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ABSTRACT 
 

KRAB-associated C2H2 zinc-finger (KRAB-ZNF) proteins are the products of a rapidly 

evolving gene family that traces back to early tetrapods, but which has expanded 

dramatically to generate an unprecedented level of species-specific diversity. While most 

attention has been focused on the more recently evolved primate KRAB-ZNF genes, the 

vertebrate roots of the KRAB-ZNF families have remained mysterious. We recently 

mined ZNF loci from seven sequenced genomes (opossum, chicken, zebra finch, lizard, 

frog, mouse, and human genome) and found hundreds of KRAB-ZNF proteins in every 

species we examined, but only three human genes were found with clear orthologs in 

non-mammalian vertebrates. These three genes, ZNF777, ZNF282, and ZNF783, are 

members of an ancient familial cluster and encode proteins with similar domain 

structures. These three genes, members of an ancient familial cluster, encode a 

noncanonical KRAB domain that is similar to an ancient domain which is prevalent in 

non-mammalian species. In contrast to the mammalian KRAB, which is thought to 

function as a potent repressor, this ancient domain serves as a transcriptional activator. 

Our evolutionary analysis confirmed the ancient provenance of this activating KRAB and 

revealed the independent expansion of KRAB-ZNFs in every vertebrate lineage. This 

finding led us to ask the question: what are the functions of these ancient family members 

and why, of such a large and diverse family group, were these three genes conserved so 

fastidiously over hundreds of millions of years?  

In chapter 2, I report the regulatory function of ZNF777, combining chromatin 

immunoprecipitation followed by massively parallel sequencing (ChIP-seq) with siRNA 

knockdown experiments to determine genome-wide binding sites, a distinct binding 

motif, and predicted targets for the protein in human BeWo choriocarcinoma cells. Genes 

neighboring ZNF777 binding sites can be either up- or down- regulated, suggesting a 

complex regulatory role. Our studies revealed that some of this complexity is due to the 

generation of HUB-containing and HUB-minus isoforms, which are predicted to have 

different regulatory activities. Based on these experiments, we hypothesize that ZNF777 

regulates pathways best known for their roles in neurogenesis and axon pathfinding, but 

also recently shown to play critical roles in placental development.  
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Since ZNF777 is also expressed in embryonic brain, we sought to further investigate 

the functional role of this ancient gene in neuron development. In chapter 3, I show that 

mouse Zfp777 is expressed in neuronal stem cells (NSC) cultured from early mouse 

embryos, with a pattern that changes over the course of neuron differentiation in vitro. 

Using the NSC platform, I characterized the binding landscape of Zfp777 in 

undifferentiated NSC. To circumvent the roadblock posed by the lack of a ChIP-grade 

antibody for the mouse protein, I exploited the CRISPR-Cas9 technique to tag the 

endogenous Zfp777 protein with FLAG epitopes. Our results revealed a novel Zfp777 

binding motif that bears significant similarity to a motif predicted in in vitro studies, and 

found that Zfp777 binds to promoters of genes encoding transcription factors, Wnt and 

TGF-beta pathways components, and proteins related to neuron development and axon 

guidance. Since these same functions were also found to be regulated by ZNF777 in 

BeWo cells, these results suggested that the mouse and human Zfp777 and ZNF777 

proteins regulating similar genes and pathways, most classically associated with axon 

guidance, in diverse tissues. 
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CHPATER 1: INTRODUCTION 
 

Introduction of C2H2 Zinc Finger Transcription Factors 

In eukaryotic cells, the transcriptional control is an extremely complex process involving 

a great number of transcription factors (TFs) and cofactors that regulate the assembly of 

transcription-initiation complexes and the rate at which transcription is initiated. There 

are a variety of enzymes which modify the chromatin structure via changes in histone 

modification, DNA methylation, and nucleosome positioning. The presence of specific 

DNA-binding domains (DBDs) which encode a sequence-specific DNA-binding module 

is an essential feature in the functioning of TFs, and TFs are often classified by the type 

of DNA-binding domain they contain. Other parts of the protein can contribute to and 

influence the intrinsic DNA-binding activity, including sequences that flank the DBD and 

that mediate dimerization. It is estimated that TFs constitute between 0.5 and 8% of the 

gene content of eukaryotic genomes, with both the absolute number and proportion of 

TFs in a genome roughly scaling with the complexity of the organism (Levine & Tjian 

2003). Most eukaryotic TFs tend to recognize short, degenerate DNA sequence motifs, in 

contrast to the larger motifs preferred by prokaryotic TFs (Wunderlich & Mirny 2009). 

Cooperation among TFs, rather than highly-specific sequence preferences, is believed to 

be a pervasive feature of eukaryotic transcriptional regulation (Arnosti & Kulkarni 2005). 

    The distinguishing feature of TFs, relative to other transcriptional regulatory proteins, 

is that they interact with DNA in a sequence-specific manner (Karin 1990; Latchman 

1997). In the vast majority of well-studied cases, these interactions are mediated by DNA 

binding domains (DBDs) (Luscombe et al. 2000), and TF families are typically defined 

on the basis of sequence similarity of their DBDs. One of the most abundant DBD in 

eukaryotic TFs is the zinc finger (ZNF). Different classes of zinc finger domains have 

been identified and characterized according to the nature and spacing of their zinc-

chelating residues (Mackay & Crossley 1998). The canonical C2H2 ZNF motif, 

comprises 28 to 30 amino acid residues and its structure is stabilized by a zinc ion 

coordinated by four highly conserved residues, two cysteines and two histidines (Krishna 

et al. 2003). The stably folded structure consists of one alpha helix and two to three beta 

strands. The alpha helix mediates DNA binding through non-covalent interactions 
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between three of its amino acid residues and three adjacent bases within the DNA major 

groove (Wuttke et al. 1997). This zinc-dependent structure is required for the interaction 

between the finger motif and nucleic acids; in the absence of zinc, or if elements of 

conserved C2H2 structure are abolished through mutations, zinc fingers lose their ability 

to fold properly and to bind DNA (Pavletich & Pabo 1991; Pavletich & Pabo 1993; 

Brayer & Segal 2008).  

    The C2H2 zinc finger motif, first identified in studies of the Xenopus TF TIFIIA (Klug 

et al. 1986) is by far the most common protein domain in metazoan TFs. Most versions of 

this motif correspond to a subtype called the “Krüppel –type” named for the Drosophila 

Krüppel protein, a developmentally active TF that has the canonical C2H2 zinc-binding 

structure. C2H2 zinc finger, also called Krüppel –type (KZNF) proteins, contain from 3 

to more than 30 zinc-finger motifs, which are arranged in tandem within the protein. The 

tandem arrangement of KZNF motifs permits the adjacent fingers to interact, to modulate 

each other’s DNA binding, and to stabilize DNA binding of the protein at specific sites 

(Laity et al. 2001). In addition to the paired cysteine and histidine residues, KZNF motifs 

contain a highly conserved “spacer” within fingers, or H/C link sequence, a seven amino 

acid segment with the consensus sequence TGEKP(Y/F). Variations in the amino acid 

sequence of the finger domains and spacing, as well as in zinc finger number and higher-

order structure, may increase the ability of these proteins to bind multiple different 

ligands such as RNA, DNA-RNA hybrids and even proteins, thus highlighting the 

structural and functional versatility of this protein family (Vissing et al. 1995; Tommerup 

& Vissing 1995).  

 

Evolution and Structure of KRAB-ZNF Proteins 

While zinc-fingers define binding site specificity and stability for KZNF proteins, most 

TFs of this type also require one of more “effector” domains to translate site-specific 

DNA binding into gene regulatory activities impacting neighboring genes. These include 

the BTB/POZ domain, the SCAN domain, and the KRAB domain (Krüppel-associated 

box) (Bellefroid et al. 1993; Collins et al. 2001). The KRAB-ZNF gene family represents 

a more recent evolutionary product and its expansion in the genome of tetrapod 

vertebrates could indicate the acquisition of new functions to sustain differentiation and 
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speciation. A comparative analysis of mammalian genomes revealed the existence of a 

large and highly conserved number of genes that originated through repeated cycles of 

duplications from a single ancestral gene. After their duplications, these new genes 

diversified their coding regions to produce novel proteins with new biological functions 

(Shannon et al. 2003; Emerson & Thomas 2009).  

    These genes have been found clustered at particular sites on chromosomes suggesting 

the existence of a common repertoire of regulatory sequences and a coordinated 

mechanism of their gene expression (Nowick et al. 2010; Huntley 2006). In the 

mammalian genome, the gene families encoding olfactory receptors, alpha-globins, KYR 

proteins and KRAB-ZNF are the most representative within this class of clustered genes 

(Mombaerts 1999; Uhrberg 2005). Interestingly, only the genes encoding KRAB-ZNFs 

are differentially expressed in various tissues during differentiation and development, 

indicating that these gens have functions unique to mammalian evolution and molecular 

processes that establish the phenotypic differences between vertebrates and other species 

(Vissing et al. 1995; Bellefroid et al. 1993; Lorenz et al. 2010). Therefore, expression of 

KRAB-ZNF genes is independent of their genome localization, as well as of nearby 

paralogs generated through gene duplications within the same gene cluster. These 

paralogs, as new members of the KRAB-ZNF family, show different expression patterns 

and novel non-redundant functions (Urrutia 2003). 

    While most vertebrate transcription factor families are largely conserved, the C2H2 

zinc finger (ZNF) family stands out as a significant exception. Novel gene types have 

arisen to encode proteins in which DNA-binding ZNF motifs are tethered to different 

types of chromatin-interacting effector domains (Pearson et al. 2008). Some of the gene 

types have been expanded by duplication and diverged independently to yield many 

lineage-specific TF genes. For example, the evolutionary history of the KRAB-associated 

C2H2 zinc finger (KRAB-ZNF) family is distinct from that of other transcription factor 

types, involving an unprecedented level of species-specific diversity as a result of 

segmental duplication over the course of evolutionary history (Stubbs et al. 2011). 

Available data indicate that the process of generating new KRAB-ZNF genes is ongoing; 

for example, analysis of the human genome revealed more than 20 new genes generated 
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within the past 35-40 million years (My) (Nowick et al. 2010; Nowick et al. 2011), and at 

least 136 of the 394 identified human genes are primate-specific (Huntley 2006). 

    The larger class of ZNF genes primarily encode proteins that function as transcription 

factors, and typically contain an array of two or more tandemly arranged C2H2 zinc 

finger motifs. DNA binding of these zinc fingers is affected by specific interaction 

between four amino acids within a ZNF motif; each finger can bind three adjacent 

nucleotides at target sites with amino acids in positions -1, 2, 3, and 6 in the alpha-helical 

region (Pavletich & Pabo 1993; Kim & Berg 1996). We refer to these four amino acids as 

a protein’s “fingerprint.” The ZNF array winds around the DNA target site within the 

major groove on the DNA helix, such that the DNA-contacting amino acids in each 

finger interact directly with adjacent sets of target-site nucleotides. The human genome 

encodes hundreds of KRAB-ZNF genes, encoding proteins in which arrays of tandem 

ZNF motifs are tethered to an N-terminal effector domain called the Krüppel-associated 

box or KRAB (Bellefroid et al. 1993; Consiantinou-Deltas et al. 1992). The canonical 

mammalian KRAB A domain interacts with a universal cofactor, KAP1, which recruits 

histone deacetylase and methylation complexes to the ZNF-binding sites, and KRAB-

ZNF proteins are thus thought to act as potent transcriptional repressors (Vissing et al. 

1995; Margolin et al. 1994; Pengue et al. 1994; Witzgall et al. 1994). 

 

The Deeply Conserved Gene Family Representing the Root of Mammalian ZNF 

Genes 

While most attention has been focused on more recently evolved, primate-specific 

KRAB-ZNF genes, the origins and deeper vertebrate roots of the KRAB-ZNF family has 

remained mysterious. The evolutionary dynamic of this family severely complicates the 

identification of ZNF gene homologs, including those that remain functionally conserved. 

To alleviate that problem, we searched for vertebrate “DNA binding orthologs” by 

mining ZNF gene models from seven sequenced genomes (opossum, chicken, zebra 

finch, lizard, frog, mouse, and human genome) (Liu et al. 2014). From these models, we 

extracted and aligned the patterns of DNA-binding amino acids, or “fingerprints”, to look 

for related patterns across species.  Although this study identified all genes in which 

multiple, tandem ZNF motifs were encoded, the most interesting results were revealed in 
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analysis of the KRAB-ZNF genes. Surprisingly, of the nearly 400 human KRAB-ZNF 

genes, only three genes were found to recognize proteins with similar fingerprints in both 

mammalian and in non-mammalian vertebrates. These three genes, ZNF777, ZNF282, 

and ZNF783, are members of an ancient familial cluster, and are likely to represent the 

founders of the mammalian ZNF family. These ancient genes are unusual in mammals in 

that, like the single KRAB domain present in the original protein of this type, PRDM9, 

they encode a noncanonical KRAB domain that cannot bind to KAP1 and may function 

as a transcriptional activator (Okumura et al. 1997; Conroy et al. 2002). Evolutionary 

analysis confirmed the ancient provenance of this activating KRAB and revealed the 

independent expansion of KRAB-ZNFs in every vertebrate linage. In non-mammalian 

vertebrates, most KRAB-ZNF genes contain an activating KRAB domain, and the KAP1-

binding version of this domain appears to have been selected for dominance particularly 

in mammalian lineages (Liu et al. 2014). 

    Since their first appearance in amniote species, ZNF777, ZNF282 and ZNF783 have 

given rise to new duplicates; ZNF398, ZNF212 and ZNF746 are present in marsupials 

and eutherians, while other duplicates are found only in eutherian species (Liu et al. 

2014). These duplications occurred in tandem so that these closely related genes are 

located in a single cluster in mammalian genomes. A limited amount of data exists 

regarding the functions of these conserved KRAB-ZNF family members. In particular, 

ZNF282 has been shown to bind U5RE (U5 repressive element) on the long terminal 

repeat (LTR) of human T-cell leukemia virus type I (HTLV-I) and represses the HTLV-I 

LTR-mediated expression (Okumura et al. 1997). In the same report, the KRAB domain 

of ZNF282 was shown to function as a transcriptional activating domain unlike the 

canonical KRAB domain. The N-terminal exon encodes a domain which is specific to 

this conserved gene family, named “HUB” (HTLV-I U5RE binding) repressive domain, 

was demonstrated to repress transcription, and the amino acids 1-75 region of ZNF282 is 

indispensable for the repressive activity. In two more recent studies, ZNF282 was 

identified to interact with estrogen receptor α (ERα) and cooperate synergistically with 

CoCoA (Coiled-coil co-activator) to function as an ERα co-activator in breast cancer 

cells (Conroy et al. 2002). Also, ZNF282 is SUMOylated and the SUMOylation 

positively regulates the co-activator activity of ZNF282 by increasing the binding affinity 
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to ERα and CoCoA (Yu et al. 2012). The same group later demonstrated that ZNF282 

functions as a coactivator for one of the key cell cycle-regulating transcription factors, 

E2F1, and is required for E2F1-mediated gene expression in Esophageal squamous cell 

carcinoma (ESCC) cells, which links ZNF282 to cell cycle control mechanisms (Yeo et 

al. 2014).  

    Another family member, ZNF398, has also been shown to interact with ERα. ZNF398 

has two different isoforms that are generated by alternative splicing: the 71 kDa full-

length isoform (p71), and a 52 kDa isoform lacking the HUB domain (p52). The p52 

isoform interacts strongly with ERα in the presence of 17 β-estradiol, whereas the p71 

isoform has a HUB domain that inhibits the interaction with ERα (Conroy et al. 2002).  

Both isoforms can activate transcription through the ZNF398 binding element; however, 

in the presence of ERα, transactivation by the p52 isoform is specifically repressed. 

Overexpression of the p52 isoform was able to abrogate activation by p71 isoform.  

Therefore, the regulation of transcription mediated by ZNF398, and possibly other family 

members, can be controlled by the relative level of expression of distinct isoforms 

(Conroy et al. 2002). A third family member, ZNF746 (PARIS), has been shown to 

accumulate in models of parkin inactivation and in human PD (Parkinson’s disease) 

brain, and the levels of ZNF746 is regulated by parkin via the ubiquitin proteasome 

system (Shin et al. 2011). ZNF746 represses the expression of the transcriptional 

coactivator, PGC-1α (peroxisome proliferator-activated receptor gamma (PPARγ) 

coactivator-1α) and the PGC-1α target gene, NRF-1 by binding to insulin response 

sequences in the PGC-1α promoter (Shin et al. 2011).  

    Together these data suggest some common features and potential functions for 

members of this conserved family. First, this ancient, clustered KRAB-ZNF subfamily 

share a noncanonical KRAB domain which does not act as a repressor, in addition to a 

novel N-terminal HUB domain which may have repressive activity depending on 

possible cooperation with other proteins. Second, these members may have different 

isoforms including or excluding exons encoding HUB and KRAB domains, influencing 

protein-protein interactions and regulatory functions. Third, these related proteins 

commonly interact with nuclear receptors but may also interact with other TFs with 

strong influence on the expression of target genes. The fact that ZNF282 binds to and 



	 7 

silences retroviral LTRs has particularly interesting relevance to the human KRAB-ZNF 

family, since their dynamic evolution has been linked to an “arms race” to silence 

retroviral invasions (Emerson & Thomas 2009; Thomas & Schneider 2011; Wolf & Goff 

2009; Jacobs et al. 2014) This connection raises questions regarding the possible 

interaction with other subfamily members and retroviral LTRs. 

 

Aims of This Study 

The focus of this study is to investigate the function of the most conserved founding 

members of the KRAB-ZNF transcription factor family, ZNF777. This gene stands out 

among this dynamic family for their deep conservation; the structure of the ZNF DNA 

binding domains suggests that the regulatory activities have been strictly maintained for 

hundreds of millions of years. These observations suggest that ZNF777 has adopted 

essential functions that are shared across amniotes. The central purpose of this study is to 

illuminate those regulatory functions and to understand the biological roles that have 

been adopted by mammalian ZNF777. 

    Chapter 2 is focused on addressing the regulatory function of ZNF777 in human 

placenta-derived choriocarcinoma cells. ZNF777 has been shown to be highly expressed 

in adult immune and reproductive tissues especially the placenta (Liu et al. 2014), 

indicating that it has been enlisted to regulate evolutionary divergent biological traits. In a 

recent study, Yuki et al. has shown that ZNF777 is involved in regulating cell cycle 

progression, as overexpression of ZNF777 inhibits proliferation at low cell density 

through down-regulation of FAM129A, and the induction of p21 activity (Yuki et al. 

2015). This study provides the first examination of the global binding sites for ZNF777, 

focused on BeWo cells which are an established model of human placental trophoblasts. 

It also reveals the functions of genes affected by ZNF777 depletion, in the form of siRNA 

knockdown, in BeWo cells. By correlating these two datasets, I was able to assess the 

effects of ZNF777 protein binding with direct and downstream transcriptomic outcomes.  

In the process, I have identified a clear and distinct binding motif for ZNF777 protein for 

the first time.   

    Chapter 3 describes the development and application of tools for studying the functions 

of Zfp777 and Zfp282 in the context of developing neurons, where our previous study 
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also showed (Liu et al., and this thesis) the genes and proteins are also highly expressed.  

Using a version of the CRISPR-Cas9 system to introduce C-terminal epitope tags 

(“CETCh-seq”, Savic et al. 2015), we tagged endogenous Zfp282 and Zfp777 with 

FLAG sequences, and performed ChIP-seq to uncover the binding sites of the Zfp777 in 

mouse neural stem cells. A strong binding motif of Zfp777 was identified, with most of 

the binding sites at the promoter regions of protein-coding genes, therefore, possible 

functions of Zfp777 in mouse neural stem cells can be implicated by examining the genes 

whose promoters were bound by Zfp777.  

    Putting these pieces of information together allows a detailed model of the functions of 

ZNF777 to be developed, elucidating the genome-wide regulatory functions of this 

proteins, extant mammalian representatives of a large and ancient TF class, and the 

founders of the largest TF family in mammalian genomes.   
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Abstract 

 
The evolutionary history of the KRAB-associated C2H2 zinc-finger (KRAB-ZNF) family 

is distinct from that of other transcription factor (TF) types, involving an unprecedented 

level of species-specific diversity. We recently showed that most land vertebrates carry 

hundreds of KRAB-ZNF genes; however, of the 394 human KRAB-ZNF genes only 

three have been conserved throughout amniote history. These three genes, members of an 

ancient familial cluster, encode a noncanonical KRAB domain that is similar to an 

ancient domain which is prevalent in non-mammalian species. In contrast to the 

mammalian KRAB, which is thought to function as a potent repressor, this ancient 

domain serves as a transcriptional activator. Here we report the regulatory functions of 

the most deeply conserved member in this family, ZNF777, using chromatin 

immunoprecipitation (ChIP-seq) and siRNA knockdown experiments. We used human 

choriocarcinoma cells for these experiments to model functions in placental trophoblasts, 

where ZNF777 is most highly expressed. Of the genes flanking ZNF777 binding regions, 

many were down-regulated after ZNF777 depletion consistent with a transcriptional 

activator role. However, a significant number of bound genes were oppositely regulated, 

suggesting a more complex relationship. Investigating further, we show that this 

discrepancy is likely linked to the fact that ZNF777 encodes both full-length (HUB-

KRAB-ZNF) and ZNF-only isoforms, which can be predicted to display different 

regulatory activities. Together the data suggest roles in regulation of genes such as 

semaphorins, ephrins and related proteins with known roles in placenta angiogenesis and 

in the embryonic brain, where ZNF777 is also highly expressed. 
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Introduction 

 
Although most vertebrate transcription factor families are relatively conserved, the C2H2 

zinc finger (ZNF) family stands out as a significant exception. In particular, the KRAB-

associated C2H2 zinc finger (KRAB-ZNF) subfamily displays an unprecedented level of 

evolutionary diversity, driven by repeated series of gene duplications accompanied by 

gene loss (Huntley et al. 2006; Nowick et al. 2010). For example, of the 394 KRAB-ZNF 

genes in the human genome, fewer than 100 genes are conserved as 1:1 orthologs in 

mouse and at least 136 are found only in primate genomes. 

    The KRAB-ZNF gene family encodes proteins with two primary structural domains: a 

C-terminal DNA binding domain (DBD) composed of a tandem array of zinc fingers, and 

one or more copies of an effector domain, called the Krüppel-associated box (KRAB).  

DNA binding is mediated by specific interaction between four amino acids within each 

ZNF motif (amino acids in positions -1, 2, 3, and 6 relative to the alpha helix) and three 

adjacent nucleotides at the DNA target sites (Pavletich & Pabo 1991; Pavletich & Pabo 

1993; Kim & Berg 1996; Wolfe et al. 2000). This pattern of four DNA-binding amino 

acids in each ZNF unit thus defines a protein’s DNA binding capabilities. As we have in 

previous reports (Liu et al. 2014), we will refer to this pattern as a protein’s “fingerprint” 

in the following discussion. After the ZNF motifs select the target DNA site based on 

fingerprint specificity, the canonical mammalian KRAB domain, called KRAB A, 

interacts with a universal cofactor, KAP1, to recruit histone deacetylase and methylation 

complexes to the ZNF-binding sites. For this reason, KRAB-ZNF proteins are thus 

typically thought to act as potent transcriptional repressors (Margolin et al. 1994; Pengue 

et al. 1994; Witzgall et al. 1994; Vissing et al. 1995).  

    While most attention has been focused on the more recently evolved primate KRAB-

ZNF genes (Nowick et al. 2011; Lupo et al. 2013), the vertebrate roots of the KRAB-

ZNF families has remained mysterious. To address questions regarding the pre-

mammalian history of the KRAB-ZNF family, we recently mined ZNF loci from seven 

sequenced genomes (opossum, chicken, zebra finch, lizard, frog, mouse, and human 

genome) and compared DBD sequence and fingerprints looking for predicted “DNA 

binding orthologs” across species (Liu et al., 2014). Interestingly, we found hundreds of 
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KRAB-ZNF proteins in every species we examined, but only three human genes were 

found with clear orthologs in non-mammalian vertebrates. These three genes, ZNF777, 

ZNF282, and ZNF783, are members of an ancient familial cluster and encode proteins 

with similar domain structures. Our evolutionary analysis confirmed the ancient 

provenance of this activating KRAB and revealed the independent expansion of KRAB-

ZNFs in every vertebrate lineage. This finding led us to ask the question: what are the 

functions of these ancient family members and why, of such a large and diverse family 

group, were these three genes conserved so fastidiously over hundreds of millions of 

years?  

    The existing literature offers a few functional clues. For example, ZNF282 has been 

shown to bind U5RE (U5 repressive element) on the LTR of human T-cell leukemia virus 

type I (HTLV-I) and to repress HTLV-I LTR-mediated expression (Okumura et al. 1997). 

This same report offered the first evidence that the KRAB domain of ZNF282 functions 

as an activator and does not bind KAP1. The repressive function of ZNF282 is derived 

instead from an N-terminal domain specific to this conserved gene cluster, named “HUB” 

(HTLV-I U5RE binding). In two more recent studies, ZNF282 was identified to interact 

with estrogen receptor α (ERα) (Yu et al. 2012), and E2F1, linking ZNF282 to cell cycle 

control (Yeo et al. 2014). With a pointer to some common functions, a recent study also 

implicated ZNF777 as a cell cycle regulator (Yuki et al. 2015). We demonstrated high 

levels of human ZNF777 expression in placenta and mouse Zfp777 in embryonic brain, 

suggesting that the protein has adopted lineage-specific functions in mammals (Liu et al. 

2014). However, regulatory functions of these ancient proteins have not been further 

explored. 

Here we report the regulatory function of ZNF777, combining chromatin 

immunoprecipitation followed by massively parallel sequencing (ChIP-seq) with siRNA 

knockdown experiments to determine genome-wide binding sites, a distinct binding 

motif, and predicted targets for the protein in human BeWo choriocarcinoma cells. Genes 

neighboring ZNF777 binding sites can be either up- or down-regulated, suggesting a 

complex regulatory role. Our studies revealed that some of this complexity is due to the 

generation of HUB-containing and HUB-minus isoforms, which are predicted to have 

different regulatory activities. Based on these experiments, we hypothesize that ZNF777 
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regulates pathways best known for their roles in neurogenesis and axon pathfinding, but 

also recently shown to play critical roles in placental development.  

 

 

Results 

 
ZNF777 and the members of a deeply conserved family cluster on human 

chromosome 7 

The genes representing the deepest vertebrate roots of the mammalian KRAB-ZNF 

family, ZNF282, ZNF777, and ZNF783, cluster together in mammalian species including 

the distal end of chromosome 7q36.1 in the human genome (Figure 2.1A). The proteins 

encoded by genes in this region each possess distinct ZNF DNA binding regions, 

suggesting that they bind different DNA sequences; on the other hand, the homologs for a 

particular gene in different species possess tightly conserved DNA binding domains (Liu 

et al., 2014).  

   In each zinc finger region, four amino acids, at positions -1, 2, 3, and 6 relative to the 

alpha-helix, bind specifically to cognate DNA sequences; this pattern of amino acids thus 

defines a ZNF protein’s DNA binding preferences uniquely, and is generally conserved 

throughout evolution. We have referred to the amino acid sequences in these DNA 

binding positions as “fingerprints” in a previous study (Liu et al., 2014) and will use that 

abbreviation in this study. The fingerprints of human, mouse, platypus, opossum, bird, 

and lizard ZNF777 proteins share strikingly similarity, as illustrated by the alignment of 

the ZNF777 orthologs (Figure 2.1B). Given the fact that so few KRAB-ZNF proteins are 

conserved in this respect, this very high level of conservation is especially remarkable. 

The data indicate a high level of selection for the DNA-binding specificities that are 

represented in these deeply conserved, ancestral genes. Among the members in this 

family, only ZNF777 was found to have conserved fingerprint in mammalian, avian, and 

reptilian genomes, indicating that ZNF777 is the most conserved member in this 

clustered group.  
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Comparison of the HUB domains of ZNF777 and ZNF282 suggests distinct 

functions   

The predicted ZNF777 protein is comprised of a N-terminal domain (the HUB domain) 

from amino acids 1-282, a KRAB A-like domain from amino acids 283-324, a “tether” 

region, and nine zinc fingers at the C-terminus (Figure 2.2A, top). ZNF282 has been 

shown to act in transcriptional repression, with two domains within amino acids 1-75 and 

amino acids 96-184 of the protein, both required for repression (Okumura et al. 1997).  

As mentioned above, we have already shown that ZNF777, ZNF282 and ZNF783 have 

distinct fingerprint profiles (Liu et al. 2014). To ask whether the HUB domains of the 

clustered family members were similar enough in structure to share common function, we 

aligned the HUB domain protein sequences of ZNF777 and ZNF282 (Figure 2.2B), and 

other members within this subfamily (Supplemental Figure 2.1). At 282 amino acids in 

length, the HUB domain of ZNF777 is almost twice the length of that in ZNF282 (195 

amino acids); other family members have even shorter HUB domains (108-140 amino 

acids).  

    One of the repressive domains identified in the ZNF282 HUB domain (amino acids 96 

-184) shares high sequence similarity with the HUB domain of ZNF777 and all other 

members of this subfamily. However, ZNF777 lacks homology to the second region 

shown to be required for full repressive activity in ZNF282, spanning amino acids 1-73 

(Okumura et al. 1997).  Instead, amino acids 1-177 of the ZNF777 HUB domain are 

novel and not shared by ZNF282 or other cluster neighbors (Supplemental Figure 2.1). 

Although the mechanism of ZNF282 repression has not been clearly defined, these data 

suggest that ZNF777 and ZNF282 could have different functions, perhaps through 

recruitment of different binding partners. The status of ZNF777 as an activating or 

repressive TF is therefore not clear.  

    KRAB-ZNF genes frequently give rise to alternative splicing isoforms with various 

combinations of ZNF and effector domains (Huntley 2006). Several family members 

within the ZNF777 cluster are also known to be alternatively spliced, giving rise to HUB-

containing (HUB+) and HUB-less (HUB-) isoforms. These alternative protein isoforms 

are of special interest, since they are likely to have distinct regulatory functions.  
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   To investigate whether ZNF777 also produces alternative isoforms, we used primers 

flanking the exons encoding HUB, KRAB A, and ZNF domains in reverse transcript PCR 

(qRT-PCR) experiments (Figure 2.2A, bottom left). In addition to the full-length 

ZNF777 transcript, we also detected a PCR band of the length expected of a HUB minus 

and KRAB A minus isoform (ZNF-only). Concordant with these results, we also detected 

a protein isoform with size corresponding to ZNF-only isoform with a ZNF777 antibody 

in BeWo cell nuclear protein extracts (Figure 2.2A, bottom right).  

 

ZNF777 is expressed in human placenta and other tissues 

Analysis of publicly available RNA-seq data revealed high levels of expression of 

ZNF777 and cluster relatives in human placenta (Liu et al. 2014). To map the expression 

of ZNF777 more extensively, we employed quantitative real-time reverse transcript PCR 

(qRT-PCR) to measure the expression of ZNF777 in human tissues and cell lines. These 

experiments confirmed that ZNF777 is expressed placenta, in addition to a variety of 

human tissues, including lung, thymus, brain, pancreas, uterus, and fetal brain (Figure 

2.3A). We also measured expression of ZNF777 with immunohistochemistry (IHC) in a 

human tissue array (Figure 2.3B). The ZNF777 protein is expressed widely in a pattern 

that is consistent with the qRT-PCR results. In those tissues, the protein was identified in 

both nuclear and cytoplasmic compartments, depending on the cell type.  

    ZNF777 localization was further investigated by Immunocytochemistry (ICC) in 

cultured BeWo cells, a cell line derived from human choriocarcinoma that is used to 

model placental trophoblast functions (Figure 2.4E). The ZNF777 antibody (labeled in 

red) detected protein in the nucleus as well as in the perinuclear region in BeWo cells. 

These data suggest either that the protein has functions outside the nucleus, or that it may 

be mobilized to the nucleus under certain conditions, perhaps due to protein 

modifications, as is true for many TFs (Ziegler & Ghosh 2005). Expression in human cell 

lines was also measured in Western blots, confirming that both long (approximately 85 

kDa) and short (~55 kDa) ZNF777 isoforms are expressed in human cell lines such as 

BeWo (human placenta choriocarcinoma), HEK293 (human embryonic kidney), JEG-3 

(human placenta choriocarcinoma), SHEP (human neuroblastoma), human trophoblast 

stem cells (hTSC), U2OS (human osteosarcoma). In contrast, the shorter ZNF-only 
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isoform was the only protein detected in HUVEC (human umbilical vein/vascular 

endothelium) (Figure 2.4A).  

We chose BeWo cells for further experiments to model activity in placenta. In addition 

to the short and long isoforms described above, we detected a faint protein band of larger 

size, possibly corresponding to a modified form of the protein in BeWo cells (Figure 

2.4C). These data are in agreement with the study of Yuki and colleagues (Yuki et al. 

2015), who tested the expression of ZNF777 protein in HCT116 cells. We tested the 

specificity of the antibody by siRNA knock down followed by a western blot with protein 

from the siRNA-treated cells; we detected a decrease of the ZNF777 protein when 

ZNF777 transcript expression was depleted by treating BeWo cells with two different 

siRNA molecules, which we will call Si1 and Si4 (Figure 2.4C). Interestingly, the two 

different siRNAs, which target distinct ZNF777 exons (Figure. 2.4C) had different 

effects on the protein profile. Specifically, Si1, which binds ZNF777 mRNA at the HUB 

domain, reduced the quantity of the full-length isoform only (Figure. 2.4D). On the other 

hand, Si4 binds ZNF777 mRNA at the spacer exon shared by full-length and ZNF-only 

isoforms, and it knocked down both short and long protein isoforms similarly (Figure. 

2.4D). 

The binding motif of ZNF777 identified by ChIP-Seq has sequence similarity with 

GRHL1 binding motif  

To identify genomic binding sites, we performed Chromatin immunoprecipitation (ChIP) 

followed by Illumina sequencing (ChIP-seq) in chromatin from BeWo cells. After 

alignment of ChIP-enriched fragments we used MACS software to identify 1979 peaks. 

Of these, 709 peaks were detected at a minimal false discovery rate (fdr ~ 0). We found 

that ZNF777 binds to its own family members, including ZNF398, ZNF212, and ZNF282 

(Figure 2.5A), suggesting regulation by ZNF777 of the expression of these members. We 

used the summits of 118 peaks with the highest level of ChIP enrichment to search for a 

potential ZNF777 binding motif. The predicted motif (Figure 2.5B) was identified in 113 

out of the 118 peaks and with an unusually strong enrichment (p=	7.9e-103); some other 

less enriched motifs were found but mostly not centrally located and more degenerated, 

which suggested that ZNF777 might interact with different binding partners on different 
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binding sites depending on the contexts. The most enriched predicted motif has 

significantly similarity to that identified for another conserved TF, GRHL1 (grainyhead 

like 1). Interestingly, ZNF777 was found to bind to the promoter region of GRHL1 gene 

(Figure 2.5A), suggesting the regulation of the expression of GRHL1 by ZNF777. 

Previous studies have shown that ZNF282 can bind to the long terminal repeat (LTR) 

or human T cell leukemia virus type I (HTLV-I) and represses its LTR-mediated 

expression (Okumura et al. 1997). To ask whether ZNF777 also interacts with LTRs, we 

examined the overlapping of the peaks and repeat elements in the human genome. We 

intersected the peaks and repeat elements and performed a randomization test to filter out 

the peaks that intersect with repeat elements by chance. Although the majority of 

ZNF777 peaks are unique, we found certain subfamilies of repeat elements were at 

ZNF777 peaks. These include MER31A, MER31B, MER39B, MER9B, MER65C, all of 

which belong to ERV1 family (Supplemental Table 2.1). These data suggest that like 

ZNF282, ZNF777 may also originally have evolved to bind endogenous retrovirus LTRs 

and may play a role in regulating ERV expression, in particular those specific human 

MER subfamilies. These are older, established ERV element and ZNF777 motif may 

have been carried by ancient elements, some of which are too degenerate to be detected 

as retroviral elements in modern genomes. We hypothesized that these ancient elements 

might have been coopted in mammalian genomes as regulatory elements for nearby 

genes. To examine this possibility, we looked at gene expression after depleting BeWo 

cells for ZNF777 protein, as described in the following section.  

 

Gene Expression after ZNF777 knockdown reveals a role in extracellular matrix 

interactions and axon pathfinding during differentiation 

To elucidate the biological functions of ZNF777, we performed siRNA knockdown by 

transfecting BeWo cells with ZNF777 siRNA_Si1, siRNA_Si4, or negative control 

siRNA (Si-Neg), and compared gene expression in the treated cells by RNA-sequencing 

(RNA-seq). We focused in 915 differentially expressed genes (DEG) that were identified 

as similarly up- or down-regulated in Si1 and Si4 treated cells (by at least 1.5-fold 

change), including 566 up-regulated and 349 downregulated genes (Figure 2.6C). These 

DEGs are expected to include both direct ZNF777 regulatory targets as well as 
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downstream genes. This overlapping gene set should enrich for genes affected by 

knockdown of the full-length protein since Si1 is specific to that isoform.  

    To identify potential direct targets of full-length ZNF777, we intersected the 

consistently up- or down-regulated DEGs with ChIP peaks and found 54 DEGs either 

containing or flanking the 709 fdr=0 ZNF777 peaks. These putative peak-associated 

DEGs also showed a mixed pattern of up- or down-regulation (34 compared to 20 genes, 

respectively) after siRNA treatment, reminiscent of the pattern of total DEGs. To validate 

the RNA-seq results, we tested 20 DEGs with QPCR in repeat knockdown experiments, 

including some genes with overlapping patterns and some with opposite patterns of 

expression after Si1 or Si4 treatment, and we saw the same patterns of differential 

expression in both QPCR duplicates (Table 2.1). We found most of the peak-associated 

DEGs from the two knock-downs share similar trends, in which the DEGs are either both 

up-regulated or down-regulated in both Si1 and Si4, but showed more differential 

expression in one Si as opposed to the other (Figure 2.6A).  

    To uncover the pathways regulated by ZNF777, we submitted the total DEGs from Si1 

and Si4 knock-downs separately and the overlapping DEGs to DAVID (Supplemental 

Table 2.2). We found several significantly enriched GO categories, mostly derived from 

the up-regulated DEGs. Despite the differences in Si1 and Si4, the DEGs associated with 

both knockdowns were enriched in the same functional categories, including extracellular 

matrix organization, heparin binding, cell adhesion molecules, synapse, and axon 

guidance (Supplemental Table 2.2). Looking only at the 915 genes affected similarly by 

Si1 and Si4, we found striking enrichment in categories related to differentiation and 

neuron development, including semaphorin activity and synapse assembly for down-

regulated genes; up-regulated genes, by contrast, were highly enriched in a variety of 

categories including virus receptors and immune function and nuclear hormone receptor 

pathways (Table 2.2, Table 2.3). Interestingly, DEGs flanking ZNF777 binding sites 

were particularly highly enriched in the related semaphorin pathways and PI3K-Akt3 

signaling (Table 2.4). These pathways are central to both neurological and placental 

development (Jongbloets & Pasterkamp 2014; Liao et al. 2010; Dun & Parkinson 2017; 

Andermatt et al. 2014; Stoeckli 2017). 
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Discussion 

 
Is ZNF777 and activator, repressor, or both? 

The data presented here identify two transcript isoforms of ZNF777 encoding proteins 

with different domain structures, and suggest that the may play distinct roles in the 

regulation of target genes. Another member of the same conserved, clustered gene 

family, ZNF398 (Conroy et al. 2002) was similarly shown to express two isoforms: one 

called p52, which does not contain a HUB domain, and another called p71, which gives 

rise to the full-length HUB+KRAB+ZNF protein. In this published study, p52 was shown 

to interact with estrogen receptor α (ERα) via its zinc finger region; in the presence of 

estradiol, ERα binds to p52 and inhibits its gene activating role.  In contrast, the HUB 

domain present in p71 inhibits ERα interaction, and the full-length protein can activate 

transcription without estrogen receptor interference. Therefore, the HUB domain does not 

interact with the interacting partner per se, but instead interfere with this interaction.  

Here, we demonstrate for the first time that ZNF777 also gives rise to two isoforms, 

including a full-length protein and short isoform lacking the HUB and KRAB domains. 

siRNA knockdowns followed by RNA-seq data suggested possibly opposing regulatory 

activities were asserted by the full-length and ZNF-only isoforms on similar sets of 

genes. This inference will require further analysis but would be an intriguing result. It is 

well-known that antagonists of transcriptional activators can be useful in certain 

developmental situations, for example, to silence inappropriate gene expression in 

defined spatial or temporal domains, to down-regulate gene expression induced by 

transient stimuli, and to fine-tune transcriptional responses to complex developmental 

cues (Mitchell & Tjian 1989). There are many documented cases of activator or repressor 

isoforms produced from the same genes by alternative splicing (Foulkes & Sassone-Corsi 

1992), and if this situation holds for ZNF777 it would not be an unusual one. If 

developmentally controlled, the production of such isoforms could permit finely tuned 

quantitative regulation of a defined set of genes or even opposite regulatory outcomes in 

response to different combinations of developmental cues. Further investigation of the 

detailed mechanism and interplay between the two isoforms of ZNF777 can be addressed 

by finding possible different binding partners for the HUB+ and HUB- isoforms; by 
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analogy with ZNF398 for example, the possible interaction with ERa or other nuclear 

receptors could be a fruitful avenue of future study. 

 

The role of ZNF777 in placenta 

Both DEGs more generally, and those located closest to ZNF777 binding sites in 

particular were enriched for genes that are best known for their roles in neuron 

differentiation; semaphorin genes, PI3k/AKT and related signaling pathways were 

especially highlighted in functional enrichments.  We therefore hypothesize that ZNF777, 

the vertebrate root for the KRAB-ZNF family, is involved in the regulation of genes 

related to axon pathfinding, which is mostly well studied in neurogenesis. This pathway 

is an ancient one, active in brain development across the evolutionary spectrum and could 

be served by a TF stringently conserved as ZNF777 is known to be.    

However, our experiments were completed not in neurons, but in a choriocarcinoma 

cell line that serves as a model for placental trophoblasts, a much more recently evolved 

cell type with a mammalian-specific function. Intriguingly, the semaphorin-plexin 

signaling pathway is also extensively involved in the development of a variety of tissues 

including cardiac and bone (Jongbloets & Pasterkamp 2014), and in mammals it has been 

coopted to serve as an important role in placental angiogenesis (Liao et al. 2010). The 

finding that ZNF777 is involved in regulation of this process is intriguing, and suggests 

that the expression of this transcription factor in placenta may have played a role in 

coopting the pathway for a mammalian-specific purpose. 

 

The interaction between ZNF777 and repeat elements 

There is growing evidence to suggest that the mammalian KRAB-ZNF evolved in an 

“arms race” to silence endogenous retroviruses (ERVs) (Jacobs et al. 2014). ERV 

insertions can create insertional mutations, the insertion of strong LTR promoters can 

also give rise to disease-causing mutations by inappropriately activating nearby genes 

(Jern & Coffin 2008). One way to battle these potentially harmful effects would be 

through the selection of TFs that could bind to viral LTR sequences and ‘shut down’ 

those potent enhancers where their expression would be harmful (Friedli & Trono 2015; 

Cordaux & Batzer 2009). However, like all infective agents, ERVs can evolve in 



	 24 

response to new mechanisms of suppression, through selection of mutations within the 

TFs’ LTR binding sites. To keep up with the rapidly evolving ERVs, the TFs responsible 

for the task of silencing them might also be expected to evolve quickly, particularly in 

regions of the proteins that bind directly to the LTR DNA. The Krüppel-type zinc-finger 

(KZNF) TF family displays just this pattern of remarkable sequence divergence 

(Emerson & Thomas 2009). The creation of new gene copies and sequence divergence in 

this family both track LTR evolution remarkably well. Most TFs are deeply conserved, 

encoding proteins with highly similar structures and regulatory functions in a diverse 

array of species. However, specific classes of KZNF genes stand out from the rest, 

displaying a rapid pace of sequence, expression, and copy-number divergence. KZNF 

genes that encode proteins with multiple, tandemly arrayed ZNF motifs are particularly 

prone to this type of rapid divergence, reflecting unique properties of the genes. A co-

evolution between KRAB-ZNFs and ERVs has been shown by the evidence that the 

number and age of newly emerged KRAB-ZNF genes and ERVs share striking 

correlation (Thomas & Schneider 2011).  

    In support of this idea, several KRAB-ZNFs have been demonstrated to bind to and 

regulate ERV LTR sequences. For example, rodent-specific Zfp809 has been shown to 

silence the moloney murine leukemia virus (MMLV) expression in mouse ES cells (Wolf 

& Goff 2009). Although Zfp809 does not exist in humans, the mouse KRAB-ZNF protein 

can also bind to LTR regions of human T-cell lymphotrophic virus (HTLV-1), which 

shares the binding site found in MMLV. Presumably, silencing of HTLV-1 is 

accomplished through a different set of TFs in human cells. Recent studies also have 

shown that KRAB-ZNF genes ZNF91/93 interact with SVA/L1 retrotransposons and 

repress the expression of the two distinct retrotransposon families shortly after they began 

to spread in our ancestral genome (Jacobs et al. 2014). 

   Most relevant to this study, the human ZNF282 protein also binds to HTLV-1 LTR 

sequences and silences viral gene expression (Okumura et al. 1997). Since the ZNF282 

and ZNF777 are close relatives, and both have been implicated as “roots” of the 

mammalian KRAB-ZNF family (Lui et al., 2014), and since ERVs play a critical role in 

placental development (Chuong et al. 2013), a relationship between ZNF777 and ERV 

sequences in the human genome presented an intriguing possibility.   
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    Indeed, our data suggest that ZNF777 may also interact with certain ERV families in 

placental chromatin. Specifically, we found an enrichment for ERV1 and ERVL element 

sequences among the ZNF777 binding peaks. Most ZNF777 binding peaks are unique, as 

expected from the deep conservation of this protein since the original elements that may 

have driven its early divergence are certainly inactive in mammalian genomes.  

Therefore, the fact that we found the binding peaks to be enriched in recognizable, 

mammalian ERV sequences is especially interesting. The data suggest a more modern 

role in managing ERV-driven gene expression, likely one beyond the simple “arms race” 

silencing function that has been suggested for recent human and mouse gene duplicates. 

Given the flexible structure of ZNF777, which may generate silencing, activating, or 

other types of regulatory functions depending on alternative splicing, we speculated that 

this protein and its closest relatives may have had a more nuanced relationship to 

bioactive transposable elements like ERVs over the course of evolution. As these 

elements age, we hypothesize that they have left behind binding sites for ZNF777 and 

other TF proteins that are retained to regulate cellular genes. Further testing of this 

hypothesis will require additional experimentation, including tagging of endogenous 

proteins in species for which antibodies are not available; these kinds of approaches, 

made possible by the development of CRISPR technology (Ran et al. 2013; Savic et al. 

2015) will open new doors to discovery of ZNF evolution and the functions of these 

deeply conserved TFs in the very near future. 

 

 

Materials and Methods 

Ethics Statement  

    This investigation has been conducted in accordance with the ethical standards and 

according to the Declaration of Helsinki and according to national and international 

guidelines.  

 

RNA preparation and quantitative RT-PCR 

    Total RNA was isolated from cell lines and tissues using TRIzol (Invitrogen) followed 

by 30 minutes of RNase-free DNaseI treatment (NEB) at 37oC and RNA Clean & 
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ConcentratorTM-5 (Zymo Research). 2 µg of total RNA was used to generate cDNA using 

Superscript III Reverse Transcriptase (Invitrogen) with random hexamers (Invitrogen) 

according to manufacturer’s instructions.  

    Resulting cDNAs were analyzed of transcript-specific expression through quantitative 

reverse-transcript PCR (qRT-PCR) using Power SYBR Green PCR master mix (Applied 

Biosystems) with custom-designed primer sets purchased from Integrated DNA 

Technology. Relative expression was determined by normalizing the expression of all 

genes of interest to either human or mouse Tyrosine 3-monooxygenase/tryptophan 5-

monooxygenase activation protein, zeta polypeptide (YWHAZ) expression (∆Ct) as 

described (Eisenberg and Levanon, 2003).   

 

Cell culture and transfections  

    BeWo (ATCC, CCL-98) cell line and other cell lines were obtained from the American 

Type Culture Collection. BeWo cells in DMEM/F12K containing 2 mM L-glutamine, 

10% FBS, 1X NEAA, 1X Pen Strep, incubated at 37 °C in 5% CO2.  

    For siRNA knockdown, approximately 4.5x105 BeWo cells were seeded to 6-well 

plates 24 hours before transfection. Cells were treated with 10 nM of siRNA specific to 

ZNF777 (si1: SI04152729, si4: SI00458024, Qiagen) with a scrambled negative control 

(Alexa-siRNA, Ambion) for 48 hours using Lipofectamine RNAiMAX transfection 

reagent (Invitrogen) according to manufacturer’s instructions.  

 

RNA-Seq and computational analysis  

    48 hours after siRNA treatment, total RNA was prepared and tested for quality using 

an Agilent BioAnalyzer and Illumina libraries generated using the KAPA Stranded 

mRNA-Seq kit with mRNA Capture Beads (Kapa Biosystems, KK8420). Sequencing 

was performed on an Illumina Hi-Seq 2000 instrument at the University of Illinois Roy J. 

Carver Biotechnology sequencing facility, to yield 60-65 million reads per sample. The 

data have been submitted to the Gene Expression Omnibus database (accession numbers, 

in progress). 

    RNA-seq data were analyzed using the Tophat-Cufflinks Suite of tools (Trapnell et al. 

2012). For ZSCAN5A knockdown, expression results from si4 and si5 were analyzed as a 



	 27 

group in comparison with the scrambled control. Genes identified as differentially 

expressed with p < 0.05 (after Benjamini-Hochberg correction for multiple testing) 

compared to the negative control-treated samples were considered for further analysis. 

For ZSCAN5B knockdown, which was effective only for a single siRNA design, we 

considered all genes with expression levels of at least 1 FPKM in at least one sample and 

considered genes with > 1.5 X fold change relative to scrambled control as DEGs. siRNA 

up-regulated and down-regulated genes were analyzed for function separately using the 

DAVID (Huang et al. 2009)functional clustering algorithm with default settings.  

 

Protein preparation, Western blots, and antibodies  

    Nuclear Extracts were prepared with NucBusterTM Protein Extraction Kit (Novagen) 

and measured by Bradford-based assay (BioRad). The extracts were stored at -80oC and 

thawed on ice with the addition of protease inhibitor Cocktail (Roche) directly before use. 

15 µg of nuclear extracts were run on 10% acrylamide gels and transferred to 

hydrophobic polyvinylidene difluoride (PVDF) membrane (GE-Amersham, 0.45 µm) 

using BioRad Semi-dry system, then visualized by exposure to MyECL Imager (Thermo 

Scientific).  

    ZNF777 rabbit polyclonal antibody (ARP32659) was purchased from Aviva Systems 

Biology. The antibody is generated from an epitope on exon 5. (Epitope: 

LPQHLQSLGQLSGRYEASMYQTPLPGEMSPEGEESPPPLQLGNPAVKRLA).  

 

Chromatin immunoprecipitation  

    Chromatin immunoprecipitation was carried out as essentially as described (Kim et al., 

2003) with modifications for ChIP-seq. Chromatin was prepared from BeWo cell lines. 

About 1.0 x 106 Cells were fixed in PBS with 1% formaldehyde for 10 minutes. Fixing 

reaction was stopped with addition of Glycine to 0.125M. Fixed cells were washed 3x 

with PBS+Protease inhibitor cocktail (PIC, Roche) to remove formaldehyde. Washed 

cells were lysed to nuclei with lysis solution – 50 mM Tris-HCl (pH 8.0), 2 mM EDTA, 

0.1% v/v NP-40, 10% v/v glycerol, and PIC – for 30 minutes on ice. Cell debris was 

washed away with PBS with PIC. Nuclei were pelleted and flash-frozen on dry ice.  
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    Cross-linked chromatin was prepared and sonicated using Bioruptor UCD-200 in ice 

water bath to generate DNA fragments 200-300 bp in size. Twenty micrograms of each 

antibody preparation, or 20 µg IgG for mock pulldown controls, were incubated with 

chromatin prepared from nuclei of approximately 5 million cells.  

DNA was released and quantitated using Qubit 2.0 (Life Technologies) with dsDNA 

HS Assay kit (Life Technologies, Q32854), and 15 ng of DNA was used to generate 

libraries for Illumina sequencing. ChIP-seq libraries were generated using KAPA LTP 

Library Preparation Kits (Kapa Biosystems, KK8232) to yield two independent ChIP 

replicates for each antibody. We also generated libraries from sonicated genomic input 

DNA from the same chromatin preparations as controls. Libraries were bar-coded with 

Bioo Scientific index adapters and sequenced to generate 15-23 million reads per 

duplicate sample using the Illumina Hi-Seq 2000 instrument at the University of Illinois 

W.M. Keck Center for Comparative and Functional Genomics according to 

manufacturer’s instructions. Separate ChIP preparations were generated for qRT-PCR 

validation experiments; in this case, released DNA was amplified by GenomePlex® 

Complete Whole Genome Amplification (WGA) Kit (Sigma, WGA2).  

 

ChIP-Seq data analysis  

    Human ZNF777 ChIP-enriched sequences as well as reads from the input genomic 

DNA were mapped to the HG19 human genome build using Bowtie 2 software 

(Langmead et al. 2009) allowing 1 mismatch per read but otherwise using default 

settings. Bowtie files were used to identify peaks in human ChIP samples using MACS 

software (version 14.2) (Zhang et al. 2008), with default settings. After comparison of the 

individual files, sequence reads from the two separate ChIP libraries were pooled and a 

final peak set determined in comparison to genomic-input controls. Peaks were mapped 

relative to nearest transcription start sites using the GREAT program (McLean et al. 

2010).  

 

Repetitive elements overlap analysis  

    To identify enrichment or under-representation of repetitive element types or families 

in the ChIP-peak datasets, we used a method modified from that described by Cuddapah 
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and colleagues (Cuddapah et al. 2009). Human repeat data were retrieved on the 

RepeatMasker Table (www.repeatmasker.org) from USCS’s table browser 

(genome.ucsc.edu) (Karolchik et al. 2004) with the following parameters: assembly= 

‘Feb. 2009 (GRCh37/hg19)’, group= ‘Variation and Repeats’, track= ‘RepeatMasker’, 

table= ‘rmsk’, region= ‘genome’, output format= ‘BED – Browser extensible data’. The 

human chromosome sizes required for the analysis were retrieved from the 

hg19.chromInfo table of the UCSC public database (Kuhn et al. 2013). We examined 

overlap between genome coordinates of repeat element features and 100 bp intervals 

surrounding the summits of peaks determined by MACS software from ZNF777 ChIP 

experiments using the BEDTools intersect function (Quinlan & Hall 2010).  

    For each peak set 500 random sets of the same number and peak size were generated 

by the BEDTools random function, and overlaps between these random peak sets and 

repeats were counted for each of the 500 random sets. For each repeat element and family 

the average overlap count of the random sets and the standard deviation was determined. 

Then for each repeat element and family a Z-score was calculated using the overlap count 

of the peak set, and the average overlap count and standard deviation of the random sets. 

If the overlap count of the peak set was less than or equal to the average of the 

random sets z was calculated as: ! =
#$%&'()	+#,-.	#/	)%(0	1%. 	2	(($%&(4%	#$%&'()	+#,-.	#/	&(-5#6	1%.1)

1.(-5(&5	5%$8(.8#-	#/	.9%	#$%&'()	+#,-.	#/	&(-5#6	1%.1 .	If the overlap count of the 

peak set was greater: z	= ($%&(4%	#$%&'()	+#,-.	#/	&(-5#6	1%.1 	2	 #$%&'()	+#,-.	#/	)%(0	1%.
1.(-5(&5	5%$8(.8#-	#/	.9%	#$%&'()	+#,-.	#/	&(-5#6	1%.1 . 

The R function pnorm(z) was used to calculate a p-value to indicate if the overlap count 

was significantly under-represented or enriched in a ChIP-peak set when compared to the 

overlap counts of the random sets. Repeat families or specific elements that were 

significantly enriched in at least one of the ChIP peak sets, along with p-values 

determined for enrichments or under-representation of that family or element type in each 

peak set. 

 

Motif analysis  

    To identify enriched motifs, we used sequence from a 200 bp region surrounding the 

predicted summits of selected peaks for analysis with MEME-ChIP with default 
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parameters (Machanick & Bailey 2011). Motifs displayed in Fig. 2.5 were identified from 

peaks with the following cutoffs: MACS ef > 20, fdr=0 peaks from ZNF777 ChIP in 

BeWo chromatin; the identified motif occurred in 113 out of total 118 peaks submitted 

peaks, with p value = 7.9e-103. 
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Figures and Tables 
 
A 
 

 
 
 
B 
 
 

 
 
 

 

 

 

Figure 2.1 ZNF777 and neighboring genes are members of a deeply conserved gene 

cluster.  

(A) The ZNF777 family members locate in a cluster on human chromosome 7. (hg19 

sequence build, 7q36.1) ZNF398, ZNF212, ZNF783, and ZNF746 are HUB- and KRAB- 

containing ZNF genes that are closely related to ZNF282 and ZNF777. ZNF786 and 

ZNF425 are the most recent members lacking the HUB domain. (B) Fingerprint 

alignment of ZNF777 orthologs in mammalian and non-mammalian vertebrate species 

shows the conservation of DNA-binding amino acids and the ZNFs of this gene. Each 

column contains the DNA-binding amino acids (shown here the positions -1, 3, and 6 

relative to the α helix in each finger) and rows correspond to the sequence in each 

species. ZNF are numbered at top in N- to C- terminal orientation in the protein. The 

platypus sequence in this region is incomplete, allowing on a partial protein sequence to 

be deduced. 

 1 2 3 4 5 6 7 8 9 
Zebrafinch LNI NQL HSK LSM RHR EKN RHE QHE YSY 

Lizard LNI IQL HSK LSM RHR EKN RHE QHE YSY 
Platypus - - HSK LSI RHR EKN RHE QHE YSY 
Opossum LNI HQL HSK LSI RHR EKN RHE QHE YSY 

Human LNI HQL HSK LSI RHR EKN RHE QHE YSY 
Mouse - HQL HSK LSI RHR EKN RHE QHE YSY 

	

7q36.1  
100 kb

ZNF786 ZNF425 ZNF398 ZNF282 ZNF212 ZNF783 ZNF777 ZNF746

human
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Figure 2.2 
 
A 
 

 

 
 
 
 

 
 

 
 
 
 
 
 
 
 
B 

 
 

ZNF777 and ZNF282 HUB alignment  
 
Percent Identity  Matrix - created by Clustal2.1  
 
     1: ZNF777      100.00   52.82 
     2: ZNF282       52.82  100.00 
 
 
 
CLUSTAL O(1.2.3) multiple sequence alignment 
 
 
ZNF777      MENQRSSPLSFPSVPQEETLRQAPAGLPRETLFQSRILPPKEIPSLSPTIPRQASLPQTS 60 
ZNF282      -------------------------------------------MQFVSTRPQPQQLGIQG 17 
                                                        .:  * *:  .*   . 
 
ZNF777      SAPKQETSGWMPHVLQKGPSLLCSAASEQETPLQGPLASQEGTQYPPPAAAEQEISLLSH 120 
ZNF282      LGLDSGSWSWAQA---LPPEEVCH----QEPALRGEMA----EGMPPMQAQEWDMD--AR 64 
             . .. : .*        *. :*     **  *:* :*       **  * * ::.  :: 
 
ZNF777      SPHHQEAPVHSPETPEKDPLTLSPTVPETDGDPLLQSPVSQKDTPFQISSAVQKEQPLPT 180 
ZNF282      ----RPMPFQFP-------------------------PFPDR--APVFPDRMMREPQLPT 93 
                :  *.: *                         *. ::     : . : :*  *** 
 
ZNF777      AEITRLAVWAAVQAVERKLEAQAMRLLTLEGRTGTNEKKIADCEKTAVEFANHLESKWVV 240 
ZNF282      AEISLWTVVAAIQAVERKVDAQASQLLNLEGRTGTAEKKLADCEKTAVEFGNHMESKWAV 153 
            ***:  :* **:******::*** :**.******* ***:**********.**:****.* 
 
ZNF777      LGTLLQEYGLLQRRLENMENLLKNRNFWILRLPPGSNGEVPK 282 
ZNF282      LGTLLQEYGLLQRRLENLENLLRNRNFWVLRLPPGSKGEAPK 195 
            *****************:****:*****:*******:**.** 
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Figure 2.2 (cont.) The protein structure of ZNF777 and the HUB domain alignment 

of ZNF777 and ZNF282.   

(A) Human ZNF777 contains 9 zinc fingers, a N-terminal HUB domain, a KRAB A-like 

box, and a tether region between the KRAB A-like box and the zinc fingers. The HUB 

domain and the KRAB A-like box are encoded on different exons and could be spliced 

separately into different isoforms. Lower left panel: a HUB minus, KRAB A minus 

isoform (ZNF-only) (288 bp) was detected by RT-PCR in addition to full length (1261 

bp) ZNF777 transcript by the primers (indicated by grey arrows) flanking the two 

domains. Lower right panel: both ZNF777 full-length and ZNF-only proteins were 

detected by Western Blot using ZNF777 antibody (AVIVA, ARP32569). (B) HUB 

domain alignment of ZNF777 and ZNF282. The sequences from amino acid 1 at N-

terminus to the end of the exon encoding the HUB domain (exon 1 for ZNF777, exon 2 

for ZNF282) were aligned using Clustal Omega.  
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Figure 2.3 
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Figure 2.3 (cont.) Extensive expression of ZNF777 in human tissues.  

(A) Real-time PCR (QPCR) was performed to detect the expression of ZNF777 at mRNA 

level in different human tissues. ZNF777 is extensively expressed in many different 

human tissues, with relatively higher expression in lung, thymus, brain, pancreas, uterus, 

fetal brain and placenta. (B) The protein level of ZNF777 (red) was detected by 

immunohistochemistry (IHC) using ZNF777 antibody (AVIVA, ARP32569). The protein 

was shown to be expressed in many different tissues, including placenta, brain, lung, and 

ovary. 
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Figure 2.4 
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Figure 2.4 (cont.) Expression of ZNF777 in human and mouse cells.  

(A) Western Blot was performed on human and mouse cell lines by ZNF777 antibody 

against human ZNF777. The full-length and ZNF-only proteins were found to be 

expressed in HEK293 (human embryonic kidney), HUVEC (human umbilical 

vein/vascular endothelium), JEG-3 (human placenta choriocarcinoma), SHEP (human 

neuroblastoma), human trophoblast stem cells (hTSC), U2OS (human osteosarcoma).  

(B) Locations of the binding of two ZNF777 siRNAs on the ZNF777 mRNA isoforms. 

Si1 binds ZNF777 mRNA at the HUB domain, therefore it can only knock down the full-

length isoform of ZNF777. Si4 binds ZNF777 mRNA at the spacer exon existing in both  

Nuclei ZNF777 

Tubulin Merge 
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Figure 2.4 (cont.)  

full-length and ZNF-only isoforms, thus it knocks down both isoforms. (C) BeWo cells 

were transfected with different siRNA against ZNF777 (siRNA_Si1, and siRNA_Si4) or 

a negative control siRNA-Alexa (SiAlexa) for 72 hours and then nuclear extracts were 

collected for Western Blot analysis. (D) Quantification of the Western Blot. Full-length 

ZNF777 were shown to be reduced in cells treated with both Si1 and Si4 while ZNF-only 

isoform was reduced only in Si4 treated cells. (E) Immunocytochemistry (ICC) was 

performed on BeWo cells using the ZNF777 antibody and anti-tubulin antibody. 

Secondary antibody used were Alexa594 anti rabbit for ZNF777 primary antibody 

recognition, and Alexa486 anti mouse for tubulin primary antibody recognition. Nuclei 

were counterstained by Hoeschst. ZNF777-red, Tubulin-green, Nuclei-blue, n=3. 
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Figure 2.5 ChIP-seq of ZNF777. We performed Chromatin immunoprecipitation 

(ChIP)-seq in BeWo cells. We sequenced the ChIP libraries prepared from BeWo cells, 

the input DNA from the same cell preparations, and the DNA isolated after a mock pull-

down (Immunoglobin G, IgG) experiments using an Illumina GA-II Sequencer 

(University of Illinois Keck Biotechnology Center). After alignment of pull-down 

fragments to genome by Bowtie program, and comparisons to genomic-input controls by 

MACS software, 1979 peaks were identified. (A) Examples of ChIP peaks identified by 

MACS. The peaks located near the promoters of some nearby genes were shown. The 

nearby genes are the family members ZNF212, ZNF282, ZNF298 and GRHL1. (B) The 

binding motif of ZNF777 was predicted by MEME. Motif can be found centrally located 

in 113 of the 118 fdr=0 peaks submitted.  

 

A 

B 

ZNF786 ZNF425
ZNF398

ZNF282
ZNF212 ZNF783

GRHL1



	 40 

Figure 2.6 
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Figure 2.6 (cont.) Differentially expressed genes (DEGs) identified by RNA-seq in 

BeWo cells treated with ZNF777 siRNA_Si1 or siRNA_Si4.  

BeWo cells were harvested 72 hours after transfection.  

(A) Relative fold-change of 30 DEGs from RNA-Seq. Blue: Si1/control; red: Si4/control. 

Control: GAPDH. (B) siRNA knock down efficiency mediated by ZNF777-Si1 and 

ZNF777-Si4, each knocked down the mRNA level of ZNF777 by 55% and 73% (n = 3).  

(C) Distribution of numbers of DEGs. Si1_UP: DEGs with greater than 1.5-fold change 

(up-regulated) in Si1 treated cells. Si1_DN: DEGs with greater than negative 1.5-fold 

change (down-regulated) in Si1 treated cells. Same with Si4_UP and Si4_DN.  
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Table 2.1 The relative mRNA level of differentially expressed genes (DEGs) by RNA-

seq and QPCR. The QPCR analyses replicated the trends of the fold-changes for DEGs 

identified by RNA-seq. Ctrl: control, GAPDH. 

	
	
	

 Si1/Ctrl Si4/Ctrl 
 RNA-

seq 
QPCR1 QPCR2 RNA-

seq 
QPCR1 QPCR2 

CRISPLD2 6.36 5.97 7.01 1.45 1.01 0.62 
SEMA7a 4.6 6.05 5.81 1.64 1.88 1.21 
KCNK13 3.67 3.02 3.98 5.79 2.74 3.96 
SNAI1 2.87 2.65 2.44 2.37 2.21 1.1 
PPAP2A 2.39 3.53 3.52 1.84 1.83 1.97 
GADD45B 2.37 4.07 1.52 2.82 3.41 1.96 
DRD1 2.36 2.87 2.21 2.29 1.93 1.51 
TRHDE 2.32 2.27 3.28 1.36 1.31 1.21 
GABBR2 1.66 2.77 2.32 3.95 4.75 3.78 
IL1R1 1.5 2.51 4.58 3.01 2.4 2.65 
NOTCH3 0.99 1.15 2.35 0.35 0.36 0.73 
INPP5a 0.94 1.27 0.94 0.49 0.51 0.56 
CDK19 0.9 1.35 1.28 0.27 0.38 0.45 
AKT3 0.41 0.61 0.49 0.54 0.49 0.58 
PEBP1 0.34 0.48 0.66 1.04 1.51 0.98 
NCOR2 0.31 0.37 0.63 0.99 0.91 0.89 
HDAC5 0.38 0.61 0.76 1.3 1.41 1.05 
CD101 0.45 0.49 0.76 2.07 1.82 1.96 
CYP11A1 2.47 2.75 2.51 0.69 0.75 0.41 
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Table 2.2 Gene Ontology (GO) clusters identified as significantly enriched in gene sets 
up- regulated in both ZNF777 Si1 and Si4 siRNA-knockdowns  
1 Clusters enriched in both Si1 and Si4 knock-downs 
2 David enrichment scores are calculated as the geometric mean of –log transformed P-
values of GO terms within a cluster based on content of similar genes 
3 Clusters associated with up-regulated differentially expressed genes (DEGs)	
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Table 2.3 Gene Ontology (GO) clusters identified as significantly enriched in gene sets 
down- regulated in both ZNF777 Si1 and Si4 siRNA-knockdowns  
1 Clusters enriched in both Si1 and Si4 knock-downs 
2 David enrichment scores are calculated as the geometric mean of –log transformed P-
values of GO terms within a cluster based on content of similar genes 
3 Clusters associated with down-regulated differentially expressed genes (DEGs) 
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Table 2.4 Gene Ontology (GO) clusters identified as significantly enriched in gene sets 
flanking or within ZNF777 binding sites and up- or down-regulated after ZNF777 
siRNA-knockdown  
1 Clusters enriched in both Si1 and Si4 knock-downs 
2 David enrichment scores are calculated as the geometric mean of –log transformed P- 
values of GO terms within a cluster based on content of similar genes 
3 Clusters associated with up- or down-regulated genes, combined 
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 Supplemental Figure 2.1 
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tree data 
 
ZNF777:0.23208, 
( 
ZNF746:0.01019, 
ZNF767P:0.03611) 
:0.04107) 
:0.01414, 
( 
ZNF398:0.15555, 
ZNF282:0.17302) 
:0.02482) 
:0.01123, 
ZNF783:0.11424, 
ZNF212:0.11040); 

 
 
CLUSTAL O(1.2.3) multiple sequence alignment 
 
 
ZNF777       MENQRSSPLSFPSVPQEETLRQAPAGLPRETLFQSRILPPKEIPSLSPTIPRQASLPQTS 60 
ZNF398       ------------------------------------------------------------ 0 
ZNF282       ------------------------------MQF-------------VSTRPQPQQLGIQG 17 
ZNF783       ------------------------------------------------------------ 0 
ZNF212       ------------------------------------------------------------ 0 
ZNF746       ------------------------------------------------------------ 0 
ZNF767P      ------------------------------------------------------------ 0 
                                                                          
 
ZNF777       SAPKQETSGWMPHVLQKGPSLLCSAASEQETPLQGPLASQEGTQYPPPAAAEQEISLLSH 120 
ZNF398       ------------------------------------MAE--------------------- 3 
ZNF282       LGLDSGSWSWAQA---LPPEEVCH----QEPALRGEMAE--------------------- 49 
ZNF783       ------------------------------------MAE--------------------- 3 
ZNF212       ------------------------------------MAE--------------------- 3 
ZNF746       ------------------------------------------------------------ 0 
ZNF767P      ------------------------------------------------------------ 0 
                                                                          
 
ZNF777       SPHHQEAPVHSPETPEKDPLTLSPTVPETDGDPLLQSPVSQKDTPFQISSAVQKEQPLPT 180 
ZNF398       -----AAPAPTS-EWDSECL---------TS--LQPLPLPT--------PPAANEAHLQT 38 
ZNF282       -----GMPPMQAQEWDMDAR---------RPMPFQFPPFPDRAP--VFPDRMMREPQLPT 93 
ZNF783       -----AAPARDPE-TDKHT-----------EDQSPSTPLPQ--------PAAEKNSYLYS 38 
ZNF212       -----SAPARHRR-KRR-------------STPLTSSTLPS--------QATEKSSYFQT 36 
ZNF746       ------------------------------------------------------MAEAVA 6 
ZNF767P      ------------------------------------------------------MEEAAA 6 
                                                                        : 
 
ZNF777       AEITRLAVWAAVQAVERKLEAQAMRLLTLEGRTGTNEKKIADCEKTAVEFANHLESKWVV 240 
ZNF398       AAISLWTVVAAVQAIERKVEIHSRRLLHLEGRTGTAEKKLASCEKTVTELGNQLEGKWAV 98 
ZNF282       AEISLWTVVAAIQAVERKVDAQASQLLNLEGRTGTAEKKLADCEKTAVEFGNHMESKWAV 153 
ZNF783       TEITLWTVVAAIQALEKKVDSCLTRLLTLEGRTGTAEKKLADCEKTAVEFGNQLEGKWAV 98 
ZNF212       TEISLWTVVAAIQAVEKKMESQAARLQSLEGRTGTAEKKLADCEKMAVEFGNQLEGKWAV 96 
ZNF746       APISPWTMAATIQAMERKIESQAARLLSLEGRTGMAEKKLADCEKTAVEFGNQLEGKWAV 66 
ZNF767P      APISPWTMAATIQAMERKIESQAAHLLSLEGQTGMAEKKLADCEKTAVEFGNQLEGKWAV 66 
             : *:  :: *::**:*:*::    :*  ***:**  ***:*.*** ..*:.*::*.**.* 
 
ZNF777       LGTLLQEYGLLQRRLENMENLLKNRNFWILRLPPGSNGEVPK 282 
ZNF398       LGTLLQEYGLLQRRLENLENLLRNRNFWILRLPPGIKGDIPK 140 
ZNF282       LGTLLQEYGLLQRRLENLENLLRNRNFWVLRLPPGSKGEAPK 195 
ZNF783       LGTLLQEYGLLQRRLENVENLLRNRNFWILRLPPGSKGEAPK 140 
ZNF212       LGTLLQEYGLLQRRLENVENLLRNRNFWILRLPPGSKGEAPK 138 
ZNF746       LGTLLQEYGLLQRRLENVENLLRNRNFWILRLPPGSKGESPK 108 
ZNF767P      LGTLLQEYGLLQRRLENVENLLHNRNFWILRLPPGSKGESPK 108 
             *****************:****:*****:****** :*: ** 
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Supplemental Figure 2.1 (cont.) The HUB domain alignment of members in ZNF777 

subfamily.  

(A) The sequences from amino acid 1 at N-terminus to the end of the exon encoding the 

HUB domain (exon 1 for ZNF777, exon 2 for other members) were aligned using Clustal 

Omega. (B) Percentage Identity Matrix of the HUB domain sequences of the members in 

ZNF777 subfamily created by Clustal 2.1. (C) Phylogenetic Tree based on sequences of 

HUB domains from the members in ZNF777 subfamily.  

 

 

 

 

 

 

 

 

Sequence: all from a.a. 1 to the end of the HUB exon (either exon 1 or 2, the 
exon before KRAB A like exon)  
 
>ZNF777 
MENQRSSPLSFPSVPQEETLRQAPAGLPRETLFQSRILPPKEIPSLSPTIPRQASLPQTSSAPKQETSGWMPHVLQK
GPSLLCSAASEQETPLQGPLASQEGTQYPPPAAAEQEISLLSHSPHHQEAPVHSPETPEKDPLTLSPTVPETDGDPL
LQSPVSQKDTPFQISSAVQKEQPLPTAEITRLAVWAAVQAVERKLEAQAMRLLTLEGRTGTNEKKIADCEKTAVEFA
NHLESKWVVLGTLLQEYGLLQRRLENMENLLKNRNFWILRLPPGSNGEVPK 
>ZNF282 
MQFVSTRPQPQQLGIQGLGLDSGSWSWAQALPPEEVCHQEPALRGEMAEGMPPMQAQEWDMDARRPMPFQFPPFPDR
APVFPDRMMREPQLPTAEISLWTVVAAIQAVERKVDAQASQLLNLEGRTGTAEKKLADCEKTAVEFGNHMESKWAVL
GTLLQEYGLLQRRLENLENLLRNRNFWVLRLPPGSKGEAPK 
>ZNF398 
MAEAAPAPTSEWDSECLTSLQPLPLPTPPAANEAHLQTAAISLWTVVAAVQAIERKVEIHSRRLLHLEGRTGTAEKK
LASCEKTVTELGNQLEGKWAVLGTLLQEYGLLQRRLENLENLLRNRNFWILRLPPGIKGDIPK 
>ZNF746 
MAEAVAAPISPWTMAATIQAMERKIESQAARLLSLEGRTGMAEKKLADCEKTAVEFGNQLEGKWAVLGTLLQEYGLL
QRRLENVENLLRNRNFWILRLPPGSKGESPK 
>ZNF212 
MAESAPARHRRKRRSTPLTSSTLPSQATEKSSYFQTTEISLWTVVAAIQAVEKKMESQAARLQSLEGRTGTAEKKLA
DCEKMAVEFGNQLEGKWAVLGTLLQEYGLLQRRLENVENLLRNRNFWILRLPPGSKGEAPK 
>ZNF783 
MAEAAPARDPETDKHTEDQSPSTPLPQPAAEKNSYLYSTEITLWTVVAAIQALEKKVDSCLTRLLTLEGRTGTAEKK
LADCEKTAVEFGNQLEGKWAVLGTLLQEYGLLQRRLENVENLLRNRNFWILRLPPGSKGEAPK 
>ZNF767P 
MEEAAAAPISPWTMAATIQAMERKIESQAAHLLSLEGQTGMAEKKLADCEKTAVEFGNQLEGKWAVLGTLLQEYGLL
QRRLENVENLLHNRNFWILRLPPGSKGESPK 
 
 
 
Percent Identity Matrix - created by Clustal2.1  
 
     1: ZNF777      100.00   58.57   51.79   64.29   63.04   71.30   69.44 
     2: ZNF398       58.57  100.00   67.14   70.07   68.89   75.00   71.30 
     3: ZNF282       51.79   67.14  100.00   67.86   68.12   76.85   75.00 
     4: ZNF783       64.29   70.07   67.86  100.00   77.54   78.70   75.93 
     5: ZNF212       63.04   68.89   68.12   77.54  100.00   82.41   79.63 
     6: ZNF746       71.30   75.00   76.85   78.70   82.41  100.00   95.37 
     7: ZNF767P      69.44   71.30   75.00   75.93   79.63   95.37  100.00 
 
 
 
 
Phylogenetic Tree 
 
 

 
 
 

Sequence: all from a.a. 1 to the end of the HUB exon (either exon 1 or 2, the 
exon before KRAB A like exon)  
 
>ZNF777 
MENQRSSPLSFPSVPQEETLRQAPAGLPRETLFQSRILPPKEIPSLSPTIPRQASLPQTSSAPKQETSGWMPHVLQK
GPSLLCSAASEQETPLQGPLASQEGTQYPPPAAAEQEISLLSHSPHHQEAPVHSPETPEKDPLTLSPTVPETDGDPL
LQSPVSQKDTPFQISSAVQKEQPLPTAEITRLAVWAAVQAVERKLEAQAMRLLTLEGRTGTNEKKIADCEKTAVEFA
NHLESKWVVLGTLLQEYGLLQRRLENMENLLKNRNFWILRLPPGSNGEVPK 
>ZNF282 
MQFVSTRPQPQQLGIQGLGLDSGSWSWAQALPPEEVCHQEPALRGEMAEGMPPMQAQEWDMDARRPMPFQFPPFPDR
APVFPDRMMREPQLPTAEISLWTVVAAIQAVERKVDAQASQLLNLEGRTGTAEKKLADCEKTAVEFGNHMESKWAVL
GTLLQEYGLLQRRLENLENLLRNRNFWVLRLPPGSKGEAPK 
>ZNF398 
MAEAAPAPTSEWDSECLTSLQPLPLPTPPAANEAHLQTAAISLWTVVAAVQAIERKVEIHSRRLLHLEGRTGTAEKK
LASCEKTVTELGNQLEGKWAVLGTLLQEYGLLQRRLENLENLLRNRNFWILRLPPGIKGDIPK 
>ZNF746 
MAEAVAAPISPWTMAATIQAMERKIESQAARLLSLEGRTGMAEKKLADCEKTAVEFGNQLEGKWAVLGTLLQEYGLL
QRRLENVENLLRNRNFWILRLPPGSKGESPK 
>ZNF212 
MAESAPARHRRKRRSTPLTSSTLPSQATEKSSYFQTTEISLWTVVAAIQAVEKKMESQAARLQSLEGRTGTAEKKLA
DCEKMAVEFGNQLEGKWAVLGTLLQEYGLLQRRLENVENLLRNRNFWILRLPPGSKGEAPK 
>ZNF783 
MAEAAPARDPETDKHTEDQSPSTPLPQPAAEKNSYLYSTEITLWTVVAAIQALEKKVDSCLTRLLTLEGRTGTAEKK
LADCEKTAVEFGNQLEGKWAVLGTLLQEYGLLQRRLENVENLLRNRNFWILRLPPGSKGEAPK 
>ZNF767P 
MEEAAAAPISPWTMAATIQAMERKIESQAAHLLSLEGQTGMAEKKLADCEKTAVEFGNQLEGKWAVLGTLLQEYGLL
QRRLENVENLLHNRNFWILRLPPGSKGESPK 
 
 
 
Percent Identity Matrix - created by Clustal2.1  
 
     1: ZNF777      100.00   58.57   51.79   64.29   63.04   71.30   69.44 
     2: ZNF398       58.57  100.00   67.14   70.07   68.89   75.00   71.30 
     3: ZNF282       51.79   67.14  100.00   67.86   68.12   76.85   75.00 
     4: ZNF783       64.29   70.07   67.86  100.00   77.54   78.70   75.93 
     5: ZNF212       63.04   68.89   68.12   77.54  100.00   82.41   79.63 
     6: ZNF746       71.30   75.00   76.85   78.70   82.41  100.00   95.37 
     7: ZNF767P      69.44   71.30   75.00   75.93   79.63   95.37  100.00 
 
 
 
 
Phylogenetic Tree 
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Supplemental Figure 2.2  KRAB A box alignment of the members in ZNF777 

subfamily.  

The ZNF10 is an example of zinc finger protein with canonical consensus sequence of 

KRAB A box. The DV at positions 6,7 and MLE at positions 36-38 in human consensus 

have been shown to be essential for KAP1 binding. The KRAB A-like box of all the 

members lack the LE consensus amino acids, suggesting the KRAB A-like box of this 

family may not interact with KAP1. 

 

 

 

 

 

 

 

 

 

 

 

 

CONSENSUS   F DV F  EEW  L   Q  LY  VMLENY  L

ZNF10    MVTFKDVFVDFTREEWKLLDTAQQIVYRNVMLENYKNLVSL 

ZNF777   PVTFDDVAVHFSEQEWGNLSEWQKELYKNVMRGNYESLVSM
ZNF282   PVTFVDIAVYFSEDEWKNLDEWQKELYNNLVKENYKTLMSL
ZNF783   PVTFDDVAVYFSELEWGKLEDWQKELYKHVMRGNYETLVSL
ZNF398   PVAFDDVSIYFSTPEWEKLEEWQKELYKNIMKGNYESLISM
ZNF212   SRSLENDGVCFTEQEWENLEDWQKELYRNVMESNYETLVSL
ZNF746   PVTFDDVAVYFSEQEWGKLEDWQKELYKHVMRGNYETLVSL
ZNF425   TVTFDDVALYFSEQEWEILEKWQKQMYKQEMKTNYETLDSL
ZNF786   PLTFEDVAIYFSEQEWQDLEAWQKELYKHVMRSNYETLVSL
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Over-represented elements                     Under-represented elements 

Repeat Element P Value 
L1MEc (L1) 0.340660893 
FLAM_C (Alu) 0.302680256 
L1MC4 (L1) 0.278736929 
MER5B (hAT-
Charlie) 0.278338464 
MLT1B (ERVL-
MaLR) 0.2548366 
L1ME3A (L1) 0.236542705 
L2a (L2) 0.215780855 
L1MC1 (L1) 0.200023409 
MLT1D (ERVL-
MaLR) 0.192961197 
L3 (CR1) 0.171284683 
AluJo (Alu) 0.142569658 
AluSg (Alu) 0.109512995 
AluSc (Alu) 0.077898077 
MIR (MIR) 0.071162415 
AluSq2 (Alu) 0.051313966 
L1ME1 (L1) 0.034178961 
AluSp (Alu) 0.030438076 
L1M5 (L1) 0.012366321 
AluSx1 (Alu) 0.00845582 
AluJr (Alu) 0.007746328 
AluJb (Alu) 0.007586817 
AluSz (Alu) 0.002133738 
AluSx (Alu) 0.000157561 

 

 

 

 

Supplemental Table 2.1 Repeat elements intersected with ZNF777 ChIP-seq peaks that 

are over-representative or under-representative. 709 ChIP-seq peaks were analyzed by a 

randomization test using hypergeometric distribution. Random peaks were created to 

intersect with the repeats and compared with the repeats intersected with ChIP-seq peaks 

for the enrichment of intersected ChIP-seq peaks that are specific to certain repeat 

elements.  

Repeat Element P Value 
MER31B (ERV1) 5.64E-93 
MER31A (ERV1) 8.42E-60 
MER9B (ERVK) 2.75E-56 
MER39B (ERV1) 3.20E-18 
MER65C (ERV1) 1.67E-16 
LTR45 (ERV1) 2.36E-15 
HERVL32-int (ERVL) 2.36E-15 
MER39 (ERV1) 3.25E-09 
MER70-int (ERVL) 2.50E-07 
LTR81 (Gypsy) 2.50E-07 
Charlie17a (hAT-
Charlie) 2.79E-07 
MER61E (ERV1) 4.94E-07 
MLT1J-int (ERVL-
MaLR) 1.93E-06 
Charlie14a (hAT-
Charlie) 2.69E-06 
MER74A (ERVL) 1.26E-05 
Kanga1b (TcMar-Tc2) 1.45E-05 
MLT1M (ERVL-
MaLR) 1.74E-05 
LTR62 (ERVL) 2.84E-05 
LTR84a (ERVL) 3.83E-05 
L5 (RTE) 3.84E-05 
MamGypLTR1d 
(Gypsy) 3.84E-05 
MER21A (ERVL) 5.22E-05 
Charlie13a (hAT-
Charlie) 6.60E-05 
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Supplemental Table 2.2: Gene Ontology (GO) clusters identified as significantly 
enriched in gene sets up- or down-regulated after ZNF777 gene siRNA knockdown 

1 Clusters enriched in Si1 knock-down. Si1 knocks down full-length of ZNF777 only. 
2 Clusters enriched in Si4 knock-down. Si4 knocks down both full-length and ZNF-only 
isoforms  
3 David enrichment scores are calculated as the geometric mean of –log transformed P-
values of GO terms within a cluster based on content of similar genes 
4, 5 Clusters associated with Up- or Down-regulated genes, respectively 
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CHAPTER 3: BINDING LANDSCAPE AND FUNCTION OF ZFP777 
IN MOUSE NEURAL STEM CELLS 
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Abstract 

 
KRAB-associated C2H2 zinc-finger (KRAB-ZNF) proteins are the products of a rapidly 

evolving gene family that traces back to early tetrapods, but which has expanded 

dramatically to generate an unprecedented level of species-specific diversity. Most land 

vertebrates carry hundreds of KRAB-ZNF genes, but remarkably, only three of the 394 

human KRAB-ZNF genes have been conserved throughout amniote history. These three 

genes, ZNF777, ZNF282, and ZNF783, are members of an ancient cluster, and encode 

proteins with a noncanonical KRAB domain and a unique HUB domain of unknown 

function. We recently reported the functions of ZNF777 in human choriocarcinoma cells 

(BeWo) to model placental trophoblasts, where ZNF777 and relatives are highly 

expressed (Chang et al. 2017). That these ancient genes should be expressed so highly in 

trophoblasts, which are found only in mammals, posed an interesting puzzle. However, 

we showed that ZNF777 regulates semaphorins and related genes, with known roles in 

placenta angiogenesis and in embryonic brain, where ZNF777 is also highly expressed. 

Here, we describe the investigation of this neuronal function in mouse neural stem cells 

(NSCs). We tagged endogenous Zfp777 with FLAG epitopes using the CRISPR-Cas9 

system, and performed chromatin immunoprecipitation (ChIP-seq) in mouse NSC 

chromatin. Zfp777 binds near promoters of genes involved in transcriptional regulation, 

Wnt and TGF-beta signaling pathways, neuron development and axon guidance - 

functions also regulated by ZNF777 in BeWo cells. The results indicate that Zfp777 and 

ZNF777 regulate similar pathways in diverse cell types, and suggest that a conserved role 

in neuron development was coopted for novel ZNF777 functions in a mammalian-

specific tissue.    
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Introduction 

 
C2H2 zinc finger (ZNF) proteins represent the largest single class of eukaryotic 

transcription factors, and while many vertebrate transcription factor families are 

conserved, the C2H2 zinc finger family stands out as a particularly significant exception.  

Over the course of evolution, distinct ZNF families have emerged independently in 

different lineages, through exon shuffling events that bring DNA sequences encoding 

zinc-finger arrays together with different types of protein-interaction or chromatin-

modifying “effector” domains (Collins et al. 2001; Stubbs et al. 2011). In mammalian 

lineages particularly, one major ZNF subfamily has diverged very rapidly and 

dramatically: the KRAB-ZNF family, which comprises over 400 genes in human and 

over 500 genes in mouse (Consiantinou-Deltas et al. 1992; Bellefroid et al. 1993; Huntley 

2006; Liu et al. 2014). By their sheer numbers, this single subfamily of ZNF proteins 

dominates the mammalian transcription-factor landscape, comprising up to one-fourth of 

all predicted TF genes (Vaquerizas et al. 2009). Most intriguingly, although all mammals 

have roughly equal numbers of KRAB-ZNF genes, the number of 1:1 orthologous pairs is 

remarkably small (Huntley 2006). About one-third of human KRAB-ZNF genes are 

primate specific, and about 30 human KRAB-ZNF genes have arisen through segmental 

duplication since the divergence of old world monkeys, creating novel transcriptional 

regulators that exist only in higher primates (Nowick et al. 2010).   

    The KRAB-ZNF gene subfamily encodes proteins with two primary structural 

domains: one or more copies of an effector domain, called the Krüppel-associated box 

(KRAB), and a C-terminal DNA binding domain (DBD) composed of a tandem array of 

zinc fingers. DNA binding is mediated by specific interaction between four amino acids -

1, 2, 3, and 6 relative to the alpha helix within each ZNF (which we call the 

“fingerprints”), with three adjacent nucleotides at the DNA target sites (Pavletich & Pabo 

1991; Pavletich & Pabo 1993; Kim & Berg 1996; Wolfe et al. 2000). The canonical 

mammalian KRAB domain, called KRAB A, has been shown in specific cases to interact 

with a universal cofactor, KAP1, to recruit histone deacetylase and methylation 

complexes to the ZNF-binding sites. For this reason, KRAB-ZNF proteins are thus 

typically thought to act as potent transcriptional repressors (Margolin et al. 1994; Pengue 
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et al. 1994; Witzgall et al. 1994; Tommerup & Vissing 1995). Since KAP1 is involved in 

silencing both exogenous retroviruses and endogenous retroelements (EREs) (Rowe et al. 

2010; Rowe & Trono 2011) and since the evolutionary pattern of KRAB-ZNFs has been 

linked to that of retroviral invasions (Jacobs et al. 2014; Thomas & Schneider 2011), it 

has been proposed that KRAB-ZNF diversity stems from an “arms race” to silence EREs.      

    In a previous study, we mined a number of existing amniote genomes to identify the 

vertebrate roots of the mammalian KRAB-ZNF family (Liu et al. 2014). We found 

hundreds of KRAB-ZNF proteins in every species, but only three human genes with clear 

orthologs in non-mammalian vertebrates. These three genes, ZNF777, ZNF282, and 

ZNF783, are members of an ancient familial cluster and encode proteins with similar 

domain structures. This finding led us to several questions, including: what are the 

functions of these ancient family members and why, of such a large and diverse family 

group, were these three genes conserved so fastidiously over hundreds of millions of 

years?  

    Some intriguing properties have been observed for this cluster of genes, which we will 

refer to here as the “ZNF777 subfamily”. All members encode a non-canonical KRAB 

domain that does not interact with KAP1, but rather, has activating activity (Okumura et 

al. 1997). Another unique characteristics of this family is the presence of a 5’ exon 

encoding a novel domain, the HUB domain (Okumura et al. 1997).  At least one cluster 

member, ZNF398, gives rise to isoforms with or without the HUB domain, which vary 

significantly in terms of their regulatory activity (Conroy et al. 2002). We also recently 

found that ZNF777 gives rise to HUB-plus and HUB-minus isoforms in choriocarcinoma 

cells (Chang et al. 2017). We uncovered the binding landscape of ZNF777 in human 

BeWo choriocarcinoma cells using chromatin immunoprecipitation followed by deep 

sequencing (ChIP-seq), revealing a role in regulation of genes involved in axon guidance, 

which have been coopted in placenta to regulate angiogenesis (Liao et al. 2010). 

Since ZNF777 is also expressed in embryonic brain (Liu et al. 2014), we sought to 

further investigate the functional role of this ancient gene in neuron development.  Here 

we show that mouse Zfp777 is expressed in neuronal stem cells (NSC) cultured from 

early mouse embryos, with a pattern that changes over the course of neuron 

differentiation in vitro. Using the NSC platform, we characterized the binding landscape 



	 59 

of Zfp777 in undifferentiated NSC. To circumvent the roadblock posed by the lack of a 

ChIP-ready antibody for the mouse protein, we exploited the CRISPR-Cas9 technique 

(Ran et al. 2013; Savic et al. 2015) to tag the endogenous Zfp777 protein with FLAG 

epitopes. Because we are interested in comparing the two proteins, we also tagged mouse 

Zfp282 using the same procedure. Our results revealed a novel Zfp777 binding motif that 

bears significant similarity to a motif predicted in in vitro studies (Isakova et al. 2017), 

and found that Zfp777 binds to promoters of genes encoding transcription factors, Wnt 

and TGF-beta pathways components, and proteins related to neuron development and 

axon guidance. Since these same functions were also found to be regulated by ZNF777 in 

BeWo cells (Chang et al., 2017), these results suggested that the mouse and human 

Zfp777 and ZNF777 proteins regulating similar genes and pathways, most classically 

associated with axon guidance, in diverse tissues. Recent studies have suggested that 

ZNF777 and ZNF282 interact closely at many promoters (Imbeault et al. 2017). The 

mouse NSC cell lines in which Zfp282 protein has also been successfully tagged provide 

an important resource for us to investigate this role in the future. 
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Results 

 
Zfp282 and Zfp777 are expressed in mouse neural stem cells as they differentiate in 

culture 

Both Zpf777 and Zfp282 have been shown to be expressed at high levels in embryonic 

brain (Chang et al. 2017; see Chapter 2). We thus wished to determine whether both 

genes would also be expressed in cultured primary mouse neuroblasts, or neural stem 

cells (NSCs). We tested the expression of Zfp777 and Zfp282 in mouse NSCs and cell 

types resulting from their differentiation in vitro by real-time reverse transcript PCR 

(qRT-PCR). We generated RNA samples from undifferentiated NSC and neurons, 

oligodendrocytes, and astrocytes differentiated from NSCs for this purpose, and used 

primers developed previously for qRT-PCR (Liu et al. 2014) (Figure 3.1). The results 

showed that both Zfp777 and Zfp282 are expressed in the undifferentiated NSCs, and 

continue to be expressed in each the differentiated cell type. Expression slightly 

decreased after 2 days of differentiation into neurons compared to the expression of 

NSCs, and continued decreasing during later stages of differentiation. The same types of 

expression pattern were also observed in differentiating astrocytes and oligodendrocytes.  

These data suggest that both Zfp777 and Zfp282 are active in each of the three derivatives 

of NSC, although expression is highest in the undifferentiated cells. We therefore used 

NSCs for the following experiments.   

 

Engineering FLAG-tagged Zfp282 and Zfp777 genes in mouse neural stem cells 

To circumvent the obstacles caused by the limitations of the availability of suitable ChIP-

grade antibodies, we exploited the powerful CRISPR-Cas9 genome editing tools to 

“knock-in” epitope sequences in frame to the 3’ ends of endogenous Zfp777 and Zfp282 

genes. We inserted three tandem FLAG tag sequences into each locus using the CETCh-

seq approach (Savic et al. 2015). This method introduces the FLAG tag sequences, 

followed by a self-cleavage 2A peptide sequence (P2A) and neomycin resistance (NeoR) 

gene, which allows cells in which successful editing has taken place be selected (Figure 

3.2A). Briefly, in successfully edited cells the neomycin resistance gene is cotranscribed 

with the FLAG tagged transcription factor, and separate tagged TF and neomycin 
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resistance proteins are generated through amino-acid peptide cleavage and ribosomal 

skipping at the P2A sequence.   

    After three weeks of G418 selection, we obtained a mixed pool of NSCs carrying 

tagged TFs and untagged TFs, with cells carrying tagged TFs significantly enriched in 

this population. PCR-based genotyping (Figure 3.2B) with primers flanking the regions 

outside of FLAG-P2A-NeoR showed an almost equal intensity of bands corresponding to 

the tagged genes (3069 bp for Zfp282 and 2804 bp for Zfp777) versus the untagged genes 

(2063 bp for Zfp282 and 1801 bp for Zfp777) in cell populations selected with 50 µg/ml 

of G418 (see Supplemental Table 3.1 for sgRNA and primer sequences; Supplemental 

Table 3.2 for sequences of HOM1 and HOM2); this result indicated efficient selection 

since most cells will carry the FLAG insertion in heterozygous form (Savic et al. 2015). 

We thereafter used NSC cell pools selected under 50 µg/ml of G418 for following 

experiments.  

The PCR products were sent for Sanger-sequencing and successful knock-in of the 

three tagged cell pools (Zfp282-B3-2, Zfp777-C2-1, and Zfp777-C2-2) was confirmed. 

We tested Zfp282-FLAG and Zfp777-FLAG protein expression in the NSCs by western 

blot analysis, and found both the endogenously expressed tagged proteins could be 

detected by the FLAG antibody (Figure 3.2C). Interestingly, the Zfp282-FLAG protein 

showed a doublet pattern, which may indicate post-transcriptional modification as has 

been previously described for ZNF282 (Yu et al. 2012). The tagged Zfp777 protein was 

detected around 130 kDa, which is larger than the predicted size (~ 85 kDa), also 

suggesting the protein is possibly modified in NSCs. These results were consistent with a 

previous study, which showed that human ZNF777 migrates as a ~ 130 kDa band in 

western blots prepared from HCT116 cell protein extracts (Yuki et al. 2015). We also 

detected a protein of similar size in human BeWo cells, together with a shorter protein 

band that we confirmed as a HUB-minus, KRAB-minus isoform of the protein (Chang et 

al. 2017). However importantly, we did not observe any evidence of the shorter isoform 

either NSC cell pools expressing FLAG-tagged Zfp777; these data, along with western 

blot data from other human cell types (Chang et al. 2017, Chapter 2) suggest that the 

balance of isoforms arising from this protein may be dependent on cellular context.  
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Zfp777 binding landscape in mouse neural stem cells 

To investigate the binding landscape of Zfp777 protein under endogenous conditions, we 

performed Chromatin immunoprecipitation (ChIP) followed by Illumina sequencing 

(ChIP-seq) in chromatin from tagged NSC pools using a well-tested FLAG antibody. 

After sequencing and alignment of ChIP-enriched fragments, we used HOMER software 

to identify 1245 peaks with peak scores of 5 or higher. Among these peaks, 685 peaks 

(55%) were located within 5 kb from a transcription start site (TSS) (648 peaks are within 

2.5 kb). These results suggested Zfp777 is mostly involved in the regulation of the 

transcription initiation of the protein-coding genes through the interaction at the promoter 

(265 peaks) or the 5’UTR (218 peaks) regions (Figure 3.3A).   ZNF282 has been reported to bind to the long-terminal repeat (LTR) regions of human 

retroviruses (Okumura et al. 1997), and KRAB zinc-finger proteins have been implicated 

to have evolved in an “arms race” with endogenous LTRs and other types of bioactive 

transposable elements (Jacobs et al. 2014). Furthermore, we found an enrichment for 

human ERV1 endogenous retroviral elements in the binding sites for ZNF777 in human 

BeWo choriocarcinoma cells (Chang et al. 2017; Chapter 2). For that reason, we 

examined the potential overlap between Zfp777 NSC binding sites and repetitive 

elements. Only 10 (< 1%) of the peaks identified in these experiments overlapped with 

endogenous retroviruses (ERVs), 18 with LINEs (11 intergenic; 7 intragenic) and 12 with 

SINEs (4 intergenic; 8 intragenic). These results suggested that regulation of repeats is 

not a major function for Zfp777, at least in NSC.  

    We used the summits of the most highly enriched Zfp777 peaks (at least 10-fold 

enrichment compared to input control; see Methods) and identified a highly enriched (p=	

7.7e-23) centrally located motif (Figure 3.3B). This motif shares very high resemblance 

to a motif predicted for ZNF777 by the SMiLE-seq technique (Selective microfluidics-

based ligand enrichment followed by sequencing) (Isakova et al. 2017). The concordance 

between this in vitro predicted and our in vivo validated motif provides strong evidence 

for this motif as the bona fide binding site for Zfp777. Interestingly, the motif we 

identified is identical to the predicted motif in a central core sequence (consensus 

CCGTGG) but differs from the SMILE-seq prediction in the less well-defined flanking 

sequences. This difference could reflect a difference in binding in the in vivo and in vitro 
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contexts, or could possibly vary depending on cellular context. The human ZNF777 motif 

we identified (Chang et al. 2017; Chapter 2) has fewer well-defined nucleotide positions 

but nevertheless aligns well with the spacing of Zfp777 and SMiLE motifs. 

Among the 685 peaks located within 5 kb from annotated TSS, 17 of Zfp777 peaks 

were identified at a promoter for a ncRNA, and one peak was found on the promoter 

region of an annotated pseudogene; the remaining 667 peaks lie near the TSS of protein-

coding genes. We found that the promoter of the Zfp777 gene is bound by its own protein 

product with very high enrichment (Figure 3.3C), suggesting autoregulation. We also 

found several other interesting examples in this Zfp777-FLAG ChIP-seq dataset 

including many genes also regulated by ZNF777 in human BeWo cells. For example, a 

robust peak was identified at the promoter of the Grhl1 (Grainy head-like 1) gene 

(Figure 3.3C); ZNF777 also binds to the GRHL1 promoter in human cells (Chang et al. 

2017). Another peak was found at the promoter of Sema6a, which encodes a ligand 

involved in axon guidance; ZNF777 binds to human paralogs SEMA5A and SEMA7A in 

BeWo cells. 

To gain a more global view of Zfp777 function, we analyzed all genes with promoter-

associated Zfp777 peaks for functional analysis using the functional clustering option in 

the DAVID suite (Huang et al. 2009). The most enriched functional cluster identified was 

transcription regulation, with 117 of the peaks located adjacent to transcription factor 

genes (Table 3.1). Interestingly, genes within the Wnt and TGF-beta signaling pathways 

were also very highly enriched as were genes related to neuron development and 

differentiation, cell junctions, and synapses (Table 3.1). These same functions were also 

highly enriched in our ZNF777 study, suggesting that although in different species and 

tissues, with not exactly identical binding motifs, Zfp777 and ZNF777 regulate similar 

pathways, in mouse neural stem cells and human BeWo cell lines respectively.   
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Discussion  
 
Here we define, for the first time, the functions of the ancient Zfp777 KRAB-ZNF 

transcription factor protein in neuronal cells. As we described previously (Liu et al., 

2014; Chang et al. 2017; Chapter 2), ZNF777 and its closest relatives are very highly 

expressed in placenta tissues, but also were found to be active in embryonic brain.  

Similarly, mouse Zfp777 is expressed at high levels in embryonic brain, around the time 

when the brain is growing rapidly in mammals. As we demonstrate here, Zfp777 and its 

close paralog, Zfp282, are both also expressed in cultured NSC, providing an excellent 

platform for functional exploration.  

    Because antibodies for the mouse proteins were not available, we used a recently 

developed system based on CRISPR-Cas9, called CETCh-seq (Savic et al. 2015) to 

engineer epitope tags into the endogenous Zfp777 and Zfp282 loci to enable investigation 

of the chromatin binding landscape for each protein in NSC. In this paper, we report 

results for chromatin analysis of Zfp777 using these CRISPR-engineered cells.  

    Zfp777 binding are enriched in CpG islands at promoters and 5’UTRs of coding genes, 

(Supplemental Table 3.3), suggesting a correlation with transcription initiation (Deaton 

& Bird 2011). This result is also in agreement with the recent findings of Imbeault and 

colleagues (Imbeault et al. 2017) who showed that ZNF777, ZNF282 and another family 

members ZNF398 bind in close proximity at many shared promoters. The Zfp777 

binding peaks are enriched in a sequence motif with very high similarity to one predicted 

for ZNF777 in in vitro assays (Isakova et al. 2017), confirming the accuracy of the ChIP 

results. 

    In our recent study, we identified a binding motif of ZNF777 with less “information 

content” – that is, fewer distinct, and more degenerated nucleotide positions (Chang et al. 

2017). Though low in information content, this motif was detected in virtually all the 

high-scoring human peaks and was thus identified with very high probability.  

Interestingly, the most distinct nucleotide positions in the human ZNF777 binding motif 

align well with the mouse Zfp777 motif we identified here with the same nucleotides 

positioned and the same spacing (Figure 3.3B). The human motif did not include six 

more weakly defined nucleotides at the 5’ end of the mouse and the predicted motifs. 

Furthermore, we found very few overlaps in binding sites in comparisons of the human 
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BeWo and mouse NSC ChIP experiments. This difference could have several 

explanations. However, we conjecture that the disparity between the binding properties of 

human and mouse proteins is due to both species- and tissue-specific factors, similar to 

factors that impact binding of mammalian TFs more generally, as discussed in sections 

below.      

   An increasing number of studies have compared experimentally determined TF-DNA 

interactions between species (Kunarso et al. 2010; Mikkelsen et al. 2010; Schmidt et al. 

2012; Cotney et al. 2013). In particular, Odom and colleagues compared binding profiles 

for several TFs across species, and concluded that tissue-specific transcriptional 

regulation has diverged significantly between human and mouse (Odom et al. 2007). 

They carried out chromatin immunoprecipitation followed by array hybridization (ChIP-

chip) using specially designed proximal promoter microarrays with a set of liver-specific 

TFs (FOXA2, HNF1A, HNF4A, HNF6) whose function, amino acid sequence, and 

targeted binding motif are highly conserved throughout mammals. Their result confirmed 

that despite high levels of conservation in DNA-binding domains, the homologous TFs 

differed in both their global binding locations and their potentially targeted genes. This 

study was limited to the proximal promoters around 4,000 transcription start sites in 

human and mouse, due to the technical limitations imposed on the experiments by the 

extant microarray densities. However, in a follow-up study, this same group performed 

ChIP-seq for two TFs (CEBPA and HNF4A) in five vertebrates, unambiguously 

revealing tens of thousands of binding events that are unique to each evolutionary 

lineage. Although these TF displayed similar DNA binding preferences in terms of 

motifs, most binding events were species-specific, and aligned binding events present in 

all five species were rare (Shmidt et al. 2010). It is also well known that TFs binding is 

also highly tissue-specific (Badis et al. 2009; Blow et al. 2010; Jolma et al. 2013; Neph et 

al. 2012; Pique-Regi et al. 2011). More specifically, C2H2 zinc-finger protein binding 

sites were found to be enriched in many cell type-specific DNaseI hypersensitive regions, 

suggesting a role in regulation of cell type-specific transcriptional programs (Najafabadi 

et al. 2015). It is therefore perhaps not surprising to find binding differences between 

human choriocarcinoma cells and mouse NSC.    
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    Finally, and perhaps most importantly, we note that the ZNF777 gene gives rise to two 

clear isoforms in human BeWo cells, corresponding to HUB-plus and HUB-minus 

proteins, respectively (Chang et al. 2017; Chapter 2). For ZNF777 family member 

ZNF398, which produces similar isoforms, inclusion of the HUB domain prevents 

interaction of the protein’s zinc finger domain with interacting partner, ER-a, and 

significantly alters ZNF398’s binding sites and regulatory activities (Conroy et al. 2002).  

Similarly, we speculate that the HUB-minus version of ZNF777 may possess different, 

and possibly much more promiscuous, binding properties than does the full-length 

protein. 

    Since BeWo cells include both protein isoforms and the antibody we used for ChIP 

detects both protein versions equally well, we hypothesize that the less distinct motif we 

detected for human ZNF777 may represent a “composite” motif that reflects binding sites 

of both proteins. In mouse NSC, on the other hand, only the full-length, HUB+ protein 

isoform was detected; this protein would be similar to that used for in vitro protein 

predictions (Isakova et al. 2017), with more nucleotide positions well defined in the 

predicted motif. 

    Despite these differences, it is striking to find that genes related to neuron 

development, axon guidance, and synapses were enriched near binding site for both 

ZNF777 and Zfp777 in these vastly different types of cells. Interestingly, many of the 

genes are best known for their functions in neurogenesis, but have also shown to play a 

non-neuronal role in development of the placenta (Liao et al. 2010; Jongbloets & 

Pasterkamp 2014). Genes within the semaphorin pathways, which were particularly 

enriched in both the human ZNF777 and the mouse Zfp777 results, present one of the 

most striking examples. We speculate that this regulatory activity is representative of the 

“root” function of this ancient protein, and that this activity has been captured in 

mammals for a novel biological role in placental trophoblasts. 

    In closing, we should again note that recent studies have suggested interacting roles for 

ZNF777 and ZNF282, including co-binding at many promoters (Imbeault et al. 2017).  

The two proteins are expressed in very similar patterns in both humans and mice, and 

could well interact in vivo. Such interaction would be interesting and might relate to the 

deep conservation of these unique KRAB-ZNF “root” proteins. The NSC cells we have 



	 67 

engineered to expression a tagged Zfp282 protein should be ideally suited to test this 

interaction and the notion of a coupled functional role. 

 

 

Materials and Methods 

Ethics Statement  

This investigation has been conducted in accordance with the ethical standards and 

according to the Declaration of Helsinki and according to national and international 

guidelines.  

 

Cell culture  

    Mouse neural stem cells (NSC) were obtained from E14.5 mouse embryos. NSCs were 

cultured by NeuroCultTM Proliferation Kit (STEMCELL TM) incubated at 37 °C in 5% 

CO2. The cell culture plates were coated with Poly-D-Lysine for 2 hours at room 

temperature and Laminin solution for 2 hours at 37 °C before plating the cells. 

 

Generation of FLAG tagged Zfp282 and Zfp777 genes in mouse NSC 

    The CRISPR procedures used in our lab follows the protocol published by Ran et al. 

(Ran et al. 2013) with some modifications. We use http://crispr.mit.edu/ website created 

by Zhang lab for the design of the small guide RNAs (sgRNAs). We test at least 2-3 

sgRNAs with the highest scores for each site to be modified. The plasmid pSpCas9-2A-

GFP (PX458; Addgene plasmid ID: 48138) encoding Cas9, a sgRNA cloning site under 

U6 promoter, and a GFP gene is used to express our sgRNAs. Cells are transfected with 

NeonTM transfection system for all our CRISPR plasmids and the pFETCh template 

plasmid encoding HOM1 and HOM2 according to the manufacturer’s instructions. The 

transfection conditions of NeonTM system were optimized on different cell lines. Neural 

stem cells were transfected with 1150 pulse voltage, 30 ms pulse width, and 2 pulses.  At 

24 h post transfection, transfection efficiency can be estimated from the fraction of 

fluorescent cells. We typically got 30-50% transfection efficiency with neuronal stem 

cells. At 48 h post transfections, cells were treated with 10, 20, or 50 µg/ ml G418 for 

selection. Cells were then incubated for ~3 weeks, resuspended in Accutase 
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(STEMCELL TM), 20% of the cells from one well can be harvested for genotyping and 

sequencing while the remaining cells were plated onto a new 6-well plate. The positive 

clones were further expended and harvested for downstream analysis, e.g. Western Blots 

and ChIP.  

 

RNA preparation and quantitative RT-PCR 

    Total RNA was isolated from cell lines and tissues using TRIzol (Invitrogen) followed 

by 30 minutes of RNase-free DNaseI treatment (NEB) at 37oC and RNA Clean & 

ConcentratorTM-5 (Zymo Research). 2 µg of total RNA was used to generate cDNA using 

Superscript III Reverse Transcriptase (Invitrogen) with random hexamers (Invitrogen) 

according to manufacturer’s instructions.  

    Resulting cDNAs were analyzed of transcript-specific expression through quantitative 

reverse-transcript PCR (qRT-PCR) using Power SYBR Green PCR master mix (Applied 

Biosystems) with custom-designed primer sets purchased from Integrated DNA 

Technology. Relative expression was determined by normalizing the expression of all 

genes of interest to either mouse Tyrosine 3-monooxygenase/tryptophan 5-

monooxygenase activation protein, zeta polypeptide (YWHAZ) expression (∆Ct) as 

described (Eisenberg and Levanon, 2003).   

 

Protein preparation, Western blots, and antibodies  

    Nuclear Extracts were prepared with NucBusterTM Protein Extraction Kit (Novagen) 

and measured by Bradford-based assay (BioRad). The extracts were stored at -80oC and 

thawed on ice with the addition of protease inhibitor Cocktail (Roche) directly before use. 

15 µg of nuclear extracts were run on 10% acrylamide gels and transferred to 

hydrophobic polyvinylidene difluoride (PVDF) membrane (GE-Amersham, 0.45 µm) 

using BioRad Semi-dry system, then visualized by exposure to MyECL Imager (Thermo 

Scientific). FLAG rabbit monoclonal antibody (F1804) was purchased from Sigma® .  

 

Chromatin immunoprecipitation  

    Chromatin immunoprecipitation was carried out as essentially as described (Kim et al., 

2003) with modifications for ChIP-seq. Chromatin was prepared from NSC cell lines. 
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About 1.0 x 106 Cells were fixed in PBS with 1% formaldehyde for 10 minutes. Fixing 

reaction was stopped with addition of Glycine to 0.125M. Fixed cells were washed 3x 

with PBS+Protease inhibitor cocktail (PIC, Roche) to remove formaldehyde. Washed 

cells were lysed to nuclei with lysis solution – 50 mM Tris-HCl (pH 8.0), 2 mM EDTA, 

0.1% v/v NP-40, 10% v/v glycerol, and PIC – for 30 minutes on ice. Cell debris was 

washed away with PBS with PIC. Nuclei were pelleted and flash-frozen on dry ice.  

    Cross-linked chromatin was prepared and sonicated using Bioruptor UCD-200 in ice 

water bath to generate DNA fragments 200-300 bp in size. 15 micrograms of FLAG 

antibody preparations were incubated with chromatin prepared from nuclei of 

approximately 10 million cells.  

DNA was released and quantitated using Qubit 2.0 (Life Technologies) with dsDNA 

HS Assay kit (Life Technologies, Q32854), and 15 ng of DNA was used to generate 

libraries for Illumina sequencing. ChIP-seq libraries were generated using KAPA LTP 

Library Preparation Kits (Kapa Biosystems, KK8232) to yield two independent ChIP 

replicates for each antibody. We also generated libraries from sonicated genomic input 

DNA from the same chromatin preparations as controls. Libraries were bar-coded with 

Bioo Scientific index adapters and sequenced to generate 15-23 million reads per 

duplicate sample using the Illumina Hi-Seq 2000 instrument at the University of Illinois 

W.M. Keck Center for Comparative and Functional Genomics according to 

manufacturer’s instructions. Separate ChIP preparations were generated for qRT-PCR 

validation experiments; in this case, released DNA was amplified by GenomePlex® 

Complete Whole Genome Amplification (WGA) Kit (Sigma, WGA2).  

 

ChIP-Seq data analysis  

Human ZNF777 ChIP-enriched sequences as well as reads from the input genomic DNA 

were mapped to the HG19 human genome build using Bowtie 2 software (Langmead et 

al. 2009) allowing 1 mismatch per read but otherwise using default settings. Bowtie files 

were used to identify peaks in ChIP samples using the HOMER software package 

(http://homer.salk.edu/homer/ngs/index.html) using default conditions for the TF setting 

and false discovery rate cutoffs of 0.1. After comparison of the individual files, sequence 

reads from the two separate ChIP libraries were pooled and a final peak set determined in 
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comparison to genomic-input controls. Peaks were mapped relative to nearest 

transcription start sites using the GREAT program (Mclean et al. 2010). 

 

Motif analysis  

    To identify enriched motifs, we used sequence from a 200 bp region surrounding the 

predicted summits of selected peaks for analysis with MEME-ChIP with default 

parameters (Machanick et al. 2011). Motifs displayed in Fig. 3.3B were identified from 

peaks with the following cutoffs: HOMER ef > 10, fdr=0 peaks from Zfp777 ChIP in 

NSC chromatin; the identified motif occurred in 84 out of total 178 peaks submitted 

peaks, with p value = p=	7.7e-23. 
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Figures and Tables 
 
 
 

 
 

 
 

 
 

 
 

 
 
 

 
 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Expression levels of Zfp282 and Zfp777 in mouse neural stem cells 

(NSC), neurons, astrocytes, and oligodendrocytes by qRT-PCR.  

The relative mRNA expression levels were detected in all cell types. Astro: astrocytes. 

Oligo: oligodendrocytes. D0: undifferentiated. D2, D4, D6: 2, 4, 6 days after 

differentiation.  
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Figure 3.2 
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Figure 3.2 (cont.) Generation of endogenous FLAG-tagged Zfp282 and Zfp777 in 

mouse neural stem cells (NSCs) by CETCh-seq method. 

(A) Schemes of FLAG-tagged Zfp282 and Zfp777. sgRNAs were designed to target near 

the stop codon of each gene, and cloned into the cloning site under the U6 promoter of 

PX458 plasmid which also encodes Cas9 protein. A template plasmid (pFETCh) was 

constructed to include two homology arms (HOM1 and HOM2) containing around 800 
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Figure 3.2 (cont.) bp of the genomic sequences of Zfp282 or Zfp777 immediate 

upstream of the stop codon (HOM1) and downstream of the stop codon (HOM2). HOM1 

and HOM2 were cloned into the template plasmid to flank the GS linker, 3 FLAG tags, 

P2A sequence, and the neomycin resistant gene (NeoR). NSCs were co-transfected with 

PX458 containing sgRNA and the pFETCh template plasmid for 2 days, and selected by 

G418 for 3 weeks. After the homologous recombination in the NSCs, the original 

sequences near the stop codon were replaced by the sequences provided by the template 

plasmid, resulting in the knock-in of 3 FLAG sequences and the NeoR gene. The NSCs 

that were successfully knocked-in at the Zfp282 or Zfp777 genes can survive the 

selection of G418. After selection, the heterozygous modified cells would carry one allele 

of un-tagged Zfp282 or Zfp777, thus producing a smaller band (~1 Kb difference) 

compared to the band produced by the tagged allele in PCR validation. The primer 

locations for PCR validation of homologous recombination are depicted by the arrows. 

UP: primer pairs flanking the upstream (HOM1) region, which only produce PCR 

amplicon in tagged NSCs. DN: primer pairs flanking the downstream (HOM2) region. 

OUT: primer pairs flanking the entire region including both HOM1 and HOM2. These 

pairs can produce PCR products in both tagged and untagged cells, thus provide the 

information of the ratio of tagged/untagged gene in the cell pools. (B) PCR validation of 

homologous recombination. NSCs were selected under 10, 20, or 50 µg/ml of G418 for 3 

weeks. UP and DN primer pairs confirmed the tagging of Zfp282 and Zfp777. OUT 

primer pairs provided information of the ratio of tagged/untagged Zfp282 and Zfp777 in 

the mixed cell pools by comparing the intensity of the upper band/lower band (3 kb/2 kb 

in Zfp282; 2.8kb/1.8 kb in Zfp777). The NSCs selected by 50 µg/ml G418 had more 

enriched cell pools with tagged genes. NC (negative control): parental NSCs without 

modification. (C) Western blot validation of FLAG tagged Zfp282 and Zfp777 in NSCs. 

Three NSC CRISPR-modified stable cell lines (Zfp282-B3-2: modified by Zfp282 

sgRNA-B3, and Zfp777-C2-1, Zfp777-C2-2: modified by Zfp777 sgRNA-C2) were 

harvested, and the nuclear extracts were collected for western blot analysis. The Zfp777-

FLAG and Zfp282-FLAG proteins were detected by FLAG monoclonal antibody at ~130 

kDa and ~100 kDa, respectively.   
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Figure 3.3 
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Figure 3.3 (cont.) Zfp777 binding landscape in mouse NSC.  

(A) Distribution of Zfp777 peaks identified by ChIP-seq in mouse NSCs. 1245 peaks 

(with peak score higher than 5) were identified by HOMER software. 685 peaks (55.1%) 

were found located within 5 kb from a transcription start site (TSS), 384 peaks (30.8%) in 

intergenic regions, and 236 peaks (18.9%) in introns (5 kb away from TSS).  

(B) Alignment of binding motifs of Zfp777 in mouse NSCs, ZNF777 predicted by 

SMiLE-seq, and ZNF777 in human BeWo cell lines. The consensus sequence of ZNF777 

binding motif defined by SMiLE-seq is: GCCGTCGAACAT, with the core CCGTCG 

being found in the mouse Zfp777 binding motif identified in our FLAG-ChIP assay in 

mouse NSC. Both Zfp777 and ZNF777 motifs were identified by MEME software.  

(C) Examples of Zfp777 ChIP peaks. The Zfp777 peaks and H3K4Me3 peaks (identified 

in mouse frontal cortex tissues) were show, indicating promoter regions. Zfp777 was 

found to bind to its own promoter (top panel). Zfp777 binds to Grhl1 gene (bottom panel) 

at the promoter region. 
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Table 3.1:	Gene Ontology (GO) clusters identified as significantly enriched in gene sets 
with Zfp777 bound within 5 kb of their transcription start sites (TSS). 

 

1 David enrichment scores are calculated as the geometric mean of –log transformed P- 
values of GO terms within a cluster based on content of similar genes 
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Supplemental Figure 3.1 Target sites of Zfp282-sgRNA-B3 and Zfp777-sgRNA-C2 

The sgRNAs were designed using the http://crispr.mit.edu/ website created by Zhang lab. The sgRNAs consisting of a 20-nt guide 

sequence (orange box) were designed near the stop codon of Zfp282 and Zfp777 genes, directly upstream of a requisite 5’-NGG 

adjacent motif (PAM; red underline). The Cas9 nuclease is targeted to genomic DNA by the sgRNAs, mediates a double strand break  

~3 bp upstream of the PAM, indicated by the red arrow heads.  

3’
5’

5’
3’

PAMZfp282 sgRNA-B3

Zfp777 sgRNA-C2PAM
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5’ 3’
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Gene	
Primer	
pair	 Forward	primer	 Reverse	primer	

Product	
size	(bp)	

Zfp282	 UP	 GCGGTATCAGCGTGTCACTT	 CAGCAGGCTGAAGTTAGTAGC	 1010	
	 DN	 GGCCGCTTTTCTGGATTCAT	 GTCCATGTCCGTGAGCACAA	 1411	
	 OUT	 GCGGTATCAGCGTGTCACTT	 GTCCATGTCCGTGAGCACAA	 2063+3069	

Zfp777	 UP	 GGTGAGAACCGTGGGAACTC	 CAGCAGGCTGAAGTTAGTAGC	 1062	
	 DN	 GGCCGCTTTTCTGGATTCAT	 CCACAGACCACACTAGAGGC	 1094	
	 OUT	 GGTGAGAACCGTGGGAACTC	 CCACAGACCACACTAGAGGC	 1801+2804	

 

 

 

 

 

 

 

 

 

 

Supplemental Table 3.1 Primers and sgRNA sequences for Zfp282 and Zfp777 FLAG 

tagging mediated by homologous recombination of pFETCh template plasmid (CETCh-

seq method). All sgRNAs were tested, the best KI efficiencies resulted from Zfp282 

sgRNA-B3 and Zfp777 sgRNA- C2.  

 

 

 

 

 

 

 

 

Gene	 sgRNA	 	
Zfp777	 C1	 CGCATGCTCACTCGCCCGTG	
	 C2	 GCATGCTCACTCGCCCGTGT	
	 C3	 CGCCCGTGTGGGTCCGCAGG	
Zfp282		 B2	 GCCCAACCCTAGTCTCTTTC	
	 B3	 GCACCAGAAAGAGACTAGGGT	
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Supplemental Table 3.2 
 
zfp777 HOM1 (5’HOM) 
ACCAGCGTAACCACATCAAGGAGGGGCCCTACGAGTGTGCCGAGTGTGAGATCAGCTTC
CGCCACAAGCAGCAACTCACGCTGCACCAGCGCATCCACCGGGTACGCAGCGGCTATGC
CTCCCCTGAGCGCGGGTCAGCCTTCAATCCCAAGCACTCGCTCAAACCACGTCCCAAAT
CGCCCAGCTCAGGCAGTGGCGGCGGCCCCAAACCCTACAAATGCCCTGAGTGTGACAGC
AGCTTCAGCCACAAGTCAAGCTTGACCAAGCACCAGATCACACACACGGGTGAGCGGCC
CTACACGTGCCCAGAATGCAAGAAGAGCTTCCGCTTGCATATCAGTCTGGTGATCCACC
AGCGTGTGCATGCAGGCAAGCACGAAGTCTCCTTCATTTGCAGTCTGTGCGGCAAGAGT
TTCAGCCGCCCGTCGCATCTGCTGCGCCACCAGCGGACTCATACTGGTGAACGGCCTTT
TAAGTGCCCGGAGTGCGAGAAGAGCTTCAGTGAGAAATCTAAGCTCACCAACCACTGCC
GCGTGCACTCCCGCGAGCGGCCGCACGCCTGCCCTGAGTGCGGCAAGAGCTTCATCCGC
AAGCACCACTTGCTGGAACACCGGCGCATCCACACGGGTGAGCGGCCCTACCACTGCGC
CGAGTGTGGCAAGCGCTTCACGCAGAAGCACCACCTGCTGGAGCATCAGCGTGCGCACA
CAGGCGAGCGGCCATACCCCTGCACGCACTGCGCCAAGTGCTTCCGCTACAAACAGTCG
CTCAAGTACCACCTGCGGACCCACACGGGCGAG 
 
Zfp777 HOM2 (3’HOM) 
Gcatgcgccccgcccctgccccggccagatgtgcagccaggtgcaagggtctaaggccc
ctgggacaggtacctcggctgcccccagactgagctcagtgggcgggagcggggcgccc
caagcccttctgctgtgaaccctccttccctcccgtcccttcttccccaggacggggta
gtgagaccaggtcgcttcttgcctgcttccccagggccccaggggggagtgcttgggcc
tggggaaccccttcaggctgttaatttccttgacaataaaatggatgaaaacaatctgc
acgggggcagtgatttggctgccagccactcgcaggcgcgatgcagggccatttagtcg
gggatagaactttctaattaccttttggatactgtggttctatttgataataatagagt
aatttttaaaagacgagtgtttcctgtttgctgttcttgtttggtttgtaaggggaggg
gctaaggtggcccaagggacatgtgccccagtattagctgacagacaaccaagttcctt
tctcaaactcattgtctgctggatgatggagaaataagatactgcttataaatttaaaa
ggagtgatgctgacaaacttaaaggagagaaatctggggaagggtaaaagcacctgcct
gccagccttcctgtgccctcttgtctacctgcggggtggtctctccgtaggtaatactg
tcgtcccagctgcccagagtgatcagggagaaagtgatggtcgggctgagaatggtctg
aaaagatggtcctatggcaaaagctgggggctt 
 
Zfp282 HOM1 (5’HOM) 
TAAAGAACCCACCCCCATCTTCTGCGCAGCCCCAAACCCAACCTCATCAGCAGAGCCTG
CCCGCCTTGGCTGTGCCGGAGAACCCTGGCGGACCCGGGAGCCGTAGCCTGCTGGAGGA
TGGCTTCCCTGCTCTTCCAGGCGAGCGCAGTACCGGAGGCGAGGCTCAGCCCACCGGAG
AAGGCAGTGCAGGCGGTGGCGGTGGTGGTGGCAGCGGCGGCGGCGGCGGCACTGGTGCG
GGTAGTGGCAATAGTACCGGTGCTGGTGCGGGCAGTGGCTGCGGTAGCTGCTGCCCAGG
CGGCCTGCGGCGGAGCCTCCTTGCTCACGGCGCGCGCAGCAAGCCCTACTCTTGCCTGG
AATGCGGCAAGACCTTCGGCGTGCGAAAGAGCCTCATCATTCATCACCGCAGCCACACC
AAGGAACGACCATACGAGTGCGCAGAGTGCGAGAAGAGCTTCAACTGCCACTCTGGCCT
CATCCGCCACCAGATGACGCACCGCGGTGAGCGGCCCTACAAATGCTCCGAGTGTGAGA
AGACCTACAGCCGCAAGGAGCACCTGCAGAACCACCAGCGGCTGCACACGGGCGAGCGG
CCCTTCCAGTGCGCGCTCTGCGGCAAGAGCTTCATCCGAAAGCAGAACCTGCTAAAGCA
CCAGCGGATCCACACGGGCGAGCGGCCCTACACATGTGGCGAGTGCGGCAAGAGCTTCC
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GCTACAAGGAGTCACTCAAGGACCACCTGCGCGTGCACAATGGCCCGGGCCTGGGGGCC
CCGCGGCCACTCCAGGTGCCACCAGAAAGAGAC 
 
Zfp282 HOM2 (3’HOM) 
ggttgggctggggggcggggaggaatggactggagttggggcgggttagggttctcctg
ccccaccgttctcagcgcacctccccgccctctcctcacctcctgctggaaatcggcac
aggaattgcactccagacagggtattccaaggggtggacctgggtaccccagtactgtc
caactctagtggacagtccagctcatctcatagggtggacccagtggccagggaaggtc
ccagagggacagcaaggcagcaggaatcgttgggacacacctcggacacaccactggcc
actggggttacagattctgatcagggaaagcgaccagagagtctccaaccccttctgag
aaaaggaaatatgatccatcctgaaggtgaggagacatcctgaaaaggagagcaaatct
gcggtgtggaagctgagggaagcgctaagggtaacatcctcatgacaacactgcctcgc
gctctaatagcgctttatacttttttaaaaagtgttttctatccgttatctatttacac
ccttagcttatcccttcgagttaggtggggtagggttttcctgatgtggtaactgagga
gagtgagacacaggtgagatagttgtttagcaagaccacatgagaacagtgcggccaag
ccgcaccagggctccagcccagtgcagtgtccccaccgcacacactgcctacctctgcc
ggtctcagaccgatctcacctggcctttctggtctctctcctctcccacttccctccct
ggaccccccaaatcctctcagaagcaacagggg 
 

 

Supplemental Table 3.2 (cont.) HOM sequences for Zfp282 and Zfp777 template 

plasmids (pFETCh) construction.  

Each HOM arm is 800 bp in length. HOM1 contains the gnomic sequence immediately 

upstream of the stop codon of the target gene while HOM2 contains the sequence 

downstream of the stop codon.  
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                                     Supplemental Table 3.3 Genome Ontology enrichment analysis of Zfp777 ChIP peaks  

P-value 
Log P-
value Annotation #features Coverage(bp) AvgFeatureSize Overlap(#peaks) 

1e-990 -2277.69 cpgIsland 16026 10496250 654 627 
1.00E-235 -539.97 utr5 45216 4336491 95 317 
1.00E-231 -530.49 Simple_repeat|Simple_repeat 1062306 64001831 60 565 
1.00E-231 -530.49 Simple_repeat 1062306 64001831 60 565 
1.00E-221 -508.05 TGGAn|Simple_repeat|Simple_repeat 3850 431127 111 125 
1.00E-219 -502.93 promoters 34938 28145798 805 353 
1.00E-198 -455.69 protein-coding 367832 61167268 166 444 
1.00E-195 -447.82 exons 380955 65359233 171 450 
1.00E-168 -384.66 TCCAn|Simple_repeat|Simple_repeat 3788 423808 111 104 
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CHAPTER 4: CONCLUSIONS 

 
In this thesis, I characterized the binding landscapes and functions of ZNF777 and 

Zfp777, and vertebrate roots of mammalian KRAB zinc finger family. In chapter 2, I 

reported the binding sites of ZNF777 in human choriocarcinoma cells. Intersecting the 

binding sites and the differentially expressed genes identified by siRNA knockdowns 

followed by transcriptome analysis (RNA-seq), we revealed that ZNF777 is involved in 

regulating genes related to axon guidance, a mechanism well-known to be involved in 

neuronal development, but also recently shown to play critical roles in placental 

development (Liao et al. 2010; Jongbloets & Pasterkamp 2014). The finding that ZNF777 

is involved in regulation of this process is intriguing, and suggests that the expression of 

this transcription factor in placenta may have played a role in coopting the pathway for a 

mammalian-specific purpose. Since ZNF777 is also expressed in embryonic brain (Liu et 

al. 2014), we sought to further investigate the functional role of this ancient gene in 

neuron development. In chapter 3, I showed that mouse Zfp777 is expressed in neuronal 

stem cells (NSC) cultured from early mouse embryos. Using the NSC platform, I 

characterized the binding landscape of Zfp777 in undifferentiated NSC. To circumvent 

the roadblock posed by the lack of a ChIP-grade antibody for the mouse protein, I 

exploited the CRISPR-Cas9 technique (Ran et al. 2013; Savic et al. 2015) to tag the 

endogenous Zfp777 protein with FLAG epitopes. Because we are interested in comparing 

the two proteins, Zfp282 was also tagged using the same procedure. The ChIP-seq results 

revealed a novel Zfp777 binding motif that bears significant similarity to a motif 

predicted in in vitro studies (Isakova et al. 2017), and found that Zfp777 binds to 

promoters of genes encoding transcription factors, Wnt and TGF-beta pathways 

components, and proteins related to neuron development and axon guidance. Since these 

same functions were also found to be regulated by ZNF777 in BeWo cells (Chang et al. 

2017), these results suggested that the mouse and human Zfp777 and ZNF777 proteins 

regulating similar genes and pathways, most classically associated with axon guidance, in 

diverse tissues.   
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Our discoveries have led to several interesting questions. Recent studies have 

implicated interacting roles for ZNF777 and ZNF282, suggested by the observation that 

they bind at many promoters in very close proximity (Imbeault et al. 2017). The two 

proteins are expressed in very similar patterns in both humans and mice (Figure 3.1). 

These results led us to ask many questions, such as, do ZNF777 and ZNF282 interact 

with each other? Do they co-regulate similar pathways? What are their interacting 

partners in specific cell types? To address these issues, the mouse NSC cell lines in which 

Zfp777 and Zfp282 proteins were successfully tagged provide an important resource for 

the investigation. The obvious next step would be to uncover the binding landscape of 

Zfp282 in mouse NSC and compare that with Zfp777 binding sites. Co-

immunoprecipitation can reveal if these two founding members from the same ancient 

subfamily interact with each other and what would be the interplay between the 

interaction and their regulation roles. Previous studies have reported ZNF282 and another 

family member, ZNF398, interact with estrogen receptor ERa (Yeo et al. 2014; Conroy 

et al. 2002), and the interaction altered the regulating activity of these two TF proteins. 

We are interested in knowing if ZNF777 also interacts with ERa or other possible 

binding partners. This can be addressed by an unbiased approach, using a recently 

developed protocol, RIME (Rapid immunoprecipitation mass spectrometry of 

endogenous proteins) (Mohammed et al. 2016), which is designed specifically for 

studying protein complexes bound to the chromatin. The FLAG antibody was tested in 

this method, thus our CRISPR engineered mouse NSC cell lines that express FLAG 

tagged Zfp777 and Zfp282 serve as a perfect platform for this analysis, and these 

experiments are currently in progress.  

Furthermore, questions like: what is the relationship between retroviral sequences and 

ZNF777 and ZNF282? ZNF282 has been shown to regulate modern-day extant human 

viruses (Okumura et al. 1997); does it regulate human ERVs? Is there possibly a 

cytoplasmic virally- related role? Also, would deletion of Zfp777, Zfp282, or both affect 

neurogenesis in cultured NSC or in vitro? These are important issues to resolve in the 

future. With the FLAG tagged Zfp777 and Zfp282 NSC platform I developed, more 

physiologically-relevant characteristics of these vertebrate roots of mammalian KRAB-

ZNF can be unraveled in the near future.    
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