
c© 2017 Hao Wu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158322294?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SITE RELIABILITY AGAINST ANOMALOUS BEHAVIORS

BY

HAO WU

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2017

Urbana, Illinois

Doctoral Committee:

Associate Professor Yih-Chun Hu, Chair
Associate Professor Nikita Borisov
Associate Professor Michael Bailey
Assistant Professor Hsu-Chun Hsiao, National Taiwan University

ABSTRACT

Many attacks that threaten service providers and legitimate users are anoma-

lous behaviors out of specification, and this dissertation mainly focuses on

detecting “large” Internet flows consuming more resources than those al-

located to them. Being able to identify large flows accurately can greatly

benefit Quality of Service (QoS) schemes and Distributed Denial of Ser-

vice (DDoS) defenses. Although large-flow detection has been previously

explored, proposed approaches have not been practical for high-capacity core

routers due to high memory and processing overhead. Additionally, more ef-

ficient schemes are vulnerable against specially tailored attacks in which at-

tackers time their packets based on the knowledge of legitimate cross-traffic.

In this dissertation, we aim to design computation- and memory-efficient

large-flow detection algorithms to effectively mitigate the large-flow damage

in adversarial environments. We propose three large-flow detection schemes:

Exact-Outside-Ambiguity-Region Detector (EARDet), Recursive Large-Flow

Detection (RLFD), and the scheme of in-Core Limiting of Egregious Flows

(CLEF), which is a hybrid scheme with one EARDet and two RLFDs.

EARDet is a deterministic algorithm that guarantees exact large-flow de-

tection outside an ambiguity region: there is no false accusation for legitimate

flows complying with a low-bandwidth threshold, and no false negative for

large flows above a high-bandwidth threshold, with no assumption on the

input traffic or attack patterns. Because of the strong enforcement with the

arbitrary window model, EARDet is able to immediately detect both flat

and bursty flows. RLFD is designed to complement EARDet in detecting

large flows in EARDet’s ambiguity region. RLFD is a probabilistic de-

tection scheme that gives higher probability for detecting large flows with

higher volume, thus guarantee limited damage (to legitimate flows) across

a wide range of flow overuse amounts. Finally CLEF combines EARDet

and RLFD to achieve both rapid detection for very large flows and even-

ii

tually detection for small, persistent large flows. Theoretical analysis and

experimental evaluation both suggest the CLEF’s efficiency and effectiveness

outperform existing algorithms.

iii

To my family, for their unconditional love and support.

iv

ACKNOWLEDGMENTS

I would like to express sincere appreciation to my advisor Professor Yih-

Chun Hu for his help and advice in developing the work and writing this

dissertation. I feel so lucky to meet such a smart and nice advisor who

guides me and leads me to act as an engineer and a researcher. All skills

learnt from him will definitely benefit me in my future career.

Then, I want to give special thanks to Professor Hsu-Chun Hsiao and

Professor Adrian Perrig, who have worked together with me on large-flow

detection during my Ph.D. study. Their suggestions and help provided great

venues to overcome those hard problems in developing EARDet, RLFD,

and CLEF.

I am also grateful for my doctoral committee members Professor Nikita

Borisov and Professor Michael Bailey, who gave me unvaluable feedback and

guidance on my dissertation work.

Finally, many thanks to my family who supported and helped me finish

my Ph.D. degree.

v

TABLE OF CONTENTS

LIST OF ABBREVIATIONS . viii

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 LARGE-FLOW DETECTION BACKGROUND 4
2.1 Large-Flow Detection Problem 4
2.2 Related Work . 7

CHAPTER 3 EXACT LARGE-FLOW DETECTION OUTSIDE
AN AMBIGUITY REGION . 11
3.1 Chapter Overview . 11
3.2 Problem Definition . 14
3.3 Algorithm . 16
3.4 Algorithm Analysis . 21
3.5 Evaluation . 25
3.6 Chapter Summary . 33

CHAPTER 4 CLEF: LIMITING THE DAMAGE CAUSED BY
LARGE FLOWS IN THE INTERNET CORE 34
4.1 Chapter Overview . 34
4.2 Problem Definition . 36
4.3 Background and Challenges 39
4.4 RLFD Algorithm and CLEF Hybrid Scheme 41
4.5 Analysis . 51
4.6 Evaluation . 60
4.7 Timing-Randomized CLEF in Adversarial Environment 69
4.8 Chapter Summary . 79

CHAPTER 5 DISSERTATION SUMMARY 81

APPENDIX A EXACT-OUTSIDE-AMBIGUITY-REGION DE-
TECTOR . 83
A.1 Proof Sketches for Lemmas . 83

vi

APPENDIX B IN-CORE LIMITING OF EGREGIOUS FLOWS . . 88
B.1 Additional Analysis . 88
B.2 Proof Sketches . 97
B.3 Additional Table . 103

REFERENCES . 104

vii

LIST OF ABBREVIATIONS

AMF Arbitrary-window-based Multistage Filter

AMF-FM Hybrid scheme of AMF and FM

CLEF in-Core Limiting of Egregious Flows

(D)DoS (Distributed) Denial of Service

EARDet Exact-Outside-Ambiguity-Region Detector

FM Flow Memory

FMF Fixed-window-based Multistage Filter

FN False Negative for large misbehaving flows

FP False Positive for legitimate flows

MG Misra-Gries

No-FN No False Negative for large misbehaving flows

No-FP No False Positive for legitimate flows

No-FN` No False Negative for large flows in EARDet

No-FPs No False Positive for small flows in EARDet

QoS Quality of Service

RLFD Recursive Large-Flow Detection

Twin-RLFD Hybrid scheme of two RLFD instances

V.C. Virtual Counter in RLFD

viii

CHAPTER 1

INTRODUCTION

Many attacks that threaten the service providers and the legitimate users

in the Internet are anomalous behaviors that are different from the legitimate

behaviors in the Internet. At the network level, the attack traffic has patterns

and features that differ from legitimate traffic. For example, the Denial of

Service (DoS) attacks flood the targeted machine or resource to cause service

with a huge amount of traffic to overload systems and prevent legitimate

traffic from being processed.

In this dissertation, we focus on detecting misbehaving “large” network

flows1 that use more than their allocated resources. Large-flow detection is

not only an important mechanism for Quality of Service (QoS) [3] schemes

such as IntServ [4], but also for DDoS defense mechanisms that allocate

bandwidth to network flows [5–7]. With the recent emergence of volumetric

DDoS attacks, the topics of DDoS defense mechanisms and QoS are gaining

importance; thus, the need for efficient in-network accounting is increasing.

Unfortunately, per-flow resource accounting is too expensive to perform

in the core of the network [2]. Large-scale Internet core routers have an

aggregate capacity of several Terabits per second (Tbps), which demands

highly efficient schemes to detect flows that violate their flow specifications.

The general approach to catch misbehaving flows without per-flow counters

is to assign flows to a traffic class with a maximum sending rate and to

embed the traffic class in the packet header. A router on the path can then

detect misbehaving flows by finding the largest ones within a traffic class. In

This dissertation reuses some parts including text and figures from Wu, H. et al.
“Efficient Large Flow Detection over Arbitrary Windows: An Algorithm Exact Outside An
Ambiguity Region”, IMC ’14 Proceedings of the 2014 Conference on Internet Measurement
Conference, pp. 209-222 [1], c©2014 Association for Computing Machinery, Inc. Reprinted
by permission. http://doi.acm.org/10.1145/2663716.2663724.

1As in prior literature [1,2], the term “large flow” denotes a flow that sends more than
its allocated bandwidth.

1

Chapters 3 and 4, we analyze and design algorithms for large-flow detection

that can scale to high-capacity core routers.

In Chapter 3, we first consider a new model of exactness outside an am-

biguity region, which is defined to be a range of bandwidths below a high-

bandwidth threshold and above a low-bandwidth threshold. Existing large-

flow detectors that only check the average throughput over a certain time

period cannot detect bursty flows and are therefore easily fooled by attackers.

To achieve exactness outside the ambiguity region, we propose a determin-

istic large-flow detection algorithm, EARDet, that detects all large flows

(including bursty flows) and avoids false accusation against any small flows,

regardless of the input traffic. The core idea of EARDet is to monitor

flows over arbitrary time windows built on a frequent items finding algo-

rithm based on average frequency. Despite its strong properties, EARDet

takes very low storage overhead regardless of input traffic and is surprisingly

scalable because it focuses on accurate classification of large flows and small

flows only.

In Chapter 4 we propose a novel randomized Recursive Large-Flow Detec-

tion (RLFD) algorithm to complement EARDet to detect large flows missed

by EARDet in the ambiguity region. Unlike existing detectors, RLFD effi-

ciently distinguishes large flows from legitimate flows by evaluating one set

of flows at a time, and recursively shrinking the set of suspected large flows.

Larger flows are detected with higher probability in RLFD, so the expected

detection time decreases in the level of overuse, resulting in limited damage

(to legitimate flows) across a wide range of flow overuse amounts. Because

the immediate detection of large flows is not possible due to memory con-

straints, the goal should be to minimize the damage caused to legitimate

flows; in such an environment, it is likely more important to rapidly catch

very high-rate flows than it is to quickly catch mildly misbehaving flows. Our

damage model considers two causes of packet loss: loss caused by large flows,

and false positives that punish legitimate flows.

We further propose a hybrid scheme CLEF, short for in-Core Limiting

of Egregious Flows combining the deterministic EARDet mechanism for

rapid detection of very large flows with the RLFD algorithm for eventual

detection of large flows. We analyze a range of attacks against select detection

schemes and find CLEF provides strong resilience against attacks even in its

worst-case background traffic, and enables efficient implementation on high-

2

capacity core routers.

3

CHAPTER 2

LARGE-FLOW DETECTION
BACKGROUND

2.1 Large-Flow Detection Problem

2.1.1 Flow Model

A flow is a collection of related traffic; for example, Internet flows are com-

monly characterized by a 5-tuple (source / destination IP / port, transport

protocol). A large flow is one that exceeds a flow specification during a pe-

riod of length t. A flow specification can be defined using a leaky bucket

descriptor TH(t) = γt + β, where γ > 0 and β > 0 are the maximum legiti-

mate rate and burstiness allowance, respectively. Flow specifications can be

enforced in several ways: landmark-window, in which the flow specification

is enforced over a limited set of starting times; sliding-window, in which the

flow specification is enforced over a sliding time window with fixed length;

or arbitrary-window, in which the flow specification is enforced over every

possible starting time.

Flow identifiers. In general, the information associated with a collection

of related traffic acts as the flow identifiers to group traffic into different flows.

For Internet flows, the information are commonly in the packet header, e.g.,

5-tuple (source / destination IP / port, transport protocol).

In Chapters 3 and 4, we aim to design a generic large-flow detection solu-

tion for Internet flows, which can be applied in cases without assumption on

flow identifiers.

As in prior work in flow monitoring, we assume each flow has a unique

and unforgeable ID, e.g., using source authentication techniques such as ac-

countable IPs [8], ICING [9], IPA [10], OPT [11], Passport [12], or with

RPKI [13]. Such techniques can be deployed in the current Internet or in a

future Internet architecture, e.g., Nebula [14], SCION [15], or XIA [16].

4

Internet flow: Packet streams. Internet flows are traffic of packet

streams. In the packet space X , we consider that the large-flow detector

processes a packet stream X = 〈x1, · · · , xk〉 coming in sequence through a

link with capacity ρ, where xi ∈ X ∀i = 1 · · · k. Due to the high capacity of

the link and the limit of the memory of the detector, the detector can only

process the packets once (i.e. only making one pass over the packet stream).

For a packet x, we make the following denotation for later discussion. The

time at which the large-flow detector observes the packet x is denoted as

time(x); the flow ID of the packet x is denoted as fid(x); and the size of

packet x is denoted as size(x). Then we denote the traffic volume of a flow

f during time [t1, t2) as vol(f, t1, t2) ,
∑

x∈X ,fid(x)=f,t1≤time(x)<t2
size(x).

2.1.2 Large Flows and Legitimate Flows

The large flow here is the flow which occupies high bandwidth or consumes a

large volume of link bandwidth over some short time window. Therefore, we

defined a threshold function TH(t2 − t1) for the limit of bandwidth. The t2

and t1 in the function indicate that the function only depends on the length

of the time window [t2, t1).

For a flow f , if there exists a time window [t1, t2) over which the volume of

flow vol(f, t1, t2) exceeds a threshold function TH(t2 − t1), then the flow f is

classified as large flow; otherwise, the flow f is considered as legitimate flow.

Namely, (i) when vol(f, t1, t2) > TH(t2− t1), f is a large flow; conversely, (ii)

when vol(f, t1, t2) ≤ TH(t2 − t1), f is considered as a legitimate flow.

Leaky bucket model. Ideally, people want to define large flow based

on the leaky bucket model. The leaky bucket model is widely used in the

packet switched computer network for checking the traffic of data packets and

defining the bandwidth limits and burstiness. In the leaky bucket model, the

bucket is actually a counter with as fixed rate to decrease its value when the

counter is larger than zero. When new packets of a flow arrive at the bucket,

it increases the value by the volume of the packets and checks whether the

value exceeds the threshold of the leaky bucket. If the threshold is exceeded,

then the flow exceeds the bandwidth limit, i.e. the decreasing rate of the

bucket.

Then, the threshold function based on the form of the leaky bucket de-

5

scriptor is: TH(t) = γ t + β, where γ > 0, β > 0. The γ and β here are the

decrease rate and threshold of the leaky bucket. However, utilizing the leaky

bucket algorithm to check large flow is impractical. This is because network

links contain numerous flows and usually run at high speed (e.g. the rate of

backbone line is above gigabytes/s), it is very hard to keep the per-flow state

as the leaky bucket model does. Thus, catching the large flow defined by the

leaky bucket model is challenging.

2.1.3 Time Window Models

The time window [t1, t2) is a range of time over which the large-flow detector

considers the volume of the flow. For example, in some approaches, if the

volume of the large flow in [t1, t2) exceeds some threshold, then, it is judged as

large flow. To identify the large flows defined by the leaky bucket model, the

algorithm has to use the arbitrary window model [17]. However achieving the

arbitrary window model in practice is challenging, therefore, people usually

use some approximate approaches to roughly identify large flows. Thus we

have two more typical time window models: the landmark window model [2,

18–24] and the sliding window model [25–27].

Landmark window model. The landmark window model takes the

closest landmark in the past as the starting time and the current time as

the ending time for each time window (e.g. the landmark could be placed in

each 10 seconds). In other words, the landmark window model checks every

time window in {[ti, ti + ∆i)|∆i < ti+1 − ti}.

Sliding window model. The sliding window model considers the recent

traffic as more important than the old traffic, thus the time window starts at

some recent time in the past and ends at the current time. Once a new packet

arrives, the sliding window model will exclude the oldest packet and keep the

newest one. We can state the sliding time window as {[t−∆, t)|t ∈ R}.

Arbitrary window model. The arbitrary window model is the stronger

time window model to detect the large flows. It monitors each possible time-

scales that starts at every instant in time and ends at the current time.

Namely, for a flow f , the arbitrary window model monitors it over windows

{[t1, t2)|∀ t1, t2 ∈ R, t1 < t2}. Therefore, it is more difficult for large flows to

evade the detection in front of the arbitrary window model, as demonstrated

6

40 Gbps link congested by

50-Byte packets

Landmark windowmodel

(landmark at 0)

Examine flows in [0, t) ==> flow B evades detection

Sliding windowmodel

(window size = 30ns)

Examine flows in [t-30, t) ==> flow B evades detection

Arbitrary windowmodel Examine flows in [s, t) for all t > s >= 0 ==> flow B is a

large flow over [10, 50) and can be detected

0 10 20 30 40 t=50 (ns)

A B C D B

Figure 2.1: In this example, if a flow’s volume in time window w with any
size is larger than 40 Mbps·w + 500 Kb, then it is a large flow. The flow B
exceeds the threshold over time window w = [10, 50), however, only the
arbitrary time window can catch it [1].

in Figure 2.1.1

2.2 Related Work

In this section, we review prior works by the techniques they use in the al-

gorithm as presented in the survey by Cormode and Hadjieleftheriou [28]:

counter-based technique, sketch-based technique, and sampling-based tech-

nique. We pick and summarize some typical algorithms in each category and

discuss their drawbacks.

2.2.1 Counter-Based Algorithm

There are many counter-based algorithms working to find the frequent item,

which is closely related to our large-flow identification problem. In a stream

with m items, the frequent item is the item that presents more than m
n+1

times, where the n is the number of counters. The Misra-Gries (MG) algo-

rithm [18] takes a stream of items as input and find the set of frequent items

exactly. The MG algorithm extends the majority algorithm [29, 30], which

only considers finding the majority vote.

1Figure 2.1 is taken from the paper written by Wu et al. [1] c©2014 Association for
Computing Machinery, Inc. by permission.

7

2.2.2 Sketch-Based Algorithm

The sketch-based algorithm takes a stream as input, applies linear projection

or hashing on the input, and produces a matrix. The matrix usually consists

of a small number of bits.

Fixed-window-based Multistage Filters (FMF). A multistage filter

algorithm is proposed by Estan and Varghese [2] to detect large flows over the

fixed window model2 (called FMF in this chapter). The FMF has multiple

stages, and each of the stages contains an array with the same number of

counters. When a packet arrives at the multistage filter, its flow identifier is

hashed to one counter in each stage (each stage has a different hash function).

For each counter, the value increases by the size of the packet assigned to

it. Once all of the corresponding counters of a flow f violate the pre-defined

threshold, the flow f is judged as large flow.

Arbitrary-window-based Multistage Filters (AMF). One of the ob-

vious drawbacks of FMF is that the fixed window model cannot catch the

bursty flow3 spanning two measurement intervals. To address this, Estan [17]

proposed an improved algorithm of multistage filters based on the arbitrary

window model. The counters in each stage are replaced by leaky buckets

according to the large flow threshold (i.e. TH(t) = γt+β). The same applies

to FMF, a flow is judged as a large flow if its corresponding leaky buckets

are all violated.

2.2.3 Sampling-Based Algorithm

By sampling the packets in the link, the overhead of the algorithm can be

reduced effectively. The Sampled NetFlow [31] is a classic sampling-based al-

gorithm which samples packets with a rate of 1/γ and estimates the frequency

of flows by multiplying the count by γ. To improve the Sampled NetFlow,

Estan and Varghese [2] propose the sample and hold method which exam-

ines every incoming packets: if the flow of the packet is monitored, then

increase the corresponding count; otherwise add the flow of the packet into

the monitoring list with certain probability.

2The fixed window model is a special case of the landmark window model with a fixed
measurement interval.

3Bursty flow is a kind of large flow which sends very high volume traffic in a short time.

8

2.2.4 Top-k Detection

Top-k heavy hitter algorithms can be used to identify flows that use more

than 1/k of bandwidth. The space saving algorithm [32] finds the top-k fre-

quent items by evicting the item with the lowest counter value. HashPipe [33]

improves upon space saving so that it can be practically implemented on

switching hardware. However, HashPipe still requires keeping 80 KB to de-

tect large flows that use more than 0.3% of link capacity, whereas CLEF can

enforce flow specifications as low as 10−6 of the link capacity using only 10

KB of memory. Tong et al. [34] propose an efficient heavy hitter detector im-

plemented on FPGA but the enforceable flow specifications are several orders

looser than CLEF. Moreover, misbehaving flows close to the flow specifica-

tion can easily bypass such heavy hitter detectors. The FPs caused by heavy

hitters prevent network operators from applying strong punishment to the

detected flows.

2.2.5 Other Related Algorithms

Cardinality estimation. Chen et al. [35] and Xiao et al. [36] pro-

pose memory-efficient algorithms for estimating per-flow cardinality (e.g.,

the number of packets). These algorithms, however, cannot guarantee large-

flow detection in adversarial environments due to under- or over-estimation

of the flow size.

UniMon framework. Liu et al. [37] propose a generic network monitor-

ing framework called UniMon that allows extraction of various flow statistics.

It creates flow statistics for all flows, but has high FP and FN when used to

detect large flows.

2.2.6 Drawbacks of Current Algorithms

We mainly discuss the MG algorithm, FMF, AMF, and sample and hold

method. The main drawback among the first three algorithms is that they

cannot avoid false accusation on the legitimate flows (non-frequent items).

For the MG algorithm, it can make sure all the frequent items are stored in

the counter at last, but cannot exclude non-frequent items in the one-pass

9

process. The FMF and AMF are the multistage filters algorithms, whose

counter could be shared by both large flows and legitimate flows. With

some probability, the hash function could map a large flow and legitimate

flow to exactly the same counter in each stage. This problem is the nature

of multistage filters and cannot be avoided. In Chapter 4, we even show

that the multistage filters suffer very high false positives when the memory

resource is limited.

Since the sample and hold algorithm just samples the flows to measure, it

may not check some large flows. Therefore the sample and hold algorithm

has a false detection rate on the large flows. That is, a large flow could evade

detection with some probability.

Because the MG algorithm, sample and hold algorithm, and FMF are

based on the landmark window model, they cannot catch bursty flows as

Section 2.1.3 illustrated.

Although AMF can guarantee a rate of catching all the large flows by its

arbitrary window model, it introduces more false detections on the legitimate

flows than FMF. Because the leaky bucket is more sensitive to being violated,

there are more flows that could exceed the threshold of the leaky bucket

model than the fixed window model.

10

CHAPTER 3

EXACT LARGE-FLOW DETECTION
OUTSIDE AN AMBIGUITY REGION

3.1 Chapter Overview

In this chapter, we consider a novel model of exactness outside a small am-

biguity region, which contains flows that use bandwidth between two con-

figurable thresholds. Our model classifies flows as either large, medium, or

small. A large flow is defined to be a flow whose volume ever exceeds a high-

bandwidth threshold function over any arbitrary window. A small flow is

defined to be a flow whose volume is consistently lower than a low-bandwidth

threshold function over all arbitrary window. The rest are defined as medium

flows, namely the flows in the ambiguity region. Exactness outside ambigu-

ity region guarantees no missed detection on large flows (including bursty

flows) and no false accusation against any small flows. This model is rea-

sonable, because it limits the damage caused by large flows and allows exist-

ing techniques to handle the medium flows statistically. Furthermore, prior

works [2,17] also involves a region similar to our ambiguity region, but they

only provide probabilistic bounds and therefore are not exact outside that re-

gion. The ambiguity region between the high-bandwidth and low-bandwidth

thresholds allows us to trade the level of exactness for scalability, so that

we can maintain a state small enough to fit into limited on-chip memory for

link-speed update.

The new models of exactness and arbitrary window benefit many applica-

tions. For example:

• Bandwidth guarantees : To enforce bandwidth allocation, schemes such

as IntServ make impractical assumptions that either every router keeps

per-flow state [3] or first-hop routers are trusted to regulate traffic on

a per-flow basis [38] on behalf of intermediate routers [39]. Although

a scalable and robust approach was proposed [40], it causes collateral

11

damage due to the detection delay caused by recursion; moreover it

cannot catch bursty flows. Our efficient identifier with these two new

models can help enforce bandwidth limits on flows because of its fast

detection with no false accusation on the legitimate small flows, and

no false circumvention on large flows including bursty flows.

• Detecting various DoS flows : Denial-of-Service (DoS) attacks can use

either large attack flows or bursty attack flows; however, most existing

algorithms check average throughput, which cannot catch large bursty

flows. On the contrary, using the arbitrary window model, the detector

can effectively detect DoS by bursty flows.

To the best of our knowledge, none of the existing algorithms provide

exactness outside an ambiguity region under the arbitrary window model.

Because prior algorithms detect average throughput rather than violations

of the arbitrary window model, they cannot detect bursty attacks (e.g. Shrew

attack [41]). For example, in a large-flow detection system that resets state

and starts a new measurement interval periodically [2], a large bursty flow can

bypass detection by staying lower than the threshold of throughput across

this whole interval, or even by deliberately spreading its burst across two

consecutive intervals. Although randomization of measurement intervals can

mitigate the problem above, randomized algorithms are inherently proba-

bilistic and thus may be unable to provide strong deterministic guarantees.

Without exactness outside an ambiguity region, most existing algorithms

cannot provide guarantees to protect the legitimate flows. Existing random-

ized algorithms are not exact, because their detection is probabilistic. As a

result, they are often configured to provide a lower detection rate for misbe-

having flows in order to reduce the false alarm rate for well-behaved flows.

Besides lacking exactness and the arbitrary window model, the storage

overhead of existing algorithms may grow unboundedly with the size of the

input traffic in the presence of malicious inputs. For example, adversaries can

perturb their flows’ traffic patterns by varying the size and timing of packets

sent by those flows so as to cause algorithmic complexity attacks [42], as many

algorithms bound their storage and computational overhead by assuming the

flow sizes follow a certain distribution such as Zipfian.

To identify large flows over arbitrary windows with low storage overhead,

we explore deterministic algorithms with a new model of exactness con-

12

sidering a small ambiguity region. We propose EARDet (Exact-Outside-

Ambiguity-Region Detector), a simple, efficient, and no-per-flow-state large-

flow detector which is exact outside ambiguity region regardless of the input

traffic. Built on the Misra-Gries algorithm (a frequent items finding algo-

rithm based on average frequency) [18], EARDet is a streaming algorithm

with simple operations: it only keeps a small array of counters which are

increased or decreased as each new packet arrives. A flow is identified as a

large flow if its associated counter exceeds a threshold.

Surprisingly, despite EARDet’s strong guarantees, we show in our analy-

sis that EARDet requires extremely small amounts of memory that fit into

on-chip SRAM for line-speed packet processing. We discuss implementation

details to further demonstrate EARDet’s efficiency. EARDet is highly

scalable because it focuses on accurate classification of large flows and small

flows; it does not aim to estimate flow volumes or identify the medium flows,

which several prior approaches achieve. In addition to theoretical analysis,

we evaluate EARDet using extensive simulations based on real traffic traces.

We demonstrate that existing approaches suffer from high error rates under

DoS attacks, whereas EARDet can effectively detect large flows in the face

of both flooding and burst DoS attacks [41, 43].

Our main contributions in this chapter are as follows:

• We propose a deterministic streaming algorithm that is exact outside

an ambiguity region regardless of the input traffic. Two novel settings

distinguish EARDet from previous work: it monitors flows over ar-

bitrary windows, and supports exact detection outside an ambiguity

region.

• We rigorously prove the two guarantees – catching all large flows and

protecting all small flows – without making assumptions about the

input traffic.

• Our numerical analysis shows EARDet can operate at 40 Gbps high-

speed links using only hundreds of bytes of on-chip SRAM, substan-

tially smaller than the memory consumption in many existing systems.

We also provide guidelines on how to configure EARDet to satisfy

requirements of specific applications.

• We compare EARDet with two closely related proposals [2, 17] via

comparative analysis and extensive simulations based on real and syn-

13

thetic traffic traces. The results confirm that these two are vulnerable

to attack flows that manipulate the input traffic, while EARDet con-

sistently catches all large flows without misclassifying small flows.

3.2 Problem Definition

To make progress in large-flow detection, our goal is to design an efficient

arbitrary-window-based large flow algorithm which is exact outside an am-

biguity window. In this section, we present our novel model and clarify our

goals.

3.2.1 Exact-Outside-Ambiguity-Region Large-Flow Problem

Large, medium, and small flows. To formulate the large-flow problem

that is exact-outside-ambiguity-region, we re-define the flows as follows. For

a flow f , it is judged as a large flow, if there exists a time window [t1, t2)

over which the volume of f , vol(f, t1, t2) is higher than the high-bandwidth

threshold function THh(t2 − t1); the flow f is judged as a small flow, if flow

f ’s volume vol(f, t1, t2) over all the possible time window [t1, t2) is lower than

a low-bandwidth threshold TH`(t2 − t1). The rest of flows are considered as

flows in an ambiguity region, which we call medium flows.

Considering the arbitrary window model, we defined the threshold function

based on the leaky bucket model: THh(t) = γht + βh and TH`(t) = γ`t + β`,

where γh > γ` > 0 and βh > β` > 0.

Exactness outside an ambiguity region. Instead of considering ineffi-

cient exact approaches, we propose a relaxed notion of exactness as follows:

Definition 1 Given a packet stream, the large-flow problem of exactness

outside an ambiguity region returns a set of flows F such that (1) F contains

every large flow, and (2) F does not contain any small flow.1

According to the definition above, we also define a positive as a flow that is

inserted into F , a negative is a flow that is not inserted into F . Therefore, we

1The Definition 1 is taken from the paper written by Wu et al. [1] c©2014 Association
for Computing Machinery, Inc. by permission.

14

Limited

Memory
Incoming Packet Stream

Detection Algorithm

x
i

x
i+1

x
i+2

Report

Report

Figure 3.1: A general framework for a large-flow-detection algorithm. The
detection algorithm processes incoming flows and keeps limited states in
memory. Results may be reported to a remote server for further analysis [1].

have: (1) False Positive of small flows (FPs) means the detection algorithm

added small flows into F by mistake; and (2) False Negative of large flows

(FN`) means the detection algorithm fails to add large flows into F .

This novel exactness model is reasonable, because the damage caused by

large flows is confined by it, and the medium flows can still be handled by ex-

isting approaches (e.g. sample and hold algorithm [2], Sampled Netflow [31],

etc.).

One thing necessary to mention is that the size of flow set F is increasing

indefinitely over time, thus such a large-flow detection algorithm usually

periodically reports results to some report servers with a large amount of

storage to maintain a copy of F , as demonstrated in Figure 3.1.2 Therefore

such a large-flow detection algorithm has to correctly make responses without

knowledge from the flow set F .

3.2.2 Design Goal

Exactness outside an ambiguity region. We want to design a deter-

ministic large-flow detector which can accurately identify every large flow

(including the bursty flow) (i.e. no-FN`) and never wrongly judges a small

flow as a large flow (i.e. no-FPs) with any input traffic or attack pattern (i.e.

we make no assumption on the input traffic).

2Figure 3.1 is taken from the paper written by Wu et al. [1] c©2014 Association for
Computing Machinery, Inc. by permission.

15

Scalability. In front of a high rate link, the large-flow detector should

maintain a low per-packet operation and small router state so that the al-

gorithm can be implemented in some fast but scarce storage devices (e.g.

on-chip cache) regardless of the input traffic and attack pattern.

Fast detection. To minimize the collateral damage, we desire that the

large-flow detector can catch the large flow as soon as possible once it violates

the high-bandwidth threshold. Thus, for a large flow which violates the high-

bandwidth threshold over [t1, t2), the detector should be able to detect this

flow before an upper bound time t2 + tprocess, where the tprocess is the time

needed in processing a packet.

3.3 Algorithm

According to design goals described in Section 3.2.2, we proposes EARDet,

an arbitrary-window-based algorithm, which resolves the large-flow problem

with exactness outside an ambiguity window. Inspired by the MG algo-

rithm [18], EARDet takes the no-FN` advantage of the MG algorithm and

extends it from the landmark window model to the arbitrary window model.

Moreover, EARDet achieve the no-FPs property with only processing pack-

ets in one pass. Interestingly, despite such amazing properties achieved by

EARDet, it only needs some simple modifications over the original MG

algorithm.

3.3.1 EARDet Overview

At the high level, EARDet has the following three main differences com-

pared to the MG algorithm:

Virtual traffic. Different from frequent-item finding, the large-flow prob-

lem works on each time slot in the link. Hence, we should not only consider

the real packets, but also the idle time gap between two consecutive pack-

ets. In EARDet, we virtually fill these idle time gaps with virtual traffic.

The virtual flows in the virtual traffic are designed as small flows to avoid

unnecessary alarms.

Blacklist. We maintain a local blacklist L in EARDet to keep the re-

16

cently identified large flows. The main reason to use the blacklist is to avoid

increasing a counter of a flow when the counter value has reached a counter

threshold, βTH . Once a counter exceeds βTH , EARDet moves the associated

flow to the blacklist, and the counter will no longer be updated by the flows

in the blacklist. In paper by Wu et al. [1], we have some techniques to bound

the size of the blacklist to avoid spending too many resources on blacklist.

Counter threshold. As described above, each counter has a threshold

βTH to limit the value. The flows exceeding the threshold will be sent to the

blacklist, which enable us to confine the size of each counter by the upper

bound of βTH + α, where the α is the maximum packet size.

3.3.2 Algorithm Description

We show how EARDet works in Algorithm 1.3 In the algorithm, we treat a

packet (including virtual packets) of w size as w uni-size items, and apply a

mechanism similar to the one in the MG algorithm to increase and decrease

the n counters which are indexed by flow identifiers. There are at most n

non-zero counters (the set of non-zero counters is denoted as C), and each

counter is at most associated with a flow at the same time. We use S in the

algorithm to denote the state of the counters.

To clearly illustrate Algorithm 1, we introduce an example in Figure 3.24

to show details of how EARDet updates its status (i.e. counters). At the

beginning of the example, there is an empty counter, hence when flow g

with a size of 2 arrives, EARDet assigns the empty counter to flow g and

increases it by 2. Then, when flow b comes to EARDet, its size is added

to the counter associated with flow b, so that the value of flow b’s counter

violates the threshold hold βTH and flow b is added into blacklist L. At this

time, flow b will not be considered for increasing or decreasing the counter

anymore. Then, since no empty counters remain, each counter decreases by

the size of flow e’s packet. At last, EARDet treats the virtual traffic as two

packets with a size of 3 and reaches the final state.

3This algorithm is taken from the paper written by Wu et al. [1].
4Figure 3.2 is taken from the paper written by Wu et al. [1] c©2014 Association for

Computing Machinery, Inc. by permission.

17

Algorithm 1 EARDet [1]

1: Initialization (S ← Init(n), Line 8-9)
2: for each packet x in the stream do
3: if x’s FID f is not blacklisted (f /∈ L) then
4: Update counters for virtual traffic (Line 18-22)
5: Update counters for x (S ← Update(S, x), Line 10-17)
6: if detect violation (Detect(S, x) == 1, Line 21-22) then
7: Add f to blacklist (L ← L ∪ {f})

8: Initialization, Init(n)
9: initialize all counters to zeros, L ← ∅, C ← ∅

10: Update counters for packet x, Update(S, x)
11: if x’s FID f is kept (f ∈ C) then
12: Update f ’s counter by the packet size w (cf ← cf + w)
13: else if less than n counters are kept (|C| < n) then
14: Set f ’s counter to w (cf ← w, C ← C ∪ {f})
15: else
16: Decrease all counters by d = min{w,minj∈C cj}
17: Set cf to w − d, and ∀j remove j from C if cj = 0

18: Update counters for virtual traffic between xi and xi−1

19: Compute the virtual traffic size, v (v = ρtidle−size(xi−1), and tidle = time(xi)−
time(xi−1))

20: For each unit u in the virtual traffic, update counters as if u belongs to a new
flow (e.g., unit is 1 byte)

21: Detect violation, Detect(S, x)
22: Return whether x’s flow counter exceeds threshold (cf > βTH)

18

a

5

b

11

Blacklist: b

g
2

a

βTH

5

βTH + α

b

8

g
2

b

3

Blacklist:

a

3

b

9

Blacklist: b

b

Blacklist: b

e

2

virtual

traffic

6

6

a

5

b

8

g

2

Blacklist:

Figure 3.2: Example of updating EARDet status, βTH = 10, α = 3, and
n = 3 [1].

3.3.3 Optimization in Data Structure

To make EARDet efficient and scalable, we must do some optimization to

reduce the counter access. A naive implementation of EARDet has to ac-

cess each counter once a packet passes through the system, and access each

counter numerous times for processing virtual packets if we use 1 byte as the

virtual packet size. We are not able to afford such computation consump-

tion in high-speed links, e.g. backbone links. Therefore, we optimize our

algorithm as follows.

Balanced binary search tree. To save computation consumption in

EARDet, the first thing we need to do is to have a proper data structure

which can support insertion, deletion, and retrieval of the minimum counter

among all counters. A balanced binary search tree is a good choice in this

case, because it can achieve these operations in O(log n) time.

Float ground for decrement operation. To avoid retrieving and de-

creasing all counters when one packet arrives, we consider the counter value

relative to floating ground cground instead of recording the absolute counter

values. In this way, once a packet comes in, we do not have to decrease

each counters, but just need to elevate the floating ground. Finally, to judge

whether the counter exceeds the threshold, we only need to check whether

cf − cground > βBF is true. To prevent overflow in counters, we periodically

reset the floating ground to zero and accordingly reduce the value of each

counter.

Efficiently process virtual flows. As mentioned, if we set the packet

size too small for flow virtual flows, we are going to update the counters too

many times. We noticed that we actually expect to divide virtual traffic to

multiple virtual flows to make virtual flows comply with the low-bandwidth

19

threshold (i.e. we will not mistake virtual flows as large flows), meanwhile

we want to minimize the packet processing cost for virtual flows.

Thus, the maximum packets size is the counter threshold βTH bytes. Be-

cause the counter threshold βTH has to be larger than minimum packet size

(i.e. 40 bytes), the overhead is bounded by that of the worst case when the

link is congested by minimum-sized packets.

Implement counters with integers. To make the system more efficient,

we use integers to implement counters rather than using float numbers. In

this way, we not only save storage space but also modify counters faster.

However, we should be careful here, because the size of virtual traffic is not

always an integer. For example, for a link with 800 Mbps capacity and an

idle interval 1 ns, we have 0.1 byte virtual traffic. To handle this issue,

we have a little change in our thresholds: EARDet can catch all large

flows violating THh(t) = γht + (βh + 1) and no false positive for small flows

complying TH`(t) = γ`t + (βh − 1). We derive the proof sketch from Wu et

al.’s paper [1].

Proof sketch: We bound such biases with a slightly modified algorithm

that adjusts virtual traffic. Let us use {v1, v2, · · · } to denote the sizes of

a sequence of virtual traffic and {v′1, v′2, · · · } to denote the adjusted sizes.

We maintain an extra field called “carryover”, co, which keeps the amount

of uncounted virtual traffic. The co is initialized to zero, and we ensure

that −0.5 ≤ co < 0.5 all the time. Virtual flows are adjusted such that

v′i ← [vi + coi] and coi+1 ← coi + vi − v′i where coi is the value of co before

proceeding vi. By construction, v′is are all integers, and for any a, b, |
∑b

a vi−∑b
a v
′
i| = |cob+1− coa| ≤ 1. In other words, the adjusted virtual traffic differs

from the original one by at most 1 unit for any time interval. Consequently,

the modified algorithm guarantees catching flows that violate THh(t) = γht+

(βh + 1) and guarantees not catching any flow that conforms to TH`(t) =

γ`t+ (βh − 1). [1] �

Run EARDet in parallel. A straightforward way to scale a large-flow

detection algorithm is to parallelize it with multiple detectors. We could

randomly distribute the input flows into k EARDet, and each EARDet

detector only has approximately 1/k of overhead. However, this approach

also has some drawbacks: (1) it may not be able to evenly distribute over-

head, because 1/k flows does not mean 1/k packets; and (2) randomness

20

weakens the deterministic property, so attackers could manipulate the flows

based on the random seed to escape detection.

3.4 Algorithm Analysis

In this section, we analyzed the unique properties in EARDet, and the-

oretically proved them. Moreover, we analyzed the tradeoff in the tuning

parameters of EARDet. Please refer to the List of Symbols to understand

the notation used in the analysis.

In the analysis, we consider an n-counter EARDet is running over a

network link and its link capacity is ρ. We use βTH to denote the threshold

of the counter, and use α as the maximum packet size. Thus, βTH +α is the

maximum possible value of each counter. Table 3.1 summarizes the notations

used in this section.

Table 3.1: Table of Notations.

Network management parameters:

ρ , Rate of link capacity

α , Maximum packet size

tupincb , Upper bound of tincb for any large flows

TH` , Low-bandwidth threshold

THh , High-bandwidth threshold

γ`, β` , Rate and burst for low-bandwidth threshold

γh , Rate for high-bandwidth threshold

Tunable parameters:

n , Number of counters in EARDet

βTH , Threshold of counters(> β`)

Parameters that depend on tunable parameters:

βh , Burst for high-bandwidth threshold

β∆ , βTH − β`
Other notation:

R(t1, t2) , Average flow rate in [t1, t2)

tincb , Incubation period of large flows

RNFN , No-FN` rate

RNFP , No-FPs rate

21

3.4.1 Property 1: No False Negative on Large Flows

To analyze the false negative issue of this filter, we consider the performance

of our filter under the worst case (namely, the best case for the attacker).

To have the worst case for us, the attackers expect their counter’s value can

decrease as much as possible to make the attacker’s flow have the smallest

possibility to be caught by the filter.

To consider the decrement of the counters, firstly, we describe all the ways

to decrease and increase the value counters:

1. When the incoming flows are virtual flows and there are l empty coun-

ters in the filter, then, in time interval t, the decrement is ρ
l+1
t on all

counters, and the increment is 0 (l = 0, 1, 2, 3, ..., n).

2. When the incoming flows are new real flows and there is no empty

counter in the filter, then, in time interval t the decrement is ρt on all

counters and the increment is 0. (This is the same as the first situation

when l = 0.) The new real flows means there is no associated counter

in the filter for this flow.

3. When the incoming flows are old real flows, or new real flows and there

are some empty counters, then, in time interval t, the decrement is 0

and the increment is ρ t on one counter. The old real flow means there

is an associated counter in the filter for this flow.

Thus, in the first and second situations, when there are l empty counters

in the filter, the decrement is always ρ
l+1
t in the interval of t; and in the third

situation, the increment is always ρ t in the interval of t. The increment and

decrement cannot happen at the same time.

We proved Lemma 2 as follow, and the proof sketch of it is in Appendix A.1.3.

Lemma 2 In any time interval [t1, t2], the upper bound of decrement of all

the counters is ρ
n+1
· (t2 − t1) + α + βTH .5

With Lemma 2, we proved that EARDet can detect any large flows which

violate the high-bandwidth threshold. We theoretically proved this property

and conclude it in the following theorem.

5Lemma 2 is taken from Wu et al.’s paper [1].

22

Theorem 3 No-FN` property. EARDet detects every flow violating

the high-bandwidth threshold THh(t) = γht+βh over a time window of length

t, when γh ≥ RNFN = ρ
n+1

and βh ≥ α + 2βTH .6

Proof sketch: According to Lemma 2, in time interval [t1, t2], the decre-

ment of a counter will not exceed ρ
n+1
· (t2 − t1) + α + βTH . Because any

flow cannot be associated with two or more counters at the same time,

therefore, in any [t1, t2], for any flow f passing the filter the decrement

decf <
ρ

n+1
· (t2 − t1) + α + βTH . Thus, if there is a flow f with rate of

R(t), and it violates the high-bandwidth threshold, then:

ˆ t2

t1

R(t) dt ≥ THh(t2 − t1) ≥ ρ

n+ 1
(t2 − t1) + α + 2βTH (3.1)

Then, the remaining value of f ’s counter is:

Remains =

ˆ t2

t1

R(t) dt− decf > βTH (3.2)

Because βTH is the threshold of the filter, the flow f will be caught before

time t2. Therefore, for any flow which violates the high-bandwidth threshold,

it will be caught by the filter. Namely, there is no false negative in the filter

on detecting the flows violating the high-bandwidth threshold. Thus, this

theorem is proved now. �

Another way to prove Theorem 3 is presented in Wu et al.’s paper [1].

From Theorem 3, EARDet can be applied to enforce that all flows vi-

olating the high-bandwidth threshold, THh(t) = γht + βh, where γh = ρ
n+1

and βh = α + 2βTH , will be caught by the filter and cut off. In this way, we

can largely protect a network link from the large-flow attack and the burst

attack, especially when the number of attackers (or attack flows) is fewer

than n. That means, if the attackers want to attack this link successfully,

they should have more than n machines to send floods. Therefore, this filter

effectively limits the DoS attacks.

6Theorem 3 is taken from Wu et al.’s paper [1].

23

3.4.2 Property 2: No False Positive on Small Flows

EARDet will not wrongly catch any small flow complying the low-bandwidth

threshold. To demonstrate this point, we first proposed Lemma 4 [1] as fol-

lows. The proof of this lemma is in Appendix A.1.4.

Lemma 4 For any small flow f that complies with the low-bandwidth thresh-

old (i.e., TH`(t) = γ` t+β`), once the flow f is associated to a counter at t1,

this counter will always be lower than βTH after time t1 + tβ`, if the counter

is occupied by the same flow as the flow f , where tβ` = (n−1)α+(n+1)β`
[1−(n+1)γ`/ρ]ρ

.7

Then, we proposed Theorem 5 [1] which illustrates the property of no false

positives on small flows.

Theorem 5 No-FPs property. EARDet will not catch any flow com-

plying with the low-bandwidth threshold TH`(t) = γ`t+β` for all time windows

of length t, when 0 < β` < βTH , γ` < RNFP , RNFP = β∆

(n−1)α+(n+1)β`+(n+1)β∆
·

ρ.8

Proof sketch: According to Lemma 4, to avoid catching a small flow f ,

the counter should be smaller than βTH before tβ` . Hence, we choose a γ` to

achieve γ` tβ` + β` < βTH . Then, (n−1)α+(n+1)β`
[1−(n+1)γ`/ρ]ρ

< βTH−β`
γ`

,

⇔ γ` <
β∆

(n− 1)α+ (n+ 1)β` + (n+ 1)β∆
· ρ (3.3)

The theorem is proved. �

3.4.3 Property 3: Large-Flow Incubation Period

Considering a large flow f violates a high-bandwidth threshold over time

window [t1, t2), we assume the detection is triggered by the packet at ta.

Then, we define the incubation period as ta − t1, where ta ≤ t2 is due to the

no-FN` property of EARDet. According to theoretical analysis, we proved

there is an upper bound of the incubation period for the large flow. The

upper bound depends on the rate of the large flow over [t1, t2).

7Lemma 4 is taken from Wu et al.’s paper [1].
8Theorem 5 is taken from Wu et al.’s paper [1].

24

Theorem 6 For the flow f which violates THh(t) over some time window

[t1, t2), if its average rate R(t1, ta) is larger than Ratk in the time interval of

[t1, ta) (Ratk is a constant rate larger than RNFN = ρ
n+1

), then f ’s incubation

period is bounded by tincb <
α+2βTH
Ratk− ρ

n+1
.9

Proof sketch:10 Because R(t1, ta) > Ratk, intuitively the tincb of flow with

an average rate of R(t1, ta) must be shorter than the t′incb of flow with a rate

of Ratk. That is, tincb < t′incb.

Assume a flow f ′ with rate Ratk will violate THh(t) over time window

[t′1, t
′
2), then

Ratk(t
′
2 − t′1) =

ρ

n+ 1
(t′2 − t′1) + α+ 2βTH

⇒ tincb < t′incb = t′a − t′1 ≤ t′2 − t′1 =
α+ 2βTH
Ratk − ρ

n+1

(3.4)

Thus, the theorem is proved. �

3.4.4 Property 4: Deterministic Performance

The proofs of the three properties above do not make any assumptions on the

input traffic, which means EARDet will keep these properties regardless of

the type of the input traffic or attack pattern. The attackers are not able to

escape the detection through manipulating the flows and playing with timing.

Thus, we say EARDet provides deterministic performance over large-flow

detection.

3.5 Evaluation

In this section, we present the theoretical analysis and real-traffic simulation

results of EARDet and another two related large-flow detection algorithms,

Fixed-window-based Multistage Filters (FMF) [2] and Arbitrary-window-

based Multistage Filters (AMF) [17], to evaluate performance of EARDet.

In terms of the exactness outside the ambiguity region, the evaluation shows

9Theorem 6 is taken from Wu et al.’s paper [1].
10The proof sketch is taken from Wu et al.’s paper [1].

25

that EARDet outperforms the prior work in both large rate flow detection

and burst flow detection.

3.5.1 Theoretical Evaluation

As introduced in Section 2.2.2, multistage filter maintains an array of coun-

ters to record the size of flows. For an incoming flow, the filter will hash map

the flow identifier to a counter in the array, and whenever a packet of this

flow arrives in the filter, we increase the counter by the size of the packet.

Once the value of the counter exceeds the threshold of a large flow, multi-

stage filter catches all flows associated to this counter as a large flow. The

difference between AMF and FMF is that AMF uses leaky buckets instead

of regular counters.

We can easily observe that FMF and AMF have no false negative over

large flows, because if a flow is a large flow, its counter must exceed the large

flow threshold. However, there are some false positives resulting from these

two algorithms. For example, if a large flow and a small flow are mapped to

the same counter, the small flow will be detected as a large flow too. To lower

the false positive rate, FMF and AMF must increase the number of counters.

But this introduces more overhead in storage space. To understand the

performance of three large-flow detector algorithms, we present a concrete

example here. Considering the case with γh = 1%ρ, γl = 0.1%ρ, where ρ

is the link capacity. The performance of three detectors are described in

Table 3.2.

Table 3.2: Numerical Example for FMF, AMF, and EARDet.

Detector Number of Counters (n) Rate of FPs Rate of FN`

EARDet 101 0 0
FMF 101 no guarantee 0∗

FMF 1000 ≤ 0.04∗ 0∗

AMF 101 no guarantee 0
AMF 2000 ≤ 0.04 0

∗The result for FMF is not applicable for large burst flows. Because FMF is
based on the landmark window model, it provides no guarantee for

detecting large burst flows.

Table 3.2 shows that with the same amount of memory space that EARDet

uses (i.e. 101 counters), FMF and AMF cannot guarantee there will be no

26

false positives for small flows at all; on the contrary, EARDet can guar-

antee both no false positives for small flows and no false negatives for large

flows. Even using 10x (20x) memory, FMF (AMF) can only guarantee a 0.04

false positive rate for small flows. Moreover, as we mentioned, FMF has no

guarantee for large burst flows, however, EARDet and AMF are able to

guarantee this. To make the result clearer, we summarize the comparison

result in Table 3.3. We say FMF and AMF are not deterministic, because

they are dependent on input traffic that can be manipulated by an attacker

to result in false positives.

Table 3.3: Comparison Summary for FMF, AMF, and EARDet.

Detector Storage Cost No-FPs No-FN` Deterministic
EARDet low guarantee no guarantee yes

FMF high no guarantee no guarantee no
AMF high no guarantee guarantee no

3.5.2 Experimental Evaluation Environment

Traffic datasets. To make the experiment more convincing, we use real

network traffic datasets Federico II [44–46] and CAIDA [47], and we use the

first 30 seconds of traffic to run FMF, AMF, and EARDet. Under the flow

ID defined by the pair of source IP and destination IP, we summarize each

dataset as follows:

• Federico II dataset contains 2911 flows which are collected from a 200

Mbps link. The average link rate is 1.85 MB/s and the average flow

size is around 19.9 KB.

• CAIDA dataset contains around 2.5 million flows from a 10 Gbps link.

The average link rate is about 280 MB/s and the average flow size is

about 3.3 KB.

Attack flows. To comprehensively evaluate performance of EARDet

compared to FMF and AMF, we artificially generated two kinds of attack

flows: flooding attack flows and shrew DoS attack flows [41,43], and mix the

generated attack flows with the real traffic as the experiment input traffic.

27

Then we test (1) how many attack flows escape the detection, and (2) how

many legitimate flows are falsely caught as large flows.

Flooding attack flows are the flows with a high rate, thus we generate such

flows second by second. For each second interval, we randomly distribute

γlarge/packetSize packets in this one second, where γlarge is the flooding flow

rate. Then we do the same work for all 30 seconds.

Shrew DoS attack flows consist of some periodic bursts, and attackers use

such bursty traffic to block TCP traffic by exploiting the TCP congestion

control mechanism. To generate shrew DoS attack flows, we randomly pick

up an initial timestamp (from 0 to 29 seconds) for each flow, and then gener-

ate a burst with size γburst · lburst every T seconds, where γburst is the rate of

the burst traffic, the lburst is the duration of each burst, and T is the period

of the burst.

Configure EARDet. We configure EARDet’s parameters as shown in

Table 3.4. With this configuration, EARDet is able to catch all large flows

which violates the high-bandwidth threshold THh(t) = 0.01ρt + 15.5 KB,

while not hurting any legitimate flows which comply with the low-bandwidth

threshold TH`(t) = 0.001ρt+ 6072 B for flows in dataset Federico II. For the

dataset CAIDA, there is only a slight difference in βh, n, and tupincb. The

congested link status means the link is fully congested by flows; the non-

congested link status means the link still contains many idle time intervals.

For a detailed description about how to come up such parameters, please

refer the technical report by Wu et al. [48].

Table 3.4: Parameters of EARDet.

Parameters Federico II CAIDA
ρ 25 MB/s 1.25 GB/s
γh 250 KB/s 12.5 MB/s
βh 15.5 KB 15.4 KB
γ` 25 KB/s 1.25 MB/s
β` 6072 B 6072 B
α 1518 B 1518 B
βTH 6991 B 6991 B
n 107 100

tupincb 0.8370 sec 0.1242 sec
link status non-congested/congested non-congested

28

Table 3.5: Parameters of FMF.

Parameters Federico II CAIDA
b 55/250 55/250
d 2 2
n 110/500 110/500
T 250 KB 12.5 MB

Table 3.6: Parameters of AMF.

Parameters Federico II CAIDA
b 55/250 55/250
d 2 2
n 110/500 110/500
u 15.5 KB 15.4 KB
r 250 KB/s 12.5 MB/s

Configure FMF and AMF. We set the number of stages for FMF and

AMF as d = 2, and the number of counters in each stage as b = 250.

For FMF, we set the window size as 1 second, namely, it checks whether

the counter exceeds the threshold every second. Therefore, the threshold of

FMF is T = γh. For AMF, we set the leaky bucket threshold as u = βh and

the leaky bucket rate as r = γh. We are also interested in investigating how

these two large-flow detectors perform with the same amount of storage cost

used by EARDet, thus, we also consider the case that b = 55 and d = 2.

The configuration is summarized in Table 3.5 and Table 3.6.

3.5.3 Experimental Evaluation Results

We found that the experiment result of the experiments using CAIDA dataset

shows a similar result to the one of the experiments using Federico II, thus, we

just present the result of the experiments running with Federico II dataset.

To measure the performance of FMF, AMF, and EARDet, we mainly fo-

cus on three metrics: false positive probability for small flows, and detection

probability and incubation period for large flows. The false positive proba-

bility measures the probability for the detector to wrongly detect a small flow

as a large flow. The detection probability is the probability that a detector

can successfully catch large flows. The large-flow incubation period shows

the time needed to catch a large flow since the flow appears in the link.

29

To illustrate the experiment result, Figure 3.3, Figure 3.4, Figure 3.5(a)

to 3.5(h), and Figure 3.6 are taken from a paper written by Wu et al. [1]

c©2014 Association for Computing Machinery, Inc. by permission.

0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
5

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

Detection Probability Under Large Rate Flow Attack

Attack Flow Rate (Byte/s)

P
ro

b
a
b
ili

ty

EARDet in congested link

FMF in congested link

AMF in congested link

EARDet in non−congested link

FMF in non−congested link

AMF in non−congested link

γ
atk

γ

Figure 3.3: Detection probability under flooding DoS. FMF and AMF use
55*2 counters [1].

100 200 300 400 500 600 700 800 900 1000
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

Detection Probability Under Shrew Attack

Duration of Burst (ms)

P
ro

b
a
b
ili

ty

EARDet in congested link

FMF in congested link

AMF in congested link

EARDet in non−congested link

FMF in non−congested link

AMF in non−congested link

TH
h

Figure 3.4: Detection probability under shrew DoS. FMF and AMF use
55*2 counters [1].

30

0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
5

 0

0.01

0.02

0.03

0.04

0.05

0.06

False Positive Of Legitimate Flow Under Large Rate Flow Attack

Attack Flow Rate (Byte/s)

P
ro

b
a

b
ili

ty

EARDet

FMF

AMF
γ
atk

γ

(a) 55*2 counters - Congested Link

200 400 600 800 1000
 0

0.1

0.2
False Positive Of Legitimate Flow Under Shrew Attack

Duration of Burst (ms)

P
ro

b
a
b
ili

ty

EARDet

FMF

AMF
TH

h

(b) 55*2 counters - Congested Link

0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
5

 0

0.001

0.002

0.003

0.004

False Positive Of Legitimate Flow Under Large Rate Flow Attack

Attack Flow Rate (Byte/s)

P
ro

b
a

b
ili

ty

EARDet

FMF

AMF

γ
atk

γ

(c) 55*2 counters - Non-congested
Link

200 400 600 800 1000
 0

0.001

0.002

0.003

0.004

0.005

False Positive Of Legitimate Flow Under Shrew Attack

Duration of Burst (ms)

P
ro

b
a
b
ili

ty

EARDet

FMF

AMF

TH
h

(d) 55*2 counters - Non-congested
Link

0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
5

 0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

 0.001

0.0011

0.0012

False Positive Of Legitimate Flow Under Large Rate Flow Attack

Attack Flow Rate (Byte/s)

P
ro

b
a

b
ili

ty

EARDet

FMF

AMF
γ
atk

γ

(e) 250*2 counters - Congested Link

200 400 600 800 1000
 0

0.001

0.002

False Positive Of Legitimate Flow Under Shrew Attack

Duration of Burst (ms)

P
ro

b
a
b
ili

ty

EARDet

FMF

AMF
TH

h

(f) 250*2 counters - Congested Link

0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
5

 0

0.0001

0.0002

0.0003

0.0004

False Positive Of Legitimate Flow Under Large Rate Flow Attack

Attack Flow Rate (Byte/s)

P
ro

b
a

b
ili

ty

EARDet

FMF

AMF

γ
atk

γ

(g) 250*2 counters - Non-congested
Link

200 400 600 800 1000
 0

0.0001

0.0002

False Positive Of Legitimate Flow Under Shrew Attack

Duration of Burst (ms)

P
ro

b
a
b
ili

ty

EARDet

FMF

AMF

TH
h

(h) 250*2 counters - Non-congested
Link

Figure 3.5: False positive for small flows [1].

31

2 2.5 3 3.5 4 4.5

x 10
5

 0

0.2

0.4

0.6

0.8

 1

Incubation Period

Attack Flow Rate (Byte/s)

In
c
u
b
a
ti
o
n
 P

e
ri
o
d
 (

s
e
c
)

Ave t

incb

Max t
incb

t
upincb

γ
h

Figure 3.6: Incubation period for large flows [1].

Figure 3.3 shows the detection probability of three detectors in front of

flooding DoS attack. We can see all of three flows can perfectly catch all

large flows which violate the large-flow threshold. However, FMF and AMF

cannot guarantee that there are no false positives all the time. Especially,

when the link is congested, FMF and AMF falsely caught a lot of flows below

the low-bandwidth threshold.

Figure 3.4 represents the detection probability of three detectors when

shrew DoS attack happens. As we expected, EARDet and AMF can catch

all bursty attack flows, however, FMF missed a lot of such attack flows

because it is only based on the fixed window model.

For false positive probability over small flows, we take a look at Fig-

ures 3.5(a) to 3.5(h). The result shows no false positives in the result

from EARDet. However FMF and AMF cannot avoid the false positives.

When FMF and AMF are using the same number of counters as used by

EARDet, we can find many false positives, especially in the congested link.

Figure 3.5(a) and Figure 3.5(b) indicate that in the congested link, FMF

suffers more 1% and 4% false positives under shrew DoS attack and flooding

DoS attack respectively. Increasing the number of counters can reduce the

false positives for FMF and AMF, but it is impossible to guarantee no false

positive.

The results also reflect that EARDet is deterministic regardless of what

input traffic is used. It is even more interesting that in the ambiguity region,

the curves of detection probability of EARDet are exactly the same. Maybe

we could discover more in the ambiguity region in the future.

Figure 3.6 perfectly supports Theorem 6. The figure shows that the maxi-

mum incubation period of attack flows is always below the theoretical upper

32

bound no matter what the attack flow rate is. Moreover, we observed that

usually the maximum incubation period is much smaller than the theoretical

upper bound and the average incubation period is even much smaller.

3.6 Chapter Summary

In this chapter, we proposed EARDet, a novel arbitrary-window-based al-

gorithm, which is exact outside an ambiguity window. Inspired by the MG

algorithm, EARDet not only keeps the property of no false detection over

large flows exceeding a high-bandwidth threshold, but also achieves the no

false accusation on small flows complying a low-bandwidth threshold with

no assumption on the input traffic or attack pattern. We demonstrate this

both in theoretical analysis and experimental evaluation.

33

CHAPTER 4

CLEF: LIMITING THE DAMAGE CAUSED
BY LARGE FLOWS IN THE INTERNET

CORE

4.1 Chapter Overview

In this chapter, we aim to design algorithms to detect large flows in the

Internet core routers with high capacity, e.g. aggregate capacity of several

Terabits per second (Tbps). Thus, we require the algorithm to be highly

efficient and scalable.

Several approaches for large-flow detection have been proposed; they can

be categorized into deterministic (i.e., not relying on random sampling or

random binning) and probabilistic algorithms. Examples of deterministic al-

gorithms are EARDet [1] and Space Saving [32], while Sampled Netflow [31]

and Multistage Filters [2,17] are examples of probabilistic approaches. With

the increase of core router bandwidth, reducing overhead and increasing

efficiency of large-flow detection algorithms are critical. For example, for

EARDet to detect a 1 Mbps flow on a 100 Gbps link, it would require

105 counters on that link, which calls for specialized hardware to update the

counters on a per-packet basis. Furthermore, mechanisms that require per-

flow state, such as Netflow, may encounter as many as 107 flows across the

same 100 Gbps link. Maintaining 105 counters, including the IPv4 or IPv6

metadata,1 requires about 1.6–4 MB of state for each 100 Gbps of bandwidth.

Since the state has to be accessed for each data packet, the memory system

has to be highly optimized. In contrast, the scheme designed in this chapter

requires only 10 KB per 100 Gbps bandwidth, greatly reducing hardware

cost and complexity.

Because core routers process packets in hardware, and because the de-

signers of core routers add hardware as necessary to accomplish high-speed

1The IP metadata consists source and destination addresses, protocol number, and
ports. Thus, it requires about 16 bytes and 40 bytes per counter for IPv4 and IPv6,
respectively.

34

processing, it is difficult to provide a conclusive upper bound on the com-

putation and memory that a core router can deploy across its links. Thus,

to analyze a budget for in-router memory, we consider three levels of mem-

ory requirement: the lowest level is the size of a commodity CPU L1 cache,

or about 32 KB; the intermediate level is the size of a commodity CPU L2

cache, or about 256 KB; the largest level is the size of a commodity CPU L3

cache, or about 8 MB.

With such a limited amount of memory, an argument based on the pigeon-

hole principle shows that flows cannot be consistently detected as soon as

they exceed certain large-flow thresholds. When the immediate detection of

large flows is not possible due to memory constraints, the goal should be to

minimize the damage caused to legitimate flows; in such an environment, it

is likely more important to rapidly catch very high-rate flows than it is to

quickly catch mildly misbehaving flows. Our damage model considers two

causes of packet loss: loss caused by large flows, and false positives that

punish legitimate flows.

Of particular importance in the damage metric is that an attacker can

perform bursty attacks with periodic traffic bursts. Our damage metric can

also reflect the damage caused by attacks such as the Shrew attack [49]

because we count every dropped legitimate packet.

In this chapter, we propose a hybrid scheme called CLEF, short for in-Core

Limiting of Egregious Flows, which combines the deterministic EARDet

mechanism for rapid detection of very large flows with a novel, randomized

algorithm, called Recursive Large-Flow Detection (RLFD), that eventually

detects large flows not caught by EARDet. Unlike existing detectors, RLFD

efficiently distinguishes large flows from legitimate flows by evaluating one

set of flows at a time, and recursively shrinking the set of suspected large

flows. Larger flows are detected with higher probability in RLFD, so the

expected detection time decreases in the level of overuse, resulting in limited

damage across a wide range of flow overuse amounts.

In this chapter, our main contributions are: the definition of a damage met-

ric to analyze the performance of large-flow detection; a novel, randomized

algorithm, RLFD, that provides eventual detection of persistently large flows

with very little memory cost; a hybrid detection scheme, CLEF, which offers

excellent large-flow detection properties with low resource requirements; and

the analysis of worst-case attacks against proposed large-flow detectors.

35

4.2 Problem Definition

This chapter aims to design an efficient large-flow detection algorithm that

minimizes the damage caused by misbehaving flows. This section introduces

the challenges of large-flow detection and proposes a damage metric to com-

pare different large-flow detectors. We then define an adversary model in

which the adversary adapts its behavior to the detection algorithm in use.

4.2.1 Large-Flow Detection by Core Routers

In this work, we aim to design a large-flow detection algorithm that is viable

to run on Internet core routers. The algorithm needs to limit damage caused

by large flows even when handling worst-case background traffic. Such an

algorithm must satisfy these three requirements:

• Line rate: An in-core large-flow detection algorithm must operate at

the line rate of core routers, which can process several hundreds of

gigabits of traffic per second.

• Low memory: Large-flow detection algorithms will typically access

one or more memory locations for each traversing packet; such memory

must be high-speed (such as on-chip L1 cache). Additionally, such

memory is expensive and usually limited in size, and existing large-flow

detectors are inadequate to operate in high-bandwidth, low-memory

environments. An in-core large-flow detection algorithm should thus

be highly space-efficient. Though perfect detection requires counters

equal to the maximum number of simultaneous large flows (by the

pigeonhole principle [50]), our goal is to perform effective detection

with much fewer counters.

• Low damage: Because the overhead of exact detection (i.e., no false

positives and no false negatives) is excessive in our environment, our

schemes trade timely detection for space efficiency, aiming to limit the

impact of overusing flows. Section 4.2.2 introduces our damage metric,

which quantifies the impact of overuse on legitimate flows.

36

4.2.2 Damage Metric

Rather than relying on memory-intensive exact enforcement algorithms, this

chapter considers the damage inflicted by a large flow before it is detected.

Specifically, we propose a new metric, which we call damage, to assess the

effectiveness of a large-flow detection algorithm. Intuitively, damage quan-

tifies the combined impact of large flows and detection-algorithm-induced

false positives on legitimate traffic (that is, traffic from flows other than

large flows).

In this chapter, we evaluate the damage metric over a link that is at ca-

pacity, such that any large-flow traffic causes packet loss. In general, damage

could be modified to contemplate links that are not at capacity, or traffic

of different priority classes. We thus characterize large-flow impact to be

equal to large-flow overuse. The damage metric, then, is large-flow overuse

(intuitively, the losses resulting from the large flow) plus false positives (in-

tuitively, the losses resulting from an incorrect detection by an erroneous

detection algorithm). Symbolically, our damage metric D = Dover + Dfp

where

• Overuse Damage (Dover): the total amount by which all large flows

exceed the flow specification.

• False Positive Damage (Dfp): the amount of legitimate traffic incor-

rectly blocked by the detection algorithm.

Relationship with other metrics. Previous work often uses false posi-

tive, false negative, and detection delay metrics; the damage metric reflects

these three, but is more expressive than each metric individually.

• False Positive (FP): a flow incorrectly detected as a large flow.

• False Negative (FN): a large flow missed by the detection algorithm.

• Detection Delay: the latency between a large flow’s first threshold-

exceeding packet and the detection of that flow.

Overuse damage reflects both FNs and detection delay; it also distinguishes

between flows that significantly exceed the flow specification and those that

barely exceed the flow specification. For example, if large flow A is much

37

larger than large flow B, a missed detection on A or B results in the same

FN rate; however, the damage metric reflects the increased cost of missed

detection on the larger flow A. The damage metric elegantly unifies com-

mon metrics like FP, FN, and detection delay, simplifying the comparison of

detection algorithms.

4.2.3 Attacker Model

In our attacker model, we consider an adversary that aims to maximize dam-

age. Our attacker responds to the detection algorithm and tries to exploit its

transient behavior to avoid detection or to cause false detection of legitimate

flows.

Like Estan and Varghese’s work [2], we assume that attackers know about

the large-flow detection algorithm running in the router and its settings, but

have no knowledge of secret seeds used to generate random variables, such

as the detection intervals for landmark-window-based algorithms [2, 18–21,

23, 24, 32], and random numbers used for packet/flow sampling [2]. This

assumption prevents the attacker from optimal attacks against randomized

algorithms.

We assume the attacker can interleave packets, but is unable to spoof

legitimate packets (as discussed in Section 2.1) or create pre-router losses in

legitimate flows. Figure 4.1 shows the network model, where the attacker

arbitrarily interleaves attack traffic (A) between idle intervals of legitimate

traffic (L) and the router processes the interleaved traffic to generate output

traffic (O) and perform large-flow detection. Our model does not limit input

traffic, allowing for arbitrary volumes of attack traffic.

In our model, whenever a packet traverses a router, the large-flow detector

receives the flow ID (for example, the source and destination IP and port and

transport protocol), the packet size, and the timestamp at which the packet

arrived.

Router
(w/ Detector)

O…
Interleaving

…A

…L

Figure 4.1: Adversary model.

38

4.3 Background and Challenges

In this section we briefly review some existing large-flow detection algorithms,

and discuss the motivations and challenges of combining multiple algorithms

into a hybrid scheme.

4.3.1 Existing Detection Algorithms

We review the three most relevant large-flow detection algorithms, summa-

rized in Table 4.1. We divide large flows into low-rate large flows and high-

rate large flows, depending on the amount by which they exceed the flow

specification.

EARDet. EARDet [1] guarantees exact and instant detection of all flows

exceeding a high-rate threshold γh = ρ
m

, where ρ is the link capacity and

m is the number of counters. However, EARDet may fail to identify a flow

whose rate stays below γh.

Multistage Filters (AMF). Multistage filters [2, 17] consist of multiple

parallel stages, each of which is an array of counters. Specifically, arbitrary-

window-based Multistage Filter (AMF), as classified by Wu et al. [1], uses

leaky buckets as counters. AMF guarantees no-FN and immediate detection

for any flow specification; however, AMF has FPs, which increase as the link

becomes congested (as shown in Appendix B.1.2).

Flow Memory. Flow Memory (FM) [2] refers to per-flow monitoring

of select flows. FM is often used in conjunction with another system that

specifies which flows to monitor; when a new flow is to be monitored but the

flow memory is full, FM evicts an old flow. We follow Estan and Varghese [2]’s

random eviction. If the flow memory is large enough to avoid eviction, it

provides exact detection. In practice, however, FM is unable to handle a

large number of flows in the network, resulting in frequent flow eviction and

potentially high FN. The analysis in Appendix B.1.1 shows that FM’s real-

world performance depends on the amount by which a large flow exceeds the

flow specification: high-rate flows are more quickly detected, which improves

the chance of detection before eviction.

39

Table 4.1: Comparison of Three Existing Detection Algorithms. None of
Them Achieve All Desired Properties.

Algorithm EARDet AMF FM

No-FP yes no∗ yes

No-FN
Flat large flow

low-rate no∗∗ yes no∗

high-rate yes yes yes∗∗∗

Bursty large flow
low-rate no∗∗ yes no∗

high-rate yes yes yes∗∗∗

Instant detection yes yes yes

Deterministic yes no no
∗Appendix B.1.1 and B.1.2 show that FM has high FN and AMF has high FP

for low-rate large flows when memory is limited.
∗∗EARDet cannot provide no-FN when memory is limited.
∗∗∗FM has nearly zero FN when large-flow rate is high.

4.3.2 Advantages of Hybrid Schemes

As Table 4.1 shows, none of the detectors we examined can efficiently achieve

no-FN and no-FP across various types of large flows. However, different

detectors exhibit different strengths, so combining them could result in im-

proved performance.

One approach is to run detectors sequentially; in this composition, the first

detector monitors all traffic and sends any large flows it detects to a second

detector. However, this approach allows an attacker controlling multiple

flows to rotate overuse among many flows, overusing a flow only for as long

as it takes the first detector to react, then sending at the normal rate so that

remaining detectors remove it from their watch list and re-starting with the

attack.

Alternatively, we can run detectors in parallel: the hybrid detects a flow

whenever it is identified by either detector. (Another configuration is that

a flow is only detected if both detectors identify it, but such a configuration

would have a high FN rate compared to the detectors used in this chapter.)

The hybrid inherits the FPs of both schemes, but features the minimum

detection delay of the two schemes and has a FN only when both schemes

have a FN. The remainder of this chapter considers the parallel approach

that identifies a flow whenever it is detected by either detector.

The existing EARDet and FM schemes have no FPs and are able to quickly

detect high-rate flows; because high-rate flows cause damage much more

quickly, rapid detection of high-rate flows is important to achieving low dam-

40

age. Combining EARDet or FM with a scheme capable of detecting low-rate

flows as a hybrid detection scheme can retain rapid detection of high-rate

flows while eventually catching (and thus limiting the damage of) low-rate

flows. In this chapter, we aim to construct such a scheme. Specifically,

our scheme will selectively monitor one small set at a time, ensuring that a

consistently overusing flow is eventually detected.

4.4 RLFD Algorithm and CLEF Hybrid Scheme

In this section, we present our new large-flow detectors. First, we describe

the Recursive Large-Flow Detection (RLFD), a novel approach, which is de-

signed to use very little memory but provide eventual detection for large

flows, and present the data structures, runtime analysis, and advantages and

disadvantages of RLFD. Next, we develop a hybrid detector, CLEF, that

addresses the disadvantages of RLFD by combining it with the previously

proposed EARDet [1]. CLEF uses EARDet to rapidly detect high-rate

flows and RLFD to detect low-rate flows, thus limiting the damage caused

by large flows, even with a very limited amount of memory.

4.4.1 RLFD Algorithm

RLFD is a randomized algorithm designed to perform memory-efficient de-

tection of low-rate large flows; it is designed to scale to a large number of

flows, as encountered by an Internet core router. RLFD is designed to limit

the damage inflicted by low-rate large flows while using very limited mem-

ory. The intuition behind RLFD is to monitor subsets of flows, recursively

subdividing the subset deemed most likely to contain a large flow. By divid-

ing subsets in this way, RLFD exponentially reduces memory requirements

(monitoring md flows with O(m+ d) memory).

The main challenges addressed by RLFD include efficiently mapping flows

into recursively divided groups, choosing the correct subdivision to reduce

detection delay and FNs, and configuring RLFD to guarantee the absence of

FPs.

Recursive subdivision. To operate on extremely limited memory, RLFD

41

…
… …

… …

𝑳𝟏

𝑳𝟐

𝑳𝒅

𝑳𝟑

flows

(a) Virtual Counter Tree
(Full m-branch Tree)

m counters

flows

(b) A Tree
Branch.

f2 f3 f4 f5 f6f1 fL

f2 f6 fL

THRLFD

𝑳𝟏

𝑳𝟐

(c) Example of 7 flows,
m = 4, and d = 2.

Figure 4.2: RLFD structure and example.

recursively subdivides monitored flows into m groups, and subdivides only

the one group most likely to contain a large flow.

We can depict an RLFD as a virtual counter tree2 (Figure 4.2(a)) of depth

k. Every non-leaf node in this tree has m children, each of which corresponds

to a virtual counter. The tree is a full m-ary try of depth d, though at any

moment, only one node (m counters) is kept in memory; the rest of the tree

exists only virtually.

Each flow f is randomly assigned to a path PATH(f) of counters on the

virtual tree, as illustrated by the highlighted counters in Figure 4.2(b). This

mapping is determined by hashing the flow ID with a keyed hash function,

where the key is randomly generated by each router. Section 4.4.2 explains

how RLFD efficiently implements this random mapping.

Since there are d levels, each leaf node at level Ld will contain an average

of n/md−1 flows, where n is the total number of flows on the link. A flow f

is identified as a large flow if it is the only flow associated with its counter

at level Ld and the counter value exceeds a threshold THRLFD. Section 4.4.2

describes how to configure RLFD to guarantee no-FP and low detection delay.

We choose d ≥ dlogm ne so that a leaf node is likely to contain a single flow.

RLFD considers only one node in the virtual counter tree at a time, so

it requires only m counters. To enable exploration of the entire tree, RLFD

divides the process into d periods; in period k, it loads one tree node from

2The terms “counter tree” and “virtual counter” are also used by Chen et al. [35], but
our technique differs in both approach and goal. Chen et al. efficiently manage a sufficient
number of counters for per-flow accounting, while RLFD manages an insufficient number
of counters to detect consistent bad behavior.

42

level Lk. Though these periods need not be of equal length, in this chapter

we consider periods of equal length T`, which results in a RLFD detection

cycle Tc = d · T`.
RLFD always chooses the root node to monitor at level L1; after moni-

toring at level Lk, RLFD identifies the largest counter Cmax among the m

counters at level Lk, and uses the node corresponding to that counter for

level Lk+1. Section 4.5.3 shows that choosing the largest counter detects

large flows with high probability.

Figure 4.2(c) shows an example with m = 4 counters, n = 7 flows, and

d = 2 levels. fL is a low-rate large flow. In level L1, the largest counter is the

one associated with large flow fL and legitimate flows f2 and f6. At level L2,

the flow set {fL, f2, f6} is selected and sub-divided. After the second round,

fL is detected because it violates the counter value threshold THRLFD.

Algorithm description. As shown in Figure 4.3(a), the algorithm starts

at the top level L1 so each counter represents a child of the root node. At

the beginning of each period, all counters are reset to zero. At the end of

each period, the algorithm finds the counter holding the maximum value and

moves to the corresponding node, so each counter in the next period is a

child of that node. Once the algorithm has processed level d, it repeats from

the first level.

Figure 4.3(b) describes how RLFD processes each incoming packet. When

RLFD receives a packet x from flow f , x is dropped if f is in the blacklist

(a table that stores previously found large flows). If f is not in the blacklist,

RLFD hashes f to the corresponding counters in the virtual counter tree

(one counter per level of the tree). If one such counter is currently loaded in

memory, its value is increased by the size of the packet x. At the bottom level

Ld, a large flow is identified when there is only one flow in the counter and

the counter value exceeds the threshold THRLFD. To increase the probability

that a large flow is in a counter by itself, we choose d ≥ dlogm ne and use

Cuckoo hashing [51] at the bottom level to reduce collisions (as described in

Section 4.4.2).

• Hashing to Counters. RLFD hashes each packet’s flow ID to one

virtual counter at each level of the virtual counter tree. Each incoming

packet must be hashed so that RLFD can determine whether the flow

is monitored in the current time period. Though a näıve approach

43

k = 1 ?
counters	
represent

1st-level	V.C.s

findmax-value
V.C. Cmax in k-1

level

counters	
represent

Cmax’s child V.C.s

k = k % d + 1

Yes

No

period k
starts;
reset
counters

period k
ends

(a) Level Change Diagram.

hash to	V.C.is in
blacklist?

V.C. in
memory?

update	V.C.	by	
size	of	x

V.C.
in bottom

level?
counter >
threshold?Blacklist

the
only flow in

V.C.?

No Yes

YesYesYes

packet x

(b) Packet Processing Diagram.

Figure 4.3: RLFD Decision Diagrams. “V.C.” stands for virtual counter.

would be to perform one hash for each level (total run time of O(d)),

we propose an O(1) implementation in Section 4.4.2.

• Counter Threshold. To reflect the flow specification TH(t) = γt+ β

from Section 2.1, we set THRLFD = γT` + β, where T` is the duration

of the period during which detection is performed at the bottom level

Ld. Any flow sending more traffic than THRLFD during any duration of

time T` must violate the large-flow threshold TH(t), so RLFD has no

FPs.

• Blacklist. As in EARDet [1], RLFD includes a blacklist to record

detected large flows for future analysis and action. We calculate the

damage D with the assumption that CLEF blocks large flows right

after they are put into the blacklist.

4.4.2 RLFD Data Structure and Optimization

In this section, we describe how to efficiently implement RLFD and propose

additional optimizations to the basic RLFD described in Section 4.4.1.

Hashing and counter checking. Hashing each flow f into a path of

virtual counters PATH(f) and checking whether any of these counters are

44

loaded in the memory are two performance-critical operations of RLFD.

For each packet, our implementation only requires three bitwise operations

(a hash operation, a bitwise AND operation, and a comparison over 64 bits),

thus requiring only O(1) time and O(1) space on a modern 64-bit CPU.

A naive implementation of hashing could introduce unnecessary cost in

computation and space. For example, a naive implementation may maintain

one hash function per virtual counter array. To check whether an incoming

flow needs to be monitored, it needs to check whether the incoming flow

is hashed into every maximum-value counter in each level above the current

level. However, this took O(d) time for checking level by level and O(d) space

for hash functions, where d is the depth of the virtual counter tree. O(d)

computational complexity per packet is too high due to the limited number

of per-packet memory access in a typical modern CPU.

|𝟏𝟏𝟏𝟏𝟏𝟏𝟏… 𝟏𝟏𝟏𝟏𝟏𝟏	𝟎𝟎𝟎𝟎𝟎…𝟎𝟎𝟎𝟎𝟎𝟎|

𝒔 𝒌 −𝟏 bits

𝑴(𝑳𝒌) ≜
𝒔(𝒅 −𝒌 + 𝟏) bits

For 𝑳𝟏

|𝒃𝟎𝒃𝟏𝒃𝟐… 𝒃𝒔2𝟏… 𝒃𝒔 𝒌2𝟏 … 𝒃𝒔𝒌2𝟏 …𝒃𝒔𝒅2𝟐 𝒃𝒔𝒅2𝟏|𝑯(𝒇) ≜

For 𝑳𝒌

|𝒂𝟎𝒂𝟏𝒂𝟐…𝒂𝒔2𝟏 …𝒂𝒔 𝒌2𝟐 … 𝒂𝒔 𝒌2𝟏 2𝟏 𝟎𝟎… 𝟎𝟎𝟎|

For 𝑳𝟏

𝐀(𝒍𝒊,𝒌) ≜

For 𝑳𝒌2𝟏

𝑯(𝒇)AND 𝑴(𝑳𝒌)
= 𝐀(𝒍𝒊,𝒌)

≠ 𝐀(𝒍𝒊,𝒌)

f’s V.C. is in the loaded counter array 𝒍𝒊,𝒌

f’s V.C. is not in the loaded counter array 𝒍𝒊,𝒌

Figure 4.4: RLFD counter hash and in-memory check. H(f) reflects the
hash-generated bin number for all levels, M(Lk) reflects a mask that
includes the first k − 1 levels, and A(li,k) reflects the bins selected in each of
the first k − 1 levels. Flow f is in the i, k counter array exactly when H(f)
& M(Lk) = A(li,k).

Inspired by how a network router finds the subnet of an IP address, as

Figure 4.4 illustrates, we map a flow to a virtual counter per level based on a

single hash value. Specifically, given an incoming flow f , we compute H(f),

and then do a bitwise AND operation of H(f) and a mask value M(Lk) of

the current level Lk. We then check whether the result is equal to the hash

value A(`i,k) of the current loaded counter array `i,k (the ith counter array in

the kth level). If the H(f) AND M(Lk) = A(`i,k), then the virtual counter

of f in the level Lk is in the currently loaded counter array `i,k.

45

Assuming RLFD has d levels and m counters in each counter array, we

hash a flow ID f = fid(x) into H(f) with s · d bits, where s = log2m. We

require the system designer to only choose the base-2 exponential value for

m, so that the s is an integer.

The bits [bs(k−1) : bsk−1] 3 of H(f) is the index of the virtual counter in its

counter array in the kth level Lk. As each counter array is determined by

its ancestor counters as Figure 4.2(b) describes, the bits [b0 : bs(k−1)−1] can

uniquely determine the counter array in the level Lk for the flow f . Thus,

to check whether the virtual counters of a flow is in memory, we just need

to track the ancestor counters of the currently loaded counter array li,k. We

track the ancestor counters by A(`i,k), which is also a value of s · d bits. The

bits [a0 : as(k−1)−1] record the index of ancestor counters of `i,k, and the rest

of bits are all 0s. To track A(`i,k), we just simply set the bits [as(k−1) : ask−1]

as the index of the selected counter at the end of the period of Lk. The mask

value for the level Lk is also a value of s · d bits, whose first s(k− 1) bits are

1s and the rest are 0s. By H(fid(x)) AND M(Lk), we extract the ancestor

bits [b0 : bs(k−1)−1] of the flow fid(x), and compare it with the ancestor bits

[a0 : as(k−1)−1] of the loaded counter array. If they match, then the flow

fid(x)’s counter is in the memory, and we update the counter with index

[bs(k−1) : bsk−1] by the size of the packets of the flow fid(x).

For each packet, our implementation above only needs three bitwise oper-

ations: a hash operation, an AND operation, and a comparison over d log2m

bits. Although the number of bits used in this implementation depends on d

and m, a 64-bit long integer is enough in most of the cases, thus those bitwise

operations only take O(1) CPU cycles in a modern 64-bit CPU. Therefore,

we say this implementation only takes O(1) time and O(1) space.

Hash function update. We update the keyed hash function by choosing

a new key at the beginning of every initial level to guarantee that the counter

assignments between each top-to-bottom detection cycle are approximately

independently random. For simplicity, in this chapter we analyze RLFD

with uniformly random hash functions. Picking a new key is computationally

inexpensive and needs to be performed only once per cycle.

Blacklist. When RLFD identifies a large flow, the flow’s ID should be

added to the blacklist as quickly as possible. Thus, we implement the blacklist

3[bi : bj] denotes a block of bits {bk}, i ≤ k ≤ j.

46

with a small amount of L1 cache backed by permanent storage, e.g., main

memory. Because the blacklist write only happens at the bottom-level period

and the number of large flows detected in one iteration of the algorithm is

usually small, we first write these large flows in the L1 cache and move

them from L1 cache to permanent storage at a slower rate. By managing

the blacklist in this way, we provide high bandwidth for blacklist writing,

defending against attacks that overflow the blacklist.

No-FP guarantee. To guarantee no FP, we only identify large flows

whose counters have no second flow. At the bottom level Ld, we randomly

pick m flows from among the nd flows in Ld, and use Cuckoo hashing [51] to

assign each chosen flow to a counter. By using Cuckoo hashing, the expected

flow insertion time is constant and the worst-case lookup and update time

are constant. Furthermore, there are nearly no hash collisions.

To guarantee no FP, we only identify large flows whose counter has no

second flow, i.e. no flow hash collision Cfree. If we randomly hash flows into

counters at the bottom level Ld, the no-collision probability for a counter

is Pr(Cfree) = [m−1
m

]nd−1, where nd is the number of flows selected into Ld.

Because we want to have d as small as possible, thus, we usually may choose

d = dlogm ne, where n is the total number of flows in the link. Thus, nd ≤ m

on average. Thus,

Pr(Cfree) =

[
m− 1

m

]mnd−1

m

≈ e−
nd−1

m (4.1)

When nd ≈ m, the no-collision probability Pr(Cfree) ≈ 1
e

= 0.368, which

gives a collision probability for each flow of 0.632.

To avoid the high collision probability in the regular hash above, we ran-

domly pick m flows (out of nd flows) instead. Each of m flows is monitored

by a dedicated counter (which does not introduce additional FNs, because

nd ≤ m). To efficiently implement this counter assignment, we can use

Cuckoo hashing [51] to achieve constant expected flow insertion time and

worst-case constant lookup and update time. Cuckoo hashing resolves colli-

sions by using two hash functions instead of only one in regular hashing. As

in [52], Mitzenmacher shows that, with three hash functions, Cuckoo hashing

can achieve expected constant insertion and lookup time with load factor of

91%. Thus, when m = nd, the Cuckoo hashing can achieve Pr(Cfree) ≈ 0.91,

47

which is still much larger than Pr(Cfree) ≈ 0.368 in the regular hashing. As

nd is usually less than m (because we set d to be the ceiling of logm n), it is

reasonable to treat the Pr(Cfree) ≈ 1 in our later analysis. Cuckoo hashing

requires to store both the key (48 bits for IPv4, 144 bits for IPv6) and value

(32 bits) of an entry, thus, for each counter, we need space for the flow ID

and the counter value.

4.4.3 Shrinking Counter Entry Size

As we discussed, the number of flows hashed into the bottom level is much

less than m (e.g. at most 210). A key space of 96 bits (288 for IPv6) is

too large for less than 210 keys. We can hash the flow IDs into a smaller

key space, e.g. 48 bits to save memory size. For each flow, although hash

collision could happen and may result in FP in the detection in the bottom

level, the probability is less than 1− [248−1
248]2

10−1 ≈ 2−38 which is very small.

For systems can tolerate such extremely low FP probability, we recommend

it to do so.

Using multiple RLFDs. If a link handles too much traffic to use a

single RLFD, we can use multiple RLFDs in parallel. Each flow is hashed

to a specific RLFD so that the load on each detector meets performance

requirements. The memory requirements scale linearly in the number of

RLFDs required to process the traffic.

4.4.4 RLFD Runtime Analysis

We analyze the runtime using the same CPU considered in EARDet [1].

An OC-768 (40 Gbps) high-speed link accommodates 40 million mid-size

(1000 bit) packets per second. To operate at the line rate, a modern 3.2 GHz

CPU must process each packet within 76 CPU cycles. A modern CPU might

contain 32 KB L1 cache, 256 KB L2 cache, and 20 MB L3 cache. It takes

4, 12, and 30 CPU cycles to access L1, L2, and L3 CPU cache, respectively;

accessing main memory is as slow as 300 cycles.

If, over a 40-Gbps link, we conservatively pick a large-flow threshold rate

γ = 100 kbps (a low-rate threshold in today’s networks), a maximum of

400, 000 flows can use the threshold rate. An RLFD with 400, 000 flows and

48

128 counters per level only needs d = 3 levels to get an average of 24.4 flows

at the bottom level, causing only a few collisions for the 128 counters at the

bottom level which will be handled by the Cuckoo hashing approach. Even

if we consider a much larger number of flows, such as 40 million, d = 4 levels

results in around 19.1 flows at the bottom level. In such a four-level RLFD,

a flow’s path through the tree will require only 4 · log2 128 = 28 bits, so a

64-bit integer is large enough for the hash value. In practice, the threshold

rate may be higher than 100 kbps, and the number of flows is likely to be

under 40 million.

Computational complexity. Based on the implementation and opti-

mizations in Section 4.4.2, RLFD performs the following steps on each packet:

(1) a hash computation to find the flow’s path in the tree, (2) a bitwise AND

operation to find the subpath down to the depth of the current period, (3) an

integer comparison to determine if the flow is part of an active counter, and

(4) a counter value update if the flow is hashed into the loaded counter ar-

ray. Each of these operations is O(1) complexity and fast enough to compute

within 76 CPU cycles.

At the bottom level, after operations (1) to (3), RLFD performs the fol-

lowing steps: (5) a Cuckoo lookup/insert to find the appropriate counter,

(6) a counter value update to represent the usage of a flow, (7) a large-flow

check that compares the counter value with a threshold, and (8) an on-chip

blacklist write if the counter has exceeded the threshold. Steps (5)–(7) are

only performed on packets from the small fraction of flows that are loaded in

the bottom-level array; step (8) is only for packets of the flows identified as

large flows in step (7), and this only happens once for each flow (if we block

the large flows in the blacklist). Thus steps (5)–(8) are executed much less

frequently than steps (1)–(4). Even so, steps (5)–(8) have a constant time in

expectation, and are likely negligible in comparison with steps (1)–(4).

Storage complexity. RLFD only keeps a small array of counters and

a few additional variables: the hash function key, the 64-bit mask value for

the current level, and the 64-bit identifier of the currently loaded counter

array. Because we use Cuckoo hashing at the bottom level, besides a 32-bit

field for the counter value, each counter entry needs to have a field for the

associated flow ID key, which is 96 bits in IPv4 and 288 bits in IPv6. An

array of 128 counters requires 2 KB in IPv4 and 5 KB for IPv6, which readily

49

fits within the L1 cache. As discussed in Section 4.4.3, we can further shrink

the flow ID field size to 48 bits (with FP probability ≤ 2−38 for each flow); if

deployed, a 128 counter array is 1.25 KB and a 1024 counter array is 10 KB

for both IPv4 and IPv6, quite a bit less than the size of the L1 cache (32

KB).

4.4.5 RLFD’s Advantages and Disadvantages

Advantages. With recursive subdivision and other optimization tech-

niques, RLFD is able to (1) identify low-rate large flows with non-zero prob-

ability, with probability close to 100% for flows that cause extensive damage

(Section 4.5.3 analyzes RLFD’s detection probability); and (2) guarantee

no-FP, eliminating damage from FP.

Disadvantages. First, a landmark-window-based RLFD cannot guar-

antee exact detection over large-flow specification based on arbitrary time

windows [1].4 However, this approximation results in limited damage, as

mentioned in Section 4.3. Second, recursive subdivision based on landmark

time windows requires at least one detection cycle to catch a large flow. Thus,

RLFD cannot guarantee low damage for flows with very high rates. Third,

RLFD works most effectively when the large flow sends over the flow speci-

fication in all d levels, so bursty flows with a burst duration shorter than the

RLFD detection cycle Tc are likely to escape detection (where burst duration

refers to the amount of time during which the bursty flow sends in excess of

the flow specification).

4.4.6 CLEF Hybrid Scheme

We propose a hybrid scheme, CLEF (in-Core Limiting of Egregious Flows),

which is a parallel composition with one EARDet and two RLFDs (Twin-

RLFD). This hybrid can detect both high-rate and low-rate large flows with-

out producing FPs, requiring only a limited amount of memory. We do not

include flow memory in this hybrid scheme because its detection is not as

deterministic as EARDet’s.

4Landmark window and arbitrary window are introduced in Section 2.1

50

Parallel composition of EARDet and RLFD. As described in Sec-

tion 4.3.2, we combine EARDet and RLFD in parallel so that RLFD can

help EARDet detect low-rate flat flows, and EARDet can help RLFD

quickly catch high-rate flat and bursty flows.

Twin-RLFD parallel composition. RLFD is most effective at catching

flows that violate flow specification across an entire detection cycle Tc. An

attacker can reduce the probability of being caught by RLFD by choosing a

burst duration shorter than Tc and a inter-burst duration greater than Tc/d

(thus reducing the probability that the attacker will advance to the next

round during its inter-burst period). We therefore introduce a second RLFD

(RLFD(2)) with a longer detection cycle T
(2)
c (denoting the first RLFD and

its detection cycle by RLFD(1) and T
(1)
c , respectively), so that a flow must

have burst duration shorter than T
(1)
c and burst period longer than T

(2)
c /d

to avoid detection by the Twin-RLFD. For a given average rate, flows that

evade Twin-RLFD have a higher burst rate than flows that evade a single

RLFD. By properly setting T
(1)
c and T

(2)
c , Twin-RLFD can synergize with

EARDet, ensuring that a flow undetectable by Twin-RLFD must use a

burst higher than EARDet’s rate threshold γh.

Timing randomization. An attacker can strategically send traffic with

burst durations shorter than T
(1)
c , but choose low duty cycles to avoid detec-

tion by both RLFD(1) and EARDet. Such an attacker can only be detected

by RLFD(2), but RLFD(2) has a longer detection delay, allowing the attacker

to maximize damage before being blacklisted. To prevent attackers from de-

terministically maximizing damage, we randomize the length of the detection

cycles T
(1)
c and T

(2)
c .

4.5 Analysis

In this section, we discuss RLFD’s performance and its large-flow detection

probability. We then compare CLEF with state-of-the-art schemes, consider-

ing various types of large flows under CLEF’s worst-case background traffic.

Due to limited space, some derivations are in Appendix B. The notations

used in the rest of sections in this chapter are introduced in Table 4.2.

Detection probability. Single-level detection probability is the probabil-

51

Table 4.2: Table of Notations.

Generic notations:

ρ , Rate of (outbound) link capacity

γ, β , Rate and burst threshold flow specification

θ , Duty cycle of bursty flows (θ ≤ 1)

Tb , Period of burst

Ratk, α , Average large-flow rate, and Ratk = αγ

n , Number of legitimate flows

nγ , ρ
γ ; Maximum number of legitimate flows at rate γ

m , Number of counters available in a detector

γh , ρ
m+1 ; EARDet high-rate threshold rate

Dfp , Damage caused by false accusation

Dover , Damage caused by overuse by large flows

E(Dover) , Expected overuse damage

RLFD notations:

d , Number of levels

n(k) , Number of legitimate flows in the level k

T` , Time period of a detection level

Tc , Detection cycle Tc = d · T`
T

(1)
c , Detection cycle Tc of the first RLFD in CLEF

T
(2)
c , Detection cycle Tc of the second RLFD in CLEF

Pr(Aα) , Detection prob. for flows with Ratk = αγ

α0.5 , When α ≥ α0.5, approximately Pr(Aα) ≥ 0.5

α1.0 , When α ≥ α1.0, approximately Pr(Aα) = 1.0

Timing-Randomized RLFD notations:

T`,min , The minimum T`
Tc,min , Tc,min = dT`,min

σ , σTc,min is the maximum Tc
P , Maximum period in brute-force search (for optimal attacks)

Win , The input size of reinforcement learning (for optimal attacks)

p , The punishment to reinforcement learner when the large flow
is caught

Pr(p) , The probability to apply the punishment p

52

ity that a RLFD selects a correct counter (containing at least one large flow)

for the next level. Total detection probability is the probability that one copy

of RLFD catches a large flow in a cycle Tc (which can be estimated by the

product of single-level detection probabilities across all levels in a cycle).

4.5.1 RLFD Worst-Case Background Traffic

Since our goal is to minimize worst-case damage, here we discuss the worst-

case background traffic against RLFD. Given a large flow, we want to find

the legitimate flow traffic pattern that maximizes damage caused by the large

flow. We then assume this worst-case cross-traffic in the rest of the analysis.

Since damage increases with expected detection delay (and thus decreases

with single-level detection probability) in RLFD, we derive the worst-case

background traffic by finding the minimum single-level detection probability

for each level of RLFD. Theorem 7 states that the worst-case background

traffic consists of threshold-rate legitimate flows fully utilizing the outbound

link. The proof of Theorem 7 and further discussion are presented in Ap-

pendix B.1.3.

Theorem 7 On a link with a threshold rate γ and an outbound link capacity

ρ, given an attack large flow fatk, RLFD runs with the lowest probability to

select the counter containing fatk to the next level, when there are nγ = ρ/γ

legitimate flows, each of which is at the rate of γ.

Figure 4.5 presents single-level detection probabilities for several different

background traffic patterns, which empirically validates our theorem.

4.5.2 Characterizing Large Flows

To systematically compare CLEF with other detectors under various types

of attack flows, we categorize large flows based on three characteristics, as

Figure 4.6 illustrates:

1. Burst Period (Tb). A large flow sends a burst of traffic in a period of

Tb.

53

α = R
atk

/γ
5 10 15 20

P
ro

b
a

b
ili

ty
0

0.5

1

1.5
Detection Probability in a Single Level

100000 flows; background rate = 0.01
10000 flows; background rate = 0.1
1000 flows; background rate = γ

Figure 4.5: RLFD’s single-level detection probability of the first level
against a large flow at different rate Ratk = αγ, when background legitimate
flows at various rates (0.01γ, 0.1γ, and γ) fully use the link capacity of
1000γ. The RLFD suffers the lowest detection probability when the
legitimate flows are at the threshold rate γ.

2. Duty Cycle (θ ∈ (0, 1]). In each period of length Tb, a large flow only

sends packets during a continuous time period of θTb and remains silent

during the rest of the period.

3. Average Rate (Ratk). This is the average volume of traffic sent from a

large flow per second over a time interval much longer than the burst

period Tb. The instant rate during the burst chunk θTb is Ratk/θ.

time

…

𝑹𝒂𝒕𝒌
𝜽

𝑹𝒂𝒕𝒌

𝜽𝑻𝒃 𝑻𝒃

Figure 4.6: Flow with average rate Ratk, burst period Tb, duty cycle
θ ∈ (0, 1].

By remaining silent between bursts, attacks such as the Shrew attack [49]

keep the average rate lower than the detection threshold to evade the detec-

tion algorithms based on landmark windows [2, 18–21,23,24,32].

A large flow may switch between different characteristic patterns over time,

including ones that comply with flow specifications. The total damage in this

case can be computed by adding up the damage inflicted by the large flow

54

under each appearing pattern. Hence, for the purpose of the analysis, we

focus our discussion on large flows with fixed characteristic patterns.

4.5.3 RLFD Detection Probability for Flat Flows

We discuss the detection probability of RLFD over flat large flows in this

section. In order to detect a flat large flow, the traffic of the flat large flow

should be observable in each detection level.

The probability that RLFD catches one large flow in a detection cycle

increases with the number of large flows passing through RLFD. Because a

greater number of large flows implies that more counters may contain large

flows in each level, thus RLFD has a higher chance of correctly selecting

counters with large flows in the recursive subdivision. Hence, we discuss the

worst-case scenario for RLFD where only one large flow is present.

Because the operation in all but the bottom level of RLFD is similar and

the only difference is the flows hashed to the counter array, we discuss the

detection in a single level first and expand it to the whole detection cycle.

Additional numeric examples are provided in Appendix B.1.4.

Single-level detection probability. Given the total number of flows

traversing the link is n, we can predict the expected number of flows in the

kth level by n(k) = n/mk−1, where m is the number of counters. Since n(k)

depends only on the total number of flows and not the traffic distribution, we

discuss a single-level detection with n(k) legitimate flows, m counters, and a

large flow at the rate of Ratk = αγ, where γ is the threshold rate and α > 1.

When the context is clear, we use n to stand for n(k) in the discussion of

single-level detection.

According to Theorem 7, the worst-case background traffic is that all n

legitimate flows are at the threshold rate γ; Theorem 8 shows an approximate

lower bound of the single-level detection probability Pworst(m,n, α) in such

worst-case background traffic. The proof of Theorem 8 and its Corollaries 9

and 10 are presented in Appendix B.2.1.

Theorem 8 Given m counters in a level, n legitimate flows at full rate γ,

and a large flow fatk with an average rate of Ratk = αγ, the probability

Pworst(m,n, α) that RLFD will correctly select the counter with large flow

fatk has an approximate lower bound of 1 − Q(K, n
m

), where K =
⌊
n
m

+

55

√
2 n
m

log n − α
⌋
; Q(K, n

m
) is the cumulative distribution function (CDF) of

the Poisson distribution Pois(n
m

).

Corollary 9 For a detection level with n legitimate flows, m counters, and

a large flow fatk at the average rate of α0.5 ·γ, the probability Pworst(m,n, α0.5)

that RLFD will correctly select the counter of fatk has an approximate lower

bound of 0.5, where α0.5 =
√

2 n
m

log n.

Corollary 10 For a detection level with n legitimate flows, m counters, and

a large flow fatk at the average rate of α1.0 ·γ, the probability Pworst(m,n, α1.0)

that RLFD will correctly select the counter of fatk has an approximate lower

bound of 1.0, where α1.0 = 2 · α0.5 = 2
√

2 n
m

log n.

Total detection probability. Theorem 11 describes the total probability

of detecting a large flow in one detection cycle. Detailed proof is provided in

Appendix B.2.2.

Theorem 11 When there are n legitimate flows and a flat large flow at the

rate of αγ, the total detection probability of a RLFD with m counters has an

approximate lower bound:

Pr(Aα) ≥


(

1−Q(Kγ ,
nγ
m

)

)blogm(n/nγ)c+1

, when n ≥ nγ

1−Q(K,
n

m
) , when n < nγ

(4.2)

where Kγ =
⌊nγ
m

+
√

2nγ
m

log nγ−α
⌋

, K =
⌊
n
m

+
√

2 n
m

log n−α
⌋
, and Q(x, λ)

is the CDF of the Poisson distribution Pois(λ).

4.5.4 Twin-RLFD Theoretical Overuse Damage

To evaluate RLFD’s performance, we derive a theoretical bound on the dam-

age caused by large flows against RLFD. Recall that there are two sources

of damage: FP damage Dfp and overuse damage Dover. Because RLFD has

no FP, there is no need to consider Dfp. Thus, we only theoretically analyze

Dover.

Theorem 12 shows the expected overuse damage for flat flows and bursty

flows against a Twin-RLFD. The proof is presented in Appendix B.2.3. Ad-

ditional numeric examples are in Appendix B.1.5.

56

Theorem 12 A Twin-RLFD with RLFD(1) and RLFD(2) whose detection

cycles are T
(1)
c and T

(2)
c = 2dγh

αγ
T

(1)
c , respectively, it can detect bursty flows at

an average rate Ratk = αγ < θγh, where γh is the high-rate threshold rate of

the EARDet. The expected overuse damage caused by such flows has the

following upper bound:

E(Dover) ≤

T (1)
c γα/θPr(Aα) , when θTb ≥ 2T

(1)
c

T (1)
c 2dγh/θPr(Aα) , when θTb < 2T

(1)
c

(4.3)

where

Pr(Aα) ≥


(

1−Q(Kγ ,
nγ
m

)

)blogm(n/nγ)c+1

, when n ≥ nγ

1−Q(K,
n

m
) , when n < nγ

(4.4)

and Kγ =
⌊nγ
m

+
√

2nγ
m

log nγ − αθ
⌋

, K =
⌊
n
m

+
√

2 n
m

log n− αθ
⌋

(αθ = α/θ

when θTb ≥ 2T
(1)
c , and αθ = α when θTb < 2T

(1)
c). The d is the number of

levels in RLFD, and Q(x, λ) is the CDF of the Poisson distribution Pois(λ).

The damage of flat flow is that in the case of θ = 1 and θTb ≥ 2T
(1)
c .

We can see that a properly configured Twin-RLFD can detect bursty flows

unable to be detected by EARDet (i.e., flows at average rate Ratk = αγ <

θγh).

4.5.5 Theoretical Comparison

We compare the CLEF hybrid scheme with the most relevant competitor,

the AMF-FM hybrid scheme [2], which runs an AMF and a FM sequen-

tially: all traffic is first sent to the AMF and the AMF sends detected large

flows (including FPs) to the FM to eliminate FPs. For completeness, we also

present the results of individual detectors, including Twin-RLFD, EARDet,

AMF, and Flow Memory (FM). Table 4.3 summarizes the damage inflicted

by different large-flow patterns when different detectors are deployed. The

damage is calculated according to the analyses of AMF (Appendix B.1.2),

FM (Appendix B.1.1), EARDet [1], and Twin-RLFD (Section 4.5.4). Fig-

ures B.2(c) and B.2(e) in Appendix B.1.5 provide more details about Twin-

RLFD’s overuse damage presented in Table 4.3.

Comparison setting. To compare detectors in an in-core router setting,

we allocate only 100 counters for each detector, and we allocate 50 counters

57

T
ab

le
4.

3:
T

h
eo

re
ti

ca
l

C
om

p
ar

is
on

.
C

L
E

F
O

u
tp

er
fo

rm
s

O
th

er
D

et
ec

to
rs

w
it

h
L

ow
er

L
ar

ge
F

lo
w

D
am

ag
e.

D
am

ag
e

in
M

eg
ab

y
te

(M
B

).

A
lg

or
it

h
m

F
P

O
ve

ru
se

D
am

ag
e

(M
B

)

D
a
m

a
ge

L
ow

-r
at

e
L

ar
ge

F
lo

w
H

ig
h

-r
at

e
L

ar
ge

F
lo

w

R
a
tk
<

10
γ

10
γ
<
R

a
tk
<

30
γ

30
γ
≤
R

a
tk
<

25
0
γ

25
0
γ
≤
R

a
tk

θT
b
<

2
T
c

θT
b
≥

2T
c

θT
b
<

2
T
c

θT
b
≥

2
T
c

θT
b
<

2
T
c

θT
b
≥

2
T
c

In
d

iv
id

u
a
l

T
w

in
-R

L
F

D
0

[5
12
,+
∞

)
[1

58
,5

12
)

[3
3,

45
)

[7
0
,1

58
)

[6
,3

3)
[9

9,
+
∞

)
[6
,+
∞

)
E
A
R
D
e
t

0
+
∞

+
∞

+
∞

+
∞

+
∞

≈
0

≈
0

F
M

0
+
∞
∗

+
∞
∗

+
∞
∗

+
∞
∗

+
∞
∗

≈
0

≈
0

A
M

F
+
∞

≈
0

≈
0

≈
0

≈
0

≈
0

≈
0

≈
0

H
y
b

ri
d

C
L

E
F

0
[5

12
,+
∞

)
[1

58
,5

12
)

[3
3,

45
)

[7
0
,1

58
)

[6
,3

3)
≈

0
≈

0
A

M
F

-F
M

0
+
∞
∗

+
∞
∗

+
∞
∗

+
∞
∗

+
∞
∗

≈
0

≈
0

C
om

p
ar

is
o
n

in
a

4
0

G
b

p
s

li
n
k

w
it

h
th

re
sh

ol
d

ra
te
γ

=
40

0
K

b
p

s.
E

ac
h

of
T

w
in

-R
L

F
D

,
E
A
R
D
e
t

,
F

M
an

d
A

M
F

h
as
m

=
10

0
co

u
n
te

rs
(e

ac
h

of
si

n
gl

e
R

L
F

D
h

a
s

5
0

co
u

n
te

rs
),

an
d

th
u

s
ea

ch
of

C
L

E
F

an
d

A
M

F
-F

M
h

as
20

0
co

u
n
te

rs
.

In
T

w
in

-R
L

F
D

an
d

C
L

E
F

,

d
et

ec
ti

o
n

cy
cl

es
T

(1
)

c
=
T
c

=
0.

1
se

c,
T

(2
)

c
=

7.
92

se
c,

an
d

n
u

m
b

er
of

le
ve

ls
is
d

=
4.

A
tt

ac
k

fl
ow

s
ar

e
b

u
st

y
fl

ow
s

w
it

h
d

u
ty

cy
cl

e
of

θ
=

0.
2
5.

T
h

e
re

as
o
n

s
fo

r
th

is
T

w
in

-R
L

F
D

co
n

fi
gu

ra
ti

on
ar

e
sh

ow
n

in
A

p
p

en
d

ix
B

.1
.5

.
∗ T

h
e

ov
er

u
se

d
a
m

a
ge

fo
r

F
M

is
tr

ea
te

d
as

in
fi

n
it

y,
d

u
e

to
th

e
ex

tr
em

el
y

lo
w

d
et

ec
ti

on
p

ro
b

ab
il

it
y.

58

for each RLFD in the Twin-RLFD for a fair comparison. Each hybrid scheme

has 200 counters in total to ensure fair comparison between hybrid schemes

is fair.

We consider both high-rate large flows (Ratk ≥ 250γ) and low-rate large

flows (Ratk < 250γ). 250γ is the minimum rate at which detection is guaran-

teed by EARDet, FM, and AMF-FM: θρ
m

= 0.25×105γ
100

. Low-rate large flows

are further divided into three rate intervals for thorough comparison. For

each rate interval, we consider the worst-case (θTb < 2Tc) and non-worst-

case (θTb ≥ 2Tc) burst length. The duty cycle of the bursty flow is set

to θ = 0.25, which is challenging for CLEF. Given an average rate Ratk, if

θ is close to 0 (close to 1), a bursty flow is easily detected by EARDet

(Twin-RLFD) in CLEF.

CLEF ensures lower damage. As shown in Table 4.3, Twin-RLFD and

CLEF outperform other detectors for identifying a wide range of low-rate

flows. However, due to limited memory, it remains challenging for Twin-

RLFD and CLEF to effectively detect large flows that are extremely close to

the threshold.

We can see that Twin-RLFD fails to limit the damage caused by high-

rate large flows, because the overuse damage is linear in Ratk of high-rate

flows (due to the minimum detection delay of one cycle). Thus, CLEF uses

EARDet to limit the damage caused by high-rate flows. CLEF is better

than the AMF-FM hybrid scheme. This is because the FP from AMF (with

limited memory) is too high to narrow down the traffic passed to the FM in

the downstream, so that the FM’s performance is not improved.

CLEF is memory-efficient. We now consider the minimum rate of

guaranteed detection (Rmin) for flat flows (i.e., flat large flows (θ = 1.0)

exceeding the rate Rmin) of these detectors. The Rmin of Twin-RLFD and

CLEF is bounded from above by 4θ
√

m lognγ
nγ

ρ
m

(derived from Corollary 10),

which is much less than the Rmin = θ ρ
m+1

for EARDet and Rmin = θ ρ
m

for

FM and AMF-FM. This is especially true when the memory is extremely

limited (i.e. nγ � m), where nγ is the maximum number of legitimate flows

at the threshold rate γ, and m is the number of counters for each individual

detector (each RLFD in Twin-RLFD has m/2 counters).

Figures 4.7(a) and 4.7(b) compare the Rmin among these three detectors

given two link capacities: (1) ρ = 105γ (i.e., nγ = 105), and (2) ρ = 107γ (i.e.,

59

Number of Counters (m)
0 50 100

α
 =

 R
m

in
/γ

×10
4

0

0.5

1

1.5

2
n
γ
=10

5

EARDet
FM/AMF-FM (Expected)
2RLFD/CLEF (Upperbound)

(a) When ρ = 105γ

Number of Counters (m)
0 500 1000

α
 =

 R
m

in
/γ

×10
5

0

0.5

1

1.5

2
n
γ
=10

7

EARDet
FM/AMF-FM (Expected)
2RLFD/CLEF (Upperbound)

(b) When ρ = 107γ

Figure 4.7: Minimum Rate of Guaranteed Detection Rmin (shown as Rmin/γ
in figures), for flat large flows (θ = 1.0), when link capacity ρ = 105γ and
107γ, where γ is threshold rate. Twin-RLFD and CLEF have much lower
rate of guaranteed detection than other schemes when the memory is
limited.

nγ = 107). The results suggest that Twin-RLFD and CLEF have a much

lower Rmin than that of other detectors when memory is limited, and the

Rmin is insensitive to memory size because RLFD can add levels to overcome

memory shortage.

For bursty flows, CLEF’sRmin is competitive to AMF-FM, due to EARDet.

4.6 Evaluation

We experimentally evaluate CLEF, RLFD, EARDet, and AMF-FM hybrid

scheme with respect to worst-case damage. We consider various large-flow

patterns and memory limits and assume background traffic that is challeng-

ing for CLEF and RLFD. The experiment results confirm that CLEF out-

performs other schemes, especially when memory is extremely limited.

4.6.1 Experiment Settings

Link settings. Since the required memory space of a large-flow detector

is linear to link capacity, we set the link capacity to ρ = 1 Gbps, which

is high enough to incorporate the realistic background traffic dataset while

ensuring the simulation can finish in reasonable time. We choose a very low

60

threshold rate γ = 12.5 KB/s, so that the number of full-use legitimate flows

nγ = ρ/γ is 10000, ensuring that the link is as challenging as a backbone link

(as analyzed in Section 4.4.4). The flow specification is set to TH(t) = γt+β,

where β is set to 3028 bytes (which is as small as two maximum-sized packets,

making bursty flows easier to catch).

The results on this 1 Gbps link allow us to extrapolate detector perfor-

mance to high-capacity core routers, e.g., in a 100 Gbps link with γ = 1.25

MB/s. Because CLEF’s performance with a given number of counters is

mainly related to the ratio between link capacity and threshold rate nγ (as

discussed in Section 4.5.3), CLEF’s worst-case performance will scale lin-

early in link capacity when the number of counters and the ratio between

link capacity and threshold rate is held constant. AMF-FM, on the other

hand, performs worse as the number of flows increases (according to Ap-

pendix B.1.2 and B.1.1). Thus, with increasing link capacity, AMF-FM may

face an increased number of actual flows, resulting in worse performance.

In other words, AMF-FM’s worst-case damage may be superlinear in link

capacity. As a result, if CLEF outperforms AMF-FM in small links, CLEF

will outperform AMF-FM by at least as large a ratio in larger links.

Background traffic. We consider the worst background traffic for RLFD

and CLEF, using Theorem 7 to determine worst-case traffic. Aside from

attack traffic, the rest of the link capacity is completely filled with full-

use legitimate flows running at the threshold rate γ = 12.5 KB/s. The

total number of attack flows and full-use legitimate flows is nγ = 10000.

Once a flow has been blacklisted by the large-flow detectors, we fill the idle

bandwidth with a new full-use legitimate flow, to keep the link always running

with the worst-case background traffic.

Attack traffic. We evaluate each detector scheme against large flows with

various average rates Ratk and duty cycle θ. Their bursty period is set to be

Tb = 0.967 seconds. To evaluate RLFD and CLEF against their worst-case

busty flows (θTb < 2Tc), large flows are allotted a relatively small bursty

period Tb = 4T` = 0.967 seconds, where T` = β/γ = 0.242 seconds is the

period of each detection level in the single RLFD. In CLEF, RLFD(1) uses

the same detection level period T
(1)
` = T` = 0.242 seconds as well. Since

RLFD usually has d ≥ 3 levels and Tc ≥ 3T`, it is easy for attack flows to

meet θTb < 2Tc.

61

In each experiment, we have 10 artificial large flows whose rate is in a range

of 12.5 KB/s to 12.5 MB/s (namely, 1 to 1000 times that of threshold rate

γ). The fewer large flows in the link, the longer delay required for RLFD and

CLEF to catch large flows; however, the easier it is for AMF-FM to detect

large flows, because there are less FPs from AMF and more frequent flow

eviction in FM. Thus, we use just 10 attack flows to challenge CLEF and the

results are generalizable.

Detector settings. We evaluate detectors with different numbers of coun-

ters (20 ≤ m ≤ 400) to understand their performance under different memory

limits. Although a few thousands of counters are available in a typical CPU,

not all can be used by one detector scheme. CLEF works reasonably well

with such a small number of counters and can perform better when more

counters are available.

• EARDet. We set the low-bandwidth threshold to be the flow specifi-

cation γt + β, and compute the corresponding high-rate threshold for

a given number of counters m as in [1]. The high-rate threshold rate is

γh = ρ
m+1

.

• RLFD. A RLFD has d levels and m counters. We set the period of a

detection level as T` = β/γ = 0.242 seconds.5 d = b1.2× logm(n)c+ 1

to have fewer flows than the counters at the bottom level. The counter

threshold of the bottom level is THRLFD = γT`+β = 2β = 6056 Bytes.

• CLEF. We allocate m/2 counters to EARDet, and m/4 counters

to each RLFD. RLFD(1) and EARDet are configured like the single

RLFD and the single EARDet above. For the RLFD(2), we properly

set its detection level period T
(2)
` to guarantee detection of most of

bursty flows with low damage. The details of the single RLFD and

CLEF are in Table B.1 (Appendix B.3).

• AMF-FM. We allocate m/2 counters to AMF and m/2 counters to

FM. AMF has four stages (a typical setting from [2]), each of which

contains m/8 counters. According to the flow specification γt + β, all

m counters are leaky buckets with a drain rate of γ and a bucket size

β.

5If T` � β/γ, it is hard for a large flow to reach the burst threshold β in such a short
time; if T` � β/γ, the detection delay is too long, resulting in excessive damage.

62

We further test CLEF with different memory allocation ratio φ = mEARDet :

mTwin-RLFD, where mTwin-RLFD is the number of counters in Twin-RLFD

(each RLFD has mTwin-RLFD/2 counters) and mEARDet is the number of

counters in EARDet. In this test, we fix the total number of counters

m = mTwin-RLFD +mEARDet = 200.

EARDet Damage

Counter Number
100 200 300 400

L
a

rg
e

 F
lo

w
 R

a
te

 (
B

/s
)

1.2x10
4

5x10
4

2x10
5

8x10
5

3.2x10
6

1.3x10
7 ×108

0

1

2

3

4

5
RLFD Damage

Counter Number
100 200 300 400

L
a

rg
e

 F
lo

w
 R

a
te

 (
B

/s
)

1.2x10
4

5x10
4

2x10
5

8x10
5

3.2x10
6

1.3x10
7 ×108

0

1

2

3

4

5
AMF-FM Damage

Counter Number
100 200 300 400

L
a

rg
e

 F
lo

w
 R

a
te

 (
B

/s
)

1.2x10
4

5x10
4

2x10
5

8x10
5

3.2x10
6

1.3x10
7 ×108

0

1

2

3

4

5
CLEF Damage

Counter Number
100 200 300 400

L
a

rg
e

 F
lo

w
 R

a
te

 (
B

/s
)

1.2x10
4

5x10
4

2x10
5

8x10
5

3.2x10
6

1.3x10
7 ×108

0

1

2

3

4

5

(a) Flat large flows, θ = 1.0
EARDet Damage

Counter Number
100 200 300 400

L
a

rg
e

 F
lo

w
 R

a
te

 (
B

/s
)

1.2x10
4

5x10
4

2x10
5

8x10
5

3.2x10
6

1.3x10
7 ×108

0

1

2

3

4

5
RLFD Damage

Counter Number
100 200 300 400

L
a

rg
e

 F
lo

w
 R

a
te

 (
B

/s
)

1.2x10
4

5x10
4

2x10
5

8x10
5

3.2x10
6

1.3x10
7 ×108

0

1

2

3

4

5
AMF-FM Damage

Counter Number
100 200 300 400

L
a

rg
e

 F
lo

w
 R

a
te

 (
B

/s
)

1.2x10
4

5x10
4

2x10
5

8x10
5

3.2x10
6

1.3x10
7 ×108

0

1

2

3

4

5
CLEF Damage

Counter Number
100 200 300 400

L
a

rg
e

 F
lo

w
 R

a
te

 (
B

/s
)

1.2x10
4

5x10
4

2x10
5

8x10
5

3.2x10
6

1.3x10
7 ×108

0

1

2

3

4

5

(b) Bursty large flows, θ = 0.50
EARDet Damage

Counter Number
100 200 300 400

L
a

rg
e

 F
lo

w
 R

a
te

 (
B

/s
)

1.2x10
4

5x10
4

2x10
5

8x10
5

3.2x10
6

1.3x10
7 ×108

0

1

2

3

4

5
RLFD Damage

Counter Number
100 200 300 400

L
a

rg
e

 F
lo

w
 R

a
te

 (
B

/s
)

1.2x10
4

5x10
4

2x10
5

8x10
5

3.2x10
6

1.3x10
7 ×108

0

1

2

3

4

5
AMF-FM Damage

Counter Number
100 200 300 400

L
a

rg
e

 F
lo

w
 R

a
te

 (
B

/s
)

1.2x10
4

5x10
4

2x10
5

8x10
5

3.2x10
6

1.3x10
7 ×108

0

1

2

3

4

5
CLEF Damage

Counter Number
100 200 300 400

L
a

rg
e

 F
lo

w
 R

a
te

 (
B

/s
)

1.2x10
4

5x10
4

2x10
5

8x10
5

3.2x10
6

1.3x10
7 ×108

0

1

2

3

4

5

(c) Bursty large flows, θ = 0.02

Figure 4.8: Damage (in Bytes) caused by 200-second large flows at different
average flow rate Ratk (in Byte/s) and duty cycle θ under detection of
different schemes with different number of counters m. The larger the dark
area, the lower the damage guaranteed by a scheme. Areas with white color
are damage equals or exceeds 5× 108. CLEF outperforms other schemes in
detecting flat flows, and has competitive performance to AMF-FM and
EARDet over bursty flows.

4.6.2 Experiment Results

To configure each experiment (i.e., attack flow configurations and detector

settings), we did 50 repeated runs and present the averaged results.

Figures 4.8(a) to 4.8(c) demonstrate the damage caused by large flows at

different average rates, duty cycles, and number of detector counters during

200-second experiments; the lighter the color, the higher the damage. The

damage ≥ 5 × 108 Byte is represented by the color white. Figures 4.9(a)

63

Large Flow Rate (B/s)
10

4
10

6
10

8
D

a
m

a
g
e
 (

B
y
te

)

×10
8

0

1

2

3
Damage, m=200

(a) Flat, θ = 1.0

Large Flow Rate (B/s)
10

4
10

6
10

8

D
a
m

a
g
e
 (

B
y
te

)

×10
8

0

1

2

3
Damage, m=200

(b) Bursty, θ = 0.50

Large Flow Rate (B/s)
10

4
10

6
10

8

D
a
m

a
g
e
 (

B
y
te

)

×10
8

0

1

2

3
Damage, m=200

(c) Bursty, θ = 0.25

Large Flow Rate (B/s)
10

4
10

6
10

8

D
a
m

a
g
e
 (

B
y
te

)

×10
8

0

1

2

3
Damage, m=200

(d) Bursty, θ = 0.10

Large Flow Rate (B/s)
10

4
10

6
10

8

D
a
m

a
g
e
 (

B
y
te

)

×10
8

0

1

2

3
Damage, m=200

EARDet
RLFD
AMF-FM
CLEF

(e) Bursty, θ = 0.02

Figure 4.9: Damage (in Bytes) caused by 200-second large flows at different
average rate Ratk (in Byte/s) and duty cycle θ. Each detection scheme uses
200 counters in total. The clear comparison among schemes suggests CLEF
outperforms others with low damage against various large flows.

Large Flow Rate (B/s)
10

4
10

6
10

8

F
N

 R
a
ti
o

0

0.5

1
FN Ratio, m=200

(a) Flat, θ = 1.0

Large Flow Rate (B/s)
10

4
10

6
10

8

F
N

 R
a
ti
o

0

0.5

1
FN Ratio, m=200

(b) Bursty, θ = 0.50

Large Flow Rate (B/s)
10

4
10

6
10

8

F
N

 R
a
ti
o

0

0.5

1
FN Ratio, m=200

(c) Bursty, θ = 0.25

Large Flow Rate (B/s)
10

4
10

6
10

8

F
N

 R
a
ti
o

0

0.5

1
FN Ratio, m=200

(d) Bursty, θ = 0.10

Large Flow Rate (B/s)
10

4
10

6
10

8

F
N

 R
a
ti
o

0

0.2

0.4

0.6

0.8
FN Ratio, m=200

EARDet
RLFD
AMF-FM
CLEF

(e) Bursty, θ = 0.02

Figure 4.10: FN ratio in a 200-second detection for large flows at different
average rate Ratk (in Byte/s) and duty cycle θ. Each detection scheme uses
200 counters in total. CLEF is able to detect (FN< 1.0) low-rate flows
undetectable (FN= 1.0) by AMF-FM or EARDet.

to 4.9(e) compare damage in cases of different detector schemes with 200

counters. Figures 4.10(a) to 4.10(e) show the percentage of FNs produced by

each detection scheme with 200 counters within 200 seconds. We cannot run

infinitely long experiments to show the +∞ damage produced by detectors

64

like EARDet and AMF-FM over low-rate flows, so we use the FN ratio to

suggest it here. An FN of 1.0 means that the detector fails to identify any

large flow in 200 seconds and is likely to miss large flows in the future. Thus,

an infinite damage is assigned. On the contrary, if a detector has FN < 1.0,

it is able to detect remaining large flows at some point in the future.

CLEF ensures low damage against flat flows. Figures 4.8(a), 4.9(a),

and 4.10(a) support our theoretical analysis that RLFD and CLEF work ef-

fectively at detecting low-rate flat large flows and guaranteeing low damage.

On the contrary, such flows cause much higher damage against EARDet

and AMF-FM. The nearly black figure (in Figure 4.8(a)) for CLEF shows

that CLEF is effective for both high-rate and low-rate flat flows with differ-

ent memory limits. Figure 4.9(a) shows a clear damage comparison among

detector schemes. CLEF, EARDet, and AMF-FM all limit the damage to

nearly zero for high-rate flat flows. However, the damage limited by CLEF

is much lower than that limited by AMF-FM and EARDet for the low-rate

flat flows. EARDet and AMF-FM results show a sharp top boundary that

reflects the damage dropping to zero at the guaranteed-detection rates.

The damage limited by an individual RLFD is proportional to the large-

flow rate when the flow rate is high. Figure 4.10(a) suggests that AMF-

FM and EARDet are unable to catch most low-rate flat flows (Ratk < 106

Byte/sec), which explains the high damage by low-rate flat flows against

these two schemes. This supports our theoretical analysis of AMF-FM and

EARDet in Table 4.3: the infinite damage by low-rate flows against AMF-

FM and EARDet.

CLEF ensures low damage against various bursty flows. Fig-

ures 4.8(b) and 4.8(c) demonstrate the damage caused by bursty flows with

different duty cycle θ. The smaller the θ is, the burstier the flow. As the

large flows become burstier, the EARDet and AMF-FM schemes improve

at detecting flows whose average rate is low. Because the rate at the burst is

Ratk/θ, which increases as θ decreases, thus EARDet and AMF-FM are able

to detect these flows even though their average rates are low. For a single

RLFD, the burstier the flows are, the harder it becomes to detect the large

flows and limit the damage. As we discussed in Section 4.4.6, when the burst

duration θTb of flows is smaller than the RLFD detection cycle Tc, a single

RLFD has nearly zero probability of detecting such attack flows. Thus, we

65

need Twin-RLFD in CLEF to detect bursty flows missed by EARDet in

CLEF, so that CLEF’s damage is still low as the figures show. When the

flow is very bursty (e.g., θ ≤ 0.1), the damage limitation of the CLEF scheme

is dominated by EARDet.

Figures 4.9(b) to 4.9(e) present a clear comparison among different schemes

against bursty flows. The damage limited by CLEF is lower than that limited

by AMF-FM and EARDet, when θ is not too small (e.g., θ ≥ 0.25). Even

though AMF-FM and EARDet have lower damage for very bursty flows

(e.g., θ ≤ 0.1) than the damage limited by CLEF, the results are close

because CLEF is assisted by an EARDet with m/2 counters. Thus, CLEF

guarantees a low damage limit for a wider range of large flows than the other

schemes.

CLEF outperforms others in terms of FN and FP. To make our

comparison more convincing, we examine schemes with classic metrics: FN

and FP. Since we know all four schemes have no FP, we simply check the

FN ratios in Figures 4.10(a) to 4.10(e). Generally, CLEF has a lower FN

ratio than do AMF-FM and EARDet. CLEF can detect large flows at a

much lower rate with a zero FN ratio, and is competitive with AMF-FM and

EARDet against very bursty flows (e.g., Figures 4.10(b) and 4.10(e)).

CLEF is memory-efficient. Figures 4.8(a) to 4.8(c) show that the dam-

age limited by RLFD is relatively insensitive to the number of counters. This

suggests that RLFD can work with limited memory and is scalable to larger

links without requiring large amounts of high-speed memory. This can be

explained by RLFD’s recursive subdivision, by which we simply add one

or more levels when the memory limit is low. Thus, we choose RLFD to

complement EARDet in CLEF.

In Figure 4.8(a), CLEF ensures low damage (shown in black) with tens of

counters, while AMF-FM suffers from high damage (shown in light colors),

even with 400 counters. This supports our theoretical results in Figures 4.7(a)

and 4.7(b).

CLEF is effective against various types of bursty flows. Fig-

ures 4.11(a) and 4.11(b) demonstrate the changes of damage and FN ratio

versus different duty cycles θ when CLEF is used to detect bursty flows.

In the 200-second evaluation, as θ decreases, the maximum damage across

different average flow rates increases first by (θ ≥ 0.1) and then decreases

66

by (θ < 0.1). The damage increases when θ ≥ 0.1 because Twin-RLFD (in

CLEF) gradually loses its capability to detect bursty flows. The damage

therefore increases due to the increase in detection delay.

However, the maximum damage does not increase all the way as θ de-

creases, because when θ is getting smaller, EARDet is able to catch bursty

flows with a lower average rate. This explains the lower damage from large

flows in the 200-second timeframe. Figure 4.11(b) shows that the FN ratio

curve changes within a small range as θ decreases, which also indicates the

stable performance of CLEF against various bursty flows. Moreover, the FN

ratios are all below 1.0, which means that CLEF can eventually catch large

flows, whereas EARDet and AMF-FM cannot.

Large Flow Rate (B/s)
10

4
10

6
10

8

D
a
m

a
g
e
 (

B
y
te

)

×10
7

0

2

4

6

8
Damage, m=200

θ = 1
θ = 0.5
θ = 0.25
θ = 0.1
θ = 0.02

(a) Damage

Large Flow Rate (B/s)
10

4
10

6
10

8

F
N

 R
a
ti
o

0

0.5

1
FN Ratio, m=200

θ = 1
θ = 0.5
θ = 0.25
θ = 0.1
θ = 0.02

(b) FN Ratio

Figure 4.11: Damage and FN ratio for large flows at different average rate
Ratk (in Byte/s) and duty cycle θ under detection of CLEF with m = 200
counters. CLEF is not sensitive to bursty flows across duty cycles: (1) the
damages are around the same scale (not keep increasing as duty cycle
decrease, because of EARDet), and (2) the FN ratios are stable and
similar.

Tuning CLEF’s performance by changing memory allocation strat-

egy. Figures 4.12(a) to 4.12(e) compare damage caused by CLEFs with

different memory allocation strategies between EARDet and Twin-RLFD,

when we fix the total number of counters at 200. Figures 4.13(a) to 4.13(e)

show the percentage of FNs produced by CLEFs with different memory allo-

cation strategies. These figures demonstrate that the more counters allocated

to Twin-RLFD, the lower damage caused by flat flows; on the contrary, the

more counters allocated to EARDet, the lower damage caused by bursty

flows. Thus, we may dynamically change the memory allocation strategy so

that CLEF can detect both flat and bursty flows with strong performance.

67

Large Flow Rate (B/s)
10

4
10

6
10

8
D

a
m

a
g
e
 (

B
y
te

)

×10
7

0

2

4

6

8

10

12
CLEF, m=200 θ=1

φ = 10:90
φ = 30:70
φ = 50:50
φ = 70:30
φ = 90:10

(a) Flat, θ = 1.0

Large Flow Rate (B/s)
10

4
10

6
10

8

D
a
m

a
g
e
 (

B
y
te

)

×10
7

0

2

4

6

8

10

12
CLEF, m=200 θ=0.5

φ = 10:90
φ = 30:70
φ = 50:50
φ = 70:30
φ = 90:10

(b) Bursty, θ = 0.50

Large Flow Rate (B/s)
10

4
10

6
10

8

D
a
m

a
g
e
 (

B
y
te

)

×10
7

0

2

4

6

8

10

12
CLEF, m=200 θ=0.25

φ = 10:90
φ = 30:70
φ = 50:50
φ = 70:30
φ = 90:10

(c) Bursty, θ = 0.25

Large Flow Rate (B/s)
10

4
10

6
10

8

D
a
m

a
g
e
 (

B
y
te

)

×10
7

0

2

4

6

8

10

12
CLEF, m=200 θ=0.1

φ = 10:90
φ = 30:70
φ = 50:50
φ = 70:30
φ = 90:10

(d) Bursty, θ = 0.10

Large Flow Rate (B/s)
10

4
10

6
10

8

D
a
m

a
g
e
 (

B
y
te

)

×10
7

0

2

4

6

8

10

12
CLEF, m=200 θ=0.02

φ = 10:90
φ = 30:70
φ = 50:50
φ = 70:30
φ = 90:10

(e) Bursty, θ = 0.02

Figure 4.12: Damage (in Bytes) caused by 200-second large flows at
different average rate Ratk (in Byte/s) and duty cycle θ. Each CLEF
scheme allocate 200 counters to EARDet and Twin-RLFD according to
the ratio φ = # of EARDet counters

of Twin-RLFD counters
.

Large Flow Rate (B/s)
10

4
10

6
10

8

F
N

 R
a
ti
o

0

0.2

0.4

0.6

0.8

1
CLEF, m=200 θ=1

φ = 10:90
φ = 30:70
φ = 50:50
φ = 70:30
φ = 90:10

(a) Flat, θ = 1.0

Large Flow Rate (B/s)
10

4
10

6
10

8

F
N

 R
a
ti
o

0

0.2

0.4

0.6

0.8

1
CLEF, m=200 θ=0.5

φ = 10:90
φ = 30:70
φ = 50:50
φ = 70:30
φ = 90:10

(b) Bursty, θ = 0.50

Large Flow Rate (B/s)
10

4
10

6
10

8

F
N

 R
a
ti
o

0

0.2

0.4

0.6

0.8

1
CLEF, m=200 θ=0.25

φ = 10:90
φ = 30:70
φ = 50:50
φ = 70:30
φ = 90:10

(c) Bursty, θ = 0.25

Large Flow Rate (B/s)
10

4
10

6
10

8

F
N

 R
a
ti
o

0

0.2

0.4

0.6

0.8

1
CLEF, m=200 θ=0.1

φ = 10:90
φ = 30:70
φ = 50:50
φ = 70:30
φ = 90:10

(d) Bursty, θ = 0.10

Large Flow Rate (B/s)
10

4
10

6
10

8

F
N

 R
a
ti
o

0

0.2

0.4

0.6

0.8

1
CLEF, m=200 θ=0.02

φ = 10:90
φ = 30:70
φ = 50:50
φ = 70:30
φ = 90:10

(e) Bursty, θ = 0.02

Figure 4.13: FN ratio in a 200-second detection for large flows at different
average rate Ratk (in Byte/s) and duty cycle θ. Each CLEF scheme
allocates 200 counters to EARDet and Twin-RLFD according to the ratio
φ = # of EARDet counters

of Twin-RLFD counters
.

Moreover, such dynamical memory allocation may help prevent attackers

from gaining the maximum damage by choosing the worst-case attack traf-

fic.

68

4.7 Timing-Randomized CLEF in Adversarial

Environment

In this section, we further discuss the performance of CLEF with timing-

randomized RLFD against adversarial attacks. In Section 4.4.6, we introduce

that the timing-randomized RLFD randomly chooses the detection cycle Tc,

so that it can prevent attackers from deterministically maximizing damage;

here, we explore how good CLEF can achieve to limit the damage caused by

an optimal attack.

4.7.1 Timing-Randomized RLFD

To randomize the detection cycle of a RLFD, we randomly pick up a detection

cycle Tc at the beginning of each detection cycle according to a probability

distribution Pr(Tc). For simplicity in the analysis, we set each detection level

period T` equally as Tc/d, where d is number of levels in one cycle.

By timing randomization, a single RLFD may act as a Twin-RLFD, be-

cause we can switch the detection cycle Tc of a single RLFD between the two

detection cycles of two RLFDs in Twin-RLFD (i.e. T
(1)
c and T

(2)
c). Thus,

without of loss of generalizability, we only discuss the performance of a single

timing-randomized RLFD in this section.

Although switching Tc in a single RLFD between T
(1)
c and T

(2)
c can mimic

a Twin-RLFD, to prevent attackers from deterministically maximizing dam-

age, Tc should also be set as some values in [T
(1)
c , T

(2)
c]. The minimum de-

tection cycle is T
(1)
c and the maximum detection cycle is T

(2)
c . To clearly

formulate the problem, we denote T
(1)
c = Tc,min, T

(2)
c = σTc,min, and the

minimum detection level period T`,min = Tc,min/d.

4.7.2 Adversary Model

We assume attackers know the probability distribution of the detection cycle,

but have no knowledge of secret seeds used to generate random variables. To

learn the upper bound damage caused by the optimal attack, we further as-

sume that the attacker can arbitrarily manipulate the timing of each packet

in the large flow. Thus, for each timing-randomized RLFD, an attacker can

69

create an optimal attack against the detection cycle probability distribution.

These strong assumptions for attackers are very challenging to CLEF and

impractical for real attackers, thus the performance of CLEF against attack-

ers in the real world should be much better than the worst-case performance

in such an extreme case.

4.7.3 Optimal Attack Traffic Problem

The optimal attack traffic is the large flow that can cause the maximum

damage before it is detected by CLEF.

Since RLFD identifies large flows according to the total traffic amount

during a detection level, thus the detection level period T`,min of the minimum

detection cycle Tc,min is the time granularity to the attacker. The attacker

only consider how much traffic amount to send during each T`,min slot, but

there is no need to manipulate the traffic inside a time slot T`,min, because

it does not change the detection results of RLFD. To avoid the detection by

EARDet as much as possible, the attacker should always send flat traffic

during each time slot T`,min, because burstier traffic is easier for EARDet

to detect.

As shown in Section 4.5.3, the single-level detection probability for a large

flow is close to 1 for most of large flows, unless the large-flow rate is too close

to the threshold rate γ of the flow specification. Therefore, if a large flow

sends traffic during a time slot T`,min, the best strategy is to send traffic at

the rate close to EARDet’s high-rate threshold γh to maximize the damage

caused in this time slot T`,min, while not being detected by EARDet (because

it is below the γh). Because a successful RLFD detection requires that a

large flow sends traffic in all detection levels in one detection cycle, a large

flow can send traffic at rate close to γh in d − 1 levels and keep silent in

the one level left, so that the large flow can maximize the damage in one

detection cycle. However, due to the timing randomization applied in RLFD,

the attacker cannot deterministically learn its current state, such as which

detection level is in the current detection cycle and how long the detection

cycle and detection level are. At the best, the attacker can only learn a

probability distribution for the current state, and make decision for the next

time slot T`,min to maximize the expected damage caused by the large flow

70

before being caught.

A large flow that aggressively sends traffic in all time slots will be caught

shortly; while a large flow that conservatively sends traffic may cause rel-

atively low damage. Thus a smart attacker should try to over-send traffic

above the threshold rate as much as possible while not being detected; if the

attacker cannot avoid being detected while over-sending traffic (when the

threshold rate is larger than the maximum large-flow rate at which the large

flow can be undetectable), it should try to maximize the over-sent traffic

during the lifetime of the large flow.

Brute-force search for the optimal attack. Figure 4.14 describes how

we formulate the problem of finding the optimal attack traffic into a brute-

force search problem. First, we divide the time axis into time slots of T`,min.

As we discussed above, in a time slot, an optimal large flow either sends

traffic at the rate close to γh or does not send any traffic. Thus, for each

time slot, there are two possible states: sending traffic (“1”), and sending no

traffic (“0”). For a chunk of large-flow traffic over N time slots, there are 2N

possible traffic patterns.

In our problem, it is unrealistic to traverse every traffic pattern, because

some traffic patterns may result in undetectable large flows, which have an

infinite lifetime. Thus, we have to assume that the traffic patterns are in

periods, traffic pattern repeats in each period. Unfortunately we have to set

the maximum period size P in the brute-force search, otherwise, the problem

is unsolvable. We will search for traffic pattern for each period less than or

equal to P , and find the traffic pattern that causes the most damage as the

optimal traffic pattern. Although theoretically, the solution of this problem

is not strictly proved as an optimal problem, it can still help us understand

CLEF’s performance against adversarial environments.

The value P is limited by the computation resource. If we set P as a

very large value, the brute force is hard to terminate shortly with limited

computation power. Intuitively, we set P as a value around T
(2)
c /T`,min = σd,

because the attack traffic that can avoid detection should have the similar

periodic behavior as that of the detection cycles, therefore setting P as the

number of time slots in a maximum detection cycle T
(2)
c is a good guess.

There are at least 2P traffic patterns, and it is still hard to use a brute-

force search for a real example of links requiring high σ (e.g. ≥ 1000). Thus,

71

we further propose an efficient approximation by reinforcement learning [53]

with neural networks [54].

𝒕

𝜸𝒉 …

𝑻𝒍,𝒎𝒊𝒏

1 0 1 1 1 0 1 1 0 1

Figure 4.14: Brute-force search for the optimal attack.

?
𝒕

𝜸𝒉 …

𝑻𝒍,𝒎𝒊𝒏

1 0 1 1 1 0 1 1 0 ?

RL Input Action To Predict

Figure 4.15: Reinforcement learning (RL) for the optimal attack.

Reinforcement learning for the optimal attack. We formulate the

problem of finding the optimal attack as a reinforcement learning problem,

in which the learner decides whether it should send traffic (at the rate close

to γh) in the incoming time slot (i.e. decide to take action “0” or “1”) based

on the states of the most recent Win = T
(2)
c /T`,min = σd time slots in the

past (as in Figure 4.15). Thus, we take the states of Win time slots as the

input vector of the reinforcement learner, and the output is a probability of

sending traffic in the incoming time slot (i.e. taking action “1”). Although

it is best to take all history states in the past as input, it is infeasible to feed

such length-unfixed and very long input vectors to a neural network. Thus,

we truncate the history states and only use the most recent Win time slots,

because Win = σd must include all time slots in the most recent detection

cycle, which is intuitively the most relevant information for the attacker to

deduce how long the current cycle is and which level it is currently in.

Neural network for reinforcement learning. We currently use a fully

connected neural network with three hidden layers, each of which has 2Win

72

…

… … …

Input
Layer

Hidden
Layer 1

Hidden
Layer 2

Hidden
Layer 3

Output
Layer

Figure 4.16: Reinforcement learning neural network (a fully connected
network).

hidden nodes. The input layer has Win nodes, which are the 0/1 states of the

last Win time slots; the output layer only has one node, which is the prob-

ability (from 0 to 1) of sending traffic in the next time slot. The activation

function of hidden nodes is ReLU [55] for the fast model converging, and the

activation function of the output node is Sigmoid function [56] limiting the

output value from 0 to 1.

Because our target to maximize is the damage caused by the large flow

after the action made by the output of the neural network, the reward of

each action At at the time slot t is rt = 1 when we send traffic, and rt = 0

when we send nothing. For a input vector [St−Win
, ..., St−2, St−1], the target

to maximize is
∑

i≥t λ
i−tri, where Si denotes the state value of time slot

i. The reward discount λ = 0.99 is a typical value used in reinforcement

learning.

However, such an experiment with finite steps cannot represent a good

attack in infinitely long experiments, because the attackers are more aggres-

sive to take the risk of being detected when it is closer to the end of a finite

73

experiment, while a good attack in the infinite experiment may not always

be detected so that it can cause more damage in the future.

Thus, we modify the optimization target above in two folds. First, we add

additional p punishment to the learner, if the large flow is caught. Second,

for an action, we only consider the reward itself (i.e. at time slot t) and

rewards of the next σd − 1 steps in the future, because this action cannot

make the large flow detected after σd time slots, which is out of the range of

the largest detection cycle T
(2)
c . Therefore the target(At) (for action at time

slot t) to maximize for an input vector [St−Win
, ..., St−2, St−1] is as follows:

target(At) = −p+

t+σd−1∑
i=t

λi−tri (4.5)

We set p = σd, so that being detected is the worst case to an action, and

the attacker will try to maximize the damage in the future σd steps, while

avoiding the detection.

We further introduce a punishment probability Pr(p) to specify how ag-

gressive the trained attacker we want to reach. When Pr(p) = 1, we always

apply the punishment p when the large flow is detected, and the trained at-

tacker is the least aggressive; when P (p) = 0, we never apply the punishment

p, and the trained attacker is the most aggressive. By tuning the Pr(p) from

0 to 1, we can continuously change the aggressiveness of the trained attacker,

so that we can explore the attack space. In some cases with a high threshold

rate, conservative attackers may send traffic at rates even below the thresh-

old rate and do not cause damage at all, while an aggressive attacker may

cause more damage (even though it may be detected sooner). Therefore, it

is necessary for us to explore the attack space by changing the aggressiveness

of the attackers, and find the optimal attack that causes the most damage.

Because the neural network does gradient decent to converge the solution

to the optimal one, it can avoid the brute-force computation complexity

which increases exponentially by the maximum period P = σd.

4.7.4 Experiment Settings

Experiment context. In preliminary experiments, we test our rein-

forcement learning method in a small-scale example with d = 4 levels and

74

σ = T
(2)
c /T

(1)
c = 10 (therefore punishment p = 40), and compare the rein-

forcement learning results with the ones from brute-force search with maxi-

mum period P = 24 (due to limited computation resource). The goal is to

testify that the reinforcement learning results is a good approximation for

the one from brute-force search.

At the beginning of each detection cycle, the RLFD randomly pick up Tc

from [1, 10]×T (1)
c according to the probability distribution Pr(Tc = i×T (1)

c) =
1/i∑j=10

j=1 1/j
, where i = 1, 2, 3, ..., 10. Thus, RLFD can run detection cycles with

different Tc with equal duty time in average.

Reinforcement learning setting. The batch size is 10 episodes, which

means we update our network model parameters every 10 episodes. The

beginning of a episode is when we reset the RLFD and pass a new large flow

through the RLFD; the end of an episode is either when the large flow is

caught by the RLFD, or the number of time slots that has been run reaches

our maximum number which is set as 1000 in our experiment.

Every 1000 episodes for training, we test the model by running it for 100

episodes and average the damage caused by the large flow, so that we can

learn whether the model converges at some point in the training procedure.

Neural network setting. The neural network has 40 input nodes and

80 hidden nodes in each hidden layer. We use the Adam optimizer [57] with

learning rate of 0.001.

4.7.5 Experiment Results

Figures 4.17(a) and 4.17(b) present the damages caused by large flows pro-

duced by reinforcement learning and brute-force search, when the threshold

rate is 0.167 times the EARDet high-rate threshold.

Reinforcement learning can converge to optimal attacks. Fig-

ure 4.17(a) shows the damage caused by large flows at different average

rates. First, the damage caused by flows from brute-force search shows the

maximum damage that a large flow at a specific rate can achieve.6 As we

expected, the most aggressive attacker sends the traffic at the rate of the

EARDet high-rate threshold γh can only cause a relatively low damage

6With the assumption that the maximum period of the traffic pattern is P = 24.

75

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

large-flow rate (γ
h
)

-20

0

20

40

60

80

100

d
a

m
a

g
e

 (
γ

h
 x

 T
l,
m

in
)

Damage RL v.s. BF

By BF

By RL, Episode 0

By RL, Episode 17000

By RL, Episode 34000

By RL, Episode 51000

By RL, Episode 68000

By RL, Episode 85000

Threshold Rate

(a) Damage at different rates, threshold rate γ = 0.167× γh.

0 1 2 3 4 5 6 7 8 9 10

episodes
×10

4

-20

0

20

40

60

80

100

m
a

x
 d

a
m

a
g

e
 (
γ

h
 x

 T
l,
m

in
)

Max Damage RL v.s. BF

By RL

By BF

(b) Maximum damage by episode, γ = 0.167× γh.

Figure 4.17: Damage caused by large flows produced by reinforcement
learning (RL) and brute-force search (BF), when the threshold rate is
γ = 0.167× γh. The γh is the high-rate threshold of EARDet in CLEF.

(less than 20γhT`,min) in this case, because such large flows are caught in a

short time. However, a large flow at a rate of 0.29γh can produce damage as

high as 85γhT`,min, because it stays hard to detect while sending traffic at a

76

non-trivial rate.

Then, the damages caused by large flows produced by reinforcement learn-

ing are gradually close to the brute-force-search damages as the the number

of episodes increases. The reinforcement-learning damage is even higher than

the brute-force-search damage at some points, for example, the damage at

the rate of 0.29×γh. A reasonable explanation is that our brute-force search

assumes the maximum period of the traffic pattern is P = 24; however, the

reinforcement learning results do not have such an assumption, and may find

attacks even better than the brute-force-search attacks.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

large-flow rate (γ
h
)

0

100

200

300

400

500

600

700

800

900

1000

lif
e

 t
im

e
 (

T
l,
m

in
)

Life Time RL v.s BF

By BF

By RL

Figure 4.18: Lifetime of large flows at different rates.

Reinforcement learning is computational efficient. Figure 4.17(b)

demonstrates the maximum damage caused by all large flows at various rates

at each episode of the reinforcement learning. We can see the maximum dam-

age is approaching the maximum brute-force-search damage as the number

of episodes increases, which suggests that our model is converging to the

optimal attack. This process only needs around 100 × 3 × 104 = 3 × 106

episodes (we try 100 different punishment probability Pr(p), and each trial

takes 3 × 104 episodes to converge), while brute-force search requires more

than 224×100 = 1.68×109 episodes (because we need to calculate an average

damage across 100 repeated episodes for each traffic pattern out of at least

224). This supports that the reinforcement learning is much more efficient

77

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

large-flow rate (γ
h
)

-5

0

5

10

15

20

d
a

m
a

g
e

 (
γ

h
 x

 T
l,
m

in
)

Damage RL v.s. BF

By BF

By RL, Episode 0

By RL, Episode 17000

By RL, Episode 34000

By RL, Episode 51000

By RL, Episode 68000

By RL, Episode 85000

Threshold Rate

(a) Damage at different rates, threshold rate γ = 0.3× γh.

0 1 2 3 4 5 6 7 8 9 10

episodes
×10

4

-5

0

5

10

15

20

m
a

x
 d

a
m

a
g

e
 (
γ

h
 x

 T
l,
m

in
)

Max Damage RL v.s. BF

By RL

By BF

(b) Maximum damage by episode, threshold rate γ = 0.3× γh.

Figure 4.19: Damage caused by large flows produced by reinforcement
learning (RL) and brute-force search (BF), when the threshold rate is
γ = 0.3× γh. The γh is the high-rate threshold of EARDet in CLEF.

than brute-force learning in this task. The computation requirement gap

between the reinforcement learning and the brute-force search is much larger

in the large-scale examples in the real core routers.

78

RLFD’s guarantee in large-flow detection. Figure 4.18 presents the

lifetime of large flows at different rates. The large flows are produced by both

brute-force search and reinforcement learning at the final episode. It shows

that the large flows with high damage in Figure 4.17(a) have a long lifetime,

and some of them are not detected at all (i.e. lifetime is the maximum time

limit 1000T`,min in our experiments). That means RLFD in this setting can

guarantee detection for large flows at rates higher than 0.25γh. In a large-

scale example with T
(2)
c /T

(1)
c = σ > 100, RLFD may guarantee detection of

large flows at lower rates, but with a higher damage (because the average Tc

is longer).

Figures 4.19(a) and 4.19(b) show the results in a different threshold rate

γ = 0.3 × γh. With higher threshold rate, RLFD can guarantee a lower

damage limit, because large flows at rates higher than this threshold rate are

hard to escape from the detection.

4.7.6 Future Work

The experiment results in the small-scale example suggest the efficiency and

effectiveness of using reinforcement learning to find optimal attack patterns.

In the future, we should try a more efficient reinforcement learning model and

test it on a large-scale example which is closer to the practice. For example,

a one-dimensional convolutional neural network (CNN) [58] would be a good

try for large-scale examples. The CNN comes with fewer parameters than a

fully connected network for the same input and output scale, thus the model

is easier to converge and uses less computation power to train.

4.8 Chapter Summary

This chapter describes two new large-flow detection algorithms. First, we de-

velop a randomized Recursive Large-Flow Detection (RLFD) scheme, which

uses very little memory yet provides eventual detection of persistently large

flows. Second, we develop CLEF, which scales to Internet core routers and is

resilient against worst-case traffic. None of the prior approaches can achieve

the same level of resilience with the same memory limitations. To compare

attack resilience among various detectors, we propose a damage metric that

79

summarizes the impact of attack traffic on legitimate traffic. CLEF can con-

fine damage even when faced with the worst-case background traffic because

it combines a deterministic EARDet for the rapid detection of very large

flows and two RLFDs to detect smaller large flows. We proved that CLEF

is able to guarantee low-damage large-flow detection against various attack

flows with extremely limited memory, outperforming other schemes even with

CLEF’s worst-case background traffic. Further experimental evaluation con-

firms the findings of our theoretical analysis and shows that CLEF has the

lowest worst-case damage among all detectors and consistently low damage

over a wide range of attack flows. We believe that CLEF makes deployment

of large-flow detection finally practical even for core routers.

We further explore CLEF’s performance when we randomize its timing

in RLFD. We propose a reinforcement-learning-based method to find opti-

mal attacks to such timing-randomized CLEF, and the preliminary experi-

ment results show our method is much more computational efficient than a

brute-force search. The results demonstrate the timing-randomized CLEF

guarantees a good detection performance in such adversarial environments.

80

CHAPTER 5

DISSERTATION SUMMARY

Many malicious behaviors threatening service providers are anomalies differ-

ent from legitimate operations. In this dissertation, we focus on mitigating

the damage caused by large Internet flows, which are collections of related

traffic consuming more than the resource allocated to them. This disser-

tation reviews some basic knowledge and typical existing approaches in the

large-flow detection problem, and identifies the shortcomings of current work.

First, we propose EARDet, a novel arbitrary-window-based algorithm,

which is exact outside an ambiguity window. EARDet not only inherits

the property of no false negative over a high-bandwidth threshold (from

MG algorithm), but also has no false positive on small flows complying a

low-bandwidth threshold. EARDet guarantees deterministic detection that

does not make any assumption on the input traffic or attack traffic pattern.

Our theoretical and experimental evaluation demonstrate these properties in

EARDet, and show it outperform existing algorithms in detecting both flat

flows and bursty flows.

Although EARDet guarantees exact detection over large flows above

high-bandwidth with limited memory, the detection for large flows falling

in the ambiguity region is still not guaranteed. Then, we propose a random-

ized Recursive Large-Flow Detection (RLFD) scheme, which uses very little

memory yet provides eventual detection of persistently large flows in the

ambiguity region of EARDet. Unlike existing detectors, RLFD efficiently

distinguishes large flows from legitimate flows by evaluating one set of flows

at a time, and recursively shrinking the set of suspected large flows. Be-

cause of the pigeonhole principle, RLFD cannot guarantee immediate exact

detection with limited memory. Thus, larger flows are detected with higher

probability in RLFD, so the expected detection time decreases in the level

of overuse, resulting in limited damage across a wide range of flow overuse

amounts.

81

Furthermore, we develop, CLEF, a hybrid scheme that combines EARDet

and RLFD in parallel, which is super memory-efficient and able to scale to

Internet core routers. CLEF is resilient against worst-case traffic, while none

of the existing approaches can achieve same level of resilience with the same

memory limitations. To compare attack resilience among various detectors,

we propose a damage metric that summarizes the impact of attack traffic

on legitimate traffic. With a deterministic EARDet, CLEF can guarantee

the rapid detection of very large flows; with two RLFDs, CLEF can guar-

antee detection of smaller large flows that are in the ambiguity region of

EARDet. Our theoretical analysis and experimental evaluation both sup-

port that CLEF has the lowest worst-case damage among all detectors and

consistently low damage over a wide range of attack flows.

Future work. There is some future work for CLEF and its components

(RLFD and EARDet). (1) CLEF is quite simple and easy to apply in in-

dustry, therefore, we want to build a real system with the CLEF algorithm

and test it in the real network to see the performance in practice. (2) In the

experiment, EARDet’s detection probability curves under different input

traffic (congested and non-congested traffic) are highly matched, even in the

ambiguity region. Thus, it should be interesting to research the performance

in the ambiguity region in future research. (3) For RLFD with random-

ized timing, we preliminarily use reinforcement learning to explore RLFD’s

resilience against adversarial environments, and the results in small-scale

examples show that RLFD can guarantee detection and the limit damage

caused by adversarial attack traffics. In the future, we should further test

the timing-randomized RLFD in a realistic and large-scale example, which

may require more sophisticated neural network models.

82

APPENDIX A

EXACT-OUTSIDE-AMBIGUITY-REGION
DETECTOR

A.1 Proof Sketches for Lemmas

Note that Appendices A.1.1 and A.1.4 are presented in the technical report

by Wu et al. [48].

A.1.1 Lemma 13 and Proof Sketch

Lemma 13 In any time interval [t1, t2], we assume there are k attack flows

occupy k counters from the beginning time t1 to the ending time t2. If all

the normal counters (counters except the ones occupied by attack flows) are

empty at beginning time t1 and ending time t2, then, the decrement of all the

counters is
(t2−t1)−tlrg
n+1−k ρ, where tlrg is the sum of time that k attack flows are

sending packets.

Proof sketch: In [t1, t2], because the attack flows occupied the link for

tlrg, the time length of t2−t1−tlrg is occupied by some real flows F or virtual

flows (there is no assumption for the flows in F , but such flows should fulfill

that normal counters are empty at beginning time t1 and ending time t2). In

the time of t2 − t1 − tlrg, sometimes the counters are increased by flows in

F , and sometimes the counters are decreased by flows in F or virtual flows.

Therefore, we can assume that the sum of all the decrement dec consists of

many small decrements deci, which happen in time interval ti,dec, and the

number of counters occupied by flows in F is xi during ti,dec. Because the

normal counters are empty at the beginning and the ending, when there is a

decrement deci for each counter, then there must be xi increment inci that

happened on xi non-empty normal counters. Therefore all the decrements

deci in these normal counters have a counterpart of xi increment inci, which

83

takes ti,inc time length. Maybe deci and xi values of inci are not neighbors in

time domain, but for a decrement deci there must be xi values of inci, such

that

inci = deci (A.1)

In ti,dec, according to the three ways of decreasing and increasing the counter,

when the number of empty counters is l = n− k − xi, the deci and inci are

as follows:

deci =
ρ

n+ 1− k − xi
· ti,dec (A.2)

inci = ρ · ti,inc (A.3)

Then, according to (A.1), (A.2), and (A.3)

⇒


ti,dec =

(n+ 1− k − xi) · deci
ρ

ti,inc =
inci
ρ

=
deci
ρ

(A.4)

At any time point in t2− t1− tlrg, counters either increase or decrease, thus

t2 − t1 − tlrg =
∑
i

(xi · ti,inc + ti,dec) (A.5)

Then, according to (A.4) and (A.5), we can get

t2 − t1 − tlrg =
∑
i

(xi ·
deci
ρ

+
(n+ 1− k − xi) · deci

ρ
) (A.6)

=
∑
i

(n+ 1− k) · deci
ρ

(A.7)

=
dec(n+ 1− k)

ρ
(A.8)

Then,

⇒ dec =
(t2 − t1)− tlrg
n+ 1− k

ρ (A.9)

Therefore, during [t1, t2] the decrement of all the counters is
(t2−t1)−tlrg
n+1−k ρ, and

this lemma is proved. �

84

A.1.2 Lemma 14 and Proof Sketch

Lemma 14 In any time interval [t1, t2], if all the counters are empty at

the beginning time t1 and the ending time t2, then, the decrement of all the

counters is ρ
n+1
· (t2 − t1).

Proof sketch: Considering the scenario of Lemma 13 , when all the

counters are normal counters (namely k = 0), there is no assumption on all

the incoming flows except the condition that all the counters are empty at

the beginning time t1 and the ending time t2. This scenario is exactly the

same to what is described in Lemma 14. Therefore, to prove Lemma 14,

we just need to consider the scenario of k = 0 in Lemma 13. According to

Lemma 13, when k = 0, the tlrg must be 0, and therefore the decrement is

dec =
(t2 − t1)− tlrg
n+ 1− k

ρ =
(t2 − t1)

n+ 1
ρ (A.10)

Thus, the decrement of the scenario described in Lemma 14 is ρ
n+1
· (t2− t1),

and this lemma is proved. �

A.1.3 Proof Sketch of Lemma 2

Proof sketch: To get the upper bound of decrement of all the counters,

we just need consider the maximum decrement for a counter in time interval

[t1, t2]. According to Lemma 14, we can know the decrement of each counter

is ρ
n+1
· (t2 − t1) when all the counters are empty at the beginning time

t1 and the ending time t2. However, intuitively, the greater the values of

counters are at the beginning, the greater the decrement is, because each

counter saves some time to increase these counters and they have more time

to decrease; also, the less the values of counters are at the ending, the more

the total decrement of all counters is, because if there are remaining values

in the counters, the counters must waste some time to increase the counters

instead of decrease them. Because the maximum value of a counter is α+βTH

and the minimum value of a counter is 0, the scenario of maximum decrement

is: (1) all the counters’ value are α+βTH at the beginning time t1 and (2) all

the counters are empty at the ending time t2. Denote the scenario described

in Lemma 14 and Lemma 2 as CASE1 and CASE2. The difference between

85

CASE1 and CASE2 is that counters in CASE2 have a value of α+βTH at the

beginning, therefore there is an extra decrement of α + βTH in CASE2. To

have the extra decrement in CASE2, counters need to take some extra ti,dec

to decrease the extra decrement, and then the decrement of CASE2 except

the extra decrement α + βTH is lower than the ρ
n+1
· (t2 − t1), which is the

decrement of CASE1. Therefore, the total decrement of CASE2 is lower than
ρ

n+1
· (t2 − t1) + α + βTH , namely:

dec <
ρ

n+ 1
· (t2 − t1) + α + βTH (A.11)

Therefore, this lemma is proved. �

A.1.4 Proof Sketch of Lemma 4

Proof sketch: WLOG, we assume flow f is associated with a counter at

t1 = 0, and in [0, tocp], flow f always occupies this counter. Then, intuitively,

in [0, tocp], the case to have minimum decrement decmin on this counter is

that: (1) at time 0 all the counters are empty; and (2) at time tocp, except

the counter of flow f , all other counters have the maximum value α + βTH .

Because the remaining values in the counter will cost extra time tinc for in-

creasing these counters, then according to Lemma 13, the t2−t1 in Lemma 13

is smaller and the decrement is smaller. Therefore, in the case mentioned

above, the decrement is minimized. According to Lemma 13, in this case

t2 − t1 = tocp − tinc, k = 1, then the minimum decrement is

decmin =
tocp − tinc − tlrg

n
ρ (A.12)

where tinc = (n−1)(βTH+α)
ρ

.

Since f complies with TH`(t), tlrg < γ`/ρ · tocp + β`
ρ

.

⇒ decmin >
tocp(1− γ`/ρ)

n
ρ− (βTH + α)(n− 1) + β`

n
(A.13)

⇔ decmin > γ` tocp +
tocp(1− (n+ 1)γ`ρ)

n
ρ− (βTH + α)(n− 1) + β`

n
(A.14)

When tocp > tβ` = (n−1)α+(n+1)β`
[1−(n+1)γ`/ρ]ρ

,

86

⇒ decmin > γ` tocp +
(n− 1)α+ (n+ 1)β`

n
ρ− (βTH + α)(n− 1) + β`

n
(A.15)

⇒ γ` tocp + β` − decmin < βTH (A.16)

Because flow f complies with TH`(t), its counter value is smaller than

tocp + β` − decmin. Therefore, the counter is smaller than βTH after tβ` . �

87

APPENDIX B

IN-CORE LIMITING OF EGREGIOUS
FLOWS

B.1 Additional Analysis

B.1.1 Flow Memory Analysis

We analyze the Flow Memory (FM) with random flow eviction mechanism,

which is applied with multistage filters in [2]. For each incoming packet

whose flow is not tracked, such FM randomly picks a flow from the tracked

flows and the new flow to evict. Thus, for each packet of the flow not tracked,

the existing tracked flow has a probability Pe = 1
m+1

to be evicted, where m

is the number of counters in the FM.

Theorem 15 In a link with total traffic rate of R (≤ ρ), the packet size

of Spkt, and the large-flow threshold TH(t) = γt + β, a flow memory with m

counters is able to detect large flows at rate around or higher than β
Spkt

R
m

with

high probability.

Proof sketch: We assume number of packets arriving at the FM per

second is at the packet rate of Rpkt, thus the time gap between two incoming

packets is Tpkt = 1
Rpkt

=
Spkt
R

. For a newly tracked flow f at timestamp 0, the

kth eviction happens at k · Tpkt, and Pe = 1
m+1

is the probability that flow f

is evicted at the kth eviction. Evictions are not triggered by packets of flows

being tracked, however the number of flows untracked is far larger than the

number of flows being tracked, thus we can approximate treat the time gap

between evictions as Tpkt. Thus, the expected time length for the flow f to

be tracked is

88

E(Ttrack) =
+∞∑
k=1

Pe(1− Pe)k−1kTpkt

= lim
k→+∞

(1− Pe)
(

1− (1− Pe)k

Pe
− (k + 1)(1− Pe)k

)
Tpkt

=
1− Pe
Pe

Tpkt = m · Tpkt

(B.1)

As the FM uses leaky bucket counters to enforce the large-flow threshold
TH
t

= γt + β (defined in Section 2.1), the counter threshold is the burst

threshold β. Thus, to detect a large flow at traffic rate of Ratk, the FM

requires the large flow being tracked at least for a time of β/Ratk, otherwise

the counter value cannot reach the threshold. Therefore,

Ratk >
β

E(Ttrack)
=

β

m · Tpkt
=

β

Spkt

R

m
(B.2)

Thus for the large flows at rates far smaller than the β
Spkt

ρ
m

are likely to be

evicted before violating the threshold β.�

In the practice, the packet size is not fixed, but we treat it with fixed

size for analyzing the least Ratk changes along with the m. Because the real

packet size is also limited in 1514 Bytes, the β
Spkt

is a bounded factor. As the

β is usually larger than the maximum packet size, the β
Spkt

> 1 for sure.

We can see the scale of the large flow rate can be detected by FM is similar

to that can be detected by EARDet (i.e., ρ
m+1

, where ρ is the link capacity).

They both increase as 1
m

increases. In the worst case of the FM, when the

traffic rate is at link capacity (R = ρ), the least detectable average rates Ratk

of the FM and the EARDet are at the same scale. One difference between

them is that the EARDet can guarantee deterministic detection, while the

Flow Memory detects flows probabilistically. Our simulations in Section 4.6

support the analysis above.

B.1.2 Multistage Filter Analysis

According to the theoretical analysis in [2], an m-counter multistage filter

with d stages each of which has m/d counters, the probability for a flow

hashed into a counter in each stage without collision (Cfree) to other flows is

89

as follows. We let m′ = m/d, and assume there are n flows in total, then

Pr(Cfree) = 1− (1− (1− 1

m′
)n−1)d

= 1− (1− (1− 1

m′
)m
′ n−1
m′)d

≈ 1− (1− e−
n−1
m′)d

→ 0, when n→ +∞

(B.3)

where we assume the m′ � 1 and n/m′ � 1. The assumptions are reason-

able: (1) the number of counters m is usually around hundreds, and the d

is typically chosen as 4 in [2], therefore m′ � 1; and (2) we aim to use very

limited counters to detect large flows from a large number of legitimate flows,

thus n/m′ � 1.

In the case that every legitimate flow is higher than the half of the threshold

rate γ/2, the false positive rate is almost 100%, because the Pr(Cfree) is close

to 100%. Any collision in a counter results in that the counter value violates

the counter threshold and thus a falsely positive on legitimate flows.

B.1.3 RLFD Worst-Case Background Traffic

General case: Weighted balls-into-bins problem. In the well-known

balls-into-bins problem, we have m bins and n balls. For each ball, we ran-

domly throw it into one of m bins.

We treat the flows in the network as the balls, and the counter array as

the bins. Hashing flows into counters is just like randomly throwing balls

into bins, where each flow is a weighted ball with weight of its traffic volume

sent during a period T` of each level Lk (1 ≤ k ≤ d).

Worst case: Single-weight balls-into-bins problem. We assume the

rate threshold γ of our flow specification, TH(t) = γt + β, is γ = ρ
N

, where

the ρ is the outbound link capacity. In the general case, the legitimate flows

are at average rates less than or equal to the threshold rate γ, however we

show that the worst-case background traffic for RLFD to detecting a large

flow is that all legitimate flows are sending traffic at the rate of the threshold

rate γ (Theorem 7). As the inbound link capacity can be larger than the

outbound one, there still could be attack flows in this case. We prove the

90

Theorem 7 by the Theorem 16 from Berenbrink et al. [59] which is for

weighted balls-into-bins games.

Theorem 16 Berenbrink et al. Theorem 3.1 For two weighted balls-

into-bins games B(w, n,m) and B′(w′, n,m) of n balls and m bins, the vectors

w = (w1, ..., wn) and w′ = (w′1, ..., w
′
n) represent the weight of each ball in two

B and B′, respectively. If W =
∑n

i=1 wi =
∑n

i=1 w
′
i and

∑k
i=1wi ≥

∑k
i=1w

′
i

for all 1 ≤ k ≤ n, then E[Si(w)] ≥ E[Si(w
′)] for all 1 ≤ i ≤ m, where the

Si(w) is the total load of the i highest bins, and the E(Si(w)) is the expected

Si(w) across all mn possible balls-into-bins combinations.

Lemma 17 and proof sketch.

Lemma 17 The RLFD has the lowest probability to select the right counter

of a large flow fatk to the next level, when the legitimate flows use up all

legitimate bandwidth.

We assume C1 and C2 are two different counter states after adding the

attack traffic and the traffic of some legitimate flows, and there are V more

volume of traffic allowed to send by the other legitimate flows before the

total volume of legitimate flows reaches the outbound link capacity. Let Vatk

be the value of the counter assigned to fatk, and the Vmax be the maximum

value of other counters. In the C1, we let Vatk > Vmax + V ; in the C2, we let

Vatk ≤ Vmax +V . Hence, C1 and C2 cover all possible counter states. As there

are still up to V volume of legitimate flows can be added into counters. We

use V ′atk and V ′max to represent the final value of Vatk and Vmax. Thus, the

probability to select the counter of fatk is

Pr(V ′atk > V ′max) = Pr(V ′atk > V ′max|C1)Pr(C1) + Pr(V ′atk > V ′max|C2)Pr(C2) (B.4)

Because Vatk > Vmax + V in C1, and the V ′max cannot exceed Vmax + V , thus

always V ′atk > V ′max. Then,

Pr(V ′atk > V ′max) = Pr(C1) + Pr(V ′atk > V ′max|C2)Pr(C2) (B.5)

91

Let x be the amount of legitimate traffic added into counters after C2, where

0 ≤ x ≤ V . If the x = V , then there is a chance to have all V added on the

Vmax, and thus V ′max = Vmax + V = Vatk = V ′atk, so that Pr(V ′atk > V ′max|C2) is

lower than that when x < V . Therefore, Pr(V ′atk > V ′max) is lower in the case

that legitimate flows fully use the link capacity than other cases. Thus, the

Lemma 17 is proved. �

Proof sketch of Theorem 7. We first just consider the legitimate traffic

but not the attack flow. As Lemma 17 illustrated, the more traffic sent

from legitimate flows, the harder for RLFD to correctly select the counter

with the attack flow fatk, thus to have the worst RLFD detection probability,

legitimate flow should use all outbound link capacity, and it requires the flow

number n ≥ ρ/γ.

Given n ≥ ρ/γ and m, we first construct a legitimate flow configuration

B(w, n,m), wi = γ for 1 ≤ i ≤ ρ/γ and wi = 0 for i > ρ/γ which is

the worst-case legitimate configuration we want to prove, because there are

actually only the first ρ/γ flows with non-zero rate. For any legitimate flow

configuration B′(w′, n,m) with constraint of
∑k

i=1w
′
i = ρ. It is easy to find∑k

i=1wi ≥
∑k

i=1w
′
i.

Thus, according to Theorem 16 [59] the E[Si(w)] ≥ E[Si(w
′)] for all

1 ≤ i ≤ m, where E[Si(w)] is the expected total counter value of the i

highest counters in the case of B(w, n,m) and E[Si(w
′)] is the one in the

case of any other legitimate flow configuration B′(w′, n,m).

It is not hard to find that the E[Si(w)] ≥ E[Si(w
′)] for all 1 ≤ i ≤ m

suggests that the variation of expected counter values across all counters of

the B(w, n,m) is larger than that of the B′(w′, n,m). Let Vmax be the max-

imum counter value, and Vatk be the value of the counter randomly assigned

to the attack flow fatk (Vatk does not count the traffic of fatk). The higher

the variation, the larger the expected Vmax − Vi, thus the harder for RLFD

to correctly select the counter of fatk for the next level.

Therefore, the B(w, n,m) is the worst legitimate flow configuration for

RLFD to detect large flows. �

92

α = R
atk

/γ
2 4 6 8 10 12

P
ro

b
a
b
ili

ty

0

0.5

1

1.5
n=50 m=100

Worst-case
Lower bound

(a) n = 50, m = 100

α = R
atk

/γ
2 4 6 8 10 12 14

P
ro

b
a
b
ili

ty

0

0.5

1

1.5
n=100 m=100

Worst-case
Lower bound

(b) n = 100, m = 100

α = R
atk

/γ
10 20 30

P
ro

b
a
b
ili

ty

0

0.5

1

1.5
n=1000 m=100

Worst-case
Lower bound

(c) n = 103, m = 100

α = R
atk

/γ
20 40 60 80

P
ro

b
a
b
ili

ty

0

0.5

1

1.5
n=10000 m=100

Worst-case
Lower bound

(d) n = 104, m = 100

α = R
atk

/γ
50 100 150 200 250

P
ro

b
a
b
ili

ty
0

0.5

1

1.5
n=100000 m=100

Worst-case
Lower bound

(e) n = 105, m = 100

α = R
atk

/γ
2 4 6

P
ro

b
a
b
ili

ty

0

0.5

1

1.5
n=50 m=1000

Worst-case
Lower bound

(f) n = 50, m = 1000

α = R
atk

/γ
2 4 6 8

P
ro

b
a
b
ili

ty

0

0.5

1

1.5
n=100 m=1000

Worst-case
Lower bound

(g) n = 100, m = 1000

α = R
atk

/γ
2 4 6 8 10 12 14

P
ro

b
a
b
ili

ty

0

0.5

1

1.5
n=1000 m=1000

Worst-case
Lower bound

(h) n = 103, m = 1000

α = R
atk

/γ
10 20 30

P
ro

b
a
b
ili

ty

0

0.5

1

1.5
n=10000 m=1000

Worst-case
Lower bound

(i) n = 104, m = 1000

α = R
atk

/γ
20 40 60 80 100

P
ro

b
a
b
ili

ty

0

0.5

1

1.5
n=100000 m=1000

Worst-case
Lower bound

(j) n = 105, m = 1000

Figure B.1: The probability Pworst(m,n, α) when n full-use legitimate flows
(at rate of γ), m counters, and a large flow at the rate of Ratk = α · γ.

B.1.4 Numeric Analysis for RLFD Detection Probability

Numeric analysis for single-level detection. For each theoretical

result, we show numeric examples in the scenario of nγ = 105 and m = 100,

a even more memory-limited setting than the one in the complexity analysis

(Section 4.4.4).

Figures B.1(a) to B.1(j) comprehensively shows the simulated worst-case

detection probability Pworst(m,n, α) in a level and its lower bound for various

number of full-use legitimate flows n ≤ nγ (50 to 105). We also give the

93

α = R
atk

/γ
0 500 1000

O
v
e
ru

s
e
 D

a
m

a
g
e
 (

M
B

)

1

2

3

4

5

6

θ = 1.0

Worst-case
Upper bound
EARDet θγ

h

(a) θ = 1.0 (Flat)

α = R
atk

/γ
0 500 1000

O
v
e
ru

s
e
 D

a
m

a
g
e
 (

M
B

)

2

4

6

8

10

θ=0.5, θ T
b
 >= 2T

c

(1)

Worst-case
Upper bound
EARDet θγ

h

(b) θ = 0.5, θTb ≥ 2T
(1)
c

α = R
atk

/γ
0 500 1000

O
v
e
ru

s
e
 D

a
m

a
g
e
 (

M
B

)

2

4

6

8

10

θ=0.25, θ T
b
 >= 2T

c

(1)

Worst-case
Upper bound
EARDet θγ

h

(c) θ = .25, θTb ≥ 2T
(1)
c

α = R
atk

/γ
0 500 1000

O
v
e
ru

s
e
 D

a
m

a
g
e
 (

M
B

)

100

200

300

400

500

θ=0.5, θ T
b
 < 2T

c

(1)

Worst-case
Upper bound
EARDet θγ

h

(d) θ = 0.5, θTb < 2T
(1)
c

α = R
atk

/γ
0 500 1000

O
v
e
ru

s
e
 D

a
m

a
g
e
 (

M
B

)

100

200

300

400

500

θ=0.25, θ T
b
 < 2T

c

(1)

Worst-case
Upper bound
EARDet θγ

h

(e) θ = .25, θTb < 2T
(1)
c

Figure B.2: Twin-RLFD worst-case expected overuse damage E(Dover) (in
MBytes) and its upper bound for flat/bursty flows in various duty cycles θ,
burst periods Tb, and average rates Ratk = αγ, in the 40 Gbps link with
threshold rate γ = 400 Kbps (nγ = 105 full-use legitimate flows at most).
The Twin-RLFD has a limited memory of m = 100 counters (50 counters
for each RLFD), a typical number of levels d = 4, and detection cycle

T
(1)
c = 0.1 sec, T

(2)
c = 7.92 sec for two RLFDs respectively. Flows at the

EARDet detectable rate Ratk ≥ θγh = θ nγ
m+1

γ are detected by the
EARDet with m = 100 counters in nearly zero damage.

numeric results with different m (100 and 1000) for comparison. When n =

105,m = 100, we can see α0.5 = 152 and α1.0 = 303, which are far smaller

than EARDet’s lowest detectable α = ρ
γ(m+1)

= nγ
m+1

= 991. For RLFD,

the α with actual worst-case detection probability of 0.5 and 1.0 are around

75 and 150, respectively, which are much lower than the α0.5 and α1.0. Thus,

it suggests RLFD’s ability of detecting low-rate large flows. The figures also

show that the probability of detecting low-rate flows increases as the number

of flows (n) decreases or the number of counters (m) increases. The figures

show that the α0.5, α1.0, and the lower bound holds for n > m, because we

derive it with the assumption of n � m logm. When n ≤ m, RLFD has

100% detection probability as explained in Section 4.4.

Since α1.0 decreases rapidly when n decreases, we approximate the total

detection probability by the detection probability of the first few levels.

Numeric analysis for total detection probability. In a tough scenario

94

with nγ = 105, m = 100, and n = 107 legitimate flows in a link during one

detection cycle (around a second), RLFD has at least 0.25 and 1.0 probability

to detect a flat large flow with α = 152 and 303, respectively; and the

simulation results suggest that RLFD can detect a large flow with α = 75

and 150 with probability around 0.25 and 1.0, respectively. Again, EARDet

can only guarantee to detect α ≥ ρ
γ(m+1)

= nγ
m+1

= 991. That is, RLFD

outperforms the exact detection algorithm on low-rate large flows.

α = R
atk

/γ
50 100 150 200 250

P
ro

b
a
b
ili

ty

0

0.2

0.4

0.6

0.8

1

1.2

Total Probability. n=100000 m=100

Worst-case Pr(A
α
)

Pr(A
α
) lower bound

Figure B.3: RLFD total detection probability; nγ = n = 105, m = 100.

Figure B.3 shows an example of simulated worst-case total detection prob-

ability Pr(Aα) and its theoretical lower bound (Theorem 11), when n = nγ =

105 and m = 100. The lower bound holds for the most of α, except some

very small ones whose Pr(Aα) is close to 0.

B.1.5 Numeric Analysis for Twin-RLFD Theoretical Overuse
Damage

Figures B.2(a) to B.2(e) show the expected overuse damage E(Dover) calcu-

lated in the worst case and its upper bound from Theorem 12, in a 40 Gbps

link with threshold rate γ = 400 Kbps (nγ = 105 full-use legitimate flows

at most). The Twin-RLFD has m = 50 counters for each RLFD, d = 4

levels, and detection cycle T
(1)
c = 0.1 sec and T

(2)
c = 7.92 sec for two RLFDs,

respectively. Damages by large flows with various duty cycles θ and burst

periods Tb are shown. Flows with an average rate Ratk higher than θγh (black

dash line) will be detected instantly by EARDet (with 100 counters) with

nearly zero damage.

The Twin-RLFD has d = 4 so that the number of virtual counters in the

RLFD bottom level (md = 504 = 6.25 × 106) is larger than the number of

95

flows. Therefore, we the flows selected to the bottom level is fewer than the

counters, and RLFD can track each flow individually in the bottom level.

We set T
(1)
c = Tc = 0.1 sec around β

γ
= 2×1514

400Kbps
= 0.06 sec (β is usually a

few times of maximum packet size 1514 Bytes, so that bursty flows are easier

to catch). If Tc � β/γ, it is hard for a large flow to reach burst threshold; if

Tc � β/γ, the detection delay is too long, resulting in excessive damage.

For Twin-RLFD’s second RLFD, T
(2)
c = 2dγh

αγ
T

(1)
c = 7.92 sec (according to

Theorem 12). Therefore, Twin-RLFD can guarantee detection for the worst-

case bursty flows (θTb < 2T
(1)
c) at rate Ratk ≥ αγ = 100γ. We can guarantee

detection of lower rate flows with worst-case burstiness by increasing T
(2)
c ;

however, increased T
(2)
c increases the damage caused by worst-case bursty

flows. We say bursty flows with θTb < 2T
(1)
c are the worst-case bursty flows,

because such flows are unlikely showing up in every level of the RLFD with

cycle (T
(1)
c), so that we have to use the RLFD with longer detection cycle

(T
(2)
c) to catch those flows, which requires longer delay, thus higher damage.

Furthermore, such worst-case flows can inflict more damage by increasing θ

(thus the average rate), but remain undetectable by EARDet. As discussed

in Section 4.4.6, we can use choose different T
(2)
c randomly in different cycles

to prevent attackers from deterministically maximizing damage.

A hybrid scheme consisting of EARDet and Twin-RLFD can limit the

worst-case damage caused by flat flows (θ = 1) and bursty flows (θ < 1).

Specifically, for flows with an average rate larger than 30γ (i.e. 12 Mbps),

the damage is as low as tens of MBytes (less than ten MBytes for flat flows).

We admit that Twin-RLFD cannot limit the damage for flows at extremely

low rate (� 30γ) as effectively as for other flows, however other existing

schemes cannot neither, because of the limited memory. For flows at high

rates, although the Twin-RLFD detects them with almost 100% probability

in one detect cycle, it requires at least one cycle to finish detection, hence

the damage increases linearly with the flow rate.

Twin-RLFD and EARDet complement each other. Twin-RLFD can de-

tect flows with an average rate lower than θγh but it incompetent at detecting

high-rate flows, whereas EARDet is the opposite.

96

B.2 Proof Sketches

B.2.1 Proof Sketch for RLFD Single-level Detection
Probability

Proof sketch of Theorem 8. In the analysis, we treat hashing flows into

counters as uniformly assigning n legitimate flows into counters and pick a

counter for the large flow fatk at random. We denote the random variable of

the maximum number of legitimate flows assigned to a counter as Y and the

random variable of the number of legitimate flows in the counter of the large

flow fatk as X.

Because the RLFD pick the counter with the largest value for the next

level, thus as long as the value of the large-flow counter (Ratk + X · γ)T is

higher than the value of the maximum-value legitimate counter Y · γT , the

large-flow counter will be picked, where T is the time length of the level.

Then we get

Pworst(m,n, α) =Pr(Ratk +X · γ − Y · γ > 0)

=Pr(Y −X < α)

=
∑
y

Pr(y −X < α|Y = y) · Pr(Y = y)

(B.6)

As we discussed in Section B.1.3, the distributions of X and Y are the

same as those of the Xb and Yb in a single-weight balls-into-bins game with

n balls and m bins, where the Xb is the random variable of the number of

balls in a randomly picked bin, and the Yb is the random variables of the

maximum number of balls in a counter. Thus, we can apply Theorem 18 (by

Raab and Steger [60]) to calculate the ymax, the upper bound of Y at high

probability.

Theorem 18 Raab and Steger’s Theorem 1. Let Y be the random

variable that counts the maximum number of balls in any bin, if we throw

n balls independently and uniformly at random into m bins. Then Pr(Y >

ymax) = o(1), if ymax = n
m

+ λ
√

2 n
m

log n, λ > 1, m logm � n ≤ m ·
ploylog(m), and n is very large. When n→∞, o(1)→ 0.

We think it is a good approximation to our large-flow problem. Because the

number of legitimate flows n in a backbone link is more than a million, while

97

the number of counters m is quite limited (e.g. one thousand counters in L1

cache, according to Section 4.4.2), thus we saym logm� n ≤ m·ploylog(m)1

and n is very large. We derive the approximate lower bound of Pworst(m,n, α)

as follows:

Pworst(m,n, α) =
∑
y

Pr(y −X < α|Y = y) · Pr(Y = y)

=
∑

y≤ymax

Pr(X > y − α, Y = y) +
∑

y>ymax

Pr(X > y − α, Y = y)

≥
∑

y≤ymax

Pr(X > ymax − α, Y = y) +
∑

y>ymax

Pr(X > y − α, Y = y)

= Pr(X > ymax − α) · Pr(Y ≤ ymax) +
∑

y>ymax

Pr(X > y − α, Y = y)

(B.7)

We prove that the second part is o(1) as follows:∑
y>ymax

Pr(X > y − α, Y = y) ≤
∑

y>ymax

Pr(X > ymax − α, Y = y)

= Pr(X > ymax−α) · Pr(Y > ymax−α)

= Pr(X > ymax−α) · o(1) = o(1)

(B.8)

According to Equation B.7 and B.8, we get

Pworst(m,n, α) ≥ Pr(X > ymax − α) · Pr(Y ≤ ymax) + o(1)

= Pr(X > ymax − α) · [1− Pr(Y > ymax)] + o(1)

= Pr(X > ymax − α) · (1− o(1)) + o(1)

= Pr(X > ymax − α)− o(1)

≈ Pr(X > ymax − α)

(B.9)

Therefore, when n is large, we approximately have Pworst(m,n, α) ≥ Pr(X >

ymax − α).

We let η = dymax−αe, and use random variable Mk to denote the number

of bins exactly contain k balls. We calculate Pr(X > ymax − α) as follows:

1Raab et al. also provides a similar ymax for m(logm)3 � n, but it is enough to only
discuss one of them for an approximate result.

98

Pr(X > ymax − α) = Pr(X > η) =
∑
k≥η

Pr(X = k)

=
∑
k≥η

∑
0≤mk≤m

Pr(X = k|Mk = mk) · Pr(Mk = mk)

=
∑
k≥η

∑
0≤mk≤m

mk

m
Pr(Mk = mk)

=
∑
k≥η

1

m

∑
0≤mk≤m

mkPr(Mk = mk) =
∑
k≥η

E(Mk)

m

=
∑

η≤k≤n

1

m
·m
(
n
k

)
(m− 1)n−k

mn

=
∑

η≤k≤n

(
n

k

)(
1− 1

m

)n−k(1

m

)k

(B.10)

The above result requires to calculate the sum of the last m− η + 1 items

from the binomial distribution B(n, 1
m

). As we know, there are no simple,

closed forms for Equation B.10. According to the law of rare events [61], bi-

nomial distribution B(n, p) is approximate to Poisson distribution Pois(np),

when n is large and p is small. According to Equation B.15, the detection

probability Pr(Aα) is mainly related to non-bottom levels in which the num-

ber of flows nis large (n > m) , and p = 1
m

is small because m is around

hundreds to thousands, we approximately treat B(n, 1
m

) as the Poisson dis-

tribution Pois(n
m

), then we have

(
n

k

)(
1− 1

m

)n−k(1

m

)k
≈
e−

n
m (nm)k

k!
(B.11)

which is the probability of the item happens k times in the Poisson distribu-

tion. Then, the Equation B.10 turns to

Pr(X > ymax − α) =
∑

η≤k≤n

(
n

k

)(
1− 1

m

)n−k(1

m

)k
=

∑
η≤k≤n

e−
n
m (nm)k

k!
= 1−Q(η − 1,

n

m
)

(B.12)

where Q(K, n
m

) is the cumulative distribution function (CDF) of the Poisson

distribution Pois(n
m

), i.e. sum of probabilities for 0 ≤ k ≤ K. As the Theo-

99

rem 18 holds when λ > 1, thus we choose λ→ 1+, thus ymax = n
m

+
√

2 n
m

log n.

Because we focus on how does the probability lower bound change along with

the m and n, the λ does not matter much here. Therefore, we proved that

the 1 − Q(K, n
m

) is an approximate lower bound for Pworst(m,n, α), where

K = η − 1 =
⌊
n
m

+
√

2 n
m

log n− α
⌋
. �

Proof sketch of Corollary 9. According to Theorem 8, Pworst(m,n, α0.5) >

1−Q(K, n
m

) approximately, where K =
⌊
n
m

+
√

2 n
m

log n−α0.5

⌋
. As the me-

dian2 ν of the Poisson distribution Pois(n
m

) is bounded by n
m
− log 2 ≤ ν <

n
m

+ 1
3

[62]. Thus, ν ≈ n
m

, then

K ≈ n

m
⇒ α0.5 ≈

√
2
n

m
log n (B.13)

Therefore the Corollary 9 is proved.�

Proof sketch of Corollary 10. According to Pearson’s skewness coeffi-

cients [63], the symmetry of a distribution is measured by its skewness. The

probability distribution is approximately symmetrical to its mean when the

skewness is small. According to [64], the skewness of Poisson distribution

Pois(n
m

) is
(
n
m

)−0.5
. Thus when n � m logm the Pois(n

m
) is approximately

symmetrical to its mean n
m

.

Because when α = 1 the actual Pworst(m,n, α) should be 1
m
≈ 0 (because

the large flow rate is the same as the legitimate flow rate, thus the detection

equals to randomly picking one from m counters), thus the approximate lower

bound 1−Q(Kα=1,
n
m

) ≈ 0, where Kα=1 =
⌊
n
m

+
√

2 n
m

log n−1
⌋
. As Pois(n

m
)

is symmetrical to Ks = n
m

, when K = Ks + (Ks −Kα=1) ≈ n
m
−
√

2 n
m

log n ,

the 1 − Q(K, n
m

) ≈ 1, in which α ≈ 2α0.5 (according to Corollary 9). Thus,

α1.0 = 2α0.5 has been proved.�

B.2.2 Proof Sketch for RLFD Total Detection Probability

Proof sketch of Theorem 11. For the detection level k, we use Ak,α to

denote the event that the counter containing the large flow fatk with average

rate of Ratk = αγ in the level k is selected for the next level, where γ is the

threshold rate, α > 1. Then the total probability for RLFD to catch the

large flow fatk in one detection cycle is

2The K such that the CDF Q(K, n
m) = 0.5

100

Pr(Aα) =Pr(A1,α, A2,α, A3,α, ..., Ad,α)

=Pr(A1,α) · Pr(A2,α|A1,α) · Pr(A3,α|A2,α, A1,α)·

...P r(Ad,α|Ad−1,α, ..., A1,α)

=Pr(A1,α) · Pr(A2,α|A1,α) · Pr(A3,α|A2,α)·

...P r(Ad,α|Ad−1,α)

(B.14)

As we described in Section 4.4.2, we use the Cuckoo hashing in the bot-

tom level d to randomly assign flows into counters. Because we set enough

levels to make the input flows in the bottom level less than the counters, the

Pr(Ad,α|Ad−1,α) ≈ 1. For the levels k < d with n(k) legitimate flows, accord-

ing to Theorem 8 the Pr(Ak,α|Ak−1,α) ≥ Pworst(m,n
(k), α). Considering the

maximum number of full-use legitimate flows in a link is nγ = ρ/γ,

• When n < nγ, Pr(Ak,α|Ak−1,α) ≥ Pworst(m,n
(k), α)

• When n ≥ nγ, Pr(Ak,α|Ak−1,α) ≥ Pworst(m,nγ, α)

Therefore,

Pr(Aα) ≥
d−1∏
k=1

Pworst(m,min(nγ , n
(k)), α) (B.15)

where we approximately let n(k) = n/mk−1, which is the average value of n(k)

over repeated detection. n is the number of legitimate flows in the link.

According to Equation B.15 and the fact that α1.0 decreases fast as the n(k)

decreases by the factor of m, Pworst(m,n
(k), α) for n(k) < nγ does not affect

the product much for the most of α values. Therefore, we can approximate

Prworst(Aα) as follows:

Pr(Aα) ≥


∏

{k|n(k)≥nγ}

Pworst(m,nγ , α), when n ≥ nγ

Pworst(m,n, α) , when n < nγ

(B.16)

where size of {k|n(k) ≥ nγ} is blogm(n/nγ)c+ 1, because n(k) = n(k−1)/m.

According to Theorem 8, approximately Pworst(m,n, α) ≥ 1 − Q(K, n
m

)

where K =
⌊
n
m

+
√

2 n
m

log n − α
⌋
. Thus we can derive Theorem 11 from

Equation B.16.�

101

B.2.3 Proof Sketch for Twin-RLFD Theoretical Overuse
Damage

The upper bound of the expected overuse damage can be derived from the

average rate of a flat large flow and the expected detection delay: E(Dover) ≤
E(Tdelay) ·Ratk, because attack flows cannot cause more overuse damage than

the amount of traffic over-sent E(Tdelay) · Ratk. For a bursty flow with duty

cycle θ and burst period Tb, a RLFD can also treat it as a flat flow at the time

of each burst interval θTb. Thus, we can still use the detection probability

for flat flows to calculate the damage for bursty flows.

Lemma 19 and proof sketch.

Lemma 19 A RLFD with detection cycle Tc can detect bursty flows with

θTb ≥ 2Tc with the expected overuse damage:

E(Dover) ≤


Tcγα/θ

(
1−Q(Kγ ,

nγ
m

)

)blogm(n/nγ)c+1

, when n ≥ nγ

Tcγα/θ

(
1−Q(K,

n

m
))

)
, when n < nγ

(B.17)

where Kγ =
⌊nγ
m

+
√

2nγ
m

log nγ− α
θ

⌋
, K =

⌊
n
m

+
√

2 n
m

log n− α
θ

⌋
, and Q(x, λ)

is the CDF of the Poisson distribution Pois(λ).

Proof sketch: Because θTb ≥ 2Tc, thus for each burst period Tb there

are must be at least
⌊
θTb
Tc
− 1

⌋
detection cycles, in which RLFD can see

the attack traffic in all levels. When the RLFD observes the bursty flow, the

only difference from the detection over flat flow is that, the traffic rate at that

moment is α
θ
γ, instead of αγ in the case of flat flows. Thus, the probability

Pr(Aα) to detect such bursty flow in one detection cycle is calculated as the

one for flat flow detection in Theorem 11, by replacing the α with the α
θ
. The

expected detection delay E(Tdelay) is derived as follows:

E(Tdelay) ≤
1

Pr(Aα)

Tb⌊
θTb
Tc
− 1
⌋ ≈ Tc

θPr(Aα)
(B.18)

Then we get the over-sent attack traffic in the input link is E(Tdelay) · Ratk,

and the overused bandwidth by attack traffic is less than or equal to that,

because the some attack packets may also be dropped during congestion.

102

Thus we get the expected overuse damage E(Dover):

E(Dover) ≤ E(Tdelay) ·Ratk ≤ Tcγα/θPr(Aα) (B.19)

Thus, according to Theorem 11, we get the upper bound of the overuse

damage in the Lemma 19. The proof also holds when θ = 1, which is for the

case of flat flows. �

Proof sketch of Theorem 12. The overuse damage in the case of θTb ≥
2T

(1)
c are from Lemma 19. When θTb < 2T

(1)
c and Ratk < θγh, we prove the

damage as follows:

Tb <
2T

(1)
c

θ
<

2T
(1)
c

Ratk
γh =

2T
(1)
c

αγ
γh =

T
(2)
c

d
(B.20)

Thus the Tb is less than a detection level period of the EFD(2), which means

the bursty flow is like a flat flow to EFD(2). Therefore, we use the overuse

damage upper bound in Lemma 19, when θ = 1, Tc = T
(2)
c , and we get

E(Dover) ≤


T (2)
c γα/

(
1−Q(Kγ ,

nγ
m

)

)blogm(n/nγ)c+1

, when n ≥ nγ

T (2)
c γα/

(
1−Q(K,

n

m
))

)
, when n < nγ

(B.21)

where Kγ =
⌊nγ
m

+
√

2nγ
m

log nγ−α
⌋

, K =
⌊
n
m

+
√

2 n
m

log n−α
⌋
. By replacing

T
(2)
c with 2γh

αγ
T

(1)
c , we proved the Theorem 4.3.�

B.3 Additional Table

Table B.1: Settings of RLFD and CLEF.

m 20 40 70 100 150 200 400

T ∗` .242 .242 .242 .242 .242 .242 .242

Single RLFD

d 4 3 3 3 3 3 2

T ∗c .968 .726 .726 .726 .726 .726 .484

Twin-RLFD (in CLEF)

d 7 5 4 4 4 3 3

T
(1)∗
c 1.69 1.21 .968 .968 .968 .726 .726

T
(2)∗
c 168.6 63.75 31.92 26.56 21.96 10.68 7.59

∗ Time unit is second.

103

REFERENCES

[1] H. Wu, H.-C. Hsiao, and Y.-C. Hu, “Efficient large flow detection over
arbitrary windows: An algorithm exact outside an ambiguity region,”
in Proceedings of the 2014 Conference on Internet Measurement Con-
ference. ACM, 2014, pp. 209–222.

[2] C. Estan and G. Varghese, “New directions in traffic measurement
and accounting: Focusing on the elephants, ignoring the mice,” ACM
Transactions on Computer Systems (TOCS), vol. 21, no. 3, pp. 270–313,
2003. [Online]. Available: http://dl.acm.org/citation.cfm?id=859719

[3] S. Shenker, C. Partridge, and R. Guerin, “Specification of guaranteed
quality of service,” RFC 2212 (Proposed Standard), Sep. 1997. [Online].
Available: http://www.ietf.org/rfc/rfc2212.txt

[4] R. Braden, D. Clark, and S. Shenker, “Integrated services in the
internet architecture: An overview,” RFC 1633 (Informational), June
1994. [Online]. Available: http://www.ietf.org/rfc/rfc1633.txt

[5] C. Basescu, R. M. Reischuk, P. Szalachowski, A. Perrig, Y. Zhang,
H.-C. Hsiao, A. Kubota, and J. Urakawa, “SIBRA: Scalable internet
bandwidth reservation architecture,” in Proceedings of Network and Dis-
tributed System Security Symposium (NDSS), Feb. 2016.

[6] Z. Liu, H. Jin, Y.-C. Hu, and M. Bailey, “MiddlePolice: Toward en-
forcing destination-defined policies in the middle of the internet,” in
Proceedings of ACM CCS, Oct. 2016.

[7] S. B. Lee, M. S. Kang, and V. D. Gligor, “CoDef: Collaborative de-
fense against large-scale link-flooding attacks,” in Proceedings of CoNext,
2013.

[8] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen,
D. Moon, and S. Shenker, “Accountable internet protocol (AIP),”
in Proceedings of ACM SIGCOMM, 2008. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1402958.1402997

104

[9] J. Naous, M. Walfish, A. Nicolosi, D. Mazières, M. Miller, and A. Seehra,
“Verifying and enforcing network paths with ICING,” in Proceedings of
ACM CoNEXT, 2011.

[10] A. Li, X. Liu, and X. Yang, “Bootstrapping accountability in the Inter-
net we have,” in Proceedings of USENIX/ACM NSDI, Mar. 2011.

[11] T. H.-J. Kim, C. Basescu, L. Jia, S. B. Lee, Y.-C. Hu, and A. Perrig,
“Lightweight source authentication and path validation,” in ACM SIG-
COMM Computer Communication Review, vol. 44, no. 4. ACM, 2014,
pp. 271–282.

[12] X. Liu, A. Li, X. Yang, and D. Wetherall, “Passport: Secure and
adoptable source authentication,” in Proceedings of USENIX/ACM
NSDI, 2008. [Online]. Available: http://www.usenix.org/event/nsdi08/
tech/full\ papers/liu\ xin/liu\ xin\ html/

[13] “Resource Public Key Infrastructure (RPKI),” 2015. [Online]. Available:
https://www.arin.net/resources/rpki/

[14] T. Anderson, K. Birman, R. Broberg, M. Caesar, D. Comer, C. Cotton,
M. J. Freedman, A. Haeberlen, Z. G. Ives, A. Krishnamurthy et al., “The
nebula future internet architecture,” in The Future Internet Assembly.
Springer, 2013, pp. 16–26.

[15] X. Zhang, H.-C. Hsiao, G. Hasker, H. Chan, A. Perrig, and D. G. An-
dersen, “SCION: Scalability, control, and isolation on next-generation
networks,” in IEEE Symposium on Security and Privacy, 2011, pp. 212–
227.

[16] D. Han, A. Anand, F. Dogar, B. Li, H. Lim, M. Machado, A. Mukun-
dan, W. Wu, A. Akella, D. G. Andersen, J. W. Byers, S. Seshan, and
P. Steenkiste, “XIA: Efficient support for evolvable internetworking,” in
Proc. 9th USENIX NSDI, San Jose, CA, Apr. 2012.

[17] C. Estan, “Internet traffic measurement: What’s going on in my net-
work?” Ph.D. dissertation, University of California, San Diego, 2003.

[18] J. Misra and D. Gries, “Finding repeated elements,” Science of Com-
puter Programming, vol. 2, no. 2, pp. 143–152, 1982.

[19] E. D. Demaine, A. López-Ortiz, and J. I. Munro, “Frequency estimation
of internet packet streams with limited space,” in Proceedings of
ESA, 2002. [Online]. Available: http://www.springerlink.com/index/
0MJ1EXMY9L9MCQAD.pdf

105

[20] R. M. Karp, S. Shenker, and C. H. Papadimitriou, “A simple algorithm
for finding frequent elements in streams and bags,” ACM Transactions
on Database Systems, vol. 28, no. 1, pp. 51–55, 2003. [Online].
Available: http://portal.acm.org/citation.cfm?doid=762471.762473

[21] G. Manku and R. Motwani, “Approximate frequency counts over
data streams,” in Proceedings of VLDB, 2002. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1287400

[22] A. Metwally, D. Agrawal, and A. El Abbadi, “Efficient computation
of frequent and top-k elements in data streams,” in Proceedings of
ICDT, 2005. [Online]. Available: http://www.springerlink.com/index/
TP581QC7AX7EQGT3.pdf

[23] M. Fang and N. Shivakumar, “Computing iceberg queries ef-
ficiently,” in Proceedings of VLDB, 1999. [Online]. Available:
http://ilpubs.stanford.edu:8090/423/

[24] G. Cormode and S. Muthukrishnan, “An improved data stream
summary: The count-min sketch and its applications,” Journal of
Algorithms, vol. 55, no. 1, pp. 58–75, 2005. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0196677403001913

[25] L. Golab, D. DeHaan, E. D. Demaine, A. López-Ortiz, and J. I.
Munro, “Identifying frequent items in sliding windows over on-line
packet streams,” in Proceedings of ACM IMC, 2003. [Online]. Available:
http://dl.acm.org/citation.cfm?id=948227

[26] A. Arasu and G. S. Manku, “Approximate counts and quantiles
over sliding windows,” in Proceedings of ACM PODS, 2004. [Online].
Available: http://portal.acm.org/citation.cfm?doid=1055558.1055598

[27] L. Lee and H. Ting, “A simpler and more efficient deterministic scheme
for finding frequent items over sliding windows,” in Proceedings of ACM
PODS, 2006. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1142393

[28] G. Cormode and M. Hadjieleftheriou, “Finding frequent items in
data streams,” Proc. VLDB Endow., vol. 1, no. 2, pp. 1530–
1541, 2008. [Online]. Available: http://www.springerlink.com/index/
T17NHD9HWWRY909P.pdf

[29] B. Boyer and J. Moore, “A fast majority vote algorithm,” Technical
Report ICSCA-CMP-32, Institute for Computer Science, University of
Texas, Tech. Rep., 1981.

106

[30] M. Fischer and S. Salzberg, “Finding a majority among n votes: Solution
to problem 81-5,” Journal of Algorithms - JAL, vol. 3, no. 4, pp. 362–
380, 1982.

[31] B. Claise, “Cisco systems NetFlow services export version 9,”
RFC 3954 (Informational), Oct. 2004. [Online]. Available: http:
//www.ietf.org/rfc/rfc3954.txt

[32] A. Metwally, D. Agrawal, and A. El Abbadi, “Efficient computation of
frequent and top-k elements in data streams,” in International Confer-
ence on Database Theory. Springer, 2005, pp. 398–412.

[33] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, “Heavy-hitter detection entirely in the data plane,” in Pro-
ceedings of the Symposium on SDN Research. ACM, 2017, pp. 164–176.

[34] D. Tong and V. Prasanna, “High throughput sketch based online heavy
hitter detection on FPGA,” ACM SIGARCH Computer Architecture
News, vol. 43, no. 4, pp. 70–75, 2016.

[35] M. Chen, S. Chen, and Z. Cai, “Counter tree: A scalable counter archi-
tecture for per-flow traffic measurement,” IEEE/ACM Transactions on
Networking, 2016.

[36] Q. Xiao, S. Chen, M. Chen, and Y. Ling, “Hyper-compact virtual esti-
mators for big network data based on register sharing,” in ACM SIG-
METRICS Performance Evaluation Review, vol. 43, no. 1. ACM, 2015,
pp. 417–428.

[37] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
sketch to rule them all: Rethinking network flow monitoring with Uni-
vMon,” in ACM SIGCOMM, 2016.

[38] J. Turner, “New directions in communications (or which way to the
information age?),” IEEE Communications Magazine, vol. 24, pp. 8–15,
1986.

[39] I. Stoica, S. Shenker, and H. Zhang, “Core-stateless fair queueing:
A scalable architecture to approximate fair bandwidth allocations
in high-speed networks,” IEEE/ACM Transactions on Networking,
vol. 11, no. 1, pp. 33–46, Feb. 2003. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1180544

[40] S. Machiraju, M. Seshadri, and I. Stoica, “A scalable and robust solution
for bandwidth allocation,” in Tenth IEEE International Workshop on
Quality of Service, 2002, pp. 148–157.

107

[41] A. Kuzmanovic and E. Knightly, “Low-rate TCP-targeted denial of
service attacks and counter strategies,” IEEE/ACM Transactions on
Networking, vol. 14, no. 4, pp. 683–696, 2006. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1677591

[42] S. A. Crosby and D. S. Wallach, “Denial of service via algorithmic
complexity attacks,” in Proceedings of USENIX Security, 2003.
[Online]. Available: http://static.usenix.org/event/sec03/tech/full\
papers/home/staff/alex/export/twycross/crosby/crosby\ html/

[43] M. Guirguis, A. Bestavros, and I. Matta, “Exploiting the transients
of adaptation for RoQ attacks on internet resources,” in Proceedings
of IEEE ICNP, 2004. [Online]. Available: http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=1348109

[44] A. Dainotti, A. Pescapè, P. Salvo Rossi, F. Palmieri, and G. Ventre, “In-
ternet traffic modeling by means of hidden Markov models,” Computer
Networks (Elsevier), vol. 52, pp. 2645–2662, 2008.

[45] A. Dainotti, A. Pescapè, and G. Ventre, “A cascade architecture for DoS
attacks detection based on the wavelet transform,” Journal of Computer
Security, vol. 17, no. 6/2009, pp. 945–968, 2009.

[46] “Traces 1 of TCP port 80 traffic traces from Federico II.” [Online].
Available: http://traffic.comics.unina.it/Traces/ttraces.php

[47] “The CAIDA UCSD anonymized internet traces 2012 - 1220.”
[Online]. Available: http://www.caida.org/data/passive/passive 2012
dataset.xml

[48] H. Wu, H.-C. Hsiao, and Y.-C. Yu, “Efficient large flow detection over
arbitrary windows: An algorithm exact outside an ambiguity region,”
Technical Report CMU-CyLab-14-006, CyLab, Carnegie Mellon Univer-
sity, Tech. Rep., 2014.

[49] A. Kuzmanovic and E. Knightly, “Low-rate TCP-targeted denial
of service attacks: The shrew vs. the mice and elephants,”
in Proceedings of ACM SIGCOMM, 2003. [Online]. Available:
http://dl.acm.org/citation.cfm?id=863966 pp. 75–86.

[50] E. C. Milner and R. Rado, “The pigeon-hole principle for ordinal num-
bers,” Proceedings of the London Mathematical Society, vol. 3, no. 1, pp.
750–768, 1965.

[51] R. Pagh and F. F. Rodler, “Cuckoo hashing,” in European Symposium
on Algorithms. Springer, 2001, pp. 121–133.

108

[52] M. Mitzenmacher, “Some open questions related to cuckoo hashing,” in
European Symposium on Algorithms. Springer, 2009, pp. 1–10.

[53] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT Press Cambridge, 1998, vol. 1, no. 1.

[54] H. B. Demuth, M. H. Beale, O. De Jess, and M. T. Hagan, Neural
Network Design. Martin Hagan, 2014.

[55] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural net-
works.” in Aistats, vol. 15, no. 106, 2011, p. 275.

[56] P. F. Verhulst, “Recherches mathématiques sur la loi d’accroissement de
la population.” Nouveaux mémoires de l’académie royale des sciences et
belles-lettres de Bruxelles, vol. 18, pp. 14–54, 1845.

[57] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[58] P. Y. Simard, D. Steinkraus, J. C. Platt et al., “Best practices for con-
volutional neural networks applied to visual document analysis.” in IC-
DAR, vol. 3. Citeseer, 2003, pp. 958–962.

[59] P. Berenbrink, T. Friedetzky, Z. Hu, and R. Martin, “On weighted balls-
into-bins games,” Theoretical Computer Science, vol. 409, no. 3, pp.
511–520, 2008.

[60] M. Raab and A. Steger, “‘Balls into bins’ - A simple and tight analy-
sis,” in International Workshop on Randomization and Approximation
Techniques in Computer Science. Springer, 1998, pp. 159–170.

[61] A. C. Cameron and P. K. Trivedi, Regression Analysis of Count Data.
Cambridge University Press, 2013, vol. 53.

[62] K. P. Choi, “On the medians of gamma distributions and an equation
of Ramanujan,” Proceedings of the American Mathematical Society, vol.
121, no. 1, pp. 245–251, 1994.

[63] E. W. Weisstein, “Pearson’s skewness coefficients.” From MathWorld–
A Wolfram Web Resource, 2017. [Online]. Available: http://
mathworld.wolfram.com/PearsonsSkewnessCoefficients.html

[64] E. W. Weisstein, “Poisson distribution.” From MathWorld–
A Wolfram Web Resource, 2017. [Online]. Available: http:
//mathworld.wolfram.com/PoissonDistribution.html

109

