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ABSTRACT 
 

 

Proteins are subject to a variety of stresses in biological organisms, including pressure and 

temperature, which are the easiest stresses to simulate by molecular dynamics simulations. The 

thesis will focus on discussing the effect of pressure and thermal stress on proteins including 

some of the fast-folding model proteins, who’s in vitro folding can be fully simulated on 

computers and compared directly with experiments. Pressure and temperature are prototypical 

perturbations that illustrate how close many proteins are to instability, a property that cells can 

exploit to control protein function. I will conclude with some recent in-cell experiments, and 

progress being made in measuring protein stability and function inside live cells under high 

pressure conditions.  

In chapters 2 and 3, fast-folding WW domains were studied (best-characterized systems for 

comparing experiments with simulations) by T-jump relaxation in conjunction with protein 

engineering. Chapter 1 is a comprehensive data set of mutational Φ-values (ΦM) as indicators 

for folding transition-state structure of 65 side chain, 7 backbone hydrogen bond, and 6 deletion 

and /or insertion mutants within loop 1 of the 34-residue hPin1 WW domain. We probed the 

robustness of the two hydrophobic clusters in the folding transition state, and discussed how 

local backbone disorder in the native-state can lead to non-classical ΦM‐values (ΦM > 1) in the 

rate-determining loop 1 substructure, and conclusively identify mutations and positions along 

the sequence that perturb the folding mechanism from loop 1-limited toward loop 2-limited 

folding. In chapter 2 we mutated the FBP 28 WW domain (formin-binding protein;  Leu26 by 

Asp26 or Trp26) to alter the folding scenario from three-state folding toward two-state or 

downhill folding at temperatures below the melting point of the protein. The investigation was 

conducted using a combination of simulations over a broad temperature range with 

experimental temperature-jump data. Chapter 4 is focused on how attaching fluorescent protein 

tags to a host protein in vitro has a large non-additive effect on its folding free energy. We 

compared an unlabeled, three singly-labeled, and a doubly-labeled enzyme PGK 

(phosphoglycerate kinase). Two mechanisms for non-additivity were proposed. In the “quinary 

interaction” mechanism, two tags interact transiently with one another, relieving the host protein 

from unfavorable tag–protein interactions. In the “crowding” mechanism, adding two tags 

provides the minimal crowding necessary to overcome destabilizing interactions of individual 

tags with the host protein. Both of these mechanisms affect protein stability in cells; they must 
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also be considered for tagged proteins used for reference in vitro. In Chapter 5 we showed that 

the protein unfolding/refolding reaction can be driven by a periodic thermal excitation above 

the reaction threshold. We were also able to speed up the reaction from an undetectable to a 

detectable rate by the addition of artificial thermal noise. A maximum in the recovered signal 

as a function of thermal noise was seen, a stochastic resonance. The study alluded that correlated 

noise is a physically and chemically plausible mechanism by which cells could modulate 

biomolecular dynamics during threshold processes such as signaling. Chapter 6 explores folding 

competing with misfolding or aggregation on the μs time scale using tethered WW domains. 

Tethered protein construct was engineered by linking two or more copies of the fast folding 

Fip35 WW domain with a flexible linker. We observed that adding more monomer units led to 

thermodynamic destabilization and slower folding rates, along with an abrupt onset of protein-

protein interaction. Kinetics were determined by performing ultrafast laser temperature jump 

experiments at different temperatures and denaturant concentration. A simple multimeric 

network model is also proposed for globally fitting the thermodynamics and kinetics data. In 

the final chapter 7 of this thesis folding of an enzyme phosphoglycerate kinase (PGK) was 

studied under high pressure stress in different bacterial cytoplasm. The motivation was to 

understand how cell is capable of modulating the stability of its proteome when subjected to 

external stress especially high hydrostatic pressure. The thermodynamic stability of PGK was 

measured in two different strains Wildtype MG1655 and known pressure resistant J1 strain. 

These results were compared to in vitro experiments to reveal that cellular environment has an 

overall stabilizing effect on the protein thermodynamic stability but different cellular cytoplasm 

doesn’t affect the stability of PGK significantly. 
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CHAPTER 1 

Introduction 
 

 

Protein folding produces much of the cell’s signaling, structural and catalytic machinery. 

It happens first upon ribosomal synthesis [1], often with membrane insertion via the translocon 

[2] [3], but also later on in the cell: One of the most important things learned from in vitro 

folding experiments is that even cytosolic globular proteins have fairly small folding 

equilibrium constants. Therefore proteins will unfold and refold many times during their life 

cycle [4]. With the exception of a few extraordinarily stable proteins [5], relatively low stability 

goes hand in hand with the flexibility required for protein function. Some proteins even remain 

unstructured after translation and fold upon binding to specific targets [6] [7]. 

In vitro studies also taught us that folding is a very fast chemical reaction (microseconds to 

hours at room temperature). Its free energy barriers G† must be quite small, in some cases on 

the order of the thermal energy kBT [8] [9]. Thanks to small folding free energies and small 

activation barriers, one might expect that the complex solvation environment of the cell can 

control protein stability and kinetics, and indeed it can [10]. In addition, a network of 

chaperones can hold misfolded proteins, direct them towards degradation pathways, or unfold 

them, giving proteins inside cells another chance to fold autonomously, as most proteins do in 

vitro at low concentration when aggregation is unlikely [11] [12]. 

The plausibility of in vivo effects on folding is apparent from in vitro studies: slight 

temperature changes, addition of small molecules, or crowding by large molecules can shift 

protein equilibria between unfolded and folded ensembles [13]. Such shifts are often 

“cooperative,” by which we mean that they occur over a narrow range of conditions [14]. While 

the cell modulates the folding free energy landscape, it does not appear to fundamentally alter 

the way proteins are observed to fold in vitro [15]. 

 

This chapter is partially adapted from Gruebele, M.; Dave,K.; Sukenik, S. Globular protein folding in vitro 

and in vivo. Annual Review of Biophysics. Annual Reviews, 2016 
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True understanding requires that one should be able to put something back together again 

after taking it apart. Protein scientists have gone through this process in a variety of ways. 

Although de novo design of active proteins is still not routine, much progress has been made 

in that field [16] [17]. Likewise model building has gone well. On the “energetic” side, the 

energy landscape model has explained many of the general [9] [18] and specific [19] features 

of folding. On the “structural” side, models have advanced from beads on lattices [20] to all-

atom simulations based on empirical force fields [21] [22] [23]. The last 10 years have seen a 

remarkable confluence of protein (un)folding experiments, protein design, protein landscape 

models, and simulations of folding. The state-of-the-art is proteins of ≈100 residues, folding 

faster than a few milliseconds if a direct comparison of simulations and experiments is to be 

made [24]. Most domains of larger proteins are <150 amino acids long, and such domains 

usually fold relatively independently from one another [13]. We are thus not far off from the 

holy grail where folds can be reliably computed, just as the structure of small organic molecules 

can be computed readily with quantum chemistry packages [25]. 

Many interesting problems remain to be solved. While computation can predict the fold of 

some small proteins, it is not yet clear how accurate the predicted mechanisms are. This is 

partly the fault of experiments, which have difficulty providing structural information on the 

time scale of the actual reaction (barrier crossing) events. An important question is “How 

detailed do we really need to be to have useful predictions?” While folding reactions can be 

described adequately by simple mechanisms along one or two reaction coordinates [26], 

considerable complexity lurks below this apparent simplicity (Fig. 1) [27] [28]. In particular, 

the unfolded ensemble has more structure and interesting dynamics than it is often given credit 

for [29] [30]. And of course there is the question of how cells productively fine-tune the energy 

landscape of their proteins to enhance survival [31]. Finally, other interesting problem such as 

the effect of applied force on energy landscapes [32], or misfolding and amyloids [33] will 

only be discussed briefly. 
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Fig. 1.1: Folding simplicity and complexity: the structural and energetic view. (A) In the most 

coarse-grained structural picture, only two macrostates (“unfolded,” top, “folded,” bottom) 

play a role. The black arrow indicates interconversion through a transition state (whose 

probabilities of folding and unfolding are pF=pU=0.5).  More detailed analysis reveals sub-

states of folded [34],unfolded, and transitional ensembles, each containing many microstates. 

A rich kinetic network occasionally includes parallel paths (if their free energies are within a 

few kT, so one is not favored over the other). (B) In the most coarse-grained energetic picture, 

the free energy G(x) has unfolded and folded minima along just one coordinate x, and the 

folding enthalpy of a protein is well-funneled as a function of the polypeptide configurational 

entropy. The lower energy native state has lower configurational entropy and lower enthalpy. 

(C) For slow folders, the “molecular time” τm≈0.1-1 µs during which transition between states 

occurs is well-separated from the “dwell time” within states, τa. For fast folders, or proteins 

with many folding intermediates covering a wide range of barriers, the time scales overlap. (D) 

Simplified WW domain kinetic network, showing an actual calculated example of the less 

coarse-grained picture in (b) [28]. 
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1.1  In Vitro protein folding  

 

1.1.1  Structural and energetic models for folding 

 

Perhaps the most basic model used to understand protein folding is the hydrophobic-

hydrophilic (HP) residue model [35]. The HP model accounts for hydrophobicity as the major 

driving force to make compact, de-solvated structures [36] [35] [37], while also allowing local 

secondary structure formation. Hydrophobicity has been reviewed extensively [38] [39], and 

while not purely an entropic effect, water molecules avoiding ordered interaction with 

sidechains buried in the protein’s core plays an important role. Several key ideas emerged from 

such simple models: Certain sequences are more likely to avoid kinetic traps and produce 

robust folded states that are rapidly accessible from unfolded conformations. Even though no 

solvent is included explicitly in HP models, hydrophobicity highlights that “the solvent folds, 

too” when a protein folds. Although two-amino acid alphabets do not fold proteins in practice, 

alphabets with as few as five residues have been successful [40] and disordered proteins also 

have reduced alphabets [41]. Of course, a larger alphabet of 20 different amino acid residues 

still leads to better-packed structures that are more fine-tuned by evolution for function [42]. 

For a more detailed discussion of theoretical protein models, see the review in this volume by 

Schuler. 

Ideas such as local secondary structure formation or hydrophobicity involve a successive 

reduction of the search space as the search for the native state goes on. For example, 

hydrophobicity partitions residues into “more likely inside” and “more likely outside.” Go 

realized that proteins are evolved to have consistent interactions [43], while Frauenfelder 

proposed hierarchical energy landscapes of native proteins [34]. Such concepts led to a 

quantitative energy landscape theory of folding [9] [35]. In energy landscape theory, the 

Levinthal paradox [44] is overcome because enthalpy loss and entropy loss SC are 

correlated as a protein folds, and such enthalpy-entropy compensation [45] overcomes 

unavoidable enthalpic “noise.” The correlation (funnel shape of H as a function of SC in Fig. 

1b) explains why proteins fold over low free energy barriers [8]. The noise in the enthalpy 

funnel explains traps and intermediates when folding is not perfectly streamlined, or frustrated, 

in analogy to terminology used in dynamics of glasses. The funneled function H (SC) should 

not be confused with the free energy G(x) =H-TS as a function of reaction progress 

coordinate x (illustrated for several cases in Fig. 2). Although the funnel is downhill in 
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enthalpy, the free energy is not necessarily downhill because H and –TS may not compensate 

for all values of x. 

As computational power has grown, increasingly realistic computer models of folding have 

become possible [22] [24]. Even downhill folders spend about a microsecond to get to the 

native state [47] [48], so the major hurdle in computational modeling is the time needed to 

sample the conformational space before interesting events happen. Coarse graining is a 

powerful approach that dramatically decreases the computational demands of protein 

simulations [49] [50]. In a coarse grained model, clusters of atoms are modeled as a unit, 

interacting via an appropriately averaged force field. In parallel, implicit solvent models greatly 

reduced the number of atoms tracked in classical molecular dynamics simulations, and yielded 

interesting folding behavior such as a dominant but parallel pathway [51]. The development of 

parallel simulation methods greatly improved sampling. Many parallel calculations can be 

sampled in search of a few successful folding events for comparison with experiment [52]. 

Independent calculations can be stitched together (Markov state models) to reveal short-lived 

or long-lived microstates [53]. Replicas can exchange between simulations to provide rapid 

thermodynamic sampling [54] [55]. For example, replica exchange has computationally 

revealed “downhill” free energy surfaces for folding [56]. Recently advances in computational 

power have made possible all-atom single-trajectory protein folding simulations, in which a 

single protein unfolds and refolds many times in equilibrium [24]. As with experiments, the 

greatest challenge of simulations is to find the most informative reaction coordinates [57] [58] 

[59]. 

 

1.1.2  Fast folding proteins unite experiment and computation 

 

Some small protein domains fold/unfold in microseconds between just two macrostates 

(illustrated in Fig. 1.2 A), or even downhill (Fig. 1.2 B). Of course disulfide bridges [60] [61], 

proline isomers [62], many types of intermediates [63], and domain interactions [64] can 

complicate the picture in general. Yet small, fast folders reveal the minimal requirements for 

folding, and currently form the best link between experiment, theory and simulation [59]. Fig. 

1.2 A illustrates the free-energy landscape two-state folding, with all highly populated 

conformations belonging to either the folded or the unfolded ensemble. These ensembles are 

in local free energy landscape minima, separated by a barrier that needs to be crossed to 

transition between them. Experimentally, one hallmark of two-state folding is obtaining the 
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same melting temperature (Tm,) via (sometimes different) spectroscopic measurement 

techniques that probe different parts of the energy landscape [65] [66].  

Such behavior breaks down when intermediates are populated during the course of the 

folding [67] [68] [48], or in the scenario of downhill folding Fig. 1.2 B [69]. Downhill folding 

was predicted by energy landscape theory in the special case where decreasing enthalpy and 

entropy compensated throughout the whole reaction [70] [71]. In addition to the 

thermodynamic observation of downhill folding [72], the gradual breakdown of timescale 

separation as downhill folding is approached (Fig. 1.1 D) has also been seen kinetically [73] 

[48]. Depending on initial conditions and protein stability modified by mutations, proteins can 

switch from downhill folding at low temperatures to two-state folding at temperatures close to 

Tm [74] [75], or from downhill folding to folding via intermediates [76]. Two-state and 

downhill mechanisms are not common in large or multi-domain globular proteins, where the 

“noise” in the funnel (Fig. 1.1 C, and 1.2 D) is larger, and traps or intermediates occur in the 

free energy landscape [77]. 

 

Fig. 1.2: Free-energy landscapes of protein folding highlight several scenarios. A) Scenario of 

two state folding with well-defined native (labelled N) and unfolded (labelled U) well separated 

by a barrier. Axes illustrate the two folding reaction coordinates (x1 and x2) and folding free 

energy (G). B) Downhill folding portrayed as native and unfolded well separated by a low lying 

barrier (~ <3 kT). C) The scenario of a free-energy trap (labelled T) is added to the two-state 

scenario. D) The concept of multiple folding pathways available to the protein in case of change 

in environmental conditions or mutations is shown by the presence of various minima ending 

up in the native state of the protein. (See also the review in this volume by Barrick describing 

experimental realization of such landscapes.) 
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1.1.3  Friction and the speed limit of folding 

 

The scenario of downhill folding represents a case without kinetic barriers, when folding 

occurs at the “speed limit” [78]. How fast can such proteins actually fold? The lack of a barrier 

between macrostates means that the rate of folding is limited by polypeptide chain diffusion 

and solvent friction [79] [80]. Note that a process described as diffusion in a coarse-grained 

coordinate system can still involve many crossings over small barriers. For example, an 

individual backbone dihedral angle rotation occurs over a small barrier, but when many 

Ramachandran angles [81] are coarse grained into a few slower reaction coordinates, the fast 

motions can be treated as a friction-dependent prefactor in the Arrhenius equation kf ~ † e-

G†/kT [13]. Here † is the Arrhenius prefactor, G† is the activation free energy, and kf is the 

rate coefficient of the forward reaction. The exact scaling of the prefactor is still under debate 

[82] [83] [84]. 

Measurements on cytochrome c chain diffusion [84] [85] estimated a minimum time around 

~1 µs for the polypeptide chain to collapse. Secondary structure (helices, beta sheets) can form 

on a similar time scale [86] [87] [88]. Studies using triplet energy transfer [83] have quantified 

chain length, location and composition dependence for contact formation, ranging from 10-100 

ns. Correspondingly large speed gains have been achieved for small proteins. An example of a 

protein mutated almost to the speed limit is the GTT variant of a WW domain [89], which was 

suggested by analysis of a long molecular dynamics trajectory. Another illustration is the three 

helix bundle prb7-53, in which the wild-type protein is mutated, replacing charged with 

hydrophobic residues. These computationally designed mutations again pushed folding down 

to 1 μs [90], close to the theoretical limit. 
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1.1.4  Trade-off: folding vs. function 

 

Globular proteins must attain a well-defined native structure in order to perform the 

requisite biological functions under specific environmental conditions (pH, temperature, 

solvent, salts). Even many disordered proteins fold upon binding [91] [92]. The fast folders 

previously discussed show that evolution for function is an important factor that leads to 

frustrated folding. For example, when loop 1 of Pin1 WW Domain was truncated to speed up 

folding, the mutant lost the ability to bind to a phosphorylated target protein that is bound with 

high affinity [93]. When the beta-bulge of interleukin-1β is replaced by a faster-folding β turn, 

protein function is again inhibited [94]. Mutations that speed up folding, making shorter loops, 

more stable helices, or more hydrophobic cores are likely to eliminate charged residues needed 

for enzymatic function, loops needed for binding, or reduce flexibility needed for docking or 

substrate diffusion. 

The possible explanation is that stabilizing mutations make the native structure too rigid 

compared to the wild-type, restricting it from sampling other conformational states which 

facilitate its binding. Low stability can even enhance function: According to the fly-casting 

mechanism [7], the unfolded form of the protein binds weakly at large distances and folding 

and binding then go hand-in-hand. Functional proteins are an outcome of co-evolution between 

the need to fold and the need to perform function [4]. 

 

1.1.5 The diversity of folding pathways 

 

There has been a long-standing discussion as to what extent proteins fold through sequential 

intermediates or parallel pathways; downhill or over obligatory barriers; with or without traps 

[95] [96] [97] [98] The answer is: all of the above! In vitro experiments, theory, and 

computation all agree that proteins have very shallow free energy landscapes. Depths of valleys 

and heights of saddle points (barriers) are measured in 10s of kJ/mole, not 100s kJ/mole as for 

chemical bond-making reactions. On such reaction surfaces, if their dimensionality is low but 

not necessarily equal to 1, many scenarios are possible. Nonetheless, a given mutant under a 

given solvent condition will almost always fold via a dominant pathway. In a typical 

experiment with a signal-to-noise ratio of 50:1, any additional pathways more than kTln(50) ≈ 

4kT up in energy will simply be invisible. In simulations, such events will be rare and also hard 
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to detect unless many folding/unfolding transitions can be sampled. For this reason, we have 

coined the phrase “apparent X-folder,” where X is the mechanism of choice. Monitoring more 

reaction coordinates (see review by Englander and Marqusee in this issue describing the 

monitoring of multiple reaction coordinates using NMR hydrogen exchange), going to higher 

free energy, or perturbing the system (e.g. temperature, pressure, solution conditions) will 

always reveal new paths and mechanisms [99] [100] [101] [102] [75].  

One case where alternative folding pathways become visible is for multi-repeat proteins. 

Evidence of parallel folding pathways has been seen by comparing rates for symmetric 

consensus repeat proteins (CARPs). Folding domains in parallel speeds up overall folding 

[103].   The increase in folding rates with the chain length of the repeat protein stands in 

contrast to what is seen for globular proteins, and is clear evidence of parallel folding. Perhaps 

not surprisingly, gene duplication is a key bootstrap for protein evolution.  

Are these alternative paths important in general? This question deserves further 

investigation. Structure is more robust than mechanism, which is why structure prediction is 

easier than mechanism prediction [104]. However, the very process of evolution that stabilizes 

native states vs. higher energy states while maximizing function may be the reason for 

alternative mechanisms and parallel paths. Evolution requires a certain flexibility, and digging 

too deep a funnel may reduce the evolvability of sequences [4]. Appearance of new function 

upon mutation must eventually go hand-in-hand with a different folding mechanism and 

alternative folding pathways. 

 

1.2 Protein folding in-cell 

 

To facilitate proper function, a cell must maintain an internal balance of metabolic, 

regulation, and transcriptional pathways. In addition, the cell must be able to maintain 

homeostasis in a changing environment. This is possible thanks to a complex network of 

regulation, which is carried out primarily by proteins in response to internal and external 

signals. To this end, cells use a range of strategies to deal with deleterious environmental 

conditions – from the synthesis of specialized protein machines that ensure proper folding or 

proteolysis of misfolded proteins [105], to the uptake or synthesis of stabilizing osmolytes, 

discussed in the previous section [106]. Importantly, many factors in the cell, as well as in the 

cell’s environment, will have dramatic effects on protein folding, as illustrated in Fig. 1.3. 
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Macromolecules are estimated to take up roughly 0.3-0.5 g per mL of cellular solution 

[107]. Water content is roughly 70% of total cell mass [108]. Proteins thus take up roughly half 

of the dry weight of the cell. DNA and lipids take up about a third of the same dry mass, and 

10-15% belong to other molecules, mostly low molecular mass species. The small percentage 

by mass of small molecules is deceptive because these molecules can exist at molar cellular 

concentrations.  

 

 

Fig. 1.3: Variations to protein folding in the cell. The different panels illustrate processes and 

effects that occur within a living cell, and affect protein function as well as folding stability 

and kinetics. Panels on the left depict cellular processes that affect folding, while panels on the 

right show protein reactions that occur in the cell, and also affect the protein’s folding 

equilibrium. 
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As we zoom in to the local environment of a protein, surrounding solution components can 

vary dramatically due to cytoskeletal and organelle-induced local environments. Taken 

together, proteins are surrounded by a staggeringly complex cellular environment [109]. In an 

average mammalian cell, roughly 4 nm of water separate two proteins. This distance also 

contains other cosolutes, including electrolytes and metabolites. Since a single hydration layer 

is of the order of the diameter of a water molecule, 4 nm contain ~ 20 such layers – an 

exceedingly small number compared to many in vitro experiments. Water dynamics in those 

layers is modified by proteins anywhere from 0.2-2 nm from the protein surface, depending on 

the molecular property being examined [110] [111]. 

Many processes in the cell occur concomitantly with cellular shape change [112]. These 

include the obvious cell cycle changes which cause dramatic changes in cell composition and 

shape [113], but other processes, such as migration, also cause cellular shape change [114]. 

Such changes trickle down to local solution composition. In terms of kinetics, thermodynamic 

stability, and protein structure, these changes need not be dramatic to have an effect. As we 

saw in the previous section, a few kT suffice because many important proteins in the cell 

(including, IDPs [6] and transcription factors such as p53 [115] ) are only marginally stable, 

and because kinetic barriers for folding are small. Hence, changes to local solvent composition 

can have a very real effect on cellular function, in both normal and stress conditions.  

 

1.2.1 Cellular effects on protein folding and interactions 

 

How does folding happen in the cell? To a first approximation, as in vitro. There are still 

cooperative folding curves [116], and similar kinetics [117] But to understand how a cell 

modulates folding, it may be a useful exercise to adopt the “view point” of a protein diffusing 

in the cytoplasm. Surrounding the protein, are perturbed layers of water, interspersed with 

abundant dissolved ions, metabolites, sugars, signaling molecules, and short nucleic acids. 

Potassium, for example, exist in concentrations of ~ 140 µM in the cytoplasm, making these 

very abundant in the cellular environment. At a distance roughly 10 water layers away, we have 

larger biomolecules such as other proteins, at a high abundance. In this crowded environment, 

a protein must remain relatively inert to most solution components. Indeed, bioinformatics 

studies show a tendency for proteins to use less reactive amino-acids to coat their surface in 
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the native conformation [118]. Evolution for specific interactions (e.g. signaling) must also 

evolve against the many non-specific interactions that compete with a protein’s interactome. 

The stability of the folded state of a protein in a mammalian cell milieu varies widely [119] 

120] [121]. At the lower end of this stability range (~8 kJ/mol), over 5% of that protein’s 

population at any given time is unfolded, and subjected to misfolding that occur during folding. 

This goes on for the lifetime of the protein, estimated to be between half an hour to several 

days [71], until it is sent to degradation. Cells had to develop complex machinery to monitor 

initial folding [122] [123], fold unfolded proteins (e.g. hsp70 chaperones [124], and degrade 

misfolded proteins [125]. 

The regulatory pathways tied to this machinery, termed collectively the “unfolded protein 

response” (UPR), are able to detect protein misfolding stress, and act accordingly: slowing 

down or halting protein synthesis, increasing the specific synthesis of chaperone proteins, 

uptaking or synthesizing osmolytes. In extreme cases, the UPR can initiate apoptosis, the self-

destruction of the cell. Importantly, this machinery is not only initiated at times of duress, but 

also during protein synthesis, as the nascent chain emerges from the ribosome.[126] [127].  

 

1.2.2 Experimental techniques to monitor protein folding in-situ 

 

For decades, protein folding in the cell has been quantified using biochemical methods such 

as cross-linking and enzymatic digestion, followed by lysis and assaying. This type of 

methodology is invasive, low in resolution, and cannot observe proteins in their natural 

environment. Today, new techniques are emerging that enable minimally invasive observation 

inside cells of protein structure [121], of folding in real-time [128] and with sub-cellular 

resolution [119], of protein stability [129] and even of single protein molecules [130]. 

One of the first methods to answer in-cell protein folding questions is the use of live cell 

NMR [121]. While this technique is technically challenging due to the high concentrations of 

protein it requires, it has yielded interesting results ranging from gain of structure to decreased 

stability inside cells [131]. 

The explosion of fluorescence microscopy techniques has led to the most sensitive probes 

of protein dynamics in cells. Förster resonance energy transfer (FRET) [132] is utilized 

extensively today, from single-molecule protein folding experiments [133] [134] [135] to 
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measurements of protein folding in living cells [117] [129]. Robust and “red” probes that avoid 

auto fluorescence of the cell have enabled even single-molecule FRET in living cells 

[130].These studies, together with the development of new fluorescent probes [136] [137], 

reveal a protein folding environment in the cell that is far from homogeneous [128]. Folding 

thermodynamics and kinetics are affected not only by spatial localization [119], but also by 

temporal changes in cell cycle [113]. In addition, protein identity plays a major role in 

determining whether it is stabilized or destabilized in the cell [138] [120] [10].The picture that 

emerges from these studies is that of a complex, non-uniform, and dynamic system, where the 

solvent environment of a protein in the cell can control folding and activity. 

 

1.3 Summary and Outlook  

 

With a firm basis of in vitro and computational studies now established, folding science 

can focus on questions such as the effect of residual structure in unfolded states, and the effect 

of complex environments, including in the cell, on folding. The marginal stability of most 

proteins opens up control of folding in situ as a new area of study. The increased cross talk 

between protein science, computation and cell biology will lead to a better understanding of 

how folding, function and protein evolution are connected. 
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CHAPTER 2 
 

High-resolution mapping of the folding transition 

state of a WW domain 
 

 

WW domains are β sheet modular protein domains of 30-65 residues in length that 

modulate specific interactions with proline-rich protein ligands. WW domains have proven to 

be an excellent model for ultrafast folding experiments, for mechanistic experimental studies 

on the folding of a simple β sheet structure, and for benchmarking computational folding 

scenarios [1-3]. The best characterized natural WW domains to date are the hPin1 WW domain 

from human peptidyl-prolyl cis-trans isomerase Pin1 [3], and the FBP28 WW domain from 

formin-binding protein 28 [4], with limited data available for a third WW domain, the hYAP65 

WW domain from human Yes-Kinase associated kinase [5]. Mutational ΦM value analysis 

suggest that formation of loop 1 in WW domains is mostly rate limiting (ΦM values > 0.80) [6]. 

In FBP28 WW and hYap65 WW, the N-terminal loop 1 sequence folds into a 5-residue 

type-I G-bulge turn, the statistically preferred conformation among WW domains. The longer, 

intrinsically disordered 6-residue loop 1 in hPin1 WW appears to have been selected for 

function. Its unusual loop conformation (type II-turn intercalated in a 6-residue loop) may 

position the side chains of residues S16 and R17 for optimal ligand binding [7]. Replacing the 

hPin1 loop 1 with the turn of FBP28 WW to make the FiP WW domain increases stability by 

up to 7 kJ/mole and speeds up folding from ~ 80 μs to ~ 13 μs, but compromises function [7]. 

A similar frustration of folding by function has also been observed in other cases, such as 

frataxin [8]. For WW domains with their loop 1 substructure optimized for folding 

thermodynamics and kinetics, formation of loop 2 becomes competitive as the rate-limiting 

step for folding. Indeed, further optimization of the loop 2 sequence in FiP (FiP 

N30G/A31T/Q33T, FiP-GTT hereafter) produced a WW domain with a folding relaxation time 

of ~ 4 μs, approaching the speed limit for folding [9].  
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This chapter is adapted from K Dave, M Jäger, H Nguyen, JW Kelly, M Gruebele. High-Resolution Mapping of 

the Folding Transition State of a WW Domain. Journal of molecular biology, 2016 

 

 Here we report an in-depth study of temperature jump kinetics for 78 mutants of the hPin1 

WW domain (Table 2.1) that also includes data from two more limited, previous Φ value 

analyses [6, 7, 10, 11]. 45 mutants were amenable for ΦM value analysis, providing energetic 

constraints for structural mapping of the folding transition state of hPin1 WW. Multiple side 

chain substitutions at some key sequence positions (e.g. within the hydrophobic cores or loop 

2) allow us to calculate error-weighted average ΦM values that are more likely to be a robust 

representation of transition state vs. native state free energy changes than single (e.g. Ala) 

substitutions. We also identify substitutions that are not suitable for ΦM value analysis, and 

discuss the reasons. This approach has been used by Davidson and co-workers to investigate 

‘conservatism’ of substitutions at several sites of the SH3 domain [12]. Although wild type 

hPin1 WW and its variants fold more slowly than the redesigned loop 1 variant FiP, their 

folding rates are still in the microsecond range that is now within the reach of fast folding 

simulations. As computation of folding in the 50-500 μs range becomes feasible, we believe 

that the data presented in this study will prove to be a rich resource for detailed comparisons, 

providing constraints on mechanisms and rate changes deduced from molecular dynamics 

simulations, which are still debated in the literature [9, 13-15]. 

 

2.1 Methods 

 

2.1.1 Nomenclature 

 

Residues of the hPin1 WW domain are abbreviated by a single capital letter, followed by 

the number of the residue in the sequence (e.g. W11). Amino acids are also abbreviated using 

the standard three letter code (e.g. Trp for tryptophan). Classical side chain mutants are 

indicated by single letter code (e.g. W11F), with the first and second letters representing the 

wild type and replacing residue, respectively, and the number indicates the sequence position. 

Non-classical backbone hydrogen bond mutations are also designated by single letter code. The 

first letter represents the mutated residue, and the same letter in small capitals is used for the 

https://scholar.google.com/scholar?oi=bibs&cluster=14406751814085455149&btnI=1&hl=en
https://scholar.google.com/scholar?oi=bibs&cluster=14406751814085455149&btnI=1&hl=en
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replacing residue (e.g. S16s) to distinguish a non-classical amide-to-ester mutation from their 

classical counterparts.  

 

2.1.2 Protein expression and sample preparation 

  

The wild type hPin1 WW domain and mutants thereof with classical side chain mutations 

were prepared recombinantly, as described in detail in another publication [10]. hPin1 WW 

variants with amide-to-ester mutations were synthesized chemically, as described in detail in 

[16]. Protein identity and purity was ascertained by electrospray mass spectrometry, SDS-

PAGE, and reversed-phase HPLC chromatography. 

 

2.1.3 Experimental procedures 

 

Equilibrium unfolding of hPin1 WW was monitored by far-UV spectroscopy at 229 nm as 

described in detail in [10]. Unfolding transitions were analyzed by using a two-state model, 

where the folding free energy ∆Gf is expressed by a quadratic Taylor series approximation: 

∆Gf (T)=∆Gf
(1)(Tm).(T-Tm)+∆Gf

(2)(Tm).(T-Tm)2. The two coefficients ∆Gf
(i)(Tm), i=1…2, represent 

the temperature-dependent free energy of folding, and Tm is the nominal midpoint of thermal 

denaturation (∆Gf(Tm) = 0). The inclusion of the quadratic term was necessary to fit the data of 

most mutants within experimental uncertainty. For selected mutants, the transition was also 

analyzed by expressing ∆Gf(T) in terms of a constant heat capacity formula. As shown 

previously for the hYap65 WW domain, both procedures yield nearly identical results [31]. 

Laser temperature jumps around the protein’s melting temperature were measured for each 

mutant as described in detail elsewhere [44, 45]. Briefly, a 10 ns Nd:YAG pulse Raman-shifted 

in H2 heated the sample solution by ~ 5-10 °C, inducing kinetic relaxation of the WW domain 

to the new thermal equilibrium. 285 nm UV pulses, spaced 1 ns apart from a frequency-tripled, 

mode-locked titanium:sapphire laser, excited tryptophan fluorescence in the hPin1 WW 

domain. Fluorescence emission was digitized in 0.5 ns time steps by a miniature 

photomultiplier tube with a 0.9 ns full-width-half-maximum response time. The sequence of 

fluorescence decays f(t) was fitted within measurement uncertainty by the linear combination 

a1f1(t)+a2f2(t) of decays just before and 0.5 ms after the T-jump. The normalized fraction 

f(t)=a1/(a1+a2) from t≈2 μs to t=0.5 ms was fitted to a single exponential decay exp[-kobst] 
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where kobs=kf+ku. Thus the signal extraction and data analysis are consistently two-state. The 

observed relaxation rate coefficient was combined with the equilibrium constant Keq to compute 

the forward reaction rate coefficient kf=kobsKeq/(1+Keq). kf was measured for several 

temperatures (typically around 10) below and above Tm, and ∆Gf
†(T) was determined as a 

function of temperature using the relationship kf=A†.exp(-∆Gf
†(T)/RT) with the quadratic Taylor 

approximation ∆G†
f(T)=∆Gf

†(0)(Tm)+∆Gf
†(1)(Tm)(T-Tm)+∆Gf

†(2)(Tm)(T-Tm)2, as well as expansions 

about the temperature of maximal stability (T0), or the Gibbs-Helmholtz formula (see SI). The 

three coefficients ∆Gf
†(i), i=0…2, represent the temperature-dependent activation barrier. The 

frequency of activation A† was fixed at 500 ns-1, near the lower end of estimates of the folding 

speed limit [1], and the two coefficients ∆Gf
†(1)(Tm) and ∆Gf

†(2)(Tm) also incorporate some effects 

of temperature-dependent solvent friction. Because previous ΦM analyses utilized a faster ad 

hoc frequency of 50 ns-1, the ΦM values of published mutants are shifted by a small constant 

from the recalculated values of these mutants in this study. Least squares fitting was carried 

out using IGOR Pro (Wavemetrics). Protein visualization was rendered using Pymol and 

Weblab viewer software packages (Accelerys, San Diego) [46]. 

 

2.2 Results and Discussion 

 

After a brief review of hPin1 WW structure and native state interactions (Fig. 2.1, section 

1), we begin our discussion of the results in section 2 with the mutational phi-value (ΦM) 

analysis, focusing on which mutants are likely to be reliable reporters for transition state 

structure (Fig. 2.2). Next, a temperature-dependent phi-value (ΦT) analysis is used in section 

3 to identify mutations that perturb the folding mechanism and whose perturbing effect escapes 

detection by inspection of the mutational ΦM values only (Fig. 2.3). The consensus set of 39 

non-perturbing mutants with reliable ΦM values is employed in section 4 to analyze the 

transition state structure of hPin1 WW (Figs 2.4-2.7). Section 5 looks at various loop 1 insertion 

and deletion variants within the rate-limiting loop 1 substructure (Fig. 2.8). A hypothetical 

“hybrid” ΦM map for the ultrafast folding hPin1 WW variant FiP (Fig. 2.9) to benchmark recent 

molecular dynamics simulations concludes the paper.  
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2.2.1  Overview of hPin1 WW structure and native state interactions 

 

Two types of interactions help stabilize and specify the three-stranded β sheet structure of 

the hPin1 WW domain. The first type is mediated by the side chains of conserved hydrophobic 

residues that form two segregated hydrophobic clusters, one on each side of the β sheet (Fig. 

2.1a). The second type of interaction involves a network of 10 backbone-backbone and 4 

backbone-side chain hydrogen bonds (Fig. 2.1b). Hydrophobic cluster 1 is formed by the side 

chains of residues L7, P8, W11, Y24 and P37. The N-terminal Trp (W11 in hPin1 WW) and 

the C-terminal Pro (P37 in hPin1 WW) are absolutely conserved in WW domains. Mutation of 

residues W11, Y24 and P37 to Ala or Leu in hPin1 WW results in partially unfolded, or fully 

unfolded protein, even at low temperature (4° C) (Fig. 2.1c and [10]). As hydrophobic cluster 

1 does not contribute to ligand binding, these medium-long range side chain interactions appear 

to have evolved to maximize thermodynamic stability of hPin1 WW, rather than its biological 

function. Hydrophobic core 2 lies on the ligand-binding face of the three-stranded β sheet, and 

is formed by the side chains of residues R14, Y23 and F25 (Fig. 2.1a). These residues are only 

moderately conserved in WW domains, presumably because hydrophobic core 2 contributes to 

ligand binding. Ala mutations of residues 14, 23 and 25 in hPin1 WW, although severely 

destabilizing the native state (∆∆Gf ~ 9 kJ/mole) (Fig. 2.1c), allow folding into the native state 

structure under the most favorable folding conditions (4 °C). Using amide-to-ester 

mutagenesis, we showed that the degree of destabilization of the native state upon eliminating 

a backbone hydrogen bond is strongly context-dependent [16]. Hydrogen bonds near the two 

loop substructures are less influential than hydrogen bonds that are protected within a 

hydrophobic core. The side chain amino group of N26 (β strand 2) forms a hydrogen bond with 

the backbone carbonyl group of P9 and to the indole ring of W11, thus linking β strands 1 and 

2 of the three-stranded β sheet. Like the hydrophobic core 1 residues (W11, Y24 and P37 in 

hPin1 WW), the Asn in strand 2 (N26 in hPin1 WW) is highly conserved among WW domains 

and N26A or N26L mutations unfold hPin1 WW (Fig. 2.1c) [10]. 
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Fig. 2.1: Overview of hPin1 WW structure and native-state interactions. (a) Structural cartoon 

of the hPin1 WW fold, highlighting the two hydrophobic clusters (cores) that protrude from 

either side of the three-stranded β-sheet. The individual β-sheet are color coded blue, while the 

loop segments and the N- and C-terminal extensions are shown in gray. Side-chain contacts 

that constitute the hydrophobic clusters are shown as van der Waals surfaces. (b) Backbone 

representation of the three-stranded β-sheet region (residues W11–W34), highlighting the 10 

backbone hydrogen bonds that connect the three β-strands and stabilize the three-stranded β-

sheet topology. Hydrogen bonds that were perturbed by amine-to-ester mutations for ΦM 

analysis are labeled in red. Residues are labeled in single letter code and are numbered. (c) 

Quantitative analysis of a complete Ala scan, replacing each of the 33 non-Alanine residues 

individually with Ala. Destabilizations calculated at 55 °C range from near zero to ~ 9 kJ/mol 

and are mapped onto the backbone structure of the folded protein. Four Ala mutants (labeled 

black) were either completely or significantly unfolded, even at low temperature (4 °C). For 

these four mutants, ΔΔG must exceed 9 kJ/mol, but no accurate thermodynamic data can be 

derived in aqueous buffer without invoking stabilizing co-solvents. 

 

2.3 ΦM-value analysis  

 

The mutational ΦM value = ΔΔGf†/ ΔΔGf quantifies changes in the free energy of 

activation (ΔΔGf†) relative to the ground state free energy of folding (ΔΔGf) between wild 

type and mutant proteins [17, 18] Computational modeling of ΦM values is now possible for 

WW domains [14, 19], making direct comparisons with experiments achievable. To obtain 

accurate ΦM values that truly represent transition state energetics, one must design non-
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disruptive mutants that differ sufficiently in thermodynamic stability from the wild type 

reference protein [20-23], but are not so different that the folding landscape is substantially 

altered. A generally accepted strategy for ΦM value analysis is to use conservative hydrophobic 

deletion mutations (e.g. Ile/Leu  Val  Ala ; Thr  Ser; Phe  Leu  Ala). This strategy 

avoids mutants that increase side chain size or introduce new functional groups (i.e. Ser → Thr, 

Phe → Trp), as well as mutation of solvent-exposed charged residues with long-range 

electrostatic interactions and/or protein-solvent interactions (e.g. Glu → Ala, Tyr → Phe). 

Several of the mutations that we employed in our previous side chain ΦM analysis of hPin1 

WW [6] do not meet these requirements. This has been discussed in detail in the literature 

[22].One in four mutants studied here has a thermodynamic stability very close to wild type 

hPin1 WW (∆∆Gf < 1 kJ/mole, ∆Tm < 2.5 °C, with a typical error in Tm of 0.5 – 1 °C). These 

mutants were excluded from the ΦM analysis discussed herein. Their thermodynamic and 

kinetic data (Table 2.1) should nonetheless provide a valuable resource for benchmarking 

upcoming molecular dynamics simulations because most of these mutants fold on the 

microsecond to millisecond time scale, accessible to all atom explicit [24], implicit [14] and 

coarse grained simulations [25]. We calculated ΦM values at three representative temperatures 

(50 °C, 55 °C and 60 °C) (Table 2.1), where experimental data was available for almost all 

mutants without the need for error-prone extrapolation. For some of the more stable loop 1 

deletion variants, we only report ΦM values at 55 and/or 60 °C. 

 

2.3.1 Outliers in the analysis  

 

At 55 °C, the ΦM values of the mutants that potentially qualify for ΦM analysis (∆∆Gf < 

1 kJ/mole and ∆Tm < 2.5 °C) range from -0.20 (L7I) to 2.56 (S16A) (Fig. 2.2a, Fig. 2.2b, Table 

2.1). With the exception of some loop 1 mutants that only slightly destabilize the domain, there 

is no correlation between the magnitude of a ΦM value and the extent of destabilization (∆∆Gf 

in Fig. 2.2a and Fig. 2.2b). Except for mutants E12Q, I28A, and Y23F, the estimated error in 

Φm was less than 10 %. A surprisingly high fraction of mutants yield ΦM values that lie outside 

the classical range of ΦM values (in particular ΦM > 1). Almost all mutants with non-classical 

ΦM values map to the hydrophobic core 1 and loop 1 substructures in native hPin1 WW, 

pointing to the importance of these substructures for transition state energetics. Mutant L7I 

yields the only negative ΦM value, which is, however, not supported by the L7A and L7V 

mutations (Fig. 2.2a). Also the large ΦM value of V22A (β strand 2) can neither be cross-
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validated by ΦM values of immediate sequence neighbors (R21A/H, Y23L/A) nor by its cross-

strand neighbor (M15A, β strand 1). Finally, the ΦM value of Y23F is almost twice as high as 

the ΦM values of Y23L and Y23A that target the same residue (Fig. 2.2a). Y23F deletes a 

solvent-exposed hydroxyl-group that should not affect the side chain packing of hydrophobic 

core 1. Its unusual ΦM value most likely reports on changes in solvation, rather than packing 

of the core. Mutants L7I, V22A and Y23F were thus excluded from further analysis. 

 

 

Fig. 2.2: ΦM-Value analysis at 55 °C. (a) Plot of the ΦM-value versus the difference in free 

energy between wild type and mutant (ΔΔG, in kilojoules per mole) for β strand (filled red 

circles) and hydrophobic cluster 1 mutants (filled black circles). (b) Plot of the ΦM-value 

versus the difference in free energy between wild type and mutant (ΔΔG, in kilojoules per 

mole) of loop 1 (filled blue circles) and loop 2 mutants (filled green circles). Errors in ΦM that 

exceed the symbol size are shown explicitly. For clarity, individual ΦM-values are labeled with 

single letter code. 
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Table 2.1:  

Table 2.1: Thermodynamic and kinetic data for wild type hPin1 WW and mutants thereof 

Variant 
Tm 

(°C) 
∆Gf

(1) ∆Gf
(2) ∆G†(0) ∆G†(1) ∆G†(2) ΦM (50 °C)1 

ΦM (55 

°C)1 
ΦM (60 °C)1 Ref. 

1. Wildtype and single-site mutants 

wt hPin1 58.6 0.403 0.00272 14.92 0.206 0.00472 - - - [10] 

K6A 59.4 0.400 0.00153 11.16 0.166 0.00173 - - - [10] 

K6M 58.1 0.414  0.00180 11.76 0.215 0.00162 - - - N 3 

L7A 
37.8 0.301  0.00022 13.16 0.136 0.00192 0.23 (0.02) 0.27 

(0.02) 

0.31 (0.03) [6, 10] 

L7I 
49.3 0.318  0.00050 12.66 0.157 0.00141 -0.21 (0.04) -0.20 

(0.04) 

-0.26 (0.04) [10] 

L7V 
44.0 0.321  0.00041 13.56 0.176 0.00218 0.23 (0.02) 0.30 

(0.02) 

0.37 (0.02) [10] 

P8A 
47.4 0.361  0.00293 18.56 0.139 0.00237 1.29 (0.01) 1.27 

(0.01) 

1.23 (0.01) [10] 

P9A 56.0 0.397  0.00229 19.10 0.214 0.00272 - - - [10] 

G10A 
49.0 0.348  0.00151 15.23 0.153 0.00341 0.52 (0.02) 0.57 

(0.02) 

0.61 (0.02) [10] 

W11F 
3.05 0.308 -0.00050 21.62 0.134 0.00399 1.42 (0.01) 1.58 

(0.01) 

1.79(0.01) [10] 

E12A 
52.6 0.373  0.00104 14.33 0.201 0.00396 0.15 (0.12) 0.26 

(0.06) 

0.36 (0.05) [10] 

E12Q 
55.4 0.385  0.00308 14.62 0.179 0.00421 0.22 (0.35) 0.25 

(0.30) 

0.25 (0.29) [6, 10] 

K13A 59.6 0.385  0.00285 16.11 0.187 0.00139 - - - [10] 

K13V 62.8 0.401 0.00322 15.85 0.215 0.00213 - - - N 

K13Y 
51.7 0.349 0.00237 16.63 0.125 0.00120 1.09 (0.07) 1.09 

(0.07) 

1.01 (0.08) N 

R14A 
39.2 0.347  0.00074 17.21 0.081 0.00464 0.72 (0.01) 0.76 

(0.01) 

0.82 (0.01) [10] 

R14F 
45.2 0.388  0.00195 16.87 0.087 0.00517 0.76 (0.01) 0.74 

(0.01) 

0.73 (0.01) [6] 

R14L 
47.8 0.367  0.00234 16.31 0.145 0.00482 0.77 (0.01) 0.80 

(0.01) 

0.84 (0.01) N 

M15A 
51.8 0.380 0.00289 15.88 0.168 0.00434 0.81 (0.02) 0.84 

(0.02) 

0.85 (0.02) [6, 10] 

S16A 
54.0 0.380 0.00313 18.63 0.205 0.00372 2.44 (0.03) 2.56 

(0.02) 

2.62 (0.02) [10] 

S16G 
47.6 0.369 0.00194 17.75 0.174 0.00452 1.13 (0.01) 1.19 

(0.01) 

1.25 (0.01) [10] 

S16T 
53.2 0.398 0.00325 18.01 0.161 0.00401 1.99 (0.02) 1.90 

(0.02) 

1.78 (0.01) [6] 

R17A 58.8 0.391 0.00232 19.23 0.221 0.00276 - - - [10] 
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R17G 57.3 0.374 0.00277 18.76 0.241 0.00301 - - - [10] 

S18A 58.4 0.398 0.00185 22.34 0.238 0.00614 - - - [10] 

S18G 56.5 0.440 0.00227 16.49 0.231 0.00670 - - - [10] 

S19G 
54.8 0.384 0.00248 16.29 0.176 0.00432 1.38 (0.04) 1.40 

(0.01) 

1.41 (0.04) [6, 10] 

G20A 
48.9 0.355 0.00270 18.11 0.217 0.00216 1.33 (0.01) 1.43 

(0.01) 

1.50 (0.01) [10] 

R21A 
50.9 0.369 0.00144 16.54 0.138 0.00181 1.00 (0.02) 0.98 

(0.02) 

0.94 (0.02) [10] 

R21H 
50.0 0.359 0.00130 16.31 0.138 0.00127 0.86 (0.02) 0.86 

(0.02) 

0.83 (0.02) N 

R21L4 55.9 0.521 -0.00010 15.63 0.217 0.00111 - - - N 

V22A 
54.2 0.403 0.00116 16.29 0.155 0.00146 1.36 (0.05) 1.25 

(0.04) 

1.12 (0.04) [6, 10] 

Y23A 
33.9 0.328 0.00098 15.99 0.114 0.00193 0.55 (0.01) 0.57 

(0.01) 

0.58 (0.01) [10] 

Y23F 
52.8 0.376 0.00254 16.54 0.208 0.00141 1.11 (0.02) 1.23 

(0.02) 

1.27 (0.02) [10] 

Y23L 
45.3 0.313 0.00153 16.24 0.155 0.00159 0.74 (0.01) 0.80 

(0.01) 

0.84 (0.01) [6, 10] 

Y24F 
51.4 0.363 0.00279 15.49 0.163 0.00392 0.64 (0.02) 0.68 

(0.02) 

0.71 (0.02) [10] 

Y24W 
52.9 0.357 0.00230 16.72 0.139 0.00436 1.27 (0.02) 1.28 

(0.02) 

1.30 (0.02) [10] 

F25A 
32.5 0.316 0.00042 16.92 0.155 0.00098 0.72 (0.01) 0.76 

(0.02) 

0.79 (0.02) [10] 

F25L 
42.5 0.340 0.00202 15.85 0.156 0.00239 0.62 (0.01) 0.66 

(0.01) 

0.68 (0.01) [6, 10] 

N26D 
36.0 0.327 0.00044 14.56 0.133 0.00211 0.42 (0.01) 0.46 

(0.02) 

0.50 (0.03) [6, 10] 

H27A 57.7 0.388 0.00262 14.76 0.207 0.00245 - - - [10] 

H27G 
50.5 0.367 0.00130 15.20 0.148 0.00197 0.53 (0.02) 0.54 

(0.02) 

0.52 (0.02) [10] 

I28A 
54.2 0.379 0.00165 14.35 0.150 0.00404 0.17 (0.22) 0.14 

(0.25) 

0.08 (0.44) [6, 10] 

I28G 
47.2 0.363 0.00105 14.93 0.181 0.00326 0.46 (0.01) 0.53 

(0.01) 

0.60 (0.01) [10] 

I28V 
55.4 0.382 0.00328 15.01 0.164 0.00413 0.58 (0.12) 0.56 

(0.10) 

0.50 (0.12) [10] 

T29A 
44.3 0.317 0.00100 14.80 0.152 0.00205 0.44 (0.01) 0.49 

(0.01) 

0.53 (0.01) [10] 

T29D 
42.9 0.338 0.00009 14.38 0.159 0.00262 0.38 (0.01) 0.44 

(0.01) 

0.51 (0.01)        [6] 

T29G 
34.4 0.316 0.00001 15.32 0.200 0.00243 0.68 (0.01) 0.79 

(0.01) 

0.91 (0.02) [10] 

Cont’d 
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T29S 
50.8 0.373 0.00159 15.57 0.170 0.00278 0.65 (0.03) 0.70 

(0.03) 

0.72 (0.04) [10] 

N30A 
53.3 0.372 0.00208 15.02 0.278 0.00302 0.31 0.07) 0.61 

(0.03) 

0.89 (0.03) [10] 

A31G 
40.9 0.359 0.00197 15.45 0.186 0.00311 0.58 (0.01) 0.65 

(0.01) 

0.70 (0.01) [6, 10] 

A31S 57.7 0.381 0.00283 15.76 0.133 0.00373 - - - [10] 

S32G 
50.1 0.335 0.00200 14.46 0.145 0.00198 0.29 (0.03) 0.32 

(0.03) 

0.30 (0.04) [10] 

S32T 61.7 0.398 0.00356 14.70 0.100 0.00240 - - - [6] 

Q33A 
53.1 0.332 0.00103 15.13 0.171 0.00326 0.50 (0.04) 0.60 

(0.04) 

0.70 (0.04) N 

W34A 
52.9 0.386 0.00067 14.75 0.118 0.00295 0.43 (0.06) 0.35 

(0.06) 

0.24 (0.10) [6, 10] 

W34F 58.0 0.399 0.00326 15.81 0.251 0.00212 - - - [10] 

E35Q 
53.1 0.380 0.00280 15.67 0.221 0.00265 0.72 (0.09) 0.87 

(0.06) 

0.96 (0.06) [10] 

E35A  
50.3 0.369 0.00283 16.13 0.154 0.00203 0.82 (0.07) 0.83 

(0.07) 

0.79 (0.06) [10] 

R36A 56.7 0.357 0.00225 16.44 0.117 0.00231 - - - [10] 

S38A 59.1 0.393 0.00204 17.13 0.174 0.00327 - - - [10] 

S38G 58.2 0.411 0.00382 18.43 0.245 0.00295 - - - [10] 

S38T 58.2 0.390 0.00327 18.22 0.232 0.00337 - - - N 

 

2. Double-site mutants 

S18G/S19G 
53.0 0.382 0.00163 16.88 0.169 0.00246 1.36 (0.02) 1.37 

(0.02) 

1.36 (0.02) N 

S19G/G20S 56.7 0.393 0.00288 16.88 0.169 0.00246 - - - N 

I28N/T29G 
36.4 0.352 0.00024 15.25 0.287 0.00387 0.79 (0.01) 0.96 

(0.01) 

1.14 (0.01) N 

 

3. Loop1 insertion and deletion mutants 2 

var1 (FiP) 77.5 0.428 0.00327 10.65 0.2052 0.00532 - - 0.92 (0.01) [7] 

var2 
69.2 0.425 0.00191 13.01 0.2305 0.00457 - 0.84 

(0.01) 

0.91 (0.01) [7] 

var3 68.1 0.422 0.00220 12.07 0.2126 0.00498 - - 1.18 (0.01) [7] 

var4  

var5 (+1G) 

var6 (+2G) 

62.0 

47.7 

50.9 

0.393 

0.396 

0.366 

0.00228 

0.00139 

0.00347 

13.92 

18.73 

16.47 

0.1931 

0.1310 

0.2360 

0.00216 

0.00256 

0.00281 

- 

1.34 (0.01) 

0.94 (0.01) 

1.28 

(0.07) 

1.32 

(0.01) 

1.09 

(0.01) 

1.24 (0.04) 

1.32 (0.01) 

1.09 (0.01) 

[7] 

N 

N 

 

Cont’d 
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4. Backbone hydrogen bond amide-to-ester mutants 

K13k 
46.4 0.410 0.0010 16.52 0.21 0.00100 0.79 (0.01) 0.80 

(0.01) 

0.77 (0.01) [16] 

S16s 
42.2 0.400 -0.0005 17.37 0.25 0.00120 0.91 (0.01) 0.95 

(0.01) 

0.97 (0.01) [16] 

R17r 
49.1 0.400 0.0016 17.20 0.22 0.00300 1.08 (0.03) 1.14 

(0.03) 

1.19 (0.03) [16] 

V22v  56.7 0.420 0.0034 16.64 0.33 0.00340 - - - [16] 

H27h 
38.7 0.420 0.0031 14.83 0.16 0.00560 0.46 (0.01) 0.52 

(0.01) 

0.57 (0.01)      

[16] 

S32s 
41.5 0.510 0.0010 14.70 0.50 0.00090 0.72 (0.01) 0.87 

(0.01) 

0.98 (0.01) [16] 

W34w 
49.5 0.430 0.0032 14.74 0.19 0.00840 0.39 (0.03) 0.46 

(0.02) 

0.57 (0.01) [16] 

1 Mutants that differ < 1 kJ/mole in stability from wild type hPin1 WW resulted in large errors in ΦM, so no ΦM-values are listed. ΦM-
value were also not calculated at 50 and/or 55 °C for the more stable loop 1 deletion mutants with thermodynamically optimized 
loop 1 substructures, to avoid errors in ΦM due to extrapolation of the data. Rounded errors in ΦM of all other mutants are given in 
brackets.          
2 Var1: Type-I G-bulge turn, sequence: SADGR. Var2: Type-I G-bulge turn, sequence: SSSGR. Var3: Type-I’ turn, sequence: SNGR. 
Var4: Type-I’ turn, sequence: SSGR. Var5: Single Gly insertion, sequence: SRSSGGR. Var6: Double Gly insertion, sequence: SRSSGGGR. 
3N= new mutant. 
4 Mutant R21L forms a dimer at protein concentrations employed for T-jump relaxation (10-30 µM) and was thus excluded from ΦM 
analysis. 

 

 

2.3.2 Probing key residues for stability by multiple mutations  

 

Several residues critical for thermodynamic stability, i.e. R14, Y23 and F25 that constitute 

hydrophobic core 2 (Fig. 2.1a), and T29 in loop 2 of hPin1 WW (Fig. 2.1b), were probed by 

multiple mutations (vertical ΦM analysis). We find excellent agreement between the ΦM value 

of the non-conservative mutants R14F/L and the classical R14A mutant, and the ΦM values of 

the Leu and Ala mutants of F25 differ by 0.10 units (Fig. 2.2a, Table 2.1). This is clear evidence 

that hydrophobic cluster 2, although moderately conserved among WW domains, is rather 

robust towards perturbation by single side chain modifications. Loop 2 of hPin1 WW is formed 

by residues H27-N30, and adopts a αR-αR-αR-αL, or παL-conformation, with the first three 

residues being in a right-handed helical conformation, and N30 being in a left-handed helical 

conformation. The παL-conformation is very common among four residue loops and is also 

found in the homologous hYap65 and FBP28 WW domains. We probed the contribution of 

T29 to transition state structure and energetics by the three classical mutations T29S/A/G. The 

non-conservative T29D mutation was also included in the analysis, as T29D is found in the 

homologous hYap65 WW domain, and T29D was utilized in our first ΦM analysis study of 

hPin1 WW [6]. The ΦM value of T29A (0.49 ± 0.01) is closest to the error-weighted average 

Cont’d 
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ΦM value (0.53), with T29D yielding a slightly lower value (ΦM = 0.44 ± 0.01) while T29S 

(ΦM = 0.69 ± 0.02) and T29G (ΦM = 0.79 ± 0.01) yielded higher values. Of all these, only the 

glycine mutant lies more than a standard deviation from the average. We also studied a double-

mutant, I28N/T29G, which replaces the base of the helical παL-turn with a sequence (Asn-Gly) 

that has a high propensity to form a tight 4-residue type-I’ turn, a common loop type seen in 

hairpin structures. I28N/T29G is one of the most destabilized loop 2 mutants (∆∆Gf = 8 kJ/mol) 

and has a large ΦM value (0.96 ± 0.01). The larger ΦM value shows that loop 2 can become 

rate limiting when destabilized, moving the transition state towards the native state. As shown 

in the next section (ΦT analysis), mutants T29G and I28N/T29G are perturbing mutants in that 

they shift the folding transition state with respect to wild type hPin1 WW, so both mutants are 

not reliable reporters of the unperturbed wild type transition state structure.  

 

2.3.3 Perturbation of hydrophobic cluster 1 disrupts the folding transition state  

 

Molecular dynamics simulations of the fast-folding FiP variant of hPin1 WW suggest that 

hydrophobic cluster 1 is only weakly formed in the transition state. The simulated ΦM values 

for hydrophobic core 1 residues (L7: -0.30  0.50, P8: -0.3 ± 0.1, W11: ~ 0.4, Y24: 0.32 ± 0.1, 

P37: ~ 0) suggest that the native W11-Y24 side chain interaction is partially developed in the 

folding transition state, while other hydrophobic core contacts (e.g. P37 sandwiched between 

W11 and Y24 (Fig. A.1)) must develop after crossing the folding barrier [17, 26, 27].Because 

of its importance for stability (Fig. 2.1c), hydrophobic cluster 1 proves to be difficult to map 

experimentally by ΦM analysis. Even though the negative ΦM value of L7I (within error) 

agrees with the value from simulations, its ΦM value is not supported by L7A and L7V 

mutations. Mutating residues W11, Y24 and P37 to either Ala or Leu resulted in unfolded 

proteins. Mutants P8A, W11F and Y24W, although (severely) destabilized, unfold 

cooperatively upon heating but yield non-classical ΦM values significantly higher than the ΦM 

values of other hydrophobic core 1 mutations (L7I/A/V, G10A, Y24F). As the W11F mutant 

of hPin1 WW folds into a native-like structure with a rigid core (Fig. A.2), and because the 

conservative W11F mutation is unlikely to perturb unfolded state structure significantly, the 

high ΦM value of W11F most likely results from a perturbation of transition state energetics, 

rather than ground state effects. The Y24W mutation replaces the phenol-moiety of Y24 with 

the indole ring of Trp. The larger side chain enables “gain-of-interactions” in the denatured and 

transition state ensembles, as well as steric clashes in the native state that are not present in the 
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wild type protein. The ΦM values of mutants G10A (0.57 ± 0.02) and Y24F (0.68 ± 0.02) agree 

reasonably well with simulation, but we observed that neither mutation is ideal for transition 

state mapping. Surface-exposed G10 acts as a hinge residue in hydrophobic core 1 formation, 

so it does not contribute to the side chain packing of the hydrophobic core per se, and Y24F 

removes a solvent-exposed OH-group without perturbing the side chain packing of the core 

(Fig. A.1). Like Y23F in hydrophobic core 2, its ΦM value may primarily report on changes in 

protein solvation energetics, rather than genuine hydrophobic core contacts. Unlike the 

disruptive mutations P8A, W11F and Y24W, mutants G10A and Y24F were included in further 

analysis. In summary, the large number of disruptive hydrophobic core 1 mutants, the strong 

effect of the W11F mutation on the hPin1 WW folding kinetics, and the intermediate ΦM 

values of the non-disruptive mutants L7A/V/I, G10A and Y24F, suggest that while 

hydrophobic cluster 1 is only partially structured in the transition state, it is very important for 

protein stability.  

 

2.3.4 Non-classical ΦM values in loop 1  

 

The intrinsically dynamic loop 1 substructure of hPin1 WW (Fig. A.3) was probed by both 

side chain and backbone hydrogen bond mutagenesis. Mutation S16s deletes the backbone 

hydrogen bond between residues S16 and R21, while mutation R17r weakens, but does not 

eliminate, the backbone hydrogen bond between residue S16 and S19 (Fig. 2.1b). Mutants 

S16G, S19G, S18G/S19G and G20A perturb the native state by changing the backbone 

entropy. Supporting our previous hypothesis that loop 1 formation is rate-limiting for hPin1 

WW folding, all ten loop 1 mutants exhibit high ΦM values close to or larger than 1 (Fig. 2.2b). 

The highest ΦM values were calculated for mutants S16A (2.56 ± 0.02) and S16T (1.78 ± 

0.02). The ΦM value of S16A is about twice as high as that of all other loop 1 mutants, and is 

a clear outlier. From the structure of the folded hPin1 WW domain it is not immediately 

obvious why S16A would perturb transition state energetics and slow down folding so much, 

but similar observations have been made with the fynSH3 domain [28], where a T47A 

substitution produces a ΦM value twice as high as that of T47S and T47G.Mutants S16G, R17r, 

S19G, S18G/S19G and G20A all share ΦM values > 1 (ΦM = 1.14-1.43). Mutants S16G, R17r 

and G20A are significantly less stable than S19G and S18G/S19G, so at least their non-classical 

ΦM values cannot be attributed to artifacts due to small differences in the stability between 

wild type and mutant proteins (ΔΔGf). ΦM values close to 1 are obtained for side chain mutants 
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R21A/H (loop 1/β strand 2 interface) and for mutant S16s that eliminates the backbone 

hydrogen bond between residues S16 and R21 that closes the 6-residue loop conformation. 

Except for S16A and S16T, all these mutants are used for further analysis. 

 

2.4  ΦT-value analysis 

 

 In folding studies that employ chemical denaturants (urea, guanidine hydrochloride) as the 

perturbation, transition state locations can be calculated from an analysis of the V-shaped 

folding relaxation rate vs. denaturant concentration plot, also known as “chevron plot.” The 

Tanford βT value from this analysis is an indicator of the relative compactness of the folding 

transition on the reaction coordinate in terms of solvent accessible surface area [29]. Using 

temperature as perturbant by analogy [6, 30, 31], a mutant’s ΦT value (ΦT = 
𝜕∆𝐺†/𝜕𝑇 

 𝜕∆𝐺/𝜕𝑇
=

     ∆𝑆†

 ∆𝑆
) 

can be used as a quantitative, entropic reaction coordinate that describes how much the 

transition state shifts along the reaction coordinate because of the mutation. It is worth 

emphasizing that the ΦT value reports on the overall changes in entropy (i.e. it also includes 

changes in protein solvation), not just protein conformational entropy. Because the ΦT value 

is calculated from two derivatives, it is also sensitive to the quality of the raw data with the best 

results obtained at temperatures close to the midpoint of unfolding (Tm). We first calculated 

ΦT values directly by taking the derivatives of the second order Taylor series in Table 2.1. 

Some of the quadratic coefficients have larger errors than others, and this results in unphysical 

values of ΦT (Fig. A.4A), of the temperature of maximal stability T0 (where G is at a 

minimum), and of heat capacities. We therefore also analyzed the data by Taylor series 

expanding the free energy around the temperature of maximal stability using ∆G = ∆G0 + ∆G(2) 

(T-T0)2. This “ΦT T0-fit” yields essentially the same ΦM values as the Taylor expansion about 

Tm in Table 2.1 (Fig. A.4B), and ΦT values with more realistic T0 for all proteins, so we opt 

to discuss the “ΦT Tm-fit” throughout this paper. For completeness, we summarize the 

connection between the Taylor expansion and the common Gibbs-Helmholtz expansion (in 

terms of the more physical parameters ∆H0, ∆S0 and ∆CP) in the SI, and provide a table of 

heat capacities (Table A.4).Mutations N30A, T29G, I28N/T29G, S32s and W11F had ΦT 

values > 0.7 (Fig. 2.3, dotted horizontal line), which we chose as a reasonable cut-off for 

distinguishing between conservative and perturbing mutants because the ΦM values of mutants 

W11F, T29G and I28N/T29G either stand-out as clear outliers or are not cross-validated by 
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other mutants (Fig. 2.2b). In these mutants, the transition state shifts closer to the native state 

such that their ΦM values are no longer reliable indicators of the unperturbed “wild type” 

transition state ensemble, and thus must be excluded from consensus ΦM analysis. Excluding 

the abovementioned 5 outliers, the remaining mutants fall within a 25 % interval around the 

average ΦT value of 0.50 (Fig. 2.3, horizontal dashed line). Loop 2 mutants in general tend to 

have higher ΦT values, indicative that loop 2 can compete with loop 1 for becoming rate-

limiting at higher temperatures. The ±0.2 spread in the transition state locations as quantified 

by ΦT is similar to that reported for the FBP28 WW domain, analyzed using Tanford’s βT 

value [32]. Even though the individual ΦT values were measured with high precision (error in 

ΦT ~ 0.02), the systematic error in ΦT may be substantially larger. This is best seen when we 

compare the ΦT values of multiple mutations for one residue. Mutants R21A and R21H have 

very similar ΦM values (0.95 and 0.89) and essentially identical ΦT values (0.44 and 0.45), 

while mutants R14A, R14L and R14F also have similar ΦM values, but their ΦT values that 

span 25 %.The most dramatic shift in ΦT is found for the I28N/T29G mutant, whose large ΦM 

value (0.96 ± 0.02) also poorly agrees with other loop 2 mutants (Fig. 2.2b, Table 2.1). The 

double mutation I28N/R29G replaces the central two residues of loop 2 with a sequence that 

has a strong propensity to fold into a tight type-I’ turn, suggesting that loop 2 is particularly 

prone to mutations that introduce residues that have a low propensity to adopt the helical αR-

αR-αR-αL backbone conformation that is required to form loop 2. Indeed, the statistically 

preferred residues at position 29 are Ser and Thr, and at position 30, Arg, Lys, Gly or Asn. 

glycine (position 29) and alanine (position 30) are rare, or not found at all among WW domains. 

For mutant W11F, the shift in ΦT is accompanied by a very large ΦM value that clearly stands 

out as a outlier from the mutant pool (Fig. 2.2a), while the perturbing effect (shift in ΦT) seen 

for loop 2 mutants T29G, I28N/T29G, N30A and S32s results in more subtle abnormalities in 

ΦM that are more difficult to identify by merely looking at the context-dependent ΦM values 

alone (Fig. A.5). A third class of mutants (e.g. P8A, S16A, V22A and Y24W) shows clear 

outlier ΦM values, but normal ΦT values.  
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Fig. 2.3: ΦT Analysis at 55 °C: Plot of the ΦT-value for wild-type hPin1 WW and mutants 

thereof versus the change in free energy (ΔΔG, in kilojoules per mole) between wild type and 

mutant. ΦT-Values are calculated using the T0-fitting procedure (for details, see Appendix A). 

ΦT-values of side-chain and backbone hydrogen bond mutants are color coded red and blue, 

respectively. Except for the obvious five outliers (mutants W11F, T29G, I28N/T29G, N30A, 

S32s), the ΦT-values are within a ± 25% error margin of the average ΦT (0.50, dashed gray 

horizontal line). The outlier ΦT-values (N0.70, dotted gray line) are indicative of perturbing 

mutations that shift the transition-state ensemble along the reaction coordinate closer to the 

native-state. Mutational ΦM-values calculated from these mutants are no longer reliable 

indicators of the unperturbed “wild-type” transition-state ensemble, and must be excluded from 

the consensus ΦM analysis of hPin1 WW transition-state structure 

 

2.5 High-resolution mapping of the folding transition state of hPin1 WW 

 

2.5.1 General features of the transition state  

 

 Our approach for mapping the folding transition state of hPin1 WW was to pick the most 

conservative mutant set with ΦM values that were not outliers, based on cross-validation by 

multiple mutations, sequence neighbors, and backbone hydrogen bond neighbors, and whose 

ΦT values indicate no excessive shift of the transition state. Thirty-nine mutants (34 side chain 

and 5 backbone hydrogen bond variants) fulfill these criteria and form a consensus set for 

transition state analysis (Fig. 2.4a, Table 2.2). Except for S19G and I28V, all mutants had ΔΔGf 
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> 2 kJ/mol, close to or above the empirical cutoff (> 2.50 kJ/mol) for reliable ΦM analysis [33], 

and except for mutants I28A and E35Q/A, statistical errors in ΦM were small. Several residues 

(L7, E12, R14, R21, Y23, F25, I28, T29) in hPin1 WW were probed by more than one side 

chain mutation. For these residues, we can calculate more robust (and more representative) 

error-weighted average ΦM values from the side chain ΦM values of individual mutations 

(Table 2.2). Mapping the (error-weighted average) side chain ΦM values onto the Cα-backbone 

of the folded protein reveals that loop 1 (S16-R21) is substantially more structured in the 

transition state than loop 2 (H27-N30) and hydrophobic cluster 1 (Fig. 2.4b). The (error 

weighted) average side chain ΦM plot is a smooth function of sequence (Fig. 2.5a, solid red 

line), indicating that the formation of transition state structure is governed mainly by local 

interactions. Even without the outlier mutants S16A/T, a peak at loop 1 is obvious (see Fig. 

A.5 for an extended plot, including outliers). While hydrophobic cluster 1 contacts (probed by 

L7V/A, G10 and Y24F) are essential for hPin1 WW stability, their contribution to the folding 

rate is small, and folding of hPin1 WW is rate-controlled by the loop 1 substructure that 

contributes only slightly to thermodynamic stability. The high side chain ΦM value of the C-

terminal E35, although corroborated by two mutants (E35A/Q), may not truly report on 

transition state structure. E35 is a charged residue and solvent-exposed in the folded protein. 

Except for mutant S16A, we find good agreement between the ΦM values of individual Ala 

mutants and the consensus average ΦM value (Fig. A.5).  
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Fig. 2.4: Analysis of the folding transition state of the hPin1 WW domain. (a) ΦM-Values of 

the 34 single and double mutants (dark gray) and the 5 amide-to-ester backbone hydrogen 

bonds mutants (light gray) that qualify for ΦM analysis, and that were used for consensus ΦM 

mapping of the folding transition state. (b) ΦM Map of the folding transition state, with ΦM-

values for 25 of the 34 residues (single letter representation) mapped onto the backbone 

structure of the N-terminally truncated folded protein (residues 6–39). Left panel: residues 

W11–W34 that define the three-stranded β-sheet. Right panel: residues L7–P37 that includes 

hydrophobic cluster 1 and the N- and C-terminal extensions. For clarity, ΦM-values were 

grouped and color coded (0 b ΦM b 0.40, blue; 0.4 b ΦM b 0.7, purple, ΦM b 1, pink; ΦM N 

1, red). Residues for which classical hydrophobic deletion mutagenesis yields very high, or 

negative, ΦM-values that are not supported by other mutations or structural context are color 

coded black. Residues for which no mutant is suitable for ΦM analysis are color coded white. 

Backbone hydrogen bonds that were studied by amide-to-ester mutagenesis are indicated by 

arrows (same color code as for side chains). Data used to render the figure are provided in 

Tables 2.1 and 2.2. 
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Fig. 2.5: ΦM versus sequence map and ΦM versus backbone disorder correlation. (a) Plot of 

ΦM-values versus the hPin1 WW sequence used for transition-state analysis. Individual side-

chain ΦM-values are color coded red, while those calculated from backbone hydrogen bond 

mutants are color coded blue. The solid red line represents the error-weighted average trend of 

the side-chain ΦM (see Table 2.2 for data). The gray bars indicate the regions of loop 1 and 

loop 2. (b) Tube plot showing the distribution of thermal B factors from the X-ray crystal 

structure [17] along the backbone of hPin1 WW domain. (c) Plot of thermal B factors versus 

the hPin1 WW sequence, showing a pronounced maximum in loop 1, and a smaller maximum 

in loop 2. (d) Correlation between ΦM-values and thermal B factors for residues M15–R21 

with increased local backbone disorder at 55 °C. Side chain (sc) loop 1 mutants are color coded 

red and backbone hydrogen bond mutants (hb) are color coded blue. The solid lines represent 

best fits of the experimental data. 
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Table 2.2: 

 

 

2.5.2 Correlation between native-state disorder and non-classical ΦM-values in loop 1 

 

 Here we propose the hypothesis that φM values >1 in loop 1 (see section 2) are due to 

native-state backbone dynamics.  An NMR-solution structure of the apo-form of the isolated 

WW domain implies that loop 1 is intrinsically dynamic [34] (Fig. A.3), and this dynamic 

Table 2.2: Summary of ΦM values of consensus mutants used for transition state mapping at 55 °C 

Residue Mutation Type 1 ∆∆G (kJ/mol) ΦM (55 °C) Average ΦM (sc) Average ΦM (hb) 

L7 L7A 
L7V 

sc 
sc 

6.65 
5.00 

0.27 (0.02) 
0.30 (0.02) 

0.28 - 

G10 G10A sc 3.56 0.57 (0.02) 0.57 - 
E12 E12A 

E12Q 
K13k 

sc 
sc 
hb 

2.31 
1.26 
5.01 

0.26 (0.06) 
0.25 (0.29) 
0.80 (0.01) 

0.26 0.80 

R14 R14A 
R14F 
R14L 

sc 
sc 
sc 

7.08 
5.41 
4.18 

0.76 (0.01) 
0.74 (0.01) 
0.80 (0.01) 

0.77 - 

M15 M15A sc 2.66 0.84 (0.02) 0.84 - 
S16 S16G 

S16s 
R17r 

sc 
hb 
hb 

4.25 
6.45 
3.38 

1.19 (0.01) 
0.95 (0.01) 
1.14 (0.02) 

1.19 1.01 

  S18 3 S18G/S19G sc 2.19 1.37 (0.02) 1.37 - 
S19 S19G sc 1.49 1.40 (0.03) 1.40 1.19 
G20 G20A sc 3.68 1.43 (0.01) 1.42 - 
R21 R21A 

R21H 
sc 
sc 

2.95 
3.24 

0.98 (0.02) 
0.86 (0.02) 

0.92 0.95 

Y23 Y23A 
Y23L 

sc 
sc 

8.77 
4.60 

0.57 (0.01) 
0.80 (0.01) 

0.72 - 

Y24 Y24F sc 2.76 0.68  (0.02) 0.68 0.46 
F25 F25A 

F25L 
sc 
sc 

8.73 
5.98 

0.76 (0.02) 
0.66 (0.01) 

0.69 0.80 

N26 N26D 
H27h 

sc 
hb 

7.79 
9.08 

0.46 (0.02) 
0.52 (0.01) 

0.46 0.52 

H27 H27G sc 3.09 0.54 (0.02) 0.54 - 
I28 I28A 

I28V 
I28G 

sc 
sc 
sc 

1.72 
1.26 
4.31 

0.14 (0.25) 
0.56 (0.10) 
0.53 (0.01) 

0.52 - 

T29 T29A 
T29S 
T29D 

sc 
sc 
sc 

4.92 
3.01 
5.52 

0.49 (0.01) 
0.70 (0.04) 
0.44 (0.01) 

0.49 - 

N30 H27h hb 9.08 0.52 (0.01) - 0.52 
A31 A31G sc 6.87 0.65 (0.01) 0.65 - 
S32 S32G sc 3.10 0.32 (0.03) 0.32 - 
       
Q33 Q33A 

W34w 
sc 
hb 

2.05 
3.87 

0.60 (0.04) 
0.46 (0.01) 

0.60 0.46 

W34 W34A sc 2.23 0.35 (0.10) 0.35 - 
E35 E35A 

E35Q 
sc 
sc 

3.27 
2.14 

0.83 (0.06) 
0.87 (0.07) 

0.85 - 

1 Type of mutation: side chain (sc), backbone hydrogen bond (hb). 2 Error weighted average ΦM-value for residues 
probed my multiple mutations. 3 ΦM-value of the S18G/S19G was assigned to S18. 
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nature appears to be preserved in the high-resolution X-ray structure (1.35 Å) of hPin1 WW in 

the context of the full-length hPin1 rotamase (Fig. 2.5b). Except for M15A in β strand 1, all 

mutations that yield non-classical ΦM values > 1 mutate residues that map onto the intrinsically 

more disordered loop 1 region, and the concordance between the average consensus ΦM values 

(Fig. 2.5a) and the thermal B factors (a convenient measure for native-state conformational 

disorder) (Fig. 2.5c) is striking. The reasonable correlation between the local disorder of a loop 

1 residue and the magnitude of its ΦM value (Fig. 2.5d) suggests that the ΦM values in loop 1 

are shifted upward further, from values near 1 that are indicative of the importance of loop 1 

in the transition state, to even larger values indicative of native state disorder. A more 

disordered loop 1 may better accommodate mutations that change backbone and sidechain 

entropy or perturb backbone hydrogen bonds, and thus yields a lower ΔΔGf (and a higher ΦM 

value), if at the same time the transition state is more sensitive to such mutations because other 

robust structure (e.g. hydrophobic core 1) have not yet formed.   

 

2.5.3 Correlation between side chain and backbone hydrogen bond ΦM values 

  

Hydrophobic cluster 2 (R14-Y23-F25) that stabilizes the N-terminal β-hairpin is loosely 

formed in the transition state, making an average of 73 % of its native contacts in the transition 

state (R14 = 77 %, Y23 = 72 %, F25 = 69 %, each calculated from the error-weighted average 

ΦM, Table 2.2). The ΦM value of mutant K13k that weakens the E12-F25 backbone hydrogen 

bond (0.80 ± 0.02) agrees well with the side chain Φm values of hydrophobic core 2 that 

protects the hydrogen bond from solvent in native hPin1 WW, suggesting that the E12-F25 

backbone hydrogen bond and hydrophobic cluster 2 form cooperatively in the folding transition 

state. To test whether this correlation between backbone hydrogen bond and side chain ΦM 

values generally holds for hPin1 WW, it is helpful to compare the backbone and side chain ΦM 

values at the level of individual residues. We thus assign the ΦM value of a perturbed backbone 

hydrogen bond to the two residues that form such a bond, not the residue that is mutated to 

perturb the hydrogen bond (as done in a previous study [16]). For example, mutation S16s 

eliminates the S16-R21 backbone hydrogen bond by replacing the amide moiety of the M15-

S16 backbone peptide bond that acts as a hydrogen bond donor to form the backbone hydrogen 

bond with the carbonyl moiety of residue R21 with an ester moiety that cannot engage in 

backbone hydrogen bond formation (Fig. 2.1b). Here, we assign the ΦM of the S16s mutant to 

both residue S16 and R21. Likewise, mutation K13k perturbs, but does not eliminate, the 
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backbone hydrogen bond between residues E12 and F25, by weakening the hydrogen bond 

acceptor (backbone carbonyl) of E12 (Fig. 2.1b). Here, however, it would be more correct to 

assign the ΦM of K13k not to residue K13 but to residues E12 and F25 that form the backbone 

H, even though formally, the amide-moiety of residue K13 is mutated.  

Overall, we find good agreement between the “residue-assigned” backbone ΦM values 

(Fig. 2.5a, filled blue circles) and the ΦM values from classical side chain mutation (Fig. 2.5a, 

filled red circles), in particular within the hairpin 2 region (Table 2.2). As the strength of a 

hydrogen bond is strongly dependent on the distance between the hydrogen bond donor 

(backbone amide) and hydrogen bond acceptor (backbone carbonyl), even fractional backbone 

hydrogen bond ΦM values of ~0.5 imply that loop 2 is highly compact or that the measured 

fractional ΦM values within hairpin 2 represent ensemble averages with about 50 % of the 

molecules having hairpin 2 fully formed in the transition state ensemble (ΦM ~1), while in the 

other half of molecules hairpin 2 is disordered (ΦM ~ 0). Such a scenario has been predicted 

in less extreme form from Markov-State-modeling of hPin1 WW folding [35-37]. The poor 

agreement between the side chain and backbone ΦM values calculated for residue E12 

probably stem from the removal of a solvent-exposed charged residue by mutations E12A/Q. 

Long-range electrostatic effects may play a role instead of just local contacts.  

 

2.5.4 Variation of transition state structure with temperature  

 

 Probing the folding kinetics not just at a single temperature, but over a wider range of 

temperatures (here, 50, 55 and 60 °C), reveals the robustness of the transition state ensemble 

against thermodynamic stress. Folding studies at various temperatures also identify 

‘borderline’ mutations that perturb the folding mechanism under increased thermal stress, but 

whose disruptive nature might escape detection under more favorable folding conditions. On 

average, the ΦM values increase by 0.07 units (Fig. 2.6a) and the ΦT value increases by 0.15 

units (Fig. 2.6b) upon raising the temperature from 50 to 60 °C (for data, see Table A.1, A.2). 

This suggests that the folding transition state becomes more structured and native-like at higher 

temperature, and the transition state ensemble shifts along the reaction coordinate closer to the 

native state, in agreement with Hammond’s postulate [38]. A plot of ΦM (60°C)/ΦM(50°C) 

vs. sequence in Fig.2. 6c reveals that structure within hairpin 1 (residues 12-25) at best changes 

only weakly with temperature. In contrast the loop 2 region (residues 27-30), the third β strand 

(residues 31-34) and hydrophobic core 1 (probed by L7A and L7V) increase by a larger margin 
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and beyond experimental uncertainty. The absolute changes in ΦM are, however, rather small 

such that hairpin 1 still dominates transition state structure at higher temperatures. The Ala 

mutant W34A may show unusual temperature tuning (although it has a large error bar in Fig. 

2.6c), and we speculate on a possible origin in the SI. 

 

 

Fig. 2.6: Variation of transition-state structure with temperature. (a) Plot of ΦM (60 °C) versus 

ΦM (50 °C). On average, ΦM-values increase by 0.07 units when raising the temperature from 

50 °C to 60 °C, suggesting that the transition-state overall gains native structure upon heating. 

(b) Plot of ΦT (60 °C) versus ΦT (50 °C). On average, ΦT-values increase by 0.15 units when 

raising the temperature from 50 °C to 60 °C, suggesting that the transition state becomes more 

native-like at elevated temperature, consistent with Hammond's postulate. (c) Plot of the ΦM 

(60 °C)/ΦM (50 °C) ratio versus the residue number of the hPin1 WW sequence. Data from 

individual side-chain mutants are color coded red. Data from individual backbone hydrogen 

bond mutants are color coded blue. The solid red line represents the error-weighted average 

side-chain trend. For clarity, the side-chain data of E12 (large errors, see Table 2.2) are not 

shown. 
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2.5.5 Average fraction of native contacts and its temperature dependence 

 

 For the set of consensus mutants depicted in Fig. 2.4a, we calculate an average ΦM value 

of 0.68 ± 0.04 at 55 °C, which is higher than the overall average ΦT value (0.50 at 55 °C, 

excluding the 5 outliers discussed in sections 3 and 4). Mutants with a higher slope of ∆G vs. 

T (folding cooperativity) have a higher melting temperature (Tm) (Fig. 2.7a, where ∆G=0 at 

T=Tm for all mutants). The average slope is +0.0017 kJ/mole/K, indicative of a negative 

folding entropy ∆S=-(∂∆G/∂T), and increases by about 0.1 kJ/mole/K over the 35-60 °C range 

of melting temperatures. The size-dependence of ∆S for folding has been discussed in the 

literature [39, 40]. From the temperature dependence of the folding barrier on protein stability 

(Fig. 2.7b), we calculate a slope (∂∆G†/∂T) ≈ 0.0024 kJ/mole/K (0.0028 for all mutants listed 

in Table 2.1). The ratio of the two slopes (activated/ground) is ~ 0.70 (0.63 for all mutants 

listed in Table 2.1). This value is also higher than the average ΦT value of 0.50, and suggests 

that there is a significant unfolding cooperativity effect in the folding transition state, although 

not as high as the unfolding cooperativity seen in the native protein. The ΦT value thus seems 

to slightly overestimate the distance of the transition state to the native state. 
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Fig. 2.7: Average number of native contacts in the folding transition state. (a) Slope of the 

ground-state free energy (∂ΔGground(T)/∂T) of the 39 consensus mutants used for ΦM analysis 

(filled red circles, solid black line) or the entire set of single and double mutants (excluding the 

6 loop 1 insertion and deletion variants) (filled gray circles, dashed black line) at the midpoint 

of unfolding (T = Tm, with ΔGground(Tm= 0). (b) Corresponding plot as in panel A showing 

the slope of the free energy of activation (∂ΔGactivated(T)/∂T) at the midpoint of unfolding (T 

= Tm). The ratio of the two slopes (activated/ ground) of ~0.70 for the 39 consensus mutants 

(0.63 for the entire mutant set) suggests that about 70% of the native contacts are developed in 

the folding transition state, a value that agrees well with the average calculated from the ΦM 

data (Table 2.2), but that is higher than the average ΦT-value (0.50). The loop 1 insertion and 

deletion variants that change local changes in backbone topology (filled yellow circles) were 

excluded from the fit, but their values agree well with the extrapolated fits of the mutants with 

the 6-residue wild-type hPin1 WW loop 1. 
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2.6 ΦM analysis of loop 1 insertion and deletion mutants 

 

2.6.1 Mutant design and structural analysis 

 

 We recently designed and biophysically characterized several hPin 1 WW variants in which 

the wild type loop 1 sequence is replaced by either a 5-residue type-I G-bulge turn (the 

preferred loop type in WW domains) or tighter, 4-residue type-I’ turns that are not found among 

WW domains [7] (Fig. 2.8a). The X-ray structures of the most stable type-I G-bulge variant 

(var1, or FiP, loop sequence: SADGR) and the most stable type-I’ turn variant (var3, loop 

sequence: SNGR) have been solved at 1.90 and 1.50 Å resolution, respectively. Both variants 

essentially superimpose with the wild type structure (1.35 Å resolution), except for the 

redesigned loop 1 region (Fig. 2.8b). The thermal B factors of the FiP variant are consistently 

lower than that of wild type hPin 1 WW, while those of var3 are higher (Fig. A.6). While the 

difference in the absolute values of the thermal B factors may result from different crystal 

packings, we note that turn 1 in the X-ray structure of FiP appears to be conformationally rigid, 

consistent with NMR-solution data of the same turn in its natural FBP28 WW context 

(APPENDIX AFig.3). The 4-residue type-I’ turn of variant 3 shows a relative maximum in the 

B factor similar that of loop 1 in wild type hPin1 WW, suggesting that the type-I’ turn, although 

stabilizing and hastening hPin1 WW folding, is conformationally flexible in the folded protein. 
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Fig. 2.8: ΦM Analysis of hPin1 WW variants with loop 1 deletions or insertions mutations. (a) 

Loop 1 sequences of the hPin1 WW loop 1 deletions or insertions variants. Wild-type residues 

are numbered and color coded gray. Mutated or deleted residues in the loop deletion variants 

are color coded red (type I G-bulge turn) and blue (type I′ turn), while the inserted Gly residues 

in the loop 1 insertion mutants are highlighted in orange. (b) Superposition of the high-

resolution X-ray structures of type I G-bulge variant FiP (1.90 Å resolution, color coded red, 

left) and the type I′ variant 3 (1.50-Å resolution, color coded blue, right) with wild-type hPin1 

WW structure (1.35 Å resolution, color coded gray). (c) Brønsted plot for folding of the loop 

1 variants of hPin1 WW at 60 °C, rendered from the data provided in Table A.2. Filled red 

circles: 5-residue type I G-bulge turn mutants (var1, var2). Filled blue circles: 4-residue type 

I’ turn variants (var3, var4). Filled green circles: cross-validated loop 1 side-chain and 

backbone hydrogen bond mutants (6-residue wild-type loop 1 context). Filled orange circles: 

Gly insertion variants (var5, var6). Filled black circles: outlier/perturbing mutants. Open light 

gray circles: non-loop 1 consensus mutants. The solid black line is the line predicted for ΦM = 

1. (d) Bar plot of ΦM-values for selected mutants shown in panel C. ΦM-Values calculated for 

the redesigned loop 1 variants using wild-type hPin1 WW as reference are color coded red (5-

residue type I G-bulge variants) and blue (4-residue type I’ variants). ΦM-Values calculated 

for variants 2 and 4 in the type I G-bulge (var1, FiP) and type I’ context (var3) are shown in 

light red and light blue, respectively. 
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2.6.2 Group ΦM analysis and ΦM vs. ΔΔGf correlation   

 

 At 60 °C, and using wild type hPin1 WW as the reference protein, we calculate ΦM values 

of 0.92 ± 0.01 for FiP and 0.91 ± 0.01 for the related variant 2. Both ΦM values are cross-

validated by the ΦM value of variant 2 calculated with FiP as “pseudo wild type” reference 

(0.94 ± 0.05) (Fig. 2.8d), demonstrating that ΦM analysis is surprisingly robust towards more 

severe sequence manipulations that simultaneously alter sequence and local chain topology. 

The ΦM values of FiP and related variant 2 also agree well with the ΦM values of mutants 

R21A, R21H and S16s (ΦM = 0.83-0.97) measured in the wild type loop context (Fig. 2.8 c,d). 

This correlation is remarkable in that the mutants differ by up to 15 kJ/mole in stability. It 

further implies that in the strictly sequential folding model (loop 1 first, then loop 2) proposed 

for FiP by Shaw et al., the energy barrier of the second transition (loop 2 nucleation) must be 

sufficiently small for FiP-variant 2 to yield a ΦM value  = 0.94  ± 0.05 (Fig. A.7A). The GTT 

variant of FiP with an optimized loop 2 structure, however, significantly accelerates FiP folding 

(by a factor of three), suggesting that loop 2 formation in FiP is associated with a non-negligible 

barrier and rate-limiting for folding (Fig. A.7B). Both observations are contradictory and 

difficult to reconcile in the framework of a sequential model, but perfectly compatible with a 

simple two-state mechanism, as in the latter case, stabilizing loop 1 and loop 2 mutations may 

additively lower the (single) transition barrier (Fig. A.7C). Type-I’ turn variants also hasten 

wild type hPin1 WW folding, but by a smaller margin than in FiP. In contrast, the two Gly 

insertion variants 6 and 7 (both less stable than wild type) slow down folding, presumably 

because of an increased entropic penalty to form the longer 7- or 8-residue loop 1 substructure. 

All four variants yield ΦM values greater than 1, similar in magnitude to the ΦM values of 

wild type mutants S16G, S18G, S18G/S19G and G20A (Fig. 2.8d). As for wild type hPin1 

WW (Fig. 2.5), increased local backbone dynamics around the type-I’ turn may cause the 

already high ΦM values to fall outside the classical range. 

 

2.6.3 Hypothetical hybrid ΦM-map of FiP and comparison with MD-simulations  

 

 ΦM values are determined experimentally as a ratio of logarithms of rates to logarithms of 

equilibrium constants. This can be simulated directly by computation (using long trajectories 

or multiple shorter trajectories with Markov analysis to obtain rate and equilibrium constants), 
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or it can be done by examining structure near the transition state (which has a Pfold ≈1/2 folding 

probability) and comparing with native structure (based on native contacts). In principle, the 

kinetic/energetic method is the more direct comparison, but structural information may have 

smaller error bars than energy information, so there is a tradeoff between the two approaches. 

Extensive data sets such as those in the present paper should become amenable to both 

approaches in the next few years, to test the merits of the structural vs. energetic approach to 

simulated ΦM values in detail. Here we present a brief comparison of our results, adapted to 

the FiP modification (see loop mutants in Table 2.1 for example) of WW domain, and 

comparing with ref. [14], which presents both structure-based (native side chain contacts) and 

energy based (long trajectory kinetics) ΦM values. In the case of [14], the difference between 

experiment and the two computational approaches still exceeds the difference between the 

computations, so it appears that force field errors currently still dominate over errors caused by 

the structural approximation. We assume that replacing the wild type hPin1 WW loop with the 

FiP loop 1 sequence only affects the local loop 1 energetics. This assumption is justified by the 

smooth dependence of ΦM on sequence, and by the nearly superimposable loop 2 and 

hydrophobic core 1 substructures of FiP and wild type hPin1 WW (Fig. 2.8b). A hypothetical 

“hybrid” ΦM-map can be rendered for the ultrafast-folding FiP variant by combining the loop 

1 ΦM value of FiP variant 2 (0.94 ± 0.05, measured with FiP as the “pseudo wild type” 

reference) with the non-loop 1 ΦM values obtained with wild type hPin1 WW (Fig. 2.9, red 

symbols and solid red line). For loop 1 and its immediate sequence neighbors, our putative 

“hybrid” ΦM map (60 °C) agrees well with the simulated ΦM map calculated at slightly higher 

temperature (75 °C) [14]. This reinforces our hypothesis (previous paragraph) that replacing 

loop 1 in wild type hPin1 WW with more stable sequences hastens folding without changing 

the folding mechanism - either loop type is substantially (or fully) formed in the folding 

transition state. The ΦM values within the loop 2 region, however, do not agree very well. 

Here, the experimental ΦM values clearly suggest more structure within hairpin 2 than the MD-

simulation [14]. As loop 2 slightly gains structure with temperature this discrepancy should be 

even more pronounced at 75 °C (the temperature used for MD-simulations).Shaw et al. argue 

that the folding mechanism of FiP is a direct consequence of the difference in the thermal 

stability of the N- and C-terminal hairpins. Although the isolated hairpins fold about one order 

of magnitude faster than full-length FiP and at similar rates in simulations, hairpin 1 with the 

optimized loop 1 sequence is significantly more stable (25 % folded hairpin at equilibrium) 

than hairpin 2 (4 % folded hairpin at equilibrium), such that loop 1 nucleation is expected to 

kinetically outperform loop 2 nucleation. Although plausible, this model does not take into 
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account the aforementioned significant (approximately 3-fold) increase in the folding rate that 

is seen experimentally with the GTT-FiP variant. In hPin1 WW with the unstable and 

intrinsically flexible 6-residue loop 1 sequence, isolated hairpin 1 is expected to be much less 

stable, perhaps even less stable than isolated hairpin 2. This would open up three possible 

folding scenarios: With both hairpins being similarly unstable, folding could occur through 

parallel pathways nucleated by either loop substructure (scenario 1), as predicted from Markov-

state-modeling of hPin1 WW folding. In this case, the experimentally measured ΦM values for 

the loop 1 and loop 2 regions would directly describe the relative flux along either pathway. In 

the simplest, and most extreme case, the hairpin whose loop segment nucleates folding is fully 

formed in the transition state (ΦM ~ 1) while the other hairpin is completely unstructured (ΦM 

~ 0). For loop 2, we find average ΦM values of ~ 0.60 at 60 °C. Therefore, if that extreme 

model applied, one would expect ΦM values of only ~ 0.40 for loop 1, which is clearly not 

what we observe experimentally (average ΦM > 0.9 at 60 °C). Alternatively, both loop 

substructures may fluctuate between an open and a closed state, although not necessarily a 

native-like state, however a native-like N-terminal hairpin is mandatory for barrier-limited 

folding into the native state (scenario 2). In this model, loop 1 residues will by necessity yield 

the highest ΦM values, while the loop 2 ΦM values will be reporters about the equilibrium 

ratio of the open and closed hairpin 2 conformations before their interaction with the structured 

N-terminal hairpin occurs. As loop 2 formation could either occur before or after loop 1/hairpin 

1 formation, hairpin 1 would “catalyze” the final transition of hairpin 2 from the closed to the 

native state. This folding model is unlikely for wild type hPin1 WW domain because an 

increase in temperature should shift the loop 2 equilibrium towards the open (less structured) 

conformation, so the loop 2 ΦM should decrease with temperature, rather than (slightly) 

increase. It may, however, become a dominant mechanism in fast-folding WW domains such 

as FiP. The most likely folding model for hPin1 WW thus remains a two-state folding 

mechanism, in which folding and docking of the hairpins occurs in a concerted fashion. The 

measured ΦM values would then imply that the N-terminal hairpin is mainly formed in the 

transition state, while the second hairpin and the hydrophobic core are in the process of being 

formed in the transition state. Two-state folding of not only wild type hPin1 WW, but also the 

FiP variant, would also better explain why certain FiP variants such as FiP-GTT with 

stabilizing mutations within loop 2 and β strand 3 speed up its folding despite high ΦM values 

near unity in the hairpin 1 turn region. 
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Fig. 2.9: Hypothetical “hybrid” ΦM-map for the fast-folding FiP variant of hPin1 WW. 

Hypothetical side-chain ΦM-map (red circles and solid red line) for the fast-folding FiP variant 

of hPin1 WW, rendered with side-chain ΦM-values of non-loop 1 mutants measured with wild-

type hPin1 WW as reference (see Fig. 2.3, Table A.2 for details) and the side-chain ΦM-value 

for loop 1 FiP WW variant 2 (loop 1 sequence: SSSGR) measured with FiP as “pseudo wild-

type” reference (loop 1 sequence: SADGR). As two residues were replaced simultaneously in 

FiP variant 2 (A18S, D19S; see Fig. 2.8a), the ΦM-value calculated for variant 2 (ΦM = 0.94 

± 0.05) was assigned to either mutated residue (labeled by asterisks) in FiP. For residues that 

are probed by multiple side-chain mutations, the error-weighted average ΦM-value is shown 

(see Table A.2 for details). Experimentally measured backbone hydrogen bond ΦM-values 

(filled yellow squares) are those measured for wild-type hPin1 WW and are assigned to the 

two residues that engage in the perturbed hydrogen bond (see Table A.2 for details). The 

simulated side-chain and backbone hydrogen bond ΦM-values and associated errors are shown 

in green and blue, respectively and were rendered from Fig. 2E in Ref. [15]. Residue numbers 

correspond to the 33-residue FiP sequence and thus account for the shorter loop 1 substructure 

(deletion of Arg17 of wild-type hPin1 WW). 

 

2.7 Conclusions 

 

ΦM-value analysis can provide valuable information about the structure of folding 

transition states by correlating changes in mutationally induced stability and folding kinetics. 

In its simplest manifestation, ΦM-value analysis can be affected by probe perturbation of the 
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folding mechanism, and by a trickle-down effect of mutations that lowers the structural 

resolution. Such trickle down effects can arise for instance from native state flexibility, or from 

solvent interactions that do not report on genuine structure per se. Here we present a 

comprehensive ΦM-value analysis with horizontal (sequence), vertical (multiple mutations at 

a single site) and chemical depth (side chain and “residue-assigned” backbone hydrogen bond 

mutations) to identify reliable mutations that can act as probes of the folding mechanism. The 

“conservatism” of mutations with respect to the folding mechanism is ascertained by multiple 

side chain substitutions at the same site (L7, E12, R14, S16, Y23, Y24, F25, I28 and T29), 

verification of individual ΦM values by cross-β strand neighbors (M15 vs. V22, E12 vs. F25), 

residue assigned ΦM values from backbone hydrogen bond mutagenesis (e.g. S16A/G/T vs. 

S16s, N26D vs. H27h) or immediate sequence neighbors (R21-V22-Y23 series), and 

temperature tuning (outliers in ΦT).For some residues (R14, T29), ΦM values calculated from 

non-conservative mutations agree well with ΦM values calculated from more conservative and 

structurally less perturbative mutations, while other mutations yield ΦM values that primarily 

report on the energetics of polar or charged residues with solvent (e.g. Y23F, E12A/Q, 

E35A/Q). Another subclass of mutations that target the flexible loop 1 substructure of hPin1 

WW (S16G, R17r, S19G, S18G/S19G, G20A) yield ΦM values that lie clearly outside the 

classical range (ΦM > 1). Based on the correlation with X-ray B factors, their high ΦM values 

result at least in part from increased local backbone dynamics in the native state. Although Ala 

mutations overall appear to be reliable reporters of transition state structure, as often assumed 

in the literature, we also identify clear outliers (P8A, S16A and V22A). Another Ala-mutant 

(W34A) shows an unusual dependence on temperature tuning. Its ΦM value decreases with 

temperature, suggesting that the smaller Ala residue perturbs non-native interactions that are 

stable at low temperature, yet nevertheless speed up folding. Aside from obvious mutant 

outliers that can be easily identified by cross-validating their ΦM values with different mutants 

at the same sequence location, another subset of mutants perturb transition state structure and 

shift the transition state ensemble to a more native-like ensemble state, as evidenced by large 

ΦT values for such mutations. Four of the five mutants that shift the transition state position in 

Fig. 2.5 map to the loop 2 region or immediately flanking residues. Although not dominating 

transition state structure, the wild type sequence of loop 2 can be perturbed sufficiently to affect 

folding rates. The ease with which the folding mechanism of the hPin1 WW domain can be 

changed by what appears to be subtle sequence modifications or perturbations of 

intermolecular forces (e.g. weakening a single, partially solvent-exposed backbone hydrogen 

bond as in amide-to-ester mutant S32s) argues against two-state folding with a well-defined, 
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robust and narrow transition state and suggests a more complex, multidimensional energy 

surface with additional local extrema waiting to become rate limiting for folding, as shown 

experimentally and computationally for the FBP28 WW domain [4, 41]. The hPin1 WW 

domain is thus an apparent two-state folder, but not by a wide margin. Using a more expanded 

set of consensus mutants, a detailed map of the folding transition state was generated that now 

covers 76 % of the hPin1 sequence (previous coverage: 50 %). Many of our earlier findings 

are supported in the present study, but some interpretations need to be modified or revisited. 

Loop 2 and β strand 3, which define the C-terminal hairpin in folded hPin 1 WW, appear to be 

more structured in the transition state than thought previously, and the discrepancy in the 

backbone and side chain ΦM values within the loop 1 substructure can now be attributed to 

local backbone disorder in the folded protein, rather than a genuine variation in backbone and 

side chain structure. In fact, by assigning backbone hydrogen bond to the two residues that 

constitute the bond, we found good agreement between the ΦM values measured by side chain 

and backbone hydrogen bond perturbation for most positions. The mutants with a 

thermodynamically and kinetically optimized loop 1 substructure agree well with the native-

like ΦM values of the highly destabilized loop 1 variants R21A/H and S16s mutants that 

perturb the 6-residue wild type hPin1 WW loop. Clearly, in both wild type hPin1 and the 

redesigned variants, the tip of the loop/turn is fully developed in the transition state. These 

observations and the fact that stabilizing loop 2 in the already fast folding FiP domain further 

speeds up folding by a factor of 3 are difficult to reconcile in a truly sequential (framework) 

model for folding, making a simple two-state folding mechanism more likely. Alternatively, as 

suggested by some simulations [35, 42] and experiments [43] of fast-folding WW domains, 

loop 2 could actually form before or after loop 1, or fluctuate between folded and unfolded 

conformations before loop 1 forms, while loop 1 remains rate-limiting due to its larger 

activation barrier. Additional experiments with mutations targeting loop 2 in FiP are needed to 

further discriminate between these alternatives.  
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CHAPTER 3 
 

Eliminating a protein folding intermediate by 

tuning a local hydrophobic contact 

 
It is well-known that folding intermediates play an important role in protein folding 

process. They can be a cause of less efficient folding, and the same time may help to describe 

the subdomain architecture of a protein, or assist experimentalists to identify fundamental 

mechanistic details in protein folding by providing additional snapshots of the folding reaction. 

Moreover, folding intermediates on or off the main folding pathway are a common route to the 

formation of oligomers and amyloid fibrils, which are linked to a variety of fatal neuro-

degenerative protein diseases [1–5]. Preventing the population of such intermediates, whether 

they lie on or off the dominant folding pathway, offers one solution to the protein related 

diseases.  

The triple- β -stranded WW domain from the formin-binding protein 28 (FBP28) (PDB ID: 

1E0L) [6] is a useful model system for studying protein re-design to eliminate intermediates. 

Folding of the FBP28 WW domain has been studied extensively by both experiments [3,7–14] 

and simulations[4,15–26]. The mechanism by which this protein folds to the native structure is 

sensitive to both its sequence and its solvation environment. Near its melting temperature [9], 

or in a denaturant [7], FBP28 (wild type) is an apparent two-state folder. Its turn 1 sequence 

has been used to engineer other WW domains into fast apparent two-state folders [27]. Closer 

to its physiological melting temperature and in the absence of a denaturant, experiments using 

tryptophan-fluorescence detection revealed slow concentration-independent biphasic kinetics 

attributed to a folding intermediate [9]. That assignment was also supported by 

simulations[16,17]. FBP28 readily forms fibrils under similar experimental conditions; hence, 

the biphasic kinetics has been attributed by Ferguson et al.[3] to an off-pathway intermediate 

that is a gateway for oligomer formation.  

 

This chapter is adapted from K Dave, K Kachlishvili, M Gruebele, HA Scheraga, GG Maisuradze. Eliminating a 

Protein Folding Intermediate by Tuning a Local Hydrophobic Contact. Journal of Physical Chemistry B, 2016  

 

https://scholar.google.com/scholar?oi=bibs&cluster=12918644256816411330&btnI=1&hl=en
https://scholar.google.com/scholar?oi=bibs&cluster=12918644256816411330&btnI=1&hl=en
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Whether the intermediate is on- or off-pathway, truncation of the FBP28 sequence at the C 

terminus restored apparent two-state folding, showing how sensitive the folding mechanism of 

FBP28 is to amino acid sequence [9].The experimental results make it unlikely that the strand-

crossing hydrophobic cluster of residues Tyr11, Tyr19, and Trp30 is associated with the 

intermediate [9]. Instead, two other causes have been implicated by simulations: [16,17] slower 

formation of turn 2 contacts relative to turn 1 (also seen in closely related FiP35 WW domains 

[28], and a surface-exposed local hydrophobic contact between Leu26 and Tyr21 that assists 

the correct registry of hairpin 2. A very general scenario consistent with all the data has been 

described in ref. 26: the wild type and many mutants fold through an intermediate with just one 

turn formed. This intermediate can become short-lived and invisible to experiment if one of the 

barriers separating it from the folded or unfolded state is much larger than the other [25]. 

Tuning solvent conditions or mutating the sequence can alter the barrier heights to reveal the 

intermediate or suppress it. 

In recent computational work [26], two of six FBP28 mutants [Leu26Asp (PDB ID: 2n4r) 

and Leu26Trp (PDB ID: 2n4t)] (Fig. 3.1) folded through downhill and two-state folding 

scenarios in ~ 15% of folding molecular dynamics (MD) trajectories. Both hairpins in these 

trajectories fold through the mechanism proposed by Matheson and Scheraga [29],which is 

based on transient hydrophobic interactions, and considers the nucleation process as an initial 

aspect of folding. Thus, these mutations may restore more rapid folding mechanisms over 

multi-state folding. The Leu26Asp/Trp mutations alter the local Tyr21-Leu26 hydrophobic 

side-chain interaction and packing at the site implicated in registry of strands 2 and 3 

[16,17].Here, we combine new simulations of protein backbone fluctuations over a wide 

temperature range with temperature jump experiments of the two mutants. We show that 

Leu26Asp and Leu26Trp both reduce formation of a folding intermediate at low temperature. 

In addition, Leu26Trp significantly speeds up folding at all temperatures, moving the system 

closer to downhill folding. We explain these findings in terms of hydrophobic interactions [30–

32]. 
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Fig. 3.1: The sequences and cartoon representation of experimental NMR structures of the wild 

type, Leu26Asp and Leu26Trp mutants of the FBP28 WW domain. Mutated residues are 

highlighted in red in the sequences, and are highlighted in red and represented in sticks in 

experimental NMR structures.  

 

3.1 Methods 

 

3.1.1 MD simulations 

 

We performed 100-ns all-atom MD simulations of the mutants Leu26Asp, Leu26Trp and 

the wild type FBP28 WW domain at 250 K, 275 K, 300 K, 325 K, 350 K, 375 K, 400 K, and 

425 K in explicit water [Simple Point Charge (SPC) water model] with the GROMACS 

package [33] using the all-atom OPLS force field [34]. The structures of Leu26Asp, Leu26Trp 

and the wild type were taken from the NMR model 1 of refs. 26 and 6, respectively. The 

coordinates were saved every 1 ps. Periodic boundary conditions were applied. The distances 

of 1 nm (250 – 325 K) and 1.3 nm (350 – 425 K) were assigned between the protein and the 

sides of the unit supercell in order to avoid any interaction between the proteins of the 

neighboring supercells. The temperature of the MD simulations was kept at 250K, 275K, 300K, 

325K, 350K, 375K, 400K, and 425K, respectively, with a v-rescale thermostat [35], and the 

pressure (Parrinello-Rahman barostat)[36] was kept at 1 bar. The steepest descent algorithm 
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with tolerance of 100 kJ/mol/nm and maximum step size 0.01 nm was used for energy 

minimization. The particle-mesh-Ewald method [37,38] was used for calculating long-range 

electrostatic interactions, and a distance of 1.0 nm was used for the van der Waals cutoff. After 

the desired temperature was reached, an equilibration of 0.3 ns duration was performed with 

random initial conditions generated by using a random seed for the initial velocities. 

 

3.1.2 Thermodynamic Characterization 

 

Leu26Asp and Leu26Trp were both custom-synthesized (Genscript corp., NJ) to > 98% 

purity. The peptides were then dissolved in sodium phosphate buffer (pH=7.0) to a required 

concentration. Thermal unfolding for both Leu26Asp and Leu26Trp was measured by 

tryptophan fluorescence and circular dichroism. The Leu26Trp mutant contains an extra 

tryptophan residue compared to wild type, and fluoresces more strongly than the Leu26Asp 

mutant. Both types of measurements were carried out with 10 μM protein dissolved in 10 mM 

sodium phosphate buffer (pH=7.0). Fluorescence spectroscopy was carried out using a Cary 

Eclipse fluorescence spectrophotometer equipped with programmable temperature control 

(Varian) with excitation and emission slit widths kept at 5 nm. Tryptophan was excited at 280 

nm, and emission was collected from 290-450 nm. Circular dichroism was measured using a 

JASCO spectrophotometer with Peltier temperature control (JASCO Inc, Easton MD).  All 

spectra were recorded from 200-250 nm at a scan rate of 50 nm/min with 1 nm resolution and 

are an average of 5-10 accumulations.  Measurements were conducted in a 2 mm path length 

quartz cuvette. Thermodynamic denaturation signals S(T), obtained by fluorescence and by far-

UV CD spectroscopy, were fitted to a two-state model in equation (1a,b) to obtain the 

denaturation midpoints with respect to temperature (Tm). SU and SF are unfolded and folded 

baseline and ΔG(T) is the free energy change. 

 

 𝑆(𝑇) = 𝑆𝑈 + 𝑆𝐹𝑒−Δ𝐺(𝑇)/𝑅𝑇/(1 + 𝑒−Δ𝐺(𝑇)/𝑅𝑇) (1a) 

 Δ𝐺(𝑇) = g𝑋(𝑇 − 𝑇𝑚) (1b) 

 

3.1.3 Kinetics Experiments 

 

Laser temperature jumps were carried out using a Surelite Q-switched Nd:YAG laser 

(Continuum Inc., Santa Clara, CA), with details of the instrument mentioned elsewhere 
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[39,40].The jump size was 7-8 °C. The exact size of the jump was calibrated by comparing the 

fluorescence decays f of tryptophan (300 µM solution) after the jump with the corresponding 

decay at an equilibrium temperature several degrees higher. Fluorescence decays were excited 

at 280 nm by a tripled, mode-locked Ti:sapphire laser every 12.5 ns for a total of 1 ms. The 

temperature jump was set to occur 153.75 µs after the oscilloscope was triggered to start data 

collection. The sampling frequency was 10 Giga-samples per second. Thus each fluorescence 

decay was sampled at 100 picosecond intervals, or 125 times before the next decay was excited. 

The signal was usually 50-60 mV. Sample concentrations were 100 µM for both mutants as 

measured by the absorption signal at 280 nm. 

 

3.1.4 Kinetics Data Analysis  

 

Kinetics data were analyzed using MATLAB (Mathworks Inc., Natick, MA) and IGOR Pro 

(Wavemetrics Inc., Lake Oswego, OR). A fluorescence decay f(t) was collected every 12.5 ns. 

100 of these were binned into intervals of 1.25 µs. Thus the protein kinetics could be followed 

with 1.25 µs time resolution.  The decays f(t) were fitted to a linear combination of the decay 

f1 averaged between 153.75 and 28.75 µs before the T-jump, and the decay f2 averaged over 

the final 125 µs of data collection, where the protein had equilibrated. The relative lifetime 

shift as a function of time, χ(t), was then obtained (see Results for definition of ). The χ(t) 

traces were fitted to a double or single exponential function starting at t=0, where the T-jump 

occurred (see Results). 

 

3.2 Results 

 

3.2.1 Structural fluctuations of Leu26Asp and Leu26 Trp mutants vs. temperature  

Concerted or sequential formation of two hairpins determines the folding mechanism. If 

formation of hairpin 1 is assisted by global hydrophobic collapse (e.g. by the core at Tyr 

11/Tyr19/Trp30), whereas formation of hairpin 2 is delayed by comparison, this results in an 

intermediate state, making the protein fold through a three-state scenario [26]. If formation of 

hairpin 2 is assisted by the Matheson-Scheraga mechanism, then temperature may have a strong 

effect on the relative propensities and kinetics of hairpins 1 and 2 forming. In the wild type, 

two phases appear very pronounced in the relaxation kinetics at low temperature, but not at 

high temperature [9].Therefore, it is of interest to know whether the change of temperature 
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plays a significant role in the formation of the intermediate state of the Leu26Asp and 

Leu26Trp mutants of the FBP28 WW domain. 

To answer this question, we investigated the backbone fluctuations of native FBP28 at eight 

temperatures from 250 to 425 K, by performing all-atom MD simulations for Leu26Asp, 

Leu26Trp, and the wild type. A detailed analysis of the two-dimensional free-energy 

landscapes (FELs) along the dihedral angles and  of each residue, and of the contributions 

of the principal modes to the mean-square-fluctuations (MSF) along the angles and  was 

conducted.  

Inspection of the MD trajectories showed that structural fluctuations of all proteins increase 

with temperature; however, all systems remain mainly in their native states except for very 

high temperatures (400, 425 K). It has been shown that the dynamics in the native state are 

controlled by the same energy landscape that guides the entire folding process [41]. Hence, it 

is of interest to investigate how the dynamics of the backbone change with an increase of 

temperature in the native state, and whether these changes determine the folding scenario of 

the system.   

We exclude the < 275 K and > 375 K temperatures from discussion in the main text because 

they cannot be reached in our experimental analysis [see Fig. B.1 and Fig. B.2 in the Appendix 

B for full simulations and additional results]. 

 

3.2.2 Reducing backbone motion to a few collective modes 

 

The structural mean-square-fluctuations of the dihedral angles and  can be decomposed 

into collective (principal) modes by using dihedral principal component analysis (dPCA) [42–

44]. The dPCA facilitates a projection of the dihedral-angle coordinates of a protein onto a few 

relevant coordinates along which the FELs and the collective modes of the protein can be 

analyzed. These modes have “frequencies” and directions corresponding to the eigenvalues and 

eigenvectors of the dPCA covariance matrix [22,44,45]. The projection of the trajectory on the 

eigenvector is named the principal component. The modes with the largest eigenvalues k 

(named slow modes) contribute the most to the structural fluctuations of the protein. The 

contribution of the ith dihedral angles and  to a mode k is the so-called influence i
k, and the 

mean-square-fluctuation at residue i is given by [22,44,45] 

 𝑀𝑆𝐹𝑖 = ∑ 𝜆𝑘𝜈𝑖
𝑘

𝑘 . (2) 
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Fig. 3.2 illustrates the percentages of the total fluctuations captured by the principal modes 

derived from dPCA for Leu26Asp (panel A), Leu26Trp (panel B), and the wild type (panel C) 

at five different temperatures (see Fig. B.1 for the full temperature range). We list only the first 

several modes, the sum of which captures ~ 50% of the total fluctuations. It is well established 

that, if the principal modes are able to capture ≥ 40% of the total fluctuations, the FELs 

constructed along those principal components can describe the folding dynamics correctly [20]. 

The percentage of the total fluctuations captured by principal modes changes with temperature. 

For example, in the MD trajectories of Leu26Asp, ~ 40% of the total fluctuations can be 

captured by the first two modes at 275 K, but the first seven modes are required at 375 K. We 

have also calculated the contributions of the first k principal modes (k is the number of modes 

capturing at least 40% of the total fluctuations) to the MSFi along the angles  and  at five 

different temperatures [Fig. 3.2, right side (see Fig. B.1 for the full temperature range)]. Based 

on our earlier results, [20,26] Fig. 3.2 enabled us to determine the folding scenario of each 

system at any particular temperature. Most of the residues in the MD trajectories of Leu26Asp 

at low temperatures from 275 K to 325 K move in a concerted fashion. Contributions to the 

fluctuations in that temperature range are almost identical: in addition to the termini, they are 

localized at the second turn – the main factor in the emergence of the intermediate state [4][16–

18,20,22][24–26].This localization indicates that Leu26Asp is a three-state folder at lower 

temperature, with turn 2 unraveling first. The result is different for Leu26Asp at high 

temperatures. At 350 and 375 K, mainly the termini contribute to fluctuations. Since there is 

never a dominant contribution from the second turn alone, Leu26Asp can fold through either 

downhill or two-state folding scenarios at these temperatures (Fig 3.2).  

In contrast, Leu26Trp exhibits downhill or two-state folding scenarios in the MD 

trajectories even from 275 K to 350 K (Fig. 3.2). At very high temperatures (> 375 K), 

contributions to the fluctuations in the trajectory come from not only the N- and C-termini, but 

also from the first and second turns, and eventually the first and third -strands, which indicates 

onset of multi-state folding outside the experimental temperature range (Fig. B.1). Similar 

multi-state folding scenario is observed for Leu26Asp at very high temperatures, 400 and 425 

K. It should be noted that the wild type folds through either downhill or two-state folding 

scenario at very low temperatures (250 - 275 K), and changes to three-state folding at the lowest 

experimentally reachable temperatures, which is in agreement with our earlier experiments [9].  
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Fig. 3.2: Percentages of the total fluctuations captured by the principal components for 

Leu26Asp (panel A), Leu26Trp (panel B) and the wild type (panel C) at five different 

temperatures. The panels on the right represent contributions of the first k collective modes (k 

is the number of modes capturing at least 40% of the total fluctuations) to the MSF along the 

angles  and  at five different temperatures (275 K, 300 K, 325 K, 350 K, and 375 K) for 

Leu26Asp, Leu26Trp and the wild type. The black bars above each x-axis label the -strand 

locations. 
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3.2.3 Pinpointing the origin of the change in the folding mechanism 

 

 In order to support the three-state folding of Leu26Asp at low temperature, and the two-

state or downhill folding of Leu26Trp at all experimentally reachable temperatures, we 

examined the backbone fluctuations of each system by building two-dimensional FELs along 

the dihedral angles i and i of each residue (Fig. B.2).   

The change in backbone dynamics with increasing temperature is similar for all mutants 

and wild type, except for a few residues (discussed below) that play a vital role in determining 

the folding scenario. As expected, in all proteins the amplitudes of the fluctuations of the ends 

(ii, i = 1 – 7, 31 – 36) gradually become larger with increase of temperature, which is 

manifested in the larger regions explored by these residues (the larger amplitudes indicating 

cold denaturation at 250 K being the exception). These results show that the N-terminal region 

is even less stable than the C-terminal region. The turn 1 residues (ii, i = 14 - 16) do not 

respond significantly to the increase of temperature up to 375 K, whereas 2525 in turn 2 are 

influenced by the temperature change. The fluctuations of the threonine 25 residue are strongly 

correlated with those of its neighboring 26th residue, which belongs to the third -strand. All 

-strands retain stability almost entirely until T ≥ 425 K. Only some edges between turns and 

-strands (ii, i = 12, 13, 17, 30) exhibit instability at higher experimentally unreachable 

temperatures. The exception is residue 26, which is the most “sensitive” residue to the 

temperature change among the residues pertaining to the strands; however, it reacts 

differently to the temperature change in each protein. In particular, the FEL along the angles 

26 and 26 of the Leu26Asp mutant exhibits multiple minima starting from 275 K, but not 

close to Tm (350 K), where the number of minima reduces to one main deep minimum and one 

shallow minimum (Fig. B.2A). Thus, Leu26Asp locally recapitulates a multi-state to two-state 

transition as temperature is increased. 

In contrast, the FELs along angles 26 and 26 of the Leu26Trp mutant exhibit one deep 

minimum from 250 K to 350 K (close to Tm). Leu26Trp becomes unstable at higher (≥ 375 K) 

temperatures (Fig. B.2B). Thus, Leu26Trp is even closer to two-state or downhill folding than 

Leu26Asp. 

Since none of the other residues pertaining to the -strands or turns (except for threonine 

25, which is correlated with aspartate 26 in Leu26Asp) are affected by the increase of 

temperature up to 350 K, we can conclude that residues threonine 25 and aspartate 26 are the 

“key players” that determine the folding scenario. We thus predict that the Leu26Asp mutant 
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shows some three-state behavior at low temperature, but rapidly switches to two-state folding 

at higher temperature, whereas the Leu26Trp mutant is a two-state or downhill folder over the 

experimentally reachable temperature range. The wild type is more of a three-state folder or 

multi-state folder than either of these mutants [except for the very low temperature region (250 

– 300 K), in which it can fold through either a downhill or two-state folding scenario (Fig. 

B.2C)]. I next consider experimental data to test this prediction. 

 

3.2.4 Experimental thermal melts 

 

Differential scanning calorimetry was previously measured in ref. 26 to obtain information 

about the changes in heat capacity during the unfolding process. Here, thermal melts at different 

denaturant concentrations were collected for the Leu26Asp and Leu26Trp mutants of the FBP 

WW domain. Two different probes were used see Fig. 3.3. The tryptophan fluorescence 

emission was monitored by exciting the protein at 280 nm, providing information about the 

local environment around the fluorophore. We report the average wavelength <λ>, where I is 

intensity, λ is wavelength, and j indexes the wavelengths in the range of 300 – 450 nm, 

 〈λ〉 = (∑ λ𝑗𝐼ϳ) /ϳ (∑ Iϳ)𝑗 .  (3) 

Circular dichroism at 227 nm was used as a global probe to monitor secondary structure 

changes during protein denaturation. Temperature vs. wavelength measurements at 0 to 3 M 

GuHCl concentrations were performed to obtain more accurate melting temperatures. The full 

data set of thermal/GuHCl denaturation data was fitted globally for each mutant (Fig. B.3).  

Leu26Trp is consistently less stable than Leu26Asp by all probes (Table 3.1). Different 

probes reveal different melting temperatures for the same protein, suggesting that it is not an 

ideal two state folder (Table 3.1). Different probes overlap only at high temperature (Fig. B.3). 

This observation is consistent with downhill folding[46,47] or an intermediate state below the 

melting transition, and with two-state folding above the melting transition. The thermal melts 

are reversible for both Leu26Asp and Leu26TrP plot shown in Appendix B (Fig. B.4). 
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Fig. 3.3: Thermal denaturation of Leu26Asp (A) and Leu26Trp (B) monitored by using circular 

dichroism at 227 nm (blue left axis) and by the average wavelength of tryptophan fluorescence 

emission (right black axis). The thermodynamic fits are shown as smooth curves, with Tm in 

Table 3.1 and plots of calculated fraction folded vs. temperature for both mutants in the 

Appendix B (Fig. B.5).  
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Table 3.1: Two state thermodynamic fitting results for Leu26Asp and Leu26Trp using 

different probes. Data are shown in Fig. 3.3 and Fig. 3.4 for Leu26Asp and for Leu26Trp. One 

standard deviation uncertainties are shown in parentheses when available 

 

 

 

 

 

 

 

3.2.5 Experimental kinetics data  

 

Temperature jump experiments were performed at three different final temperatures at or 

below the Tm to obtain the relaxation kinetics (313 to 333 K for Leu26Asp, 313 to 325 K for 

less stable Leu26Trp). We measured a tryptophan fluorescence decay profile f(t) every 1.25 

microseconds. Upon T-jump, the profile f(t) changes shape as the protein equilibrates towards 

more unfolded state. We fitted f(t) to a linear combination of the fluorescence decay before the 

T-jump (f1) and after equilibration (f2), or f(t)=(t)f1+[1-(t)]f2 [39,40]. The fitted value of (t) 

tracks the change in fluorescence decay lifetime as the protein equilibrates after the T-jump. 

The results and least-squares fits to single or double exponential functions 

 𝜒(𝑡) = 𝐴0 + 𝐴1𝑒𝑡/𝜏1 + 𝐴2𝑒𝑡/𝜏2 (4) 

are shown in Fig. 3.4 and Table 3.2. About 40% of the fluorescence lifetime change 

(A1+A2≈0.4) is resolved; the rest occurs in <1 s and is attributed to the intrinsic dependence 

of the tryptophan lifetime on temperature [39]. 

At low temperature, the Leu26Asp mutant has a small but significant slow phase 

(A2/(A1+A2)≈17%) of 130 s, in addition to a fast phase of 20 s (Fig. 3.4 and Table 3.2). Both 

of these are considerably slower than the measured speed-limit of the WW domain ≈2 s [48–

50].Thus, we attribute the kinetics at low temperature to three- (or multi-state) folding, 

although the slow phase is not as large as was measured for the wild type [9]. At higher 

temperature, the slow phase vanishes, and the faster phase speeds up to ≈8 s (Fig. 3.4 and 

Table 3.2), not far from the measured folding speed limit for the FiP35 WW domain. Thus, we 

attribute the folding of Leu26Asp to fast two state folding, approaching downhill folding. 

Protein 

Tm, K 

(Fluorescence 

wavelength 

shift)  

Tm, K 

(Circular 

Dichroism) 

Tm, K 

(DSC, ref. 26) 

Tm Standard 

Deviation, K 

Leu26Asp 339(1) 329(1) 334 
5 

Leu26Trp 331(2) 324(1) 328 3.5 
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The Leu26Trp mutant has a smaller slow phase even at low temperature (A2/(A1+A2) < 

10%) (Table 3.2). The slow phase also disappears at high temperature, where this mutant folds 

in ≈7 s (Fig. 3.4 and Table 3.2). Thus Leu26Trp is closer to two-state folding or downhill 

folding than Leu26Asp. Both mutants fold at least twice as fast as the wild type, whose fastest 

phase does not drop below 14 s at its melting temperature [9]. 

 

 

Fig. 3.4: (A) Relaxation kinetics of the Leu26Asp mutant of FBP28 at three different 

temperatures shown in the Figure legend. The black traces correspond to the single or double 

exponential fits of the data as shown in Table 3.2. The relative amplitude of the slower phase 

is negligible at > 313 K, and much smaller than for the wild type in ref. 9 at 313 K. (B) 

Analogous data for the Leu26Trp mutant (at lower temperatures due to its reduced stability). 

This mutant folds faster than wild type or Leu26Asp and has an even smaller slow phase in 

Table 3.2.  
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Table 3.2: Single or double exponential fits to the data in Fig. 3.4. One standard deviation 

uncertainties are given in parentheses. 

 

Protein, T A1 τ1 (μs) A2 τ2 (μs) 

Leu26Asp, 313 K 0.34 (0.02) 20 (2) 0.07 (0.01) 130 (37) 

Leu26Asp, 323 K 0.40 (0.01) 13.9 (0.5) - - 

Leu26Asp, 333 K 0.39 (0.03) 7.6 (0.9) - - 

Leu26Trp, 313 K 0.37 (0.01) 11.7 (0.6) 0.04 (0.01) 113 (17) 

Leu26Trp, 319 K 0.34 (0.02) 11.4 (0.7) - - 

Leu26Trp, 325 K 0.30 (0.01) 7.3 (0.8) - - 

 

 

3.3 Discussion and conclusion 

 

Based on our simulations, we make two general predictions: (i) The Leu26 and Thr25 

positions are critical to the folding mechanism of the FBP28 WW domain because they alter a 

surface-exposed local hydrophobic contact that forms hairpin 2, as predicted in refs. 16, 26. (ii) 

The Leu26Asp and Leu26Trp mutants affect this interaction differently and differ from the 

wild type. The Leu26Asp mutant is a three-state folder at low temperature because of the slow 

correct formation of turn 2, but becomes two-state or downhill folder at higher temperature. 

The Leu26Trp mutant is a two-state or downhill folder almost over the whole experimentally 

reachable temperature range. Both are closer to two-state folding than the wild type. 

Our experimental data largely validates this prediction: The Leu26Asp mutant has the 

largest standard deviation of Tm by three different probes (Table 3.1), and the largest slow phase 

amplitude at low temperature, but only a single exponential phase at high temperature. This 

observation is consistent with a transition from three-state folding to two-state or downhill 

folding as the temperature is raised. The Leu26Trp mutant has a smaller standard deviation of 

Tm, a smaller slow phase at low temperature, and folds with a faster single exponential phase 

than Leu26Asp at high temperature. This observation is consistent with Leu26Trp being closer 

to the two-state/downhill limit than Leu26Asp. 
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Thus, we propose that both mutants undergo a transition from three-state towards fast two-

state folding (approaching downhill folding) at higher temperature, but the Leu26Trp mutant 

is almost two-state already even at low temperature. This is exactly the trend predicted from 

simulation and dPCA analysis, although evidence of three-state folding of Leu26Trp at low 

temperature cannot be discerned in the simulations. The downhill folding time of ≈3 s/0.5 s 

calculated for FBP28 Leu26Asp/Trp in ref. 26 (after adjustment for coarse-graining in UNRES 

[51,52] MD simulations) differs from the fast experimental phase of 7 s observed here. This 

is not surprising especially for coarse-grained force fields, in which averaging out the fast 

motions of the secondary degrees of freedom, at the coarse-grained level, makes the free-

energy barriers lower than those at the atomic level. Thus, it appears that the simulations 

overestimate how close Leu26Trp already is to fast two-state/downhill folding, but correctly 

predict the change in mechanism going from Leu26Asp to Leu26Trp with increasing 

temperature. Such agreement shows that well-calibrated modern force fields such as Optimized 

Potentials for Liquid Simulations (OPLS) [34] can give insight into mechanistic details of 

folding, not just whether a protein folds to a certain native structure or not. This was also shown 

for FiP35 and its GTT triple mutant using the CHARMM22* force field [53] (FiP35 is a 35 

residue, engineered WW domain that combines human Pin1 WW domain with the shorter loop 

1 of FBP WW domain, so FiP = “FBP in Pin.” The FiP35 mutant “GTT” contains mutations 

N26G, A27T, and S28T, including position 26, which is important based on the simulations 

presented here.)  

Finally, ref. 22 shows that three-state folding can be partly ‘hidden’ when the barriers 

connecting the intermediate to other states are asymmetrical, resulting in a single experimental 

activated time scale. It is worth noting that this effect may contribute to the rapid smoothing of 

folding kinetics to a single time scale (Table 3.2) when the temperature is raised. We tested 

this possibility further with a quantitative investigation of the Leu26Asp mutant residence 

times in the intermediate state from MD simulation. We find that the time, spent in the 

intermediate state by Leu26Asp, oscillates within a 23 – 34 ns range at low temperatures 

(except for 250 K), but then drops down to ~ 5 ns, and then starts slowly increasing again with 

increasing temperature (Fig. 3.5). The simulations thus are consistent with higher free energy 

landscape roughness (intermediates) at low temperature, less roughness (downhill folding) at 

higher temperature, and again increased roughness at the highest temperature, where an 

intermediate may be hidden due to a large activation energy differences leading from either the 
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native or unfolded states to the intermediate. (This, of course, assumes a native-intermediate-

unfolded topology of the landscape, which the present experiments cannot prove or disprove.) 

The mutants and wild type have similar patterns of dynamics in terms of backbone 

fluctuations. The main difference was that two key residues lost their resistance to fluctuations 

at a temperature much below Tm in the wild type, whereas they retained stability almost over 

the whole experimentally reachable temperature range in Leu26Trp. (The key residues of 

Leu26Asp also lose their resistance to fluctuations at a temperature << Tm; however, they 

regain the stability close to Tm.) In the particular case of the Leu26Asp mutation, removing a 

local hydrophobic interaction with tyrosine 21 [16] seems to be the key. The key residues 

forming the intermediate state were identified as 25 and 26 by MD simulations of folded state 

fluctuations in the 275 to 375 K range (see Figures B.1 and B.2 for the full temperature range).  

These findings can be corroborated by the results obtained from NMR experiments:[26] In 

Leu26Asp, the aspartic acid 26 side chain is consistently oriented toward the tyrosine 21 

hydroxyl, which suggests the presence of a water-mediated hydrogen bond that stabilizes that 

specific orientation, which may allow some “flexibility” during the correct formation of turn 

2. In other words, it may either speed up (two-state or downhill folding) or slow down (three-

state folding) the correct formation of turn 2 in contrast to the wild type, in which surface-

exposed hydrophobic contact enforces the slow correct formation of turn 2.  

Our results indicate that the speed of correct formation of turn 2 depends on temperature. 

In particular, a water-mediated hydrogen bond is strong at low temperatures and plays an 

important role in slowing down the formation of turn 2. It weakens with the increase of 

temperature, while hydrophobic interactions between Tyr20 and Pro33, and Tyr19 and Trp30 

become stronger,[30] and enforce the fast correct formation of turn 2. For the other mutant, 

Leu26Trp, the interaction between Trp26 and Tyr21 seems to play a crucial role in fast 

formation of turn 2. The point is that hydrophobic interactions between aromatic residues 

contribute substantially to protein stability [31].Aromatic-aromatic interactions are stronger 

than those between aliphatic and aromatic residues at all temperatures (until the protein starts 

unfolding),[30–32] hence, enforcing the fast formation of hairpin 2 almost over the whole 

experimentally reachable temperature range.  

In the end, the flexibility of leucine 26,[54] compared to tryptophan, may be the main 

reason for slow correct formation of turn 2 in wild type, explaining the three-state folding 

scenario of wild type at low temperatures, observed here and previously. 

In this study, by performing T-jump experiments, we have experimentally validated 

theoretical findings (this work and ref. 26) that a mutant of the FBP28 WW domain, Leu26Asp, 
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can reduce the intermediate state population at lower temperature relative to the wild type, and 

eliminate it entirely at high temperature. Another mutant, Leu26Trp, reduces the intermediate 

population even more at low temperature. Protein folding intermediates are associated with 

formation of amyloid fibrils, which are responsible for a number of degenerative protein-

related disorders. Based on our results, it is possible to re-design proteins with very few 

mutations (even just a single mutation) to avoid folding intermediates. The extensive truncation 

of the N- and C- termini done in ref. 9 to reduce three-state folding is not necessary to approach 

two-state folding. A single carefully chosen residue can have a similar effect. However, the 

possibility of kinetically hidden intermediates should always be kept in mind when a 

mechanism apparently changes from three- to two-state folding. However, it should be noted 

that, the recent studies on other domains showed the similar results. In particular, investigations 

of folding mechanisms of a fluorescent variant of PDZ2 from PTP-BL [55] and the measles 

virus X domain [56] revealed that folding can be tuned from a three-state to a two-state under 

stabilizing conditions (e.g. in the presence of sodium sulfate) and by mutation, respectively.  

 

 

 

Fig. 3.5: Time spent in the intermediate state, vs. temperature, for Leu26Asp. 
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CHAPTER 4 
 

The effect of fluorescent protein tags on 

phosphoglycerate kinase stability is non-additive 
 

 

Fluorescent proteins tags have become ubiquitous labels to track diffusion, folding, or 

binding of a host protein.[1-6] Tags such as AcGFP1 are very stable,[7, 8] making them 

convenient probes. They are particularly convenient in-cell or in vivo because cell or tissue 

auto-fluorescence can hinder detection of a host protein’s intrinsic tryptophan fluorescence,[9] 

and because tags can be co-expressed with the host protein without dye-labeling and injection.  

Part of the reason for the great success of fluorescent protein tags is simply that they are 

just proteins without specific binding partners. Especially in a cell, they mimic the presence of 

other cellular proteins, albeit connected to the target by a short linker. The tags will interact 

with and crowd the host protein, but other proteins in the cell do the same. 

Nonetheless, fluorescent protein tags are rather large (27 kDa), and despite being 

engineered to be monomeric, they are prone to interactions.[10] This raises the question of how 

much fluorescent protein tags interfere with folding kinetics, stability, or function of the host 

protein by crowding it or interacting with it. The effect of tags on host proteins is clearly not 

negligible. For example, it has been shown recently that substituting a small ReAsH tag for a 

27 kDa mCherry tag speeds up protein folding in cells by a factor of two.[11] Thus reduced 

chain diffusion due to the tag may contribute to the slower folding kinetics observed in 

cells.[12]  

 As experiments with fluorescently tagged proteins evolve towards drawing quantitative 

conclusions about the target protein, it becomes more important to understand both the 

magnitude and the mechanism of label effects.[13] Extrapolating from observations of the 

tagged proteins often requires that effect of the tag be treated as a small perturbation, and often 

assumes that multiple tags (to monitor either intra- or inter- molecular interactions[14]) will 

perturb the system in a predictable, additive fashion.  

 

This chapter is adapted from K Dave, H Gelman, CTH Thu, D Guin, M Gruebele. The effect of fluorescent protein 

tags on phosphoglycerate kinase stability is nonadditive. Journal of Physical Chemistry B, 2016 

https://scholar.google.com/scholar?oi=bibs&cluster=9854246695227393021&btnI=1&hl=en
https://scholar.google.com/scholar?oi=bibs&cluster=9854246695227393021&btnI=1&hl=en


87  

The appropriateness of this assumption places limits on the accuracy of conclusions drawn 

from the study of tagged proteins.  Here I address both the mechanism and the additivity of 

fluorescent tag effects in vitro to provide a reference for in-cell experiments. Our results falsify 

the assumption of additivity for the host protein I study. 

Fluorescently-labeled phosphoglycerate kinase (PGK) is used extensively for studies of 

folding in the cellular milieu and in vitro.[12, 15-22] It has been used in both singly-labeled[14] 

and doubly labeled[12, 23] versions. I compare five constructs of PGK to investigate how this 

host protein interacts with its fluorescent tags in vitro.  I denature PGK with heat and pressure 

to compare the thermodynamic stability of unlabeled PGK, PGK labeled with either AcGFP1 

or mCherry, and PGK labeled with both fluorescent tags (Fig. 4.1). When stability of all five 

constructs is measured by intrinsic tryptophan fluorescence or circular dichroism, I observe 

that the addition of either individual tag is destabilizing. Thus, destabilizing interactions 

between PGK and the tag must outweigh any stabilizing effect of crowding by the tag.  In 

contrast, the addition of a second tag doesn’t further destabilize PGK.  The two tags either 

sufficiently crowd PGK to overcome the individual destabilizing interactions, or they interact 

with one another to divert some of the destabilizing interactions away from PGK, or both.  

To our surprise, I also found that fluorescence spectroscopy of AcGFP1 alone, but not of 

mCherry, can be used to detect unfolding of the attached PGK in the singly labeled construct. 

The green fluorescent protein emission wavelength is sensitive to the conformation of PGK 

and its spectral shift can be used as a probe of PGK conformation throughout the unfolding 

transition. I propose that this occurs through differential interaction of the folded and unfolded 

PGK with hydrophobic regions on the GFP surface, modulating its structural fluctuations with 

a noticeable effect on the chromophore.[24, 25] This sensitivity is disrupted in the doubly 

labeled construct, suggesting that the second fluorescent protein disrupts these interactions. 

This observation could prove useful in cases where a protein with two large tags does not 

express well in cells. 

Fluorescence is very sensitive and non-destructive, but the non-additive effect of 

fluorescent protein tags on protein stability shows that competition between destabilizing tag-

host interaction, tag-tag-interaction, and host crowding already occurs in the in vitro model 

protein, let alone in cells. The destabilizing effect of tags on the host protein may be lessened 

in cells, where other biomolecules compete to interact with both the tags and the host protein. 

This may explain some of the stabilization of proteins observed in cells. Although the “apples-

to-apples” comparison of tagged protein in vitro and in-cell is a valid one, one must keep in 

mind that it only highlights the cell’s effect on the labeled protein. Endogenously expressed 
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label-free proteins may react differently to the cellular milieu. Despite the complications 

introduced by the use of fluorescent tags for quantitative measurements, they still fill an 

essential role in in-cell studies. NMR, infrared absorption and mass spectrometry are label-

free,[26-28] but they require either high protein concentrations in the cell (NMR, IR), or they 

can be destructive to the cell (MS). Comparing stability of the same protein in-cell vs. in vivo 

by a range of methods will be the best solution to assess the different challenges posed by 

different techniques. 

 

4.1 Methods  

 

4.1.1 Protein sample preparation  

 

Yeast phosphoglycerate kinase (PGK) mutant Y122W/W308F/W333F, with a melting 

temperature of ca. 40 °C in vitro, was the basis for all tagged constructs. I expressed the 

untagged PGK (P), and three fluorescent constructs: PGK labeled with either AcGFP1 (GP) or 

mCherry (CP) at the N-terminus, mCherry (PC) at the C-terminus, and the doubly labeled 

FRET construct with the donor AcGFP1 at the N-terminus and the acceptor mCherry at the C-

terminus (GPC) (Fig. 4.1). For simplicity, I refer to them as GP, CP, PC, GPC, and P for “bare” 

PGK. All five proteins were expressed in E. coli BL21 cells (DE3 CodonPlus(RIPL), Agilent), 

and purified as described elsewhere.[21] The purified proteins were dialyzed in 10 mM 

phosphate buffer at pH 6.8. Pressure thermodynamics were conducted under the same buffer 

conditions.  Temperature thermodynamics were measured in UK buffer (25 mM Tris-HCl, pH 

7.5, 5 mM MgCl2, 10 mM KCl, 1 mM EDTA).  Protein concentration varied between 

experiments; I did not observe any effect of concentration on observed stability (Fig. C.1 and 

C.2). The addition of DTT to either buffer did not affect the observed stabilities, so cysteine-

mediated interactions are not significant (1 Cys on the surface of PGK, 2 in AcGFP1). No 

difference was observed in PGK or fluorescent protein stability over the range of buffer 

conditions used here. 
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Fig. 4.1: Schematic ribbon structures of PGK (P, showing the tryptophan reporter), PGK 

labeled with AcGFP1 (GP), PGK labeled with mCherry at either terminus (CP and PC) or 

doubly-labeled PGK with both tags (GPC). 

 

4.1.2 Pressure and temperature unfolding thermodynamics  

 

Temperature denaturation of all constructs was measured by tryptophan fluorescence and 

circular dichroism. Tagged proteins were also studied by direct excitation of the fluorescent 

protein tags (GP, CP, PC, GPC), or FRET (GPC). 

Pressure denaturation was measured by tryptophan fluorescence in an ISS cell as described 

in [29] and by direct excitation of and FRET between the fluorescent protein tags, as for 

temperature denaturation. A rectangular quartz cuvette with a path length of 4 mm holds the 

sample in the pressure cell.  Measurements are taken every 100 bar from 1 to 1800 bar with a 

wait time of approximately 8 minutes at each pressure to allow equilibration. 

Spectrophotometric grade ethyl alcohol (95.0%, A.C.S. reagent; Acros Organics) was used as 

pressurization fluid.   

Fluorescence spectroscopy was carried out using a Cary Eclipse fluorescence 

spectrophotometer equipped with programmable temperature control (Varian) with excitation 

and emission slit widths kept at 5 nm. Tryptophan excitation was 280 nm and emission was 

collected from 290 – 450 nm.  AcGFP1 was excited at 475 nm and emission collected from 

485 – 560 nm.  mCherry was excited at 585 nm and emission collected from 595 – 750 nm.  

For each fluorescence emission spectrum, the average wavelength <λ> was calculated by 

equation (1) where I is intensity and λ wavelength :[10] 
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 〈λ〉 = (∑ λ𝑗Iϳ) /ϳ (∑ Iϳ)𝑗    (1) 

  

 The same wavelength range was used in all cases to obtain consistent results.  I confirm 

that the starting conformations for the pressure and temperature denaturation experiments are 

the same by showing that the initial tryptophan emission spectra for both experiments (which 

both start at ~ 25 °C, 1 bar) are same (Fig. C.3).   

 FRET measurements of GPC stability were conducted by excitation at 475 nm and 

collecting emission from 485 – 700 nm.  The reported donor/acceptor (D/A) ratio is calculated 

by dividing the integrated intensity from 485 - 560 nm (D) by the integrated intensity from 585 

– 700 nm (A).  

Circular dichroism was measured using a JASCO spectrophotometer with Peltier 

temperature control (JASCO Inc, Easton MD).  All spectra were recorded from 250 – 200 nm 

at a scan rate of 50 nm/min with 1 nm resolution and are an average of 5-10 accumulations.  

Measurements were conducted in a 2 mm path length quartz cuvette and, unless otherwise 

noted, at a protein concentration of 2 to 5 µM.   

All thermodynamic denaturation signals S(X), where X is temperature or pressure, were 

fitted to a two-state model separately for temperature and pressure denaturation 

 

 𝑆(𝑋) = 𝑆𝑈 + 𝑆𝐹𝑒−Δ𝐺(𝑋)/𝑅𝑇/(1 + 𝑒−Δ𝐺(𝑋)/𝑅𝑇) (2a) 

 Δ𝐺(𝑋) = g𝑋(𝑋 − 𝑋𝑚) (2b) 

to obtain the denaturation midpoints with respect to temperature (Tm) and pressure (Pm). In the 

main paper, I focus on Pm and Tm, but values of the cooperativity parameters g and signal linear 

baselines SU,F were also obtained (see Appendix C). Note that PGK is at least a three-state 

folder, but I focus here on the earliest transition. The higher transition observed by temperature 

unfolding shows the same ordering of melting temperatures as the lowest transition (see 

Appendix C, Fig. C.1).I confirm that both temperature and pressure denaturation are reversible 

by titrating to the start of the unfolded baseline (45 °C and 900 bar, respectively) and then 

returning to the starting condition (Fig. C.4). I also report the fraction folded ([F]/([F]+[U]) 

given by setting SU=0 and SF=1 in eq. 2b. 

 

4.2 Results  

 

4.2.1 AcGFP1 and mCherry do not show evidence of denaturation  
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GFP has been shown to be very stable to thermal and pressure denaturation.[30] Here I 

characterize the fluorescent tags using different perturbations and a variety of probes. When 

temperature melts for AcGFP1 and mCherry are monitored by exciting tryptophan at 280 nm 

and detecting integrated fluorescence from 290 to 450 nm, there is no change in the average 

wavelength over the temperature range from 20 to 65 °C. The average tryptophan emission 

wavelength of the tag proteins is rather long (see Fig. C.5).   

A cooperative transition also was not observed in the 20 to 65 °C temperature range when 

the fluorescent proteins were directly excited at 475 nm (AcGFP1) or 585 nm (mCherry) (see 

Fig. C.6). In order to monitor secondary structure of these tags, I also measured mean residue 

ellipticity (MRE) by circular dichroism (CD) over a similar temperature range (10 – 70 °C). 

The structure of these tags remains almost unchanged based on CD, bolstering again the claim 

of stability over a wide temperature range (Fig. C.7). 

I also observe no cooperative pressure unfolding transitions for AcGFP1 or mCherry 

between 1 and 1800 bar as monitored by tryptophan fluorescence or by direct fluorophore 

excitation (Fig. C.8, C.9). From all the above measurements it is evident that, within our 

experimental temperature and pressure range, these fluorescent protein labels are stable. 

 

 

4.2.2 PGK is destabilized by single fluorescent tags  

 

The triple mutant Y122W/W308F/W333F of wildtype yeast PGK[12, 22, 23, 31] was 

tagged at the N-terminus with green fluorescent protein (GP), or mCherry (CP) to see what 

effect these tags have on the thermodynamic stability of unlabeled protein (P). The first 

cooperative transition for unfolding shown in Figures 4.2 and 4.3 was quantified by fitting it to 

a two-state model.[32] The melting temperatures Tm and pressures Pm are summarized in Table 

4.1, and the cooperativity parameters gT and gP are shown in Appendix C Tables C.1 and C.2. 

The midpoint of the unfolding transition for GP and CP is decreased by several °C relative 

to P when thermal denaturation is detected by tryptophan fluorescence (Fig. 4.2) or circular 

dichroism (Fig. 4.3 and Fig. C.10). PC is slightly stabilized relative to P when probed by 

tryptophan fluorescence, but is destabilized when detected by CD. All CD-detected melting 

points are higher than the fluorescence-detected melting points, evidence for the known multi-

state unfolding for PGK.[33]  

The tryptophan fluorescence of PGK undergoes a further transition at temperatures >45 °C, 

beyond the in-cell range (Fig. C.1).I performed temperature melts at different concentrations, 
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but the transition was still observed (Fig. C.2). It appears to be a genuine three-state transition 

with a hyperfluorescent intermediate, which has been observed in the literature.[33, 34] The 

label-dependence of this transition matches the first unfolding transition shown in Fig.4.2, so 

the conclusions are independent of which transition is discussed. 

Tryptophan fluorescence was also used as a probe to observe unfolding under pressure (Fig. 

4.4). Pressure denaturation of all the singly-labeled constructs occurs at lower pressure than for 

the unlabeled protein, consistent with destabilization of PGK by single tags upon thermal 

denaturation. Fig. 4.4C shows the calculated folded populations from the fit in Table 4.1. The 

cooperativity parameters “g” (Tables C.1 and C.2) did not show any strong trends. 

The unfolding transitions monitored by fluorescence appear smaller for the labeled 

proteins. The effect is caused by background from the tryptophans in AcGFP1 (1 tryptophan) 

and/or mCherry (3 tryptophans).  Since the fluorescent protein tags have relatively red 

fluorescence and do not undergo any transition (Fig. C.5 to C.9), their contribution reduces the 

fraction of tryptophan fluorescence from PGK and shifts the native baseline to longer 

wavelength. Although good signal-to-noise ratio still allowed reliable extraction of Tm and Pm 

for tagged constructs, I also performed singular value decomposition (SVD) analysis of the 

tryptophan emission spectra (see Appendix C). 95-98% of the signal change is accounted for 

by the first two SVD components. The second SVD component undergoes a transition very 

near the reported melting temperature or pressure for each analyzed variant (Fig. C.11-C.12). 

Error analysis also shows that the fitted transition midpoints are accurate (e.g. Appendix C Fig. 

C.13). 

It is therefore evident that placing a single tag on the protein mostly decreases its 

thermodynamic stability irrespective of denaturation method or probe method, as long as the 

same probes are compared. Only the PC construct deviates from this general pattern upon 

thermal denaturation for one probe (tryptophan fluorescence wavelength).  
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Table 4.1: Stability of protein constructs with respect to pressure and temperature as monitored 

by CD and tryptophan fluorescence. 

 

 

 

4.2.3 Destabilization by two tags is not an additive effect  

 

The doubly labeled construct of PGK was employed to study the effect of adding an 

additional tag to the protein. The AcGFP1 fluorophore was attached at the N-terminus and 

mCherry was attached at the C-terminus (GPC). The GPC construct is typical of those used in 

published FRET folding studies.[22] 

Thermal denaturation of GPC probed by tryptophan fluorescence (Fig. 4.2) or circular 

dichroism (Fig. 4.3) shows that the additional tag does not destabilize PGK further than either 

individual label. In fact, PGK recovers some or all of its unlabeled stability (Table 4.1). 

Pressure denaturation detected via tryptophan fluorescence is also highly non-additive, 

although the doubly labeled PGK is not significantly more stable with respect to pressure than 

the singly labeled constructs (Fig. 4.4, Table 4.1).    

Protein 

Temperature Denaturation Midpoint (oC) 

 

Pressure 

Denaturation 

Midpoint 

(Bar) 

(280 nm excitation) 

Measured via 

Fluorimeter 

(280 nm excitation) 

Measured via Circular 

Dichroism (CD) 

P 40 (±1) 52 (±1) 1100 (±10) 

GP 38 (±1) 43 (±1) 760 (±20) 

CP 38 (±1) 42 (±1) 815 (±30) 

PC 43(±1) 45 (±1) 880(±10) 

GPC 44(±1) 45 (±1) 770 (±30) 
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Thus the effect of the two tags on PGK is non-additive by thermal and pressure 

denaturation, whether tryptophan fluorescence or secondary structure is detected. By all probes 

and all denaturation methods, the doubly labeled construct was more stable than expected for 

the sum of the singly labeled effects, even if GP and PC (not CP) were used as reference.  

 

 

Fig. 4.2: Temperature denaturation of the protein constructs as monitored by tryptophan. A. 

Emission spectrum of GP at 20 °C and 47 °C. B. Average wavelength to monitor the unfolding 

midpoint for the first unfolding transition of P (black), GP (green), CP (red squares), PC (red 

diamonds) and GPC (blue). The smaller wavelength shift of GPC (right axis) is caused by 

signal contribution from the two stable labels (1 tryptophan in AcGFP1, 1 in PGK, and 3 in 

mCherry). 
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Fig. 4.3: A. Comparison of secondary structure of all protein constructs represented by absolute 

mean residue ellipticity (MRE) from 200 to 250 nm; P (black), GP (green), CP (red squares), 

CP (red diamonds) and GPC (blue). Dashed curves show representative spectra at high 

temperatures of GP (green) and GPC (blue) showing significant loss of secondary structure.  

B. Scaled MRE vs. temperature for all the protein constructs. The tags are thermally stable (see 

Appendix C), so the melting curve monitors PGK denaturation. Absolute MRE is shown in 

Fig. C.5. 
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Fig. 4.4: Pressure denaturation for all of the protein constructs monitored by tryptophan 

fluorescence A. Representative emission spectrum of GP at 1 bar (light shade), 1000 bar 

(medium shade) and 2000 bar (dark shade). B. Comparison of average wavelength for GP 

(green), CP (red), CP (red diamonds) and GPC (blue) and P (black). As for the temperature 

denaturation curves, the change in average wavelength of the tagged constructs isn’t as 

dramatic as observed for P due to the contribution of additional tryptophan in the stable 

AcGFP1 and mCherry to the overall signal. C. Plot of fraction folded for all the protein 

constructs vs. pressure. The order of stabilities is more obvious than in B., where background 

fluorescence from tag tryptophans reduces the apparent wavelength shift observed for tagged 

proteins. 
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4.2.4 FRET-detected unfolding of PGK in GPC  

 

Unlike tryptophan fluorescence and circular dichroism, Förster Resonant Energy Transfer 

(FRET) cannot serve as a universal comparison between constructs because it can be measured 

only for GPC. I measured FRET because of its relevance for in-cell experiments. While thermal 

denaturation of PGK has been studied by FRET,[12, 21] pressure denaturation has not yet been 

reported by FRET.  

I report the ratio of donor (AcGFP1) to acceptor (mCherry) fluorescence signal D/A excited 

at 475 nm in Fig. 4.5, and the melting temperature obtained in Table 4.2. A higher donor to 

acceptor ratio indicates an increase in the proportion of the protein population that is unfolded. 

The decrease of the mCherry peak as the PGK in GPC pressure-unfolds is easily seen in the 

inset of Fig. 4.5A. FRET between the tags of GPC clearly reports on both temperature- and 

pressure-denaturation, with midpoints consistent with the tryptophan-detected transitions 

within fitting error.  

 

 

Table 4.2: Pressure and temperature midpoints for constructs tagged with GFP or AcGFP1 and 

mCherry and monitored by fluorescence excited at 475 nm (GP), or by FRET Donor/Acceptor 

ratio (GPC). 

 

 

 

 
Protein 

Temperature Denaturation 

Midpoint (oC) 

475 nm excitation 

Pressure Denaturation Midpoint 

(bar) 

475 nm excitation 

GP 46 (±1) average wavelength 680 (±10) average wavelength 

GPC                42 (±2) D/A                  770 (±10) D/A 



98  

 

 

Fig. 4.5: FRET detection of GPC unfolding by pressure and temperature A. The normalized 

donor to acceptor ratio vs. pressure shows a cooperative unfolding transition with respect to 

pressure. Inset: Raw fluorescence intensity vs. wavelength plot showing energy transfer at 

lower pressure (Solid blue trace) as evidenced by a second significant emission maximum and 

reduction in FRET as the protein unfolds at higher pressure (dashed blue trace). B. Normalized 

donor to acceptor ratio with respect to temperature shows a cooperative unfolding transition. 

 

4.2.5 Unfolding of PGK can be monitored by shift in the GFP emission spectrum alone  

 

I decided to study also the average emission wavelength of AcGFP1 for GP and GPC 

excited at 475 nm, and of mCherry for CP (as the most direct comparison with GP) excited at 

585 nm, in analogy to the tryptophan emission experiments. No significant wavelength shift 

was observed for CP or GPC at pressures up to 2000 bar (Fig. 4.6A). To our surprise, the GP 

construct showed a small but highly cooperative wavelength shift under increasing temperature 
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and pressure (Fig. 4.6B, Fig. C.14, Table 4.2). The thermal denaturation midpoint measured by 

AcGFP1 wavelength shift is 46 °C, consistent with the CD-detected Tm of GP (Table 4.1). The 

pressure midpoint is 680 bar, lower than with any other probes.   

The directly excited GP fluorescence emission is notably red-shifted relative to both 

AcGFP1 and GPC under both native and denaturing conditions (Fig. 4.6A), indicating a 

perturbation of the chromophore in the presence of both folded and unfolded PGK. Thus it 

appears that labeling only with AcGFP1 enables detection of the unfolding transition of PGK 

by wavelength shift of the fluorescent tag emission alone.  

 

 

Fig. 4.6: Shift in AcGFP1 emission spectrum A. Normalized fluorescence intensity vs. 

wavelength plot for GP at 1 bar (dashed green line), GP (dotted green line: 1 bar; solid green 

line: 2000 bar) and GPC (dotted blue line: 1 bar; solid blue line: 2000 bar). Inset: Normalized 

fluorescence intensity vs. wavelength for mCherry and CP showing no significant emission 

shift in the same pressure range B. Average GFP emission wavelength of GP (green) is 

sensitive to GP unfolding while emission from GPC (blue) shows no cooperative transition. 
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4.3 Discussion and conclusion  

 

When a protein is tagged or surrounded by proteins in the cell, there are two major 

influences on its stability. The mere presence of other proteins excludes volume near the host 

protein. Such crowding generally destabilizes unfolded states by lowering their conformational 

entropy. In addition, protein-protein interactions can stabilize or destabilize the host. For 

example, the unfolded state may be stabilized by interacting with hydrophobic surface patches 

on other proteins, thus opposing the crowding effect. 

I propose two non-mutually exclusive mechanisms to account for the non-additivity I 

observe for singly- vs. doubly-tagged PGK: 1) The “crowding mechanism:”[35, 36] volume 

exclusion by two labels overcomes the destabilizing interactions of the host protein with 

individual labels. 2) The “quinary interaction mechanism:”[27, 37, 38] electrostatically or 

hydrophobically mediated contacts of the labels with one another reduces the destabilizing 

interaction of the labels with the host protein. 

It was previously shown that the melting temperature of label-free PGK linearly increases 

when the simple crowder Ficoll is added.[23] PGK on its own responds as expected to 

crowding. Our results show that the addition of a single large fluorescent protein tag (with the 

exception of one probe for one denaturation method) destabilizes PGK.  Therefore, a model 

where the fluorescent protein tags act as inert crowders cannot explain their effect on PGK 

stability. I assign this destabilization to interaction of the host protein with the fluorescent tag. 

Our observation of the AcGFP1 spectral shift under native conditions (Fig. 4.6) suggests that 

the tag interacts with both folded and unfolded PGK. A similar effect was measured by 

Sokolovski et al. for EnHD attached to eGFP, independent of linker length.[39] Based on MD 

simulations, they attributed the effect to entropic stabilization of the unfolded EnHD via surface 

interactions with eGFP.   

Comparison of the CP and PC constructs suggests that fluorescent tags can specifically 

interact with their host.  Labeling with mCherry has a much smaller effect on stability at the C-

terminus than at the N-terminus.  Therefore, a minimal model of the tag-protein interaction 

must take into account tag location and possibly the chemical properties of the protein regions 

most accessible to the tag. Specific interaction may explain why some proteins lose activity 

when labeled in one configuration, but are unaffected by labeling in another configuration.[40] 

There is additional evidence for tag-protein interaction. AcGFP1 fluorescence depends 

significantly on whether AcGFP1 is isolated, in GP, or in GPC. The fluorescence wavelength 

shift of isolated AcGFP1 compared to GP is large (Fig. 4.6A), indicating an interaction between 
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the two protein surfaces that modulates the electronic properties of the AcGFP1 fluorophore. 

In contrast, mCherry does not show any shift in the equivalent CP construct. When mCherry is 

attached to GP to make GPC, the AcGFP1 fluorescence almost reverts to the AcGFP1 

monomer fluorescence. This is a strong indication that AcGFP1 interacts with the PGK surface 

(reducing PGK stability and shifting AcGFP1 fluorescence), and that this interaction is 

disrupted by the presence of mCherry. 

The sensitivity of the AcGFP1 fluorescence emission wavelength to the folding of PGK is 

further evidence of a tag-protein interaction. It can be used to monitor PGK unfolding in the 

GP construct without FRET (Fig. 4.6B), as an alternative to tryptophan fluorescence, circular 

dichroism, or FRET labeling.  Monitoring PGK unfolding by AcGFP1 wavelength shift 

produces midpoint temperatures closer to the CD result than to the tryptophan result, indicating 

that the AcGFP1 fluorescence is a more global reporter of unfolding than tryptophan 

fluorescence.   

I tested the additivity of the folding free energy with the dual-labeled GPC. Depending on 

the probe monitored, PGK with two tags either recovers some stability compared to singly-

tagged PGK (e.g. circular dichroism-detected thermal denaturation), or is of similar stability as 

singly-tagged PGK (e.g. pressure denaturation), or is even more stable than unlabeled PGK 

(e.g. tryptophan fluorescence-detected thermal denaturation).  Two tags do not destabilize the 

protein by the sum of the individual tag effects, as would be expected from a simple additive 

model. This is particularly clear for the CD-detected thermal denaturation and pressure 

denaturation, where the uncertainties are smaller relative to the shift than for fluorescence-

detected thermal denaturation. The observation can be explained by more effective crowding 

in the presence of two tags, and/or tag-tag interaction competing with the unfavorable tag-

protein interaction. The back-shift of Ac1GFP wavelength when the mCherry tag is added 

favors the latter scenario. 

The differences observed between different probes and denaturation methods are not 

unexpected for a multi-state folder like PGK. Such differences may inform the mechanism 

through which the tags and protein interact.  Conventional chemical denaturants and 

temperature are, in many cases, treated as causing small, additive perturbations to protein 

stability.[41] This assumption justifies the extrapolation of phenomena observed under 

denaturing conditions (e.g. unfolded baselines) to the native conditions of theoretical interest.  

The non-additive effect of fluorescent tags on protein stability[39] and folding kinetics,[11] 

clearly indicates that such tags are a different class of “perturbation” than the well-understood 

solvent manipulations (temperature, pressure, denaturants).  
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Our observations have implications for comparing folding in vitro with folding in-cell, 

where crowding and protein-protein interactions both play a role. Initial in-cell studies have 

shown both protein stabilization and de-stabilization inside cells.[22, 27, 28, 42-44] Putting 

tags on PGK already introduces a combination of protein-tag interaction (destabilizing for most 

single tags), crowding of a protein by two tags (stabilizing), and tag-tag interaction (reduces 

protein destabilization by the individual tags). Furthermore, fluorescent protein fusions are 

prone to proteolysis in the cell, raising the possibility that a population of proteins assumed to 

be homogeneous may actually include proteins with different numbers of intact tags.[45] In-

cell tagged protein experiments clearly show that the cell affects protein stability, but the effect 

may be different on unlabeled endogenous proteins than on tagged proteins. For this reason, a 

comparison of different assays (NMR, fluorescence mass spectrometry) on the same target 

protein will be an important next step for in-cell studies. 

Ironically, the effect of tags is probably smaller in cells than in vitro because other 

biomolecules in the cell compete to interact with both the tags and the host protein. 

Nonetheless, it will be important to compare results from different labeling schemes to ensure 

that tags have a minimal effect on the behavior of a host protein inside the cell.  
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CHAPTER 5 
 

Environmental fluctuations and stochastic 

resonance in protein folding 
 

 

Weak biological signals below the detection or reaction threshold can be amplified by the 

addition of noise. The recovered signal is maximized at a certain noise level, resulting in a 

stochastic resonance.[1] Biological examples range from predating fish generating weak 

periodic sound waves that are detected by their crayfish prey only when random environmental 

noise is added,[2] to amplification of electrical membrane signals due to membrane channel 

voltage fluctuations and many others on different size-scales.[3] The process is illustrated in 

Fig. 5.1 and requires a sub-threshold signal, a detection threshold, and noise that modulates the 

sub-threshold signal by just the right amount: too little noise, and the signal remains below the 

threshold; too much noise, and the signal is swamped by the noise. 

Many biomolecular reactions exhibit thresholds, and are thus candidates for stochastic 

resonance at the molecular level. For example, protein folding is a cooperative process with a 

sharp transition between folded and unfolded state (as a function of pH, denaturant, 

temperature, crowding, etc.)[4]. Likewise, protein-RNA binding curves have a sigmoid 

concentration dependence.[5] Such systems, when poised just below the cooperative threshold, 

are sensitive to environmental fluctuations. Biomolecular binding and stability inside a cell 

could be modulated by thermal fluctuations near mitochondria, fluctuations of hydrophobic 

patches in contact with a protein, or fluctuations in excluded volume as macromolecules jam 

and unjam inside the cell.[6] Whether such modulation has adaptive consequences for the cell 

remains unknown.  

 

 

 

 

This chapter is adapted from K Dave, A Davtyan, GA Papoian, M Gruebele, M Platkov. Environmental 

Fluctuations and Stochastic Resonance in Protein Folding.ChemPhysChem, 2016 

https://scholar.google.com/scholar?oi=bibs&cluster=17293806149716011571&btnI=1&hl=en
https://scholar.google.com/scholar?oi=bibs&cluster=17293806149716011571&btnI=1&hl=en
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Recently, it has been proposed that cooperative kinetics could be driven by a periodic 

perturbation, and that parameters such as rate coefficients or equilibrium constants could be 

extracted from such data[7, 8] Indeed, DNA hairpin folding,[9] DNA hybridization in live 

cells,[10] and protein folding[11] all have been analyzed by driving the reactions with periodic 

temperature modulation. From such experiments it is a small step to add artificial noise to the 

periodic perturbation, or to use colored noise with a frequency cutoff to drive the system. Such 

“artificial thermal noise” is not limited to the kT level, but acts in analogy to thermal noise 

driving single molecule reactions. 

Here I present modulated folding kinetics of the FRET-labeled protein VlsE, a genetically 

highly variable extracellular membrane protein used by the Lyme disease agent B. burgdorferii 

during host invasion.[12] I drive the folding reaction experimentally with a periodic 

temperature perturbation, scanning the frequency of the perturbation.[11] A two-state kinetic 

model[8, 11] is shown to fit the FRET data that monitors the periodic folding/unfolding of 

VlsE. Reaction parameters such as the activation barrier are extracted from the data. The 

question then arises whether noise modulation could accelerate the reaction when modulated 

below the reaction threshold, i.e. whether folding is subject to stochastic resonance. The 

problem is tractable computationally with a coarse-grained native structure-based model,[13, 

14] and interesting properties emerge: for instance, the mean first passage time for folding 

decreases the most when a protein is driven by noise with a spectrum peaked just above the 

folding rate kobs. I then follow up on the simulations with analogous experiments, by driving 

VlsE with a sub-threshold sine wave of frequency  ≈ kobs. No reaction is seen, but adding noise 

indeed induces the folding/unfolding reaction, peaked at specific noise amplitude in the 

experiments. Thus, it is at least physically and chemically possible, although it remains 

biologically unproven, that environmental noise in cells can modulate cooperative 

biomolecular reactions poised near the reaction threshold, and that such modulation could have 

an adaptive advantage. 

 

 

 

 



110  

 

 

Fig. 5.1: A cartoon of the stochastic resonance mechanism. The left column shows a periodic 

signal below the detection threshold (dotted line referenced at 0), with increasing noise added. 

The middle column shows the Fourier transform of the signal detected above threshold, scaled 

so the baseline noise in each FT is equal. At low noise amplitude no signal peak is detected 

within the background noise, at high noise amplitude only a noise spectrum is detected. At 

medium noise amplitude, the noise is modulated at the signal frequency, and a signal can be 

detected. Thus there is a stochastic resonance in the detected signal as a function of noise 

amplitude (right panel). 

 

5.1 Methods 

 

5.1.1  Sample 

 

Protein expression was reported previously,[12] so I describe mainly slight differences here. 

An Ac1GFP-VlsE-mCherry plasmid obtained from Genscript was transformed into E. Coli P-

lysis cells. The bacterial colonies were later grown into lysogeny media (LB) containing 

chloramphenicol antibiotics to an OD of around 0.6. At this OD isopropyl 

thiogalactopyranoside (1 mM IPTG) was added to induce protein expression. Cells were left 

to grow overnight (≈ 12 hours) at room temperature. Later the cells were collected by 

centrifugation and sonicated to get cell lysate. Cell lysate was applied to a nickel-nitrilotriacetic 

acid (Ni-NTA) column which has high affinity towards the histidine tag, protein was purified 

according the Qiagen protocol.[12] 
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5.1.2 Apparatus and Measurement procedure 

 

The experimental setup was developed In-house on our live-cell instrument, [15] as described 

previously.[11] Briefly, a blue LED (470nm, 400 mW) excites the GFP donor; an inverted 

epifluorescent microscope with a 40x objective illuminates the protein sample, and collects the 

donor and acceptor fluorescence separately after splitting by a dichroic filter. A frame-rate of 

110 Hz was used and data was collected for 11 sec in order to probe and compare the dynamic 

range of VlsE folding/unfolding kinetics. 

The sample chamber was made using double-sided tape of approximately 120 μm height 

(Grace, Secureseal 654006) on a glass slide and coverslip. The experiments were conducted 

using VlsE protein concentration of up to 10 M, with no signs of aggregation over the entire 

average temperature range (T0=25-39 °C).  

The temperature modulation was performed above the reaction threshold of the protein for the 

sine wave-driven experiment in Fig. 5.4, and below the reaction threshold (about 38 °C in Fig. 

5.2) for the stochastic resonance experiment, where added temperature noise makes the 

harmonic modulation detectable. Periodic and random temperature modulation (see Fig. 5.6) 

was achieved by heating the sample with an infrared laser (m2K Lasers, λ=2200 nm, up to 700 

nm) which is attached to a computer-controlled power supply (LDC340). The sample base-

temperature was set by using two PID-controlled heating-resistors and a Peltier chip to within 

0.1 of a user-selected setpoint temperature target in a range of 12 C up to 50 C. These 

resistors, the Peltier chip and heat-conducting copper ribbons as well as fan-cooled heat 

dissipation fins were attached to the sample chamber through a layer of heat-conduction 

compound, and the assembly was mounted on the microscope stage. 

It is known that the protein VlsE-FRET folds with a folding time obs=kobs
-1≈0.7 s-1 at 38.3 

°C.[12] Based on that and the calculations, I chose to induce stochastic resonance by 

modulating the temperature on the VlsE-FRET protein with a sine-wave whose period is 

slightly faster than the folding rate (2 Hz) and below the folding rate (1 Hz), to see if the 

stochastic resonance weakens or shifts with driving frequency.  

The green and red fluorescence coming from the protein were imaged onto a charge-coupled 

device camera. The fluorescence recorded by the camera exhibited a photobleaching and 

quantum yield temperature dependence of the donor and acceptor fluorophores.  
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Photobleaching resulted in a linear decrease of signal over the 11 s time scale of the experiment, 

and was taken into account by a linear scaling, after which the output could be fitted to phase 

shifted sine waves. The same correction was used for analogous noise experiments taken under 

the same conditions. The quantum yield of Ac1GFP and mCherry depends linearly on 

temperature over the small temperature range used here (20-40 °C). As a result intensity 

modulation occurs together with temperature modulation, and was taken into account by the 

fitting model. 

 

 

 

Fig. 5.2: Thermal melt of VlsE- FRET (in vitro). Red markers: experimental data; black curve: 

two-state model fit; blue dashed line: folded state D/A baseline. The reaction threshold for 

protein unfolding lies at ca. 38 °C, and the equilibrium constant Keq ≈ 1 at the melting 

temperature of 42±2 °C. 
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Fig. 5.3: Experimental phase shift between the donor and acceptor fluorescence (red circles) 

of the VLSE protein. The least-squares fit to a two-state model including temperature-

dependent donor and acceptor quantum yield is shown as a black curve. Small glitches in the 

black fit are numerical errors due to sampling the phase at 0.5° increments in the simulation 

(see Appendix D). 

 

5.1.3 Data analysis 

 

For the analysis of periodic modulation data, I used the same algorithm presented previously 

for the analysis of PGK.[11] This is similar to algorithms proposed by Lemarchand and 

coworkers,[8] and verified by Brownian dynamics in the accompanying paper in this issue.[16] 

The new addition to the model is the capability to optimize model parameters by a least-squares 

algorithm, and the code used in this paper is available in Appendix D. Briefly, the donor and 

acceptor signals at each driving frequency =2 were least square fitted to a sine wave  

 S(t)=A sin(2t+).  (4) 

Then the phase difference () was calculated, as plotted in Fig. 5.4. This phase difference 

was simulated as follows:[11]  

 Δ𝐺(𝑡) = 𝛿𝑔1(𝑇(𝑡) − 𝑇𝑚) (5) 

 Δ𝐺†(𝑡) = 𝛿𝑔0
† + 𝛿𝑔1

†(𝑇(𝑡) − 𝑇𝑚) (6) 

 QY𝑖(𝑡) = 1 + 𝑄𝑌1𝑖(𝑇(𝑡) − 𝑇𝑚) (7) 
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were assumed for the folding free energy, activation barrier, and relative quantum yield of 

“i”=donor or acceptor. 𝛿𝑔1 and 𝑇𝑚 were obtained from a thermodynamic fit to Fig. 5.2. 𝛿𝑔0
†, 

𝛿𝑔1
† are kinetic fitting parameters, and 𝑄𝑌1𝐷 = −0.011 and 𝑄𝑌1𝐷 = −0.010 were fixed at the 

known relative quantum yield slopes of Ac1GFP and mCherry.[17] Rate coefficients for the 

forward/backward reactions were calculated as 𝑘𝑚𝑒𝑥𝑝[−(Δ𝐺†(𝑡) ± 1
2⁄ Δ𝐺(𝑡))/𝑅𝑇. The two-

state kinetic master equation [𝐹]̇ = −𝑘𝑈(𝑡)[F]+ 𝑘𝑓[𝑈]) was then solved, where [U]=C-[F] is the 

unfolded protein concentration and C is the total protein concentration. From the folded and 

unfolded concentrations, the observed donor and acceptor fluorescence signals were computed 

as 𝐷(𝑡) = 𝑄𝑌𝐷 ∙ (𝐷𝐹[𝐹](𝑡) + 𝐷𝑈[𝑈](𝑡)) and 𝐴(𝑡) = 𝑄𝑌𝐴 ∙ (𝐴𝐹[𝐹](𝑡) + 𝐴𝑈[𝑈](𝑡)). Here Di and Ai 

are four constants between 0 and 1 to account for the relative donor and acceptor fluorescence 

in the folded and unfolded states. The signals A(t) and D(t) were fitted to sine waves  just like 

the experimental data (eq. 4), and the phase difference of the resulting sine waves was 

evaluated. Adjustable parameters were then optimized by least-squares fitting. 

For the sub-threshold modulation + noise experiments (Fig. 5.6), the fast Fourier Transform 

amplitude of the donor and acceptor signals was calculated using Matlab (Mathworks). This 

results in a baseline from quantum yield modulation, but any stochastic resonance of 

comparable magnitude can be seen easily when the FT is plotted as a function of noise 

amplitude (Fig. 5.7). The baseline is due to fast (<0.1 s) response of the fluorophores to 

temperature, whereas the ≥0.5 s response of the reaction is delayed. Thus one could improve 

the stochastic resonance signal further by zeroing out the in-phase component of the FT. 

However, for unknown sub-threshold modulation waveforms to be detected, this phase is not 

known, and thus I did not make use of this information in Fig. 5.7, unlike Fig. 5.4. 

 

5.1.4  Native structure-based model potential and dynamics with periodic and random 

environmental modulation 

 

More details on the Native structure-based model and molecular dynamics simulation and its 

comparison with kinetic master equation models can be found in the companion computational 

theory paper.[16] Here I focus on the Native structure-based model and folding rate simulations 

for 1SRL. Similar results were found for the larger protein PGK,[16] supporting the idea that 

the observed resonance effect is universal.  

For this study I used a Gō-like model developed by Onuchic and coworkers.[14] According to 

this model, the energy of a specific conformation of a protein is given by a sum of bond 
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distance/angle/contact potential terms shown in the accompanying paper.[16] 

Molecular dynamics simulations of PDB model protein 1SRL (an SH3 domain from tyrosine 

kinase) were carried out with the Go-like potential described above, but with  in the native 

contact energy term modulated as follows about its average value 0: A sinusoidal wave with 

amplitude  and period , or Gaussian noise with amplitude  and correlation time  was 

added at each time step, to act like the modulation and artificial thermal noise in the 

experiments. Each folding time (average mean first passage time) was computed from 1000 

trajectories as a function of  and . All simulations were started in random conformations 

with low native contact order Q. A fraction of native contacts above Q=0.8 was considered 

folded and yielded one mean first passage time for each trajectory. 

For 1SRL I used the following model parameter: 0=2.3 kJ/mole. This results in 2.5 kBT free 

energy barrier for folding vs. about 9 kBT barrier for VISE used in the experiments (see Table 

5.1) and ensures that the folding reaction can be seen over the course of computationally 

feasible simulations. Thus the absolute time scales of the simulation in Fig. 5.5 and experiment 

in Fig. 5.7 cannot be compared. Additionally, the reduction in the number of degrees of 

freedom in the coarse grained native structure-based model results in smoother free energy 

landscape and thus even faster dynamics for 1SRL protein. Consequently, the times in Fig. 5.5 

that are on the sub-picosecond time scale cannot be directly related to the experimental times, 

and only the trends as a function of  and  should be considered. 
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Fig. 5.4: Computational prediction of periodic-driven response and noise-driven response of a 

model protein. Top: For reference, a native structure-based (Gō-like) model protein (PDB code: 

1SRL, SH3 domain) is subject to harmonic temperature modulation휀(𝑡) = 휀 + 𝛿휀√2𝑠𝑖𝑛(2𝜋𝑡/

𝜏 + 𝜙). The average first-passage time vs. period  of the driving waveform is plotted. Several 

modulation amplitudes are shown. √𝛿휀2/휀2 covers the range 0.03 (dark blue), 0.04, 0.05, 0.06, 

0.07, 0.1 (light blue). The black line shows that optimal driving frequency and amplitude are 

correlated. Bottom: Same model, but driven by Gaussian noise with a correlation time  , 

obtained by solving the Langevin equation (2) in the text. When  is equal or faster than the 

natural rate kobs of the unperturbed system, the first passage time of the driven system decreases 

(reaction rate kf increases) as the amplitude increases. tf and  on those plots are in the units of 

femtoseconds. 
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Fig. 5.5: The 2 Hz sine wave + noise signal used to drive VlsE into stochastic resonance as 

shown in Fig. 5.7, (A) with 0 °C RMS temperature noise, (B) with 1 °C RMS temperature noise 

(near stochastic resonance when T0=32-33 °C), and (C) with 2.25 °C RMS temperature noise 

(above stochastic resonance maximum). 
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5.2 Results 

 

5.2.1 Overview  

 

The extracellular protein VlsE is a large and relatively slow-folding protein (kobs ≈ (0.7 s)-1 at 

38.3 °C).[12] VlsE is the largest known two-state folder,[18] so it should obey simple 

unimolecular kinetics Δ𝑐(𝑡)~𝑒−𝑘𝑜𝑏𝑠𝑡. Here kobs is the measured rate, which for a two-state 

system equals the sum of the rates of folding and unfolding, or kobs = kf+ku . This simple 

behavior is in contrast to the enzyme PGK, a multi-state folder whose modulation kinetics was 

studied previously.[11] In order to detect reversible modulation of the protein population 

between the folded and unfolded states, VlsE was FRET-labeled with Ac1GFP at the N-

terminal, and with mCherry at the C-terminal along with a His tag for purification. The protein 

was then subjected to thermal modulation: first with variable-frequency sine waves to 

corroborate its activation barrier and folding rate by the modulation approach; then, based on 

encouraging molecular dynamics and Brownian dynamics simulation results, with a sinusoidal 

signal + variable thermal noise amplitude, to detect stochastic resonance. 

 

5.2.2 Fluorescence-detected thermal unfolding of VlsE  

 

In order to locate the optimal temperature range for modulation experiments, fluorimeter 

temperature melts were detected by the FRET Donor/Acceptor (D/A) ratio using ≈2 M protein 

solution. Protein concentrations up to 10 M showed no signs of aggregation over the 

temperature range of subsequent thermal modulation experiments (20-38 °C).   

Thermal unfolding of VlsE is a nonlinear threshold process. The temperature unfolding data in 

Fig. 5.2 was fitted to a sigmoidal two-state model (see Methods). The midpoint of the thermal 

unfolding transition of VlsE-FRET was obtained to be Tm=42±2 °C, in agreement with previous 

work.[12, 18]The onset of the unfolding reaction occurs at approximately 38 °C, where the 

D/A ratio begins to differ substantially for the almost linear native state baseline (dashed blue 

line in Fig. 5.2). The baseline is due to temperature-dependent quantum yields of AcGFP1 and 

mCherry donor and acceptor labels.[12, 15] 
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5.2.3 Periodic thermal modulation  

 

In our earlier study of the enzyme PGK I showed that thermal modulation can be used to study 

protein folding reaction kinetics.[11] VlsE folding can be driven by a periodic waveform, and 

kinetic parameters such as the activation free energy G† can be obtained, in analogy to 

measuring fluorescence lifetimes by periodic modulation instead of a fast excitation pulse.[19, 

20] 

The experiment is illustrated in Fig. 5.3 (A and B). Thermal modulation was performed with a 

waveform-controlled 2200 nm infrared laser about an average temperature of T0=38 °C, in 

order to maximize the signal without inducing protein aggregation. The ≈10 M protein 

solution was subjected to a periodic temperature waveform  

 𝑇(𝑡) = 𝑇0 + 𝛿𝑇(𝑡) = 𝑇0 +  
1

2
Δ𝑇𝑠𝑖𝑛(2𝜋𝜈𝑡 + 𝜙) (1) 

 

at the sample slit. As discussed in detail previously,[11] the green donor and red acceptor 

fluorescence signals collected at the CCD camera are affected by two processes. 1) The 

quantum yield of the fluorescence labels decreases linearly with temperature.[15] This process 

causes each of the green and red signals to be 180° out of phase with T(t). In that case, the 

relative phase  between green and red is 0° (Fig. 5.3A). 2) The folding reaction causes green 

and red FRET signals to be 180° out of phase relative to each other (unfolding = more green/less 

red, refolding = less green/more red). Moreover, the red signal is in phase with T(t) for slow 

modulation frequency <<kobs, but up to 90° out of phase with T(t) for fast modulation frequency 

>>kobs as the protein folding reaction cannot track rapid variations in temperature, which is 

further elaborated elsewhere. [16] 

The resulting phase shift  between the red and green output signals (Fig. 5.3B) can be 

used to extract the folding/unfolding kinetics from the data. I use a kinetic two-state model 

with time-dependent free energy and quantum yields.[11] From the model parameters, a two-

state kinetic master equation is solved, the time-dependent rate coefficients can be calculated, 

and donor and acceptor fluorescence signals are calculated. Finally the simulated phase shift 

 is calculated from the simulated fluorescence signals and compared with the obtained 

experimental phase shift between the green and red acquired signals (see Methods). The 

suitability of such simple kinetic master equation models[8] has been tested by comparison 

with Brownian dynamics simulations.[16] 
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Fig. 5.4 shows the experimental data (red) and the computed phase shift (black), after the model 

parameters have been optimized by least squares fitting. Table 5.1 shows the optimized model 

parameters and 1 σ uncertainty for the model fit in Fig. 5.4 (see Methods, Data Analysis). As 

expected, the phase difference between green and red is 0° at low driving frequency.  

increases as  approaches the unimolecular reaction rate kobs, Eventuallydecreases again: If 

the reaction is driven at >kobs, the reaction amplitude decreases, so the quantum yield 

modulation, which has =0 dominates the signal. The activation barrier determined for this 

reaction is G† = 22.3±0.1 kJ/mole, assuming a prefactor of km≈(5 s)-1 in the equation ki=km 

exp(-G†/RT) for the rate coefficients. The value of km is chosen close to the “speed limit” of 

protein folding,[21, 22] with an upwards adjustment because VlsE is much larger than the mini 

proteins for which the speed limit has been estimated.[23, 24] At 38 °C, the fitted kinetic and 

thermodynamic parameters yield a reaction rate kobs ≈ (0.7 s)-1, in agreement with conventional 

T-jump measurements.[12] 
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Fig. 5.6: Schematic of the experiment. A 2200 nm IR pulse (pink) periodically modulates the 

sample above and below the average temperature T0. The green (donor) and red (acceptor) 

fluorescence of the labeled VlsE (sample in blue box) oscillates as a result. (A) When the 

average temperature T0 is too low to allow significant reaction, donor and acceptor fluorescence 

signals are modulated in phase because both have a quantum yield that decreases with 

temperature.[33] (B) When the average temperature +T0  is sufficiently high for reaction to occur 

and the modulation frequency comparable to or faster than the reaction rate kobs, the green and 

red fluorescence contain components shifted by 180° relative to one another, and (red) up to 

90° with respect to the temperature modulation. This is a ‘low pass filter’ effect of the reaction 

when driven too fast. The plot of phase shift vs. applied modulation frequency at constant 

modulation amplitude can be used to fit kobs and determine the activation barrier. (C) If the IR 

modulation is below the reaction threshold ~ 38 °C, but an increasing amount of temperature 

noise is added, a stochastic resonance can be detected at the driving frequency above the 

background signal due to quantum yield modulation. 
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Table 5.1: Experimental folding parameters and FRET parameters for VlsE, obtained by least 

squares fitting of the measured denaturation curve in Fig. 5.2 and the measured phase curve in 

Fig. 5.4. 

 

Fitting parameter Value and fitting 

uncertainty (1 standard 

deviation) 

Tm 42 ± 2 °C 

g1 1380 ± 180 kJ/mole/K 

km  5 s-1 (fixed) 

G† 22.3 ± 0.1 kJ/mole 

AF 0.4 ±0.1 

DF 0.6 ±0.1 

AU  0.17 ±0.05 

Du 0.83 ±0.05 

 

 

5.2.4 Computational prediction of stochastic resonance in a folding reaction  

 

So far, our results are analogous to what was found for PGK.[11] To see if folding/unfolding 

can be accelerated by application of artificial thermal noise, I performed molecular dynamics 

simulations on a small model protein with a temperature-dependent native structure-based 

model potential [13, 14]. The goal was not to simulate VlsE, which folds far too slowly for 

realistic simulation with an all-atom force field, but to obtain in general the effect of noise 

amplitude and correlation time on reaction rate (see Methods and accompanying theory 

paper[16]). 

In our model, the strength  of the native contact terms in the protein interaction potential was 

modulated either periodically, or by correlated random noise, where the deviation (t) of  

from its average value is determined by solving the following the Langevin equation 

 
𝜕𝛿 (𝑡)

𝜕𝑡
= −

𝛿 (𝑡)

𝜏
+

<𝛿 2>

𝜏
𝐺(𝑡), (2) 

where G(t) is Gaussian white noise. The resulting (t) simulates artificial thermal noise with 

amplitude √< 𝛿휀2 > and correlation time . Frequency components higher than 1/ rapidly 

diminish in such noise. Fig. 5.6 shows the similar results obtained when the protein is driven 

periodically at period , or by artificial thermal noise with frequency content up to 1/. The 

first passage time (MFPT= 1/kf in our experiments discussed above) decreases (i.e. the reaction 

speeds up) when the reaction is driven at frequencies comparable to the reaction rate. 

Additionally, as the noise level √< 𝛿휀2 > increases, at driving frequencies just above 
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resonance, the rate acceleration is continuously enhanced, indicating that the protein 

approaches stochastic resonance driven by the noise. Therefore it is possible that such a noise-

driven rate increase can be observed experimentally for protein folding. 

 

5.2.5 Experimental addition of artificial thermal noise  

 

Next I tested the idea that noise can be utilized to amplify a sub-threshold folding reaction to 

increase its rate to the detectability limit. I thermally modulated VlsE again as described by eq. 

(1) slightly above and below the folding rate (2Hz and 1Hz, respectively), but this time kept 

the average temperature and periodic modulation by itself well below the reaction threshold of 

ca. 38 °C (Fig. 5.6A). I then added increasing amounts of noise to the thermal waveform to 

drive the system towards the reaction threshold as follows: 

 𝑇(𝑡) = 𝑇0 +  
1

2
Δ𝑇𝑠𝑖𝑛(2𝜋𝜈𝑡 + 𝜙) +  

1

2
Δ𝑇𝑟𝑎𝑛𝑑𝐺𝑙𝑝(𝑡). (3) 

The random component Glp(t) was obtained by computing Gaussian-distributed pseudo-

random numbers G(t) and passing G(t) through a 6dB/octave low-pass filter with a cut-off 

frequency of 20 Hz. The values of T (3 °C) and T0 (28 to 33 °C) were chosen so T would 

remain below the reaction threshold of ~38 °C at all times unless assisted by noise. The 

Gaussian random noise amplitude was tuned so the root-mean-squared temperature 

fluctuations (RMS temperature noise in Fig. 5.7) ranged from 0 to 2.25 °C. Fig. 5.6 shows a 

sample of the periodic+noise waveforms driving the VlsE folding reaction for T0=32.5 °C and 

RMS thermal noise of 0, 1, and 2.25 °C. 
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Fig. 5.7: Stochastic resonance, detected by Fourier transform magnitude of the donor (green) 

and acceptor (red) signals grows in when a root-mean-squared (RMS) temperature noise of ca. 

1.2 °C is superimposed on the sub-threshold sine wave modulation in Fig. 5.6A.  (A) T0 = 28 

°C. (B) T0=32 °C. (C) T0=33 °C. Stochastic resonance grows in at √𝛿(𝑇 − 𝑇0)2 ≈ 1.25 °C as 

the average temperature T0 is increased. The baseline (ca. 6 units of the FT y-axis) is due to 

modulation of the quantum yield of donor and acceptor. The blue decreasing line is the minimal 

noise temperature applied on the protein at each RMS temperature, and the blue increasing line 

is the maximal noise temperature thereof.  
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5.2.6 Observation of stochastic resonance  

 

I measured the resulting donor and acceptor FRET amplitudes D(t) and A(t), and computed 

their Fourier transform amplitude at the driving frequency of 2 Hz (see Appendix D Fig. D.1), 

slightly faster than the natural relaxation rate kobs≈0.7 s-1 measured in the previous section and 

in ref. [12] at 38.3 °C. The sub-threshold periodic modulation alone produces only a slope as a 

function of RMS temperature noise, due to the modulation of the quantum yield of donor and 

acceptor, which depends linearly on temperature (Fig. 5.7 top) – just as I observe in our kinetic 

model simulations. However, as the average temperature is increased from 11 °C below 

reaction threshold to 5 °C below reaction threshold, a peak can be seen in the signal at 2 Hz at 

an artificial thermal noise of ≈1.3 °C RMS. At higher noise amplitude, the signal disappears 

again and returns to the baseline (Fig. 5.7 middle and bottom). A much weaker effect is seen 

at 1 Hz (<kobs) sub-threshold modulation with the same added noise levels (Fig. D.2). 

I assign the peak in the 2 Hz signal vs. noise amplitude to a stochastic resonance of the 

folding/unfolding reaction of VlsE, driven by a sub-threshold periodic modulation that 

produces no detectable reaction on its own, but induces a reaction rate above our detection 

threshold when noise is added. Adding too much noise (> 2 °C RMS) still produces reaction, 

but swamps the periodic sub-threshold modulation so the Fourier transform no longer peaks at 

2 Hz (see Fig. D.1 for examples of the full Fourier spectra).  

 

5.3 Discussion and conclusion 

 

Stochastic resonance has been observed in a variety of natural phenomena. Macroscopic 

phenomena include mechanoreceptors in rats [25] and electroreceptors in paddlefish that 

receive signals more sensitively due to added environmental noise [26]. It also plays a role in 

biological signal processing, from visual enhancement [27] to neuronal signaling[28].  

Stochastic resonance can also affect chemical reactions, which have intrinsically nonlinear rate 

and equilibrium behavior. This effect is generally observed near unstable points of the 

reaction’s state space as a function of perturbation parameters[29]. Examples include pulsing 

Belousov-Zhabotinsky reactions,[30] as well as electron transfer reactions[31]. In particular, 

stochastic resonance plays a role in biochemical reactions, such as cell signaling, where noise 

due to a small number of signaling molecules can control gene silencing[32]. 
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Here I add protein folding to the list of chemical reactions that exhibit stochastic resonance. 

The analysis of a small protein using native structure-based coarse-grained simulations shows 

that when a folding reaction is driven either by periodic perturbation with period , or by 

colored noise with a characteristic cutoff time  ~ 1/k, a significant decrease in the first passage 

time (or increase in the forward rate) can be observed. Thus protein folding has sufficiently 

nonlinear equilibrium curves (Fig. 5.2) to exhibit stochastic resonance. At first, our modulation 

experiment confirmed that VlsE behaves as a two-state folder under periodic modulation above 

threshold. I then subjected VlsE to a combination of a sub-threshold temperature perturbation 

with period  plus artificial thermal noise. When monitored by Fourier transform at the 

frequency =1/,  the fluorescence output signal peaks as a function of noise amplitude, but 

only when the periodic modulation is close to threshold (average temperatures of 32 or 33 °C 

vs. 27 °C in Fig. 5.7). I also measured the response at v=1 Hz, a factor of 2 below the reaction 

rate kobs, (Fig. D.2), but there the response is not as evident, in keeping with a slowdown of the 

reaction when the noise correlation time is slower than the reaction rate (Fig. 5.5). As discussed 

in the accompanying theory paper,[16] stochastic resonance can also be seen via the phase shift 

 of the red and green signal. The predicted phase shifts with realistic FRET input parameters 

are very small (see accompanying theory paper), and I was not able to use phase shift to identify 

the noise level or driving frequency that maximize stochastic resonance. 

It is not known at present whether cells use stochastic resonance to modulate biomolecule 

function outside the cases of signaling or visual signal enhancement that have been studied.[27, 

32] However, our results show that it is a physically plausible process. There is growing 

evidence that many proteins in the cell, for example certain intrinsically disordered protein 

(IDPs), can switch conformation based on small thermal, or other perturbations. Lymphotactin 

is an example of such a protein whose structure and function are modulated by a small 

environmental perturbation.[33] It is possible that environmental fluctuations are accelerating 

protein folding and potentially even protein association reactions, and thus contribute to the 

cellular control of structure and function of such proteins. 
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CHAPTER 6 

 

Tethered WW domains from monomer to tetramer: 

folding competing with aggregation 
 

 

WW domains are a family of fast-folding protein modules with three anti-parallel beta sheet 

structure (Fig. 6.1). The name came along due to the presence of two highly conserved 

tryptophan amino acids in these small 30-40 residues domains. WW is a binding module 

involved in apoptosis, among other functions [1]. WW domain’s binding to a target protein is 

mediated by recognition of a proline rich region, which latches onto its loop 1 and hydrophobic 

pocket to facilitate the binding process. These versatile domains are also involved in 

transcriptional regulation [2].  

WW domains have proven to be an excellent model for ultrafast folding experiments, for 

mechanistic experimental studies on the folding of a simple β sheet structure, and for 

benchmarking computational folding scenarios [3–5]. For WW domains with their loop 1 

substructure optimized for folding thermodynamics and kinetics, formation of loop 2 becomes 

competitive as the rate-limiting step for folding. Indeed, optimization of the loop 2 sequence 

in FiP (FiP N30G/A31T/Q33T, FiP-GTT ) produced a WW domain with a folding relaxation 

time of ~ 4 μs, approaching the speed limit for folding [6]. Another ultra-fast folding domain 

is the FBP28 2L (loop 2 replaced by β-hairpin, CLN025 with a ~100 ns folding time) which 

folds on ~ < 5μs [7].It is now also possible to [8,9] refolded these small proteins completely 

after pressure jumps in silico, joining equilibrium [10–12] and temperature jump simulations 

[6,13]. In this current study I have engineered a tethered construct by linking two or more 

copies of the fast folding Fip35 WW domain in the quest to understand fast folding competing 

with misfolding or aggregation. 

   Misfolding, binding and aggregation have already been studied extensively by 

experiments and computations [14,15].The problem that lies ahead is connecting experimental 

kinetics with current MD capabilities: most misfolding, and aggregation phenomena are really 

slow. They may take several seconds or hours instead of a few μs to ms. The tethered construct 

is not only an affordable system for conducting atomistic or coarse-grained MD simulations 
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but it also creates an effective higher concentration of the protein. This effective higher 

concentration enables competition between folding and aggregation on μs time scale. Using 

this approach of linking monomer units together, I can determine the nucleation size for 

aggregation which is usually very tedious to determine from bulk experiments. Similar 

tethering studies have been conducted on U1A protein [16], but here I aim at studying folding 

competing with misfolding/aggregation in μs time scale. 

It has been demonstrated that repeat proteins also provide rich insights into both energetics 

and kinetics of folding. Recent work on a repeat protein model by Robert Best and co-workers 

revealed that a protein’s tendency to misfold  depends largely on the relative stability of the 

domains present in the folded or misfolded intermediates rather than size of the barriers [17]. 

Another set of experiments on consensus Ankyrin repeat proteins (CARPs) provided evidence 

of parallel folding pathways. Increase in folding rates with the addition of more repeats and 

size of the CARPs supported the idea of parallel folding pathways [18].  Ising-like model was 

employed to analyze repeat-protein thermodynamics and relaxation kinetics [19].  

Over the years a lot of progress has been made to understand the dynamics of repeat 

proteins but yet there exists only few studies that makes a direct comparison of experiments 

with simulations. One such current investigation on tandem repeats of immunoglobin-like 

domains of titin claimed that it is not evolutionary beneficial to have higher sequence identity 

within repeat proteins as the tendency to form more stable misfolded states is more when the 

neighboring repeat domains have high sequence similarity [20]. 

Tandem repeats of WW domains are utilized by nature to have better control over cellular 

regulation.Furman and co-workers published a detailed overview on how tandem repeat 

module facilitate fine-tuning of regulation inside cells, specifically describing the variety of 

ways in which two or more tandem repeats of WW domains cooperate or interact in binding to 

their polyproline rich ligands. A few possible ways as mentioned by the authors are 1) Additive 

binding- repeats domains bind to their own specific targets contributing to an overall increase 

in binding affinity. 2) Chaperone effect- one domain assist the binding of other 3) Binding 

induced binding 4) Adjacent WW domain can change the dynamics and stability of the 

neighboring domain [1]. The vital role in cellular regulation of the family of tandem repeat 

WW Domains provides an additional motivation for me to investigate this system in 

mechanistic details via both ultra-fast laser temperature jump experiments and molecular 

dynamic simulations. With my tethered protein construct experiments I have observed that 



132  

adding more monomer units led to thermodynamic destabilization and slower folding rates, 

along with an abrupt onset of protein-protein interaction for the tetramer. I performed 

relaxation kinetics using ultrafast laser temperature jump experiments at different temperature 

and denaturant concentrations. Finally, I proposed a simplified multimeric network model 

which can globally fit the thermodynamics and kinetics data. As computation of folding in the 

50-500 μs range has become feasible, I believe that my data presented in this study will prove 

to be a rich resource for detailed comparisons, providing constraints on mechanisms and rate 

changes deduced from molecular dynamics simulations for folding/misfolding of repeat WW 

domains. 

 
 

Fig. 6.1: New cartoon representation of Fip35 monomer (pdb code: pin1) (A) and tethered 

dimer Dfip35 (B). Dfip35 was constructed by connecting two identical Fip35 monomers 

together via a 10 amino acid flexible linker composed of (GSG) units. 

 

 

 

6.1 Methods 

 

 6.1.1 Protein sample preparation 

 

For the monomer (Mfip35) and tetramer (Qfip35) constructs a plasmid encoding a fusion 

protein consisting of Glutathione-S-transferase (GST), a thrombin cleavage site, and protein 

sequence was cloned into pDream (GenScript) as mentioned in ref.[21]. Briefly, the fusion 

protein construct was expressed in BL21 (DE3)-RIPL (Agilent) E. coli and captured and 

purified from the cell extract on an immobilized glutathione resin according to manufacturer’s 

guidelines (GenScript). The protein was eluted by 10 mM glutathione in 50 mM Tris-HCl pH 
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8.0 and followed by dialysis in 10 mM sodium phosphate buffer. FiP35 was cleaved from the 

purification tag by overnight incubation with biotinylated thrombin (EMD Millipore). 

Thrombin was removed by incubation with streptavidin-agarose resin (EMD Millipore) 

according to manufacturer’s protocol. Monomer was purified from cleaved GST via an 

ultrafiltration cell with 10 kDa cutoff membrane (Millipore) whereas due to comparable size 

of GST and Qfip35 the separation was performed by passing the cleaved protein solution 

through a gravity column with immobilized glutathione resin. The procedure for other dimer 

and trimer construct was similar except both of them were purified using a His-Tag. The 

presence of single tryptophan on the first β-strand (loop or hairpin 1) of a single WW Domain 

enabled monitoring of folding via fluorescence. 

 

6.1.2 Temperature unfolding thermodynamics  

 

Temperature denaturation of all constructs was measured by tryptophan fluorescence and 

circular dichroism. Fluorescence spectroscopy was carried out using a Jasco fluorescence 

spectrophotometer FP-8300 equipped with programmable temperature control with excitation 

and emission slit widths kept at 5 nm. Tryptophan excitation was 280 nm and emission was 

collected from 290 – 450 nm. For each fluorescence emission spectrum, the average 

wavelength <λ> was calculated by equation (1) where I is intensity and λ wavelength [22]: 

 

 〈λ〉 = (∑ λ𝑗Iϳ) /ϳ (∑ Iϳ)𝑗    (1) 

  

The same wavelength range was used in all cases to obtain consistent results. Circular 

dichroism was measured using a JASCO spectrophotometer with Peltier temperature control 

(JASCO Inc, Easton MD).  All spectra were recorded from 250 – 200 nm at a scan rate of 50 

nm/min with 1 nm resolution and are an average of 5 accumulations.  Measurements were 

conducted in a 1 mm path length quartz cuvette and, unless otherwise noted, at a protein 

concentration of 10 µM.   

All thermodynamic denaturation signals S(X), where X is temperature, were fitted to a two-

state model for temperature denaturation 

 𝑆(𝑋) = 𝑆𝑈 + 𝑆𝐹𝑒−Δ𝐺(𝑋)/𝑅𝑇/(1 + 𝑒−Δ𝐺(𝑋)/𝑅𝑇) (2a) 

 Δ𝐺(𝑋) = g𝑋(𝑋 − 𝑋𝑚) (2b) 
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to obtain the denaturation midpoints with respect to temperature (Tm). All of the protein 

constructs were reversible in the concentration range used for the experiments. 

 

6.1.3 Temperature jump kinetics  

 

Laser temperature jumps were carried out using a Surelite Q-switched Nd:YAG laser 

(Continuum Inc., Santa Clara, CA), with details of the instrument mentioned elsewhere 

[23,24].The jump size was 5-6°C. The exact size of the jump was calibrated by comparing the 

fluorescence decays f of tryptophan (300 µM solution) after the jump with the corresponding 

decay at an equilibrium temperature several degrees higher. Fluorescence decays were excited 

at 280 nm by a tripled, mode-locked Ti:sapphire laser every 12.5 ns for a total of 1 ms. The 

temperature jump was set to occur 153.75 µs after the oscilloscope was triggered to start data 

collection. The sampling frequency was 10 Giga-samples per second. Thus each fluorescence 

decay was sampled at 100 picosecond intervals, or 125 times before the next decay was excited. 

The signal was usually 50-60 mV. Sample concentrations were 40 µM for all of the proteins 

with the exception of Qfip35 for which only 25 µM was used.  

 

6.1.4 Kinetics data  

 

Kinetics data were analyzed using MATLAB (Mathworks Inc., Natick, MA) and IGOR Pro 

(Wavemetrics Inc., Lake Oswego, OR). A fluorescence decay f(t) was collected every 12.5 ns. 

100 of these were binned into intervals of 1.25 µs. Thus the protein kinetics could be followed 

with 1.25 µs time resolution.  The decays f(t) were fitted to a linear combination of the decay 

f1 averaged between 153.75 and 28.75 µs before the T-jump, and the decay f2 averaged over 

the final 125 µs of data collection, where the protein had equilibrated. The relative lifetime 

shift as a function of time, χ(t). The χ(t) traces were fitted using the model described below. 

 

6.1.5 Multimeric network model  

  

A simplified multimeric network model was built for fitting the experimental data. In this 

model each monomer units can attain in any of the three forms namely folded (N), misfolded 

(M) and unfolded (U). For example for the case of monomer there exists only 3 total states 

whereas for dimer the total possible states will be 3^2 and for general system containing n 

monomer repeats the total number of states will be calculated as 3^n. States like NU and UN 
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are distinguishable in my model as in the tethered construct N terminal of one domain is 

connected to C terminal of the other. The thermodynamics of each of n-mer has been calculated 

by assuming a Boltzmann’s distribution and fitting to experimental fluorescence data. 

Experimental fluorescence thermal melts do not show two apparent co-operative transitions 

hence the model considered the misfolded baseline (Sm) to be an average of the folded (Sf) 

and unfolded baselines (Su) (see Appendix E for details). The model also included pairwise 

interaction between the folded (NN) and misfolded (MM) units. These nearest neighbor 

interaction terms were added in the free energy equations in a way that more of these 

interactions will stabilize the native or misfolded state. This model assumes an off-pathway 

intermediate meaning that direct N to M transition is forbidden, it has to go to U first and then 

to M. In order for the model to mimic the T-jump relaxation experiments we first equilibrated 

the system at the initial temperature to obtain relative concentrations of all the species (dimer 

NN, NU, UN, NM, MN UM, MU, MM, UU) and later jumped the temperature to the desired 

experimental temperature to obtain kinetics solving the master equation. Similar types of 

models have reported earlier for fitting experimental folding data [14,21,22,23]. 

  

6.2 Results  

 

6.2.1  Decrease in thermal stability as more monomer units are added 

 

The thermal stability of the tethered n-mer constructs was measured by probing the only 

tryptophan (present in the hairpin 1 in each monomer WW Domain) over a temperature range 

of 5-90 °C by both circular dichroism and fluorescence spectroscopy. The thermal melts were 

performed with varying concentrations of guanidine hydrochloride to obtain the melting 

temperature (Tm) with better accuracy. It was observed that dimer stability was similar 

compared to monomer but when more monomer units were tethered the construct became 

thermally unstable (see Table 6.1 and Appendix E). The expression yield of tetramer construct 

decreased significantly than the others. The dimer yielded ~ 12 mg for a three liter expression 

whereas only 3-5 mg of protein was obtained for the tetramer. The tetramer solution also turned 

turbid as fractions were collected on the FPLC.  
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Table 6.1: Thermodynamic data for the tethered protein constructs  

 

 

 

 

 

 

 

 

 

* Qfip35_His is Qfip35 purified using His tag  

 

 

6.2.2 Effect of purification tag on Qfip35 protein structure 

  

The tetramer (Qfip35) was purified using GST and the tag was later cleaved as mentioned 

in the method section and ref [28]. In order to confirm the presence of purified protein the 

sample was run on SDS gel and a clear band at ~ 17 KDa was seen. The purified protein was 

also characterized using MALDI (see Appendix E) and a clear peak at 17.76 KDa was seen for 

the cleaved Qfip35. I performed circular dichroism spectroscopy on the sample to my surprise 

the spectrum didn’t show a typical WW domain spectrum (peak at around 227 nm) but instead 

had a CD looking closer to random coil see (Fig. 6.2). I also conducted thermal melt on GST 

purified Qfip35 by probing the tryptophan 280 nm and monitoring the spectrum from 290-450 

nm (see Fig. 6.3). The fluorimeter traces were noisy but showed co-operative transition. The 

expression was repeated atleast thrice to get similar results. Interestingly, when Qfip35  

purification was conducted using an attached His-tag the CD spectrum now resembled to that 

of a typical WW domain with a peak at 227 nm (see Fig.6.2).I  obtained similar characterization 

results as before using mass and gel electrophoresis for Qfip35.The thermal denaturation 

Fluorimeter                                          Circular Dichroism 

Protein Tm (°C) g1 (J mol-1 K-1) Tm (°C) g1 (J mol-1 K-1) 

Fip35 82(1) 405(22) 78(1) 268(10) 

Dfip35 83(2) 290(12) 78(1) 261(6) 

Tfip35 79(1) 348(8) 72(1) 312(6) 

Qfip35_GST 67(3) 291(10) 64(1) 260(2) 

Qfip35_His 83(2) 275(10) 67(2) 378(16) 
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midpoint for this sample came out to be similar to monomer (Table 6.1). Based on the above 

results same protein when purified using two different tags resulted in different structural folds.  

 

 

 

 

Fig. 6.2: Comparison of Qfip35 (tetramer) expressed and purified using GST and His tag 

using Circular dichroism at 25 °C. The typical 227 nm peak for the WW domain is present in 

Qfip35_His protein but not in the spectra obtained for Qfip35_GST 
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Fig. 6.3: Comparison plot of Average wavelength vs temperature plot for Qfip35_GST and 

Qfip35_His. Melting temperature is higher and data is less noisy in the case of Histag 

purification. Addition of GuHCl shifts the folded baseline in Qfip35_GST. 

 

 

6.2.3 Global fitting of kinetics and thermodynamics using multimeric model 

 

The thermodynamics of monomer to tetramer construct was conducted by probing the 

tryptophan at 280 nm and monitoring the emission spectrum as function of increasing 

temperature. The fluorimeter data was collected at varying GuHCl concentration (1,2,3 M) to 

obtain better unfolding baselines. Circular dichroism spectroscopy was also done on these 

tethered constructs in order to observe structural changes in the protein when subjected to 

increase in temperature.  

In order to determine the relaxation kinetics I conducted temperature jump relaxation 

experiments on all the tethered constructs. The jumps were conducted near and below the 
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melting temperature using our inbuilt ultrafast laser temperature jump setup described above 

in the method section. The kinetics experiments were done at different temperature and GuHCl 

concentrations.  In order to globally fit the thermodynamics and kinetics data for all of the 

protein a simplified multimeric model was built descried in method section and Appendix E. 

Briefly the model consist of 14 parameters overall. The thermodynamics was represented using 

12 parameters and the remaining 2 parameters were for barrier heights going from N to U and 

U to M (see Table 6.2). The unfolded state was used as reference state and the free energy was 

written as a Taylor series expansion across the Tm (see equation 1 in Appendix E).This 

simplified model populates the intermediate species (cyan shades see Fig. 6.4) at higher 

temperature and GuHCl concentration. Data was globally fitted assuming a Boltzmann 

distribution for a full set of multimeric structures such as for tetramer NNNN or UMMN. The 

fitted parameter values are shown in Table 6.2. Thermodynamics was fitted with an effective 

Tm of ~ 83 °C with both unfolded and folded baseline linked across the data set (see Fig. 6.5). 

The kinetic data was globally fitted with a relatively large (~ 17 KJ/mole) barrier (Fig.6.6). 
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Fig. 6.4: Signal vs Temperature plot Top panel to bottom panel Mfip35 to Qfip35. The change 

in folded state population is represented as the blue trace similarly the yellow trace represents 

population change in the unfolded state. Intermediate species are populated at high temperature 

and denaturant concentration and are plotted in colors other than blue and yellow. 
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Fig. 6.5: Global Thermodynamic Fitting: Signal (Average wavelength) vs Temperature plot 
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B 

Figure 6.6 (cont.) 
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C 

Figure 6.6 (cont.) 
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Fig. 6.6: Temperature jump relaxation kinetics χ(t) vs time traces for A) Mfip35 B) Dfip35 

C) Tfip35 D) Qfip35_GST 

 

Table 6.2: Fitted model parameters  

 

 

 

 

 

 

 

 

 

 

 

 

* N(folded)=1 ; M(Intermediate)=2 ; U(unfolded)=3 

*Gϯ13 and Gϯ23 are barrier height going from folded to unfolded or intermediate to unfolded 

form  

Parameters Model fitted 

values 

Tm (°C) 84.3 (0.4) 

g31 (J/mol K) 436 (15) 

g32 (J/mol K) 201 (13) 

go32 (J/mol K) 809 (298) 

gg31 (J/mol K) 2481(132) 

gg32 (J/mol K) -129 (115) 

gnn (J/mol K) -2.22E-14 

gmm (J/mol K) -2.22E-14 

bu 359.7 (0.2) 

mu -0.19 (0.01) 

bf 347.1 (0.2) 

mf 0.011 (0.001) 

Gϯ13 (J/mol K) 17170 (7972) 

Gϯ23 (J/mol K) 2626.5 

D 

Figure 6.6 (cont.) 
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6.3 Discussion and conclusion 

 

The idea of systematically designing tethered proteins presented in this chapter to examine 

the stability and kinetics of different aggregate structures is derived by connecting two 

interesting repeat protein studies on notch ankyrin repeats [29–31] and Iκβα isoforms [32,33]. 

These repeat protein studies demonstrated that transient interactions between monomers in a 

repeat protein can be tweaked by mutations or changing the number of repeats. My approach 

of tethering creates an effective higher concentration of protein and also speed up aggregation 

of a fast folding protein. The thermal denaturation experiments on the tethered constructs 

monitored by circular dichroism spectroscopy revealed that the interaction between the 

different domains lead to decrease in stability (melting temperature decreases) of the overall 

construct when more monomer units are added. This trend is consistent regardless of the 

tetramer being expressed and purified with a GST or histidine tag see Table 6.1. However, 

when probed by fluorescence a decrease in stability is seen with the exception of Qfip35_His, 

the stability of this construct is comparable to that of the monomer domain (Mfip35). One 

possible explanation for this could be that as more units are added to make the tetramer two or 

three of the domains interact leaving one of WW domain alone which gives rise to an overall 

increase in stability. It is worth mentioning here that Qfip35_His melting temperature probed 

by CD and tryptophan fluorescence differ by more than 10 degrees. Experimentally, the 

hallmark of two-state folding is to obtain the same melting temperature (Tm) via different 

spectroscopic measurement techniques that each probe different parts of the energy landscape 

[34,35]. Such behavior breaks down when intermediates are populated during the course of the 

folding. This evidence highlights that Qfip35_His is not an apparent two state folder. In the 

literature the effect of GST tag on target protein is not clear and conflicting results exists for 

the same. In my experiment the tetramer was purified using both the six histidine affinity tag 

(Histag) and also the GST (26 K Da). The report by Speicher and Harper claimed that using 

GST as a fusion tag can provide chaperoning which help the target protein to fold properly. 

The article also reported GST being capable of yielding more soluble protein by avoiding the  

protein going to the inclusion bodies [36]. On the contrary ref [37] proposed that GST as a 

fusion tag is a poor solubility and affinity tag as it has four exposed cysteine residues which 

provide oxidative aggregation. This makes it a bad choice for tagging oligomeric target proteins 

[38]. In fact I observed in our circular dichroism experiments that QFip35 cd signal varies 

depending on the tag I used for purification (see Fig. 6.2). The difference seen in the cd 

structure of the repeat protein may be due to the interference by the GST tag during the 
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expression and purification steps. This is an interesting finding as now I have a protein which 

is trapped in some kind of an intermediate state which when subjected to increasing temperature 

undergoes co-operative unfolding. Kinetic relaxation experiments on the Qfip35_His are yet 

to be performed and I am working towards that end.  

Comparing the thermodynamics of the tethered constructs the average wavelength range 

for the monomer to trimer is around (345- 358 nm) see Fig. 6.5  but in case of  the tetramer  

folded baseline intercept is shifted more towards the blue (342 nm) indicating that the 

tryptophan molecules in this protein are more buried (less exposed to water). Fig. 6.7 shows 

the plot of mean residue ellipticity for all the protein constructs and it is intriguing to see that 

mre (cd signal normalized for the number of peptide bonds in the protein) for them don’t 

overlap. Dimer and trimer have mre values that are twice as compared to monomer whereas 

the Qfip35_His has values similar to that of the monomer. One possible explanation for such 

behavior can be that the typical cd signature (peak at ~227 nm)  for family of WW domains 

arises from tryptophan coupling [39].The difference in mre values between the tethered 

constructs can come from interaction between the neighboring domains in the dimer and trimer 

system giving rise to enhanced tryptophan coupling and higher mre values. Whereas for the 

case Qfip35_His lower mre could be a result of either all four domains being folded 

independently (there exist no interaction) or two domains interacting while the other two 

domains are misfolded giving mre values that are similar to that of the monomer. 

The simplified model described in the method section was able to fit the relaxation kinetics 

and thermodynamics globally. The model included the interaction terms gnn and gmm in the 

free energy of the system but it turns out that their contribution to the overall free energy is not 

significant. The kinetics fitted to a barrier height going from folded to the unfolded state to be 

around ~17 KJ/mole. The model provide rate between all of the multimeric states starting from 

NNNN to UUUU. The model is flexible to include other interaction terms in the free energy 

equations (see Appendix E for more details).The current study can serve as future benchmark 

for protein-protein interactions simulations (coarse-grained or all atom) as  unfold/ fold on a 

time scale of few 10’s of µs which is not very computationally expensive. These simulations 

will reveal details about the nature of the misfolded states whether domain swapped structures 

are formed or the protein from random clumps (hydrophobic interactions). 
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Fig. 6.7: Plot of MRE vs wavelength for all the tethered constructs. Qfip35_GST showed no 

typical 227 nm peak seen for WW domains. 
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CHAPTER 7 

Folding under high pressure inside the bacterial 

cytoplasm  

 

In vitro experiments have painted a rich protein folding landscape over the years. Globular 

proteins are dynamic in nature with small folding equilibrium constants is one of the most 

valuable lessons learnt from these experiments. However, in vitro experiments lack in 

providing the complex environment presented by a living cell. The intricate solution 

environment inside the cell is capable of controlling protein stability and kinetics. Some of the 

ways in which cells can potentially modulate the function of their proteins are: suppression of 

transcription[1], interference with mRNA [2], different post-translational modifications [3,4], 

as well as protein transport, storage and degradation[5–9]. Cell has a highly crowded 

environment, some of which include tRNA, proteins, osmolytes, complex carbohydrates and 

other large organelles (Like: golgi bodies, endoplasmic reticulum). These molecules can not 

only exclude volume but are also known to interact with proteins via “quinary interactions”.  

The most natural environment for performing folding experiments is inside living cells as 

they provide conducive surroundings that is highly evolved to modulate the stability of proteins 

compared to aqueous buffer (in vitro). Using the fast relaxation imaging (FReI) technique it is 

shown that proteins have higher refolding yields inside living cells compared to in vitro 

experiments a possible result of chaperoning [10]. Chaperones can help proteins refold quickly 

once they has been unfolded. Recently, it has been shown that studying protein folding kinetics 

inside mammalian cells subject to stress such as temperature and osmotic changes is feasible. 

Interesting experiments have been conducted on protein (PGK) stability changes when it is 

localized in different cellular compartments like cytoplasm, nucleus or endoplasmic reticulum. 

Protein (PGK) showed different thermal stability when measured in the cytoplasm compared 

to when it was localized inside the nucleus. As a step forward protein kinetics and stability has 

also been studied as a function of cell cycle. The results of that investigation showed that the 

cytoplasmic environment somehow changes when the cell is dividing in order to make the 

protein several °C more stable, whereas during interphase (the normal metabolic state), PGK 

is less stable. The possible implication of this study is this cell cycle dependent 
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folding/unfolding of signaling or cell control proteins can provide a better timing control  on 

their function [11,12]. Other such examples are: RfaH C-terminal domain’s secondary structure 

is modified when crowded by its adjacent domain. Also the protein lymphotactin which is a 

GPCR-binding chemokine rearranges into a glycosaminoglycan binder when the temperature 

is tuned across 37 °C [13]. These are demonstrations where small perturbations can completely 

reshape a protein’s structure and therefore function. Cell can exert such effects, ranging from 

subtle to these two obvious examples, on its proteome.  

Recent experiments by Oliverberg and co-workers on beta barrel SOD1 protein inside both 

mammalian and bacterial cells have shown that stability of SOD1 protein’s was lowered in 

both types of cells compared to in vitro experiments. The Tm (melting temperature) as well as 

Tc (cold denaturation point) shifted to physiological regime inside cells. However, it is worth 

mentioning here that SOD1 was more stable in the bacterial cells compared to the mammalian 

cells; intercellular environment of different cell may act on the protein in separate fashion [14]. 

The emerging picture thus far is that proteins are not just optimized for structure and function 

but also its interactions (electrostatic and hydrophobic) with the host cell environment plays a 

vital role. This research embarked questions on physiological indication of marginal stability 

and constraints on protein behavior across evolutionary diverse organisms. 

Finally, as cells are also subject to variations in temperature, pressure (osmotic or 

hydrostatic), and solute concentrations. All of these effects together can alter protein stability, 

and could be used by cells to control its proteome’s stability and biological function in more 

subtle ways than just protein synthesis and degradation [15].The focus of this chapter is to 

investigate how stability of an enzyme PGK is modified in two very different bacterial strains 

namely J1 strain[16,17] (pressure resistant strain obtained from Dr. Samantha Miller’s lab in 

University of Aberdeen, UK) and MG1655 under high pressure and thermal stress. The 

motivation behind subjecting bacterial cells to high pressure was to find the reason behind 

pressure tolerance in 1% bacteria that survive high pressure pasteurization procedure employed 

by food and juice industry. Whole genome sequencing approach was taken to investigate on 

any underlying genomic variations that may give rise to pressure tolerance in these treated 

bacterial cells. The FRET experiments on labelled PGK clearly demonstrate the feasibility of 

performing high pressure denaturation experiments on proteins inside living bacterial cells. 
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7.1 Methods  

 

7.1.1 In-cell ReAsH labeling  

In-cell ReAsH labeling was carried out according to manufacturer’s (Invitrogen) protocols, 

with some modifications (see Appendix F for more details). In order to perform spectroscopic 

measurements cells were spun down at 10,000 g for 10 minutes after 12-13 hrs of induction 

and washed using ice-cold PBS (3X times) and later diluted to 1:8 ratio of concentrated cell 

stock to PBS buffer pH=7. Undergraduate research student Timothy Chen assisted with the 

labeling procedure. 

 

7.1.2  In vitro ReAsH labeling  

In vitro labeling of ACGFP1 tagged PGK tetracysteine (GPGK-tc) containing construct 

was conducted at 5x ReAsH excess: 10 µM protein and 50 µM ReAsH.  Before the protein was 

labeled it was incubated at room temperature in 1x BAL buffer (250 µM 2,3-dimercapto-1-

propanol, Invitrogen) supplemented with 7.5 mM tris-(2-carboxyethyl)phosphine (TCEP) and 

2.5 mM EDTA,  pH 7.  All buffers were degassed using sonication prior to labeling.  

Labeling was initiated by the addition of ReAsH to the reaction mixture and was monitored 

by fluorescence intensity at 610 nm for about 90-120 minutes after initiation.  After labeling, 

excess ReAsH was removed by filtration (Amicon) to a final dilution of >1000.  Excess ReAsH 

was monitored via absorbance at 593 nm by UV-Vis spectroscopy and labeling was confirmed 

by MALDI mass spectrometry.    

 

7.1.3 Pressure and temperature unfolding thermodynamics  

Temperature and pressure denaturation of PGK was measured by direct excitation at 475 

nm and monitoring the FRET between the fluorescent protein tags AcGFP1 (Donor) and 

ReAsH (Acceptor). Pressure unfolding measurements were done using rectangular quartz 

cuvette with a path length of 4 mm holds the sample in the ISS pressure cell.  Measurements 

were done at an interval of 100 bar in the pressure range of 1 to 1700 bar. A wait time of 

approximately 8 minutes was set at each pressure to allow equilibration. Pressure increment 

was achieved using an automated pressure generator (HUB 440) by Pressure Biosciences. HUB 



155  

440 is capable of generating pressure upto 4000 bar. It can also maintain pressure at a particular 

set point using an inbuilt PID to an accuracy of around 2-3 bars.  

Fluorescence spectroscopy was carried out using JASCO fluorescence spectrophotometer 

(FP- 8300) equipped with programmable temperature control with excitation and emission slit 

widths kept at 5 nm. FRET measurements of PGK stability were conducted by excitation at 

475 nm and collecting emission from 500 – 700 nm. The reported donor/acceptor (D/A) ratio 

is calculated by dividing the integrated intensity from 500 - 560 nm (D) by the integrated 

intensity from 585 – 700 nm (A). The same wavelength range was used in all cases to obtain 

consistent results.   

All thermodynamic denaturation signals S(X), where X is temperature or pressure, were 

fitted to a two-state model separately for temperature and pressure denaturation 

 

 𝑆(𝑋) = 𝑆𝑈 + 𝑆𝐹𝑒−Δ𝐺(𝑋)/𝑅𝑇/(1 + 𝑒−Δ𝐺(𝑋)/𝑅𝑇) (1a) 

 Δ𝐺(𝑋) = g𝑋(𝑋 − 𝑋𝑚) (1b) 

 

to obtain the denaturation midpoints with respect to temperature (Tm) and pressure (Pm). It was 

observed that both temperature and pressure denaturation inside the bacterial cells is 

irreversible as the protein aggregated at high temperature or pressure. 

 

7.2 Results 

 

7.2.1 Higher Labeling efficiency and signal intensity of J1 strain compared to MG1655 

 

The enzyme PGK with Ac-GFP1 and tetra-cysteine (tc) tag was expressed in-situ in both 

J1 and MG1655 strains followed by ReAsH labeling. ReAsH labeling procedure (see Appendix 

F) and growth conditions were kept uniform for both of the strains. FRET was monitored by 

exciting the Ac-GFP1 at 475 nm and collecting the fluorescence from 500-700 nm. The 

advantages of using ReAsH dye is that it is smaller in size compared to fluorescent protein 

mCherry. ReAsH is also not fluorescent unless it is bound to the tc tag this helps in reducing 

the background red fluorescence. Successful labeling with ReAsH and energy transfer yield a 

peak at 610 nm. We observed that J1 cells labeled every single time the labeling reaction was 
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conducted whereas MG1655 had a success rate of 66 %. We also noticed that J1 strain also had 

almost 4 fold more signal intensity compared to wildtype MG1655 strain (see Fig.7.1). 

 

 

 

Fig.7.1: Raw fluorescence intensity vs wavelength plot for J1 and MG1655 strain. The cells 

were excited at 475 nm (GFP) with a PMT=700V and FRET was measured between AcGFP1 

and ReAsH dye.  

 

7.2.2 Pressure stabilization of PGK inside living bacterial cells 

 

I measured the thermodynamic stability of FRET-Labeled PGK under high pressure inside 

living bacterial cells. The cells were subjected to a pressure of 1400 bar with an increment of 

100 bar and wait time of approximately 8 mins was given at a particular pressure for 

equilibration. The midpoint pressure (Pm) obtained from the pressure titration was compared 

to in vitro pressure denaturation of PGK see Fig.7.2. I observed an increase in pressure 

denaturation midpoint for the FRET labeled PGK inside the bacterial cytoplasm. The protein 

melted at around 770 bar in vitro whereas inside cells the melting pressure was approximately 

900 bar. It has also been reported earlier that PGK shows different thermal stabilities inside 

cells depending upon the its intracellular location [10]. PGK is thermally more stable in the 

nucleus compared to the cytoplasm. I have shown here that it is possible to monitor high 
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pressure unfolding of proteins inside living cells making it feasible to have a comparison of 

protein unfolding subjected to pressure and temperature inside cells.  

 

  

 

Fig.7.2: Normalized D/A vs Pressure plot. Comparison of in vitro and in-cell stability of PGK 

under pressure. Cells were excited at 475 nm (GFP) with the PMT set at 700 V and FRET was 

measured between AcGFP1 and ReAsH/mCherry to calculate donor to acceptor ratio.  

 

7.2.3 Thermodynamic stability of PGK measured in different bacterial strains  

 

As a step further in my investigation unfolding of PGK was conducted inside two different 

bacterial strains. The motivation behind was to understand how stability of PGK will change 

in cytoplasmic environment of the two different bacterial strains? We transformed the J1 

(known pressure resistant strain) and MG1655 cells with GPGK-tc plasmid and then labelled 

them using ReAsH dye. The unfolding of PGK was triggered by increasing the temperature 

and pressure separately. A comparison of the melting temperature or pressure was made 

between the two strains see Table 7.1 and Fig.7.3. We observed that given the broad day to day 

experimental variation under high pressure conditions the stability of PGK in J1 strain is not 

significantly different than in wildtype MG1655. Interestingly, it was noticed that under 
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thermal stress PGK melted at a high temperature in the pressure resistant strain compared to 

the MG1655 (see Fig.7.3B). 

 

 

Fig.7.3: A) Comparison of FRET-PGK stability under pressure inside J1 (black circle) and 

MG1655 (red circle) strains. Experimental variation is shown by red and black bold line 

representing the sigmoidal unfolding curves obtained on different days. B) Thermal stability 

of FRET-PGK monitored in both strains J1 (black circle) and MG1655 (red circle). The cells 

were excited at 475 nm (GFP) with a PMT=700V and FRET was measured between AcGFP1 

and ReAsH dye. 
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Table 7.1 Thermodynamic denaturation data for MG1655 and J1 strain 

 

Strain 
*Midpoint 

Temperature (Tm) °C 

*Midpoint 

Pressure (Pm) Bar 

MG1655 39 (1) 964 (98) 

J1 42 (0.5) 815 (120) 

*values were calculated by averaging the midpoints obtained from 3 different melts and 

standard deviation is 1σ  

7.2.4 Change in colony morphology of pressurized MG1655 cells 

 

In order to see the effect of high pressure on colony morphology of bacteria. The pressure 

treated MG1655 cells were platted and streaked on a LB+ Ampicillin plate along with the J1 

and the wildtype MG1655 see Fig.7.4.It was discovered that cells that were subjected to 

pressure had smaller colony size along with well-defined boundaries compared to the wildtype 

or J1 strain. All these cells were grown for same time and in similar conditions (48 hrs in an 

incubator at 37 °C). 

 

 

 

 

 

 

 

 

Fig.7.4: A) LB Ampicillin plate with colonies from the wildtype, J1 and pressure treated cells 

B) Smaller and more defined colonies were seen for the pressurized cells compared to 

MG1655. 

WildType Pressurized cells 

A B 
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7.3 Discussion and conclusion 

 

In order to perform the thermodynamic denaturation experiments of PGK inside living 

bacterial cells I and Timothy Chen transformed both of the strains with AcGFP1-tc plasmid 

and then after induction labelled them with ReAsH dye. It was observed that J1 strain labeled 

every time the labeling experiment was performed and had 4 times more intensity than the 

MG1655 E.coli strain consistently see Fig. 7.1.  I also performed phase contrast microcopy on 

these bacterial strains in Asst. Prof. Kulhman’s lab at the physics department in UIUC to 

examine if there exists any size difference between these strains; possible reason for better 

labeling. The length and width analysis of the frames collected was done using Oufti software 

[18] with minor tweaks in the input files. The J1 cells were not significantly different in their 

length or width distribution from the Wildtype (see Appendix F). The tendency of J1 strain to 

yield higher signal is possibly attributed to better membrane permeability of the ReAsH dye. 

Pressure melts of PGK were performed in vitro and inside J1 strain as described in the method 

section. It was seen that cellular environment of the J1 bacterial cells has a stabilization effect 

on the protein PGK under high pressure stress (Fig. 7.2), similar results have been published 

for PGK stability when it was subjected to thermal stress inside mammalian cell [10,19]. 

In a step forward I investigated the thermodynamic stability of PGK inside different 

bacterial strains under both temperature and pressure stress. Surprisingly under pressure stress 

PGK stability as monitored by the FRET between ACGFP-1 and ReAsH dye didn’t show a 

significant difference (see Table 7.1) but the protein seemed to be thermally stable inside the 

pressure resistant J1 strain by atleast ~2 degrees (see Fig. 7.3B).The pressure midpoints has a 

broader range of values due to higher day to day variation in pressure denaturation experiments. 

It is also worth mentioning that the protein tend to aggregate (abrupt decline in D/A) at much 

higher pressures (~1700 bar) compared to the MG1655 strain (~1450 bar); this can be attributed 

the inherit pressure tolerance of the J1 cells. The thermal stabilization of PGK in J1 strain 

indicate that the two thermodynamic parameters temperature and pressure possibly act 

differently on the structure giving rise to different unfolded state. Chaperoning or intercellular 

interactions might have preference towards one or the other of the unfolded structures. After 

looking into the colony morphology changes in the pressurized bacteria I performed laboratory 

pressure cycling of bacteria and sequenced the genome of these treated bacteria after first and 

ninth cycle along with the MG1655(control) and J1 strain (see Appendix F for more 

details).Genomic analysis revealed that C1 (first cycle) didn’t have any genetic modification 
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when referenced against the MG1655 strain but interestingly cycle 9 showed a 1.4 kb insertion 

making the cyaA gene non-functional (see Appendix F for details). The non-functionality of 

cyaA gene was verified by measuring the growth curve for cycle 9 and MG1655 strains with 

and without cAMP (3',5'-cyclic adenosine monophosphate). The recovery in growth seen for 

cycle 9 with the addition of cAMP manifested the presence of mutated cyaA gene (see 

Appendix F). The pressure relevance of this mutation is still under investigation.  

J1 strain’s genome was mapped to the MG1655 genome available online (NCBI E. coli 

genome databank) gave a low overlap (~83%) and hence the mutations predicted by BRESEQ 

program [20] are not adequate, the reference genome for J1 strain is not known. In conclusion 

this chapter demonstrated the feasibility of performing pressure melts on protein inside living 

cells which opens the possibility of making comparison with temperature denaturation. This 

comparison will facilitate our understanding on how differently they acts on the proteins.  
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APPENDIXES 

 

APPENDIX A 

Supplementary information of high-resolution 

mapping of the folding transition state of a WW 

domain 

 
A.1 Supplementary Methods 

 

For proteins that (un)fold fast and reversibly upon perturbation by temperature, the ΦT value 

offers a convenient reaction coordinate for locating the folding transition state (see Materials 

and Methods of main text for details). In this and previous Φ-analyses (see references in main 

text), we calculated the ΦT value by using a Taylor series expansion of the free energy of 

activation around the midpoint of unfolding (Tm) (Tm-fit, eq. 1 below). It is also possible to 

expand about T0 (the temperature of maximal stability), or to assume a constant heat capacity 

of folding DCP (the Gibbs-Helmholtz formula). We make the connections below. 

Several (but not all) of the highly destabilized hPin1 WW variants, mostly within loop 2 or its 

immediate flanking residues, yielded unphysical ΦT > 1 (Fig. A.3). We pinpointed as the cause 

uncertainty in the curvature of G(T) near Tm, given by the coefficient Gf
(2) in the main text. 

An error in Gf
(2) (due to fewer temperature points measured, or noisier kinetic traces) produces 

an error in ΦT when the derivative ∂G/∂T is calculated. This error can manifest itself as a 

physically unreasonable temperature of maximal stability, T0. At maximal stability ∂ΔG/∂T = 

0, so the “Tm-fit” predicts that 

 ∂ΔG/∂T = 0 = ∂/∂T [∆Gf
(1) (T-Tm) + ∆Gf

(2) (T-Tm)2], (1) 

from which one can easily show that  

 T0 = Tm -  ∆Gf
(1)/(2ΔGf

(2)) (2) 

T0 is generally expected to lie in a range near 0 °C for most proteins. (Below that range, cold 

denaturation occurs, above that range, heat denaturation occurs.) For some proteins, the “raw” 
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T0 value predicted from eq. (2) based on the “Tm-fit” is off by 100s of °C from the physical 

range (see Table 3). Therefore, an alternative “T0-fit” was used, which is briefly outlined here. 

Instead of Taylor-expanding about Tm, we can Taylor-expand 

 G(T)=G(0)’+G(2)’(T-T0)
2  (3) 

about T0, where G(0)’ is the free energy at maximal stability. This expansion has exactly the 

same number of adjustable parameters as the “Tm-fit.” By plotting T0 from the “Tm-fit” vs. 

Tm, we found that most proteins produced physically reasonable T0 in the range from -40 °C 

to +30 °C. (Tm ranged from +38 °C to +78 °C T0. We removed outliers, and fitted the 

correlation between Tm and 0 to a straight line [T0=a+b*Tm ; R2 = 0.3 a=-72.4±16 ; 

b=1.03±0.3]. We then used this straight line to determine a smoothed T0 for each protein (Table 

A.3, smoothed values from the linear correlation T0=a+b*Tm). Finally, G was re-fitted to eq. 

(3), and derivatives for ΦT were calculated using the fit to eq. (3). The difference between the 

“Tm-fit” and the “T0-fit” is shown in Fig. 2.3A (main text). The distribution of ΦT values is 

generally very similar, but the outliers are removed. Thus we believe that the “T0-fit” more 

accurately reflects the correct ΦT values. 

A third useful expansion is the Gibbs-Helmholtz formula, which assumes a constant heat 

capacity of reaction. One can integrate dH=CPdT and dS=CPT/Tm (with Tm again as the 

reference temperature in this example) before assembling the free energy 

 G(T)=H-TSHm+CP(T-Tm) - TSm - TCPln[T/Tm]. (4) 

This equation also has three adjustable parameters, and yields a fit of essentially the same 

quality as the three parameter Taylor expansions. Rewriting eq. (4) in the variable x=T-Tm (e.g. 

ln[T/Tm] = ln[1+(T-Tm)/Tm] = ln[1+x/Tm]), and Taylor-expanding for comparison with equation 

(1) yields 

 G(T)=Hm- TmSm) -Sm(T-Tm) - (CP/2m).(T-Tm)2 

  = -Sm(T-Tm) - CP/(2Tm).(T-Tm)2. (5) 

As expected for thermodynamic consistency, -∂G/∂x|x=0 = Sm and –Tm∂2G/∂x2|x=0 =CP. 

The relation between our Taylor parameters in Table 1 of the main text and the Gibbs-

Helmholtz parameters is  

 Hm=-Tm∆Gf
(1),Sm=-∆Gf

(1), and CP=-2Tm ∆Gf
(2)

. (6) 

It is worth noting that despite the equal quality fits and number of parameters, the Taylor 

expansion and Gibbs-Helmholtz parameters are not equivalent, as the Taylor expansion does 
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not assume that the heat capacity for reaction is independent of temperature, but truncates at 

second order, whereas the Gibbs-Helmholtz equation assumes constancy of CP, but the 

logarithm “expands” to infinite order. 

The parameters of the “T0-fit” can also be related to the “Tm-fit” parameters by 

 0=G(0)’+G(2)’(T0-Tm)2, G(1)=-2G(2)’(T0-Tm), and G(2)=G(2)’ (7) 

The second order expansion coefficients are the same when all fitting parameters are floated. 

However, if T0 is refitted and smoothed as discussed above and reported in Table A.3, then a 

corresponding value of CP=-2Tm ∆G(2)’ may be calculated. Table A.4 shows the heat capacities 

from the “T0-fit,” which we believe are more reliable. The ones from the “Tm-fit” are easily 

obtained using table 1 of the main text and eq. (6). 

 

Table A.1: Transition state location calculated from the Tm-analysis and T0-analysis 

Variant 
Tm-fit T0-fit 

ΦT (50 °C) ΦT (55 °C) ΦT (60 °C) ΦT (50 °C) ΦT (55 °C) ΦT (60 °C) 

wt hPin1 0.35 0.45 0.53 0.35 0.45 0.53 

K6A 0.36 0.39 0.42          0.39 0.40 0.42 

K6M 0.49 0.51 0.53 0.52 0.52 0.52 

L7A 0.60 0.65 0.71 0.52 0.54 0.56 

L7I 0.50 0.55 0.61 0.50 0.50 0.51 

L7V 0.62 0.68 0.74 0.58 0.61 0.63 

P8A 0.40 0.43 0.46 0.40 0.44 0.47 

P9A 0.49 0.53 0.57 0.50 0.53 0.56 

G10A 0.46 0.53 0.60 0.45 0.51 0.57 

W11F 0.86 1.02 1.18 0.68 0.75 0.80 

E12A 0.49 0.58 0.67 0.50 0.57 0.63 

E12Q 0.38 0.46 0.53 0.38 0.46 0.53 

K13A 0.49 0.49 0.49 0.48 0.48 0.49 

K13V 0.50 0.52 0.53 0.49 0.51 0.53 

K13Y 0.35 0.36 0.37 0.31 0.32 0.32 

R14A 0.50 0.61 0.73 0.45 0.54 0.61 

R14F 0.34 0.44 0.54 0.33 0.43 0.51 

R14L 0.44 0.54 0.62 0.44 0.53 0.61 

M15A 0.41 0.49 0.56 0.41 0.49 0.56 
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S16A 0.49 0.55 0.60 0.49 0.55 0.66 

S16G 0.52 0.61 0.69 0.51 0.59 0.49 

S16T 0.36 0.43 0.49 0.36 0.43 0.49 

R17A 0.49 0.54 0.57 0.50 0.54 0.57 

R17G 0.59 0.63 0.66 0.59 0.63 0.66 

S18A 0.37 0.51 0.64 0.38 0.52 0.63 

S18G 0.35 0.49 0.61 0.36 0.49 0.60 

S19G 0.37 0.46 0.54 0.38 0.46 0.54 

G20A 0.61 0.63 0.64 0.62 0.63 0.65 

R21A 0.37 0.40 0.43 0.37 0.39 0.41 

R21H 0.38 0.41 0.42 0.38 0.39 0.40 

R21L1 0.39 0.41 0.43 - - - 

V22A 0.36 0.39 0.41 0.38 0.39 0.39 

Y23A 0.49 0.53 0.57 0.44 0.46 0.48 

Y23F 0.55 0.55 0.55 0.55 0.55 0.55 

Y23L 0.52 0.54 0.56 0.51 0.52 0.53 

Y24F 0.43 0.50 0.56 0.43 0.50 0.57 

Y24W 0.33 0.43 0.52 0.33 0.43 0.51 

F25A 0.57 0.59 0.62 0.48 0.48 0.48 

F25L 0.52 0.55 0.58 0.51 0.54 0.57 

N26D 0.57 0.62 0.67 0.49 0.52 0.54 

H27A 0.49 0.52 0.55 0.49 0.52 0.54 

H27G 0.40 0.44 0.47 0.40 0.42 0.45 

I28A 0.32 0.41 0.49 0.33 0.41 0.48 

I28G 0.54 0.61 0.68 0.53 0.58 0.62 

I28V 0.34 0.42 0.49 0.34 0.42 0.50 

T29A 0.53 0.58 0.62 0.51 0.54 0.56 

T29D 0.58 0.65 0.73 0.53 0.56 0.59 

T29G 0.88 0.96 1.04 0.72 0.74 0.76 

T29S 0.45 0.50 0.55 0.45 0.49 0.53 

N30A 0.72 0.76 0.80 0.73 0.76 0.78 

A31G 0.61 0.66 0.70 0.60 0.64 0.67 

A31S 0.22 0.31 0.38 0.22 0.31 0.38 

S32G 0.43 0.46 0.49 0.43 0.46 0.48 

S32T 0.14 0.19 0.24 0.13 0.19 0.24 

Q33A 0.46 0.55 0.62 0.48 0.54 0.50 

Cont’d 
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W34A 0.26 0.34 0.40 0.27 0.33 0.31 

W34F 0.63 0.63 0.63 0.61 0.62 0.58 

E35Q 0.56 0.59 0.62 0.56 0.59 0.55 

R36A 0.26 0.31 0.36 0.27 0.31 0.29 

S38A 0.32 0.39 0.45 0.33 0.40 0.37 

S38G 0.56 0.58 0.60 0.54 0.58 0.54 

S38T 0.53 0.58 0.62 0.52 0.57 0.62 

S18G/S19G 0.41 0.46 0.50 0.42 0.57 0.43 

S19G/G20S 0.38 0.42 0.45 0.38 0.46 0.39 

I28N/T29G 1.09 1.19 1.29 0.94 0.97 0.92 

Var1 (SADGR) - -  0.061  - -  0.06 

Var2 (SSSGR) - - 0.38 - - 0.40 

Var3 (SNGR) - - 0.34 - - 0.35 

Var4 (SSGR) 0.42 0.46 0.48 0.43 0.46 0.48 

Var5 (+1 Gly) 0.15 0.27 0.37 0.37 0.41 0.44 

Var6 (+2 Gly) 0.30 0.29 0.29 0.64 0.67 0.69 

K13k 0.49 0.45 0.42 0.47 0.42 0.37 

S16s 0.59 0.57 0.54 0.52 0.47 0.42 

R17r 0.56 0.61 0.66 0.56 0.59 0.62 

V22v  0.76 0.78 0.80 0.75 0.78 0.80 

H27h 0.58 0.66 0.72 0.59 0.66 0.73 

S32s 0.98 0.98 0.97 0.90 0.87 0.83 

W34w 0.46 0.61 0.74 0.46 0.61 0.74 

 

1R21L the mutant was partially folded , 1The values cannot be calculated accurately for all the temperatures  

Cont’d 
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1 Type of mutation: side chain (sc), backbone H-bond (hb). 2 Error weighted average ΦM-value for residues probed by 

multiple mutations. 3 ΦM-value of the S18G/S19G mutant was assigned to S18. 4 No ΦM-value calculated, because of large 

error. 

 

  

Table A.2: ΦM values used in the calculation of the transition state maps at 50 °C and 60 

°C 

Residue Mutation Type 1 ΦM (50 °C) 
Average ΦM 2 

(sc, 50 °C) 
ΦM (60°C) 

Average ΦM 2 

(sc, 60 °C) 

L7 L7A 

L7V 

sc 

sc 

0.23 (0.02) 

0.23 (0.02) 

0.23 0.31 (0.04) 

0.37 (0.02) 

0.35 

G10 G10A sc 0.52 (0.02) 0.52 0.61 (0.03) 0.61 

E12 E12A 

E12Q 

K13k 

sc 

sc 

hb 

0.15 (0.12) 

0.22 (0.35) 

0.79 (0.01) 

0.17 0.36 (0.08) 

0.25 (0.41) 

0.77 (0.01) 

0.34 

R14 R14A 

R14F 

R14L 

sc 

sc 

sc 

0.72 (0.01) 

0.76 (0.01) 

0.77 (0.01) 

0.75 0.82 (0.02) 

0.84 (0.02) 

0.73 (0.02) 

0.80 

M15 M15A sc 0.81 (0.02) 0.81 0.85 (0.03) 0.85 

S16 S16G 

S16s 

R17r 

sc 

hb 

hb 

1.13 (0.01) 

0.91 (0.01) 

1.08 (0.03) 

1.13 1.25 (0.02) 

0.97 (0.02) 

1.19 (0.02) 

1.25 

S18 3 S18G/S19G sc 1.36 (0.02) 1.36 1.36 (0.03) 1.36 

S19 S19G 

R17r 

sc 

hb 

1.38 (0.04) 

1.07 (0.03) 

1.38 1.41 (0.05) 

1.19 (0.02) 

1.41 

G20 G20A sc 1.33 (0.01) 1.33 1.50 (0.01) 1.50 

R21 R21A 

R21H 

S16s 

sc 

sc 

hb 

1.00 (0.02) 

0.86 (0.02) 

0.91 (0.01) 

0.93 0.94 (0.03) 

0.83 (0.03) 

0.97 (0.02) 

0.89 

Y23 Y23A 

Y23L 

sc 

sc 

0.55 (0.01) 

0.74 (0.01) 

0.65 0.58 (0.01) 

0.84 (0.02) 

0.66 

Y24 Y24F 

W34w 

sc 

hb 

0.64  (0.03) 

0.39 (0.01) 

0.64 0.71  (0.03) 

0.57 (0.02) 

0.71 

F25 F25A 

F25L 

K13k 

sc 

sc 

hb 

0.72 (0.01) 

0.62 (0.01) 

0.79 (0.01) 

0.67 0.79 (0.03) 

0.68 (0.02) 

0.77 (0.01) 

0.72 

N26 N26D 

H27h 

sc 

hb 

0.42 (0.01) 

0.46 (0.02) 

0.42 0.50 (0.03) 

0.57 (0.02) 

0.50 

H27 H27G sc 0.53 (0.02) 0.53 0.53 (0.02) 0.53 

I28 I28A 

I28V 

I28G 

sc 

sc 

sc 

0.17 (0.22) 

0.53 (0.12) 

0.46 (0.01) 

0.45 0.08 (0.50) 

0.50 (0.16) 

0.60 (0.02) 

0.57 

T29 T29A 

T29S 

T29D 

sc 

sc 

sc 

0.44 (0.01) 

0.65 (0.03) 

0.38 (0.01) 

0.44 0.53 (0.02) 

0.72 (0.05) 

0.51 (0.02) 

0.55 

N30 H27h hb 0.46 (0.02) -     0.57 (0.02) - 

A31 A31G sc 0.58 (0.01) 0.58 0.70 (0.01) 0.70 

S32 S32G sc 0.29 (0.03) 0.29 0.30 (0.05) 0.38 

Q33 

 

Q33A 

W34w 

sc 

hb 

0.50 (0.04) 

0.39 (0.01) 

0.50  0.70 (0.06) 

0.57 (0.02) 

0.70 

W34 W34A sc 0.43 (0.06) 0.43 0.24 (0.13) 0.24 

E35 E35A 

E35Q 

sc 

sc 

0.70 (0.06) 

0.72 (0.09) 

0.71 0.79 (0.08) 

0.96 (0.10) 

0.87 
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Table A.3: Alternative free energy fits: “Raw” and smoothed T0 values of mutants that qualify 

for ΦM-value analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mutant 
“Raw” T0 

values (°C) 

Smoothed T0 

values (°C) 1 

L7A -646.0 -33.5 

L7I 394.0 -21.6 

L7V -347.0 -27.1 

P8A            -14.2 -23.6 

G10A -66.0 -21.9 

W11F 349.0 -36.4 

E12A -126.0 -18.2 

E12Q -7.1 -15.4 

K13k -158.6 -24.6 

R14A -195.0 -32.0 

R14F -54.0 -25.9 

R14L -30.6 -23.2 

M15A -13.9 -19.1 

S16G -47.0 -23.4 

S16A -6.7 -16.9 

S16T -8.0 -17.6 

S16s 442.2 -28.9 

R17r -75.9 -21.8 

S19G -22.6 -15.9 

S18G/S19G -64.2 -17.8 

G20A -16.8 -22.1 

R21A -77.0 -20.0 

R21H -88.0 -20.9 

V22A -119.5 -16.6 

Y23A -133.0 -37.5 

Y23L -56.0 -25.8 

Mutant 
“Raw” T0  

Values (°C) 

Smoothed T0 

 values (°C) 1 

Y23F -21.2 -18 

Y24F -13.7 -19.5 

Y24W -24.7 -17.9 

F25A -343.0 -38.9 

F25L -41.0 -28.6 

N26D -335.0 -35.3 

H27G -90.0 -20.4 

H27h -29.0 -32.6 

I28A -60.0 -16.6 

I28G -125.0 -23.8 

I28V -2.8 -15.4 

I28N/T29G -696.9 -34.9 

T29A -114.0 -26.8 

T29D -1834.0 -28.2 

T29G 2291.0 -37.0 

T29S -66.0 -20.1 

N30A -36.1 -17.5 

A31G -50.0 -30.3 

S32G -33.7 -20.8 

S32s -213.5 -29.7 

Q33A -108.0 -17.7 

W34A -235.0 -17.9 

W34w -17.7 -21.4 

E35A -14.9 -20.5 

E35Q -14.76 -17.7 
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Table A.4: “T0-fit” parameters and corresponding CP 

 

Variants T0 (°C) Tm (°C) G(0)’, 

kJ/mol 
G(2), 

kJ/mol/K2 
CP, 

kJ/mol/K 
Wildtype hPin1 -12.0 58.6 -14.24 0.00285 -0.334 

K6A -11.2 59.4 -14.20 0.00282 -0.336 

K6M -12.5 58.1 -14.69 0.00292 -0.340 

L7A -33.5 37.8 -10.83 0.00210 -0.159 

L7I -21.6 49.3 -11.43 0.00223 -0.220 

L7V -27.1 44 -11.51 0.00225 -0.198 

P8A -23.6 47.4 -12.79 0.00254 -0.241 

P9A -14.7 56 -14.07 0.00280 -0.314 

G10A -21.9 49 -12.39 0.00245 -0.240 

W11F -36.4 35 -11.14 0.00215 -0.150 

E12A -18.2 52.6 -13.30 0.00263 -0.276 

E12Q -15.4 55.4 -13.59 0.00272 -0.301 

K13A -11.0 59.6 -13.58 0.00272 -0.324 

K13V -7.7 62.8 -14.12 0.00284 -0.357 

K13Y -19.1 51.7 -12.02 0.00283 -0.292 

R14A -32.0 39.2 -12.45 0.00243 -0.190 

R14F -25.9 45.2 -13.83 0.00272 -0.246 

R14L -23.2 47.8 -13.03 0.00258 -0.247 

M15A -19.1 51.8 -13.45 0.00268 -0.277 

S16A -16.7 54 -13.42 0.00268 -0.289 

S16G -23.4 47.6 -13.13 0.00259 -0.247 

S16T -17.6 53.2 -14.06 0.00281 -0.299 

R17A -11.8 58.8 -13.83 0.00276 -0.325 

R17G -13.3 57.3 -13.21 0.00264 -0.303 

S18A -12.2 58.4 -14.11 0.00281 -0.328 

S18G -14.2 56.5 -15.60 0.00310 -0.351 

S19G -15.9 54.8 -13.60 0.00271 -0.297 

G20A -22.1 48.9 -12.58 0.00250 -0.244 

R21A -20.0 50.9 -13.14 0.00260 -0.264 

R21L -14.8 55.9 678.60 - - 

R21H -20.9 50 -12.80 0.00252 -0.252 

V22A -16.6 54.2 -14.36 0.00284 -0.308 

Y23A -37.5 33.9 -11.78 0.00229 -0.155 

Y23F -18.0 52.8 -13.32 0.00265 -0.280 

Y23L -25.8 45.3 -11.15 0.00220 -0.199 

Y24F -19.5 51.4 -12.85 0.00256 -0.263 

Y24W -17.9 52.9 -12.65 0.00252 -0.266 

F25A -38.9 32.5 -11.39 0.00220 -0.143 
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F25L -28.6 42.5 -12.11 0.00238 -0.203 

N26D -35.3 36 -11.77 0.00228 -0.164 

H27A -12.9 57.7 -13.72 0.00274 -0.316 

H27G -20.4 50.5 -13.08 0.00258 -0.261 

I28A -16.6 54.2 -13.47 0.00267 -0.289 

I28G -23.8 47.2 -12.97 0.00255 -0.241 

I28V -15.4 55.4 -13.48 0.00270 -0.299 

T29A -26.8 44.3 -11.33 0.00222 -0.197 

T29D -28.2 42.9 -12.15 0.00237 -0.203 

T29G -37.0 34.4 -11.41 0.00221 -0.152 

T29S -20.1 50.8 -13.28 0.00262 -0.267 

N30A -17.5 53.3 -13.20 0.00262 -0.279 

A31G -30.3 40.9 -12.81 0.00252 -0.206 

A31S -12.9 57.7 -13.45 0.00269 -0.311 

A31V -7.9 62.6 -14.75 0.00296 -0.370 

S32G -20.8 50.1 -11.89 0.00236 -0.236 

S32T -8 61.7 -13.99 0.00282 -0.348 

Q33A -17.7 53.1 -11.83 0.00234 -0.248 

W34A -17.9 52.9 -13.79 0.00272 -0.287 

W34F -12.6 58 -14.07 0.00282 -0.327 

E35Q -17.7 53.1 -13.44 0.00268 -0.284 

R36A -14.0 56.7 -12.63 0.00252 -0.286 

S38A -11.5 59.1 -13.92 0.00278 -0.328 

S38G -12.4 58.2 -14.47 0.00290 -0.338 

S38T -12.4 58.2 -13.75 0.00276 -0.321 

S18G/S19G -17.8 53 -13.59 0.00269 -0.285 

S19G/G20S -14.0 56.7 -13.89 0.00277 -0.315 

I28N/T29G -34.9 36.4 -12.68 0.00246 -0.179 

var1 (FiP) 7.4 77.5 -15.00 0.00305 -0.473 

var2 -1.1 69.2 -15.03 0.00302 -0.418 

var3 -2.2 68.1 -14.87 0.00299 -0.407 

var4 -8.5 62 -13.89 0.00278 -0.345 

var5 (+1G) -23.2 47.7 -13.41 0.00264 -0.252 

var6 (+2G) -19.9 50.9 -12.92 0.00258 -0.262 

K13k -24.6 46.4 -14.67 0.00288 -0.267 

S16s -28.9 42.2 -14.42 0.00280 -0.236 

R17r -21.8 49.1 -14.26 0.00281 -0.276 

V22v -14.0 56.7 -14.82 0.00297 -0.336 

H27h -32.6 38.7 -14.95 0.00294 -0.228 

S32s -29.7 41.5 -18.29 0.00357 -0.297 

W34w -21.4 49.5 -15.24 0.00303 -0.300 

Cont’d 
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Fig. A.1: Side chain packing in hydrophobic core 1. Side chain packing of hydrophobic core 

residues L7, P8, W11, Y24 and P37, with side chains shown in stick mode and overlaid van 

der Waals surfaces. In native hPin1 WW, the absolutely conserved C-terminal Pro37 

intercalates between the side chains of absolutely conserved Trp 11 (β strand 1) and highly 

conserved Tyr 24 (β-strand 2). The side chains of Leu7 and Pro8 are not strongly conserved 

among WW domains and contribute only peripherally to the hydrophobic core.  
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Fig. A.2: Structural assessment of hydrophobic core 1 mutant W11F. (A) Tryptophan 

fluorescence emission spectra (ex: 295 nm, 2 µM [protein]). W11 is largely excluded from 

solvent in folded hPin1 WW that explains the blue-shifted fluorescence emission maximum 

(332 nm) of mutant W34F. W34 is largely solvent-exposed, consistent with the red-shifted 

fluorescence emission maximum (352 nm) of mutant W11F. The aggregate spectrum (W11F 

+ W34F) agrees well with the wild type spectrum, ruling out major structural changes upon 

W11F and W34F mutation. (B) Near-UV CD spectra (40 µM [protein]). Mutant W34F exhibits 

two bands with negative ellipticity at 282 and 287 nm that most likely result from L1b-

transitions within the indole ring of W11 (see, for example, chapter 4 in “Circular Dichroism 

and the Conformational Analysis of Biomolecules”, 1996 Plenum Press, NY). Mutant W11F 

shows a rather broad and featureless spectrum with strong positive ellipticity. As Trps are the 

dominant chromophores in the near-UV, this band most likely originates from La-transitions 

within the indole ring of W34. The side chain of W34, although largely solvent exposed, must 

thus be in an asymmetric environment, possibly mediated by the clamp-like interaction of W34 

with the side chain of Y23 (panel D).  As the positive ellipticity is retained in wild type hPin1 
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WW and only slightly higher in magnitude, this interaction cannot be significantly weakened 

in the W11F variant, thus further arguing against significant tertiary structural changes within 

hPin1 WW upon W11F mutagenesis. The minor differences between the wild type and 

aggregated spectra (W11F + W34F) might originate from coupling interactions of the indole 

ring of W11 with Y24 and the indole ring of W34 with Y23, as well as weak coupling between 

the two indole rings, which are separated less than 15 Å in folded hPin1 WW. (C) The far-UV 

CD spectra of wild type hPin1 WW and mutants W11F and W34F (16 µM [protein]) are 

atypical for an all-β-sheet protein and exhibit a strong positive band around 226 nm. Both Trps 

contribute to the ellipticity at 226 nm, and the ellipticity of the aggregate spectrum (W11F + 

W34F) almost quantitatively agrees with ellipticity of wild type hPin1 WW. This suggests that 

far-UV CD, like Trp-fluorescence and near-UV CD, predominantly monitors changes in 

tertiary structure rather than secondary structure. More significant deviations between the 

aggregate and wild type spectra are manifest at wavelengths below 210 nm, where Phe, Tyr 

and Trp residues absorb significantly. As for near-UV CD, these deviations likely result from 

non-additive side chain chromophore couplings. (D) Structural cartoon of hPin1 WW (residues 

7-37, pdb: Pin1) with the side chains of L7, P8, W11, Y23, Y24, F25, N26 and P37 shown 

explicitly in stick mode presentation.  

  

Figure A.2 (cont.) 
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Fig. A.3: Native state dynamics of loop 1 in hPin1 WW and and FBP28 WW. (A) Super-

position of the 15 lowest-energy solution conformations of the apo-form of the isolated hPin1 

WW domain (residues W11-W34, pdb-file: 2KCF). (B) Superposition of the eight lowest-

energy solution conformations of the isolated FBP28 WW domain (residues W8-W30, pdf-

file: 1EP0). β strands and loop substructures are color coded blue and black, respectively. 

Increased local backbone dynamics is clearly visible within loop 1 of hPin1 WW, while the 

thermodynamically and kinetically optimized 5-residue type-I G-bulge turn of FBP28 WW 

appears to be more ordered.   
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Fig. A.4: Dependence of ΦT and ΦM values on fitting model used. (A) ΦT values from the 

Tm  and T0 fit (filled blue and red circles, respectively) for the 39 cross-validated consensus 

and 9 perturbing/outlier mutants (see Fig. A.5) that fulfill the requirements for reliable ΦM-

value analysis (∆∆Gf < 1 kJ/mol, ∆Tm < 2.5 °C, with a typical error in Tm of 0.5 – 1 °C).  While 

the more stable and moderately destabilized variants do not exhibit a significant shift in ΦT, 

some noticeable differences are manifest for several unstable variants. (B) Plot of ΦM-values 

calculated by the T0-fit against corresponding values from the Tm-fit. Unlike their ΦT-value 

counterparts, ΦM-values are more robust and depend only marginally on the particular energy 

function used. 
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Fig. A.5: Extended ΦM vs. sequence plot. Overall, we find good agreement between the ΦM 

values from Ala mutants and ΦM values from non-Ala mutations. Mutants P8A, S16A and 

V22A, however, yield ΦM values that cannot be cross-validated by structural context. Filled 

red circles show the ΦM-values calculated from consensus non-Ala mutations (for clarity, no 

error bars are shown), while the filled blue circles represent the ΦM values from backbone H-

bond mutants (for clarity no error bars are shown) (for errors, see Fig. 2.4 main text). Perturbing 

non-Ala mutants that excessively shift the transition state ensemble more towards the native 

state and mutants with outlier ΦM values are depicted as filled grey circles. The solid red line 

is an error-weighted average side chain trend that includes the Ala mutants (Table 2 main text). 

While some perturbing mutations (e.g. P8A, W11F, S16A/T, Y24W) are readily identified in 

the plot, others (e.g. T29G, N30A, S32s) are more difficult to spot without considering data 

from the accompanying ΦT-value analysis (Fig. 2.3, main text; Fig. A.4). 
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Fig. A.6: Thermal B-factors of stabilized loop 1 deletion variants. (A) Tube plot with the 

thermal B factors superimposed onto the X-ray structure of wild type hPin1 WW (pdb-file: 

1PIN, loop 1: SRSSGR, left), stabilized type-I G-bulge variant 1 (FiP) (PDB-file: 1zcn, loop 

1: SADGR, middle) and stabilized type-I’ variant 3 (PDF-file: 2f21, loop 1: SNGR, right). (B) 

Plot of the thermal B factors vs. the sequence for wild type hPin1 WW (filled grey circles), 

type-I G-bulge variant 1 (FiP) (filled red circles) and type-I’ variant 3 (filled blue circles). Loop 

1 and loop 2 residues are highlighted in light grey color. Residue numbering is that of wild type 

hPin1 WW. While the differences in absolute B factors may result from crystal packing 

variations, loop 1 in both wild type and variant 3 appears to be more disordered than the 

embedding β sheet and clearly stand out as local maxima, while loop 1 in variant 1 (FiP) is 

conformationally more rigid, consistent with this loop in its natural context, the FBP28 WW 

domain (Fig. A.3).  
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Fig. A.7: Simplified 1D-energy landscape models for loop 1 variant FiP. (A) Schematic 

energy landscapes of wild type (grey) and loop 1 deletion variant FiP (red), assuming a 

sequential folding proposed by Shaw, Maragakis et al. (see reference in main text). Folding of 

wild type is rate-limited by loop 1 nucleation (first barrier, highest energy) masking the 

(unperturbed) second barrier (loop 2 nucleation). Optimizing loop 1 in FiP lowers the first 

barrier (loop 1 nucleation) by ΔΔG(1)‡, with a smaller effect on the second barrier. For the FiP 

ΦM value to be > 0.90, the difference in the free energy barrier of the first and second transition 

(ΔΔG(2)‡) must be on the order of 0.90.ΔΔG(1)‡. (B) Corresponding energy landscape of FiP 

that accounts for the approximately 3-fold acceleration of folding observed with the FiP-GTT 

variant containing the loop 2 stabilizing mutation N30G. The mere fact that loop 2 stabilization 

hastens FiP folding (13 µs vs. 4 µs folding rate) must imply that in FiP, loop 2 nucleation is 

rate-limiting for folding, and therefore the second barrier must be higher in free energy than 

the first barrier, which is difficult to reconcile with landscape (A).  (C) Schematic energy 

landscape for wild type and the FiP variant obeying a simple two-state folding mechanism. 

Both stabilizing loop 1 and loop 2 mutations can act independently and/or additively on a single 

transition barrier, thus avoiding the above-mentioned inconsistency of the sequential folding 

model.   
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A.2 W34A mutant response  

 

The response of the Ala-mutant W34A in Fig. 2.6C of the main text to temperature-tuning is 

unusual in that it is the only mutant that shows a decrease in ΦM with temperature beyond 

experimental uncertainty. Such a trend that has also been reported for the analogous W39F 

mutant in the hYap65 WW domain. In both WW domains, the C-terminal Trp is largely 

surface-exposed and makes only one significant side chain contact in the folded protein - a 

clamp-like structure with the side chain of Y23 (Y28 in hYap65) in β strand 2 (Fig. A.2). The 

decrease in ΦM of W34A (W39F in hYap65) might suggest that the interaction between W34 

and Y23 is weakened in the folding transition state at higher temperature. Hydrophobic 

interactions, however, should strengthen at elevated temperature, and the ΦM values of Y23A/L 

in hPin1 WW (slightly) increase with temperature, which argues against this hypothesis. 

Molecular dynamics simulations on WW domains reveal that β strand 3 is prone to forming 

transient, non-native interactions (main text references [9, 14]). As Trp residues are often found 

in helical structures, one plausible explanation for our observation is that in both hPin1 WW 

and hYap65 WW, the bulky, hydrophobic side chain of the C-terminal Trp engages in such 

transient and temperature-sensitive, non-native interactions that nevertheless must speed up 

folding, and that are disrupted by Ala (or Phe) mutations. Importantly, as the ΦM value of 

W34A of hPin1 WW blends in well with the ΦM values of other hairpin 2 mutants (main text 

figures Fig. 2.2A, Fig. 2.4A, Fig. 2.5A), its unusual temperature dependence becomes apparent 

only upon a more elaborate temperature-dependent ΦM-value analysis. 
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APPENDIX B 

Supplementary information of eliminating a 

protein folding intermediate by tuning a local 

hydrophobic contact 
 

 

 

 

Fig. B.1: Percentages of the total fluctuations captured by the principal components for 

Leu26Asp (panel A), Leu26Trp (panel B) and the wild type (panel C) at eight different 

temperatures. The panels on the right represent contributions of the first k collective modes (k 

is the number of modes capturing at least 40% of the total fluctuations) to the MSF along the 

angles  and  at eight different temperatures for Leu26Asp, Leu26Trp and the wild type. The 

black bars above each x-axis label the -strand locations. 
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Fig. B.2: (panel A).  
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Fig. B.2: (panel B).  

 

 

Figure B.2 (cont.) 
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Fig. B.2: (Panel C). Each square represents a free-energy landscape (kcal/mol) along angles 

iand i (in degrees) of Leu26Asp (panel A), Leu26Trp (panel B) and wild type (panel C) at 

250K, 275K, 300 K, 325K, 350K, 375K, 400K, and 425K. The vertical black lines on each 

panel correspond to the -strand regions. The numbers on the right are the residue numbers. 

The numbers on the X and Y axes are from the -180o to +180o regions of the and  angles, 

respectively. The colors on the upper-right side define the regions explored by the angles iand 

i. 

 

 

Figure B.2 (cont.) 
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Fig. B.3:  Global fits for both mutants given in Table 1 of the main text.  
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Fig. B.4: Reversible thermal melts of both Leu26Asp (A) and Leu26Trp (B) 
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Fig. B.5: Fraction unfolded for the thermodynamics of both Leu26Asp (A, B) and Leu26Trp 

(C, D). 
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APPENDIX C 

Supplementary information of the effect of 

fluorescent protein tags on phosphoglycerate 

kinase stability is non-additive 
 

 

 
 

Fig. C.1: Thermal denaturation of the protein constructs as monitored by tryptophan. A. 

Emission spectrum of GP at 20 °C, 47 °C and 68 °C . B. Average wavelength to monitor the 

unfolding midpoint for GP (green), CP (red), PC (red diamonds),GPC (blue) and P (black).  
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Fig. C.2: The hyper-fluorescent intermediate is not concentration dependent. (A)  

Representative tryptophan emission spectra at three different temperatures for 1 μM (GP) show 

a blue shift from 44 °C to 68 °C. (B) Thermal denaturation curves show melting point of 42 ± 

1 °C for 1 μM (B).  (C) Tryptophan emission spectra at three different temperatures for 15 μM 

GP again show a blue shift from 44 °C to 68 °C. D) Thermal denaturation curves show melting 

point of 42 ± 1 °C for 15 μM. 
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Fig. C.3: Comparison of initial pressure and temperature fluorescence emission spectrum at 1 

bar and 23 °C from two different samples. 
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Fig. C.4: Singular value analysis reversibility plots for temperature and pressure measurements 

(see also Figs. C.11 and C.12). A. GP construct forward (filled green marker) and backward 

melt (open green marker) overlap well as seen in the second principal component vs. 

temperature plot.  Similarly CP (B) and GPC (C) constructs are also reversible. D. 

Representative Plot for pressure reversibility of GPC under pressure forward (filled blue 

marker) and backward (open blue marker). 
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Fig. C.5: A. Tryptophan fluorescence spectrum monitored during a temperature melt for 

mCherry and AcGFP1. B. Average tryptophan emission wavelength calculated for AcGFP1 

and mCherry. Neither AcGFP1 nor mCherry shows significant wavelength shift or a co-

operative transition in the experimental temperature range. 
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Fig. C.6:  Average wavelength vs Temperature plots for AcGFP1 and mCherry excited at 475 

and 585 nm respectively. Neither mCherry (A) or AcGFP1 (B) showed a significant 

wavelength shift or co-operative transition from 10 °C – 60 °C. 
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Fig. C.7: A. CD spectra of mCherry (red) and AcGFP1 (green) at low (solid lines) and high 

(dotted lines) temperatures show no change in secondary structure. B. Continuous CD 

measurement; MRE at 222 nm vs. temperature for AcGFP1 and mCherry showing no change 

in secondary structure. 
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Fig. C.8: Tryptophan detected pressure titration of AcGFP1 (green) and mCherry (red).  The 

average wavelengths show only a linear change in the pressure regions where the tagged PGK 

constructs undergo cooperative transitions. 
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Fig. C.9: Average wavelength analysis for AcGFP1 and mCherry excited directly at 475 nm 

and 585 nm respectively shows no significant change in the experimental pressure range. 
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Fig. C.10: Absolute MRE vs. temperature for all protein constructs; GP (green), P (black), 

GPC (blue) and CP (red) PC (red diamonds). The tags are thermally stable, so the melting curve 

monitors PGK denaturation with or without various tags. For this reason P has a much larger 

MRE change.  
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Fig. C.11: Top row: Singular value decomposition (SVD) was applied to analyze the data 

obtained from both thermal and pressure melts. In SVD, a data matrix (X) is decomposed 

uniquely into three matrices. Each column of the data matrix contains a spectrum, and the 

temperature or pressure changes as one goes right from column to column. On the right hand 

side of the equality are are orthogonal SVD basis vectors U that represent the basis spectra, 

singular values S that represent the importance of each basis spectrum to reconstruct the 

original spectra, and a trend matrix V that shows how each basis spectrum contributes as a 

function of temperature or pressure. We conducted SVD analysis to emphasize that in the 

temperature and pressure range of our experiment, we observed a quasi two-state transition, as 

shown by the “V2” component on the far right. 
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Fig. C.12: Top four panels (green): Singular value decomposition (SVD) analysis of the 

tryptophan emission spectra from 20 to 50 °C and from 0 to 1400 bar for the GP construct. 95-

98% of the signal change is accounted for by the first two principal components for temperature 

(A) and pressure (C). The second principal component undergoes a transition at melting 

temperature Tm= 38 (±1) (B) and 770 (±10) for pressure (D).  

Bottom four panels (blue): Singular value decomposition (SVD) analysis of the tryptophan 

emission spectra from 20 to 50 °C and from 0 to 1400 bar for the GPC construct. 95-98% of 

the signal change is accounted for by the first two principal components for temperature (A) 

and pressure (C). Second principle component undergoes a transition at melting temperature 

Tm = 44 (±1) (B) and Pm = 780 (±10) for pressure (D). 
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Fig. C.13: Fraction folded vs. pressure plot for CP construct.  Error bar represent the variation 

in the signal based on the errors in fitted Pm and V0. (See also Appendix C tables of fitting 

parameters.) 
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Fig. C.14: Thermal denaturation shift in AcGFP1 emission spectrum A. Normalized 

fluorescence intensity vs. wavelength plot for GP at 20 °C (dashed green line), 47 °C (dotted 

green line). Inset: Normalized fluorescence intensity vs. wavelength for CP showing no 

significant shift B. Average GFP emission wavelength of GP (green) is sensitive to GP 

unfolding showing a cooperative transition. 
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Table C.1: Cooperativity parameters (gX in eq. 2 in the main text) for the protein constructs 

corresponding to Table 4.1 in the main text. Bottom: ΔΔG= =gX . [Tm(X)-Tm(P)] referenced 

to the melting temperature of P. This illustrates non-additivity directly in terms of a free energy 

parameter, rather than the midpoint quantities Pm and Tm given in the main text. 

 

 

 

  

Protein 

Thermal Denaturation  

∆∆G(kJ/mol) 
Pressure 

Denaturation  

∆∆G(kJ/mol) 

 (280 nm excitation) 

Measured via 

Fluorimeter 

(280 nm excitation) 

Measured via 

Circular Dichroism 

(CD) 

P 0 0 0 

GP -1.5 -4.6 -6.5 

CP -1.7 -8.5 -6.4 

PC 3.5 -6.9 -5.7 

GPC 4.6 -5.2 -8.0 

Protein 

Thermal denaturation  

 
Pressure denaturation  

 (280 nm excitation) 

gp (L mol-1) 

Fluorimeter  
 (280 nm excitation) 

gT (J mol-1 K-1) 

 

Circular Dichroism 

(CD)  

gT
 (J mol-1 K-1) 

 

P 930 ± 30 450 ± 110 0.25 ± 0.03 

GP 730 ± 60 510 ± 240 0.4 ± 0.1 

CP 830 ± 30 850 ± 120 0.28 ± 0.06 

PC 1180 ± 130 990 ± 60 0.26 ± 0.02 

GPC 1160 ± 110 740 ± 80 0.23 ± 0.04 
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Table C.2: Cooperativity parameters (gX in eq. 2 of the main paper) for constructs tagged 

with GFP or AcGFP1 and mCherry and monitored by fluorescence excited at 475 nm, or by 

FRET Donor/Acceptor ratio for the corresponding Table 4.2 in the main text. 

 

 

 

 

 

  

Protein 

Thermal denaturation 

gT (J mol-1 K-1) 

475 nm excitation 

Pressure denaturation 

gp (L mol-1) 

475 nm excitation 

GP 1080 ± 30 0.36 ± 0.05 

GPC 790 ± 40 0.30 ± 0.03 
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Table C.3: Signal baselines SU,F for the protein constructs for the corresponding Table 4.2 in 

main text 

SU = c+d(T-Tm); SF = a+b(T-Tm) for pressure, replace T by P and Tm by Pm 

 

 

Table C.4: Signal baselines SU,F for constructs tagged with GFP or AcGFP1 and mCherry 

and monitored by fluorescence excited at 475 nm, or by FRET Donor/Acceptor ratio for the 

corresponding Table 4.2 in main text 

SU = c+d(T-Tm); SF = a+b(T-Tm) for pressure, replace T by P and Tm by Pm 

 

 
 

 

 

Protein 

Temperature parameter  SU,F 

 
Pressure parameter  

  SU,F 

(280 nm excitation) 
Fluorimeter   
(280 nm excitation) 

Circular Dichroism (CD)  

P 

 

 a=333.2 ± 0.2;b=0.040 ± 

0.009 

c=351.7 ± 0.6;d=-0.31 ± 0.06 

 

 

  a=-11831 ± 1;b=-20 ± 40 

c=-1884.8 ± -0.1;d=-180 ± 125 

 

a=331 ± 1;b=0.0077 ± 0.0008 

c=326.1 ± 0.2;d=0.0018 ± 

0.0006 

GP 
a=332.9 ± 0.6;b=0.034 ± 0.03 

c=348.4 ± 0.3;d=-0.4 ± 0.1 

 

a=-7696 ± 511;b=6 ± 18 

c=-5452 ± 961;d=-50 ± 68 

 

a=336.7 ± 0.2;b=0.0038 ± 

0.0001 

c=335.7 ± 0.2;d=0.0023 ± 

0.0005 

 

CP 

a=336.9 ± 0.2;b=-0.008 ± 

0.012 

c=346.8 ± 1;d=-0.23 ± 0.03 

 

a=-7183 ± 108;b=-5.7 ± 5.2 

c=-5153 ± 179;d=-25 ± 12 

 

a=341.2 ± 0.2;b=0.0023 ± 

0.0001 

c=339.9 ± 0.1;d=0.0018 ± 

0.0003 

 

PC 

a= 336.7 ± 0.1;b= -0.0118 ± 

0.005  

c= 349.4 ± 0.2;d= -0.66 ± 

0.03  

 

a=- 6068 ± 38;b= 36 ± 2  

c= -9169 ± 47;d= 3.8 ± 1.2  

 

a=343.4 ± 0.6;b=0.0013 ± 

0.0001 

c=337.7 ± 0.1;d=0.0028 ± 

0.0003 

 

GPC 

a=341.3 ± 0.1;b=0.005 ± 

0.003 c=343.9 ± 0.1;d=-0.13± 

0.01 

 

a=-5618 ± 223;b=-84 ± 25 c=-

7978 ± 91;d=8 ± 3 

a=338.7 ± 0.1;b=0.0030 ± 

0.0001 

c=338.3 ± 0.1;d=0.0017 ± 

0.0003 

 

Protein 
Temperature  SU,F 

475 nm excitation 

Pressure   SU,F 

475 nm excitation 

GP 
a=518.6 ± 0.1;b=-0.002 ± 0.011 c=515.5 

± 0.1;d=0.0431 ± 0.0001 

 a=519.7 ± 0.1;b=0.00015 ± 0.00001 c=518.4 

± 0.1;d=-3.755e-005 ± 0.00016 

GPC 
a=0.3184 ± 0.0107;b=0.011441 ± 

0.00047 c=0.95384 ± 

0.0225;d=0.0025878 ± 0.00141 

a=0.57 ± 0.2;b=0.00035 ± 0.00014 c=-0.002 ± 

0.001;d=0.00021799 ± 3.87e-005 
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APPENDIX D 

Supplementary information of environmental 

fluctuations and stochastic resonance in protein 

folding 

 
 

 

 

 

Fig. D.1: A. Full Fourier spectra for 2 Hz modulation as the noise is increased. The spectra has 

multiple peaks and the signal is beginning to swamp by high noise level. B. Showing full 

Fourier spectra for the 2 Hz modulation. A clear peak at 2 Hz is seen at lower noise level. Part 

of the peak is background signal due to quantum yield modulation, part stochastic resonance, 

as seen by the plot as a function of noise amplitude in Fig. 5.7 of the main paper. 
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Fig. D.2: Stochastic resonance, detected by Fourier transform magnitude of the donor (green) 

and acceptor (red) signals grows in when a root-mean-squared (RMS) temperature noise of ca. 

1.2 °C is superimposed on the sub-threshold sine wave modulation at 1Hz (<kobs).  (A) T0 = 

28 °C. (B) T0=32 °C. (C) T0=33 °C. Stochastic resonance grows in at √𝛿(𝑇 − 𝑇0)2 ≈ 1.25 °C 

as the average temperature T0 is increased, but the signal is weaker than at 2 Hz. The blue 

decreasing line is the minimal noise temperature applied on the protein at each RMS 

temperature, and the blue increasing line is the maximal noise temperature thereof.  

 

D.1 FORTRAN Code 

 

FORTRAN Code Named “FRETMODULATE” which integrates the kinetic equations of a protein 

subjected to external temperature modulation; detected by FRET labeling. The code is similar to a 

modulation model by Lemarchand, JCP 138, 244109 (2013), with addition of temperature-dependent 

quantum yield of the chromophores that can interfere with the fluorescence changes due to chemical 

reaction. The code should be compiled with the Intel F90 compiler on Macintosh OS X 9.8 or later. Use 

of static flag or equivalent is required to avoid problems during dynamic variable space allocation. This 

code was tested and run with the Intel FORTRAN Composer XE for OS X 9.8. The code can perform 

a non-linear least squares fit to optimize parameters by setting fitting flags in its fort.1 input file equal 

to 1 for each parameter to be fitted. 

 

1) Sample input file (fort.1); three parameters (preceding bold fitting flags) are fitted. 

311,0 ! T0 for all states and its fitting flag: fitflag=0 (no fit) or 1 (fit) 

0,0,0,0 ! Free energy coefficients for state 1 (folded) and fitting flags 

0,-0.204,0,0 ! Free energy coefficients for state 2 (denatured) and fitting flags 

1e5,22.64,0,0,1,0 ! Prefactor, barrier coefficients between states 1 and 2 and fitting flags 

0.4965,0.5,1,1 ! Green and red signals for state 1 and fitting flags 

0.52,0.3,0,0 ! Green and red signals for state 2 and fitting flags 

-0.011,-0.016,310,0,0,0 ! Green and red signal slopes per degree and reference T (i.e. -0.02 means 

quantum yield drops by 2% for every degree away from ref. T) and fitting flags 

14,1224,311,0.02,0 !Number of temperature waveforms, seed, average temperature, printing interval 

time, and printflag 
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4.00 3 1 0 0.52 1 

2.50 3 1 0 2.67 1 

2.00 3 1 0 4.10 1 

1.25 3 1 0 6.18 1 

1.00 3 1 0 7.28 1 

0.80 3 1 0 8.51 1 

0.625 3 1 0 10.11 1 

0.50 3 1 0 11.36 1 

0.40 3 1 0 12.80 1 

0.25 3 1 0 15.70 1 

0.125 3 1 0 17.43 1 

0.10 3 1 0 16.94 1 

0.08 3 1 0 15.95 1 

0.078125 3 1 0 15.89 1 

 

2) Sample output file (fort.7): This file outputs average modulation temperature, chi-squared of the fit, 

the three parameters from the fort.1 file that were fitted plus uncertainties, fitted parameter correlation 

matrix, an output of all fitted and unfitted parameters that can be pasted into fort.1 for another fit, and 

the result: modulation frequency, observed phase, uncertainty, calculated phase, fitting error. 

 

Average temperature    311.000000000000      

 Chi-squared=    1.03916832386365      

 #, Parameter, Parameter uncertainty: 

           1   22.9014183110495       0.103484887339052      

           2  0.511808045002848       3.933723237818611E-003 

           3  0.503817459108459       8.208087196948434E-003 

 Correlation matrix: 

  1.00000 -0.20676 -0.29079 

 -0.20676  1.00000  0.60584 

 -0.29079  0.60584  1.00000 

   

 New values of all input parameters and fitting flags: 

   311.000000000000                0 

  0.000000000000000E+000  0.000000000000000E+000           0           0 

  0.000000000000000E+000 -0.204000000000000                0           0 

   100000.000000000        22.9014183110495       0.000000000000000E+000 

           0           1           0 

  0.511808045002848       0.503817459108459                1           1 

  0.520000000000000       0.300000000000000                0           0 

 -1.100000000000000E-002 -1.600000000000000E-002   310.000000000000      

           0           0           0 

   

  Nu(Hz) Obs. phase(deg) Calc. phase(deg) 

   0.250   0.520   1.000   1.562  -1.042 

   0.400   2.670   1.000   2.500   0.170 

   0.500   4.100   1.000   3.094   1.006 

   0.800   6.180   1.000   4.900   1.280 

   1.000   7.280   1.000   6.062   1.218 

   1.250   8.510   1.000   7.500   1.010 

   1.600  10.110   1.000   9.300   0.810 

   2.000  11.360   1.000  11.125   0.235 

   2.500  12.800   1.000  13.125  -0.325 

   4.000  15.700   1.000  17.000  -1.300 

   8.000  17.430   1.000  18.000  -0.570 

  10.000  16.940   1.000  16.875   0.065 
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  12.500  15.950   1.000  15.625   0.325 

  12.800  15.890   1.000  14.400   1.490 

 

 

Code below : 
 

module dimensio 

implicit none 

integer(4), parameter :: predim=40000,dim=400000,statedim=5,wavedim=20 

end module dimensio 

 

module thermokin 

use dimensio 

implicit none 

real(8) :: T0, gcoef(statedim,0:2),g(statedim) 

real(8) :: km, gdcoef(statedim,statedim,0:2),gd(statedim,statedim) 

integer(4) :: T0flag,gcflag(statedim,0:2) 

integer(4) :: kmflag,gdcflag(statedim,statedim,0:2) 

end module thermokin 

 

module waves 

use dimensio 

implicit none 

integer(4) :: m_waves,itime,maxfac,time_points,use_points 

real(8) :: Speriod(wavedim),Samplitude(wavedim),Somega(wavedim) 

real(8) :: Nperiod(wavedim),Namplitude(wavedim) 

real(8) :: Taverage,temperature(0:dim),tstep,odestep,dtprint 

end module waves 

 

module sigparameters 

implicit none 

real(8) :: s1red,s1green,s2red,s2green,sred_slope,sgreen_slope,Tsignal 

integer(4) :: s1rflag,s1gflag,s2rflag,s2gflag,sr_slopeflag,sg_slopeflag,Tsflag 

end module sigparameters 

 

module popsigoutputs 

use dimensio 

implicit none 

real(8) :: popmaxtime(statedim,wavedim),popphase(statedim,wavedim) 

real(8) :: sigmaxtime(statedim,wavedim),sigphase(statedim,wavedim) 

end module popsigoutputs 

 

!     VARIABLE DECLARATION FOR NLLSQ 

 

module masterdim 

implicit none 

integer(4), parameter ::  odim=1000, padim=49, jdim=50 

end module masterdim 

 

module obscalc 

use masterdim 

implicit none 

!     EXCEPT FOR CALC(), all of these parameters must be read by the main program and be made available 

!     to NLLSQ before the first subroutine call. See Subroutine NLLSQ for what typical values are. 

integer(4) :: err,debug,maxiter 

integer(4) :: onum, panum, paf(padim) 

real(8) :: marq,delchi,grad,delgrad,chsq 

real(8) :: obs(odim),osig(odim) 

real(8) :: pa(padim),pasig(padim) 

real(8) :: calc(odim) 

end module obscalc 

 

!     Least squares routines 

!     M. GRUEBELE upgraded to F95 2000; note that nllsq must 

!     be provided with all the input parameters listed in bold 

!     in the subroutine declaration, including those which are 

!     not passed directly but only declared in module nllsqfit, 

!     obscalc or masterdim; obscalc can be used to pass fitting 
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!     parameters, obs. and calc. values to the main program and 

!     subroutine cal(icount,ifail), which must be provided to 

!     evaluate the array calc() given the array pa(); icount 

!     sends the iteration count starting at 1 to cal, ifail 

!     returns a flag in case cal fails [although not many checks 

!     in nllsq are currently implemented]. 

 

 

 

!     Finds the inverse of a matrix by Gauss-Jordan elimination, 

!     n is the actual matrix size, np the storage size (see 

!     numerical recipes gaussj) 

module invert 

implicit none 

integer(4),parameter :: nmax=100 !max dimension of matrix 

 

contains 

 

subroutine matinv(a,np,n,err) 

implicit none 

real(8) :: a(np,np),big,dum,pivinv 

integer(4) :: ipiv(nmax),indxr(nmax),indxc(nmax),i, & 

icol,irow,j,k,l,ll,n,np,err 

 

err=0 

if(n > np .or. n > nmax) then 

write(6,*) "Dimensions exceeded in matinv." 

stop 

endif 

do j=1,n 

ipiv(j)=0 

enddo 

do i=1,n 

big=0 

do j=1,n 

if(ipiv(j) /= 1) then 

do k=1,n 

if (ipiv(k) == 0) then 

if (abs(a(j,k)) >= big)then 

big=abs(a(j,k)) 

irow=j 

icol=k 

endif 

else if (ipiv(k) > 1) then 

err=4 

return 

endif 

enddo 

endif 

enddo 

ipiv(icol)=ipiv(icol)+1 

if (irow /= icol) then 

do l=1,n 

dum=a(irow,l) 

a(irow,l)=a(icol,l) 

a(icol,l)=dum 

enddo 

endif 

indxr(i)=irow 

indxc(i)=icol 

if (a(icol,icol) == 0) then 

err=4 

return 

endif 

pivinv=1./a(icol,icol) 

a(icol,icol)=1 

do l=1,n 

a(icol,l)=a(icol,l)*pivinv 

enddo 

do ll=1,n 
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if(ll /= icol) then 

dum=a(ll,icol) 

a(ll,icol)=0 

do l=1,n 

a(ll,l)=a(ll,l)-a(icol,l)*dum 

enddo 

endif 

enddo 

enddo 

do l=n,1,-1 

if(indxr(l) /= indxc(l)) then 

do k=1,n 

dum=a(k,indxr(l)) 

a(k,indxr(l))=a(k,indxc(l)) 

a(k,indxc(l))=dum 

enddo 

endif 

enddo 

end subroutine matinv 

 

end module invert 

 

!     Non-linear least squares fitting module 

module nllsqfit 

use masterdim  !From this, needs padim and odim 

use obscalc    !From this, needs obs,osig,calc,pa,paf, 

!pasig,panum,onum,marq,delchi,grad,delgrad,chsq 

use invert     !Needs this for matrix inversion calls 

implicit none 

integer(4) :: xpos(padim),xnum 

real(8) :: ocalc(odim),weight(odim), & 

beta(padim),alpha(padim,padim),alphin(padim,padim), & 

deriv(padim,odim) 

 

contains 

 

subroutine nllsq(icount,ifail) 

implicit none 

integer(4) :: fnum,icount,ifail,i1,i2,i3 

real(8) :: ograd,chold,x(padim),nextx(padim) 

 

!     Variables that must be specified before subroutines in module are called by main program: 

 

!     DEBUG      =0 or 1; 1 OUPUTS ADDITIONAL DEBUG INFO TO CONSOLE 

!     OBS        ARRAY OF OBSERVED FUNCTION VALUES 

!     OSIG       UNCERTAINTIES OF OBSERVABLES 

!     ONUM       NUMBER OF OBSERVED PARAMETERS 

!     PANUM      NUMBER OF FITTING PARAMETERS. 

!     PA         ARRAY OF FITTING PARAMETERS 

!     PAF        FITTING FLAGS;=0 FOR PARAMETERS HELD CONSTANT, 

!                              =1 FOR FITTED PARAMETERS 

!     MARQ       MARQUARD PARAMETER; LARGE VALUE INDICATES 

!                STEEPEST DESCENT STEP, SMALL VALUE NEWTON 

!                (LINEARIZED CHISQ) STEP. SHOULD BE SET TO 0.001 

!                INITIALLY 

!     DELCHI     IF TWO SUCCESIVE CHSQ AGREE WITHIN DELCHI, THE 

!                FIT IS TERMINATED; TYPICAL VALUE: 0.01 

!     DELGRAD    IF THE GRADIENT OF CHSQ FALLS BELOW DELGRAD, THE 

!                FIT IS TERMINATED; TYPICAL VALUE: 0 IF DELCHI≠0 

!     ERR        ERROR CODE;SHOULD BE SET TO ZERO INITIALLY. 

!                ERR=1: NO PARAMETERS FITTED;ONLY CHSQ IS RETURNED 

!                ERR=2: MORE PARAMETERS THAN OBSERVABLES FITTED 

!                ERR=3: MATRIX INVERSION FAILED;JACOBIAN SINGULAR 

!                ERR=4: RECOVERY FROM SINGULAR JACOBIAN FAILED 

!                ERR=5: NUMBER OF ITERATIONS IN ITER EXCEEDED 

!                ERR=6: MARQ EXCEEDED 10**10; SSQ CANNOT BE MINI 

!                       MIZED BECAUSE GRADIENTS TO STEEP OR DELCHI 

!                       SET UNREALISTICALLY SMALL 

!     MAXITER    MAXIMUM NUMBER OF ITERATIONS(CALLS OF DERIVATIVE) 

! 
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!     Variables that are output by module (in addition to ones that are overwritten with 

!     with final values, such as "PA": 

!     CALC       ARRAY OF CALCULATED FUNCT. VALUES RETURNED BY CAL() 

!     PASIG      ARRAY THAT RETURNS UNCERTAINTIES IN PARAMETERS 

!     CHSQ       CHI**2 OF FIT 

!     XNUM       NUMBER OF ACTUALLY FITTED PARAMETERS 

! 

!     THE FOLLOWING PARAMETERS MUST NOT BE SET TO ANYTHING INITIALLY, 

!     BUT ARE USEFUL FOR DEBUGGING OR ADDITIONAL INFORMATION ABOUT 

!     THE FIT; DIMENSIONING IS AS FOR OBS AND PA 

! 

!     X          ARRAY OF THOSE PA WHICH ARE FITTED 

!     GRAD       NORM OF THE GRADIENT OF CHSQ;SHOULD BE CLOSE TO 

!                ZERO NEAR THE MINIMUM 

!     NEXTX      ARRAY OF FITTING PARAMETERS BEFORE TESTING FOR 

!                ITS VIABILITY IN DECREASING CHSQ 

!     ALPHA      MATRIX THAT CONTAINS THE JACOBIAN TRANSPOSE TIMES 

!                THE JACOBIAN 

!     BETA       GRADIENT OF SSQ 

!     DERIV      MATRIX OF DERIVATIVES OF ALL OBS W/R TO ALL PARA- 

!                METERS 

!     ALPHIN     ON OUTPUT, CONTAINS PARAMETER CORRELATIONS 

 

!     DETERMINE CONSTANTS TO BE FIT AND THEIR NUMBER 

 

icount=1 

ograd=0d0 

xnum=0 

do i1=1,panum 

if(paf(i1) /= 0) then 

xnum=xnum+1 

xpos(xnum)=i1 

x(xnum)=pa(i1) 

endif 

enddo 

if(xnum == 0) then 

call chisq(chsq,x,icount,ifail) 

err=1 

return 

endif 

 

!     EVALUATE DEGREES OF FREEDOM 

 

fnum=onum-xnum 

if (fnum < 1) then 

err=2 

return 

endif 

 

!     CALCULATE WEIGHTS 

 

do i1=1,onum 

weight(i1)=1d0/(osig(i1)*osig(i1)) 

enddo 

 

!     EVALUATE INITIAL CHSQ; NOTE THAT THIS ALSO CALCULATES 

!     CALC FOR THE PARAMETER SET X 

 

call chisq(chold,x,icount,ifail) 

 

!     CALCULATE INITIAL GRADIENT OF CHISQ 

! 

do i1=1,xnum 

beta(i1)=0d0 

do i2=1,i1 

alpha(i1,i2)=0d0 

enddo 

enddo 

 

icount=icount+1 
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call der(icount,ifail) 

do i1=1,onum 

do i2=1,xnum 

beta(i2)=beta(i2)+weight(i1)*(obs(i1)-calc(i1))* & 

deriv(i2,i1) 

do i3=1,i2 

alpha(i2,i3)=alpha(i2,i3)+weight(i1)*deriv(i2,i1) & 

*deriv(i3,i1) 

enddo 

enddo 

enddo 

do i1=1,xnum 

do i2=1,i1 

alpha(i2,i1)=alpha(i1,i2) 

enddo 

enddo 

 

!     CALCULATE PARAMETER INCREMENTS AS DELX=BETA*(MARQ*DIAGONAL( 

!     ALPHA)+ALPHA)**-1 AND ADD TO X TO GIVE NEXTX, THE NEW TRIAL 

!     SET OF PARAMETERS. NOTE THAT A SCALED ALPHA IS INVERTED, TO 

!     IMPROVE ACCURACY, AND THEN RESCALED 

 

DO !Start of main fitting loop 

do i1=1,xnum 

do i2=1,xnum 

alphin(i1,i2)=alpha(i1,i2)/dsqrt(alpha(i1,i1)*alpha(i2,i2)) 

enddo 

alphin(i1,i1)=1d0+marq 

enddo 

call matinv(alphin,padim,xnum,err) 

if(err == 0) then 

do i1=1,xnum 

nextx(i1)=x(i1) 

do i2=1,xnum 

nextx(i1)=nextx(i1)+beta(i2)*alphin(i1,i2)/ & 

dsqrt(alpha(i1,i1)*alpha(i2,i2)) 

enddo 

enddo 

call chisq(chsq,nextx,icount,ifail) 

else 

return 

endif 

 

!     CALCULATE NEW TRIAL CHSQ AND CHECK IF IT INCREASED OR DE- 

!     CREASED. IF IT DECREASED, NEXTX BECOMES X. SINCE CHSQ HAS 

!     ALREADY EVALUATED CALC(NEXTX), THE NEXT ITERATION CAN BE 

!     CONTINUED BY CALCULATING A NEW ALPHA AND BETA. 

 

if(chold-chsq >= 0d0.and.ifail == 0) then 

grad=0d0 

do i1=1,xnum 

x(i1)=nextx(i1) 

grad=grad+beta(i1)*beta(i1) 

enddo 

grad=sqrt(grad) 

if(dabs(chold-chsq) < delchi.or.dabs(ograd-grad) & 

< delgrad) then 

do i1=1,xnum 

do i2=1,xnum 

alphin(i1,i2)=alpha(i1,i2)/dsqrt(alpha(i1,i1)*alpha(i2,i2)) 

enddo 

enddo 

call matinv(alphin,padim,xnum,err) 

if(err /= 0) then 

err=8 

endif 

do i1=1,xnum 

pasig(xpos(i1))=dsqrt(alphin(i1,i1)/alpha(i1,i1)) 

enddo 

do i1=1,xnum 
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do i2=1,xnum 

alphin(i1,i2)=alphin(i1,i2)/dsqrt(alpha(i1,i1)* & 

alpha(i2,i2))/(pasig(xpos(i1))*pasig(xpos(i2))) 

enddo 

enddo 

do i1=1,xnum 

pasig(xpos(i1))=dsqrt(alphin(i1,i1)/alpha(i1,i1)) 

enddo 

return 

endif 

marq=marq/10d0 

ograd=grad 

chold=chsq 

if(debug == 1) then 

write(6,fmt=' (" ****"/"CHI**2= ",e15.7/ & 

&" PREV.GRAD= ",e15.7/"MARQ= ",e10.2) ') chsq,grad,marq 

write(6,*) "ITERATION DECREASED CHI**2; TRYING SMALLER MARQ" 

do i1=1,xnum 

write(6,fmt=' (" #",i2," X= ",e15.8," PREV.GRAD= ",& 

& e15.7) ') i1,x(i1),beta(i1) 

enddo 

endif 

 

!     CALCULATE NEW ~(J)*F*dF/dX , NEW GRADIENT OF CHSQ AND THE 

!     ~J*J MATRIX, WHERE F=(O-C)/OSIG AND ~ MEANS TRANSPOSE 

do i1=1,xnum 

beta(i1)=0d0 

do i2=1,i1 

alpha(i1,i2)=0d0 

enddo 

enddo 

 

icount=icount+1 

call der(icount,ifail) 

do i1=1,onum 

do i2=1,xnum 

beta(i2)=beta(i2)+weight(i1)*(obs(i1)-calc(i1))* & 

deriv(i2,i1) 

do i3=1,i2 

alpha(i2,i3)=alpha(i2,i3)+weight(i1)*deriv(i2,i1) & 

*deriv(i3,i1) 

enddo 

enddo 

enddo 

do i1=1,xnum 

do i2=1,i1 

alpha(i2,i1)=alpha(i1,i2) 

enddo 

enddo 

 

!     IF CHSQ INCREASED, THE MARQUARDT PARAMETER MUST BE INCREA- 

!     SED TO FORCE DESCENT IN CHSQ. NEXTX IS DISCARDED AND A 

!     SMALLER STEP AWAY FROM THE ORIGINAL X IS TRIED 

 

else 

if(maxiter < icount) then 

err=5 

return 

endif 

marq=max(marq*10d0,0.001d0) 

if(marq.gt.1d3) then 

err=6 

return 

endif 

if(debug == 1) then 

write(6,fmt='(" ****"/"CHI**2= ",e15.7/" GRAD= ", & 

&e15.7/"MARQ= ",e10.2/" ITERATION INCREASED CHI**2; TRYING LARGER MARQ")') chsq,grad,marq 

do i1=1,xnum 

write(6,fmt='(" #",i2," NEXTX= ",e15.8," GRAD= ", & 

&e15.7)') i1,nextx(i1),beta(i1) 
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enddo 

endif 

do i1=1,onum 

calc(i1)=ocalc(i1) 

enddo 

endif 

ENDDO !End of main fitting loop 

 

end subroutine nllsq 

 

!     CHISQ RETURNS THE REDUCED CHI**2 AFTER CALLING THE ROUTINE 

!     OBSERVED WHICH SHOULD RETURN THE OBSERVED VALUES 

 

subroutine chisq(chsq,x,icount,ifail) 

use masterdim 

use obscalc 

implicit none 

real(8) :: chsq,x(padim) 

integer(4) :: i1,ifail,icount 

do i1=1,xnum 

pa(xpos(i1))=x(i1) 

enddo 

call cal(icount,ifail) 

if(ifail /= 0) then 

write(6,*) "Warning; subroutine cal() has ifail= ",ifail 

endif 

chsq=0d0 

do i1=1,onum 

chsq=chsq+(obs(i1)-calc(i1))*(obs(i1)-calc(i1))*weight(i1) 

enddo 

chsq=chsq/(onum-xnum) 

end subroutine chisq 

 

!     DER CALCULATES THE DERIVATIVES OF ALL OBS W/R TO ALL X 

!     IT ALSO SAVES CALC FOR RECOVERY SHOULD SSQ NOT DECREASE 

 

subroutine der(icount,ifail) 

use masterdim 

use obscalc 

implicit none 

real(8) :: save 

integer(4) :: ifail,i1,i2,icount 

do i1=1,onum 

ocalc(i1)=calc(i1) 

enddo 

do i1=1,xnum 

save=pa(xpos(i1)) 

pa(xpos(i1))=pa(xpos(i1))*1.01d0 

if(pa(xpos(i1)).eq.0) then 

pa(xpos(i1))=1d-2 

endif 

call cal(icount,ifail) 

if(ifail /= 0) then 

write(6,*) "Warning; subroutine cal() has ifail= ",ifail 

endif 

do i2=1,onum 

if(save.ne.0) then 

deriv(i1,i2)=(calc(i2)-ocalc(i2))*1d2/save 

else 

deriv(i1,i2)=(calc(i2)-ocalc(i2))*1d2 

endif 

enddo 

pa(xpos(i1))=save 

enddo 

end subroutine der 

 

end module nllsqfit 

 

!     Main program: reads fort.1 input file, calls least squares fit if any 

!     fitting flags are =1, or calls thkn() subroutine directly if no 
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!     fitting is done, outputs results to fort.3 and fort.7 

program FRETMODULATE 

use dimensio 

use masterdim 

use obscalc 

use thermokin 

use waves 

use sigparameters 

use popsigoutputs 

use nllsqfit 

implicit none 

integer(4) :: i,j,k,n,m,ij,seed,iminus,iplus,printflag,icount,ifail 

real(8) :: x(statedim),sum 

real(8) :: tauobs,maxtime,mintime,time,tinit 

real(8) :: tempnoise(-predim:dim),avg_noise,square_noise(0:dim),avg_noise2,rms_noise 

real(8), parameter :: Pi=3.141592653589793d0 

real(8) :: popsum,gauran,pop(statedim,0:dim),s(statedim),sig(statedim,0:dim) 

real(8) :: xsum,relerr 

real(8) :: xcpop(statedim,0:dim),xcsig(statedim,0:dim),norm 

 

!     Protein input parameters for simulation: 

!     Currently only a two-state folder is supported 

read(1,*) T0, T0flag !Reference temperature for all protein states in Kelvin 

read(1,*) gcoef(1,0),gcoef(1,1), gcflag(1,0),gcflag(1,1) !Free energy g=gcoef(0,1)+gcoef(1,1)*(temperature-T0) for state 1 

read(1,*) gcoef(2,0),gcoef(2,1), gcflag(2,0),gcflag(2,1) !Same for state 2, also in kJ/mole 

read(1,*) km,gdcoef(1,2,0),gdcoef(1,2,1), kmflag,gdcflag(1,2,0),gdcflag(1,2,1) !Transition state energy in kJ/mole 

read(1,*) s1green,s1red, s1gflag, s1rflag !Red and green FRET signal values for state 1 

read(1,*) s2green,s2red, s2gflag, s2rflag !Same for state 2 

read(1,*) sred_slope,sgreen_slope,Tsignal, sr_slopeflag, sg_slopeflag, Tsflag !Red and green signal T-dependent quantum yields 

!     The program will set sred=(s1red*x(1)+s2red*x(2))*(1+sred_slope*(temp-Tsignal)), similar for signal 2 (green) 

 

!     Driving waveform for simulation 

read(1,*) m_waves, seed, Taverage, dtprint, printflag !The # Driving waves, random number seed, 

!     avg T of driving waveform, time intervals for printout to fort.2 

write(7,*) "Average temperature ",Taverage 

do m=1,m_waves 

!     Read in Sine periods and amplitudes, noise 1/e time and amplitudes 

!     Note that Nperiod is the inverse bandwidth of the noise, not its 'period.'  The period of the noise is the same as of 

!     the sine waveform, i.e. the noise pattern repeats together with the sine waveform. 

!     obs() and osig() are optional arrays of observed phase differences between red and green channels, and uncertainties, that 

!     need to be read only if data is to be fitted. Set to 0 otherwise 

read(1,*) Speriod(m),Samplitude(m),Nperiod(m),Namplitude(m),obs(m),osig(m) 

enddo 

!     Find overall dynamic range 

tauobs=1/(km*dexp(-gdcoef(1,2,0)/(0.00831*T0))) 

maxtime=0 

mintime=tauobs 

do m=1,m_waves 

maxtime=max(maxtime,Speriod(m)) 

mintime=min(mintime,Speriod(m)) 

enddo 

if(maxtime == 0) then 

write(6,*) "A nonzero period or relaxation time must be specified." 

stop 

endif 

tstep=maxtime/720 !Allow at least 1/2 degree of phase resolution for the slowest period 

maxfac=3 

time_points=720*maxfac !Evaluate data out to three times the slowest driving period 

write(6,*) "Time dynamic range: ",mintime," to ",maxtime,". Unadjusted step: ",tstep 

!     Decrease time step if fast dynamics requires it to avoid aliasing 

do i=1,8 

if(mintime/tstep < 256) then 

tstep=tstep/2 

time_points=time_points*2 

else 

exit 

endif 

enddo 

if(i > 8 .or. time_points>dim) then 

write(6,*) "Dynamic range of fastest rate to slowest driving period is too large." 
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stop 

endif 

write(6,*) "Adjusted step: ",tstep 

odestep=tstep/10 !Make differential equation solver step 10x smaller than sampling step 

!     Perform least squares fit if desired; only phase difference is currently supported as an observable. 

onum=m_waves 

panum=0 

!     Determine number of fitted parameters "panum," and copy parameters to "pa" for use by subroutine nllsq 

if(T0flag.eq.1) then 

panum=panum+1 

pa(panum)=T0 

paf(panum)=1 

endif 

if(gcflag(1,0).eq.1) then 

panum=panum+1 

pa(panum)=gcoef(1,0) 

paf(panum)=1 

endif 

if(gcflag(1,1).eq.1) then 

panum=panum+1 

pa(panum)=gcoef(1,1) 

paf(panum)=1 

endif 

if(gcflag(2,0).eq.1) then 

panum=panum+1 

pa(panum)=gcoef(2,0) 

paf(panum)=1 

endif 

if(gcflag(2,1).eq.1) then 

panum=panum+1 

pa(panum)=gcoef(2,1) 

paf(panum)=1 

endif 

if(kmflag.eq.1) then 

panum=panum+1 

pa(panum)=km 

paf(panum)=1 

endif 

if(gdcflag(1,2,0).eq.1) then 

panum=panum+1 

pa(panum)=gdcoef(1,2,0) 

paf(panum)=1 

endif 

if(gdcflag(1,2,1).eq.1) then 

panum=panum+1 

pa(panum)=gdcoef(1,2,1) 

paf(panum)=1 

endif 

if(s1gflag.eq.1) then 

panum=panum+1 

pa(panum)=s1green 

paf(panum)=1 

endif 

if(s1rflag.eq.1) then 

panum=panum+1 

pa(panum)=s1red 

paf(panum)=1 

endif 

if(s2gflag.eq.1) then 

panum=panum+1 

pa(panum)=s2green 

paf(panum)=1 

endif 

if(s2rflag.eq.1) then 

panum=panum+1 

pa(panum)=s2red 

paf(panum)=1 

endif 

if(sr_slopeflag.eq.1) then 

panum=panum+1 
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pa(panum)=sred_slope 

paf(panum)=1 

endif 

if(sg_slopeflag.eq.1) then 

panum=panum+1 

pa(panum)=sgreen_slope 

paf(panum)=1 

endif 

if(Tsflag.eq.1) then 

panum=panum+1 

pa(panum)=Tsignal 

paf(panum)=1 

endif 

!     Fitting info variables are currently hardwired 

err=0 

debug=1 

maxiter=100000 

marq=0.01 

delchi=0.001 

delgrad=0 

if (panum /= 0) then 

call nllsq(icount,ifail) 

write(6,*) "Fit completed, ifail= ",ifail 

write(7,*) "Chi-squared= ",chsq 

write(7,*) "#, Parameter, Parameter uncertainty:" 

do i=1,panum 

write(7,*) i,pa(i),pasig(i) 

enddo 

write(7,*) "Correlation matrix:" 

!     Output correlation matrix with scaled diagonal 

do i=1,panum 

write(7,fmt='(100(f9.5))') (alphin(i,j), j=1,panum) 

enddo 

write(7,*) " " 

write(7,*) "New values of all input parameters and fitting flags:" 

write(7,*) T0, T0flag !Reference temperature for all protein states in Kelvin 

write(7,*) gcoef(1,0),gcoef(1,1), gcflag(1,0),gcflag(1,1) !Free energy g=gcoef(0,1)+gcoef(1,1)*(temperature-T0) for state 1 

write(7,*) gcoef(2,0),gcoef(2,1), gcflag(2,0),gcflag(2,1) !Same for state 2, also in kJ/mole 

write(7,*) km,gdcoef(1,2,0),gdcoef(1,2,1), kmflag,gdcflag(1,2,0),gdcflag(1,2,1) !Transition state energy in kJ/mole 

write(7,*) s1green,s1red, s1gflag, s1rflag !Red and green FRET signal values for state 1 

write(7,*) s2green,s2red, s2gflag, s2rflag !Same for state 2 

write(7,*) sred_slope,sgreen_slope,Tsignal, sr_slopeflag, sg_slopeflag, Tsflag !Red and green signal T-dependent quantum yields 

write(7,*) " " 

endif 

!     Loop through waveforms to output all output signals and write to output files. 

!     fort.3 has the complete information, fort.7 the parameters and 

write(3,*) "wv_n Per  nu  xpmt1 xpph1   xpmt2 xpph2   xsmt1 xsph1   xsmt2 xsph2  xsph2m1" 

write(7,*) " Nu(Hz) Obs. phase(deg) Calc. phase(deg)" 

!     x=cross-crorrelation; p=population; mt=time of maximum; 1,2=state or signal; ph=phase, s=signal 

printflag=0 

do m=1,m_waves 

call thkin(m,printflag) 

!     Save times and phases (relative to Speriod for each wave) 

!     Note: The "360-" is a question of how the phase is defined, lagging or advanced. 

write(3,'(i2,20(1x,f7.3))') m, Speriod(m), 1.0/Speriod(m), & 

popmaxtime(1,m), 360-popphase(1,m), popmaxtime(2,m), 360-popphase(2,m), & 

sigmaxtime(1,m), 360-sigphase(1,m), sigmaxtime(2,m), 360-sigphase(2,m), & 

sigphase(1,m)-sigphase(2,m) 

relerr=(obs(m)-sigphase(1,m)+sigphase(2,m))/osig(m) 

write(7,'(20(1x,f7.3))')  1.0/Speriod(m), obs(m), osig(m), sigphase(1,m)-sigphase(2,m), relerr 

enddo 

 

end program FRETMODULATE 

 

subroutine derivs(n,time,x,xp) 

use thermokin 

use waves 

implicit none 

real(8) :: x(statedim),time,xp(statedim),tinit,tfinal 

integer(4) :: n,j 
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real(8) :: deltag,k(statedim,statedim),frac,temp 

real(8), parameter :: round=1e-4 

!     Solve the coupled DEQ for a two-state system 

 

!     First, linearly interpolate temperature to DQE solver time 

tinit=(itime-1)*tstep 

tfinal=itime*tstep 

frac=(time-tinit)/tstep 

if(frac > 1+round .or. frac < -round ) then 

write(6,*) "Interpolation of temperature in DERIVS falls" 

write(6,*) "significantly outside the range of time points." 

write(6,*) itime, tstep, tinit, tfinal, frac 

stop 

endif 

temp=frac*temperature(itime)+(1-frac)*temperature(itime-1) 

!     Compute 2-state equilibrium constant; for now, only n=2 is implemented 

do j=1,n 

g(j)=gcoef(j,0)+gcoef(j,1)*(temp-T0) 

enddo 

deltag=g(2)-g(1) 

!      Compute barriers and forward/backward rate coefficients 

gd(1,2)=gdcoef(1,2,0)+gdcoef(1,2,1)*(temp-T0) + deltag/2 

gd(2,1)=gdcoef(1,2,0)+gdcoef(1,2,1)*(temp-T0) - deltag/2 

k(1,2)=km*dexp(-gd(1,2)/(0.00831*temp)) 

k(2,1)=km*dexp(-gd(2,1)/(0.00831*temp)) 

!      Compute derivatives 

xp(1)=-k(1,2)*x(1)+k(2,1)*x(2) 

xp(2)=+k(1,2)*x(1)-k(2,1)*x(2) 

end subroutine derivs 

! 

subroutine signal(n,x,s) 

use dimensio 

use waves 

use sigparameters 

implicit none 

real(8) :: x(statedim),s(statedim),temp 

integer(4) :: n 

!     Compute green (1) and red (2) signals 

 

!     Evaluate temperature at beginning of interval 

temp=temperature(itime-1) 

!     Compute signal at average temperature for the time step 

s(1)=(s1green*x(1)+s2green*x(2))*(1+sgreen_slope*(temp-Tsignal)) 

s(2)=(s1red*x(1)+s2red*x(2))*(1+sred_slope*(temp-Tsignal)) 

end subroutine signal 

! 

!     This differential equations solver calls subroutine derivs, which 

!     provides it with the kinetic equations 

!     Note: simple Runge-Kutta forward propagation is used here: the fastest 

!     time scale of the differential equation is given by the largest k, and 

!     integration simply must me reasonably smaller steps than this fastest 

!     time scale.  Adaptive methods simply fail when least-squares parameters 

!     are adjusted to crazy values, whereas this provides a bad answer, which 

!     is OK because it produces a large obs-calc error! 

! 

subroutine odesolve(n,y,xinit,xfinal,odestep) 

use dimensio 

implicit none 

integer n 

real(8) :: xinit,y(statedim),xfinal,x,dx,dydx(statedim),odestep 

real(8), parameter :: round=1e-14 

! 

!     xinit initial x 

!     xfinal final x 

!     mindx     stepsize used, in units of x 

! 

!     Initialize x value, step size, and derivatives; RK4 is modified to 

!     update y, the derivative dydx  and x to the final value x+dx, ready 

!     for the next step 

x=xinit 
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dx=odestep 

call derivs(n,x,y,dydx) 

! 

!     WHILE loop to step from tinit to tfinal using 

!     Runge-Kutta over the rest interval 

! 

do 

if ( x >= xfinal*(1-round)) exit 

if(x+dx.gt.xfinal) then 

dx=xfinal-x 

endif 

call rk4(n,y,dydx,x,dx) 

enddo 

end subroutine odesolve 

! 

subroutine rk4(nv,y,dydx,x,h) 

use dimensio 

implicit none 

integer(4) :: i,nv 

real(8) :: y(statedim),dydx(statedim),yt(statedim) 

real(8) :: h,dym(statedim),hh,h6,xhh,xh,dyt(statedim),x 

hh=h*0.5d0 

h6=h/6d0 

xh=x+h 

xhh=x+hh 

do i=1,nv 

yt(i)=y(i)+hh*dydx(i) 

enddo 

call derivs(nv,xhh,yt,dyt) 

do i=1,nv 

yt(i)=y(i)+hh*dyt(i) 

enddo 

call derivs(nv,xhh,yt,dym) 

do i=1,nv 

yt(i)=y(i)+h*dym(i) 

dym(i)=dyt(i)+dym(i) 

enddo 

call derivs(nv,xh,yt,dyt) 

do i=1,nv 

!     Update y, its derivative, and x to value at final point 

y(i)=y(i)+h6*(dydx(i)+dyt(i)+2d0*dym(i)) 

dydx(i)=dyt(i) 

x=xh 

enddo 

end subroutine rk4 

! 

real(8) function gauran(hwhm,seed) 

implicit none 

real(8) :: y,ran,hwhm,width 

integer(4) :: seed 

integer(4), parameter :: ia=7141,ic=54773,im=259200 

real(8), parameter :: numstd=3d0,f2=3.85802469d-6,f1=f2*numstd*2d0 

y=0d0 

ran=0d0 

width=0.8325546d0/hwhm 

do while (y.le.ran) 

seed=mod(seed*ia+ic,im) 

gauran=(dfloat(seed)*f1-numstd) 

y=dexp(-(gauran*width)**2) 

seed=mod(seed*ia+ic,im) 

ran=dfloat(seed)*f2 

enddo 

return 

end function gauran 

 

!!!! NOTE: the Absoft Fx3 debugger needs a ^M line return character to recognize the 

!!!! end of the code; if this is missing, the debugger will just not let you 

!!!! open the file to debug. 

 

subroutine thkin(m,printflag) 
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use dimensio 

use thermokin 

use waves 

use sigparameters 

use popsigoutputs 

implicit none 

integer(4) :: i,j,k,n,m,ij,seed,iminus,iplus,printflag 

integer(4) :: presteps,drop_points 

real(8) :: x(statedim),sum 

real(8) :: maxtime,mintime,time,tinit,tprint 

real(8) :: tempnoise(-predim:dim),avg_noise,square_noise(0:dim),avg_noise2,rms_noise 

real(8), parameter :: Pi=3.141592653589793d0 

real(8) :: popsum,gauran,alpha,pop(statedim,0:dim),s(statedim),sig(statedim,0:dim) 

real(8) :: xsum 

real(8) :: xcpop(statedim,0:dim),xcsig(statedim,0:dim),norm 

real(8) :: val,valplus,valminus,t,tplus,tminus 

integer(4) :: tem(0:dim) 

if(printflag == 1) then 

!       write(2,*) "t_sec T_Kelvin Sig1 Sig2 Pop1 Pop2 Popsum" 

!       write(4,*) "Wave ",m 

!       write(4,*) "t_xcor  sig1_xcor sig2_xcor pop1_xcor pop2_xcor" 

endif 

!     Create waveform 

Somega(m)=2*Pi/Speriod(m) 

do i=0,time_points-1 

time=tstep*i 

temperature(i)=Taverage+Samplitude(m)*dsin(Somega(m)*time) 

enddo 

if(Namplitude(m) /= 0) then 

alpha=tstep/(tstep+Nperiod(m)) 

presteps=maxfac/alpha 

if(presteps > predim) then 

presteps=predim 

write(6,*) "Warning: noise time constant too long; increase predim" 

endif 

do i=-presteps,time_points-1 

tempnoise(i)=gauran(1d0,seed) 

enddo 

!       Filter noise to lowpass period Tnoise_taufilter; alpha=1 no filtering, alpha->0 strong low-pass filtering 

do i=-presteps+1,time_points-1 

tempnoise(i)=tempnoise(i-1)+alpha*(tempnoise(i)-tempnoise(i-1)) 

enddo 

!       Shift noise so noise waveform starts at 0 amplitude 

do j=0,presteps-1 

if(dsign(1d0,tempnoise(j)) /= dsign(1d0,tempnoise(j+1))) then 

tempnoise(j)=0 

exit 

endif 

enddo 

if (j == presteps) then 

write(6,*) "Error in noise generation: no zero crossing was found." 

write(6,*) "Try a different random number seed." 

stop 

endif 

do i=0,time_points-1 

tempnoise(i)=tempnoise(i+j) 

enddo 

!       Scale noise so it has the desired rms amplitude 

avg_noise=sum(tempnoise(0:time_points-1))/time_points 

square_noise(0:time_points-1)=tempnoise(0:time_points-1)*tempnoise(0:time_points-1) 

avg_noise2=sum(square_noise(0:time_points-1))/time_points 

rms_noise=dsqrt((avg_noise2-avg_noise**2)) 

tempnoise(:)=tempnoise(:)*Namplitude(m)/rms_noise 

!       Add noise to temperature waveform 

do j=1,maxfac 

temperature((j-1)*time_points/maxfac:(j*time_points/maxfac)-1)= & 

temperature((j-1)*time_points/maxfac:(j*time_points/maxfac)-1)+tempnoise(0:time_points/maxfac-1) 

enddo 

endif 

 



222  

!     Start simulation of modulated kinetics 

n=2 !2-state system hardwired for now 

tprint=0 

!     Compute initial state population fraction x(j) in each state "j" 

popsum=0 

do j=1,n 

g(j)=gcoef(j,0)+gcoef(j,1)*(Taverage-T0) 

x(j)=dexp(-g(j)/(0.00831*Taverage)) 

popsum=popsum+x(j) 

enddo 

xsum=0 

do j=1,n 

x(j)=x(j)/popsum 

pop(j,0)=x(j) 

xsum=xsum+x(j) 

enddo 

!     Propagate in time 

do itime=1,time_points 

tinit=(itime-1)*tstep 

time=itime*tstep 

!     Compute signal s from population x, save populations and signals for later analysis 

call signal(n,x,s) 

xsum=0 

!     Save populations and signals.  Note that j counts states (Native =1, denatured=2) for populations, 

!     Green (1) and Red (2) fluorescence for signals 

do j=1,n 

xsum=xsum+x(j) 

pop(j,itime)=x(j) 

sig(j,itime)=s(j) 

enddo 

if(tinit >= tprint .and. printflag ==1) then 

write(2,'(f7.4,1x,f7.2,1x,2(f7.4,1x),3(f6.3,1x))') tinit, & 

temperature(itime-1),s(1),s(2),x(1),x(2),xsum 

tprint=tinit+dtprint 

endif 

call odesolve(n,x,tinit,time,odestep) 

xsum=xsum 

enddo 

if(printflag == 1) then 

write(2,*) " " 

endif 

 

!     Calculate cross-correlation functions of populations and signals 

!     with respect to driving temperature waveform 

!     Use only one period from end of data (three long periods were calculated if maxfac=3). 

use_points=Speriod(m)/tstep 

drop_points=time_points-use_points 

norm=1d0 

do i=0,use_points-1 

do k=1,n 

pop(k,i)=pop(k,i+drop_points) 

sig(k,i)=sig(k,i+drop_points) 

enddo 

tem(i)=temperature(i+drop_points) 

enddo 

xcpop(:,:)=0 

xcsig(:,:)=0 

do k=1,n 

do i=0,use_points-1 

do j=0,use_points-1 

!      Wrap the index j around if it exceeds use_points, to calculate circular autocorrelation 

if(i+j >= use_points) then 

ij=i+j-use_points 

else 

ij=i+j 

endif 

if(ij >= use_points) then 

write(6,*) "If the code executed this statement, woe unto you!" 

stop 

endif 
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!      A simple box formula is used; this causes a phase error if Speriod(m) is not an 

!      exact multiple of tstep 

xcpop(k,i)=xcpop(k,i)+pop(k,j)*(tem(ij)-Taverage) 

xcsig(k,i)=xcsig(k,i)+sig(k,j)*(tem(ij)-Taverage) 

enddo 

xcpop(k,i)=xcpop(k,i)*norm 

xcsig(k,i)=xcsig(k,i)*norm 

enddo 

enddo 

tprint=0 

do i=0,use_points-1 

time=i*tstep 

if(time >= tprint .and. printflag==1) then 

write(4,'(f8.4,4(1x,f9.2))') time,xcsig(1,i),xcsig(2,i),xcpop(1,i),xcpop(2,i) 

tprint=time+dtprint 

endif 

enddo 

!     Find first maxima in correlation functions (could be at i=0 or i=use_points-1) 

!     Note: crude 3-point search with parabolic interpolation of three points near max.; 

!     requires small enough time step for adequate sampling. 

do k=1,n 

do i=0,use_points-1 

iminus=i-1 

iplus=i+1 

if(i == 0) iminus=use_points-1 

if(i == use_points-1) iplus=0 

valminus=xcpop(k,iminus) 

val=xcpop(k,i) 

valplus=xcpop(k,iplus) 

if(val > valminus .and. val >= valplus) exit 

enddo 

if(i == use_points) then 

write(6,*) "No maximum found in autocorrelation." 

stop 

endif 

!     "i" is position of sampled max.  Use parabolic interpolation to get better position 

!        popmaxtime(k,m)=i*tstep 

tminus=(i-1)*tstep 

t=i*tstep 

tplus=(i+1)*tstep 

popmaxtime(k,m)=0.5*( (val-valplus)*(tminus+t) - (valminus-val)*(t+tplus) )/(2*val-valminus-valplus) 

if(popmaxtime(k,m) < 0 ) popmaxtime(k,m)=popmaxtime(k,m)+(use_points-1)*tstep 

if(popmaxtime(k,m) >= (use_points-1)*tstep ) popmaxtime(k,m)=popmaxtime(k,m)-(use_points-1)*tstep 

popphase(k,m)=popmaxtime(k,m)/Speriod(m)*360 

valminus=xcsig(k,use_points-1) 

valplus=xcsig(k,1) 

do i=0,use_points-1 

if(xcsig(k,i) > valminus .and. xcsig(k,i) > valplus) exit 

valminus=xcsig(k,i) 

if(i<use_points-2) then 

valplus=xcsig(k,i+2) 

else 

valplus=xcsig(k,0) 

endif 

enddo 

if(i == use_points) then 

write(6,*) "No maximum found in autocorrelation." 

stop 

endif 

sigmaxtime(k,m)=i*tstep 

sigphase(k,m)=sigmaxtime(k,m)/Speriod(m)*360 

enddo 

return 

end subroutine thkin 

 

!     Subroutine cal() uses thkin() to calculate phases for each of the m observed frequencies/periods 

!     for least-squares fitting; it renames "pa" back to the model parameters for use by subroutine thkin() 

subroutine cal(icount,ifail) 

use masterdim 

use obscalc 
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use thermokin 

use sigparameters 

use popsigoutputs 

implicit none 

integer(4) :: i,icount,ifail,m,printflag 

ifail=0 

icount=icount+1 

printflag=0 

!     Rename fitting parameters sent by nllsq() 

i=0 

if(T0flag.eq.1) then 

i=i+1 

T0=pa(i) 

endif 

if(gcflag(1,0).eq.1) then 

i=i+1 

gcoef(1,0)=pa(i) 

endif 

if(gcflag(1,1).eq.1) then 

i=i+1 

gcoef(1,1)=pa(i) 

endif 

if(gcflag(2,0).eq.1) then 

i=i+1 

gcoef(2,0)=pa(i) 

endif 

if(gcflag(2,1).eq.1) then 

i=i+1 

gcoef(2,1)=pa(i) 

endif 

if(kmflag.eq.1) then 

i=i+1 

km=pa(i) 

endif 

if(gdcflag(1,2,0).eq.1) then 

i=i+1 

gdcoef(1,2,0)=pa(i) 

endif 

if(gdcflag(1,2,1).eq.1) then 

i=i+1 

gdcoef(1,2,1)=pa(i) 

endif 

if(s1gflag.eq.1) then 

i=i+1 

s1green=pa(i) 

endif 

if(s1rflag.eq.1) then 

i=i+1 

s1red=pa(i) 

endif 

if(s2gflag.eq.1) then 

i=i+1 

s2green=pa(i) 

endif 

if(s2rflag.eq.1) then 

i=i+1 

s2red=pa(i) 

endif 

if(sr_slopeflag.eq.1) then 

i=i+1 

sred_slope=pa(i) 

endif 

if(sg_slopeflag.eq.1) then 

i=i+1 

sgreen_slope=pa(i) 

endif 

if(Tsflag.eq.1) then 

i=i+1 

Tsignal=pa(i) 

endif 
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APPENDIX E 

Supplementary information of tethered WW 

domains from monomer to tetramer: folding 

competing with aggregation 
 

 

E.1:  Primary sequence for all of the protein constructs  

 

Mfip35 (Monomer) 

K L P P G W E K R M S R D G R V Y Y F N H I T N A S Q F E R P S G  

Dfip35 (Dimer) 

K L P P G W E K R M S R D G R V Y Y F N H I T N A S Q F E R P S G G G S G G S 

G G S G K L P P G W E K R M S R D G R V Y Y F N H I T N A S Q F E R P S G  

Tfip35 (Trimer) 

K L P P G W E K R M S R D G R V Y Y F N H I T N A S Q F E R P S G G G S G G S 

G G S G K L P P G W E K R M S R D G R V Y Y F N H I T N A S Q F E R P S G G G 

S G G S G G S G K L P P G W E K R M S R D G R V Y Y F N H I T N A S Q F E R P 

S G 

Qfip35 (tetramer) 

K L P P G W E K R M S R D G R V Y Y F N H I T N A S Q F E R P S G G G S G G S 

G G S G K L P P G W E K R M S R D G R V Y Y F N H I T N A S Q F E R P S G G G 

S G G S G G S G K L P P G W E K R M S R D G R V Y Y F N H I T N A S Q F E R P 

S G G G S G G S G G S G K L P P G W E K R M S R D G R V Y Y F N H I T N A S Q 

F E R P S G 
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Fig. E.1: Mass spectrometry results of Qfip35 protein purified using A) GST and B) His tag 

both showing a peak at m/z = 17.766 K Da and 17.771 K Da respectively. 

 

 

E.2:  Multimeric network model code  

E.2.1 Parameters explanation in the model  

The parameters mentioned in Table 6.2 in the main text are described below in the model.  

N (folded form) = 1; M (Intermediate form) = 2; U (unfolded form) = 3 

dG = howmanyN*(g31*(T-Tm)+ gg31*GHCL + xn*gnn)+ howmanyM*(g32*(T-Tm)+ 

go32+ gg32*GHCL +xm*gmm) + howmanyU*0 -------------------------------------------       (1) 

 

A 

 B 

A 

 

B 
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The free energy for any state NN OR NM or UN is written by the general equation (1) where  

dG = Free energy 

Tm = melting temperature  

g31= co-operatively factor (going from Unfolded to folded) 

gg31= guanidine dependence  

xn = number of NN pair present in any species for eg: NN will have only one pair  

gnn= interaction term for NN pairs 

g32= co-operatively factor (going from Unfolded to intermediate) 

gg32= guanidine dependence 

xm = number of MM pair present in any species for eg: NMM will have only one pair  

gmm= interaction term for MM pairs  

Su = bu+mu*(T-Tm)  ------------------------------------------------------------------------   (2) 

Su = unfolded baseline  

bu = unfolded intercept  

mu = unfolded slope  

Similarly folded intercept and baseline and slope are represented as Sf , bf and mf.  

Gk13k = kinetic barrier going from folded to unfolded 

Gk23k = kinetic barrier going from intermediate to unfolded  

In the model the starting point for the experimental data and simulated data was matched in 

order to form a correct representation for chi. The assumption made here is that there exist no 

ultra-fast phase.  
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E.2.2  Thermodynamic representation  

Function[S,dG,Keq,Si]=ThermoFit(Mer,TotalStates,GHCL,TRange,Tm,g31,g32,go32,gg31,

gg32,gnn,gmm,bu,mu,bf,mf,bm,mm) 

% 

NumStates = size(TotalStates,1);      % number of all possible species 

%% 

for p = 1:numel(TRange) 

    T= TRange(p); 

    % Signals for indivdual N, M and U 

    Su = bu+mu*(T-Tm)+ 5*(Mer==1)- 4*(Mer==4);  %unfolded baseline%%%%%%% 

addtional 5nm for monomer 

    Sf = bf+mf*(T-Tm)+0.5*(Mer==1)- 4*(Mer==4);  %folded baseline %%%%%%%%% 

additional 1nm for monomer  

    Sm = bm+mm*(T-Tm);  %misfolded baseline 

    % Thermodynamic delta G for transitions 

    % Here each of species is a separate state with associated G 

    % U/UU/UU/UUUU is the ground/ref state with G ==0 

    deltaG  = zeros(1,NumStates); % Initialize 

    for i =1:NumStates % This loop will calculate signal & k_eq for each species coming from 

ground species 

      howmanyN = numel(find(TotalStates(i,:)==1)); % how many N are there in order to make 

signal  

      howmanyM = numel(find(TotalStates(i,:)==2)); % how many M are there in order to make 

signal  

      howmanyU = numel(find(TotalStates(i,:)==3)); % how many U are there in order to make 

signal  

      Si(p,i) = (howmanyN*Sf+howmanyM*Sm+howmanyU*Su)/Mer; % generate signal for 

all the species 

      % 

      speciesstr = sprintf('%u',TotalStates(i,:)); % change species into a string  

      xn = numel(findstr(speciesstr, '11')); % find the pair MM in the species 

      xm = numel(findstr(speciesstr, '22')); % find the pair MM in the species 

      xu = numel(findstr(speciesstr, '33')); % find the pair MM in the species 
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      dG(p,i) = howmanyN*(g31*(T-Tm)+ gg31*GHCL + xn*gnn)+ howmanyM*(g32*(T-

Tm)+ go32+ gg32*GHCL +xm*gmm) + howmanyU*0; 

      Keq(p,i) =exp(-dG(p,i)/8.31/(T+273.15)); % equilbrium rate for all the species i 

    end 

    S(p,1) = Si(p,:)*Keq(p,:)'/sum(Keq(p,:),2); % generating signal for thermodynamics 

end 

end 

 

E.2.3  Kinetic representation  

function[Chi,Time,Conc,ConcEq,TransMatrix]=KinFit(Mer,TotalStates,GHCL,T,T_fin,... 

Tm,g31,g32,go32,gg31,gg32,gnn,gmm,Gk13k,Gk23k,tspan,ExpData) 

NumStates = size(TotalStates,1);      % number of all possible species 

% Calculate the barriers and kinetic parameters 

W = 20; % prefactor [1/us] 

%% Solve ODE at T = temp 

TransMatrix = zeros([NumStates, NumStates]);  

% TransMatrix(i,j) is rate of reaction of species i going to species j 

for i = 1:NumStates 

   howmany(i,1) = numel(find(TotalStates(i,:)==1)); % how many N are there in order to 

make signal  

   howmany(i,2) = numel(find(TotalStates(i,:)==2)); % how many M are there in order to 

make signal  

   howmany(i,3) = numel(find(TotalStates(i,:)==3)); % how many U are there in order to 

make signal  

   for j = 1:NumStates 

   speciesstr1 = sprintf('%u', TotalStates(i,:)); % change reactant species into a string  

   speciesstr2 = sprintf('%u',TotalStates(j,:)); % change product species into a string  

   xn = numel(strfind(speciesstr2, '11'))- numel(strfind(speciesstr1, '11')); % find effective 

change in pairs 

   xm = numel(strfind(speciesstr2, '22'))- numel(strfind(speciesstr1, '22')); 

   xu = numel(strfind(speciesstr2, '33'))- numel(strfind(speciesstr1, '33')); 

   %% Thermodynamic delta G for transitions  

   % G31 is defined outside the for loop as it is NOT dependent on x 

   G31     = g31*(T-Tm)+ gg31*GHCL + xn*gnn; 
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   G32     = g32*(T-Tm)+ go32+ gg32*GHCL + xm*gmm; % uses x 

    %% Remaining kinetics from here 

    %Important parameter to play with  

    Gk13=(Gk13k-0.5*G31); 

    Gk31=(Gk13k+0.5*G31); 

    Gk23=(Gk23k-0.5*G32); 

    Gk32=(Gk23k+0.5*G32); 

    % 

    kmatrix=zeros([3,3]); % kmatrix initiation 

    kmatrix(1,3)=W*exp(-Gk13/(8.31*(T+273.15))); % units would be microsec inverse 

    kmatrix(3,1)=W*exp(-Gk31/(8.31*(T+273.15))); 

    kmatrix(2,3)=W*exp(-Gk23/(8.31*(T+273.15))); 

    kmatrix(3,2)=W*exp(-Gk32/(8.31*(T+273.15))); 

    % when monoMer 

    if(Mer==1) 

      if(i==j) 

       TransMatrix(i, j) = 0; 

      else 

        TransMatrix(i, j) = kmatrix(TotalStates(i), TotalStates(j));% filling up transmatrix from 

the kmatrix which is created in kinetic_nMer script    

      end 

    end 

    % when polyMer more than monoMer system  

    if(Mer>1) 

      transformInd=[];flipMer=[];beforeSwitch=[];afterSwitch=[]; 

      subtract1 = TotalStates(i,:)- TotalStates(j,:);         % substraction of rows in order to 

determine if only one of the N,M,U is switching 

      subtract2 = fliplr(TotalStates(i,:))- TotalStates(j,:); % flipping the sequence 123-322 

makes it seems like 2 places are changed but if we flip 123 to 321-322 only one place is 

changed and hence it should be allowed  

      if(nnz(subtract1)==1)                                   % if only subtraction lead to one non-zero 

entry then do the below loop 

           transformInd = find(subtract1~=0);                 % what is the position/index where the 

switch is happening  
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           beforeSwitch = TotalStates(i,transformInd);        % what was it (N=1,M=2,U=3) that 

switched  

           afterSwitch = TotalStates(j,transformInd);         % what was it (N=1,M=2,U=3) that it 

switched to  

           TransMatrix(i, j) =  kmatrix(beforeSwitch, afterSwitch);   % picking the rates from 

kinetic Mer kmatrix and filling in trans matrix 

      elseif(nnz(subtract2)==1)                                       % for the flipping case doing the same 

thing  

           transformInd = find(subtract2~=0); 

           flipMer = fliplr(TotalStates(i,:)); 

           beforeSwitch = flipMer(1,transformInd); 

           afterSwitch = TotalStates(j,transformInd); 

           TransMatrix(i, j) =  kmatrix(beforeSwitch, afterSwitch); 

      else 

        TransMatrix(i, j) = 0; 

      end 

    end 

   end 

  end 

  ratematrix = TransMatrix'; % Transpose of the transmatrix should give us ratematrix for 

make differential equation 

    for i = 1:NumStates 

      for j = 1:NumStates 

        if (i==j) 

          ratematrix(i,j) = - sum(TransMatrix(i, :)); % making the ratematrix from Transition 

matrix 

        end 

      end 

    end 

    conc0   = zeros([NumStates, 1]); % initial conc initialization for all the states to be zero 

    conc0(1)= 40e-6;  % initial concentration of nn nnn nnnn 

    options = odeset('RelTol',1e-8,'AbsTol',1e-14,'Stats','off',... 

   'NormControl','on','NonNegative',numel(conc0),'Refine',1,... 

   'MStateDependence','weak','MassSingular','maybe','BDF','off'); 
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    [TEq,ConcEq] = 

ode15s(@(t,conc)myODE(t,conc,ratematrix),linspace(0,1e4,1e2),conc0,options); 

    %% Calulation of kinetic rates 

    TransMatrix = zeros([NumStates, NumStates]); ratematrix = []; 

    % TransMatrix(i,j) is rate of reaction of species i going to species j 

    for i = 1:NumStates 

      for j = 1:NumStates 

        speciesstr1 = sprintf('%u', TotalStates(i,:)); % change reactant species into a string  

        speciesstr2 = sprintf('%u',TotalStates(j,:)); % change product species into a string  

        xn = numel(strfind(speciesstr2, '11'))- numel(strfind(speciesstr1, '11')); % find effective 

change in pairs 

        xm = numel(strfind(speciesstr2, '22'))- numel(strfind(speciesstr1, '22')); 

        xu = numel(strfind(speciesstr2, '33'))- numel(strfind(speciesstr1, '33')); 

        %% Thermodynamic delta G for transitions  

        % G31 is defined outside the for loop as it is NOT dependent on x 

        G31     = g31*(T-Tm)+ gg31*GHCL + xn*gnn; 

        G32     = g32*(T-Tm)+ go32+ gg32*GHCL + xm*gmm; % uses x 

        %% Remaining kinetics from here 

        %Important parameter to play with  

        Gk13=(Gk13k-0.5*G31); 

        Gk31=(Gk13k+0.5*G31); 

        Gk23=(Gk23k-0.5*G32); 

        Gk32=(Gk23k+0.5*G32); 

        % 

        kmatrix=zeros([3,3]); % kmatrix initiation 

        kmatrix(1,3)=W*exp(-Gk13/(8.31*(T_fin+273.15))); % units would be microsec inverse 

        kmatrix(3,1)=W*exp(-Gk31/(8.31*(T_fin+273.15))); 

        kmatrix(2,3)=W*exp(-Gk23/(8.31*(T_fin+273.15))); 

        kmatrix(3,2)=W*exp(-Gk32/(8.31*(T_fin+273.15))); 

        % when monoMer 

        if(Mer==1) 

          if(i==j) 

           TransMatrix(i, j) = 0; 

          else 



233  

            TransMatrix(i, j) = kmatrix(TotalStates(i), TotalStates(j));% filling up transmatrix 

from the kmatrix which is created in kinetic_nMer script    

          end 

        end 

        % when polyMer more than monoMer system  

        if(Mer>1) 

          transformInd=[];flipMer=[];beforeSwitch=[];afterSwitch=[]; 

          subtract1 = TotalStates(i,:)- TotalStates(j,:);         % substraction of rows in order to 

determine if only one of the N,M,U is switching 

          subtract2 = fliplr(TotalStates(i,:))- TotalStates(j,:); % flipping the sequence 123-322 

makes it seems like 2 places are changed but if we flip 123 to 321-322 only one place is 

changed and hence it should be allowed  

          if(nnz(subtract1)==1)                                   % if only subtraction lead to one non-zero 

entry then do the below loop 

               transformInd = find(subtract1~=0);                 % what is the position/index where 

the switch is happening  

               beforeSwitch = TotalStates(i,transformInd);        % what was it (N=1,M=2,U=3) 

that switched  

               afterSwitch = TotalStates(j,transformInd);         % what was it (N=1,M=2,U=3) that 

it switched to  

               TransMatrix(i, j) =  kmatrix(beforeSwitch, afterSwitch);   % picking the rates from 

kinetic Mer kmatrix and filling in trans matrix 

          elseif(nnz(subtract2)==1)                                       % for the flipping case doing the 

same thing  

               transformInd = find(subtract2~=0); 

               flipMer = fliplr(TotalStates(i,:)); 

               beforeSwitch = flipMer(1,transformInd); 

               afterSwitch = TotalStates(j,transformInd); 

               TransMatrix(i, j) =  kmatrix(beforeSwitch, afterSwitch); 

          else 

            TransMatrix(i, j) = 0; 

          end 

        end 
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      end 

    end 

    ratematrix = TransMatrix'; % Transpose of the transmatrix should give us ratematrix for 

make differential equation 

    for i = 1:NumStates 

      for j = 1:NumStates 

        if (i==j) 

          ratematrix(i,j) = - sum(TransMatrix(i, :)); % making the ratematrix from Transition 

matrix 

        end 

      end 

    end 

    options = odeset('RelTol',1e-8,'AbsTol',1e-14,'Stats','off',... 

   'NormControl','on','NonNegative',numel(conc0),'Refine',1,... 

   'MStateDependence','weak','MassSingular','maybe','BDF','off'); 

    [Time, Conc] = ode15s(@(t,conc)myODE(t,conc, ratematrix), tspan, ConcEq(end,:)', 

options); 

    %% Formulating the X(but not sure at this point) 

    concN=zeros(size(Conc(:,1))); 

    concM=zeros(size(Conc(:,1))); 

    concU=zeros(size(Conc(:,1))); 

    for i = 1:NumStates 

    concN = concN + Conc(:,i)*howmany(i,1)/Mer; 

    concM = concM + Conc(:,i)*howmany(i,2)/Mer; 

    concU = concU + Conc(:,i)*howmany(i,3)/Mer; 

    end 

    sumconc = concN+concM+concU; 

    concN=concN./sumconc; 

    concM=concM./sumconc; 

    concU=concU./sumconc; 

 



235  

 

APPENDIX F 
 

Supplementary information of folding under high 

pressure inside the bacterial cytoplasm  
 

F.1 Procedure for ReAsh labeling  

 

*A 1-5mg/mL stock of lysozyme should be prepared prior to experiment. This stock can be 

used 1-2 weeks after preparation. A plate should also be streaked prior to Day 1. Ideally the 

day directly before for best results but a 1-week old plate is acceptable.  

**Any pipetting involving cell should be done with the wide orifice pipettes. Pipetting off 

supernatant can be done with normal pipettes.  

Day 1 

1) In the morning, start a 2 mL culture of cells from 1 colony (falcon tube). Add 

appropriate be started (each from a separate colony). The rest of the procedure is then 

done in parallel. Note it takes about 10 hours from starter culture to induction. 

2) Allow the culture to grow until it is cloudy (~4-6 hours). 

3) Make a 1:100 dilution of cells (note once the dilution is done, it will take around 5-6 

hours until the induction step) into 2mL of LB (20µL cells) and add antibiotic (2µL for 

1000x ampicillin) – done in a falcon tube. 

4) Put in shaker at 37°C and monitor until OD600 reaches 0.5 – 0.7 (higher end of range 

may produce better results, takes ~2-3 hours to reach 0.5-0.6). Use plastic disposable 

cuvettes (1.5mL size). Baseline the UV-vis using LB from 650nm to 550nm. Pipette 

1mL of cells using wide orifice pipettes. Once the measurement is taken, pipette the 

cells back into the falcon tube.  

5) Add lysozyme to the cells in the falcon tube for a final lysozyme concentration of 

50µg/mL (ε=36000 and MW=14,307 g/mol) (Gently shake). Place on ice for 10 

minutes. At this point, the water bath next to the shaker in A229 should be set to 10°C 

so it can be ready by induction (see step 14).  
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6) After 10 minutes, transfer the cells in the falcon tube to a round bottom eppendorf tube 

and spin down the cells for 10 minutes at 10,000g. A convenient way to perform this is 

to fill two tubes with 500µL of cells each for balancing. Keep the excess of cells as a 

backup. If using two cultures, use 500µL from one and 500µL from the other. 

7) Gently pipette off the supernatant and resuspend the cell pellet using LB at the original 

volume (500µL of LB for each tube if doing the “convenient way”). Spin down the 

cells again with the same settings. Note that there should be little to no delay between 

the end of spindown and pipetting as the pellet dissolves quickly. 

8) Pipette off the supernatant again (pipette supernatant for all spin steps to reduce pellet 

loss) and resuspend using LB at the original volume (500µL per tube). Add antibiotic 

to each tube (0.5µL of 1000x amp for each tube). 

9) During the second spin, poke holes (~3) (with small needle) in the top of two new round 

bottom eppendorf tubes. Take 100µL of the resuspended cells and place them in one of 

these tubes. 

Then do step 12 

10) Add 1µL of ReAsh stock (final concentration=20µM) to these 100µL of cells. The 

ReAsh will need to be thawed for a minute or two before it can be pipetted. Completely 

wrap the ReAsh tube with aluminum foil and let it thaw at room temperature for 2 min. 

Note:   

+ Good ReAsh has red color, never use the blue one (bad ReAsh). 

+ Never touch the bottom of the ReAsh tube, it is best to turn off the light when handling 

ReAsh. 

+ Thaw the cell carefully on ice before adding ReAsh to the tube. 

+ The ReAsh tubes should be collected into the desired bag in room A223. 

11) Pipette up and down a few times gently to mix (recommended to use ~50µL volume on 

100 or 200µL pipette for mixing). 

12) From the tube that the 100µL cells were taken out, take ~300µL of the remaining cells 

and place them into the other round bottom eppendorf tube with holes poked in the top 

(these cells could have also come from the other 500µL tube).  

13) Shake the 100µL labeled and 300µL unlabeled cells at 37°C. Cover the top of the tubes 

loosely with aluminum foil to prevent contaminants from falling through holes. Monitor 

the OD600 with the unlabeled cells to prevent loss of ReAsh labeled cells. Make sure 

the foil is loose enough to allow air into the tube but tight enough to not fall off while 

the tube shakes.  
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14) When the OD600 reaches 1 (around 1.5-2 hours after lysozyme addition/spin down), 

induce both tubes with IPTG at 500µM (stock IPTG is usually 1M, for a 100mM stock 

use 0.5µL/100µL cells). If the OD600 still has not reached 1 after 3 hours, induce the 

cells anyway. A more dilute sample of IPTG may be desired to avoid needing to pipette 

extremely small volumes. Use MQ water to dilute the IPTG stock.  

15) Leave the cultures to induce overnight at 25°C. Note to use lower temperatures with 

the shaker in A229, the bath should be set 15°C below the desired temperatures. In this 

case, it should be set to 10°C.  

Day 2 

1) 12-13 after induction (12 hours is best) (aim for lower end of range especially for 

imaging), spin down the cells at 10,000g for 10 minutes. If desired, 100µL of cells from 

the 300µL tubes can be placed in a separate tube, and that tube can be spun down. This 

way you can be sure it’s 100µL since there’s less than 300µL in the tube from volume 

loss (from things such as checking OD). All 100µL of the ReAsh cells can be also 

placed in a new round bottom eppendorf tube if one wants to avoid spin down in tubes 

with holes. 

Note: Spin down labeled and unlabeled cell with new round bottom eppendorf tubes. 

Do not use the poked ones. 

2) Pour off the supernatant and resuspend at a 1:4 dilution in ice cold PBS (400µL 

PBS/100µL cells). Spin down again at 10,000g for 10 minutes. Pour off the supernatant 

and resuspend at a 1:4 dilution in cold PBS.  Prepare for imaging or other experiments. 

Store the 1:4 stocks on ice until they are needed.   

a. For imaging, use a final dilution of ~1:20 (more dilutions may be necessary 

depending how crowded the cells look under the microscope). 

b. For performing a melt, use a final dilution of ~1:8 (more dilutions may be 

necessary if there appears to be significant scattering). 
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F.2 Whole Genome sequencing and analysis of pressurized bacteria  

 

Whole genome sequencing was performed using the Illumina platform. For all sequencing, 

cultures were grown by inoculating fresh medium from frozen stocks made after pressure 

treatment and growing to saturation at 37 °C. Sequencing was performed on a locally operated 

Illumina MiSeq system present at Center for the physics of living center at UIUC. For MiSeq 

runs DNA was extracted with MoBio Ultraclean Microbial DNA isolation kit.DNA was 

quantified by qubit and Bioanalyzer and libraries were prepared using the NexteraXT kit from 

Illumina. MiSeq runs were demultiplexed and trimmed using the onboard Illumina software. 

Analysis was performed using the online breseqplatform in polymorphism mode 

(http://barricklab.org/twiki/bin/view/Lab/ToolsBacterialGenomeResequencing). Breseq uses 

an empirical error model and a Bayesian variant caller to predict polymorphisms at the 

nucleotide level. The algorithm uses a threshold on the empirical error estimate (E-value) to 

call variants (Barrick and Lenski, 2009). All other parameters were set to their default values. 

Reads were aligned to the MG1655 genome (INSDC U00096.3) to predict possible mutations. 

 

F.3  Laboratory pressure cycling of Mg1655 strain  

 

Mg1655 strain was subjected to maximum pressure of 1900 bar with an increment of 100 bar 

with a wait time of 3 mins at a particular pressure. These pressure treated cells were regrown 

in LB media and stored in frozen vials. The cells were grown overnight at 37 °C to be used for 

the next pressure cycling experiment. After nine repeated cycles of pressurization the obtained 

strain’s genome was sequenced along with MG1655.It was discovered that ~ 1.4 kb IS4 

element was inserted at location 3,991,653 which led to a dysfunctional cyaA gene. cyaA gene 

product is an enzyme adenylate cyclase which catalyzes the formation of second messenger 

cAMP (cyclic AMP) from ATP. In order to confirm the mutation in cyaA gene in cycle 9 

MG1655 (WT) and cycle 9 were grown in the presence and absence of cAMP in minimal media 

M63 + 5% glycerol (see Fig. F.2). It was seen that in the absence of cAMP cycle 9 had an 

interesting oscillating growth curve whereas WT had a normal growth curve with doubling 

time of ~ 57 mins typical for MG1655 strain. In the presence of 10mM cAMP the growth curve 

of cycle 9 recovered but the doubling time was around ~114 mins (see Fig.F.2). 
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Fig. F.1: The width and length distributions for MG1655 (WT), cycle 1 (C1) and J1 pressure 

resistant strain. The plots shows no significant difference in the size of these strains. Length-

width analysis on the imaging frames using oufti software resulted in length= 2.5 μm and width 

=0.8 μm.  
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Fig. F.2: Log (OD) vs time plot for both MG1655 and cycle 9 (cyaA mutant) with and without 

cAMP in minimal media M63 + 5% glycerol. The purple curves of the cyaA mutant was 

repeated six times to confirm the oscillating growth behavior. 
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APPENDIX G 

Future ideas 

 

G.1 Tethered WW Domains  

G.1.1  Pressure Denaturation experiments on tethered WW domains 

Temperature and pressure are two thermodynamic parameters that acts differently on 

protein. Temperature denaturation works via change in entropy whereas pressure denaturation 

occur due to volume change. Temperature denaturation of the tethered WW domains are 

studied in detail in my thesis. It would be interesting to see if under pressure perturbation 

similar or dissimilar trend in thermodynamic stability (decrease as more monomer units are 

added) would be observed. In particular the tetramer have shown a greater tendency to form 

aggregates hence making it an interesting system for pressure titrations (any intermediates are 

populated). 

G.1.2  Coarse grained MD simulations  

In order to reveal the nature of interaction between the domains tethered together, it is possible 

to perform coarse-grained MD simulations on these fast folding proteins. It would provide 

evidence that domains with same sequence has lower or higher tendency to form domain 

swapped aggregates. I have already made a working box for the dimer and also have also 

equilibrated it for around 1 ns.  

G.1.3 Mutated Fip35 L7A 

I have performed site directed mutagenesis on the Fip35, Dfip35 plasmids in order to generate 

Fip35 L7A and single monomer unit mutated in dimer. The aim was to generate a construct 

which folds faster but also have a lower melting temperature. I was successful in getting ~ 14 

degree destabilization in Fip35 by making a single L7A point mutation. This makes it a good 

system to perform kinetics at relatively low temperatures, avoiding problems of cavitation and 

low signal noise at high temperatures. I have collected kinetics on the same. 
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G.1.4 Comparison of folding rates with different probes  

My tethered WW domains construct may serve as a good model for performing force pulling 

experiments. Marqusee and co-workers have reported to observe parallel folding pathways 

being for SH3 domain. It is intriguing that whether similar or different folding rates will be 

observed for the tethered WW domain constructs by fluorescence T-jump and force pulling 

experiments. 

 

G.2 Pressure Denaturation of protein inside living cells  

G.2.1 How does stability of the protein PGK is perturbed in presence of co-solutes like 

TMAO under high pressure stress inside living cells? 

I have reported in my doctorate thesis work that it is possible to perform pressure unfolding 

experiments in living bacterial cells using ReAsH labeling scheme. It is also known that co-

solutes like TMAO stabilizes proteins in vitro. TMAO is also found in in large amounts in 

fishes and deep sea organisms which are subjected to high pressure. Thus, adding ~ mM 

concentration range of TMAO and performing the pressure titration in both the pressure 

resistant J1 strain and wildtype MG1655 strains would be experiments of prime interest. 

In a step further it would be great to perform these high pressure denaturation experiments in 

mammalian cells to draw comparison with the bacterial cells. Recently Oliverberg and co-

workers have shown that protein stability is different in cellular environment (bacterial vs 

mammalian cell)  

 

G.2.2 P-T phase Diagram inside living bacterial cells 

With my semi-automated pressure generator it is possible to perform pressure and temperature 

denaturation experiments efficiently (atleast 2 experiments in a day) to get a P-T phase diagram 

inside living cells. 

 

  

 

 


