer solution of

(5.2) with d 6= 0. Apart from such expected solutions, Cooper also found three additional

sporadic solutions, including

s18(n) =

bn/3c∑
k=0

(−1)k
(
n

k

)(
2k

k

)(
2(n− k)

n− k

)[(
2n− 3k − 1

n

)
+

(
2n− 3k

n

)]
, (5.3)

for n > 1, with s18(0) = 1, as well as s7 and s10, which are included in Table 5.2. Remarkably,

these sequences are again connected to modular forms [20] (the subscript refers to the level)

and satisfy supercongruences, which are proved in [47]. Indeed, it was the corresponding

modular forms and Ramanujan-type series for 1/π that led Cooper to study these sequences,

and the binomial expressions for s7 and s18 were found subsequently by Zudilin (sequence

s10 was well-known before).

5.2 Lucas congruences

It is a well-known and beautiful classical result of Lucas [34] that the binomial coefficients

satisfy the congruences

(
n

k

)
≡
(
n0

k0

)(
n1

k1

)
· · ·
(
nr
kr

)
(mod p), (5.4)

where p is a prime and ni, respectively ki, are the p-adic digits of n and k. That is,

n = n0 +n1p+ · · ·+nrp
r and k = k0 +k1p+ · · ·+krp

r are the expansions of n and k in base

p. Correspondingly, a sequence a(n) is said to satisfy Lucas congruences , if the congruences

a(n) ≡ a(n0)a(n1) · · · a(nr) (mod p) (5.5)

hold for all primes p. It was shown by I. Gessel [28, Theorem 1] that the Apéry numbers A(n),

defined in (1.13), satisfy Lucas congruences. E. Deutsch and B. Sagan [23, Theorem 5.9] show
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Table 5.2: The sporadic solutions of (5.2)

(a, b, c, d) [4] [20] A(n)

(7, 3, 81, 0) (δ)
∑
k

(−1)k3n−3k

(
n

3k

)(
n+ k

n

)
(3k)!

k!3

(11, 5, 125, 0) (η)
bn/5c∑
k=0

(−1)k
(
n

k

)3((
4n− 5k − 1

3n

)
+

(
4n− 5k

3n

))

(10, 4, 64, 0) (α)
∑
k

(
n

k

)2(
2k

k

)(
2(n− k)

n− k

)

(12, 4, 16, 0) (ε)
∑
k

(
n

k

)2(
2k

n

)2

(9, 3,−27, 0) (ζ)
∑
k,l

(
n

k

)2(
n

l

)(
k

l

)(
k + l

n

)

(17, 5, 1, 0) (γ)
∑
k

(
n

k

)2(
n+ k

n

)2

(13, 4,−27, 3) s7

∑
k

(
n

k

)2(
n+ k

k

)(
2k

n

)

(6, 2,−64, 4) s10

∑
k

(
n

k

)4

(14, 6, 192,−12) s18 defined in (5.3)

that the Lucas congruences (5.5) in fact hold for the family of generalized Apéry sequences

Ar,s(n) =
n∑
k=0

(
n

k

)r(
n+ k

k

)s
, (5.6)

with r and s positive integers. This family includes the sequences (a), (b) from Table 5.1,

and the sequences (γ), s10 from Table 5.2. The purpose of this section and Section 5.3 is

to show that, in fact, all the Apéry-like sequences in Tables 5.1 and 5.2 satisfy the Lucas

congruences (5.5). Using and extending the general framework provided by R. McIntosh [36,

Theorem 6], which we review below, we are able to prove this claim for all of the sequences

in the two tables, with the exception of the two sequences (η) and s18, for which we require

a much finer analysis, which is given in Section 5.3.
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Theorem 5.2.1. Each of the sequences from Tables 5.1 and 5.2 satisfies the Lucas congru-

ences (5.5).

Remark 5.2.1. The Lucas congruences (5.5), in general, do not extend to prime powers.

However, it is shown in [28], and generalized in [32], that the Lucas congruences modulo 3

for the Apéry numbers extend to hold modulo 9.

On the other hand, numerical evidence suggests that all the Apéry-like sequences from

Tables 5.1 and 5.2 in fact satisfy the Dwork congruences (1.15). While Theorem 5.2.1 proves

the case r = 1 of these congruences, it would be desirable to establish the corresponding

congruences modulo higher powers of primes.

Following [36], we say that a function L : Z2
>0 → Z has the double Lucas property (DLP)

if L(n, k) = 0, for k > n, and if

L(n, k) ≡ L(n0, k0)L(n1, k1) · · ·L(nr, kr) (mod p), (5.7)

for every prime p. Here, as in (5.4), ni and ki are the p-adic digits of n and k, respectively.

Equation (5.4) shows that the binomial coefficients
(
n
k

)
are a DLP function. More generally,

it is shown in [36, Theorem 6] that, for positive integers r0, r1, . . . , rm,

L(n, k) =

(
n

k

)r0(n+ k

k

)r1(n+ 2k

k

)r2
· · ·
(
n+mk

k

)rm
(5.8)

is a DLP function. For instance, choosing the exponents as ri = 1, we find that the

multinomial coefficient

(
n+mk

k, k, . . . , k, n− k

)
=

(n+mk)!

k!m+1(n− k)!

is a DLP function for any integer m > 0.

Suppose that L(n, k) is a DLP function and that G(n) and H(n) are LP functions, that

is, the sequences G(n) and H(n) satisfy the Lucas congruences (5.5). Then, as shown in [36,
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Theorem 5],

F (n) =
n∑
k=0

L(n, k)G(k)H(n− k) (5.9)

is an LP function. Note that (5.8) and (5.9) combined are already sufficient to prove that

the generalized Apéry sequences, defined in (5.6), satisfy Lucas congruences. In order to

apply this machinery more generally, and prove Theorem 5.2.1, our next results extend the

repertoire of DLP functions. In fact, it turns out that we need a natural extension of the

Lucas property to the case of three variables. We say that a function M : Z3
>0 → Z has the

triple Lucas property (TLP) if M(n, k, j) = 0, for j > n, and if

M(n, k, j) ≡M(n0, k0, j0) · · ·M(nr, kr, jr) (mod p),

for every prime p, where ni, ki and ji are the p-adic digits of n, k and j, respectively. It is

straightforward to prove the following analog of (5.9) for TLP functions.

Lemma 5.2.2. If M(n, k, j) is a TLP function, then

L(n, k) =
n∑
j=0

M(n, k, j)

satisfies the double Lucas congruences (5.7). In particular, if L(n, k) = 0, for k > n, then

L(n, k) is a DLP function.

Proof. Let p be a prime. It is enough to show that, for any nonnegative integers n0, n
′, k0, k

′

such that n0 < p and k0 < p,

L(n0 + n′p, k0 + k′p) ≡ L(n0, k0)L(n′, k′) (mod p).

Since the sum defining L(n, k) is naturally supported on j ∈ {0, 1, . . . , n}, we may extend it
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over all j ∈ Z. Modulo p, we have

L(n, k) =
∑
j∈Z

M(n, k, j)

=

p−1∑
j0=0

∑
j′∈Z

M(n, k, j0 + j′p)

≡
∑
j0∈Z

∑
j′∈Z

M(n0, k0, j0)M(n′, k′, j′)

= L(n0, k0)L(n′, k′),

which is what we had to prove.

Lemma 5.2.3. The function

M(n, k, j) =

(
n

j

)(
k + j

n

)

is a TLP function.

Proof. Clearly, M(n, k, j) = 0, for j > n. In order to show that M(n, k, j) is a TLP function,

we therefore need to show that, for any prime p,

M(n0 + n′p, k0 + k′p, j0 + j′p) ≡M(n0, k0, j0)M(n′, k′, j′) (mod p), (5.10)

provided that 0 6 n0, k0, j0 < p and n′, k′, j′ > 0. Observe that in the case j0 > n0 both

sides of the congruence (5.10) vanish because of the Lucas congruences (5.4) for the binomial

coefficients. We may therefore proceed under the assumption that j0 6 n0.

Writing [xn]f(x) for the coefficient of xn in the polynomial f(x), we begin with the simple

observation that (
k + j

n

)
= [xn](1 + x)k+j.
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Modulo p, we have

(1 + x)k+j = (1 + x)k0+j0(1 + x)(k′+j′)p ≡ (1 + x)k0+j0(1 + xp)k
′+j′ (mod p).

Since 0 6 k0 + j0 < 2p, extracting the coefficient of xn = xn0(xp)n
′

from this product results

in the congruence

(
k + j

n

)
≡
(
k0 + j0

n0

)(
k′ + j′

n′

)
+

(
k0 + j0

n0 + p

)(
k′ + j′

n′ − 1

)
(mod p).

Note that, under our assumption that j0 6 n0, the second term on the right-hand side of

this congruence vanishes (since n0 + p > j0 + p > j0 + k0). This, along with (5.4), proves

(5.10).

Corollary 5.2.4. The function

L(n, k) =

(
n

k

)(
2k

n

)

is a DLP function.

Proof. Set j = k in Lemma 5.2.3.

Lemma 5.2.5. The function

L(n, k) = 3n−3k

(
n

3k

)
(3k)!

k!3

is a DLP function.

Proof. Let p be a prime. As usual, we write n = n0 +n′p and k = k0 +k′p where 0 6 n0 < p

and 0 6 k0 < p. In light of (5.4) and (5.9), the simple observation

(
2n

n

)
=

n∑
k=0

(
n

k

)2

, (5.11)
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demonstrates that the sequence of central binomial coefficients is an LP function. We claim

that

(3k)!

k!3
=

(
3k

k

)(
2k

k

)
is an LP function as well. From the Lucas congruences for the central binomials, that is

(
2k

k

)
≡
(

2k0

k0

)(
2k′

k′

)
(mod p),

we observe that
(

2k
k

)
is divisible by p if 2k0 > p. Hence, we only need to show the congruences

(3k)!

k!3
≡ (3k0)!

k0!3
(3k′)!

k′!3
(mod p) (5.12)

under the assumption that k0 < p/2. Note that

(
3k

k

)
= [xk](1 + x)3k

≡ [xk0(xp)k
′
](1 + x)3k0(1 + xp)3k′ (mod p)

=

(
3k0

k0

)(
3k′

k′

)
+

(
3k0

k0 + p

)(
3k′

k′ − 1

)
+

(
3k0

k0 + 2p

)(
3k′

k′ − 2

)
.

In the case k0 < p/2, we have k0 + p > 3k0, so that the last two terms on the right-hand

side vanish. This proves (5.12).

Next, we claim that

(
n

3k

)
(3k)!

k!3
≡
(
n0

3k0

)
(3k0)!

k0!3

(
n′

3k′

)
(3k′)!

k′!3
(mod p). (5.13)

By congruence (5.12), both sides vanish modulo p if 3k0 > p. On the other hand, if 3k0 < p,

then the usual argument shows that

(
n

3k

)
≡ [x3k0(xp)3k′ ](1 + x)n0(1 + xp)n

′
=

(
n0

3k0

)(
n′

3k′

)
(mod p).
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In combination with (5.12), this proves (5.13).

Finally, the congruences L(n, k) ≡ L(n0, k0)L(n′, k′), that is

3n−3k

(
n

3k

)
(3k)!

k!3
≡ 3n0−3k0

(
n0

3k0

)
(3k0)!

k0!3
3n
′−3k′

(
n′

3k′

)
(3k′)!

k′!3
(mod p),

follow from Fermat’s little theorem and the fact that both sides vanish if 3k0 > n0 or

3k′ > n′.

We are now in a comfortable position to prove Theorem 5.2.1 for all but two of the

sporadic Apéry-like sequences. To show that sequences (η) and s18 satisfy Lucas congruences

as well requires considerable additional effort, and the corresponding proofs are given in

Section 5.3.

Proof of Theorem 5.2.1. Recall from (5.11) that the sequence of central binomial coefficients

is an LP function. Further armed with (5.8) as well as Corollary 5.2.4 and Lemma 5.2.5,

the claimed Lucas congruences for the sequences (a), (b), (c), (d), (f), (α), (ε), (γ), s10, s7

follow from (5.9). It remains to consider the sequences (g), (δ), (ζ) as well as (η) and s18.

Sequence (g) can be written as

Ag(n) =
n∑
k=0

(−1)k8n−k
(
n

k

)
F (k),

where F (k) =
∑k

l=0

(
k
l

)3
are the Franel numbers (sequence (a)), which we already know

to be an LP function. As a consequence of Fermat’s little theorem, the sequence an is an

LP function for any integer a. Hence, equation (5.9) applies to show that Ag(n) is an LP

function.

In order to see that sequence (δ) satisfies the Lucas congruences as well, it suffices to

observe that L(n, k) =
(
n+k
k

)
is almost a DLP function, that is, it satisfies the congruences

102



(5.7) but does not vanish for k > n. This is enough to conclude from Lemma 5.2.5 that

L(n, k) = 3n−3k

(
n

3k

)(
n+ k

k

)
(3k)!

k!3

is a DLP function. Since this is the summand of sequence (δ), the desired Lucas congruences

again follow from (5.9).

On the other hand, for sequence (ζ), we observe that

L(n, k) =
n∑
j=0

(
n

j

)(
k

j

)(
k + j

n

)

satisfies the congruences (5.7) by Lemma 5.2.2 because the summand is a TLP function by

Lemma 5.2.3. Hence,
(
n
k

)2
L(n, k) is a DLP function. Writing sequence (ζ) as

Aζ(n) =
n∑
k=0

(
n

k

)2

L(n, k),

the claimed congruences once more follow from (5.9).

5.3 Proofs for the two remaining sequences

The proof of the Lucas congruences in the previous section does not readily extend to the

sequences (η) and s18 from Table 5.2, because, in contrast to the other cases, the known

binomial sums for these sequences do not have the property that their summands satisfy

the double Lucas property. Let us first note that the binomial sums for s18 and sequence

(η), given in (5.3) and Table 5.2, can be simplified at the expense of working with binomial

coefficients with negative entries. Namely, we have

s18(n) =
n∑
k=0

(−1)k
(
n

k

)(
2k

k

)(
2(n− k)

n− k

)(
2n− 3k

n

)
(5.14)
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and

Aη(n) =
n∑
k=0

(−1)k
(
n

k

)3(
4n− 5k

3n

)
, (5.15)

where, as usual, for any integer m > 0 and any number x, we define

(
x

m

)
=
x(x− 1) · · · (x−m+ 1)

m!
.

For instance, the equivalence between (5.3) and (5.14) is a simple consequence of the fact

that, for integers n > 0 and l = n− k,

(−1)k
(

2n− 3k

n

)
= (−1)k+n

(
−n+ 3k − 1

n

)
= (−1)l

(
2n− 3l − 1

n

)
. (5.16)

For the first equality, we used that, for integers b > 0,

(
a

b

)
=
a(a− 1) · · · (a− b+ 1)

b!

= (−1)b
(−a)(−a+ 1) · · · (−a+ b− 1)

b!
= (−1)b

(
−a+ b− 1

b

)
. (5.17)

The following result generalizes the Lucas congruences for the sequence s18(n).

Theorem 5.3.1. Suppose that B(n, k) is a DLP function with the property that B(n, k) =

B(n, n− k). Then, the sequence

A(n) =
n∑
k=0

(−1)kB(n, k)

(
2n− 3k

n

)

is an LP function, that is, A(n) satisfy the Lucas congruences (5.5).

Proof. Let p be a prime and let n > 0 be an integer. Write n = n0 + n′p and k = k0 + k′p,

where 0 6 n0 < p and 0 6 k0 < p and n′, k′ are nonnegative integers. We have to show that

A(n) ≡ A(n0)A(n′) (mod p). (5.18)
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In the sequel, we denote

C(n, k) = (−1)kB(n, k)

(
2n− 3k

n

)
.

For k0 6 n0/3, we have 2n0 − 3k0 > n0 > 0 and 2n0 − 3k0 6 2n0 < n0 + p. Hence, by the

usual argument, we have

(
2n− 3k

n

)
≡ [xn0(xp)n

′
](1 + x)2n0−3k0(1 + xp)2n′−3k′ (mod p)

≡
(

2n0 − 3k0

n0

)(
2n′ − 3k′

n′

)
(mod p).

Hence, we find that, when k0 6 n0/3,

C(n, k) ≡ C(n0, k0)C(n′, k′) (mod p). (5.19)

For n0/3 < k0 < 2n0/3, we have n0 > 2n0 − 3k0 > 0. By the same argument as above, we

find that (
2n− 3k

n

)
≡ 0 (mod p), (5.20)

and hence C(n, k) ≡ C(n0, k0) ≡ 0 modulo p.

Finally, consider the case n0 > 1 and 2n0/3 6 k0 6 n0. In that case, −p < −n0 6

2n0 − 3k0 6 0 or, equivalently, 0 < 2n0 − 3k0 + p 6 p. Hence, we have, modulo p,

(
2n− 3k

n

)
≡ [xn0(xp)n

′
](1 + x)2n0−3k0+p(1 + xp)2n′−3k′−1

≡
(

2n0 − 3k0 + p

n0

)(
2n′ − 3k′ − 1

n′

)
≡

(
2n0 − 3k0

n0

)(
2n′ − 3k′ − 1

n′

)
, (5.21)
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because, for any integers A,B and m such that 0 6 m < p,

(
A+Bp

m

)
=

1

m!
(A+Bp)(A+Bp− 1) · · · (A+Bp−m+ 1)

≡ 1

m!
A(A− 1) · · · (A−m+ 1) =

(
A

m

)
(mod p). (5.22)

Set l′ = n′ − k′. Applying (5.16) to the second binomial factor in (5.21), we find that

(
2n− 3k

n

)
≡ (−1)n

′
(

2n0 − 3k0

n0

)(
2n′ − 3l′

n′

)
(mod p).

In combination with the assumed symmetry of B(n, k), we therefore have that, when n0 > 1

and 2n0/3 6 k0 6 n0,

C(n, k) ≡ C(n0, k0)C(n′, n′ − k′) (mod p). (5.23)

We are now ready to combine all cases. First, suppose that n0 > 1. Noting that k 6 n/3

implies k′ 6 n′/3, and using (5.19), (5.20) and (5.23), we conclude that, modulo p,

A(n) =

p−1∑
k0=0

n′∑
k′=0

C(n, k) ≡
n0∑
k0=0

n′∑
k′=0

C(n, k)

≡
bn0/3c∑
k0=0

n′∑
k′=0

C(n, k) +

n0∑
k0=d2n0/3e

n′∑
k′=0

C(n, k)

≡
bn0/3c∑
k0=0

C(n0, k0)
n′∑
k′=0

C(n′, k′) +

n0∑
k0=d2n0/3e

C(n0, k0)
n′∑
k′=0

C(n′, n′ − k′)

=

bn0/3c∑
k0=0

C(n0, k0) +

n0∑
k0=d2n0/3e

C(n0, k0)

 n′∑
k′=0

C(n′, k′)

= A(n0)A(n′),

which is what we wanted to prove. The case n0 = 0 is simpler, and we only have to use

(5.19) to again conclude that (5.18) holds.
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Corollary 5.3.2. The sequence s18(n) satisfies the Lucas congruences (5.5).

Proof. Recall from the discussion in Section 5.2 that

B(n, k) =

(
n

k

)(
2k

k

)(
2(n− k)

n− k

)

is a DLP function. Obviously, B(n, k) = B(n, n−k). Hence, Theorem 5.3.1 applies to show

that s18(n), in the form (5.14) satisfies the Lucas congruences (5.5).

Next, we prove that the sequence (η), which corresponds to the choice a = 3 in Theo-

rem 5.3.3, satisfies Lucas congruences as well.

Theorem 5.3.3. Let a ∈ {1, 3}. Then, the sequence

A(n) =
n∑
k=0

(−1)k
(
n

k

)a(
4n− 5k

3n

)
(5.24)

is an LP function, that is, A(n) satisfy the Lucas congruences (5.5).

Proof. Let p be a prime and let n > 0 be an integer. As in the proof of Theorem 5.3.1,

we write n = n0 + n′p and k = k0 + k′p, where 0 6 n0 < p and 0 6 k0 < p and n′, k′ are

nonnegative integers. Again, we have to show that

A(n) ≡ A(n0)A(n′) (mod p). (5.25)

Throughout the proof, let d = b3n0/pc.

If k0 6 n0/5, then 4n0−5k0 > 3n0 > 0 and 4n0−5k0 6 4n0 < 3n0+p. Since d = b3n0/pc,

we thus have 0 6 3n0− dp < p and 0 6 4n0− 5k0− dp < (3n0− dp) + p. Therefore, modulo
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p,

(
4n− 5k

3n

)
≡ [x3n0−dp(xp)3n′+d](1 + x)4n0−5k0−dp(1 + xp)4n′−5k′+d

≡
(

4n0 − 5k0 − dp
3n0 − dp

)(
4n′ − 5k′ + d

3n′ + d

)
≡

(
4n0 − 5k0

3n0

)(
4n′ − 5k′ + d

3n′ + d

)
,

where in the last step we used that, modulo p,

(
4n0 − 5k0 − dp

3n0 − dp

)
=

(
4n0 − 5k0 − dp

n0 − 5k0

)
≡
(

4n0 − 5k0

n0 − 5k0

)
=

(
4n0 − 5k0

3n0

)
, (5.26)

which follows from (5.22) because 0 6 n0 − 5k0 < p. In particular, we have

bn0/5c∑
k0=0

n′∑
k′=0

(−1)k
(
n

k

)a(
4n− 5k

3n

)

≡
bn0/5c∑
k0=0

(−1)k0
(
n0

k0

)a(
4n0 − 5k0

3n0

) n′∑
k′=0

(−1)k
′
(
n′

k′

)a(
4n′ − 5k′ + d

3n′ + d

)
, (5.27)

and we observe that, for d ∈ {0, 1},

A(n) =
n∑
k=0

(−1)k
(
n

k

)a(
4n− 5k + d

3n+ d

)
. (5.28)

To see this, note that the the sum of the k-th and (n− k)-th term does not depend on the
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value of d ∈ {0, 1}. Indeed, using (5.17), Pascal’s relation and (5.17) again, we deduce that

(
4n− 5k + 1

3n+ 1

)
+ (−1)n

(
4n− 5(n− k) + 1

3n+ 1

)
=

(
4n− 5k + 1

3n+ 1

)
−
(

4n− 5k − 1

3n+ 1

)
=

[(
4n− 5k + 1

3n+ 1

)
−
(

4n− 5k

3n+ 1

)]
+

[(
4n− 5k

3n+ 1

)
−
(

4n− 5k − 1

3n+ 1

)]
=

(
4n− 5k

3n

)
+

(
4n− 5k − 1

3n

)
=

(
4n− 5k

3n

)
+ (−1)n

(
4n− 5(n− k)

3n

)
.

Next, suppose that n0 > 1 and 4n0/5 6 k0 6 n0. In that case, −p < −n0 6 4n0 − 5k0 6 0

or, equivalently, 0 < 4n0 − 5k0 + p 6 p. Hence, we have, modulo p,

(
4n− 5k

3n

)
≡ [x3n0−dp(xp)3n′+d](1 + x)4n0−5k0+p(1 + xp)4n′−5k′−1

≡
(

4n0 − 5k0 + p

3n0 − dp

)(
4n′ − 5k′ − 1

3n′ + d

)
.

We rewrite the first binomial factor as follows, applying first (5.17) and then (5.22) twice,

to find that, with l0 = n0 − k0, modulo p,

(
4n0 − 5k0 + p

3n0 − dp

)
= (−1)n0+d

(
4n0 − 5l0 − (d+ 1)p− 1

3n0 − dp

)
≡ (−1)n0+d

(
4n0 − 5l0 − dp− 1

3n0 − dp

)
= (−1)n0+d

(
4n0 − 5l0 − dp− 1

n0 − 5l0 − 1

)
≡ (−1)n0+d

(
4n0 − 5l0 − 1

n0 − 5l0 − 1

)
= (−1)n0+d

(
4n0 − 5l0 − 1

3n0

)
.

Here, we proceeded under the assumption that n0 − 5l0 > 0. It is straightforward to check

that the final congruence also holds when n0 = 5l0, because then the binomial coefficients
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vanish modulo p. We conclude that, when n0 > 1 and 4n0/5 6 k0 6 n0,

(−1)k
(

4n− 5k

3n

)
≡ (−1)l0

(
4n0 − 5l0 − 1

3n0

)
(−1)k

′+d

(
4n′ − 5k′ − 1

3n′ + d

)
(mod p).

In particular, we have

n0∑
k0=d4n0/5e

n′∑
k′=0

(−1)k
(
n

k

)a(
4n− 5k

3n

)

≡
n0∑

k0=d4n0/5e

(−1)l0
(
n0

l0

)a(
4n0 − 5l0 − 1

3n0

) n′∑
k′=0

(−1)k
′+d

(
n′

k′

)a(
4n′ − 5k′ − 1

3n′ + d

)

=

bn0/5c∑
k0=0

(−1)k0
(
n0

k0

)a(
4n0 − 5k0 − 1

3n0

) n′∑
k′=0

(−1)k
′+d

(
n′

k′

)a(
4n′ − 5k′ − 1

3n′ + d

)
, (5.29)

and we observe that, for integers d > 0,

n∑
k=0

(−1)k+d

(
n

k

)a(
4n− 5k − 1

3n+ d

)
=

n∑
k=0

(−1)k
(
n

k

)a(
4n− 5k + d

3n+ d

)

because, by (5.17),

(−1)k
(

4n− 5k + d

3n+ d

)
= (−1)(n−k)+d

(
4n− 5(n− k)− 1

3n+ d

)
.

Therefore, we can combine (5.27) and (5.29) into

n0∑
k0=0

k06n0/5 or k0>4n0/5

n′∑
k′=0

(−1)k
(
n

k

)a(
4n− 5k

3n

)

≡ A(n0)
n′∑
k′=0

(−1)k
′
(
n′

k′

)a(
4n′ − 5k′ + d

3n′ + d

)
(mod p), (5.30)

which holds for all 0 6 n0 < p (recall from the discussion at the beginning of this section

that A(n0), like sequence (η), can be represented as in Table 5.2).
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On the other hand, suppose that n0/5 < k0 < 4n0/5. Set f = b(4n0 − 5k0)/pc. Since

0 < 4n0−5k0 < 3n0 < 3p, we have f ∈ {0, 1, 2}. The usual arguments show that, modulo p,

(
4n− 5k

3n

)
≡ [x3n0−dp(xp)3n′+d](1 + x)4n0−5k0−fp(1 + xp)4n′−5k′+f

≡
(

4n0 − 5k0 − fp
3n0 − dp

)(
4n′ − 5k′ + f

3n′ + d

)
≡

(
4n0 − 5k0

3n0 − dp

)(
4n′ − 5k′ + f

3n′ + d

)
. (5.31)

We are now in a position to begin piecing everything together. To do so, we consider

individually the cases corresponding to the value of d ∈ {0, 1, 2}.

First, suppose d = 0 or d = 1. Congruence (5.30) coupled with (5.28) implies that

n0∑
k0=0

k06n0/5 or k0>4n0/5

n′∑
k′=0

(−1)k
(
n

k

)a(
4n− 5k

3n

)
≡ A(n0)A(n′) (mod p).

To conclude the desired congruence (5.25), it therefore only remains to show that

d4n0/5e−1∑
k0=bn0/5c+1

n′∑
k′=0

(−1)k
(
n

k

)a(
4n− 5k

3n

)
≡ 0 (mod p). (5.32)

This is easily seen in the case d = 0, because then each term of this sum vanishes modulo

p. Equivalently, for d = 0, (5.31) vanishes whenever n0/5 < k0 < 4n0/5 (because 0 6

4n0−5k0−fp 6 4n0−5k0 < 3n0). On the other hand, if d = 1, we claim that the sum (5.32)

vanishes modulo p because the terms corresponding to (k0, k
′) and (k0, n

′ − k′) cancel each

other. To see that, observe first that, for d = 1, (5.31) vanishes whenever n0/5 < k0 < 4n0/5

and f = b(4n0 − 5k0)/pc 6= 0 (because 0 6 4n0 − 5k0 − fp 6 4n0 − 5k0 − p < 3n0 − p if

f ∈ {1, 2}). Therefore, for the term corresponding to (k0, k
′),

(−1)k
(

4n− 5k

3n

)
≡ (−1)k0

(
4n0 − 5k0

3n0 − p

)
(−1)k

′
(

4n′ − 5k′

3n′ + 1

)
(mod p),
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while, for the term corresponding to (k0, n
′ − k′) with j = k0 + (n′ − k′)p,

(−1)j
(

4n− 5j

3n

)
≡ (−1)k0

(
4n0 − 5k0

3n0 − p

)
(−1)n

′−k′
(

4n′ − 5(n′ − k′)
3n′ + 1

)
≡ (−1)k0

(
4n0 − 5k0

3n0 − p

)
(−1)k

′+1

(
4n′ − 5k′

3n′ + 1

)
≡ −(−1)k

(
4n− 5k

3n

)
(mod p),

where we applied (5.17) for the second congruence. It is now immediate to see that the sum

(5.32) indeed vanishes modulo p for d = 1.

It remains to prove the Lucas congruences (5.25) in the case d = 2. Using (5.30), we

have

A(n) ≡ A(n0)
n′∑
k′=0

(−1)k
′
(
n′

k′

)a(
4n′ − 5k′ + 2

3n′ + 2

)
+M (mod p),

where

M :=

d4n0/5e−1∑
k0=bn0/5c+1

n′∑
k′=0

(−1)k
(
n

k

)a(
4n− 5k

3n

)
.

Combining this congruence with the identity

A(n) =
n∑
k=0

(−1)k
(
n

k

)a [(
4n− 5k + 2

3n+ 2

)
−
(

4n− 5k

3n+ 2

)]
,

which can be deduced along the same lines as (5.28), we find that

A(n) ≡ A(n0)A(n′) + A(n0)
n′∑
k′=0

(−1)k
′
(
n′

k′

)a(
4n′ − 5k′

3n′ + 2

)
+M (mod p). (5.33)
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We have, by (5.31), modulo p,

M ≡
d4n0/5e−1∑
k0=bn0/5c+1

(−1)k0
(
n0

k0

)a(
4n0 − 5k0

3n0 − 2p

) n′∑
k′=0

(−1)k
′
(
n′

k′

)a(
4n′ − 5k′ + f

3n′ + 2

)

≡
d4n0/5e−1∑
k0=bn0/5c+1

(−1)k0
(
n0

k0

)a(
4n0 − 5k0

3n0 − 2p

) n′∑
k′=0

(−1)k
′
(
n′

k′

)a(
4n′ − 5k′

3n′ + 2

)
,

where the last congruence is a consequence of the identity

n∑
k=0

(−1)k
(
n

k

)a(
4n− 5k + 1

3n+ 2

)
=

n∑
k=0

(−1)k
(
n

k

)a(
4n− 5k

3n+ 2

)

(which follows from (5.17) and replacing k with n− k) and the fact that (5.31) vanishes for

n0/5 < k0 < 4n0/5 if f = 2. Using this value of M in (5.33), we find that the desired Lucas

congruence (5.25) follows, if we can show that

A(n0) +

d4n0/5e−1∑
k0=bn0/5c+1

(−1)k0
(
n0

k0

)a(
4n0 − 5k0

3n0 − 2p

)
≡ 0 (mod p). (5.34)

Note that, if k0 6 n0/5, then, by (5.22) and (5.26),

(
4n0 − 5k0

3n0 − 2p

)
≡
(

4n0 − 5k0 − 2p

3n0 − 2p

)
≡
(

4n0 − 5k0

3n0

)
(mod p). (5.35)

A similar argument, combined with (5.17), shows that the congruence (5.35) also holds if

k0 > 4n0/5. We therefore find that (5.34) is equivalent to

n0∑
k0=0

(−1)k0
(
n0

k0

)a(
4n0 − 5k0

3n0 − 2p

)
≡ 0 (mod p).

The next lemma proves that this congruence indeed holds provided that a ∈ {1, 3}.

Lemma 5.3.4. Let p be a prime, and a ∈ {1, 2, 3}. Then we have, for all n such that
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2p/3 6 n < p,
n∑
k=0

(−1)ak
(
n

k

)a(
4n− 5k

3n− 2p

)
≡ 0 (mod p).

Proof. To prove these congruences we employ N. Calkin’s technique [14] for proving similar

divisibility results for sums of powers of binomials (5.50). Denoting r = p− n, we have, by

(5.17) and (5.22),

n∑
k=0

(−1)ak
(
n

k

)a(
4n− 5k

3n− 2p

)
=

p−r∑
k=0

(−1)ak
(
p− r
k

)a(
4p− 4r − 5k

p− 3r

)

=

p−r∑
k=0

(
k − p+ r − 1

k

)a(
4p− 4r − 5k

p− 3r

)

≡
p−r∑
k=0

(
k + r − 1

k

)a(
4p− 4r − 5k

p− 3r

)
(mod p).

Clearly, (
k + r − 1

k

)
=

(k + 1)(k + 2) · · · (k + r − 1)

(r − 1)!
=

(k + 1)r−1

(r − 1)!
, (5.36)

where (x)k = x(x+1) · · · (x+k−1) denotes the Pochhammer symbol (in particular, (x)0 = 1).

Likewise, (
4p− 4r − 5k

p− 3r

)
=

(3p− r − 5k + 1)p−3r

(p− 3r)!

Since (r − 1)! and (p− 3r)! are not divisible by p, we have to show that

p−r∑
k=0

(k + 1)ar−1(3p− r − 5k + 1)p−3r ≡ 0 (mod p). (5.37)

Since the polynomials (x)k, (x)k−1, . . . , (x)0 form an integer basis for the space of all polyno-

mials with integer coefficients and degree at most k, there exist integers c0, c1, . . . , cN with

N = (a− 1)(r − 1) + p− 3r so that

(k + 1)a−1
r−1(3p− r − 5k + 1)p−3r =

N∑
j=0

cj(k + r)j.
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Then the left-hand side of (5.37) becomes

p−r∑
k=0

(k + 1)r−1

N∑
j=0

cj(k + r)j =
N∑
j=0

cj

p−r∑
k=0

(k + 1)r−1(k + r)j

=
N∑
j=0

cj

p−r∑
k=0

(k + 1)r+j−1

=
N∑
j=0

cj
(p− r + 1)r+j

r + j
, (5.38)

where we used

(x)k − (x− 1)k = k(x)k−1

to evaluate
p−r∑
k=0

(k + 1)r+j−1 =

p−r∑
k=0

(k + 1)r+j − (k)r+j
r + j

=
(p− r + 1)r+j

r + j
.

The desired congruence therefore follows if we can show that

(p− r + 1)r+j
r + j

≡ 0 (mod p) (5.39)

for all j = 0, 1, . . . , N . Since r > 0 and j > 0, the numerator (p−r+1)r+j is always divisible

by p. The congruences (5.39) thus follow if r + j < p for all j, or, equivalently, r + N < p.

Since

r +N = (a− 1)(r − 1) + p− 2r,

we have r +N < p if and only if

(a− 1)(r − 1) < 2r.

Clearly, this inequality holds for all r > 1 if and only if a 6 3.

Remark 5.3.1. Numerical evidence suggests that the values a ∈ {1, 3} in Theorem 5.3.3

are the only choices for which the sequence (5.24) satisfies Lucas congruences. In light of
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Lemma 5.3.4, it is natural to ask if there are additional values of a and ε, for which the

sequence
n∑
k=0

(−1)εk
(
n

k

)a(
4n− 5k

3n

)
satisfies Lucas congruences. Empirically, this does not appear to be the case. In particular,

for a = 2 this sequence does not satisfy Lucas congruences for either ε = 0 or ε = 1.

5.4 Periodicity of residues

The Apéry numbers satisfy

A(n) ≡ (−1)n (mod 3), (5.40)

and so are periodic modulo 3. As in the case of the congruences (1.16), which show that the

Apéry numbers are also periodic modulo 8, the congruences (5.40) were first conjectured in

[16] and then proven in [28]. We say that a sequence C(n) is eventually periodic if there exists

an integer M > 0 such that C(n+M) = C(n) for all sufficiently large n. An initial numerical

search suggests that each sporadic Apéry-like sequence listed in Tables 5.1 and 5.2 can only

be eventually periodic modulo a prime p if p 6 5. As an application of Theorem 5.2.1, we

prove this claim next.

Corollary 5.4.1. None of the sequences from Tables 5.1 and 5.2 is eventually periodic

modulo p for any prime p > 5.

Proof. Gessel [28] shows that, if a sequence C(n) satisfies the Lucas congruences (5.5) modulo

p and is eventually periodic modulo p, then C(n) ≡ C(1)n modulo p for all n = 0, 1, . . . , p−1.

For instance, let C(n) be the Almkvist–Zudilin sequence (δ). Then, C(1) = 3, C(2) = 9

and C(3) = 3. Suppose C(n) was eventually periodic modulo p. Then p has to divide

C(3)− C(1)3 = −24, which implies that p ∈ {2, 3}.

In Table 5.3 we list, for each sequence, the primes dividing both C(2) − C(1)2 and

C(3)− C(1)3. The fact, that all these primes are at most 5, proves our claim.
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Table 5.3: The primes dividing both C(2)−C(1)2 and C(3)−C(1)3, for each sequence C(n)
from Tables 5.1 and 5.2.

(a) (b) (c) (d) (f) (g) (δ) (η) (α) (ε) (ζ) (γ) (s7) (s10) (s18)
2, 3 2, 5 2, 3 2 2, 3 2, 3 2, 3 2, 5 2, 3 2, 3 2, 3 2, 3 2 2 2, 3

As another simple consequence of Theorem 5.2.1, we observe that the Apéry-like se-

quences are in fact eventually periodic modulo each of the primes listed in Table 5.3.

Corollary 5.4.2. Let C(n) be any sequence from Tables 5.1 and 5.2.

• C(n) ≡ C(1) (mod 2) for all n > 1.

• C(n) ≡ C(1) (mod 3) for all n > 1 if C(n) is one of (c), (f), (g), (δ), (α), (ε), (ζ),

s18, and C(n) ≡ (−1)n (mod 3) for all n > 0 if C(n) is (a) or (γ).

• C(n) ≡ 3n (mod 5) for all n > 0 if C(n) is (b), and C(n) ≡ 0 (mod 5) for all n > 1 if

C(n) is (η).

Proof. One can check that Table 5.3 does not change if we include only those primes p such

that C(n) − C(1)n is divisible by p for all n ∈ {0, 1, 2, 3, 4}. For n = 0, this is trivial since

C(0) = 1. Therefore, in each of the cases considered here, we have

C(n) ≡ C(1)n (mod p)

for all n ∈ {0, 1, . . . , p − 1}. For any n > 0, let n = n0 + n1p + · · · + nrp
r be the p-adic

expansion of n. Then, by Theorem 5.2.1, we have

C(n) ≡ C(n0)C(n1) · · ·C(nr) (mod p)

≡ C(1)n0+n1+···+nr (mod p)

≡ C(1)n (mod p).
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For the final congruence we used Fermat’s little theorem. All claimed congruences then

follow from the specific initial values of C(n) modulo p.

More interestingly, the congruences (1.16) show that the Apéry numbers (sequence (γ))

are periodic modulo 8. We offer the following corresponding result for the Almkvist–Zudilin

sequence (δ).

Theorem 5.4.3. The Almkvist–Zudilin numbers

Z(n) =
n∑
k=0

(−1)k3n−3k

(
n

3k

)(
n+ k

n

)
(3k)!

k!3

satisfy the congruences

Z(n) ≡

 1, if n is even,

3, if n is odd,
(mod 8). (5.41)

Proof. It is shown in [57] that the numbers (−1)nZ(n) are the diagonal Taylor coefficients

of the multivariate rational function

F (x1, x2, x3, x4) =
1

1− (x1 + x2 + x3 + x4) + 27x1x2x3x4

. (5.42)

That is, if

F (x1, x2, x3, x4) =
∞∑

n1=0

∞∑
n2=0

∞∑
n3=0

∞∑
n4=0

C(n1, n2, n3, n4)xn1
1 x

n2
2 x

n3
3 x

n4
4

is the Taylor expansion of the rational function F , then Z(n) = (−1)nC(n, n, n, n).

Given such a rational function as well as a prime power pr, Rowland and Yassawi [52]

give an explicit algorithm for computing a finite state automaton, which produces the values

of the diagonal coefficients modulo pr. In the present case, this finite state automaton for the

values (−1)nZ(n) modulo 8 turns out to be the same automaton as the one for the Apéry
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numbers modulo 8. Hence, the congruences (5.41) follow from the congruences (1.16). We

refer to [52] for details on finite state automata and the algorithm to construct them from

a multivariate rational generating function. We also remark that, due to the complexity of

the algorithm, pr should be reasonably small in practice (for instance, the implementation

accompanying [52] takes several minutes to compute the finite state automaton for the

coefficients of (5.42) modulo 25, and did not finish in reasonable time modulo 26).

Empirically, Theorem 5.4.3 is the only other interesting set of congruences, apart from

the congruences (1.16), which demonstrates that an Apéry-like sequence is periodic modulo

a prime power. More precisely, numerical evidence suggests that none of the sequences in

Tables 5.1 and 5.2 is eventually periodic modulo pr, for some r > 1, unless p = 2. Moreover,

the only other instances modulo a power of 2 appear to be the following, less interesting,

ones: sequences (d) and (α) are eventually periodic modulo 4 because all their terms, except

the first, are divisible by 4; likewise, sequences (ε) and s7 are eventually periodic modulo 8

because all their terms, except the first, are divisible by 8. We do not attempt to prove these

claims here. We remark, however, that these claims can be established by the approach used

in the proof of Theorem 5.4.3, provided that one is able to determine a computationally

accessible analog of (5.42) for the sequence at hand.

5.5 Primes not dividing Apéry-like numbers

Using the Lucas congruences proved in Theorem 5.2.1, it is straightforward to verify whether

or not a given prime divides some Apéry-like number.

Example 5.5.1. The values of Apéry numbers A(0), A(1), . . . , A(6) modulo 7 are 1, 5, 3, 3, 3, 5, 1.

Since 7 does not divide A(0), A(1), . . . , A(6), it follows from the Lucas congruences (5.5) that

7 does not divide any Apéry number.

Arguing as in Example 5.5.1, one finds that the primes 2, 3, 7, 13, 23, 29, 43, 47, . . . do
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not divide any Apéry number A(n). E. Rowland and R. Yassawi [52] pose the question

whether there are infinitely many such primes. Table 5.4 records, for each sporadic Apéry-

like sequence, the primes below 100 which do not divide any of its terms, and the last column

gives the proportion of primes below 104 with this property. Each Apéry-like sequence is

specified by its label from [4], which is also used in Tables 5.1 and 5.2. The alert reader will

notice that Cooper’s sporadic sequences (the ones with d 6= 0 in Table 5.2) are missing from

Table 5.4. That is because these sequences turn out to be divisible by all primes. A more

precise result for these sequences is proved at the end of this section.

Table 5.4: Primes not dividing Apéry-like numbers
(a) 3, 11, 17, 19, 43, 83, 89, 97 0.2994
(b) 2, 5, 13, 17, 29, 37, 41, 61, 73, 89 0.2897
(c) 2, 7, 13, 37, 61, 73 0.2962
(d) 3, 11, 17, 19, 43, 59, 73, 83, 89 0.2815
(f) 2, 5, 13, 17, 29, 37, 41, 61, 73, 97 0.2994
(g) 5, 11, 29, 31, 59, 79 0.2929
(δ) 2, 5, 7, 11, 13, 19, 29, 41, 47, 61, 67, 71, 73, 89, 97 0.6192
(η) 2, 3, 17, 19, 23, 31, 47, 53, 61 0.2897
(α) 3, 5, 13, 17, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 83, 89 0.5989
(ε) 3, 7, 13, 19, 23, 29, 31, 37, 43, 47, 61, 67, 73, 83, 89 0.6037
(ζ) 2, 5, 7, 13, 17, 19, 29, 37, 43, 47, 59, 61, 67, 71, 83, 89 0.6046
(γ) 2, 3, 7, 13, 23, 29, 43, 47, 53, 67, 71, 79, 83, 89 0.6168

The primes below 100 not dividing Apéry-like numbers (sequence indicated in first column
using the labels from [4]) as well as the proportion of primes (in the last column) below
10, 000 not dividing any term

Example 5.5.1 shows that the first 7 values of the Apéry numbers modulo 7 are palin-

dromic. Our next result, which was noticed by E. Rowland, shows that this is true for all

primes.

Lemma 5.5.2. For any prime p, and integers n such that 0 6 n < p, the Apéry numbers

A(n) satisfy the congruence

A(n) ≡ A(p− 1− n) (mod p).
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Proof. For n such that 0 6 n < p, we employ (5.17) and (5.22) to arrive at

A(p− 1− n) =

p−1∑
k=0

(
p− 1− n

k

)2(
p− 1− n+ k

k

)2

≡
p−1∑
k=0

(
n+ k

k

)2(
n

k

)2

= A(n) (mod p),

as claimed.

Theorem 5.2.1 and Lemma 5.5.2, considered together, suggest that e−1/2 ≈ 60.65% of

the primes do not divide any Apéry number. Indeed, let us make the empirical assumption

that the values A(n) modulo p, for n = 0, 1, . . . , (p − 1)/2, are independent and uniformly

random. Since one of the values A(n) is congruent to 0 modulo p with probability 1/p, it

follows that the probability that p does not divide any of the (p+ 1)/2 first values is

(
1− 1

p

)(p+1)/2

. (5.43)

By the Lucas congruences, shown in Theorem 5.2.1, and Lemma 5.5.2, p does not divide

any of the (p + 1)/2 first values if and only if p does not divide any Apéry number. In the

limit p→∞, the proportion (5.43) becomes e−1/2. Observe that this empirical prediction

matches the numerical data in Table 5.4 rather well. We therefore arrive at the following

conjecture.

Conjecture 5.5.3. The proportion of primes not dividing any Apéry number A(n) is e−1/2.

While Lemma 5.5.2 does not hold for the other Apéry-like numbers C(n) from Tables 5.1

and 5.2, we make the weaker observation that if a prime p > 5 divides C(n), where 0 6 n < p,

then p also divides C(p− 1− n). We expect that this empirical observation can be proven

in the spirit of the proof of Lemma 5.5.2, but do not pursue this theme further. We only

note that it allows us to extend the heuristic leading to Conjecture 5.5.3 to the Apéry-like

sequences (δ), (α), (ε), (ζ) from Table 5.2. In other words, we conjecture that, for each
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Figure 5.1: Proportion of primes (up to 3000) not dividing the sequences (δ), (α), (ε), (ζ),
(γ), with the dotted line indicating e−1/2. The Apéry sequence is plotted in blue. (We thank
Arian Daneshvar for producing this plot.)

of these sequences, the proportion of primes not dividing any of the terms is again e−1/2.

Figure 5.1 visualizes some numerical evidence for this conjecture. On the other hand, for

sequence (η) as well as the sequences from Table 5.1, the proportion of primes not dividing

any of their terms appears to be about half of that, that is e−1/2/2 ≈ 30.33%.

To explain this extra factor of 1/2, we note that, for the Apéry-like numbers

Ab(n) =
∑
k

(
n

k

)2(
n+ k

n

)
, (5.44)

Stienstra and Beukers [56] proved that, modulo p,

Ab

(
p− 1

2

)
≡

 4a2 − 2p, if p = a2 + b2, a odd,

0, if p ≡ 3 (mod 4)
(5.45)

(and conjectured that the congruence should hold modulo p2, which was later proved by

Ahlgren [2]; see also [3]). In particular, congruence (5.45) makes it explicit that every prime

p ≡ 3 (mod 4) divides a term of this Apéry-like sequence. Note that, by a classical congruence

122



of Gauss, the congruences (5.45) are equivalent, modulo p, to the congruences

Ab

(⌊p
2

⌋)
≡


(bp/2c
bp/4c

)2
, if p ≡ 1 (mod 4),

0, otherwise,
(5.46)

which are valid for any prime p 6= 2. The more general result in [56] also includes the cases

Aa and Ac. Similar divisibility results appear to hold for the other Apéry-like numbers from

Table 5.1, and it would be interesting to make these explicit.

On the other hand, the extra factor of 1/2 in case of sequence (η) is explained by the

following congruences, which resemble (5.46) remarkably well.

Theorem 5.5.4. For any prime p 6= 3, we have that, modulo p,

Aη

(⌊p
3

⌋)
≡

 (−1)bp/5c
( bp/3c
bp/15c

)3
, if p ≡ 1, 2, 4, 8 (mod 15),

0, otherwise.
(5.47)

Proof. Suppose that p ≡ 2 (mod 3), and write p = 3n + 2. The congruence (5.47) can be

checked directly for p = 2 and p = 5, and so we may assume p > 5 in the sequel. Applying

(5.36) to the definition of sequence (η) in Table 5.2, we have

Aη(n) =

bn/5c∑
k=0

(−1)k
(
n

k

)3((
4n− 5k − 1

3n

)
+

(
4n− 5k

3n

))

=

bn/5c∑
k=0

(−1)k
(
n

k

)3(
(n− 5k)3n

(3n)!
+

(n− 5k + 1)3n

(3n)!

)
. (5.48)

Since 3n = p− 2 and 0 6 k 6 n/5, the term

(n− 5k)3n

(3n)!
(5.49)

is always divisible by p, unless n− 5k ∈ {1, 2} (because, otherwise, one of the p− 2 factors

of (n− 5k)3n is divisible by p, while (3n)! is not). Note that n− 5k = 1 and n− 5k = 2 are
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equivalent to k = (p−5)/15 and k = (p−8)/15, respectively. However, (p−5)/15 cannot be

an integer (since p 6= 5). We thus find that (5.49) vanishes modulo p unless p ≡ 8 (mod 15)

and k = bp/15c, in which case (5.49) is congruent to −1 modulo p. Combined with the

analogous discussion for the corresponding second term in (5.48), we conclude that

(n− 5k)3n

(3n)!
+

(n− 5k + 1)3n

(3n)!
≡


1, if k = bp/15c and p ≡ 2 (mod 15),

−1, if k = bp/15c and p ≡ 8 (mod 15),

0, otherwise.

Applying this to the sum (5.48) and combining the signs properly, we arrive at the congru-

ences (5.47) when p ≡ 2 (mod 3).

The case p ≡ 1 (mod 3) is similar and a little bit simpler.

In summary, we conjecture that the proportion of primes not dividing any term of the

Apéry-like sequences in Tables 5.1 and 5.2 is as follows.

Conjecture 5.5.5.

• Let C(n) be one of the sequences of Table 5.1 or sequence (η). Then the proportion of

primes not dividing any C(n) is 1
2
e−1/2.

• Let C(n) be one of the sequences (δ), (α), (ε), (ζ), (γ) from Table 5.2. Then the

proportion of primes not dividing any C(n) is e−1/2.

In stark contrast, Cooper’s sporadic sequences s7, s10, s18 from Table 5.2 are divisible by

all primes. Indeed, let C(n) denote any of these three sequences. Then,

C(p− 1) ≡ 0 (mod p)

for all primes p. In fact, we can prove much more. For any given prime p, the last quarter (or

third) of the first p terms of these sequences are divisible by p. In the case of sequence s10,

124



the sum of fourth powers of binomial coefficients, this is proved by N. Calkin [14]. Indeed,

among other divisibility results on sums of powers of binomials, Calkin shows that, for all

integers a > 0, the sums
n∑
k=0

(
n

k

)2a

(5.50)

are divisible by all primes p in the range

n < p < n+ 1 +
n

2a− 1
.

In particular, in the case a = 2, we conclude that s10(n) is divisible by all primes p that

satisfy n < p < 4n
3

+ 1. Equivalently, we have

s10(p− j) ≡ 0 (mod p)

whenever 1 6 j 6 (p + 2)/4. Our final result proves the same phenomenon for Cooper’s

sporadic sequences s7, s18. We note that in each case, empirically, the bounds on j cannot

be improved (with the exception of the case p = 3 for s18; see Remark 5.5.1).

Theorem 5.5.6. For any prime p, we have

s7(p− j) ≡ 0 (mod p)

whenever 1 6 j 6 (p+ 1)/3, and

s18(p− j) ≡ 0 (mod p)

whenever 1 6 j 6 (p+ 2)/4.
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Proof. For the sequence s7, we want to show

p−j∑
k=0

(
p− j
k

)2(
p− j + k

k

)(
2k

p− j

)
≡ 0 (mod p),

for 1 6 j 6 (p + 1)/3. Note that for 2k < p− j or k > p− j the summand is already zero.

Therefore, we assume that p− j > k > (p− j)/2. We write the summand as

(
p− j
k

)2(
p− j + k

k

)(
2k

p− j

)
=

(p− j + k)!(2k)!

k!3(p− j − k)!2(2k − p+ j)!
,

and observe that the denominator is not divisible by p if j > 1. On the other hand, the

factorial (p− j + k)! in the numerator is divisible by p since

p− j + k > p− j +

⌈
p− j

2

⌉
> p,

where we used j 6 (p+ 1)/3 to verify the final inequality. Thus, for 1 6 j 6 (p+ 1)/3, the

congruences s7(p− j) ≡ 0 hold modulo p, as claimed.

We proceed similarly for s18(p− j), which is given by

b(p−j)/3c∑
k=0

(−1)k
(
p− j
k

)(
2k

k

)(
2(p− j − k)

p− j − k

){(
2(p− j)− 3k − 1

p− j

)
+

(
2(p− j)− 3k

p− j

)}
,

and, using (5.36), write the summand as

(−1)k(2k)!(2(p− j − k))!

k!3(p− j − k)!3
(p− j − 3k + 1)p−j−1(3p− 3j − 6k). (5.51)

None of the terms in the denominator is divisible by p since j > 1. On the other hand,

(2(p− j − k))! in the numerator is divisible by p since

2(p− j − k) > 2

(
p− j −

⌊
p− j

3

⌋)
> p,
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where we used j 6 (p + 2)/4 for the final inequality. Therefore, for 1 6 j 6 (p + 2)/4,

each of the terms in the sum for s18(p − j) is a multiple of p, and we obtain the desired

congruences.

Remark 5.5.1. Employing (5.51), we observe that s18(n) ≡ 0 (mod 3) for n > 1, which

reaffirms Corollary 5.4.2 for this sequence.

Finally, as noted in [20], each of the sequences in Table 5.1 times
(

2n
n

)
is an integer

solution of (5.2) with d 6= 0. Observe that
(

2n
n

)
is divisible by a prime p for all n such

that n < p 6 2n. This results in a (weaker) analog of Theorem 5.5.6 for these Apéry-like

sequences, and implies, in particular, that these sequences are again divisible by all prime

numbers.

5.6 Conclusion and open questions

In Sections 5.2 and 5.3, we showed that all sporadic solutions of (5.1) and (5.2), given in

Tables 5.1 and 5.2, uniformly satisfy Lucas congruences. However, for two of these sequences,

especially sequence (η), we had to resort to a rather technical analysis. We therefore wonder

if there is a representation of these sequences from which the Lucas congruences can be

deduced more naturally, based on, for instance the approaches of [53] and [37], or [52]. More

generally, it would be desirable to have a uniform approach to these congruences, possibly

directly from the shape of the defining recurrences and associated differential equations. In

another direction, it would be interesting to show that, as numerical evidence suggests, all

of the Apéry-like sequences in fact satisfy the Dwork congruences (1.15).

The congruences (1.16) show that the Apéry numbers are periodic modulo 8, alternating

between the values 1 and 5. As a consequence, the other residue classes 0, 2, 3, 4, 6, 7 modulo

8 are never attained. On the other hand, the observations in Section 5.5 show that certain

primes do not divide any Apéry number. This can be rephrased as saying that the residue

class 0 is not attained by the Apéry numbers modulo these primes. This leads us to the
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question of which residue classes are not attained by Apéry-like numbers modulo prime

powers pα. In particular, are there interesting cases which are not explained by Sections 5.4

and 5.5?

The second part of congruence (5.45) makes it explicit that every prime p ≡ 3 (mod 4)

divides a term of the Apéry-like sequence (5.44). Is there a similarly explicit result which

demonstrates that the Apéry numbers are divisible by infinitely many distinct primes?

Recall that Conjecture 5.5.3 predicts that the proportion of primes not dividing any Apéry

number is e−1/2. One of the referees raised the question whether there might be a connection

between this conjectured proportion and classical divisbility questions of Bernoulli numbers

and the notion of regular primes (for instance, C. L. Siegel conjectured that e−1/2 of all prime

numbers are regular).

Another interesting question was suggested by the second referee, who noted that the

right-hand side of (5.45) is the p-th Fourier coefficient cp of the modular form

η(4z)6 := q
∞∏
n=1

(1− q4n)6 =
∞∑
n=1

cnq
n, q = e2πiz.

With this observation, a natural question concerning Theorem 5.5.4 is whether there exists

a modular form (with CM?) f(z) whose p-th Fourier coefficient is related modulo p2 to Aη.
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155, 1985.

[11] F. Beukers. Another congruence for the Apéry numbers. J. Number Theory, 25(2):201–
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