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ABSTRACT

Generative probabilistic and neural models of the speech signal are shown to

be effective in speech synthesis and speech enhancement, where generating

natural and clean speech is the goal. This thesis develops two probabilis-

tic signal processing algorithms based on the source-filter model of speech

production, and two based on neural generative models of the speech signal.

They are a model-based speech enhancement algorithm with ad-hoc micro-

phone array, called GRAB; a probabilistic generative model of speech called

PAT; a neural generative F0 model called TEReTA; and a Bayesian enhance-

ment network, call BaWN, that incorporates a neural generative model of

speech, called WaveNet. PAT and TEReTA aim to develop better gener-

ative models for speech synthesis. BaWN and GRAB aim to improve the

naturalness and noise robustness of speech enhancement algorithms.

Probabilistic Acoustic Tube (PAT) is a probabilistic generative model for

speech, whose basis is the source-filter model. The highlights of the model

are threefold. First, it is among the very first works to build a complete

probabilistic model for speech. Second, it has a well-designed model for the

phase spectrum of speech, which has been hard to model and often neglected.

Third, it models the AM-FM effects in speech, which are perceptually sig-

nificant but often ignored in frame-based speech processing algorithms. Ex-

periments show that the proposed model has good potential for a number of

speech processing tasks.

TEReTA generates pitch contours by incorporating a theoretical model of

pitch planning, the piece-wise linear target approximation (TA) model, as the

output layer of a deep recurrent neural network. It aims to model semantic

variations in the F0 contour, which is challenging for existing network. By

combining the TA model, TEReTA is able to memorize semantic context

and capture the semantic variations. Experiments on contrastive focus verify

TEReTA’s ability in semantics modeling.
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BaWN is a neural network based algorithm for single-channel enhance-

ment. The biggest challenges of the neural network based speech enhance-

ment algorithm are the poor generalizability to unseen noises and unnatu-

ralness of the output speech. By incorporating a neural generative model,

WaveNet, in the Bayesian framework, where WaveNet predicts the prior for

speech, and where a separate enhancement network incorporates the likeli-

hood function, BaWN is able to achieve satisfactory generalizability and a

good intelligibility score of its output, even when the noisy training set is

small.

GRAB is a beamforming algorithm for ad-hoc microphone arrays. The

task of enhancing speech with ad-hoc microphone array is challenging be-

cause of the inaccuracy in position and interference calibration. Inspired by

the source-filter model, GRAB does not rely on any position or interference

calibration. Instead, it incorporates a source-filter speech model and min-

imizes the energy that cannot be accounted for by the model. Objective

and subjective evaluations on both simulated and real-world data show that

GRAB is able to suppress noise effectively while keeping the speech natural

and dry.

Final chapters discuss the implications of this work for future research in

speech processing.
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CHAPTER 1

MOTIVATION

Speech is one of the most distinctive characteristics of human beings, and

one of the most convenient means of communication. Therefore, a common

goal of today’s speech processing technology is to enable people to interact

with computer conveniently using speech. To accomplish this, two common

problems have to be tackled: (1) How to make computers understand hu-

man speech better, and (2) How to make computers generate speech that is

perceived as natural to human users. The scope of this thesis falls into the

second challenge.

Specifically, there are two tasks that involve generating natural speech,

speech synthesis and speech enhancement. Speech synthesis refers to the

task of generating natural-sounding speech from text and/or other linguistic

annotations. In speech synthesis, the concept of naturalness can be divided

into two levels. The first level is the acoustic level. Speech that sounds

acoustically natural should have a human-like timbre, and be free of discon-

tinuities or artifacts. The second level is the prosodic level, which refers to

the intonation and rhythm of speech. Speech that sounds natural in prosody

should have a human-like intonation, proper emphasis and variations. Mod-

ern speech synthesizers typically consist of an acoustic model and a prosody

model, and thus the task of making speech natural in both levels can be

decomposed into improving the quality of the two respective models.

The second task that requires natural sounding output is speech enhance-

ment. Speech enhancement is a broad class of speech processing tasks that

involve improving the quality of the corrupted input speech. Speech denois-

ing, in particular, refers to the task that removes any unwanted noise present

in speech. Speech dereverberation refers to the task that removes reverber-

ation present in speech. There are two types of speech enhancement tasks:

single-channel, where the noisy speech is picked by one sensor only, and

multi-channel, where the noisy speech are recorded by microphone arrays of
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ad-hoc sensor networks. The output of the speech enhancement algorithms

can have two purposes: one is for noise-robust speech recognition, and the

other is for human consumption, such as in noise-free teleconferencing. The

former one does not require the speech to be natural, but in the latter pur-

pose, naturalness plays a big role. It is shown that people prefer noisy but

natural speech than clean but unnatural ones [1].

1.1 The Challenges

However, despite the importance of naturalness in these speech processing

tasks, generating natural speech is a challenging problem for computers. This

is because, unlike the problem of recognizing speech, where the performance

can usually be quantified as accuracy, the concept of “naturalness” is sub-

jective and can hardly be turned into a quantifiable measure. Without this

quality it is difficult to convert the task into a pattern recognition problem

digestible to computers.

There have been many efforts of quantifying speech naturalness. A class of

metrics are proposed based on human subjective evaluation. The mean opin-

ion score (MOS) [2] is a 1-5 score reflecting the quality of the media assigned

by human participants. Crowd MOS [3] is a variant of MOS that is applica-

ble to crowd-sourcing scenarios. Another modified version of MOS has been

proposed specifically for speech synthesis systems [4]. Multiple stimuli with

hidden reference and anchor (MUSHRA) is a testing protocol that properly

controls participant heterogeneity by introducing anchors. However, these

subjective measures are only useful in evaluating speech processing systems,

not in training them. Other research efforts have been made to develop prox-

ies for the objective measures, including peceptual speech quality Measure

(PSQM) [5], perceptual evaluation of speech quality (PESQ) [6], bark spec-

tral distortion (BSD) [7,8], and short-time objective intelligibility (STOI) [9].

A number of works aim to predict subjective scores using a set of objective

measures [10–12]. Yet, they are still designed primarily for evaluation pur-

poses. It is still difficult to apply these objective proxies directly to training

speech processing systems.

Therefore, here comes our question: Now that training speech processing

systems with speech quality measures is difficult, how can we design algo-
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rithms that produce natural sounding outputs?

1.2 Generative Models of Speech

One possible solution to generate natural sounding speech output is through

the application of generative models of speech. The term generative model

has different interpretations in different fields. In this thesis, generative mod-

els refer to models that define the sample space for speech, which includes

both acoustic models and prosody models. Many speech generative models

are well motivated by the actual production process of speech. For example,

the source-filter model [13] is a generative model for acoustic speech signal

that emulates glottal vibration (as source) and articulator positioning in the

vocal tract (as filter). The target approximation model [14] is a prosody

model for F0 contour that incorporates the constraint of articulatory mo-

tors. With the rapid development of deep learning, the deep learning based

generative models of speech have also gained wide attention. WaveNet [15]

is an acoustic model of speech that applies dilated convolution neural net-

work. SEGAN [16] introduces a generative model of acoustic speech using

generative adversarial network (GAN) [17]. It has been shown that these gen-

erative models of speech are capable of generating natural sounding speech.

Therefore, by incorporating generative models of speech into various speech

processing systems, we expect to improve naturalness of the output speech.

There are, however, two questions to answer before applying generative

models. The first question is: How can generative contribute to the natu-

ralness of output speech? As mentioned, the speech processing tasks we are

interested in are speech synthesis and speech enhancement. Although the

common goal is to produce natural sounding output, each task has its own

settings. How can generative models help improving speech naturalness in

the different settings, and are they effective?

The second question to answer is more at a methodology level: How do we

combine the generative models with different machine learning techniques?

Machine learning techniques are essential in speech processing systems. For

example, in speech synthesis systems, machine learning is applied to estimate

synthesis parameters; in speech enhancement systems, machine learning is

applied to infer the clean speech. In the meantime, machine learning includes
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a wide variety of methods, including but not limited to simple least-square

approaches, Bayesian approaches and deep neural networks. Can generative

models find their way to these different approaches?

In this thesis, we are going to investigate in these two dimensions. First,

we explore the role of generative models in different speech processing tasks,

including speech synthesis and speech enhancement. Specifically, for the

acoustic modeling in speech synthesis, chapter 3 introduces a probabilistic

source-filter model that improves over the existing acoustic models by intro-

ducing a better model for phase and anti-causal component. For the prosodic

modeling in speech synthesis, chapter 4 introduces an F0 model that com-

bines the target approximation model and deep learning techniques, which

is among the first F0 models capable of capturing contrastive focus directly

from text. For single-channel speech enhancement, chapter 5 introduces a

deep learning algorithm that incorporates WaveNet as the speech prior, guid-

ing the algorithms to produce speech like output. For multi-channel speech

enhancement, chapter 6 introduce a beamforming algorithm, which is guided

by the source-filter model, and which is able to generate surprisingly natural-

sounding enhancement output. Although the tasks vary, the algorithms all

incorporates a generative model – the source-filter model for chapters 3 and

6, the WaveNet model for chapter 5, and the target approximation model for

4. The purpose of introducing these generative models are all to improve the

quality of output speech waveform or prosody. More details will be discussed

in the respective chapters.

In the meantime, different ways to combine machine learning techniques

with these generative models are explored. Specifically, to perform parameter

estimation for speech synthesis tasks, Monte-Carlo approaches are used in

chapter 3, and simple gradient descent are applied for chapter 4. To perform

inference for speech enhancement tasks, a neural network in the Bayesian

framework is applied in chapter 5, and an iterative least-square approach is

applied in chapter 6. Further discussions on the pros and cons of different

techniques combined with generative models are given in chapter 7.

The remainder of the thesis is organized as follows. Chapter 2 introduces

background on the source-filter model. Chapters 3-6 introduce the works

that involve generative models in speech synthesis and enhancement tasks.

Chapter 7 discusses the roles of the generative models, as well as the machine

learning techniques combined with these models.
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CHAPTER 2

BACKGROUND

This chapter provides an overview of the source-filter model as the most tra-

ditional yet popular generative model of speech, which forms the theoretical

basis for chapters 3 and 6. It is organized as follows. Sections 2.1 briefly

introduces the source-filter model and its significance in various speech pro-

cessing tasks. Section 2.2 provides an overview of the source-filter model.

Sections 2.3 and 2.4 discuss different models for the source and the filter

respectively.

2.1 Introduction

Generative models [18] refer to a broad class of models that attempt to char-

acterize the distribution of variables of interest. Generative model are often

compared with discriminative models as another popular category, which,

in classification tasks, determines the boundary of features belonging to dif-

ferent classes, instead of modeling the potentially complicated distribution

within each class. Both classes of models have their own merits. Discrimina-

tive models are more cost-effective and provide better performance in classi-

fication tasks, partly because the complexity of modeling the class boundary

is much lower than that of modeling the entire distribution, and the class

boundary is all we need to know for classification.

On the other hand, generative models are indispensable when generating

the data itself is part of the task. In speech processing, in particular, such

tasks include speech synthesis, speech manipulation, speech enhancement,

source separation, etc. A strong generative model incorporated could help

the algorithm to produce natural sounding speech.

There are a variety of generative models for speech. Linear coding based

models are widely used for speech enhancement and source separation, in-
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cluding principal component analysis (PCA) [19–21], non-negative matrix

factorization (NMF) [22,23], independent component analysis (ICA) [24,25]

and sparse coding and dictionary learning [26–28]. Another commonly used

strategy uses probabilistic models on time-frequency representation of speech

frames [29]. Other unsupervised models include vector quantization [30] and

clustering [31]. These models are more to the data-driven end, with little

domain knowledge of speech applied.

The source-filter model, on the other hand, is one of the most popular

signal processing generative models of speech that heavily utilize domain

knowledge of speech. Although it has long been proposed [32], it still lends

valuable insights and theoretical foundations to many more sophisticated

speech models today. Also, it provides handy and effective solutions to many

challenging speech-processing problems, such as multi-channel enhancement,

with performance matching or even exceeding that of many modern tech-

niques. Readers will better appreciate the power of source-filter model in

chapters 3 and 6, which discuss two works that are both based on the source-

filter model.

2.2 The Source-Filter Model and Speech Production

The source-filter model emulates the actual human speech production pro-

cess, so it is useful to have an overview on how speech is produced. Roughly

speaking, the human speech system consists of three parts: lungs, larynx

and vocal tract. The lungs provide power supplies by pushing the air up-

ward through the trachea. The larynx serves as a modulator that modulates

the airflow, providing either a periodic (for the voiced state) or a noisy airflow

(for the unvoiced state) sound source. The vocal tract acts like a resonator

that “colors” the sound by shaping the spectrum of the sound source. In

some occasions, the vocal tract can also serve as a sound source by forming

constriction or boundaries within and forcing the airflow to form high speed

turbulence. Finally, the air wave radiates out from the lips and becomes the

speech signal.

Figure 2.1 shows an anatomical view of the larynx and the vocal tract.

The following subsections introduce these two parts in greater detail.
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Figure 2.1: Human speech production.a

a“Sagittalmouth”. Licensed under Public Domain via Wikimedia Commons -
https://commons.wikimedia.org/wiki/File:Sagittalmouth.png#/media/File:Sagittalmouth.png.
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2.2.1 Larynx

The main function of the larynx is to control the vocal folds, or vocal chords.

The vocal folds are a pair of aligned flesh masses, between which the airflow

passes. The tension of the vocal folds is controlled by the larynx, which can

form three different states: breathing, unvoiced and voiced states.

In the breathing state, the vocal folds are completely relaxed, and the

airflow can pass through freely. The breathing state corresponds to no speech

activity. In the unvoiced state, the vocal folds are tensor and closer together,

creating resistance for the airflow that passes through, which forms high

speed turbulence called “aspiration”. Unvoiced speech refers to the speech

driven by such aspiration, and is present in some consonants and “whispered”

speech.

The voiced state is the dominant speech state in terms of duration and

energy. In the voiced state, the vocal folds are even tenser and closer together,

such that the airflow passing through can drive a sustainable oscillation. The

oscillation can be divided into three phases: open phase, return phase and

closed phase. Figure 2.2 upper panel shows a typical airflow velocity in each

of these three phases. In the open phase, the vocal folds are pushed wider

due to the accumulated air pressure at one end, and thus there is an increase

in airflow velocity. In the glottal return phase, the airflow velocity becomes

so large that the air pressure starts to decrease (Bernoulli principle). The

air pressure outside the vocal folds exceeds that of the inside, pushing the

vocal folds toward each other, and slowing down the airflow. Finally, in

the closed phase, the vocal folds are so close to each other that they shut

the pass-way in between. The airflow is completely stopped and starts to

accumulate at one end of the vocal folds until the pressure is large enough to

push the vocal folds open again, which then starts the next open phase. The

two-mass model [33], as well as other more sophisticated physical models,

has been proposed to study this process analytically.

Each consecutive open phase, return phase and closed phase forms a glot-

tal cycle, the duration of which is called the fundamental period, and the

frequency of which is called the fundamental frequency, or F0. F0 is gen-

erally perceived as pitch frequency, although the two terms cannot be used

interchangeably.

There are, however, speech states that do not fall into any of the breathing,
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Open Phase Closed Phase

Return Phase

Pitch Period

Figure 2.2: Typical shape of the glottal wave. Upper panel: airflow velocity
at the glottis. Lower panel: first-order derivative of the airflow velocity at
the glottis.
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unvoiced and voiced states. Breathy speech, for example, refers to a glottal

state where the distance of the vocal folds falls between the unvoiced and

voiced state – they are farther apart than in the regular voiced state, but

close enough to form an oscillation. Such voiced state is characterized by long

open phase, short closed phase and strong aspiration energy. Creaky voice is

another voicing state where the vocal folds are so tense that only a portion

of them vibrates, resulting in what is perceived as harsh-sounding voice with

high and irregular pitch. Vocal fry [34, 35] refers to the other extreme case

where the vocal folds are so relaxed that there is a secondary pulse before the

main pulse in the open phase, resulting in an abnormally low and irregular

pitch. Diplophonic voice [36] is also characterized by a secondary pulse in a

low-pitched speaker, but it is separated from the primary pulse. Yet these

voice states are not as common as the unvoiced and voiced states, so in the

remainder of the chapter the primary focus is on the latter two states.

2.2.2 Vocal Tract

The vocal tract consists of an oral tract and a nasal tract. The oral tract

plays the dominating role in shaping the spectrum of speech, and therefore

we will first introduce models for the oral tract, and then consider the effect

of incorporating the nasal tract.

Rabiner and Schafer [37] proposed an acoustic tube model for the air wave

propagation inside the oral tract. The acoustic tube model makes the fol-

lowing simplifying assumptions.

• The oral tract can be approximated by a concatenation of N uniform

tubes, whose cross-sectional areas are {Ak};

• The sound wave travels as planar sound waves and propagates longitu-

dinally;

• The walls of the tubes are lossless – there is no energy dissipation of

any form, including friction, wall vibration and heat radiation.

Define the normal direction to the cross sections of the tubes as the x direc-

tion. x = 0 corresponds to the glottis position, and x = L corresponds to

the lips position. Assume each of the uniform tube is of length ∆L. Denote
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p(x, t) and v(x, t) as the air pressure and velocity at location x and time t

respectively.1

Now we also need to introduce the boundary condition. Define the impedance

at the glottis and at the lips as

Zr(Ω) =
P (L,Ω)

V (L,Ω)

Zg(Ω) =
P (0,Ω)

V (L,Ω)

(2.1)

where P (x,Ω) and V (x,Ω) are the Fourier transforms of p(x, t) and v(x, t)

respectively.

It can be shown [38,39] that the impedance at the lips, a.k.a. the radiation

impedance, can be modeled as a parallel circuit

Zr(Ω) =
jΩLrRr

Rr + jΩLr
(2.2)

and the impedance at the glottis can be modeled as a serial circuit

Zg(Ω) = Rg + jΩLg (2.3)

Then, by solving the wave equation [40]

− ∂p

∂x
= ρ

∂v

∂t

− ∂p

∂t
= ρc2 ∂v

∂x
.

(2.4)

subject to the boundary conditions in equations (2.2) and (2.3), and by

proper discretization, the following conclusion can be obtained

H(z) =
VL(z)

Vg(z)
=

Az−N/2

1−
∑N

k=1 akz
−k

(2.5)

where VL(z) is the Z-transform of discretized v(L, t), and Vg(z) is the Z-

transform of discretized vg(t). If Zg(Ω) = +∞, {ak} can be determined by

the Levinson’s recursion [37]. The Levinson’s recursion can prove that as

1The wave is assumed to be a planar wave so a single coordinate x suffices to charac-
terize the wave.
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long as the reflection coefficients

rk =
Ak+1 − Ak
Ak+1 + Ak

< 1 (2.6)

which is always the case, the poles of H(z) are all within the unit circle.

Equation (2.5) implies that the oral tract can be approximated as an all-

pole system with the transfer function H(z). However, if the nasal tract is

taken into account, which can also be approximated as an all-pole system,

the entire vocal tract is not necessarily all-pole, but a general system with

poles and zeros. Nevertheless, the all-pole approximation is still a popular

assumption on the vocal tract system.

2.2.3 The Source-Filter Model Framework

Now we are ready to develop the framework of the source-filter model. In

practice, speech is measured as the pressure wave at the output, p(L, t),

whose Z-transform is denoted as PL(z), or more intuitively as S(z) to echo

the word “speech”. Therefore, the speech signal can be represented as

S(z) = PL(z) = Vg(z)
VL(z)

Vg(z)

PL(z)

VL(z)

= Vg(z)H(z)Zr(z)

(2.7)

where H(z) is given in equation (2.5). Zr(z) is the impedance at the lips, or

the radiation impedance, which is the Z-transform analogue of Zr(Ω) as in

equations (2.1) and (2.2) through bilinear transform. It can be shown that,

under the empirical values Rr = 128/9π2 and Lr = 31.5× 10−6,

Zr(z) ≈ 1− z−1 (2.8)

which is a first-order differentiator.

The source-filter model merges the radiation impedance Zr(z) into the

airflow velocity at the glottis Vg(z). Formally, define

E(z) = Vg(z)Zr(z) (2.9)

as the excitation signal, which is essentially the differentiated airflow velocity
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at the glottis, which we will call the glottal wave in the remainder of the thesis.

Combining equations (2.7) and (2.9), we have

S(z) = E(z)H(z) (2.10)

Equation (2.10) is the basic framework of the source-filter model, which as-

sumes speech is generated by passing the excitation signal, E(z), through

the vocal tract system H(z).

It is also worth mentioning that the actual glottal source and vocal tract

have nonlinear interactions, which lead to approximation errors of the source-

filter model [41]. Nevertheless these effects are secondary and safe to ignore

in most speech processing tasks of interest.

Therefore, further theories of the source-filter model boil down to those

for the source and the filter respectively, as will be discussed in the following

two sections.

2.3 Models for Source

For unvoiced speech, the source, i.e. turbulence, is stationary noise with an

almost flat spectrum, and therefore is approximated by white noise [13].

The major focus is the voiced case. From equation (2.9), the glottal wave

is essentially the first-order differentiation of the actual air velocity. Figure

2.2 lower panel shows a typical glottal waveform. We assume for now that

the glottal wave is completely periodic. Then

E(z) = P (z)G(z) (2.11)

where P (z) is the Z-transform of a periodic pulse train, p[t], whose period is

the fundamental period of the glottal excitation, denoted as T0. G(z) is the

Z-transform of the glottal wave within one period, denoted as g[t].

Like the original glottal air velocity, g(t) can be divided into three phases:

open phase, return phase and closed phase. The negative peak at the glottal

derivative is called glottal closure instant (GCI).

There are many models for this canonical glottal wave. In the following

subsections, we will review some of the most influential models.
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2.3.1 Rosenberg’s Model

Rosenberg [42] proposed and compared six different models in terms of per-

ceptual similarity. The best model can be represented as follows

g[t] =

{
t2(te − t) if 0 < t < te = tc

0 if te < t < T0

(2.12)

where te is the glottal closure instant. There is one parameter in this model,

i.e. te.

2.3.2 KLGLOTT88

Klatt and Klatt [36] proposed an improved version over the Rosenberg’s

model, named KLGLOTT88, which can be formulated as

g[t] = b[t] ∗ f [t] + b[t] (2.13)

where b[t] is the base waveform, represented as

b[t] =

{
t2(QT0 − t) if 0 < t < OT0

0 if OQT0 < t < T0

(2.14)

O is the open quotient of a glottal cycle. f [t] is a low-pass resonator which

controls the spectral tilt TL. b[t] is the additive breathiness voice, whose

energy is dependent upon O. The model thus has two parameters, O and

TL. A closed-form representation of its spectral shape can be found in [43].

2.3.3 Fujisaki’s Model

Fujisaki and Ljungqvist [44] proposed the following piecewise polynomial

models:

g[t] =


A− 2A+tpα

tp
+ A+tpα

tp
t2 if 0 < t ≤ tp

α(t− tp) + 3B−2(te−tp)α

te−tp − 2B−(te−tp)α

(te−tp)3 (t− te + tp)
3 if tp < t ≤ te

C − 2(C−B)
tc

(t− te) + C−B
(tc−te)2 (t− te)2 if te < t ≤ tc

β if tc < t ≤ T0

(2.15)
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where

α =
4Atp − 6(te − tp)B

(te − tp)2 − 2t2p
, β =

Ctc
tc − 3(T0 − te)

There are six parameters of the model: tp is the time when glottal opening

is widest; te is the glottal closure instant; tc is thetime when closed phase

starts; A, B and C are shape parameters.

2.3.4 The LF Model

Fant et al. [45] proposed the most popular LF-model, which is a combination

of the L-model and F-model [46]. It is described as follows:

g[t] =

{
E0e

αt sinωgt if 0 < t ≤ te
−E0

εtα

[
e−ε(t−te) − e−ε(tc−te)

]
te < t ≤ tc

(2.16)

There are six nominal parameters tp, te, ta, E0, ε and ωg, but with two

constraints: one is that g[t] should be continuous at te; the other is that the

glottal flow derivative integrates to 0 over a glottal cycle:∫ T0

0

g[t] = 0

Therefore, the number of free parameters is four.

Some spectral properties of the LF-model are discussed in [43,47].

Fant [48] simplifies the LF-model to have one parameter by introducing

some empirical relationship among the original four parameters, which are

reorganized as

R0 =
te
T0

, Rg =
T0

2tp
, Rk =

te − tp
tp

, Rα =
tα
T0

The merged parameter, denoted as Rd, is defined as

Rd =
1

0.11
(0.5 + 1.2Rk)

(
Rk

4Rg

+Rα

)
(2.17)

The rest of the parameters can be empirically determined as:

Rα =
−1 + 4.8Rd

100
, Rk =

22.4 + 11.8Rd

100
, Rg =

0.25Rk

0.11Rd
0.5+1.2Rk

−Rα
(2.18)
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2.3.5 The All-Pole Models and Causality

There is another important class of models that utilize causality. Throughout

a pitch cycle, the GCI location is usually assumed to be where the impulse

of P (z) (equation (2.11)) lies, because it is where the glottal wave energy is

largest, and where the energy tapers off along both directions, as shown in

figure 2.2. Therefore, the glottal open phase and a part of the glottal return

phase are responses before the impulse, and thereby correspond to the anti-

causal component; the remainder of the glottal return phase is the response

after the impulse, and therefore corresponds to the causal component. In the

Z plane, anti-causal components correspond to the maximum-phase compo-

nents, i.e. poles and zeros outside the unit circle; and causal components

correspond to the minimum-phase components, i.e. poles and zeros inside

the unit circle. In the cepstral domain, the anti-causal components are left-

sided in the quefrency domain, and causal components are right-sided. More

detailed discussion can be found in section 2.4.

Gardner and Rao [49] observed that the glottal wave can be modeled by

the impulse response of a non-causal all-pole filter with the impulse at GCI.

It was demonstrated that eight poles are sufficient to approximate the glottal

flow. The work in [50, 51] proposes a three-pole model with two anti-causal

poles and one causal pole. Drugman et al. [52] released the all-pole constraint

and modeled the anti-causal component of the glottal wave with cepstrum,

which leads to an effective glottal wave estimation algorithm.

It is worth mentioning that many glottal models suffer from approximation

errors. On one hand, there are many special glottal events which are not con-

sidered. For instance, vocal fry [35] and diplophonic voice [36], as discussed

in section 2.2.1. On the other hand, even for the typical glottal wave, it is

shown that [53] there are ripples in the open phase that are not modeled by

the canonical shape of the glottal wave. Nevertheless, these glottal models

are good enough for many purposes.

2.4 Models for Filter

Two classical models for vocal tract filter are discussed. One is LPC and the

other is cepstral coefficients. The rest of this subsection will focus on voiced

case.
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As discussed in section 2.3, the glottal excitation of voiced-speech is a

quasi-periodic signal. Combining equations (2.10) and (2.11) we have

PL(z) = P (z)G(z)H(z) (2.19)

LPC and cepstral analysis utilize different characteristics of H(z).

2.4.1 LPC Analysis

LPC (Linear Predicative Coding) analysis rests on the all-pole assumption of

speech. It is already discussed in section 2.3.5 that G(z) can be approximated

by an all-pole system with a pair of anti-causal poles and one causal pole.

Also, as already shown in section 2.2.2 that H(z) can be well modeled by a

causal all-pole system.

The all-pole assumption asserts that speech can be linearly predicted by

its previous samples

s[t] =

q∑
k=1

aks[t− k] + r[t] (2.20)

where r(t) is the prediction residual, which is mathematically analogous to

excitation of the all-pole system. {ak} are LPC coefficients, which are math-

ematically analogous to denominator polynomial coefficients of the system. q

is the order of autoregression. Formally, taking the Z-transform of equation

(2.20)

S(z) = L(z)R(z) (2.21)

where

L(z) =
1

1− a1z−1 − · · · − aqz−q
(2.22)

S(z) and R(z) are Z-transforms of s[t] and r[t] respectively.

LPC analysis [54] estimates the filter coefficients {ak} by minimizing the

expected energy of the residual, i.e.

min
{ak}

= E
[
r[t]2

]
(2.23)

The expectation operator is a convenient expression under the assumption

of ergodicity.
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The solution is given by

a = Φ−1b (2.24)

where

a = [a1, · · · , aq]T

Φij = E [s[t− i]s[t− j]]

b = [E [s[t− 1]s[t]] , · · · ,E [s[t− q]s[t]]]T

Depending on how the samples outside the analysis window are treated,

there are two ways of computing Φ, named the autocorrelation method and

the autocovariance method [55]. There is a more efficient algorithm, the

Levinson’s recursion [56], whose computation complexity is O(q) instead of

O(q3).

An important question that has yet to be answered is how do L(z) and

R(z) in equation (2.22) correspond to the speech components P (z), G(z) and

H(z) in equation (2.21). If there is no meaningful correspondence, then LPC

analysis would shed no light on the source or filter information of speech. For-

tunately, we have the following conclusion. If the following two assumptions

hold:

• the autocorrelation function of Re(τ) = E [e[t]e[t− τ ]] = 0, ∀τ ≤ q;

• G(z)H(z) is an all-pole system or order q;

then the poles of L(z) are all the minimum-phase poles of G(z)H(z), and

the conjugate of all the maximum-phase poles of G(z)H(z) (the conjugate

of a pole at z is z−1). Accordingly, R(z) is equal to P (z) passing through an

all-pass filter, which consists of all the maximum-phase poles of G(z)H(z),

and the corresponding conjugate zeros. The first assumption holds as long

as the fundamental period (in # sample points) T0 > q. For 16 kHz speech.

A typical value for q is 13, and T0 usually fall within 2 ms - 10 ms, which

is 32-160 number of sample points. Therefore T0 > q is satisfied. The

second assumption approximately holds by the all-pole models of G(z) and

H(z). Therefore, the correspondence is well justified. Chapter 6 gives a more

detailed explanation on this.
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2.4.2 Cepstral Analysis

One major disadvantage about LPC analysis is that the all-pole assumption

is too strong. Zeros will be introduced, for example, for nasals and nasal-

ized vowels [57, 58]. Cepstral analysis is a model that releases the all-pole

assumption, but maintains the causality assumption.

Cepstrum is defined as the inverse Z-transform of the logarithm Z-transform.

Specifically, take the logarithm of equation (2.19), we have

logS(z) = logP (z) + logG(z) + logH(z) (2.25)

Taking the inverse Z-transform of (2.25), we finally have

š[ň] = p̌[ň] + ǧ[ň] + ȟ[ň] (2.26)

where š[ň], p̌[ň], ǧ[ň] and ȟ[ň] are cepstrums of speech, periodic pulse train,

glottal wave within one cycle and vocal tract respectively; ň is the index in

the quefrency domain.

The p̌[ň], ǧ[ň] and ȟ[ň] exhibit different characteristics; ǧ[ň] and ȟ[ň]

are represented by poles and zeros. Consider more generally a rational Z-

transform of the form

X(z) = Az−r
∏Mi

k=1(1− akz−1)
∏Mo

k=1(1− bkz)∏Ni
k=1(1− ckz−1)

∏No
k=1(1− dkz)

(2.27)

where {ak} and {ck} are zeros and poles inside the unit circle, and {b−1
k } and

{d−1
k } are zeros and poles outside. Following the derivation in [59], if A > 0

and r = 0, then the cepstrum of X(z), denoted as x̌[ň], is given by

x̌[ň] =


−
∑Mi

k=1

aňk
ň

+
∑Ni

k=1

cňk
ň

if ň > 0

log(A) if ň = 0∑Mo

k=1

b−ňk
ň
−
∑No

k=1

d−ňk
ň

if ň < 0

(2.28)

This has a few implications. First, for a minimum-phase system, i.e. poles

and zeros are all inside the unit circle, the cepstrum is right-sided; that of

the maximum-phase system is left-sided. Second, at both sides, cepstrum

decays no slower than 1/ň.

Therefore, assuming H(z) is minimum-phase, then ȟ[ň] can be approx-
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imated by a few cepstral coefficients at positive, low quefrencies. On the

other hand, it is known that G(z) has poles inside and outside the unit cir-

cle, so ǧ[ň] is two-sided. Taking the advantage of this, [52] separates H(z)

and G(z) in cepstrum domain.

Now we briefly turn to p̌[ň]. It can be shown that [59], if p[t], i.e. the

time-domain pulse train, has a period of T0, then p̌[ň] = 0 is non-zero only

at multiples of T0, i.e.

p̌[ň] = 0 if mod (ň, T0) 6= 0

Typically, T0 is large enough for ȟ[ň] to decay sufficiently before the first

non-zero element of p̌[ň]. Thus we can separate excitation and system in the

cepstrum domain [59–61].
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CHAPTER 3

PROBABILISTIC GENERATIVE MODEL
OF SPEECH

The generative model of the acoustic speech signal is fundamental in many

speech processing tasks, including speech synthesis, speech enhancement,

source separation, and speech recognition. A complete speech model, which

considers different speech components jointly, is superior to partial models.

This chapter focuses on building a complete for speech in a principled way.

Specifically, guided by the source-filter model introduced in chapter 2, this

chapter proposes a complete model, called probabilistic acoustic tube (PAT)

model for acoustic speech. PAT jointly considers the source and vocal tract

parameters in the Bayesian framework, which has long been considered a

well-founded theoretical framework for machine learning and pattern recog-

nition. For more accurate modeling, the phase information and the AM/FM

effect in speech are also taken into account. In order to infer the hidden vari-

ables of this highly complex model, a principled Markov chain Monte Carlo

(MCMC) based algorithm is proposed. Experiments show that PAT is able

to reconstruct the acoustic speech waveform accurately.

3.1 Introduction

In speech processing tasks, a complete speech model, which jointly consid-

ers all main components, is more advanced than a partial model. This is

obviously true in speech synthesis, where it is generally agreed that vocal

tract and glottal information [62] should be considered jointly to produce

natural sounding speech. Even in speech analysis tasks, a joint model also

helps significantly. For example, it is found that pitch and spectral enve-

lope [63], when considered together, would improve the performance of both

pitch tracking and speech recognition.

The reason for the advantages of joint modeling are twofold. First, dif-
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ferent speech components would produce interference to each other if not

properly considered. Traditional speech processing techniques tend to “blur

out” the speech components not of interest. For example, MFCC for speech

recognition removes the pitch information by filtering in the quefrency do-

main [59–61]. The autocorrelation function for pitch tracking removes the

vocal tract information by center clipping [64, 65] or LPC inverse filter-

ing [66, 67]. Yet, these approaches could not remove the interference com-

pletely, or would mistakenly blur the components of interest. Second, speech

components not of interest may provide auxiliary information to the task.

For example, it is found that pitch provides auxiliary information for speech

recognition [68].

Among all the speech models, probabilistic model has a good advantage.

It can fit into the well-founded Baysesian framework and potentially applied

to speech-related pattern recognition problems in a structured manner. Yet,

for a long time in speech processing society, a complete probabilistic model

for speech has been missing. An effort to bridge traditional signal processing

theories and pattern recognition techniques is therefore promising.

There are, however, several challenges in building a complete and prob-

abilistic model of speech. First, while it is easy to model the amplitude

spectrum of speech, it is very difficult to model the phase. This is because

phase is wrapped in a length-2π interval, so it suffers from ambiguity and

needs special recovery schemes, e.g. [69]. Also, phase is a highly non-linear

function, which makes it very difficult to perform optimization or build prob-

abilistic models upon.

The second challenge is the non-stationarity of speech. Many speech mod-

els are preformed on frame level, assuming the speech signal is perfectly

stationary within one frame. However, even within a single frame, the non-

stationarity is significant. In voiced frames, for example, the speech within

a single frame is not strictly periodic, and there are non-trivial AM/FM

effects. Yet, many AM/FM tracking models with applications to speech,

e.g. Bayesian spectral estimation [70], center of gravity [71], quasi-harmonic

model [72] etc., do not combine well with speech models.

Third, due to the complex nature of speech production, a complete proba-

bilistic model for speech will be highly complex and nonlinear, which makes

inference a challenging problem. A simple closed-form solution is unavailable.

Linearization techniques, such as extended Kalman filter [73] or unscented
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Kalman filter [74], could potentially lead to large approximation errors. One

has to turn to more sophisticated inference algorithms.

Despite these challenges, we managed to propose a complete probabilistic

model for speech, called Probabilistic Acoustic Tube (PAT), through a long

course of work [75–78]. New improvements have been made since the last

updated version. Specifically, the current PAT has several highlights.

First, it is a complete acoustic model that considers all necessary compo-

nents in the classical source-filter models, including pitch, glottal wave, vocal

tract, group delay, energy etc. Existing speech models either only consider a

subset of the components listed, or merge some of them into one.

Second, unlike most speech modeling efforts that only consider the am-

plitude spectrum, PAT considers the phase as well. Phase is shown to be

important perceptually [79]. Experiments show that the PAT’s phase mod-

eling enables it to produce accurate synthesis.

Third, PAT is probabilistic in nature. To tackle the inference challenge,

we apply a Monte-Carlo approach specifically tailored for PAT. It combines

the Metropolis-Hastings algorithm [80,81] and parallel tempering [82], which

can effectively overcome the nonlinearity in the probability contour.

Finally, although PAT is frame-based, it explicitly considers the non-

stationarity, or the AM/FM effect, of speech by introducing AM and FM

latent variables. The AM/FM modeling combines well with the source-filter

model on which PAT is based. AM/FM tracking becomes a standard in-

ference problem, just like the other latent variables for speech components.

AM/FM modeling, together with explicit group delay modeling, makes PAT

achieve the same flexibility as the pitch-synchronous analysis [83], which ad-

justs the analysis window length dynamically with the pitch period, does.

The remainder of this chapter is organized as follows. Section 3.2 in-

troduces some related work. Section 3.3 describes the detailed probabilistic

modeling of PAT. Section 3.4 details our innovative inference algorithm. Sec-

tion 3.5 shows some experiment results that demonstrate the capability of

PAT. Finally, section 3.6 points out some future directions.

23



3.2 Related Work

There have been a lot of efforts in building a complete model of speech.

The STRAIGHT model [84] is a speech resynthesis and manipulation model,

which models pitch and spectral shape jointly using the pitch synchronous

analysis. This model was later improved as TANDEM-STRAIGHT [85] by

carefully designing window length for analysis. Yet this model does not

explicitly consider the phase spectrum. The phase information is essential in

separating the glottal wave and the vocal tract response. Therefore is unable

to distinguish between these two components.

There have been a class of research efforts on jointly estimating the vocal

tract and the glottal wave. Glottal inverse filtering [86] refers to a class of

methods to estimate glottal wave by inverse filtering. Closed-phase covari-

ance analysis [87] assumes that the interference of glottal wave is minimal

during the closed phase, and thus estimating vocal tract response in the

closed phase could separate the two. Iterative adaptive inverse filtering [88]

is the most popular approach of this kind. Quasi closed-phase Analysis

(QCP) [89] improves over prior closed-phase analysis techniques by assigning

soft weights instead of binary to different glottal phases. Cepstral domain

method is another class of techniques that jointly models vocal tract and

glottal wave by their different causality characteristics, as mentioned in sec-

tion 2.4.2, including zeros of Z-transform (ZZT) [90] and complex cepstrum

decomposition (CCD) [52].

In speech synthesis domain, it is well-acknowledged that a joint model of

glottal pulse and vocal tract can improve perceptual quality. GlottHMM [91]

models the glottal wave using HMM. GlottDNN [79] is an improved model

which introduces DNN for glottal wave modeling. Glottal spectral separation

[62, 92] is another synthesis model that uses the LF model as excitation.

Other similar efforts include mixed excitation [93], residual modeling [94],

two-band excitation [95].

SVLN [96–98] is by far the most similar work to PAT. It factorizes speech

into F0, glottal wave, breathiness and vocal tract transfer function, and es-

timate them separately. Yet this model is still based strongly on signal pro-

cessing techniques, which is different from the probabilistic nature of PAT.

As already mentioned, WaveNet [15] is a deep generative model for raw

audio that has attracted wide attention. Yet, WaveNet only models the
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joint distribution of speech waveform samples, without factorizing it into

components. Nevertheless, it points out a promising direction of combining

traditional speech models with modern machine learning techniques.

3.3 Probabilistic Acoustic Tube

This section discusses the model formulation of PAT, which is based on the

source-filter model introduced in chapter 2.

3.3.1 Notations

It is important to note that all letters represent the same signal as in section

2.4. Different forms and cases only differ in mathematical structure and

domain representation. The following notation definitions only present s, the

modeled speech signal, as an example, but they also apply to other letters.

A list of letter notations will be presented at the end of this subsection.

Sn(ω) denotes DTFT; sn(t) denotes the continuous-time signal; sn[t] de-

notes the discrete time signal. PAT models speech at the frame level, so the

subscript n denotes n-th frame. Most of these notations are consistent with

those in chapter 2, except that Sn(ω) might be confused with S(z).

Now, introduced are notations that are new in this chapter. Denote lower-

cased letters with vector sign

~sn = [sn[1], s[2], · · · , sn[T ]]T

as the time domain vector of the n-th frame. T denotes frame length. Denote

upper-cased letters with an underline sign

Sn =
1√
T

[
Sn(0), Sn

(
2π

T

)
, Sn

(
4π

T

)
, · · ·Sn

(
2π(T − 1)

T

)]T
as its DFT vector. Sn is a complex vector and is sometimes hard to work
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with. Therefore, we also define upper-cased letters with a vector sign

~Sn =

√
2

T
·[

1√
2
Sn (0) , real

[
Sn

(
2π

T

)]
, real

[
Sn

(
4π

T

)]
, · · · , real

[
Sn

(
2πΓ

T

)]
,

1√
2
Sn (π) , imag

[
Sn

(
2π

T

)]
, imag

[
Sn

(
4π

T

)]
, · · · , imag

[
Sn

(
2πΓ

T

)]]T
as the split DFT vector of the n-th frame. Γ = T/2− 1. Sn(ω) is the DTFT

of ~sn. real(·) and imag(·) are real and imaginary operators respectively. ~Sn

is essentially a DFT vector with its real and imaginary parts split. Denote F

as the T -by-T DFT matrix. Denote D as the split DFT matrix that converts

~sn to ~Sn. Formally

D = JF

where

J =


1

IT/2−1√
2

IT/2−1√
2

1
IT/2−1√

2j
−IT/2−1√

2j


and Ik is length-k identity matrix. Subscript will be removed if dimension

can be inferred easily.

It is easy to show that

~Sn = D~sn = JSn (3.1)

and D is an orthogonal matrix

DTD = I

Below is a list of what each letter represents:

• Y - the observed clean speech

• S - the modeled clean speech

• E - the excitation of the source-filter model

• H - the filter/vocal tract transfer function of the source-filter model

26



• P - a periodic pulse train with period T0

• G - the glottal wave within a signal cycle

To avoid confusion, other vectors without aforementioned special meanings

will be denoted as bold lower-cased letters, a. Matrices will be denoted as

bold upper-cased letters, A.

pA(·|B) denotes the PDF function of the random variable A, conditional

on B, whose value can be either specified or not. P (·) denotes probabil-

ity. E[· · · |B] denotes expectation over all the randomness in its argument,

conditional on B.

The following subsections will build a complete probabilistic distribution

for {~Yn}.

3.3.2 Observed Speech Signal

The observed speech signal can differ from the modeled clean speech in a

number of ways. First, there is always background noise, no matter how

ideal the recording environment is. Second, there is model approximation

error. Define ~Rn as the residual of the modeled speech, i.e.

~Yn = ~Sn + ~Rn (3.2)

The simplest white Gaussian noise model is applied for ~Rn

p~Rn(·) = N (·; 0, σ2I) (3.3)

where N (·;µ,Σ) is the PDF of Gaussian distribution parameterized by mean

µ and covariance Σ.

Also, ~Rn of different frames are assumed to be jointly independent. This

assumption is not true generally, but it simplifies inference significantly with-

out compromising accuracy.

Equation (3.2) indicates that the model for {~Yn} depends on that of {~Sn}.
We will build the model for {~Sn} guided by the source-filter model in the

following subsections.
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3.3.3 Source and Filter Models

According to equations (2.10) and (2.19), a model for ~Sn depends on models

for Gn and Hn, the transfer functions of the glottal wave and the vocal tract

of frame n respectively. Section 2.2 introduced a number of such models.

For Gn, the simplified LF model as defined by equations (2.16), (2.17), and

(2.18) is applied. Gn is therefore the DTFT of g(t) defined in (2.16). Rdn is

denoted as the hidden variable determining Gn.

For Hn, the cepstral representation is applied. Denote cn as the length-Tc

hidden variable of cepstral representation of Hn (Tc < T ). The 0th dimension

is removed because it represents energy, and we would like to model energy

separately. Then from the definition of cepstral in section 2.4.2

Hn = exp
[
F [0, cn

T ,0TT−Tc ]
]T

(3.4)

where 0m is a length-m column vector of zeros. Subscript will be omitted if

dimension can be inferred easily.

By analogy to equation (3.1)

~Hn = JHn
~Gn = JGn (3.5)

3.3.4 Silence and Unvoiced Model

Denote vn as a hidden variable representing the voicing state of speech frame

n. vn = 0 if the frame is silent, vn = 1 if the frame is unvoiced, and vn = 2

if the frame is voiced.

For a non-speech frame, ~Sn = 0. According to equations (3.2) and (3.3)

p~Yn(·|vn = 0) = N
(
·; 0, σ2I

)
(3.6)

For unvoiced speech, the excitation ~en is assumed to be white Gaussian

noise in time domain with variance b2
n. SinceD is a orthogonal transform and

~En = D~en (analogous to equation (3.1)), ~En is also independent identically

distributed Gaussians with variance b2
n. Therefore according to equations

(2.10),(3.2) and (3.3)

p~Yn(·|vn = 1, bn, cn) = N
(
·|0, b2

ndiag
(
J |Hn|2

)
+ σ2I

)
(3.7)
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where |Hn|2 is element-wise square of |Hn|; and diag(·) is the operator that

converts a vector into a diagonal matrix.

3.3.5 Voiced Model

The voiced model is based on equation (2.19). The periodic pulse train

vector, ~pn, can be determined by τn, the time of the first pulse, and ω0n,

fundamental circular frequency. Notice that the DTFT of a pulse train is a

pulse train with interval ω0n. So from equation (2.19), the modeled voiced

speech in time domain is a superposition of harmonic sinusoids modulated

by Gn((ω))Hn(ω).

sn[t] = anreal

bωN/ω0nc∑
d=1

G(dω0n)H(dω0n) exp(−jdω0n(t− τn))

 (3.8)

where an denotes the voiced energy.

However, equation (3.8) is not sufficiently adequate because it rests on

the assumption that speech within a single frame is perfectly stationary and

periodic, while the actual speech has significant variations in amplitude and

frequency, called the AM/FM effects, such as pitch jitter and amplitude

shimmer [99, 100]. To incorporate these effects, equation (3.8) is adapted

with amplitude and frequency as polynomial functions of time

sn[t] =

(
Ka∑
k=0

ankt
k

)

· real

bωN/ω0nc∑
d=1

G(dω0n)H(dω0n) exp

−jd
 Kφ∑

k=1

φnkt
k

 (3.9)

where

τn = −φn0/φn1, ω0n = φn1 (3.10)

rewrite equation (3.9) into vectorized form

~s(v)
n = (Baan)× real

bωN/ω0nc∑
d=1

G(dω0n)H(dω0n) exp (−jd (Bφφn))

 (3.11)
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where

an = [an0, · · · , anKa ]T , φn = [φn0, · · · , φnKφ ]T (3.12)

are the polynomial coefficients for the AM and FM effects, and

Ba =


1 1 · · · 1

1 2 · · · 2Ka

...
...

...

1 T · · · TKa

 , Bφ =


1 1 · · · 1

1 2 · · · 2Kφ

...
...

...

1 T · · · TKφ

 (3.13)

are the polynomial bases for the AM and FM effects. × denotes element-wise

multiplication. The subscript (v) in ~s
(v)
n emphasizes it is the model for the

voiced case.

Combining equations (3.1), (3.2) and (3.3), we finally have

p~Yn(·|vn = 2, Rdn, cn,an,φn) = N
(
·;D~s(v)

n , σ2I
)

(3.14)

3.3.6 Hidden Variable Priors

The priors of hidden variables are all Markovians that ensure smooth evolu-

tion of hidden variables.

For vn,

P (vn = k|vn−1 = l) ∝

{
exp [ρk + η1(k 6= l)] if n > 1

exp (ρk) otherwise
(3.15)

where 1(·) denotes the indicator function. ρk and η are parameters

For b2
n

pb2n(·|b2
n−1, vn, vn−1)

=


LN

(
·; b2

n−1, σ
2
b

)
if n > 1 ∧ vn 6= 0 ∧ vn−1 6= 0

LN (·;µb0, σ2
b0) if vn 6= 0 ∧ (n = 1 ∨ vn=1 = 0)

undefined otherwise

(3.16)

where LN (·, µ, σ2) is the PDF of log normal distribution with mean param-

eter µ and variance parameter σ2. σ2
b , µb0 and σ2

b0 are parameters.
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For cn,

pcn(·|cn−1, vn, vn−1)

=


N (·; cn−1, diag (σ2

h)) if n > 1 ∧ vn 6= 0 ∧ vn−1 6= 0

N (·; 0, diag (σ2
h0)) if vn 6= 0 ∧ (n = 1 ∨ vn=1 = 0)

undefined otherwise

(3.17)

where σ2
h and σ2

h0 are parameters.

For Rdn,

pRdn(·|Rd(n−1), vn, vn−1)

=


T N

(
·;Rd(n−1), σ

2
g , lg, ug

)
if n > 1 ∧ vn = 2 ∧ vn−1 = 2

T N
(
·;µg0, σ2

g0, lg, ug
)

if vn = 2 ∧ (n = 1 ∨ vn−1 6= 2)

undefined otherwise

(3.18)

where T N (·;µ, σ2, l, u) is the PDF of truncated normal distribution with

mean µ, variance σ2, and preserved interval [l, u]. µg0, σ2
g , σ

2
g0, lg and ug are

parameters. A typical value for lg and ug are set to 0.3 and 2.7 respectively,

which is the normal range of Rd [48].

For an,

pan(·|an−1, vn, vn−1)

∝


N (·;an−1, diag(σ2

a))1(Baan ≥ 0) if n > 1 ∧ vn = 2 ∧ vn−1 = 2

N (·; 0, diag(σ2
a0))1(Baan ≥ 0) if vn = 2 ∧ (n = 1 ∨ vn−1 6= 2)

undefined otherwise

(3.19)

where 1(Baan ≥ 0) equals 1 if and only if all the element of Baan are

non-negative. σ2
a and σ2

a0 are parameters.

Finally, for φn,

pφn(·|φn−1, vn, vn−1)

=


VM

(
·; ~mφn, diag(κ2

φ)
)

if n > 1 ∧ vn = 2 ∧ vn−1 = 2

VM
(
·;µφ0, diag(κ2

φ0)
)

if vn = 2 ∧ (n = 1 ∨ vn−1 6= 2)

undefined otherwise

(3.20)
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where

~mφn =

 Kφ∑
k=1

φ(n−1)k(T + 1)k,φ(n−1)1, · · · ,φ(n−1)Kφ

T (3.21)

VM(·;µ,K) is the PDF of multivariate Von Mises distribution, with lo-

cation parameter µ and concentration parameter K. µφ0, κ2
φ and κ2

φ0 are

parameters.

3.3.7 Model Summary

To sum up, the observed variables are {~Yn}. The hidden variables are

{vn, b2
n, cn, Rdn,an,φn}. Equations (3.6), (3.7), and (3.14) define the obser-

vation likelihood conditional on hidden variables. Equations (3.15), (3.16),

(3.17), (3.18), (3.19) and (3.20) define the hidden variable priors. Parame-

ters are {ρk}2
k=0, η, σ2. σ2

b , µb0, σ2
b0, σ2

h, σ
2
h0, µg0, σ2

g , σ
2
g0, lg, ug, σ

2
a, σ

2
a0,

κ2
φ and κ2

φ0. Figure 3.1 shows the graphical model of PAT, where each node

represents a random variable/vector, and each edge denotes a probabilistic

dependence.

𝑌𝑛

𝒄𝑛

𝑣𝑛

𝒂𝑛

𝝓𝑛

𝑅𝑑𝑛

𝑏𝑛

𝑌𝑛+1

𝒄𝑛+1

𝑣𝑛+1

𝒂𝑛+1

𝝓𝑛+1

𝑅𝑑𝑛+1

𝑏𝑛+1

Figure 3.1: The graphical model of PAT.

32



3.4 Monte-Carlo Inference

A central problem of applying PAT to various speech processing tasks is

how to infer the hidden variables, {vn, b2
n, cn, Rdn,an,φn}, from the observed

speech frames {~Yn}. The challenge is that the joint probability of PAT is

so sophisticated that it is impossible to have a closed-form solution. Also

it is highly non-convex so any numerical inference schemes may easily get

trapped in local optima.

In this chapter, we propose a carefully designed inference scheme that is

based on Markov Chain Monte Carlo (MCMC) [101] and parallel tempering

[102].

3.4.1 General MCMC Framework

For notational ease, denote zn as the supervector containing all the hidden

variables at frame n. The colon operator zn1:n2 denotes a collection of zn

from n1 to n2. Finally, define

z = z1:N , ~Y = ~Y1:N , ~s = ~s1:N

MCMC solves the following problem: given a distribution up to an un-

known constant, c ·pZ , estimate the moment, E(f(Z)). PAT inference falls in

this category. Formally, PAT inference evaluates E
[
z|~Y

]
or E

[
~s|~Y
]

under

the PDF pz

(
ζ|~Y

)
, which is only known up to a constant because

pz

(
ζ|~Y

)
=

pz (ζ) p~Y

(
~Y |z = ζ

)
∫
pz (ζ ′) p~Y

(
~Y |z = ζ ′

)
dζ ′

(3.22)

While the numerator can be evaluated, the denominator is impossible to

compute. Instead, MCMC generates a set of samples following the target

distribution in a recursive manner. Define z(m) as the m-th sample gener-

ated. Then MCMC generates the next sample based on the current sample,

following a transition probability, or transition kernel, Ψ
(
z(m+1)|z(m)

)
, which

is designed such that the stationary distribution is the target distribution.

Different MCMC algorithms differ in the design of transition kernels.
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3.4.2 The MH Algorithm and Gibbs Sampler

The MH (Metropolis-Hastings) algorithm [80, 81] is one of the most pop-

ular MCMC algorithms, and also the basic building block of our designed

algorithm. Algorithm 3.1 shows the typical iteration step of generating a

new sample based on the old one. Essentially, it first proposes a new sample

with some proposal distribution qz(·|z(m)), and then accepts it with a certain

probability.

Algorithm 3.1 New sample generation step of the MH algorithm

Input: Previous sample z(m), unnormalized target distribution pz,~Y
Output: Next sample z(m+1)

Sample z∗ from qz(·|z(m))
Sample u from U [0, 1]
Compute

A(z∗, z(m)) = min

{
1,

pz,~Y (z∗, ~Y )qz(z
(m)|z∗)

pz,~Y (z(m), ~Y )qz(z∗|z(m))

}
(3.23)

if u < A(z∗, z(m)) then
z(m+1) = z∗

else
z(m+1) = z(m)

end if

It can be shown that the stationary distribution of the transition kernel

introduced in algorithm 3.1 is pz(·|~Y ).

A(z∗, z(m)), called the acceptance rate, specifies the probability that the

proposed sample is accepted. It is immediately obvious that the design of

proposal qz(·|z(m)) is the key to a successful MH algorithm. A poor proposal

distribution will result in low A(z∗, z(m)) and hence the Markov chain be-

comes stagnant. The ideal proposal would be pz(·|~Y ) itself, which results in

A(z∗, z(m)) = 1, but obviously this is infeasible.

The Gibbs sampler [82] is a special MH scheme that has acceptance rate

one. It updates one dimension of z at a time. Suppose the update order

is from z1 (frame 1) to zN (frame N), and within a particular frame zn

from dimension 1 to dimension I, which denotes the length of zn, then the

proposal distribution of dimension i of zn, denoted as zni, can be expressed
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as

qzni(·|z
(m+1)
ni− , z

(m)
ni+) = pzni(·|zni− = z

(m+1)
ni− , zni+ = z

(m)
ni+,

~Y ) (3.24)

where zni− denotes dimensions that are updated before zni, and zni+ denotes

dimensions that are updated after zni. Formally

zni− = {zνι : ν < n ∨ (ν = n ∧ ι < i)}

zni+ = {zνι : ν > n ∨ (ν = n ∧ ι > i)}

Since it can be proved that the acceptance rate is one, the proposed will

be always accepted after proposed. After all dimensions are updated, the

new sample is generated. Algorithm 3.2 shows a typical updating step of the

Gibbs sampler.

Algorithm 3.2 New sample generation step of the Gibbs sampler

Input: Previous sample z(m), unnormalized target distribution pz,~Y
Output: Next sample z(m+1)

for n = 1 : N do
for i = 1 : I do

Sample z
(m+1)
ni from pzni(·|zni− = z

(m+1)
ni− , zni+ = z

(m)
ni+,

~Y )
end for

end for

Unfortunately, the Gibbs sampler is still infeasible for PAT. This is be-

cause pzni(·|zni− = z
(m+1)
ni− , zni+ = z

(m)
ni+,

~Y ) is known only up to an unknown

constant. Even it is completely known, it may be too complex a distribution

to numerically draw a sample from. In the next subsection, we will introduce

a compromise that is feasible and still retains the good property of the Gibbs

sampler in avoiding stagnant Markov chains.
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3.4.3 Taylor Expansion Assisted MH

Simplify the Gibbs proposal probability (equation (3.24)) by the Markov

property:

pzni

(
ζ|zni− = z

(m+1)
ni− , zni+ = z

(m)
ni+,

~Y
)

=pzni

(
ζ|z(n−1)i = z

(m+1)
(n−1)i, zn(1:i−1) = z

(m+1)
n(1:i−1),

zn(i+1:I) = z
(m)
n(i+1:I), z(n+1)i = z

(m)
(n+1)i,

~Yn

)
∝pzni

(
ζ|z(n−1)i = z

(m+1)
(n−1)i, z(n+1)i = z

(m)
(n+1)i

)
· p~Yn

(
~Yn|zn(1:i−1) = z

(m+1)
n(1:i−1), zni = ζ,zn(i+1:I) = z

(m)
n(i+1:I)

)
≡πni(ζ)

(3.25)

where the last line simply introduces a simplified notation.

The basic idea of our proposed algorithm is to approximate the log [πni(ζ)]

with a quadratic polynomial using the Taylor expansion [103], so that πni(ζ)

can be approximated by a normal distribution up to a constant. In this way,

drawing proposed new samples is much easier. Formally

log(πni(ζ)) =z
(m)
ni +

∂ log(πni(ζ))

∂ζ

∣∣∣∣
ζ=z

(m)
ni

(
ζ − z(m)

ni

)
+
∂2 log(πni(ζ))

2∂ζ2

∣∣∣∣
ζ=z

(m)
ni

(
ζ − z(m)

ni

)2

+ εni(ζ)

≡t̂ni(ζ) + εni(ζ)

(3.26)

εni(ζ) should be very small particularly when ζ is close to z
(m)
ni .

Our proposed proposal distribution for PAT is then defined as

qzni(ζ|z
(m+1)
ni− , z

(m)
ni , z

(m)
ni+) ∝ exp

(
t̂ni(ζ)

)
1(ζ ∈ supp(zni) ∩ Zni) (3.27)

where supp(·) denotes the support of a random variable. Zni denotes an

interval around z
(m)
ni , within which the Taylor approximation error is reason-

ably small. We will formally define and compute Zni later. Notice that the

proposal distribution in equation (3.27) is dependent on z
(m)
ni , because Taylor

expansion is performed around it. This is different from the case in equation

(3.24).
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The proposal distribution in equation (3.27) is a truncated normal distri-

bution, from which it is easy to draw samples. Also, since it is close to the

Gibbs proposal distribution, the acceptance rate should be close to one, if

not equal to.

Now, we will compute the acceptance rate A(z∗ni, z
(m)
ni ) according to equa-

tion (3.23). The notation is slightly adapted from equation (3.23) because

each dimension is separately proposed and the acceptance rate is evaluated

for each specific dimension.

A(z∗ni, z
(m)
ni ) = min

{
1,

πni(z
∗
ni)qzni(z

(m)
ni |z

(m+1)
ni− , z∗ni, z

(m)
ni+)

πni(z
(m)
ni )qzni(z

∗
ni|z

(m+1)
ni− , z

(m)
ni , z

(m)
ni+)

}

= min

1,
exp

[
t̂ni(z

∗
ni) + εni(z

∗
ni)
]
qzni(z

(m)
ni |z

(m+1)
ni− , z∗ni, z

(m)
ni+)

exp
[
t̂ni(z

(m)
ni ) + εni(z

(m)
ni )

]
exp

[
t̂ni(z∗ni)

]


(3.28)

To proceed, we need to make an approximation. First note that

qzni

(
ζ|z(m+1)

ni− , z∗ni, z
(m)
ni+

)
6= qzni

(
ζ|z(m+1)

ni− , z
(m)
ni , z

(m)
ni+

)
because Taylor expansion is around a different point z∗ni, and will yield a

different polynomial function. However, we can assume that Zni is reasonably

small and z∗ni is so close to z
(m)
ni+ that the two Taylor expansions are almost

the same. Namely

qzni

(
ζ|z(m+1)

ni− , z∗ni, z
(m)
ni+

)
≈ qzni

(
ζ|z(m+1)

ni− , z
(m)
ni , z

(m)
ni+

)
(3.29)

Therefore, according to equation (3.27),

A(z∗ni, z
(m)
ni ) ≈ Â(z∗ni, z

(m)
ni )

= min

1,
πni(z

∗
ni) exp

[
t̂ni(z

(m)
ni )

]
πni(z

(m)
ni ) exp

[
t̂ni(z∗ni)

]


= min

1,
exp

[
t̂ni(z

∗
ni) + εni(z

∗
ni)
]

exp
[
t̂ni(z

(m)
ni )

]
exp

[
t̂ni(z

(m)
ni ) + εni(z

(m)
ni )

]
exp

[
t̂ni(z∗ni)

]


= min
{

1, exp
[
εni(z

∗
ni)− εni(z

(m)
ni )

]}
(3.30)

where the last but one equality is derived from equation (3.26). As equation
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(3.30) shows, if εni(z
∗
ni)− εni(z

(m)
ni ) is sufficiently small, then acceptance rate

will be close to one.

Â(z∗ni, z
(m)
ni ) is not only theoretically meaningful. During implementation,

Â(z∗ni, z
(m)
ni ) will be evaluated instead of A(z∗ni, z

(m)
ni ), because the former per-

forms the Taylor expansion only once and reduces computational complexity

significantly.

Now that we know how the Taylor approximation error is related to the

acceptance rate, we can use this relation to guide the choice of Zni. Suppose

we want

Â(z∗ni, z
(m)
ni ) ≥ 1− δ (3.31)

Then from the last line in equation (3.30),

εni(z
∗
ni)− εni(z

(m)
ni ) ≥ log(1− δ) ≈ −δ (3.32)

A sufficient condition to equation (3.32) is

|εni(ζ)| ≤ δ/2 (3.33)

Note from equation (3.26) that εni(ζ) is the residual term of the second-

order Taylor expansion of log πni(ζ), which can be further expanded by the

third-order Taylor expansion:

εni(ζ) =
∂3 log (πni(ζ

′))

6∂ζ ′3

∣∣∣∣
ζ′=z

(m)
ni

(ζ − z(m)
ni )3 + o

(
(ζ − z(m)

ni )3
)

≈ ∂3 log (πni(ζ
′))

6∂ζ ′3

∣∣∣∣
ζ′=z

(m)
ni

(ζ − z(m)
ni )3

(3.34)

Combining equations (3.32) and (3.34), we get

Zni =

[
z

(m)
ni − 3

√
3δ

∂3 log (πni(ζ ′)) /∂ζ
′3|
ζ′=z

(m)
ni

,

z
(m)
ni + 3

√
3δ

∂3 log (πni(ζ ′)) /∂ζ
′3|
ζ′=z

(m)
ni

] (3.35)

As a summary, the proposed MCMC algorithm is listed in algorithm 3.3.

The upper panel of figure 3.2 demonstrates the proposed MH algorithm.

The black line denotes the target distribution πni(ζ). The grey line denotes
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Algorithm 3.3 New sample generation step of the proposed MCMC algo-
rithm

Input: Previous sample z(m), unnormalized target distribution pz,~Y
Output: Next sample z(m+1)

for n = 1 : N do
for i = 1 : I do

Sample z∗ni from qzni(ζ|z
(m+1)
ni− , z

(m)
ni , z

(m)
ni+) defined in equation (3.27).

Sample u from U [0, 1]

Compute Â(z∗ni, z
(m)
ni ) defined in equation (3.30).

if u ≤ Â(z∗ni, z
(m)
ni ) then

z
(m+1)
ni = z∗ni

else
z

(m+1)
ni = z

(m)
ni

end if
end for

end for

the proposal distribution, which is the Taylor approximation around z
(m)
ni in

logarithm scale. The proposal PDF roughly agrees with the target PDF, and

is truncated before the approximation error becomes too large. Hence the

acceptance rate is high.

3.4.4 Parallel Tempering

One major problem of algorithm 3.3 is that it can be easily trapped in a local

mode. An illustration is given in the upper panel of figure 3.2. Suppose the

target distribution (black line) has two modes and z
(m)
ni is in one of the modes.

The proposal distribution (grey line) has very low, or even zero, probability

of generating samples in the other mode.

For some hidden variables of PAT, local mode is a serious problem, e.g.

the fundamental circular frequency ω0n. Inferring ω0n is essentially the tradi-

tional pitch tracking. A major problem of pitch tracking is the pitch halving

ambiguities [104,105], and PAT is no exception. We found that there are lo-

cal modes around multiples and integer reciprocals of the true fundamental

frequency. Finding the largest mode, therefore, is a challenging problem.

Parallel tempering [102,106] is an MCMC algorithm often combined with

the MH algorithm to solve the local mode problem. Instead of sampling one

chain of samples, parallel tempering samples L chains. The l-th chain samples
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Figure 3.2: Illustration of proposed MH step and parallel tempering. z
(m)
ni

marks the current sample location. Proposal PDFs are unnormalized for
better demonstration.
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from target distribution pz(·|~Y )1/Tl , where Tl is called the temperature of the

l-th chain. All the temperatures satisfy the following condition

1 = T1 ≤ T2 ≤ · · · ≤ TL (3.36)

Apparently only the first chain is the actual sample chain of interest; the

others are auxiliary chains.

Parallel tempering has two basic operations: new sample generation and

inter-chain swap. Both operations guarantee a stationary distribution

lim
m→∞

L∏
l=1

pz(m,l)(·) ∝
L∏
l=1

pz(·|~Y )1/Tl (3.37)

where zm,l denotes the m-th sample from the l-th chain. Often the two

operations are performed alternately. The new sample generation operation

simply follows algorithm 3.3. The swap operation is defined in algorithm 3.4.

Algorithm 3.4 Sample swap step in parallel tempering

Input: Previous sample z(m), unnormalized target distribution pz,~Y
Output: Next sample z(m+1)

for n = 1 : N do
for l = L− 1 down to 1 do

Sample u from U [0, 1]
Compute

rl(z
(m,l)
n , z(m,l+1)

n ) =
π
(
z

(m,l+1)
n

)1/Tl
π
(
z

(m,l)
n

)1/Tl+1

π
(
z

(m,l)
n

)1/Tl
π
(
z

(m,l+1)
n

)1/Tl+1
(3.38)

where π(·) is defined in equation (3.25)

if u ≤ rl(z
(m,l)
n , z

(m,l+1)
n ) then

z
(m+1,l)
ni = z

(m,l+1)
ni , z

(m+1,l+1)
ni = z

(m,l)
ni

else
z

(m+1,l)
ni = z

(m,l)
ni , z

(m+1,l+1)
ni = z

(m,l+1)
ni

end if
end for

end for

Figure 3.2 illustrates the intuition behind parallel tempering. For high

temperatures (lower panels), the barrier between two modes is smaller, and

41



the truncation interval is wider. So there is a higher probability to generate

a sample in another mode. These samples in turn can be swapped back to

the lowest temperature with a certain probability. Thus, the chain with the

lowest temperature also has a good opportunity to explore other modes.

It is also important to diversify the initial samples of different chains, so

that they lie in different modes. For ω0n, for example, we use the simple au-

tocorrelation method to roughly estimate the pitch, which is assigned as the

initial value of the base chain (the chain with lowest temperature). This esti-

mate is then doubled, trippled, halved or divided by three, and the resulting

values are set as initial values of the other chains.

3.4.5 Accelerating Burn-in Process

The burn-in process refers to the initial MCMC iterations when samples have

yet to reach the stationary distribution. Both algorithms 3.3 and 3.4 suffer

from slow burn-in, because it updates one frame, or even one dimension, at a

time. Since there are strong correlations between adjacent frames introduced

by the smoothing priors, the update of samples at any frame will be seriously

dragged backward by poor samples of the adjacent frames [101].

To solve this problem, we first remove the smoothing priors, i.e. hidden

variables of different frames are assumed to be jointly independent. After the

samples enter high density regions, the smoothing priors are then gradually

introduced.

This approach, however, is still problematic because samples from different

frames may be slow to form a smooth contour, even after the smoothing

priors are introduced. Figure 3.3 shows an example. Suppose each frame

has only one scalar hidden variable zn. At iteration m, two samples, z
(m)
n

and z
(m)
n+1, have “gone astray”. Supposedly a strong Brownian motion prior

should be able to bring them back to form a smooth contour. However, if

each sample is to be updated separately, they will never be smoothed out,

no matter how strong the smoothing prior is. This is because under the

symmetric smoothing prior, z
(m+1)
n will be indifferent between lying close to

its left neighbor z
(m+1)
n−1 , and close to its right neighbor z

(m)
n+1.

To alleviate this problem, a one-time dynamic programming algorithm

is performed, where the latest samples of different chains at frame n are
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Figure 3.3: An example of failure of smoothing prior under block update
scheme. z

(m)
n would be indifferent between moving close to z

(m+1)
n−1 and

staying where it is.

regarded as candidates of that frame. Candidates along the optimal path

that maximizes the joint posterior probability are switched to the first chain.

3.5 Experiments and Analyses

To evaluate the effectiveness of joint modeling and our proposed inference

algorithm, we conduct a set of experiments regarding speech reconstruction,

pitch tracking and sample path.

3.5.1 Configuration

Experiments are performed on the Edinburgh dataset [107], which contains

laryngograph signal to show some glottal information. PAT inference is con-

ducted on 17 utterances.

There are six parallel chains. The temperatures are almost uniform in

logarithmic scales. They are T1 = 1.00, T2 = 1.87, T3 = 5.36, T4 = 20.0,

T5 = 91.7, and T6 = 500. The first five chains are initialized as voiced chains,

with initial pitch values as the pitch estimate given by simple autocorrelation

method as well as its double and half values. If the double or half value goes

beyond the normal pitch range (50 Hz to 500 Hz), one third or triple value

will be used. The sixth chain is initialized as an unvoiced chain. For now,

we use the U/V state label to guide our U/V decision, i.e. P (vn = k) = 0 if

k does not agree with the label.
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There are three stages of MCMC iteration. The first stage is from iteration

1 to 21, when all the smoothing priors are removed to accelerate the burn-

in, as discussed in section 3.4.5. The second stage is from iteration 22 to

30, when the smoothing priors are re-introduced. The third stage is after

iteration 30, when the number of chains is cut to one. Only the base chain

is kept to explore finer samples. In stage three, the samples are expected to

have reached stationary distribution. We will verify this assertion in section

3.5.5.

We manually set the priors. We did not massively tune these priors, and

also any adjustment was only based on the result of utterance 1. The values

are σ = 0.001; σ2
h = [1, 1/2, 1/3, · · · , 1/26]T , where 26 is the length of cn

as well as σ2
h; σ

2
g = 0.1; σ2

a = [0.1, · · · , 0.1]T , where total order Ka = 2;

κ2
φ = [0, 3 × 105, 0, · · · , 0]T , where total order Kφ = 3; The other priors,

mostly priors for the initial frame, are set as uninformative priors.

3.5.2 Speech Reconstruction

There are three stages in speech reconstruction using PAT. First, hidden

variables z are inferred, conditional on observed original speech ~Y . Second,

for voiced frames, ~Sn is reproduced according to equation (3.8); for unvoiced

frames, a random vector distributed as equation (3.7) are generated, with

residual variance σ2I removed; for silence frames, the reconstruction is simply

set to zero. Finally, the reconstructed frames are transformed into the time-

domain and concatenated using overlap-add approach [108].

Two reconstruction benchmarks, LPC and STRAIGHT [85], are compared

against. For LPC resynthesis in particular, we introduce the oracle GCI

information, given by the laryngograph in the Edinburgh dataset [107]. The

resynthesis process is as follows. First, LPC analysis is performed to obtain a

set of all-pole filter coefficients. Second, the original speech is reconstructed

by feeding excitation to the all-pole filter. For voiced frames, the input

excitation is a pulse train at oracle GCI locations. For better alignment,

the excitation is shifted slightly to match the LPC residual in terms for

correlation coefficient. For unvoiced frames, the excitation is simply white

Gaussian noise with matched power to the LPC residual.

The metric for comparison is the signal to reconstruction error ratio in
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Table 3.1: Signal to reconstruction error ratio in dB.

PAT LPC STRAIGHT
4.50 -1.64 -1.40

dB. Normally, this is not a good metric for evaluating reconstruction quality.

However, to evaluate the benefit of phase and AM/FM modeling, this metric

is informative. Table 3.1 shows the results. As can be seen, PAT has signif-

icantly lower reconstruction error than the other two baselines. The second

best is STRAIGHT.

There are two reasons for the low reconstruction error. First, PAT ex-

plicitly considers phase or causality, whereas the other two baselines do not

consider anti-causal components. To better illustrate this point, figure 3.4

shows reconstructed waveforms (black lines) compared with the original (gray

lines). The upper, middle and lower panels are PAT, LPC and STRAIGHT

respectively. As can be seen, the constructed waveform by PAT is closest to

the original. In particular, the portion highlighted is right before the GCI lo-

cation, and therefore is considered as an anti-causal component, as discussed

in section 2.3. Neither LPC nor STRAIGHT considers causality, and there-

fore fail to capture the negative jump in the circle. On the other hand, PAT

uses the LF-model to account for the anti-causal component, and therefore

is much more accurate.

The second reason for PAT’s advantage is that PAT considers the AM/FM

effects, which will be discussed in the next subsection.

3.5.3 AM/FM Effect

Figure 3.5 shows the reconsted waveform without AM/FM modeling, i.e.

setting ank = 0,∀k > 0 and φnk = 0,∀k > 1 in equation (3.9). Compared

with the upper panel of figure 3.4, there are two obvious observations. First,

the reconstructed waveform is much less aligned, because the lack of FM

modeling would contribute to significant phase error. Second, the waveform

in each period is less similar to the original waveform. Because without AM

effect, the PAT is forced to approximate the waveform with a periodic signal,

thus blurring the nuances between adjacent cycles.
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Figure 3.4: Signal reconstruct compared against original. Red circles
highlight the anti-causal component that PAT can capture, but LPC or
STRAIGHT cannot.

46



0 20 40 60 80 100 120 140 160 180 200
-0.2

-0.1

0

0.1

0.2

0.3

reconstruct
original

Figure 3.5: PAT reconstruction with AM/FM model.

3.5.4 Pitch Tracking

For PAT, pitch tracking is done by inferring the hidden values of ω0(1:N).

More specifically, it takes the average of 10 most recent samples of ω0n of the

base chain for each frame. The results of PAT is compared with GetF0 [109],

a autocorrelation-based pitch tracking algorithm, in terms of the following

two criteria:

• Gross Pitch Error (GPE): The percentage of voiced frames whose

pitch estimates deviate from ground truth by more than 20%.

• Root Mean Square Error (RMS): Root mean square error of pitch

estimate in frames free of GPE.

Since PAT is guided by U/V labels, the comparison is performed on frames

which both algorithms correctly classify as voiced.

Table 3.2 shows the pitch tracking results. As can be seen, both algorithms

are close in GPE – PAT is only slightly better; but in terms of RMS, PAT

is significantly better. The reasons for this significant advantage in RMS

are two-fold. First, jointly modeling source and filter helps to remove the

interferences when estimating pitch. Second, the propose MCMC and parallel

tempering algorithm is able to fully explore the major modes and locate the

highest peak.

To better appreciate the second point, figure 3.6 plots a segment of sample

path ω
(0:30,l)
0n for all the chains l = 1, · · · , 5, for frame 30 utterance 1. Chain 1

is the base chain and has the lowest temperature. The ground truth pitch is
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Table 3.2: Pitch tracking results.

GetF0 PAT
GPE (%) 4.10 4.02
RMS (Hz) 5.66 4.31

171.7 Hz for this frame. The upper panel shows the general view. There are

several interesting observations. First, the five chains are given three initial

values (given by autocorrelation estimates): 172 Hz, 86 Hz, and 344 Hz so

that the possibility of halved pitch and doubled pitch is fully explored. Sec-

ond, there are several jumps of the chains, indicating where sample switch

occurs. Chains with lower temperatures generally switch to more important

modes. Chain 2, for example, switches to the mode around 172 Hz, which

is the correct major mode. Chains 4 and 5 both switch to the mode around

344 Hz eventually, indicating that this mode is perhaps the worst one. This

parallel tempering mechanism inherently alleviate the doubled/halved pitch

ambiguities. Third, chains with higher temperatures are more volatile, which

agrees with our previous discussion that higher temperature chains are ca-

pable of transcending probabilistic barriers and explore a wider range.

The lower panel shows a zoomed view to the based chain. We can see

that the samples keep exploring and approaching the ground truth pitch.

The starting segment corresponds to the burn-in process, where samples

fluctuate to explore where the peak is. The later segment is where samples

are approaching the stationary distribution. The final estimate of pitch given

by this base chain is 171.8 Hz, which is more accurate than its initial guess,

172 Hz. This is one of the reasons why PAT has much lower RMS than

GetF0.

3.5.5 Burn-in

This section investigates how long it takes for the samples to burn in. Figure

3.7 plots the sample path of the log likelihood log p~Yn(~Yn|zn). As can be seen,

the log likelihood rises drastically at the starting segment, which shows that

the inference algorithm is able to search the more likely regions efficiently.

The path reaches a plateau after around 30 iterations, which indicates that

the burn-in process is very short. Also, in section 3.5.1, we defined iterations
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Figure 3.6: Sample path segment of ω0n of all the parallel chains of frame
30, utterance 1. Upper panel: overview; lower panel: zoomed view to the
base chain. Chain 1 (base chain) is with lowest temperature; chain 5 is with
highest. The ground truth pitch label is 171.7 Hz.
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Figure 3.7: Sample path segment of log p~Yn(~Yn|zn) of the base chain of
frame 30, utterance 1. It reaches stationary distribution after around 30
iterations.

after 30th as the stationary iterations, where we cut the number of parallel

chains to two. This decision is based on our observation of figure 3.7.

3.6 Discussions

In this chapter, we have introduced the formulation of PAT. It has been

shown that PAT is able to estimate speech components within a standard

Bayesian framework, and reconstruct speech accurately. However, there is

some room for improvement regarding the current model.

First, the current inference algorithm is still unable to solve the disconti-

nuity between adjacent frames, as discussed in section 3.4.5. Although the

dynamic programming algorithm introduced in section 3.4.5 could alleviate

the problem for F0 samples, the problem for the rest of the samples remains

to be solved. This discontinuity result in some artifacts in reconstruction,

which makes the reconstruction undesirable subjectively.

Second, despite our persistent effort in refining the inference algorithm,

it is still computationally expensive, and sometimes trapped in sub-optimal

modes. An improved inference scheme is necessary before PAT could be

applied to speech processing tasks extensively.

Third, the prior distributions of hidden variables are set heuristically. A

more formal estimation algorithm is needed. The recent development of

deep neural networks in modeling complicated distribution has inspired us

to combine the prior distribution module with deep learning, which may also
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provide a new solution to our standing inference problem.

Despite the current challenges with PAT, PAT already shows a good po-

tential in solving a variety of speech processing problems, including speech

synthesis, speech enhancement, source separation, etc. A continuing research

on PAT, therefore, is a promising endeavor.
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CHAPTER 4

TEXT-TO-SEMANTICS F0 MODELING

Apart from the generative model for acoustic speech, the generative model

for speech prosody is also important toward more natural sounding speech.

In particular, F0 modeling, sometimes referred to as pitch modeling, is an

integral part of speech synthesis, prosody modification and prosody analy-

sis. However, although there are many research efforts toward more natural

and richer F0 models, capturing semantic variations in F0 directly from text

remains to be a challenging problem. The key challenge is that in order to

capture semantic variations, an F0 model should have a long-term memory

capacity across several sentences, while maintaining the accuracy in model-

ing local F0 movements. The RNN-TA model has a good potential for this

task - it uses the physics motivated classical TA model to reconstruct the

local F0 movements, and RNN structures to capture long-term dependen-

cies. This chapter introduces a research effort that modifies the RNN-TA

model by appending a text embedding network and regularization units, and

investigates its ability to model contrastive focus as an important type of se-

mantic variation. Experiments have shown that the refined F0 model is able

to memorize contrastive concepts and produce correct emphasis for sentences

with contrastive focus.

4.1 Introduction

F0 modeling, sometimes known as pitch modeling, refers to the task of pre-

dicting F0 contours from text and/or a set of linguistic features. F0 modeling

is an integral part in speech synthesis, prosody modeling and prosody anal-

ysis, and thus is a common research topic for both speech processing and

linguistics communities. It has been found that the F0 contour has multi-

ple levels of variations, including the phonetic/phonological level, e.g. some

52



phones tend have higher F0 than others, lexical level, e.g. the syllables tend

to have high or low F0 excursions, the syntactic level, e.g. there is usually

a pitch reset at the start of a sentence, and semantic level, e.g. some words

are emphasized based on the meaning of the utterance. The common goal

is to develop F0 modeling techniques that can generate natural sounding

F0 contours and can capture the rich prosodic variations at all these levels.

In particular, modeling the semantic level is the most challenging task for

machines, because it requires machines to “understand” the content of the

utterances. On the other hand, however, modeling the semantic variation

is essential for closing the gap between machine-generated speech and nat-

ural human speech. Unfortunately, while some progress has been made in

modeling semantic variations with the help of external labels, an F0 model

that captures semantic variations directly from text in an end-to-end manner

is missing. To see this, we turn to one simple form of semantic variation –

contrastive focus.

4.1.1 Contrastive Focus

Contrastive focus is one of the simplest forms of semantic variations. Con-

trastive focus happens when a concept in an utterance is in direct contrast

to a previous concept [110], in either a conversation or a monologue. For

example,

1. A: Did you invite Peter? B: No, I invited Paul.

2. A: I didn’t invite Peter. I invited Paul.

The examples above are just two forms of contrastive focus. In each ex-

ample, there is a pair of contrasting concepts, “Peter” and “Paul”, as high-

lighted. The word “Paul” is assigned with a contrastive focus.

Existing linguistics studies have revealed that the F0 contour around the

focused words displays two special patterns [111]. First, there is usually an

F0 excursion at the focus words. Second, there is a sizable pitch drop and

a compressed pitch range after the focus words, which is often called post-

focal compression [112]. It was found that the second effect is usually more

significant. However, it was also found that post-focal compression is not

universal in all languages [112], but it exists for American English. In this

research project, we will focus on American English.
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Our task, therefore, is narrowed down to designing an F0 model that is

able to detect the presence of contrastive focus directly from text, and learn

to produce appropriate F0 excursion in a data-driven way.

4.1.2 The Challenges

In fact, there have been a number of existing F0 models that try to cap-

ture contrastive or other types of focus. The PENTA model [113] has been

successfully applied to modeling contrastive focus [114]. However, in order

to do this, a focus tier has to be introduced that labels each word in the

sentence as “pre-focus”, “on-focus” or “post-focus”. There is a series of

work [115, 116] that tries to correct the prosody of the words that should

have been emphasized but were not properly emphasized. However, it re-

quires the human users to input what words to be emphasized. Some speech

synthesizers [117–120] take focus labels as input to generate more natural

prosody contours, but that, again, relies on external labels. In other words,

almost all the efforts in modeling focus rely heavily on external labels. The

resulting models are still unable to “understand” the text and figure out

what should be emphasized. An end-to-end F0 model that reads the text,

correctly predicts where the contrastive focus is, if any, and then produces a

reasonable F0 contour accordingly all in a row is still missing.

There are two challenges with developing such an end-to-end model. The

first challenge is how to encode the semantic information in a way that is

consumable by machine learning techniques. Essentially, capturing semantic

information involves finding the relationship among massive number of words

and concepts, which has to be done without explicit human labels.

The second challenge, which is more important, is how to enable the F0

model to memorize the context. This is especially important to contrast focus

modeling, because any model for contrastive focus has to remember what has

been said previously before judging if the current word to be uttered is in

direct contrast to the past context.

In fact, there has been dramatic progress in machine learning techniques

with long-term memory. The long-short term memory (LSTM) [121], in

particular, has been well recognized for its ability to memorize long-term

information, and it has been applied to many data driven F0 models [15,
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122–125]. However, the temporal granularity of such F0 models is at the F0

sample level (typically 10 ms) or phonetic HMM state level (typically 50 ms),

whereas the pair of contrasting concepts are usually over 5 seconds apart,

which is equal to at least 100 time steps under the temporal granularities of

the existing LSTM-based F0 models. Retaining a good memory over such a

temporal distance is still a challenging task even for LSTM.

One possible solution is to increase the temporal granularity to shorten the

temporal distance between the contrasting concepts. However, this comes at

the cost of losing details of local F0 behaviors. So the real crux of modeling

contrastive focus, as well as other semantic variations, is how to develop

long-term memory for the content while maintaining the modeling power for

the local F0 movement.

4.1.3 Inspirations from the Existing Works

In fact, existing works from different communities already provide us with in-

spirations on solving the challenges. For the memory challenge, one solution

is readily available if we jointly review the modern data-driven F0 models, as

developed in the speech engineering community, with the traditional physics-

and linguistics-driven F0 models, as developed in the linguistics community.

On one hand, data-driven methods have been shown effective in modeling and

memorizing complex dependencies of F0 on linguistics annotations, and has

become the mainstream in modern speech synthesis systems [15, 122–125].

However, as discussed in section 4.1.2, a large portion of their modeling

power has to be spent on modeling the local F0 behavior, and few is left for

long-term memory of content information.

On the other hand, there are many well-motivated F0 models in the lin-

guistic community that are particularly good at fitting the local F0 behaviors.

For example, the Fujisaki model [126,127] controls the F0 behavior by a set

of phrase commands and accent commands, and is able to fit the true F0

contour well if the commands are estimated correctly. The TILT [128] model

assumes that the pitch contour consists of a set of rise events and fall events,

which are linguistically meaningful, and F0 contours are interpolated between

adjacent events. The superposition of functional contours (SFC) [129] model

assumes the F0 contour is a superposition of a number of sub-contours, each
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encoding a certain metalinguistic function. The target approximation (TA)

model [14] assumes that each syllable has an intended pitch target, and that

the F0 contour is formed by a continuing effort to approach the pitch targets,

subject to some physical constraints. The TA model is able to recover the

pitch contour once the pitch targets are estimated correctly. These F0 mod-

els abstract F0 contours into a smaller set of events or parameters, and thus

reduce the F0 prediction task to estimating parameters. However, how to

effectively and accurately perform parameter estimation remains a challenge.

As is already obvious, the data-driven models and physics inspired models

are complementary to each other. The latter can free the former from model-

ing the local F0 movement, and the former can provide accurate parameters

estimation for the latter. Thus, a combination of both can resolve the mem-

ory challenge in contrastive focus modeling. The RNN-TA model [130, 131]

combines the TA model with a LSTM recurrent neural network and has

shown good potential in F0 modeling, and thus becomes our prototype model

to start with.

For the challenge of encoding semantic information, we can turn to the

recently surging text embedding techniques. In particular, the word2vec

model [132] is shown to be able to capture word similarities and relationship.

In fact, preliminary efforts have been invested in combining word embeddings

with a data-driven F0 model [133], and it was shown that the text embedding

can substitute other word-specific annotations, such as the part of speech

tags.

4.1.4 Our Proposed Model

Inspired by these existing works from multiple realms, we have proposed the

text-embedded recurrent target approximation (TEReTA) model, which is

an F0 model designed for end-to-end modeling of contrastive focus, and po-

tentially generalizable to other semantic variations. TEReTA combines the

word2vec network, deep learning techniques as the target prediction module,

and the target approximation model. The word2vec converts text into vectors

that are “understandable” to the deep learning module. The neural network

in the target prediction module then memorizes the long-term content infor-

mation and predicts the pitch targets with appropriate F0 excursions and
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post-focal compression. Finally the TA model completes the short-term F0

behavior and thus predicts the entire F0 contour. As an imprecise anal-

ogy shown in figure 4.1, the word2vec module serves as human eyes and the

reading system that read and process the text; the target prediction module

serves as the human brain that remembers the text and makes decisions on

what words to emphasize; the TA model serves as the human mouth and ar-

ticulatory motors that realize the F0 contour based on the instructions from

the brain.

In order to train TEReTA, we have collected a contrastive focus corpus

(CFC) that contains 10 hours of structured utterances with contrastive fo-

cus, which can support many large-scale data-driven learning tasks with con-

trastive focus. Several experiments are conducted and verify that TEReTA

is able to memorize important context and produce reasonable F0 contours

that reflect contrastive focus.

To sum up, this research project comes with three major contributions:

1. The first end-to-end F0 model that can capture contrastive focus di-

rectly from text.

2. A large-scale contrastive focus corpus released for public research.

3. A set of experiments that demonstrates the capability of TEReTA in

modeling contrastive focus.

The remainder of this chapter is organized as follows. Section 4.2 serves as

a background introduction of the TA model; section 4.3 describes the details

of the proposed system; section 4.4 gives a brief introduction the contrastive

focus corpus; section 4.5 shows the results of the experiments that verify

TEReTA’s ability in contrastive focus modeling; 4.6 concludes the chapter

and discusses future directions.

4.2 Target Approximation F0 Model

The target approximation (TA) model is an articulatory F0 model, which

assumes that for each syllable, there is an intended F0 level and slope, called

a pitch target, and that the F0 contour is formed by a continuing effort

to approach the pitch targets, subject to the articulatory motor constraints.
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This section introduces the basic TA model first, and then the two F0 models

based on the TA model.

4.2.1 Basic TA Model

Formally, denote n ∈ Z+ as the index for syllables, and fn(t) as the true

pitch contour of the n-th syllable in Hz. The goal of the TA model is to

approximate the true pitch contour with its predicted pitch contour, denoted

as gn(t), based on a set of pitch targets. The pitch target of each syllable is

characterized by ln, sn, λn, where ln is the pitch level in Hz, sn is the slope

of the pitch target in Hz/sec, and λn is the effort of approaching the targets.

The predicted pitch contour of syllable n by the TA model, gn(t), approaches

the pitch target in the way of a second-order damped system:

gn(t) = ln + snt︸ ︷︷ ︸
pitch target

+ (an + bnt+ cnt
2) exp(−λnt)︸ ︷︷ ︸

second-order damped system

(4.1)

where the first two terms constitute the pitch target, and the rest character-

izes the difference. an, bn and cn are determined such that the entire pitch

contour across all syllables forms a second-order continuous function, i.e.

gn(0) = gn−1(Tn−1)

g′n(0) = g′n−1(Tn−1)

g′′n(0) = g′′n−1(Tn−1),∀n > 1

(4.2)

where Tn denotes the duration of syllable n in second; ′ and ′′ denote first-

and second-order derivatives respectively. The solution to equation (4.2) is

given by

an = gn−1(Tn−1)− sn
bn = g′n−1(Tn−1) + anλn − ln

cn =
1

2

(
g′′n−1(Tn−1) + 2bnλn − anλ2

n

) (4.3)

The initial values a0, b0 and c0 can be determined in many ways, e.g. setting

them to some prespecified values, or matching the ground truth pitch value.

Equation (4.3) suggests that the only parameters for the TA model are

{ln, sn, λn}. Once these parameters are determined, {an, bn, cn}, and thereby
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the whole pitch contour, are completely determined. Therefore, F0 models

based on TA can be naturally divided in two modules: the first module, called

target prediction part, predicts the pitch target parameters {ln, sn, λn}. The

second module, called target approximation, reconstructs the pitch contour

using the TA model.

One important remark on this model structure is that it enables a hier-

archical modeling of the short-term and long-term F0 behavior. The target

prediction part focuses on the evolution of pitch targets across syllables,

which constitutes the long-term F0 behavior; the target approximation part

takes care of the short-term F0 behavior. Such a hierarchical paradigm frees

any machine learning techniques from modeling the local F0 behavior, while

focusing their modeling power on the long-term behavior, which makes se-

mantics modeling possible.

The following two subsections briefly introduce two F0 models designed in

this paradigm, which differ only in the first part.

4.2.2 Parallel Encoding and Target Approximation Model

The parallel encoding and target approximation (PENTA) model [113] is

an F0 model with a functional view of F0 generation. It assumes that the

pitch targets can be predicted by a set of functional annotations in paral-

lel, which may include lexical, sentential, focal, topical, grouping etc. The

PENTA model requires that all the functional annotations are finite and

discrete. Formally, denote Dk, k = 1, · · · , K as the k-th functional annota-

tion, which is a finite discrete set containing the possible annotation values.

For example, Dk can be lexical stress annotation, {stressed, unstressed}, or

it can be focus annotation, {pre-focus, on-focus, post-focus}. PENTA pre-

dicts a pitch target for each distinct combination of the annotation values.

More specifically, denote dnk as the k-th functional annotation for the n-th

syllable. Suppose there are J possible combinations, (dn1, · · · , dnK), where

J =
∏

k card{Fk} and card{·} denotes set cardinality. Then the PENTA

model learns J distinct length 3 vectors, ~t1, · · · ,~tJ , each represents the tar-

get parameters for a specific annotation combination. For example, sup-

pose there are K = 2 functional annotations, {stressed, unstressed} and

{pre-focus, on-focus, post-focus}. Then the PENTA model needs to learn
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J = 2× 3 = 6 sets of target parameters.

The loss function to be minimized is the L2 loss between the true pitch

and the predicted pitch contour. Therefore, the learning problem can be

formulated as

min
~t1,··· ,~tJ

∑
(n,t):voiced

(fn(t)− gn(t))2 (4.4)

Notice that the summation goes over only the voiced segments, where fn(t)

has non-trivial values.

The PENTA model has been applied to modeling contrastive focus [114].

However, a focus annotation, {pre-focus, on-focus, post-focus}, has to be pro-

vided. Directly modeling contrastive focus from text remains a challenge for

the PENTA model. The bottleneck for the PENTA model on this task is two-

fold. First, the PENTA model does not incorporate long-term memory. All

the dependencies of the pitch targets on the input annotations are instan-

taneous. Second, the PENTA model suffers from exponentially increasing

number of parameters as the number of annotations increases, which leads

to poor scaling and generalizability on large corpora.

4.2.3 Recurrent Neural Network and Target Approximation

With its strong representation power and memory capacity, recurrent neural

network (RNN) has been applied to many machine learning tasks involving

time series data. In particular, RNN with long-short term memory (LSTM)

cells have been proven effective in memorizing long-term dependencies with

tractable number of parameters. Denote the input and the hidden output at

time n as xn and hn respectively. Then the LSTM cell can be represented as

fn = σ (Wf · [hn−1, xn] + bf ) (Forget Gate)

in = σ (Wi · [hn−1, xn] + bi) (Input Gate)

on = σ (Wo · [hn−1, xn] + bo) (Output Gate)

C̃n = tanh (WC · [hn−1, xn] + bC) (New Information Candidate)

Cn = fn � Cn−1 + in � C̃n (Memory Cell)

hn = on � tanh(Cn)

(4.5)

The RNN-TA model [130,131] applies the LSTM-RNN to predict pitch tar-

gets, and then applies the TA model to reconstruct the predicted F0 contour.
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Experiments have shown that RNN-TA outperforms the DNN-TA and the

GMM-TA models, where a simple feedforward neural network and a Gaus-

sian mixture model respectively are used to predict the pitch targets. The

evaluation metrics are root mean square error and correlation with respect

to the true pitch contour.

RNN-TA shows good potentials in end-to-end modeling of contrastive focus

because of its strong long-term memory capacity. Two factors contribute

to the strong memory capacity of RNN-TA. First, the memory capacity of

the LSTM cells is already very strong. Second, thanks to the TA model

abstractions, the temporal granularity of the RNN is at the syllable level,

which is able span 10 times as long as those sample-level models. Therefore,

the RNN-TA model becomes the prototype of our proposed F0 modeling,

which will be introduced in the next section.

4.3 Text-Embedded Recurrent Target Approximation

The proposed text embedded recurrent target approximation (TEReTA)

model is modified from the RNN-TA model by introducing a word2vec mod-

ule to directly encode semantic information, and some regularization units

to impose physical articulator constraints. Figure 4.1 shows the basic model

framework. TEReTA is divided into three major modules: the word2vec text

embedding module, the LSTM-RNN target prediction module, and the tar-

get approximation module. To predict the F0 contour directly from text, the

text is fed into the word2vec module, where semantic information is encoded

in real-valued text embedding vectors. Then, the text embeding vectors,

along with other linguistic annotations, e.g. lexical and syntactic, are fed

into the LSTM-RNN target prediction module, which will then predict the

pitch targets for each syllable. Finally, the target approximation module

reconstructs the complete pitch contour. The right side shows the analogy

to human pitch generation process. The word2vec text embedding module

serves as the human reading system that processes the text; the target pre-

diction module serves as the human brain that memorizes the context and

decides which words to emphasize; the target approximation module serves

as the human articulatory motors that realize the pitch targets as instructed

by the brain.
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Word2vec Text Analysis

Text:
How are you?

Text Embedding:
How    are    you
0.1
2.1
⋮

1.7
0.1
⋮

0.3
0.2
⋮

Other Features:
lexical stress

word length

sentence length

punctuation …

Target Prediction Network

Pitch Targets:

How       are         you

Target Approximation

Pitch Contour:

How       are         you

Figure 4.1: The model framework of TEReTA. The illustrations on the
right show an inexact analogy to the human prosody generation process.

The following subsections provide a more detailed introduction of each

module.

4.3.1 The Word2vec Text Embedding Module

The word2vec text embedding network is proposed in [132]. The goal of

the word2vec network is to find a mapping from word strings to continuous

real-valued vectors, i.e.

v :W → Rd
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where W is the set of word strings. The output of the word2vec network is

often called word embeddings, which have two desirable properties. First,

the text embedding of similar words tend to be close in the Euclidean space;

those of the dissimilar ones tend to get far apart. Second, word relationships

can be transformed into arithmetic operations in the embedded space. For

example,

v(“king”)− v(“man”) + v(“women”) ≈ v(“queen”)

Therefore, the word2vec network, with its capability in encoding semantic

information, is a desirable preprocessing module for the task of modeling

semantic variation in F0.

To train a word2vec network, a language model network is appended to

the output of word2vec to predict the context words given the center word,

or to predict the center word given the context words. In this way, the

word embeddings should learn to encode the information that is necessary to

characterize the relationship among words. A large text corpus is necessary

to train a satisfactory network. In this research, we apply a pretrained model

[134], which was trained on approximately 100 billion words on the Google

News corpus with a vocabulary of size 3 million. The dimension of the

embedded space is 300, which is further reduced to 10 using PCA.

4.3.2 The Target Prediction Module

Figure 4.2 shows the structure of the target prediction module, which con-

sists of a covolutional-recursive network and a regularization layer. The

convolutional-recursive architecture is different from the simple RNN struc-

ture applied in the RNN-TA model, in that a stack of convolutional layers is

inserted between the input and the RNN layer(s). This is inspired by human

reading habit. Human reading is primarily left-to-right, which is why a uni-

directional RNN is applied. In the meantime, human speakers would often

glance through a few future context words before uttering the current word,

which can be accommodated by the non-causal convolutional layers. In our

implementation, the number of covolutional layers is one, and the number of

LSTM layers is one. The hidden node size is 32.

The regularization layer is essentially a one-layer feedforward network with
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LSTM Layer(s)

Regularization 

Layer

Figure 4.2: The structure of the target prediction module.

output dimension three, which corresponds to the three pitch target param-

eters ln, sn, λn. To ensure that the parameters fall in the range attainable

by physical articulators, the output activation function of the regularization

layer is designed as follows.

The normal human pitch range is between 50 Hz and 500 Hz, and the

maximum rate of pitch change is roughly two semitones per 100 milliseconds

[135]. Thus ln and sn are constrained to [50, 500] (Hz) and [−500, 500] (Hz/s).

The following shifted hyperbolic tangent activation function is applied for

these two nodes:

y =
1

2
[(α + β) + (α− β) tanh(x)] (4.6)

where α and β are lower and upper bounds of the constraint interval.

For the effort parameter, λn, there is no constraint except that it should

be positive. However, we find that a loose constraint can easily lead to poor

generalizability of the model, because ln and sn are poorly determined when

λn is too small. Therefore, λn is constrained to the interval (20,+∞) with

the following shifted softplus function:

y = α + log(1 + exp(x)) (4.7)

where α is the lower bound for the constraint interval.
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4.3.3 The Target Approximation Module

The target approximation module is largely the same as described in section

4.2.1, i.e. compute the pitch contour using equations (4.1) and (4.3). There

are, however, two modifications. First, notice that an, bn and cn are deter-

mined recursively, so TEReTA can easily suffer from numerical and gradient

explosion problem. To resolve the problem, a two-sided clipping is applied

to any of the an, bn or cn whose value exceeds a constrained interval. The

clipping function is

y = min{max{x, α}, β} (4.8)

where α and β are the lower and upper bounds of the constrained interval,

which is empirically set to [−2, 500, 2, 500] for an, [−5, 000, 5, 000] for bn

and [−500, 000, 500, 000] for cn. The reason why we choose (4.8) over (4.6)

is because the latter would change the value of the input even when the

constraint is not binding, which means the regularized outputs will always

deviate from the correct values as computed in equation (4.3).

The second modification is that the final output, gn(t), is further regular-

ized using a one-sided clipping function

y = max{x, α} (4.9)

where α is set to 1 Hz. This regularization is essential to prevent numerical

errors when computing the loss function, which is the L2 loss of the logarithm

of the pitch contours.

loss =
∑

(n,t):voiced

(log fn(t)− log gn(t))2 (4.10)

4.4 The Contrastive Focus Corpus

Modeling contrastive focus in a data driven manner requires a large training

corpus, while the size of the existing corpus is not large enough to lend satis-

factory generalizability. Thus we have collected the contrastive focus corpus

(CFC), which is a dataset containing sufficiently large number of utterances

with contrastive focus for machine learning techniques, and which can po-

tentially be used in large-scale and in-depth future researches on contrastive
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focus.

4.4.1 The Sentence Structure

CFC contains 59 sentence groups. As an example, a subset of the transcrip-

tions of one particular sentence group are listed below.

1. John didn’t wreck the car. Mike wrecked the car.

2. John didn’t wreck the car. John cleaned the car.

3. John didn’t wreck the car. John wrecked the bus.

4. ......

As can be seen, each item is a sentence pair. The first sentence is a negation

of a previously misunderstood concept, and the second sentence serves as

a clarification. The misunderstood concept and the corrected one form a

contrast pair, which is highlighted in each sentence pair.

Each sentence group is developed from a declarative core sentence, which is

adapted from [111,136–138]. In the example listed above, the core sentence is

“John wrecked the car.”. Each core sentence comes with a number of replace

fields, ranging from 2 to 5. In the example above the replace fields are

“John”, “wrecked”, “car”. Each replace field has two alternative concepts.

To generate a sentence pair, we choose from either the negation sentence or

the correction sentence, choose a replace field in that sentence, and finally

choose from the two alternative concepts to replace the original concept. The

entire sentence group is generated after all the combination of options are

traversed. There are a total of 688 sentence pairs in CFC.

4.4.2 Recording Configuration

Ten native English speakers, five males and five females, with an American

accent were recruited to record the corpus. Each participant was asked to

record all the 688 sentence pairs in the dataset.1 The sampling rate is 44,100

1One sentence pair is missing for speaker 2 due to data management mistakes.
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Hz. Except for speaker 1, who was recorded via a MacBook built-in micro-

phone, all the other speakers were recorded using a BLUE Yeti microphone.2

While recording, the sentences were displayed in a monitor with the con-

trasting concepts highlighted, and the order was randomized. The partic-

ipants were asked to read the sentences naturally and make sure the way

they read them serves the clarification purpose. They were asked not to arti-

ficially emphasize the highlighted words simply because they are highlighted,

but make proper emphasis wherever they feel necessary. To ensure recording

quality, participants were asked to take a rest every 60 sentence pairs.

4.4.3 Post Processing

After the raw audios are recorded, the start and ending silence of each utter-

ance is manually removed. The total length of the audios is 10 hour 6 minutes

51.44 seconds. The audios are stored in the WAV format. The transcribed

words, phones, and HMM states are forced aligned with the audio using the

FAVE aligner [139]. The log F0 ground truth is provided by the PYIN pitch

tracker [140] at a 10ms interval. The text embeddings are obtained from the

Google’s pretrained model [134] using the GENSIM package in Python.

4.5 Experiments and Analysis

To test whether the TEReTA is able to memorize the conflicting concepts

and properly capture contrastive focus directly from text, several experiments

were conducted and the results were analyzed on CFC. As will be seen, the

TEReTA model is able to correctly identify the contrasting concepts and

make proper F0 excursions and post-focal compressions.

4.5.1 Experiments Configurations

Apart from the text embeddings, the input features include: a three-dimensional

one-hot vector indicating the lexical stress level (0, 1, 2), an indicator vari-

able of whether the word is missing in the word2vec vocabulary, a twelve-

dimensional one-hot vector for punctuation types, the number of syllables

2http://www.bluemic.com/products/yeti/
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in the word, the position of the current syllable with respect to the current

word, the number of words in the sentence pair, the current word position

with respect to the current sentence pair, and an indicator variable of whether

the previous word is a pause. The dimension of the feature vectors, including

the text embeddings, is 31. The temporal granularity of the feature vectors

is at the syllable level. Note that the syllable duration is not included in the

input feature to minimize immediate cues for contrastive focus, so as to force

the model to learn the contrastive focus directly from its memory and input

text information. However, as will be discussed in section 4.5.3, we cannot

completely avoid the immediate cues.

A baseline is introduced for comparison, which is a CNN-LSTM model

directly fitting the log F0 contour with the same loss function as in equation

(4.10). This baseline is similar to the one in [15], except that the LSTM is

replaced with a CNN-LSTM structure for fair comparison. The number of

layers is one for the CNN and one for the LSTM, which are the same as in

the proposed model. However, considering the baseline CNN-LSTM needs

to learn the short-term F0 behavior in addition to the long-term relation,

the number of hidden nodes is set to 128, which is four times as large as

that of TEReTA. The baseline works on the sample level (10 ms) instead of

the syllable level, and thus each syllable-level input features are replicated

to fill the entire span of the syllable. However, rather than convolving over

the replicated features, the CNN layer of the baseline still operates on the

syllable level, i.e. its kernels skip the adjacent replicated features and jump

to the neighboring syllables.

The CFC is partitioned into a training set, which consists of 53 sentence

groups and 596 sentence pairs, and a test set, which consists of 6 sentence

groups and 92 sentence pairs. The data from all the 10 speakers are pooled

in the two sets. To correct for the inherent pitch range differences among the

speakers, all the voiced log F0 labels are normalized to have mean log(250)

and standard deviation 0.2 within each speaker. For the training set, the

feature and label sequences of different utterances are joined to form a long

sequence, which is then windowed into short sequences to avoid gradient

explosion. The window length and window skip are 64 and 16 (syllables) for

TEReTA, and 512 and 128 (samples) for the baseline. Both algorithms are

trained with 200 epochs.
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Table 4.1: Average On-focus/Post-focus difference between sentence pairs
with the same second sentence but different first sentence. All the results
are scaled by 10−2.

Training Set Test Set
TEReTA Baseline True F0 TEReTA Baseline True F0

Mean 9.88 6.92 18.47 1.66 1.68 19.02
Std. Dev. 0.57 0.89 2.52 0.71 0.54 2.70

4.5.2 On-Focus/Post-Focus Log F0 Difference

Inspired by the observation that on-focus words are usually characterized by

an F0 excursion, and that the F0 of the post-focus words are suppressed,

we design the following experiment. For each of the sentence group in the

test set, we pick out a subset of sentence pairs where the second sentence

is the same, but the first sentence is different. The difference in the first

sentence results in different words to be focused in the second sentence. We

are interested in finding if the two models are able to predict different F0

contours for the same second sentence based on different contexts.

We run the F0 prediction on the selected subset of each of the sentence

groups. For each word in the second sentence, we compute the average of the

predicted log F0 when the word is on-focus, and another average when the

same word is post-focus. The difference of the two averages are computed,

which we call the on-focus/post-focus difference. The on-focus/post-focus

difference is then further averaged across all the words in the second sen-

tence, and across all the sentence groups. If the model is able to learn

contrastive focus, this average on-focus/post-focus difference should be sta-

tistically significantly positive, even though the word transcriptions are the

same.

Table 4.1 shows the results. All the results are scaled by 10−2. Notice

that the difference in logarithm approximates the percentage difference, so

the numbers can be interpreted as average percentage difference between the

on-focus and post-focus words.

As can be seen from table 4.1, both algorithms are able to predict signifi-

cant positive on-focus/post-focus difference. However, both results are much

smaller than the ground truth difference. On the training set, TEReTA is

able to capture only half the magnitude of the True F0, the baseline 1/3.

On the test set, the magnitude further drops. These observations suggest
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poor generalizability. The training set magnitude could have been further

increased by increasing the number of training epochs, but this would come

at the cost of further lowering the test set performance. There are two po-

tential causes for the poor generalizability. First, the number of distinct

sentence groups, 59, is very small. The seemingly massive data, 10 hours of

speech, are merely repetitive utterances of similar sentences. Both models

are likely to simply memorize the specific transcriptions. Second, through

our inspections into the corpus, we have found that vocal fry is universal in

all speakers, especially for post-focal words. The vocal fry has led to frequent

half-pitched jumps and voiced error (voiced frames mistaken for unvoiced) in

the pitch tracking results. Nevertheless, despite the low magnitude, we are

still able to verify that both models can correctly predict contrastive focus,

given all the data available.

It is also found that the baseline generalizes better than TEReTA. This

is because TEReTA operates on the syllable level, and the total number of

training tokens is 158,035; the baseline operates on the sample level, and

the number of observation is 2,996,247. Fine tuning is yet to be performed.

It looks like the baseline is able to capture contrastive focus very well –

even better than TEReTA. However, as will be shown in section 4.5.3, only

TEReTA predicts contrastive focus truly from text.

4.5.3 Transplantation Test

The findings in section 4.5.2 can potentially be undermined by our obser-

vation that even though the word strings under different focus statuses are

the same, the input feature sequences are still different. For example, there

is usually a pause after the focus word, resulting in a pause symbol in the

input feature. Duration, as another example, though not explicitly present

in the feature vector, still affects the features for the baseline by changing

the number of times each syllable-based feature replicates. These differences

are likely to serve as immediate “cheating” cues for focus prediction. There-

fore, it is entirely possible that the models produce correct predictions simply

based on these cues, not on their memory of the context.

To rule out this possibility, we design a more aggressive variant of the

previous experiment, called the transplantation test. Before we present the
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large scale test results, let’s take a look at an example. Consider the follow-

ing sentence:

Sam didn’t ask George to dig onions out of the basket on the porch.

Sandy asked George to dig onions out of the basket on the porch.

As can be seen, the word “Sandy” in the second sentence should be on-

focus. Now, we fix the feature sequence (not just the word string) of the

second sentence, but then replace the feature sequence of the first sentence

with that of the following:

Sandy didn’t ask Jeff to dig onions out of the basket on the porch.

We call this operation a transplantation. Note that the only thing that the

transplantation changes is the context; it won’t change any immediate cues

(pauses, durations etc.) inherent in the feature sequence. If an F0 model

predicts contrastive focus only from the immediate cues, not from the con-

text, it will predict similar F0 contours in the two cases. Otherwise, it should

predict that “Sandy” is focused in the original case, and that “George” is

focused in the transplanted case.

Figure 4.3 shows the F0 prediction in the two cases by TEReTA and the

baseline model. It shows that TEReTA is able to predict the correct focuses

under different contexts. Under the original context (black line), there is a

high excursion at the word “Sandy”, and then the F0 contour goes down

afterwards. Under the transplanted context (blue line), the predicted F0

starts low, but then rises to a peak at “George”, before it goes down in the

remainder of the sentence. On the other hand, the baseline model is unable to

capture meaningful differences under the different contexts. There are some

distinctions at the first three words, but they look like random distinctions

due to the proximity to the varied contexts. The two predicted contours are

almost the same in the later part.

To test if such distinctions are consistent across the whole corpus. A large

scale transplantation test is performed. The test configurations are illus-

trated in figure 4.4. Each line represents an original sentence pair. For each

sentence pair in the sentence group, two transplanted versions are generated

by replacing the input sequence of the first sentence with that of the pre-
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Figure 4.3: Example F0 prediction in the transplantation test. The word
strings below each plot is the transcription. The word “Sandy” highlighted
in black should be on-focus under the original context; the word “George”
highlighted in blue should be on-focus under the transplanted context.
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Mike didn’t wreck the car.

John didn’t clean the car.

John didn’t clean the bus.

John wrecked the car.

John wrecked the car.

John wrecked the car.

Mike didn’t wreck the car.

John didn’t clean the car.

John didn’t clean the bus.

John wrecked the car.

John wrecked the car.

John wrecked the car.

Original Focus:

On-focus before transplantation; 

Post-focus after transplantation.

Transplanted Focus:

Post-focus before transplantation; 

On-focus after transplantation.

Figure 4.4: Transplantation test configuration.

ceding (upper group) and proceeding (lower group) sentences in the same

sentence group, as shown by the blue arrows. The transplantation operation

results in different focus concepts in the second sentence. In figure 4.4, the

black underlined concepts in the second sentences represent the on-focus con-

cepts before the transplantation, and the blue underlined concepts represent

the on-focus concepts after the transplantation.

On-focus/post-focus difference is computed in two different cases. The

first case, called original focus, includes concepts that are on-focus before

the transplantation, and post-focus after the transplantation, as highlighted

in red in figure 4.4. The second case, called transplanted focus, includes

concepts that are post-focus before the transplantation, and on-focus after

the transplantation, as highlighted in green in figure 4.4. The on-focus/post-

focus difference is then averaged across all the sentences in the test set. In this

way, not only the word transcription of the second sentence is controlled, but

also the input feature sequences themselves, which eliminates any possible

“cheating” cues, or even generates misleading cues. Any focus predictions

that solely rely on these cues should not be able to produce significant on-

focus/post-focus difference. On the other hand, if the model truly predicts

contrastive focus from its memory of the context, the average on-focus/post-

focus should be significantly positive.

Table 4.2 shows the results. As can be seen, without the immediate cues,

the baseline algorithm almost fails completely – the magnitude of difference

drops significantly compared with that in the previous experiment, and the

sign is reversed, which indicates that the baseline is still unable to read

contrastive focus from text. On the other hand, TEReTA maintains its per-

formance in both the transplanted and original focus cases, which indicates
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Table 4.2: The results of transplantation test. All the results are scaled by
10−2. Transplanted Focus denotes the on-focus/post-focus differences
averaged among words that are on-focus in the transplanted case, and
post-focus in the original case. Original Focus is for words that are on-focus
in the original case, and post-focus in the transplanted case.

Transplanted Focus Original Focus
TEReTA Baseline TEReTA Baseline

Mean 1.07 -0.12 1.77 -0.12
Std. Dev. 0.78 0.18 0.73 0.12

its memory plays the major role in predicting contrastive focus.

4.6 Conclusions and Future Directions

In this chapter, we have proposed TEReTA, which is a combination of tra-

ditional generative model of F0 contour and modern data-driven techniques.

TEReTA is shown to be able to memorize longer context and better capture

contrastive focus than the baseline that predicts the F0 contour sample-wise.

There are two potential directions of improvement of the proposed exper-

iments. First, although the number of utterance is large, the number of

distinct sentence groups in the proposed CFC (59) is still too small to yield

satisfactory generalization to unseen sentences. Thus, enlarging the number

of distinct sentence groups in the corpus will be one of our next steps. Sec-

ond, the automated pitch tracking results is not robust against the frequent

vocal fry in the corpus, which significantly deteriorates the label accuracy.

Human-corrected labels are thus desirable for developing better models for

contrastive focus.
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CHAPTER 5

BAYESIAN WAVENET FOR SPEECH
ENHANCEMENT

Starting from this chapter, we investigate the power of generative models

of speech in speech enhancement. Speech enhancement refers to a broad

class of speech processing tasks that recovers clean speech from corrupted

speech. This chapter focuses on single-channel enhancement, where only

one channel of corrupted speech is available. In recent years, deep learning

has achieved great success in speech enhancement. However, there are two

major limitations regarding the existing works. First, the output speech is

sometimes unnatural and vulnerable to unseen noises. This can be resolved

by incorporating a generative model of speech into the Bayesian framework.

In particular, the prior distribution for speech in the Bayesian framework

has been shown useful by regularizing the output to be in the speech space,

and thus improving the performance. Second, the majority of the existing

methods operate on the frequency domain of the noisy speech, such as spec-

trogram and its variations. The clean speech is then reconstructed using the

approach of overlap-add, which is limited by its inherent performance upper

bound. This chapter presents a Bayesian speech enhancement framework,

called BaWN (Bayesian WaveNet), which directly operates on raw audio

samples. It adopts the recently announced WaveNet, which is shown to be

effective in modeling conditional distributions of speech samples while gener-

ating natural speech. Experiments show that BaWN is able to recover clean

and natural speech, even when the noise types in the training set are limited.

5.1 Introduction

Deep learning has been widely used in speech enhancement tasks, because

its strong representation power is capable of characterizing complex noise

distributions. For example, some works directly predict output spectrum

75



using deep neural networks (DNN) or denoising auto-encoders [141–144].

A series of works [145, 146], applied different deep learning architectures to

predict ideal ratio masks. Besides, several works performed speech separation

using various deep learning architectures [147,148].

However, these approaches have two major limitations. First, the output

speech of many deep learning based algorithms is sometimes unnatural, par-

ticularly in the presence of unseen noise. In order for the algorithm to be well

generalizable to different noise types, a large and exhaustive noise dataset has

to be provided, which is extremely challenging, if possible at all. Fortunately,

incorporating a generative model for speech, or speech model, in a Bayesian

framework has been shown effective in tackling such challenges [75]. While

the variability of noise is hardly tractable, the clean speech signal is highly

structured, and thus a prior speech model can regularize enhanced speech

to become speech-like. Without the speech model, many deep learning algo-

rithms are not generalizable to noises without highly similar characteristics.

On the other hand, existing Bayesian speech enhancement algorithms

mostly model speech using simple probability distribution in order to have

closed-form solutions. For example, a large body of such works assume HMM-

GMM models [149–152] or Laplacian models [153–156]. Others make looser

assumptions on kurtosis or neg-entropy of speech distribution [157, 158].

Building a more accurate model for speech becomes a bottleneck for these

algorithms, which can potentially be lifted by deep learning.

The second limitation regarding the existing deep learning based approach

is that most deep learning algorithms operate on amplitude spectrum, such

as short-time Fourier transform or cochleargram. The noisy phase spectrum

is directly applied to the enhanced speech without restoring the clean phase

spectrum, which may suffer from phase distortion. Also, in some spectral

restoration methods, the time domain signal is recovered by overlap-add,

which is prone to artifacts and discontinuities. However, applying deep learn-

ing directly to speech waveform is difficult, because the high sampling rate

requires large temporal memory and receptive field size.

Fortunately, the recently announced WaveNet [15] has demonstrated a

strong capability in modeling raw audio waveforms. Its receptive field size

is significantly boosted by stacking dilated convolution layers with expo-

nentially increasing dilation rates. Experiments have shown that it is able

to generate random babbles with high naturalness. Moreover, WaveNet is
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probabilistic, which naturally fits into the Bayesian framework.

Motivated by these observations, we propose a Bayesian speech enhance-

ment algorithm using deep learning structures inspired by WaveNet, called

the Bayesian WaveNet (BaWN). BaWN directly predicts the clean speech

audio samples by estimating the prior distribution and the likelihood func-

tion of clean speech using WaveNet-like architectures, which are the two

major components of the Bayesian network. It promotes a happy marriage

between the Bayesian framework and the deep learning techniques: the for-

mer broadens the generalizability for the latter, and the latter improves the

model accuracy for the former.

The remainder of the chapter is organized as follows. Section 5.2 describes

the architecture of BaWN; section 5.3 introduces its training scheme; section

5.4 presents experiments that test its performance; and section 5.5 concludes

the chapter.

5.2 The Model Architecture

The problem is formulated within the Bayesian framework. Denote X0:T−1

as the random process of the clean speech, which is quantized into Q levels,

q0:Q−1, via the µ-law encoding [159], so each Xt is a discrete variable. The

subscript 0 : T−1 denotes a set with subscripts running from 0 through T−1.

Denote Y0:T−1 as the random process of the observed noisy signal. In this

chapter, only additive noise is considered, but the framework is generalizable

to other types of interferences. Our task is to infer the clean speech x̂t given

a set of noisy observations Y0:T = y0:T . For notational ease, probability mass

functions will be abbreviated, e.g. p(Xt = xt|Yt = yt) as p(xt|yt).

5.2.1 The Bayesian Framework

We apply a sub-optimal greedy inference scheme for X0:T−1. Given inferred

values of the past samples x̂0:t−1, the inferred value of the current sample,

x̂t, is defined as the posterior expectation

x̂t , E [Xt|Xt−τ1:t−1 = x̂t−τ1:t−1, Yt−τ2:t+τ2 = yt−τ2:t+τ2 ] (5.1)
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(b) The prior model. The right plot gives a detailed view of a basic convolution
unit in the left plot (equation (5.5)).
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(c) The likelihood model. The middle module is the post processing module,
whose structure is similar to that in (b).

Figure 5.1: The model architecture. Compound arrows denote that the
node is multiplied by a weight matrix before sent to the next unit. Circled
add and circled dot denote element-wise addition and multiplication
respectively. The data path that generates the current output at time t is
highlighted.

Here we have made a Markov assumption that the probabilistic dependence

of Xt upon variables in the distant past and far future is negligible, when
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the closer ones, Xt−τ1:t−1 and Yt−τ2:t+τ2 , are given. τ1 and τ2 denote the range

of dependence on X0:T−1 and Y0:T−1, respectively. Therefore, the following

posterior distribution should be evaluated:

p(Xt = xt|Xt−τ1:t−1 = x̂t−τ1:t−1, Yt−τ2:t+τ2 = yt−τ2:t+τ2)

,p(xt|x̂t−τ1:t−1, yt−τ2:t+τ2)

∝p(xt|x̂t−τ1:t−1) · p(yt−τ2:t+τ2|x̂t−τ1:t−1, xt)

(5.2)

where the , sign denotes the abbreviation.

Define the likelihood function as

L(xt; x̂t−τ1:t−1, yt−τ2:t+τ2) , p(yt−τ2:t+τ2|x̂t−τ1:t−1, xt) (5.3)

Then equation (5.2) can be rewritten into

p(xt|x̂t−τ1:t−1, yt−τ2:t+τ2)

= p(xt|x̂t−τ1:t−1)︸ ︷︷ ︸
prior model

·L(xt; x̂t−τ1:t−1, yt−τ2:t+τ2)︸ ︷︷ ︸
likelihood model

(5.4)

The BaWN architecture is based on equation (5.4). As shown in figure 5.1(a),

it consists of two models. The first model is called the prior model, or the

speech model, modeling the prior distribution of clean speech signals. For

each time t, it takes x̂t−τ1:t−1 as input, and outputs a Q-dimensional vector

of the log estimated PMF log p̂(xt|x̂t−τ1:t−1) up to an unknown constant.

The second model is called the likelihood model, or the noise model,

modeling the likelihood function. It takes as inputs x̂t−τ1:t−1 and yt−τ2:t+τ2 ,

and outputs a Q-dimensional vector of the estimated log likelihood function

log L̂(xt; x̂t−τ1:t−1, yt−τ2:t+τ2) up to an unknown constant.

The two outputs are added and then passed through a softmax nonlin-

earity. Notice that the exponential function in softmax turns addition into

multiplication; the normalization step in softmax removes any unknown con-

stant. Therefore it can be easily shown, from equation (5.4), that the output

of the softmax nonlinearity is the p(xt|x̂t−τ1:t−1, yt−τ2:t+τ2) of interest. Also,

the output of the prior model, passing through a softmax nonlinearity alone,

becomes the prior distribution p(xt|x̂t−τ1:t−1).

The following two subsections introduce the two models respectively.
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5.2.2 The Prior Model

The prior model replicates the architecture of WaveNet because it performs

a similar task. As shown in figure 5.1(b), the prior model consists of two

modules. The first module is the dilated convolution module, which contains

a stack of B1 blocks with L1 layers for each. The l-th layer in b-th block is

a 1D causal convolution layer through time, with kernel size 2 and dilation

rate 2l. For each time t, it produces two vector outputs—a hidden output

z
(b,l)
t , which is fed into the convolution layer above, and a skip output s

(b,l)
t ,

which is directly fed into the second module. The nonlinearity applied is a

gated activation unit [160] with residual structure [161]. Formally,

f
(b,l)
t = tanh

(
W

(b,l)
f0 i

(b,l)
t +W

(b,l)
f1 i

(b,l)

t−2l
+ d

(b,l)
f

)
(5.5a)

g
(b,l)
t = σ

(
W

(b,l)
g0 i

(b,l)
t +W

(b,l)
g1 i

(b,l)

t−2l
+ d(b,l)

g

)
(5.5b)

r
(b,l)
t = f

(b,l)
t � g(b,l)

t (5.5c)

z
(b,l)
t = i

(b,l)
t +W (b,l)

z r
(b,l)
t + d(b,l)

z (5.5d)

s
(b,l)
t = i

(b,l)
t +W (b,l)

s r
(b,l)
t + d(b,l)

s (5.5e)

where σ(·) denotes the sigmoid function; � denotes element-wise multiplica-

tion; i
(b,l)
t denotes the input to this layer,

i
(b,l)
t =


z

(b,l−1)
t if l > 0

z
(b−1,L1−1)
t if l = 0, b > 0

Wix̂t otherwise

(5.6)

The second module is the post-processing module, which sums all the skip

outputs of time t, s
(0:B1−1,0:L1−1)
t , and passes it to a stack of 1×1 convolution

(fully connected within time t) layers with ReLU activation. The receptive

field size is shown as,

τ1 = B1

(
2L1 − 1

)

5.2.3 The Likelihood Model

The likelihood model is more complex than the prior model. This is because

(1) in addition to x̂t−τ1:t, which is the input to both models, the likelihood

model also takes yt−τ2:t+τ2 as input; (2) the prior model is causal, but the
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likelihood model is non-causal.

To address these complexities, we adapt the original WaveNet structure

to that shown in figure 5.1(c). The likelihood model also has a dilation

convolution module and a post-processing module, but the dilation module

now contains two parts. The first part deals with the input x̂t−τ1:t, and

has the same structure as in equations (5.5) and (5.6). The second part

deals with the input yt−τ2:t+τ2 , and has almost the same structure, except for

two differences. First, the number of blocks and layers within each block is

changed to B2 and L2 respectively, to accommodate τ2, which can be different

from τ1. Second, instead of a causal convolution with kernel size 2, this part

imposes a non-causal convolution with kernel size 3 to account for future

dependency. Formally, equations (5.5a) and (5.5b) are adapted to

f
(b,l)
t = tanh

(
W

(b,l)
f0 i

(b,l)
t +W

(b,l)
f1 i

(b,l)

t−2l
+W

(b,l)
f−1 i

(b,l)

t+2l
+ d

(b,k)
f

)
(5.7a)

g
(b,l)
t =σ

(
W

(b,l)
g0 i

(b,l)
t +W

(b,l)
g1 i

(b,l)

t−2l
+W

(b,l)
g−1 i

(b,l)

t+2l
+ d(b,l)

g

)
(5.7b)

The post-processing module in the likelihood model is the same as that in

the prior model, except that it sums all the skip outputs from both parts of

the dilated convolution module.

5.3 Training the Model

Since the two models in BaWN have their own specific interpretations, the

training scheme should be designed carefully to ensure that the models gen-

erate the correct outputs.

5.3.1 Training the Prior Model

If we replace the input x̂t−τ1:t−1 with the true clean samples, denoted as

x∗t−τ1:t−1, then the prior model can be trained on clean speech, following a

similar paradigm as in WaveNet. Specifically, for each t, given the previ-

ous true clean speech, x∗t−τ1:t−1 as input, the training scheme minimizes the

cross entropy between the estimated prior distribution and the empirical dis-

tribution. Formally, the training scheme solves the following optimization
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problem:

max
T−1∑
t=0

Q−1∑
i=0

1 {x∗t = qi} log p̂(Xt = qi|xt−τ1:t−1) (5.8)

where 1{·} denotes the indicator function, which equals 1 if the statement

in its argument is true and 0 otherwise.

In this chapter we only implement the speaker dependent enhancement

task. The generalization to speaker-independent models will be one of our

future directions.

5.3.2 Training the Likelihood Model

Once the prior model is trained, the likelihood model can be trained by

combining both models to estimate the posterior distribution, as indicated

by equation (5.2). Ideally, we would like to solve

max
T−1∑
t=0

Q−1∑
i=0

1 {x∗t = qi} log p̂(Xt = qi|x̂t−τ1:t−1, yt−τ2:t+τ2) (5.9)

However, notice that the input of time t contains x̂t−τ1:t−1, which is a function

of the previous time outputs, as shown in equation (5.1). Therefore, equation

(5.9) introduces time recurrence, which causes gradient explosion in practice.

An alternative is to replace x̂t−τ1:t−1 with the true value x∗t−τ1:t−1 as in prior

model training, but this approximation leads to insufficient training, because

the model is given too much oracle information about the clean speech.

Our solution is to replace x̂t−τ1:t−1 with the inferred clean speech produced

by the network trained in the previous iteration. Denote the previous inferred

value as x̂
(old)
t−τ1:t−1, then the problem in equation (5.9) is reformulated as

max
T−1∑
t=0

Q−1∑
i=0

1 {x∗t = qi} log p̂(Xt = qi|x̂(old)
t−τ1:t−1, yt−τ2:t+τ2) (5.10)

Obtaining the previous inferred value x̂
(old)
t−τ1:t−1 can be implemented efficiently

using the method in [162].

It should be emphasized that while optimizing for equation (5.10), the

weights of the prior model should be held fixed to prevent deviation from

modeling the prior distribution.
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5.3.3 Efficient Prediction

The efficiency of predicting clean speech is especially important, because it is

also part of the training algorithm (obtaining x̂
(old)
t−τ1:t−1, yt−τ2:t+τ2 in equation

(5.10)). To predict efficiently, we adapt the efficient prediction algorithm

introduced in [163].

The key challenge of WaveNet prediction, and thereby BaWN prediction,

is that the input to the network includes previous predicted samples, and is

not available until the previous time prediction has finished. In other words,

the prediction process has to be completed sequentially, each time predict-

ing only one sample, which might result in repetitive computations. The

key idea of the efficient implementation in [163] is to set a queue in each

hidden layer to store the previous hidden outputs, so as to avoid redundant

computations. For BaWN, there are three dilated CNNs: one in the prior

model, two in the likelihood model. The dilated CNN in the prior model

and one of the two dilated CNNs in the likelihood model both take previous

predictions x̂
(old)
t−τ1:t−1, yt−τ2:t+τ2 as input, and have exactly the same structure

as in WaveNet. Therefore, for these two networks, the fast generation al-

gorithm can be applied. The other network in the likelihood model takes

noisy observations yt−τ2:t+τ2 as input, which are available all at once before

the prediction is performed. Therefore, regular computation of the whole

sequence is applied for this network.

5.4 Experiments

This section presents experiments that test the performance of the proposed

BaWN model. In particular, we will investigate how the prior model improves

the generalizability of BaWN to deal with completely unseen and different

noises. The ideal ratio mask (DNN-IRM) based model [145] was also imple-

mented as a baseline. Source code can be found at http://tiny.cc/7t5dly.

5.4.1 Configurations

The three dilated convolutional networks of the WaveNet enhancement model

all have four blocks of 10 layers, which makes a receptive field size of approx-
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imately two to three phones. For each layer, the hidden output has 32 chan-

nels and the skip output has 1024 channels. The post-processing modules in

both the prior and the likelihood models contain two fully connected layers,

each with 1024 hidden nodes. The clean speech is quantized into 256 levels,

so the output dimension is 256.

The training dataset consists of a clean training set (for the prior model)

and a noisy training set. The clean training set contains a total of 9700

utterances (19 hours) from audio books played by a female speaker [164]. The

noisy training set was created by mixing the 9700 clean utterances randomly

with 100 environment noises from [144, 165, 166], including train, airport,

restaurant and ring tones. The SNR of the noisy training set is set to two

levels: 0 dB and -5 dB.

There are two test sets, respectively containing 20 and 100 clean utterances

of the same speaker randomly selected from another audio book. For the

first test set, called the unseen noise test set, 100 noises were selected from

a completely different noise dataset [167] in order to test the generalizablity

of BaWN, where the types of noises and recording configurations completely

differ from that of the training noise dataset. For investigation purpose, the

second test set, called the seen noise test set, contains 20 noises drawn from

the training noise dataset.

The input training utterances were first segmented into fixed-length tokens.

Then, each clean token was quantized using 256-level µ-law companding and

padded with 4092 historical samples based on the receptive field size of the

our model. The noisy utterances were not quantized because the model does

not make predictions of noisy speech. Each noisy token was padded with not

only historical samples but also the same number of future samples. The tar-

get output was a 256-dimensional one-hot vector indicating the quantization

level of the desired output sample.

The prior model was trained on all 9700 (19 hours) clean utterances. Due

to significantly increased model complexity and the EM-like training pro-

cedures, the likelihood model was trained only on 500 (1 hour) utterances

from the noisy training set. Though the small sized training data may lead

to an insufficiently trained likelihood model, it actually provides a good op-

portunity to verify the power of the prior model and test the generalizablity

of BaWN. For fair comparison, the DNN-IRM baseline was trained on the

complete noisy training set.
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The DIRM baseline was constructed according to [146] and trained on the

same 9700 noisy utterances. The 64-channel cochleargrams were extracted

from the noisy utterances as the input features. The targets were the ideal-

ratio-masks (IRMs) at the corresponding frame and channel. The IRM of

the current frame is predicted using 23 neighboring frames centered at the

current frame. During testing, the IRMs were predicted and applied to the

corresponding noisy utterances to recover clean utterances.

5.4.2 Objective Evaluation

The performance was measured by the average of SNR, signal-to-artifacts

ratio (SAR), signal-to-distortion ratio (SDR), and short-time objective intel-

ligibility (STOI) of the predicted clean utterances. The first three metrics

were computed using the BSS-EVAL toolbox [168].

As seen in table 5.1, the BaWN model outperforms the DNN-IRM model

in terms of much higher SNRs. The performance advantage is more signifi-

cant under the −5 dB case, where BaWN takes the lead in SAR and STOI

as well. Also, our model generalizes better to the completely different unseen

noises, as the performance drop is smaller. This is remarkable considering

that the likelihood model was trained on only one hour of noisy speech and

the parameters of the model were not tuned. The prior model has enough

knowledge about the distribution of clean speech samples and tends to make

non-speech distributions less likely under unseen noises and low SNRs, which

helps to make better predictions even if the likelihood model is weak. BaWN

achieves slightly lower SDR and, in the 0 dB case, SAR, because the sequen-

tial inference would occasionally generate impulse noise. Yet this does not

weaken our argument for BaWN, considering the inherent negative corre-

lation between the SNR and SAR/SDR, and the huge performance gain in

SNR.

5.4.3 Entropy Analysis

The effectiveness of the prior model under the Bayesian framework can be

further visualized and analyzed by computing the entropies of the estimated
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Figure 5.2: The prior effectiveness function (equation (5.12)) of an speech
segment, smoothed by a 20-ms moving average filter, with its corresponding
utterance and noise.
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Table 5.1: Average SNR, SAR, SDR, STOI of the enhanced utterance using
DNN-IRM and BaWN. The first three metrics are measured in decibels
(dB), and the STOI is measured in percentage (%). Case indicates the
input SNR of the training and testing dataset. Noise indicates whether the
noise type is covered by the training set. BaWN stands for Bayesian
WaveNet. DIRM stands for DNN-IRM.

Case Noise Model SNR SAR SDR STOI

0 dB
seen

BaWN 22.2 8.53 8.83 85.7
DIRM 15.6 10.3 12.3 86.4

unseen
BaWN 22.1 8.37 8.75 84.3
DIRM 11.9 8.58 12.7 84.8

-5 dB
seen

BaWN 21.6 7.15 7.37 81.7
DIRM 12.2 6.45 8.53 79.0

unseen
BaWN 20.3 6.65 6.92 80.7
DIRM 9.20 5.25 8.24 76.6

prior and posterior distribution of each sample. Specifically

H
(pr)
t = −

Q∑
i=0

p̂(Xt = qi|x̂t−τ1:t−1)

· log2 p̂(Xt = qi|x̂t−τ1:t−1)

H
(post)
t = −

Q∑
i=0

p̂(Xt = qi|x̂t−τ1:t−1, yt−τ2:t+τ2)

· log2 p̂(Xt = qi|x̂t−τ1:t−1, yt−τ2:t+τ2)

(5.11)

In theory, H
(post)
t should always be smaller than H

(pr)
t . However, like many

other neural network based speech enhancement algorithms, BaWN, the like-

lihood model in particular, may fail in the presence of unseen noise. Therefore

H
(post)
t may sometimes be larger than H

(pr)
t . One of the good advantage of

BaWN is that the prior model can still play a role even when the likelihood

model fails. Since the prediction of a sample is more uncertain if the en-

tropy of the corresponding distribution is high, we can conclude that the

prior model plays a more important role than the likelihood model at time t

if H
(pr)
t < H

(post)
t . Hence we define a prior effectiveness function

et = 1

(
H

(pr)
t < H

(post)
t

)
(5.12)
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to depict the real-time effectiveness of the prior model. et is further smoothed

by a 20-ms moving average filter.

Figure 5.2 shows the smoothed et of a test speech segment (a), as well as

its corresponding clean speech (b) and noise (c) waveforms. There are two

important observations. First, the prior model is more effective when the

SNR is low, as can be seen from the segment before 0.25s. This is because

when the SNR is high enough, the likelihood model can simply pass noisy

observation through, which does not rely much on the prior model.

Second, the prior model is more effective after the onset of vowels or voiced

consonants. Accordingly, the likelihood model is more effective during un-

voiced consonants or at the onset of speech activities, as can be seen from

dips in the effectiveness function at around 0.4s, 0.5s and 0.65s. This is be-

cause the voiced speech is well-structured, so the prior model knows what

comes next once it recognizes the phone. On the other hand, the prior model

is less certain about the unvoiced phones because they are stochastic and can

be easily confused with noises.

5.5 Conclusion

We proposed a WaveNet enhancement model that directly operates on speech

waveforms and exploited its generalizability to completely unseen noises. The

results showed that our proposed model is able to produce clean speech and

outperformed the DNN-IRM model under small-sized training data in terms

of generalizability owing to the effectiveness of the prior model.
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CHAPTER 6

MODEL-BASED SPEECH ENHANCEMENT
WITH AD-HOC MICROPHONE ARRAY

In this chapter, we turn to a different speech enhancement task – multi-

channel speech enhancement, where multiple channels of corrupted speech

are available. Specifically, we are interested in speech beamforming in confer-

ence room meetings, with microphones built in the electronic devices brought

and casually placed by meeting participants. This task is challenging because

of the inaccuracy in position and interference calibration due to random mi-

crophone configuration, variance of microphone quality, reverberation etc.

As a result, not many beamforming algorithms perform better than simply

picking the closest microphone in this setting. Again, a generative model of

speech is able to help because it regularizes the output of the beamforming

algorithm against the vast variations of interference and position configura-

tions. Therefore, we propose a beamforming called Glottal Residual Assisted

Beamforming (GRAB). It does not rely on any position or interference cali-

bration. Instead, it incorporates a source-filter speech model and minimizes

the energy that cannot be accounted for by the model. Objective and sub-

jective evaluations on both simulation and real-world data show that GRAB

is able to suppress noise effectively while keeping the speech natural and

dry. Further analyses reveal that GRAB can distinguish contaminated or

reverberant channels and take appropriate action accordingly.

6.1 Introduction

Clean recordings of speech in conference rooms are useful in a number of

scenarios. For instance, for remote participants, clear speech is vital for

their understanding and participation. Currently, clean speech signals can

be obtained via structured microphone arrays, if the conference room has any.

However this is both inflexible and a waste of the resources available, because
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nowadays meeting participants tend to bring a lot of electronic devices, most

of which carry microphones. These sensors are usually casually placed on or

by the conference table, forming a large ad-hoc microphone array.

Traditional beamforming techniques have been well developed for struc-

tured microphone arrays. Most of these algorithm require two steps – posi-

tion and interference calibration [169]. Position calibration involves locating

the source, commonly in term of direction of arrivals (DOA) [170, 171], or

time delay of arrival (TDOA) [172–174], by evaluating relative delays of each

channels. Interference calibration involves measuring statistical characteris-

tics of additive noise and/or interference. For instance, a common apporach

is to measure additive noisy energy is to compute singal energy when no

speech is detected [175,176].

However, beamforming with a heterogeneous ad-hoc microphone array is

well known to be a challenging problem [177], because both position and

interference calibration can be quite inaccurate in this scenario. The biggest

challenge for position calibration is the clock drift [178]. Also, without know-

ing the geometric configuration of the microphones, estimating the source

location becomes a less constrained problem. What is worse, the sensors are

heterogeneous, which adds to the errors when cross correlation is computed.

Additionally, the interference characteristics vary drastically across channels,

making it difficult to calibrate them specifically for each channel [179]. As

a result, not many beamforming algorithms are robust in our intended sce-

nario. MVDR, for example, is shown to deteriorate when distant microphones

are included [180]. GSC will suffer from signal cancellation when position

calibration is inaccurate [181].

In this chapter we propose a beamforming algorithm, called Glottal Resid-

ual Assisted Beamforming (GRAB). It does not rely on position or inter-

ference calibration. Instead, it introduces a speech production model that

locates the speech energy, and minimizes everything else that cannot be ac-

counted for by the model. Experiments on both simulated and real-world

data show that GRAB is able to produce clean and natural sounding speech

even in very adverse conditions.

For the remainder of the chapter, we will review some previous work in

section 6.2. The algorithm is described in sections 6.3 and 6.4. Experimental

results are analyzed in section 6.5. Final discussion is given in section 6.6.
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6.2 Related Works

Some previous works try to address challenges of position and interference

calibration. For example, some works [182–186] use external labels or audio

events to synchronize channels. Some other works [187,188] use information

other than time delay to calibrate position. Himawan et al. [180] proposed

to select channels close enough for beamforming. These approaches address

part of the challenges, but are either infeasible for the intended scenario, or

yet to produce natural speech. Therefore, using the closest microphone has

become a popular viable strategy.

There have been past works on incorporating a speech knowledge into

beamforming. Brandstein [189] proposed a beamforming algorithm that uses

Dual-Excitation speech model (DE) [190] to enhance the result of beamform-

ing. It exploits periodicity in voiced speech to obtain a robust reconstruction

of speech signal. In another work [191], which shares a lot in common with

our work here, LPC analysis is performed on the output of the beamforming

signal, and a wavelet-based approach is then applied to the noisy residual to

recover the clean signal. In both of these work, however, speech modeling is

only applied as a post-processing module after beamforming. Thus the vul-

nerability of beamforming in our intended scenario would pass on to these

approaches.

Gillespie et al. [157] and Kumatani et al. [158] proposed to maximize

the kurtosis and negentropy. These works rest on the observation that the

sample-wise distribution of speech has higher kurtosis and negentropy than

corrupted speech. While such approaches leverage some information about

speech, their speech models are still limited. Also, these approaches still rely

on regular beamforming as initialization. Another class of methods, inde-

pendent vector analyses (IVA) [155,156,192], introduces a prior distribution

for speech and applies source independence as separation criteria, but is still

vulnerable to reverberation and channel heterogeneity.

6.3 Glottal Residual Assisted Beamforming

In this section, the proposed algorithm will be introduced. Denote the signal

recorded by the l-th channel as yl[t] within a single analysis frame of length
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T , and total number of channels as L; t denotes the discrete time. Each

channel records the single clean speech source, denoted as s[t], corrupted by

reverberation and additive noise sources.

6.3.1 The Algorithm Framework

The goal of the proposed GRAB algorithm is to determine a set of k-tap

beamforming filter coefficients {h1[t], · · · , hL[t]|t = 1, · · · , k} to obtain an

estimate of the clean speech:

x[t] =
L∑
l=1

yl[t] ∗ hl[t] (6.1)

where ∗ denotes discrete time convolution.

The target function to be minimized is the L2 distance between the LPC

residual of x[t] and the estimated LPC residual of s[t]. Formally, denote the

operator Rk{x}[t] as the LPC residual signal of x[t] of order k. Then the

optimization problem can be divided into two steps.

Step 1: Use a nonlinear speech production model to estimate Rk{s}[t],
i.e. the LPC residual of the clean speech. Denote the estimate as R̂k{s}[t].
The LPC order k is set to 13, which is common in speech analysis.

Step 2: Obtain the beamforming filter coefficients by solving the following

optimization problem:

min
{h1[t],··· ,hL[t]}

E
(
Rk{x}[t]− R̂k{s}[t]

)2

(6.2)

such that equation (6.1) is satisfied. E denotes sample mean.

The intuitions behind this formulation are twofold. First, the LPC residual

of clean speech is highly structured and well studied, and therefore can be es-

timated from noisy observations with adequate accuracy. Second, rather than

resynthesizing the clean speech directly from the estimated LPC residual, we

apply a beamforming filter to retain the estimated clean speech energy. This

step eliminates the artifacts and is very robust against the minor errors pro-

duced in step 1. In short, with the regularization of a strong speech model

and the beamforming filter as a failsafe, the proposed algorithm is expected

to perform reliably even in very adverse scenarios.
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Since step 2 is simpler, it will be discussed first in section 6.3.2. Step 1 is

solved by leveraging the relation between the clean speech LPC residual and

the glottal pressure wave, which will be discussed in detail in section 6.4.

6.3.2 Iterative Wiener Filtering

The goal of this subsection is to solve the optimization problem in equation

(6.2). For brevity, denote a supervector h as

h = [h1[0], · · · , h1[B], · · · , hL[0], · · · , hL[B]]T (6.3)

Define bk[t;h] as the LPC inverse filter impulse response of x[t] of order k,

i.e.

Rk{x}[t] = bk[t;h] ∗ x[t] =
L∑
l=1

bk[t;h] ∗ yl[t] ∗ hl[t] (6.4)

Note that bk[t;h] is a function of h because it is the LPC coefficients of x[t],

which is a function of h from equation (6.1).

Define channel LPC residuals and its supervector form as

ρl[t;h] = bk[t;h] ∗ yl[t]

ρ[t;h] =
[
ρ1[t;h], · · · , ρ1[t− k;h],

· · · , ρL[t;h], · · · , ρL[t− k;h]
]T (6.5)

Combining equations (6.3)-(6.5), equation (6.2) is reduced to

min
h

E
[(
R̂k{s}[t]− hTρ[t;h]

)2
]

(6.6)

The problem in equation (6.6) is non-linear in h, and bears no closed-form

solution. Yet, it can be solved iteratively, fixing h and ρ(t;h) alternatively.

Denote the h obtained in the m-th iteration as h(m). Then each iteration

essentially solves

h(m) = argmin
h

E
[(
R̂k{s}[t]− hTρ[t;h(m−1)]

)2
]

(6.7)
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Equation (6.7) is a Wiener filtering problem, whose solution is

h(m) =
(
R(m−1)

)−1
γ(m−1) (6.8)

where
R(m−1) = E

[
ρ(t;h(m−1))ρ(t;h(m−1))T

]
γ(m−1) = E

[
ρ(t;h(m−1))R̂k{s}[t]

] (6.9)

Our empirical analysis finds that three iterations suffice to converge. To

initialize, the cleanest channel is determined by finding the channel with the

lowest 0.4 quantile in squared signal samples. In our empirical study, it is

found that a channel with low the 0.4 quantile in its squared samples usually

has low reverberation and low noise. Then, h(0) is set to a delta function for

the estimated cleanest channel and 0 for the rest. Formally, define ql as the

0.4 quantile of {y2
l [1], . . . , y2

l [T ]}, where T is the signal length, then

h
(0)
l =

 [1, 0, · · · , 0]T if l = argmin
l′∈{1,··· ,L}

ql′

[0, 0, · · · , 0]T otherwise
(6.10)

This is essentially saying that the initial beamformer passes the cleanest

channel distortionlessly, and blocks the rest. The initial estimate of the

clean speech, denoted as y(0)[t], can thus be represented as

y(0)[t] = xl[t] (6.11)

where

l = argmin
l′∈{1,··· ,L}

ql′

6.4 Estimating Clean Speech LPC Residual

This section introduces the theory and procedure of estimating the LPC

residual of clean speech (step 1 mentioned in section 6.3.1). Unless specified

otherwise, the following discussion focuses on voiced speech only. Unvoiced

speech will be estimated as 0. The beamforming filter in step 2 would still

retain the unvoiced speech, because it has to turn its beam toward the voiced

speech source to retain voiced energy, and the unvoiced speech source is at
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the same of location of the voiced speech source.

6.4.1 The Source-Filter Model

The speech model applied in GRAB is the source-filter model introduced in

chapter 2. According to the source-filter model, as shown in figure 6.1(a),

speech signal s[t] is generated by passing a (quasi) periodic pulse train, de-

noted as p[t], through two successive filters. The first filter, G(z), is called

the glottal filter, the output of which models the acoustic pressure immedi-

ately above the glottis (the so-called glottal wave), denoted as e[t]; the second

filter, V (z), is the vocal tract filter.

The impulse response ofG(z), denoted as g[t], is essentially the glottal wave

within one cycle. The LF model [45] provides an analytical approximation of

its form, as introduced by equation (2.16). It was shown that the parameters

in equation (2.16) (te, ωg, tα, ε and tc) can be empirically reduced to a single

parameter Rd [48].

Accordingly, in z-domain, as shown in figure 6.1(a), G(z) can be modeled

by three poles [49]: a pair of anti-causal poles that corresponds to the t < 0

part in equation (2.16), and a real causal pole that corresponds to the t ≥ 0

part.

On the other hand, as shown in figure 6.1(a), V (z) can also be modeled as

an all-pole filter [13], with poles depicting resonant frequencies of the vocal

tract. As a result, the combined system G(z)V (z) is all-pole in nature, as

shown in the left plot in figure 6.1(b). The number of poles is usually assumed

to be 13.

6.4.2 LPC Analysis

The all-pole nature of G(z) and V (z) justifies LPC analysis on speech. The

LPC residual is produced by passing the signal through a minimum-phase

all-zero LPC inverse filter. In z-domain, the LPC inverse filter uses a zero

to cancel every causal pole in the system. For anti-causal poles, however, it

puts zeros at their conjugate positions. The conjugate position of z is z−1.

Figure 6.1(b) shows LPC analysis on speech system. As discussed, all the

poles of G(z)V (z) are canceled, except for the two anti-causal poles of G(z).
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Glottal Filter

𝐺 𝑧

Vocal Tract 

Filter

𝑉 𝑧
Pulse train

𝑝 𝑡
Glottal wave

𝑒 𝑡
Clean speech

𝑠 𝑡

(a) The source-filter model for speech generation

𝐺 𝑧 𝑉 𝑧
Equivalent filter 

for ℛ13 𝑠 𝑡
LPC Inverse filter 

for 𝐺 𝑧 𝑉 𝑧

(b) LPC inverse filter for clean speech.

𝐺 𝑧
LPC Inverse filter 

for 𝐺 𝑧
Equivalent filter 

for ℛ3 𝑒 𝑡

(c) LPC inverse filter for glottal wave.

Figure 6.1: The source-filter model and LPC inverse filter. The green zeros
in the middle plots exactly cancel the poles; the purple zeros are placed at
the conjugate positions of their corresponding anti-causal poles.

96



Therefore, the LPC residual of speech, R13{s}[t], is equivalently generated

by passing p[t] through an all-pass filter.

Similarly, if we perform the order-3 LPC analysis on the glottal wave e[t],

which is the output of G(z), we will get the same all pass filter, as shown in

figure 6.1(c). Therefore,

R13{s}[t] ≈ R3{e}[t] (6.12)

6.4.3 Estimating R13{s}[t]

Equation (6.12) implies the estimation of R13{s}[t] can be approximated by

that of R3{e}[t]. Notice from figure 6.1(a) that e[t] = p[t] ∗ g[t], so the task

is further simplified as estimating p[t] and g[t]. Denote the estimates as p̂[t]

and ĝ[t]. Then

R̂13{s}[t] = R3{p̂ ∗ ĝ}[t] (6.13)

The estimation of p[t] and g[t] is based on the cleanest channel, y(0)[t], as

defined in equation (6.11).

The pulse positions of p̂[t] are referred to as the glottal closure instants

(GCIs). It has been shown [193] that GCIs correspond to peaks of the instant

energy of speech, which turns out to be quite noise robust. Therefore, we

apply a simple peak-picking rule on the instant energy of y(0)[t], denoted as

E[t], picking peaks above a threshold τ as the pulse positions of p̂[t], subject

to the periodicity constraint. Formally, the instant energy function is defined

as

E[t] =
[(
y(0)[t]

)2 ∗ wh[t]
]0.5

(6.14)

where wh[t] is the hamming window of length 30 ms. Define T0 and the

fundamental period estimate of the signal using the autocorrelation method.

Then the pulse positions {π0, π1, . . . } are determined in a recursive manner:

πk = argmax
t∈[πk−1+0.8T0,πk−1+1.2T0]

E[t] (6.15)

π0 = argmax
t∈T0

E[t] (6.16)
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Figure 6.2: Typical LPC residual of speech (black line) and the modeled
residual using the simplified LF model (red line).

and thus

p̂[t] =

{
E[t], if t ∈ {π0, π1, · · · } and E[t] > τ

0, otherwise
(6.17)

One remark is that this simple GCI tracking algorithm can be very inac-

curate, but it is computationally efficient, and it already provides enough

information for the beamformer introduced in section 6.3.2 to locate the

voiced energy.

For ĝ[t], recall that it is parameterized by a single parameter Rd. It was

shown that Rd typically falls in the range [0.3, 3] [48]. Therefore, we first

quantize [0.3, 3] into a candidate set C. Then, Rd is estimated by optimizing

the following problem via grid search:

min
Rd∈C

E
[
R3{p̂ ∗ ĝ}[t]−R13{y(0)}[t]

]2
(6.18)

such that ĝ[t] satisfies equation (2.16) parameterized by Rd.

Figure 6.2 shows an example estimation result, where the black line shows

a typical LPC residual for speech. The red line shows the modeled LPC

residual. The two lines agree in coarse structure, although the true residual

has a lot more fine variations, which agrees with the previous finding that

the LF model does not capture the fine structure of glottal wave [53]. Still,

this model is good enough for our purpose.
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Algorithm 6.1 The GRAB algorithm

Input: A set of corrupted speech signal {y1[t], · · · , yL[t]}
Output: A set of filter coefficients {h1[t], · · · , hL[t]} (or its supervector form
h as defined in equation (6.3)), and the estimate of clean speech computed
by equation (6.1)

Initialize
Initialize beamforming coefficients, h(0), and the clean speech estimate,
y(0), using equations (6.10) and (6.11) respectively.

Estimate R̂13{s}[t]
Estimate p̂[t] by equations (6.15)-(6.17).
Estimate ĝ[t] by equations (2.16) and (6.18).
Estimate R̂13{s}[t] by equation (6.13).

Determine beamforming coefficients
for iter = 1 to I do

Update h by equation (6.8).
end for

6.4.4 The Algorithm Table

As a summary, the GRAB algorithm is listed in algorithm 6.1. The compu-

tational complexity of estimating R̂13{s}[t] is linear in frame length T . The

computational complexity of updating h by equation (6.8) is O(L3), which

can be reduced to O(L log(L)) by approximating R as a circular convolu-

tion matrix and applying the Fast Fourier Transform (FFT). Therefore, the

overall computational complexity for one iteration is O(T ) + O(L log(L)),

which is efficient, and shows GRAB has a good potential to be adapted to a

real-time algorithm.

6.5 Experiments

Experiments are performed on both simulated data and real-world data,

which shows that GRAB is able to produce clean and natural sounding speech

even in very adverse conditions. Readers are encourage to access the code

and sample audios available in http://tiny.cc/2rgzjy.
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Table 6.1: Signal to Noise Ratio (SNR) and Direct-path to Reverberation
Ratio (DRR) on the simulated data. Er is energy ratio of speech source
over noise source in dB; RT is reverberation time in second.

SNR (dB)

Er RT GRAB closest IVA MVDR

20
0.1 35.9 25.0 28.5 34.9
0.2 32.8 20.8 23.1 33.8
0.3 29.6 20.6 22.9 27.1

10
0.1 33.4 15.4 26.6 32.1
0.2 27.9 12.0 21.2 27.7
0.3 22.9 8.28 19.7 23.4

0
0.1 27.2 7.00 22.5 24.9
0.2 17.6 -3.73 18.3 22.5
0.3 13.9 2.65 17.3 19.8

DRR (dB)

Er RT GRAB closest IVA MVDR

20
0.1 12.4 12.6 -7.68 -0.25
0.2 9.64 7.01 -9.90 -4.19
0.3 8.37 4.11 -9.64 -1.09

10
0.1 12.6 13.0 -7.46 -0.24
0.2 9.40 7.05 -9.66 -3.39
0.3 5.68 3.25 -8.35 -4.28

0
0.1 12.5 13.6 -7.68 -2.49
0.2 9.32 5.17 -9.90 -3.77
0.3 5.28 4.40 -9.64 -5.02
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6.5.1 Simulated Data

Simulated cubic rooms are generated with length, width and height uniformly

drawn from [2.5, 10], [2.5, 10], [2.5, 5] meters respectively. Within each room,

eight microphones and two sources are uniformly randomly scattered with

the same height, which mimics conference room scenario. Source 1 is speech

randomly drawn from the TIMIT corpus [194]. Source 2 is noise randomly

drawn from [144,165,166]. The energy ratio of speech over noise, Er, is set to

three levels, 20 dB, 10 dB and 0 dB. The transfer function from each source

to each microphone is computed using the image-source method [195, 196].

The reverberation time parameter RT is set to 0.1 s, 0.2 s and 0.3 s. Each

Er and RT setting is run 100 times, and following metrics are evaluated:

• Signal-to-Noise Ratio (SNR): The energy ratio of processed clean

speech over processed noise in dB.

• Direct-to-Reverberant Ratio (DRR): the ratio of the energy of di-

rect path speech in the processed output over that of its reverberation in dB.

Direct path and reverberation are defined as clean dry speech convolved with

the peak portion and tail portion of processed room impulse response. The

peak portion is defined as ±6 ms within the highest peak; the tail portion is

defined as ±6 ms beyond.

Three baselines are compared with GRAB: closest mic strategy, time-

domain MVDR with non-speech segment labels given, and IVA with Lapla-

cian prior [155]. Specifically, the MVDR is told which segments are non-

speech and calibrates noise characteristics using only these segments. For

the IVA method, to resolve the channel ambiguity, the channel with the

highest SNR is chosen. All the beamformers are 400-tap.

Table 6.1 shows the objective results. In terms of noise suppression, as

measured by SNR, GRAB, MVDR and IVA have significant advantage over

the closest mic strategy. GRAB and MVDR are almost the same, which is

quite encouraging, because the target of MVDR is specifically noise reduction

and side information about voice activity is given, whereas our algorithm

achieves a similar performance without explicitly measuring noise or oracle

information.

In terms of reverberation reduction, as measured by DRR, GRAB achieves

significantly better performance. Although MVDR and IVA can suppress

noise effectively, it comes at the cost of increasing reverberation. GRAB,
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Table 6.2: SNR and Crowd MOS results on real-world data. Paper is short
for paper shuffle.

Metric Noise GRAB closest IVA MVDR

SNR
(dB)

Cell Phone 18.9 10.0 11.7 10.8
CombBind 17.4 10.0 9.74 16.5
Paper 12.4 10.0 6.38 7.72
Door Slide 18.5 10.0 12.4 14.0
Footstep 17.4 10.0 15.9 13.4
Overall 16.9 10.0 11.2 12.5

MOS

Cell Phone 3.12 3.00 1.38 1.70
CombBind 3.35 3.18 1.68 2.36
Paper 3.21 3.23 1.59 2.04
Door Slide 3.88 3.63 1.97 2.80
Footstep 3.78 3.59 1.72 2.64
Overall 3.47 3.33 1.66 2.31

Table 6.3: Gain (norm of the filter coefficients) of each channel in speaker 1
+ door slide scenario.

Mic 1 2 3 4 5 6 7 8

Gain 0 0.17 0.55 0.26 0.32 0.52 0.43 0.15

without measuring noise or reverberation information, strikes a good bal-

ance between noise suppression, which matches MVDR, and reverberation

reduction, which outperforms the closest channel.

6.5.2 Real-world Data

To verify GRAB works in the intended scenario, we recorded a realistic

dataset. The data were collected with eight different microphones - four

wireless electret mics (numbered 1-4), three wired electret mics (numbered

5-7), and one wired dynamic mic (numbered 8), which mimicked the hetero-

geneity of recording devices. These mics were casually placed on the table

of a conference room. There are two speakers, reading My Grandfather [197]

and The Rainbow [198] respectively. Speaker 1 was beside mics 3 and 6;

speaker 2 was beside mic 5.

To make the problem even more challenging, we deliberately introduced

two special channels. Mic 1 suffered from strong hissing noise probably due to
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wireless interference. Mic 8 was placed right next to a noisy fan at the corner.

Furthermore, five different types of noise were recorded separately, which are

cell phone, CombBind machine, paper shuffle, door slide and footstep. Each

was then mixed with the speech such that the SNR of the closest channel is

10 dB.

Table 6.2 shows the objective measures. The metrics and baselines are

the same as in section 6.5.1. The SNR of the closest channel is 10 dB by

construction. As can be seen, GRAB still suppresses noise more effectively

than the MVDR and IVA, although all performances are worse than the

simulated data. The paper shuffle case, in particular, presents challenge to

all these algorithms, in part because it is a moving source. DRR cannot be

evaluated on real-world data, so it is not included.

To assess the perceptual quality of the output speech, we performed a

subjective evaluation via Amazon Mechanical Turk using crowdMOS [3]. The

speech signal is divided into 12 short sentences of length 3-7 seconds, each

combined with the five types of noise, so the total number of test sentences

is 60. The subjects are asked to rate from a scale of 1-5 the quality of the

speech. Each test unit, called a HIT, consists of one sentence processed by

the four approaches with randomized order. Each HIT is assigned to 10

participants. Before the test, the subjects are presented with three anchor

sentences, which are speaker 1’s utterance with fan noise recorded by the

closest mic (mic 6, with suggested score of 4 or 5), closest mic with 10 dB

cell phone noise (with suggested score of 2 or 3), and the bad mic (mic

1, with suggested score of 1). The anchor examples are excluded from the

test set. To resolve the ambiguity of the true speech signal, which results

from microphone heterogeneity, the spectral characteristics of all the test

speech are normalized to match those of the TIMIT corpus via the filterbank

approach.

Table 6.2 shows the results. Both GRAB and closest channel significantly

outperform MVDR and IVA, which suggests that the heavier reverberation

introduced by MVDR and IVA is perceptually unpleasant. On the other

hand, GRAB is able to produce dry and clean results that are preferred over

even the closest channel, except for the paper shuffle case, where the noise

suppression is not so successful.
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Figure 6.3: Beamforming filter coefficients. Upper: channel 6, a dry
channel. Lower: channel 4, a reverberant channel. Dashed lines mark the
instances of impulses.

6.5.3 Beamforming Filter Coefficients Analyses

To demonstrate how GRAB process channels with different qualities, table

6.3 displays the gain of each channel, defined as the norm of the beamforming

coefficients, in speaker 1 with door slide noise scenario. Recall that mic 1

is problematic and mic 8 is placed close to a noisy fan. From table 6.3, the

gain of these two channels are very low, especially for channel 1, whose gain

is very close to 0. Meanwhile, the close channels, channels 3 and 6, have the

highest gains. This result shows that GRAB can automatically distinguish

good channels from bad, even without explicit position or noise information.

Furthermore, to see how GRAB deals with reverberation, figure 6.3 shows

the beamforming filter coefficients of channel 6, a dry channel, and channel

4, a reverberant channel. As can be seen, for the dry channel, the impulse

response contains 1 major impulse, indicating the algorithm lets it pass dis-

tortionlessly. On the other hand, the impulse response of the reverberant

channel consists of several major impulses of decreasing height from right to

left, which resembles an inverse filter of the reverberation. More intuitively,

rather than canceling the reverberation as proposed in many beamforming

104



algorithms, GRAB adds reverberation back to the direct path signal. This

result, again, indicates that GRAB is able to detect reverberant channels

and automatically figure out a good way to process it, without any explicit

reverberation measurement.

6.6 Conclusion and Future Directions

We have proposed GRAB, which does not rely on position and interference

calibration, but locates speech energy guided by a speech model and minimize

the non-speech energy. Experiments have shown that it can suppress both

noise and reverberation. One of our next steps is to adapt the algorithm to

be real-time, after which many standing problems with ad-hoc microphone

arrays can potentially be solved, including clock drift and moving speaker.
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CHAPTER 7

DISCUSSION

So far we have presented four works that introduce generative models for

speech in different speech processing tasks. Now we are ready to have a

more in-depth discussion on the research questions raised in chapter 1.

7.1 Contributions to Natural Speech

The first question we would like to discuss is how generative models help in

improving the quality of the output speech. The tasks and proposed solu-

tions presented in the previous chapters are so diverse that it is not easy to

see through the direct link between generative models and the naturalness

of output speech. Generally speaking, generative models help in improving

the quality of output speech in two ways. First, a good generative model

parameterizes speech signal so that it reduces the modeling load of the ma-

chine learning algorithms. The spare modeling power can be used to capture

other aspect of speech, thus making the algorithms simpler and more pow-

erful. This is the case for the two speech synthesis tasks (chapters 3 and

4). Second, generative models can serve as priors that regularize the output

to be speech-like. This is the case for the speech enhancement tasks (chap-

ters 5 and 6). The following two subsections discuss these two paradigms

respectively.

7.1.1 Augmenting the Modeling Power by Parameterization

To better appreciate the benefits and potential challenges in parameterizing

the output, it is useful to compare the proposed generative models with pa-

rameterization against those without. In particular, the PAT model proposed

in chapter 3 is an acoustic model for speech waveforms, and WaveNet [15]
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is a deep learning based generative model directly on raw waveform. It is

useful to compare these two models. Similarly, the TEReTA model and the

baseline algorithm proposed in section 4.5.1 can be compared.

The first and immediate observation is that the resulting models are sim-

pler. WaveNet has to fit the audio waveform sample by sample. For a 16 kHz

speech waveform, WaveNet has to predict 16,000 samples each second. To

capture the relationship among such massive sample points, WaveNet has to

build 10-20 dilated convolution layers. On the other hand, the PAT model

has 36 parameters for each frame, and 3,600 for each second, assuming 100

Hz frame rate. Similarly, TEReTA model needs to fit three parameters per

syllable but the deep learning based F0 baseline has to fit 50-100 samples per

syllable. Therefore, the number of hidden nodes in the baseline is four times

as large as that in TEReTA. The difference in model complexity and output

dimension has led to a significant difference in training time and generation

time. TEReTA, for example, runs more than three times faster than the F0

baseline model does.

However, if it were only a matter of time and complexity, generative models

with parameterization would not have many advantages over the pure data-

driven ones, and the advantages would finally be beaten by the Moore’s law.

What is more important is that the parameterized generative models are

able to free the modeling power of the machine learning module for modeling

other dependencies that contribute to natural speech, which would have been

very difficult otherwise. For example, TEReTA frees the needs of the deep

neural network in modeling the short-time F0 behavior, so that the RNN can

concentrate in memorizing semantics, which is very important for generating

natural F0 contour, but which is challenging for existing prosody models.

Similarly, it was found in [15] that WaveNet is too occupied in model local

acoustic dependencies to capture the F0 contour within a word, which leads to

arbitrary lexical stress. As a future direction, we are studying the advantage

of the PAT model in generating babbles that are coherent in longer terms.

Another important advantage of generative models with parameterization

is that the estimated parameters are interpretable, and can be used for other

speech processing tasks. The estimated parameters of PAT can be used

for pitch tracking (φn), glottal status estimation (Rdn), and even speech

recognition (cn). The pitch targets estimated by TEReTA can be used for

further linguistic interpretations.
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Yet, along with the benefits come risks. An imperfect parameterized gen-

erative model may deteriorate the model quality so badly that any gain in

other aspects of naturalness would be pointless. The cepstral-based source-

filter model has been widely applied in speech synthesis, but the acoustic

modeling suffer from unnaturalness such as the metallic timbre, and thus

was finally replaced with deep learning acoustic models. In theory, the part

taken over by the parameterized generative models could be equally, or even

better, modeled by machine learning techniques, given enough representation

power. Therefore, the modeling quality of traditional generative models has

to improve to match the modern data-driven techniques before it can play a

role in any hybrid systems. That is one of the motivations of developing the

PAT model.

7.1.2 Regularizing the Output

Improving the naturalness of speech enhancement tasks has become an equally

important goal to improving the cleaness of speech. Generative models can

help in improving the quality of the enhancement output by defining the

sample space of speech signals, and regularizing the output to fall in this

space. In other words, generative models can force the enhancement output

to be “speech-like”.

Despite the differences in their actual forms, the benefit of regularization

is universal in both BaWN and GRAB, because both models are shown to be

much more robust against noise/interference volatility than systems without

a speech model. It is shown that as long as the speech model is well trained,

BaWN can be well generalized to unseen noise even though the noisy training

set is very small. Similarly, simply by introducing the speech model, GRAB

is able to remove all the challenges in position and interference calibration,

whose accuracy is severely impacted by the variability of the position con-

figuration and interference forms. Moreover, our subjective evaluation has

shown that the naturalness of GRAB enhanced result is well appreciated by

the human participants.
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7.2 Combination with Pattern Recognition Techniques

The second question we would like to discuss on is how pattern recognition

techniques can combine with generative models and what are the technical

challenges. Generally speaking, the major technical challenge for generative

models is the inference of the hidden variables or parameters.1 Most gener-

ative models can be abstracted as taking a set of parameters as input, and

producing the clean speech as the output. Since both the input parameters

and the output clean speech can be unobservable, the inference tasks can be

further divided into two categories, inference for the parameters and infer-

ence for the clean speech. The following two subsections discuss on these two

categories respectively.

7.2.1 Inference of Parameters

The inference of parameters is needed when the input parameters are unob-

servable. There are three instances of such inference tasks covered in this

thesis, which are inferring the hidden variables for PAT (section 3.4), infer-

ring the pitch targets for TEReTA (section 4.3.2), and inferring glottal wave

information for GRAB (section 6.4.3). The difficulty of a inference task varies

significantly with model complexity and accuracy requirement.

If the model is simple, a simple gradient descent algorithm suffices to infer

the hidden parameters. The inference of pitch targets for TEReTA is im-

plicitly a gradient descent algorithm. To be more specific, when training the

target prediction network, the system needs to know the pitch target of each

syllable. However, rather than explicitly inferring the pitch targets before

feeding the inferred values to train the target prediction network, the pro-

posed training algorithm trains the entire system in an end-to-end manner,

i.e. jointly minimize equation (4.10) over all the trainable parameters using

the gradient descent and the back propagation algorithms. According to the

back propagation, the output of each module, the pitch targets included, are

implicitly inferred using the gradient descent algorithm. Such an end-to-end

training scheme is efficient, but it is applicable only when the generative

1Here the term “inference” is abused for brevity. Strictly speaking, inference is for the
Bayesian framework, but here it refers to tasks that involve getting useful information
about the unobservable quantities.
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model, i.e. the TA model, does not have a complicated error surface with

respect to the input parameters, otherwise the system can easily be trapped

into a poor local optimum.

When the model complexity is high, gradient descent is no longer appli-

cable. However, if the accuracy requirement is low, an efficient inference

scheme is still available, if we take the advantage of the good interpretabil-

ity of the parameterized generative models. For example, the source-filter

model applied in GRAB (section 6.4) has a highly non-convex error surface

with respect to the input parameters, the GCI location and the glottal shape

parameter Rd. However, the accuracy requirement is low, because a beam-

former is later applied as a safeguard step (section 6.3.1). In this case, GCI

is inferred by its well-studied correlation to the short-time energy function,

and Rd is inferred via quantization and grid search (section 6.4.3). These

inference schemes can be implemented efficiently, but neither of them is ac-

curate – the correlation between GCI and the short-time energy function is

not exact, and the inference of Rd suffers from quantization errors. Yet the

errors fall in a tolerable range and can be fixed by the later beamforming

step.

The most challenging case arises when the model complexity and accu-

racy requirement are both high, as is the case for PAT. Unfortunately in this

thesis we are not able to find an efficient inference algorithm for the hid-

den variables, but a computational intensive yet effective MCMC algorithm

(section 3.4). Improving the inference efficiency while maintaining its accu-

racy remains to be the major future direction for PAT. In light of the rapid

development in deep learning techniques, a possible solution would be to in-

troduce a deep inference network, which predicts the posterior distribution

of the hidden variables from the input observations. In order to train the

network, massive hidden and observation variable pairs can be generated by

the generative models.

7.2.2 Inference of Clean Speech

The inference of the clean speech is needed when the clean speech itself is

unobservable, as is the case of speech enhancement. As mentioned before,

generative models of speech can serve as regularizations for such inference
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tasks. The regularization can be either probabilistic or deterministic, and the

speech model can be either parameterized or pure data-driven. The works

presented in this thesis have explored all these dimensions.

In terms of the form of regularization, BaWN is probabilistic, and GRAB is

deterministic. More specifically, BaWN introduces the Bayesian framework,

where the speech model is in the form of a prior, and where the probability

of the noisy speech conditional on the clean speech serves as the likelihood

function. The inference is done by computing the posterior distribution.

In GRAB, the speech model predicts the deterministic clean signal, and the

beamformer minimizes the L2-norm between its enhancement output and the

clean signal. Yet the deterministic L2 minimization can be converted into a

probabilistic equivalent as well, by assuming that the noise is a Gaussian in

the LPC domain. Therefore, essentially the two regularization forms differ

in two ways. First, the clean signal prediction given by the speech model

is deterministic in GRAB, but probabilistic in BaWN. Second, the proba-

bilistic regularization applied in BaWN does not make any assumption on

the distribution of noise, except that they are discrete. The GRAB model,

however, assumes that the noise is Gaussian in the LPC domain. The two

sets of assumptions have their own merits. In cases where the clean speech

prediction is uncertain and the noise is non-Gaussian, the accuracy of GRAB

may be compromised. On the other hand, BaWN suffers from quantization

errors.

In terms of the form of speech model applied, GRAB uses the tradi-

tional source-filter model, and BaWN uses a deep neural network based on

WaveNet. WaveNet has been shown to predict natural speech accurately

given enough training data. However, any data-driven methods are suscep-

tible to generalization issues. In BaWN, the prediction of clean speech is

done in a sequential manner. If the previous predicted samples suffer from

errors, the errors may keep accumulating to a point where the input is so

different from the training examples that WaveNet does not know how to

do with it. On the other hand, the source-filter model does not require any

training, and is not particular to any speech, noise, and reverberation form.

However, the LPC assumption and the LF glottal model applied suffer from

approximation errors. In GRAB, the approximation errors are remedied by

the beamforming step (the safeguard step), otherwise the quality of the clean

speech prediction can be seriously compromised.
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CHAPTER 8

CONCLUSION

In this thesis, four different research attempts of applying generative mod-

els in speech synthesis and enhancement have been introduced. For speech

synthesis, PAT is a probabilistic model for acoustic speech signal, which im-

proves over the existing parameterized source-filter models of speech in terms

of reconstruction error; TEReTA is an F0 model combining the articulatory-

driven TA model, a neural network and text embeddings, and is among

the first efforts to capture contrastive focus directly from text. For speech

enhancement, BaWN is a single-channel enhancement algorithm that incor-

porates WaveNet in the Bayesian framework, and is shown to generalize

well to unseen noise even without a massive noisy training set; GRAB is a

multi-channel enhancement algorithm that combines the source-filter model

with the beamforming algorithm, and is shown to produce natural sounding

output and be robust against unknown position and interference.

Along with the four research attempts, the benefits of applying generative

models in speech synthesis and enhancement have been explored. Generally

speaking, generative models are essential for natural sounding output in two

ways. First, the generative models with proper parameterization, combined

with the machine learning techniques, is able to capture richer dependencies

that contribute to the natural sounding output. Second, with the regulariza-

tion of speech models, speech enhancement algorithms are forced to produced

speech-like output that is robust against unseen noises and unknown config-

urations.

The technical challenges of combining the generative models with the ma-

chine learning techniques have also been discussed. The machine learning

techniques are essential for parameter estimation and inference. In the ab-

sence of a closed-form solution, which would often be the case, simple gradient

descent algorithms suffice to perform well when parameterization is simple, as

in the case of TEReTA. However, more sophisticated algorithms, such as the
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Monte-Carlo methods and deep inference network, should be applied when

the parameter manifold is complex. A Markov chain Monte-Carlo method

is applied for PAT, and it is able to produce an accurate inference, but suf-

fers from large computational complexity. A deep inference network, on the

other hand, performs the inference efficiently using a neural network, and is

a promising future direction.

Richard Feynman once wrote: “What I cannot create, I do not under-

stand.” Indeed, human beings have long been fascinated by the secrets be-

hind speech, but it was not until the first talking machine was invented in

the late 18th century1 that we started to unveil the secrets. Since then, many

breakthroughs have been made in speech production theories and generative

models of speech, which gave rise to the prosperity of modern speech tech-

nologies. Today, we are in a new era when deep learning and deep generative

models have become popular research areas. We believe that, with the help

of the breakthroughs in modern machine learning technologies, generative

models of speech will keep promoting the naturalness of machine generated

speech, and thereby continue to refine the interaction between human and

machine using the most natural media and the most distinctive characteristic

of human beings – speech.

1Wolfgang von Kempelen’s Speaking Machine, https://en.wikipedia.org/wiki/

Wolfgang_von_Kempelen\%27s_Speaking_Machine.
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