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Abstract

We study stochastic optimization problems with decisions truncated by ran-

dom variables and its applications in operations management. The technical

difficulty of these problems is that the optimization problem is not convex

due to the truncation. We develop a transformation technique to convert

the original non-convex optimization problems to convex ones while preser-

vation some desired structural properties, which are useful for characterizing

optimal decision policies and conducting comparative statics. Our transfor-

mation technique provides a unified approach to analyze a broad class of

models in inventory control and revenue management. In additional, we de-

velop efficient algorithms to solve the transformed stochastic optimization

problem.

Chapter 2 introduces the transformation technique and the preservation

of structural properties. Chapter 3 applies this approach to analyze several

important models in operations management, which includes inventory con-

trol models with random capacities and network revenue management using

booking limits. Chapter 4 generalizes the transformation technique by al-

lowing dependent random variables, a more general objective function and

incorporating risk measures. Chapter 5 studies the computational issues and

propose a heuristic algorithm based on the transformation technique.
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Chapter 1

Introduction

1.1 Motivations

The central theme of supply chain management is matching supply with

demands. The main driving force behind a mismatch is the uncertainties

involved. Uncertainties on the demand side have been studied for decades, s-

tarting with the classic newsvendor models. But in recent years, uncertainties

on the supply side has attracted considerable attentions from both industry

and academia. One example is the 2011 Japan Tsunami, which had a huge

impact on supplies in the automobile industry. Many everyday operations

can result in supply uncertainties as well. For instance, machines may break

down unexpectedly and need maintenance to resume working. Some workers

may not show up causing labor variance. There may be quality issues, power

breakouts, or shortage of raw material during the production process. In

the delivery process, there may be transportation issues that lead to partial

delivery.

In the literature, there are several papers studying inventory control prob-

lem with random supply capacities. In these problems, the firm firstly makes

an ordering decision or production decision. Since the supply capacity is

uncertain, the firm’s actual received amount is the minimum of the ordering

quantity and the realization of random capacity.

Interestingly, similar structures occur in revenue management problems as

well. For instance, in an airline revenue management using booking limits,

the airline company firstly set the booking limits for each fare classes before

the random demands are realized. The actual amount of tickets sold is the

minimum of the booking limits and demands.

All of the above problems share a common technical challenge, i.e., the op-

timization problem formulated by the decision maker is not convex. Existing
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methods to deal with this technical challenge in the literature are all problem

specific, which usually involve very lengthy proofs depending on analyses of

derivatives.

This objective of this thesis is to provide a unified approach to tackling

this technical challenge. We developed a transformation technique that can

convert the original non-convex optimization problems to equivalent convex

ones while preserving some desired structural properties, which are essential

for structural analysis. Our transformation technique can not only greatly

simplify the analysis of some existing problems, but also help analyze and

solve new problems as well. In additional, the transformation technique also

enables us to develop efficient algorithms to solve these challenging problems

numerically.

1.2 Organization of the Thesis

Chapter 2 develops the transformation technique as well as derives some

structural preservation results. Section 2.1 gives a brief introduction. Section

2.2 starts with developing the transformation technique for unconstrained

optimization problems. It then proceeds to constrained problems with more

general objective functions. In section 2.3, we establish some structural pre-

serving properties based our transformation technique. These properties are

useful for structural analysis and conducting comparative statics, which will

be shown in later chapters.

Chapter 3 demonstrate the applications of our methodology with several

interesting models in operations management. Section 3.1 reviews some re-

lated literature. 3.2 studies the inventory transshipment model with random

capacities. This model has been studied in the literature. Nevertheless, we

manage to show that applying the transformation technique can greatly sim-

plify the analysis. Section 3.3 considers a dual sourcing problem with supply

capacities and arbitrary lead times. Section 3.4 investigate an assemble-

to-order system with random capacities. In section 3.5, different from the

aforementioned inventory models, we look into a network revenue manage-

ment problem using booking limits.

Chapter 4 generalize the transformation technique developed in Chapter

2 in a variety of ways. Section 4.1 introduces the motivation of these gen-
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eralizations. Section 4.2 consider an optimization problem with dependent

random variables and a more general objective function form. Section 4.3

further incorporates decision maker’s risk attitude into the model.

Chapter 5 studies the computational issues and propose a heuristic al-

gorithm based on the transformation technique. Section 5.1 introduce a

single-period inventory substitution problem which will be used for our com-

putational studies. Section 5.2 provides two solution procedures that can

be used to solve the transformed formulation of the inventory substitution

problem. The first one is a linear programming formulation based on Monte

Carlo sampling. The second one is a heuristic approach utilizing piecewise

linear decision rules. Section 5.3 shows the computational studies, which

compare the performance of the aforementioned two methods in terms of

running time and accuracy.

Finally, the last chapter concludes this thesis by summarizing the directions

for future research.

In this thesis, we use decreasing, increasing and monotonicity in a weak

sense. We use < and <+ to denote the real space and the set with nonnegative

reals, Z and Z+ to denote the set of integers and the set of nonnegative

integers, respectively. For convenience, let F be either < or Z. Define

<̄ = <∪{∞}, e ∈ Fn a vector whose components are all ones, ej a unit vector

whose jth component is one, and for x, y ∈ Fn, x ≤ y if and only if xi ≤ yi

for any i = 1, ..., n, x+ = max(x, 0), x∧ y = min(x, y) and x∨ y = max(x, y)

(the component-wise minimum and maximum operations). The indicator

function of any set V ⊆ Fn, denoted by δV , is defined as δV(x) = 0 for x ∈ V
and +∞ otherwise. We use the superscript T to denote the transpose of

a vector or a matrix. We use uppercase letters (e.g. Ξ) to denote random

vectors and lowercase letters (e.g., ξ) for their realizations. Given a random

vector Ξ = (Ξ1, ...,Ξn)T , we use X = Supp(Ξ) to denote the support of

this random vector. In addition, we define ξ̄j = ess sup{ξj|ξj ∈ Xj}, ξj =

ess inf{ξj|ξj ∈ Xj} for j = 1, ..., n, where Xj is X ’s projection into the j-

th coordinate. Let ξ̄ = (ξ̄1, ..., ξ̄n)T , ξ = (ξ
1
, ..., ξ

n
)T , and almost surely is

abbreviated as a.s..

3



Chapter 2

Transformation Technique

2.1 Introduction

In operations management literature, a common technical challenge encoun-

tered in many models is that decision variables are truncated by some random

variables and the decisions are made before the values of these random vari-

ables are realized. A notable example is inventory control problems with

supply capacity uncertainty in which the replenishment decision is truncat-

ed by the random supply capacity (see, e.g., Ciarallo et al. 1994, Wang &

Gerchak 1996, Bollapragada et al. 2004, Hu et al. 2008, Feng 2010 and Feng

& Shi 2012). Another example is capacity allocation problems in revenue

management where the booking limit of each demand class is truncated by

the random demand (see, e.g., Brumelle & Mcgill 1993, Robinson 1995 and

Chen & Homem-de Mello 2010). This type of variable truncation often leads

to stochastic optimization problems in the following form:

g(x, z) = inf
u:(x,z,u)∈A

E[f(x, u ∧ (z + Ξ))],

where f is a function in decision variables u and state variables (x, z), A
is the constraint set, Ξ is a random vector, and ∧ denotes componentwise

minimum.

For these applications, it is natural to ask how to solve the above op-

timization problem efficiently and whether the optimization operation can

preserve some desired structural properties of f such as convexity or sub-

modularity. However, solving and analyzing such a problem can be very

difficult. An intrinsic challenge arises from the fact that the truncation by

random variables may destroy convexity: the objective function may not be

convex in the decision variables even if the function f is convex. Without the
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regular properties such as convexity, the problem could be both analytically

and computationally intractable, in particular when facing multidimensional

state and decision variables.

This chapter aims at addressing this challenge when the random variables

are independently distributed by developing a novel transformation technique

which converts the non-convex minimization problem (2.1) to an equivalent

convex minimization problem. As we mentioned earlier, the original problem

formulation may be non-convex for a convex function f because in the ob-

jective function there are terms involving the minimum of decision variables

and random variables. We prove that the optimal objective values of the o-

riginal and transformed problems are the same when f is convex and certain

regularity conditions are imposed on A. Furthermore, our transformation

technique allows us to show that the optimization operation in problem (2.1)

can preserve convexity, submodularity or L\-convexity, which then enables

us to perform comparative statics analysis in multi-dimensional state and

decision spaces and characterize the monotone structure of optimal policies.

2.2 Transformation Technique

To study the optimization problem (2.1), we start with an unconstrained

optimization problem without state variables. Given a function f : Fn → <̄
and a random vector Ξ with Supp(Ξ) = X ⊆ Fn, consider the following

optimization problem

τ ∗ = inf
u∈Fn

E[f(u ∧ Ξ)]. (2.1)

In general, the above problem may not be a convex minimization problem

even if the function f is convex. For instance, let f(u) = u2 and Ξ can take

values 0, 1 or 2 with equal probabilities. In Figure 2.1, we plot the objective

function E[f(u∧Ξ)] with respect to the decision variable u. It is easy to see

that it is not a convex function. Notice that in this example where u ∈ <, the

objective function is quasi-convex. However, this is no longer true when the

decision variable is multi-dimensional. For example, let f(u) = 1
2
uTHu+cTu

where H = [4, 2; 2, 3], c = [−8,−2]. Ξ1 can take values 0 and 2 with equal

probabilities. Ξ2 can take values 1 and 3 with equal probabilities. Ξ1 and Ξ2

are independent of each other. Figure 2.2 demonstrates the contour map of
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the objective function with respect to (u1, u2). We can see that the objective

function is not quasi-convex since the lower contour map is not always a

convex set. Interestingly, we will show that under certain conditions, we can

convert problem (2.1) into an equivalent convex minimization problem.
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Figure 2.1: A one-dimensional
example
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Figure 2.2: A two-dimensional
example

For this purpose, note that the optimization problem (2.1) can be rewritten

as follows.

inf E[f(v(Ξ))]

s.t. v(ξ) = u ∧ ξ ∀ξ ∈ X ,
u ∈ Fn, v(·) ∈M,

(2.2)

where M is the set of measurable functions. The feasible region of (2.2) is

Fn×(Fn)X while the feasible region of (2.1) is Fn. In the following theorem,

we show that the equality constraint v(ξ) = u ∧ ξ can be relaxed by the

inequality constraint v(ξ) ≤ ξ ∀ξ ∈ X with v(ξ) = (v1(ξ1), ..., vn(ξn)) ∈ Fn.

For the rest of this chapter, we require that v(·) is measurable in all of our

formulations and therefore omit v(·) ∈ M for brevity. The following lemma

will be useful for the proof of the theorem.

Lemma 2.1. Suppose that the function f : F → <̄ is quasi-convex. If x∗ is

a minimizer of f(x) over F , we have f(x∗ ∧ b) ≤ f(a) for any a, b ∈ F with

a ≤ b.

The equivalent transformation of problem (2.1) is given by the following

theorem.

6



Theorem 2.1. Suppose that (a) the function f : Fn → <̄ is lower semi-

continuous with f(x) → +∞ for |x| → ∞; (b) f is componentwise convex

(componentwise discrete convex if F = Z); (c) the random vector Ξ has in-

dependent components and it has realizations ξ ∈ X = Supp(Ξ). Then, τ ∗

defined in (2.1) is also the optimal objective value of the following optimiza-

tion problem.

inf E[f(v(Ξ))]

s.t. v(ξ) ≤ ξ ∀ξ ∈ X ,
v(ξ) = (v1(ξ1), ..., vn(ξn)) ∈ Fn ∀ξ ∈ X .

(2.3)

Remark 2.1. In the proof of the above theorem (see Appendix A), we illus-

trate that when n = 1,

min
u∈F

E[f(u ∧ Ξ)] = E[f(û ∧ Ξ)],

where û is any minimizer of the function f . In fact, this observation is still

valid when f is quasi-convex.

However, when n > 1, such a result no longer holds, i.e., minu∈F E[f(u ∧
Ξ)] 6= E[f(û ∧ Ξ)], even if f is jointly convex. We now present an example.

Specifically, let

n = 2,F = <, f(u1, u2) = (u1 + u2 − 2)2 + (u1 − 1)2 + (u2 − 1)2,

and Ξ1 and Ξ2 be independent and identically distributed and take values 0

and 2 with equal probabilities. In this case, û = (1, 1). However, one can

easily verify that arg minu∈Fn E[f(u ∧ Ξ)] = (1.2, 1.2) 6= û.

Remark 2.2. In the above theorem, we require that

v(ξ) = (v1(ξ1), . . . , vn(ξn)).

This cannot be relaxed to allow

v(ξ) = (v1(ξ), . . . , vn(ξ)).

To illustrate this, we use the above example again. Note that for problem

7



(2.3), the optimal objective value is 2.4 and an optimal solution is given by

v∗1(0) = v∗2(0) = 0, v∗1(2) = v∗2(2) = 1.2.

However, if one replaces v(ξ) = (v1(ξ1), . . . , vn(ξn)) by v(ξ) =

(v1(ξ), . . . , vn(ξ)) in problem (2.3), the optimal objective value becomes 2.25

and an optimal solution is given by

v∗(0, 0) = (0, 0), v∗(0, 2) = (0, 1.5), v∗(2, 0) = (1.5, 0), v∗(2, 2) = (1, 1).

Remark 2.3. It is interesting to observe that u does not appear in problem

(2.3). Our proof implies that given an optimal solution u∗ of problem (2.1),

v∗ = (v∗(ξ) = u∗∧ ξ|ξ ∈ X ) is optimal for problem (2.3). On the other hand,

given an optimal solution v∗ of problem (2.3), we can directly construct an

optimal solution of problem (2.1) without solving any additional optimization

problem. To see this, we start with n = 1 and define S = {ξ|v∗(ξ) < ξ, ξ ∈ X}
(for simplicity, we drop the subscript 1 in the presentation when n = 1). We

consider two cases depending on whether the probability of event S, denoted

by P (S), is zero or not. In the first case, P (S) > 0. Randomly pick ξ̂ ∈ S
according to the probability distribution of Ξ conditional on S and define

û = v∗(ξ̂). It suffices to show that û is optimal for the optimization problem

minu∈F f(u) with probability 1. Suppose this is not true and P (S ′) > 0, where

S ′ is the event such that ξ̂ ∈ S and v∗(ξ̂) is not optimal for minu∈F f(u). We

define a new feasible solution of problem (2.3):

v̂(ξ) =

{
v∗(ξ), if ξ /∈ S ′,

u0 ∧ ξ, if ξ ∈ S ′,

where u0 is an optimal solution of minu∈F f(u). If ξ /∈ S ′, then v̂(ξ) = v∗(ξ)

and f(v̂(ξ)) = f(v∗(ξ)). If ξ ∈ S ′ and ξ > u0, f(v̂(ξ)) = f(u0) < f(v∗(ξ)).

If ξ ∈ S ′ and ξ ≤ u0, v∗(ξ) < ξ ≤ u0 and the convexity of f implies

that f(v̂(ξ)) = f(ξ) < f(v∗(ξ)). Since P (S ′) > 0, we have E[f(v̂(ξ))] <

E[f(v∗(ξ))], which is a contradiction. Therefore, with probability 1, û is opti-

mal for the optimization problem minu∈F f(u). In the second case, P (S) = 0.

Note that f must be decreasing over X , otherwise we can easily construct a

feasible solution of problem (2.3) with a lower cost. Hence, assumption (a)

implies that ξ̄ < ∞, and û = ξ̄ is a minimizer of the function f on F . For

8



n > 1, define, for i = 1, . . . , n, event Si = {ξi|v∗i (ξi) < ξi}. If the prob-

ability of Si is positive, randomly pick ξ̂i ∈ Si according to the probability

distribution of Ξ conditional on Si and define ûi = v∗i (ξ̂i); otherwise, define

ûi = ξ̄i (again ξ̄i < ∞). Since the components of the random vector Ξ are

independent, we can extend the above analysis to show that, with probability

1, û = (û1, . . . , ûn) is an optimal solution of problem (2.1).

We can explicitly incorporate constraints on u in Theorem 2.1 and consider

a more general objective function to allow both componentwise minimum

and maximum operations. To simplify notations, we define an operator ♦k
as u♦kξ , (u1∧ξ1, ..., uk∧ξk, uk+1∨ξk+1, ..., un∨ξn), so that the first k terms

we have the componentwise minimum operator, while the n − k terms left

we have the componentwise maximum operation. The problem of interest is

inf
u∈U

E[f(u♦kΞ)], (2.4)

where f : Fn → <̄ and U ⊆ Fn. Define a set

V = {u♦kξ|u ∈ U , ξ ∈ X}. (2.5)

We impose the following assumption:

Assumption 2.1.

(a) For any u ∈ Fn such that u♦kξ ∈ V , ∀ξ ∈ X , there exists u′ ∈ U such

that u′♦kξ = u♦kξ, ∀ξ ∈ X .

(b) The indicator function of the set V is componentwise convex (compo-

nentwise discrete convex if F = Z).

Notice that Part (a) of the above assumption implies that if u♦kξ ∈ V ,

∀ξ ∈ X , we do not necessarily need u ∈ U . Instead, we only require that

there exists u′ ∈ U such that u′♦kξ = u♦kξ, ∀ξ ∈ X . As can be seen

from the proof of Theorem 2.2 below, Assumption 2.1 allows us to convert

the constrained optimization problem (2.4) to an equivalent unconstrained

optimization problem so that Theorem 2.1 can be applied.

Theorem 2.2. Consider the optimization problem (2.4), where f : Fn → <̄
and the random vector Ξ in Fn satisfy the assumptions in Theorem 2.1.
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Suppose that Assumption 2.1 is satisfied. Problem (2.4) and the following

optimization problem have the same optimal objective value.

inf E[f(v1(Ξ1), . . . , vn(Ξn))]

s.t. vj(ξj) ≤ ξj ∀ ξj ∈ Xj, j = 1, . . . , k

vj(ξj) ≥ ξj ∀ ξj ∈ Xj, j = k + 1, . . . , n

(v1(ξ1), . . . , vn(ξn)) ∈ V ∀ξ ∈ X .

(2.6)

Since Assumption 2.1 may not be easy to check, in the following we provide

a nontrivial example with linear constraints under which Assumption 2.1

holds in the following lemma.

Lemma 2.2. Assume that U = {u ∈ Fn|Au ≤ b, u1 ≥ u1, ..., uk ≥ uk, uk+1 ≤
ūk+1, ..., un ≤ ūn}, where b, u1, ..., uk, ūk+1, ..., ūn are given constants, A =

(aij) with entries aij ≥ 0 for any i and j = 1, ..., k, and aij ≤ 0 for any

i and j = k + 1, ..., n. In addition ξj ≥ uj ∀ξj ∈ Xj, j = 1, ..., k, and

ξj ≤ uj ∀ξj ∈ Xj, j = k + 1, ..., n. Then Assumption 2.1 is satisfied.

Remind that in Part (a) of Assumption 2.1, we do not need u ∈ U . We

will illustrate this by the following example which satisfies the conditions in

Lemma 2.2

Example 2.1. Suppose k = n = 1. Let U = {u|0 ≤ u ≤ 1} and ξ is

uniformly distributed between 0 and 1. Then the set V = {u ∧ ξ|0 ≤ u ≤
1, 0 ≤ ξ ≤ 1} = {v|0 ≤ v ≤ 1}. Take u = 2, notice that u ∧ ξ ∈ V but u does

not belong to the set U . However, there exists u′ = 1 which belongs to the set

U such that u ∧ ξ = u′ ∧ ξ ∀ξ ∈ X .

In Lemma 2.2, an important condition is that ξj ≥ uj ∀ξj ∈ Xj, j = 1, ..., k,

and ξj ≤ uj ∀ξj ∈ Xj, j = k + 1, ..., n.. To illustrate why such a condition is

needed, we provide an example as follows.

Example 2.2. Suppose that k = n = 1, f(u) = u2, U = [1, 2], ξ = 0 or

2 with equal probability. Here we have ξ < u when ξ = 0. For the original

problem (2.4), the optimal solution is u∗ = 1, the optimal objective value

is 0.5. For the transformed problem (2.6), we have V = {0} ∪ [1, 2], which

implies that the optimal solution is v(ξ = 0) = 0, v(ξ = 2) = 0, and the

optimal objective value is 0.
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2.3 Preservation of Structural Properties

One advantage of our transformation technique is that it can be used to

establish the preservation of not only convexity and submodularity but al-

so L\-convexity under optimization operations, which plays a critical role in

characterizing the structure of the optimal policies for many dynamic de-

cision making problems and facilitates their efficient computations. To see

this, we first provide a brief review of the concept of L\-convexity and some

structural properties. L\-convexity was defined by Murota (1998) as a fun-

damental concept to extend convex analysis from real space to spaces with

integers (see Murota 2009 for a survey of the recent developments in discrete

convex analysis). It was first introduced into the inventory management lit-

erature by Lu & Song (2005) and used by Zipkin (2008) to characterize the

optimal structural policy of lost-sales inventory models with positive lead-

times. Since then, L\-convexity was found to be powerful enough to establish

the structures of optimal policies in various other inventory models: serial in-

ventory systems (Huh & Janakiraman 2010); inventory-pricing models with

positive leadtimes (Pang et al. 2012); and perishable inventory models (Chen

et al. 2014); etc.

In the transformed problem the decisions are v = (v(ξ)|ξ ∈ X ) ∈ (Fn)X .

Note that the direct product of lattices is still a lattice under the componen-

twise partial order (see Example 2.2.3 (d) of Topkis 1998). Therefore, if Xα

is a lattice for each α ∈ A, where A is an index set, then the direct product

of sets Xα, is also a lattice. In the following we present the definition of

L\-convexity with domain Y , (Fn)X , where A is any index set.

Definition 2.1. A function f : Y → <̄ is L\-convex if for any x, x′ ∈ Y , λ ∈
F+,

f(x) + f(x′) ≥ f((x+ λe) ∧ x′) + f(x ∨ (x′ − λe)),

where e is the all-ones vector in Y. A set V ⊆ Y is said to be L\-convex if

its indicator function δV is L\-convex.

For an L\-convex function f , its effective domain dom(f) = {x ∈ Y|f(x) <

+∞} is an L\-convex set. We sometimes say a function f is L\-convex on a

set V with the understanding that V is an L\-convex set and the extension of

f to the whole space by defining f(v) = +∞ for v 6∈ V is L\-convex. One can

also show that an L\-convex function restricted to an L\-convex set is also

11



L\-convex. Following a similar proof in Simchi-levi et al. (2014), we can show

that an equivalent definition of L\-convexity is given as follows: A function

f : Y → <̄ is L\-convex if and only if g(x, ξ) , f(x − ξe) is submodular in

(x, ξ) ∈ Y ×S, where S is the intersection of F and any unbounded interval

in <, and e is the all-ones vector in Y .

We now list some of the commonly used properties of L\-convexity. To

describe the monotonicity of optimal solution sets, we use the induced set

ordering v which defines X ′ v X ′′ for two nonempty sets X ′ and X ′′ if

x′ ∈ X ′ and x′′ ∈ X ′′ imply that x′ ∧ x′′ ∈ X ′ and x′ ∨ x′′ ∈ X ′′ (see Topkis

1998, p32). For a nonempty set Xt that depends on the parameter t in a

partial order set T , we say that Xt is increasing in t on T if {Xt, t ∈ T} has

the induced set ordering v.

Proposition 2.1. (a) Any nonnegative linear combination of L\-convex

functions is L\-convex. That is, if fi : Y → <̄(i = 1, 2, ..., n) are

L\-convex, then for any scalar αi ≥ 0,
∑m

i=1 αifi is also L\-convex.

(b) If fk is L\-convex for k = 1, 2, ... and limk→∞ fk(x) = f(x) for any

x ∈ Y, then f is L\-convex.

(c) Assume that a function f(·, ·) is defined on the product space Y ×Fm.

If f(·, y) is L\-convex for any given y ∈ Fm, then for a random vector

ζ defined on Fm, Eζ [f(x, ζ)] is L\-convex, provided it is well defined.

(d) If f : Y → <̄ is an L\-convex function, then g : Y × F → <̄ defined by

g(x, λ) = f(x− λe) is also L\-convex.

(e) Assume that A is an L\-convex set of Fn×Y and f(·, ·) : Fn×Y → <̄
is an L\-convex function. Then the function

g(x) = inf
y:(x,y)∈A

f(x, y)

is L\-convex over Fn if g(x) 6= −∞ for any x ∈ Fn.

(f) Let e and ẽ be the all-ones vectors corresponding to the state s-

pace of x and the decision space of y respectively in (10). Then

arg miny:(x,y)∈A f(x, y) is increasing in x and

arg min
y:(x+ωe,y)∈A

f(x+ ωe, y) v ωẽ+ arg min
y:(x,y)∈A

f(x, y).
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(g) Denote xi a component of x ∈ Y. A set with a representation {x ∈ Y :

l ≤ x ≤ u, xi − xj ≤ vij,∀i 6= j}, is L\-convex in the space Y, where

l, u ∈ Y and vij ∈ F .

(h) A smooth function f : <n → < is L\-convex if and only if its Hessian

is a diagonally dominated M-matrix, where a matrix A with its ij-th

component being aij is called a diagonally dominated M-matrix, if

aij ≤ 0, ∀i 6= j, aii ≥ 0, and
n∑
j=1

aij ≥ 0, ∀i.

We now show how our transformation technique can be used to establish

preservation properties of convexity, submodularity, and L\-convexity under

optimization operations.

Consider the following optimization problem

g(x, z) = inf
u:(x,z,u)∈A

E[f(x, u♦k(z + Ξ))], (2.7)

where f(·, ·) : Fm × Fn → <̄, x ∈ Fm, z ∈ Fn and set A ⊆ Fm × Fn × Fn

is non-empty.

Define a set

AΞ = {(x, z, w)|w = u♦k(z + ξ), (x, z, u) ∈ A, ξ ∈ X}.

Similar to Assumption 2.1, we specify the following condition:

Assumption 2.2.

(a) For any (x, z, u) such that (x, z, u♦k(z + ξ)) ∈ AΞ ∀ξ ∈ X , there exists

(x, z, u′) ∈ A such that u′♦k(z + ξ) = u♦k(z + ξ) ∀ξ ∈ X .

(b) The indicator function of the set AΞ is componentwise convex in w

(componentwise discrete convex if F = Z).

Similar to Lemma 2.2, we provide an example with linear constraints which

satisfies Assumption 2.2. The proof is similar and thus omitted for brevity.

Lemma 2.3. Assume that A = {(x, z, u)|Au ≤ b, u1 ≥ u1, ..., uk ≥
uk, uk+1 ≤ ūk+1, ..., un ≤ ūn}, where b, u1, ..., uk, ūk+1, ..., ūn are parameters

that may depend on x and z, A = (aij) with entries aij ≥ 0 for any i and
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j = 1, ..., k, and aij ≤ 0 for any i and j = k+ 1, ..., n. In addition Xj is con-

tained in [uj − zj,+∞) for j = 1, ..., k, and Xj is contained in (−∞, uj − zj]
for j = k + 1, ..., n. Then Assumption 2.2 is satisfied.

Now we are ready to present our results on the preservation of structural

properties.

Theorem 2.3 (Preservation). Consider the optimization problem (2.7),

where f and Ξ satisfy the assumptions in Theorem 2.1 given any (x, z). If

Assumption 2.2 is satisfied, then we have the following results:

(a) If f and AΞ are convex, then g is also convex.

(b) If f is submodular and AΞ is a lattice, then g is also submodular.

(c) If f and AΞ are L\-convex, then g is also L\-convex.

The following theorem characterizes the monotonicity properties of the

solution set to the optimization problem (2.7).

Theorem 2.4. Consider the optimization problem (2.7), where f and Ξ

satisfy the assumptions in Theorem 2.1 given any (x, z). Let U∗(x, z) denote

the the optimal solution set of (2.7). If Assumption 2.2 is satisfied, A, AΞ are

closed, and in addition uj ≤ zj + ξ̄j, j = 1, ..., k, uj ≥ zj + ξ
j
, j = k + 1, ..., n,

then we have the following results:

(a) If f is a submodular function, and A,AΞ are lattices, then U∗(x, z) is

increasing in (x, z). There exist a greatest element and a least element

in U∗(x, z), which are increasing in (x, z).

(b) If f is an L\-convex function, and A,AΞ are L\-convex sets, then

U∗(x, z) is increasing in (x, z) and U∗((x, z) + ωe) v U∗(x, z) + ωe

for any ω > 0. Within U∗(x, z), there exist a greatest element and a

least element, which have the above monotonicity properties with limited

sensitivity.

In the following we provide an example to show that the assumption uj ≤
zj + ξ̄j, j = 1, ..., k, uj ≥ zj + ξ

j
, j = k + 1, ..., n is needed.

Example 2.3. Suppose that f(u) = u2 and the support of Ξ is [−3,−1]. Let

U∗(z) = arg minu∈U E[f(u ∧ (z + Ξ))], and z = 0, ω = 2. When U = <, we
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have U∗(z) = [−1,∞), U∗(z + ω) = {0}. Notice that U∗(z) v U∗(z + ω)

does not hold. However, when U(z) = {u ∈ < : u ≤ z + ξ̄}, we have

U(z) = (−∞,−1],U(z+ω) = (−∞, 1]. Then U∗(z) = {−1},U∗(z+ω) = {0}.
Clearly U∗(z) v U∗(z + ω).

Notice that if the conditions in Lemma 2.3 are satisfied, then the assump-

tions uj ≤ zj + ξ̄j, j = 1, ..., k, uj ≥ zj + ξ
j
, j = k + 1, ..., n in Theorem 2.4

are without loss of generality. To see this, given any (x, z, u) which is fea-

sible for problem (2.7), (x, z, u1 ∧ (z1 + ξ̄1), ..., uk ∧ (zk + ξ̄k), uk+1 ∨ (zk+1 +

ξ
k+1

), ..., un∨(zn+ξ
n
)) is also feasible and yields the same objective value. In

all the applications we are going to present later, the constraint set satisfies

the conditions in Lemma 2.3.
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Chapter 3

Applications

3.1 Introduction

The transformation technique we developed in Chapter 2 has a wide range of

applications. In this chapter, we discuss several applications, which can be

divided into two categories: (1) inventory management with supply capacity

uncertainties, and (2) capacity allocation in network revenue management.

Supply uncertainty of inventory/production systems can be driven by a

variety of factors. Most studies in this literature focus on random yield

problems where the supply is a random proportion of the order quantity; see

Henig & Gerchak (1990), Federgruen & Yang (2008, 2011), Chen, Feng &

Seshadri (2013) and the references therein. Such an issue usually arises from

the quantity uncertainty of items produced in a batch. Another important

supply uncertainty is the supply capacity uncertainty due to the unreliabil-

ity of the supply processes (e.g., partial delivery or cancellation of an order

by the supplier). In such an environment, the firm has to place orders be-

fore knowing the actual supply capacity. There are relatively few papers

addressing the random capacity problems.

Ciarallo et al. (1994) consider an inventory control problem, assuming

that the replenishment decisions are made before the capacity uncertainty is

realized and the replenishment leadtime is zero. They show that the pres-

ence of capacity uncertainty does not affect the optimality of a base-stock

policy. Wang & Gerchak (1996) extend the analysis to systems with both

random supply capacity and random yield. Feng (2010) addresses a join-

t pricing and inventory control problem with supply capacity uncertainty

and zero leadtime and shows that the optimal policy is characterized by t-

wo critical values: a reorder point and a target safety stock. The common

technical challenge of these models is that with random supply capacity, the
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corresponding dynamic programming recursions are not convex minimization

(concave maximization) problems anymore, and delicate analyses are needed

to characterize the structures of optimal policies.

Our transformation technique can be readily applied to the aforementioned

models to simplify the structural analysis. More importantly, such an ap-

proach allows us to address more general inventory models under supply

capacity uncertainty with multi-dimensional state spaces using the concept

of L\-convexity. In this chapter we will demonstrate three applications in the

area of inventory management with supply uncertainty.

Our first application is to provide a new approach to the analysis of op-

timal joint inventory and transshipment control under uncertain capacity.

Specifically, we consider the model studied in Hu et al. (2008). In this mod-

el, a firm operates two facilities in separate markets, where the firm produces

the same product and sells at constant prices. Both facilities face uncertain

demands and uncertain production capacities. The firm needs to determine

the production quantities at the beginning of each period. The demand and

production uncertainties are then revealed and the firm further decides how

much inventory to be transshipped from one facility to another. Demands

are satisfied after the transshipment and unfilled demands are lost.

Our second application is an inventory system with two capacitated sup-

pliers, a regular one with a longer leadtime and an expedited one with a

shorter leadtime. The two suppliers have independent supply capacity un-

certainties. The objective of the firm is to find a dual-sourcing strategy to

minimize the total expected cost. There is an extensive literature on the dual

sourcing problem. It was first studied by Barankin (1961) in a one-period

setting and then extended by Daniel (1963), Fukuda (1964) and Whittmore

& Saunders (1977) to various settings with multi-period horizons. Feng &

Shi (2012) consider a joint inventory control and pricing problem with multi-

ple suppliers whose replenishment lead times are zero and supply capacities

are uncertain. They show that with deterministic capacities a multi-level

base-stock list-price policy plus a cost-based supplier selection (i.e., ordering

from a cheaper source first) is optimal. However, with general random supply

capacities, such a policy is no longer optimal. They show that the optimal

policy can be characterized by a near reorder point such that a positive or-

der is placed (almost everywhere) if and only if the inventory level is below

this point. They also identify a condition under which a strict reorder-point
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policy and a cost-based supplier-selection criterion become optimal. More

recently, Zhou & Chao (2014) address the dual-sourcing problem with price

sensitive demand, a regular supplier with one-period leadtime and an ex-

pedited supplier with zero leadtime, and characterize the structure of the

optimal policy. Gong et al. (2014) further generalize the structural analy-

sis to a dual-sourcing problem with price sensitive demand and Markovian

supply interruptions. In both models, there are no capacity limits on the

supplies. To the best of our knowledge, our paper is the first addressing the

dual-sourcing system with arbitrary deterministic leadtime discrepancies and

supply capacity uncertainties.

Our third application is an assemble-to-order inventory system with multi-

ple components and products. The order quantity of each component cannot

exceed a random capacity. The firm decides the ordering quantities of all

components and then the number of products assembled to minimize the

expected cost. The assemble-to-order system is one of the most importan-

t production/inventory systems; see Song & Zipkin (2003) for a review of

the research literature and applications of assemble-to-order systems up to

the early 2000s. Lu & Song (2005) study a continuous-review assemble-

to-order system with random demands and lead-times with an order-based

approach. Nadar et al. (2014) develop the optimal structural results for a

continuous-review assemble-to-order generalized M -system with lost sales.

Bollapragada et al. (2004) study multi-echelon assembly systems under in-

stallation base-stock policies where the component suppliers have various

leadtimes and random supply capacities. They propose a decomposition ap-

proach and their numerical study shows that their heuristic performs well in

comparison with the optimal base-stock policy. In this paper, we show that

our approach applies to the assemble-to-order system with random compo-

nent capacity. Moreover, for the generalized M -system, we show that the

cost-to-go functions are

Revenue Management (RM), also known as Yield Management, has been

widely adopted in various industries such as airlines, hotels, car rentals and

cruise lines. Driven by its prevalence in service industry, the research interest

in RM has been growing rapidly over the last two decades; see Talluri and van

Ryzin (2005) for a comprehensive introduction to the practice and theoretical

developments of RM.

The forth application is the capacity allocation in network revenue manage-
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ment where fixed capacities of resources are allocated dynamically to different

products with random demands. In the airline industry, this corresponds to

setting booking limits for each itinerary-fare class combination. The booking

limits are truncated by the random demand. The firm aims to maximize the

expected total revenue. The network revenue management problem, which

involves managing multiple resources (such as airline seats in different leg-

cabin combinations), is notoriously challenging. Indeed, as mentioned by

Talluri and van Ryzin (2005), “in the network case, exact optimization is

for all practical purposes impossible”, and thus the literature focuses pre-

dominantly on various approximations. One approximation is to formulate

a stochastic programming problem (see Cooper & Homem-de Mello 2007,

Möller et al. 2008, Chen & Homem-de Mello 2010 and the references therein).

For example, one can formulate a two-stage stochastic linear programming

problem (SLP) by aggregating the demand over the planning horizon and

determining the booking limits at the beginning (see section 3.3.1 of Talluri

and van Ryzin 2005). To improve upon the SLP, one can consider a multi-

stage stochastic programming (MSSP), in which the policy of booking limits

is revised from time to time in order to take into account the information

about demand learned so far. The MSSP is challenging, evidenced by Chen

& Homem-de Mello (2010): “even the continuous relaxation of that problem

does not have a concave expected recourse function”, as its objective function

and constraints involve booking limits truncated by realized demands. As a

compromise, they propose an approximation based on re-solving a sequence

of two-stage stochastic programs.

We consider the MSSP with continuous relaxation. In each time period,

the firm decides the booking limits allocated to each demand class before the

demand is realized. Interestingly, our transformation technique preserves

concavity in the dynamic programming recursions, and hence overcomes the

difficulty stated by Chen & Homem-de Mello (2010). Under certain network

structure, we further show that L\-concavity can be preserved and use it

to derive some monotonicity properties of the optimal booking limits. Our

approach opens the door to the development of effective algorithms to solve

MSSP directly.

In all the above applications, we employ the transformation technique to

prove that the apparently non-convex minimization problems (or non-concave

maximization problems) can be converted to equivalent convex minimization
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problems (or concave maximization problems), and under some condition-

s, the optimal decisions are monotone in terms of the state variables with

limited sensitivities. Without the transformation technique, the structural

analyses would have been much more complicated, if not impossible, to carry

out.

3.2 Inventory Transshipment with Random Capacities

The purpose of this section is to apply the transformation technique we

developed in Chapter 2 to provide a new approach to the analysis of optimal

joint inventory and transshipment control under uncertain capacity.

In this section, we consider the model studied in Hu et al. (2008). They

provide a characterization of the structure of the optimal transshipment and

production policy. For this purpose, they identify several important proper-

ties of the profit-to-go functions, which play a pivotal role in the derivation

of the structure of the optimal policy. They spent several pages through a

very detailed and complicated analysis of derivatives to prove these proper-

ties. By employing the concept of L\-convexity, or equivalently L\-concavity,

in this section, we present a simple yet non-trivial proof of those properties.

In particular, we realize that these properties of the profit-to-go functions

are nothing but natural consequences of L\-concave functions after a proper

transformation of the original variables. However, to prove that the profit-to-

go functions are L\-concave (after variable transformation) is not straightfor-

ward. In fact, there are two bottlenecks in showing the L\-concavity. First,

in the transshipment stage, the equality constraint that guarantees the sum

of inventory positions at two facilities must remain unchanged prohibits the

feasible set to be sublattice. To tackle this difficulty, we apply a recent result

by Chen, Hu & He (2013) that deals with parametric optimizations with non-

lattice structures. Second, in the production stage, the realized production

quantity is the minimum of the production quantity decision and the realized

production capacity. As a result, the objective function is not concave in the

decision variables. Interestingly, the transformation technique we developed

provides a tool to resolve this issue.

In the following, we present the model formulation in detail. Consider

a firm operating two manufacturing facilities in separate markets through
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multiple time periods. Each facility faces uncertain capacities that are in-

dependent in time and of each other. Facilities also face uncertain demands

which are independent in time but can be correlated across the two facili-

ties. In each period, the firm’s decisions can be divided into two stages. The

first stage is the production stage where the firm decides how much it will

produce in each of the facilities. After the production stage, the capacities

and demands are realized. The firm’s actual production quantity, which is

the minimum of the planned production quantity and the realized capacity,

incurs a unit production cost. The firm then enters the transshipment stage

where it decides how much inventory to be transshipped from one facility

to another. Finally, the demands are met and unsatisfied demands are lost.

The firm receives linear revenue on satisfied demands and pays linear holding

and transshipment costs. The problem is then to find the optimal production

and transshipment quantities in each period so that the firm maximizes the

total discounted profit over the planning horizon.

We now introduce the dynamic programming formulation of the optimiza-

tion problem in Hu et al. (2008) as follows. Let Gk
∗(x

k
1, x

k
2) be the profit-to-go

function when the current inventory levels at the two facilities are xk1 and xk2

respectively and there are k periods left in the planning horizon.

Production Stage:

Gk
∗(x

k
1, x

k
2) = max

yk1≥xk1 ,yk2≥xk2
ETk

1 ,T
k
2 ,D

k
1 ,D

k
2
{−c1(yk1 ∧ (xk1 + T k1 )− xk1)

− c2(yk2 ∧ (xk2 + T k2 )− xk2) + r1D
k
1 + r2D

k
2

+ Jk∗ (yk1 ∧ (xk1 + T k1 )−Dk
1 , y

k
2 ∧ (xk2 + T k2 )−Dk

2)}

(3.1)

Transshipment Stage:

Jk∗ (zk1 , z
k
2 ) = max

ẑk1+ẑk2=zk1+zk2

Jk(zk1 , z
k
2 , ẑ

k
1 , ẑ

k
2 ), (3.2)

where

Jk(zk1 , z
k
2 , ẑ

k
1 , ẑ

k
2 ) = −r1(ẑk1 )− − r2(ẑk2 )− − h1(ẑk1 )+ − h2(ẑk2 )+

−s1(zk1 − ẑk1 )+ − s2(zk2 − ẑk2 )+ + αGk−1
∗ ((ẑk1 )+, (ẑk2 )+),

(3.3)

and G0
∗(x

0
1, x

0
2) ≡ 0.
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In the production stage, in period k, the target inventory levels at the two

facilities yk1 and yk2 are decided. They are constrained to be no smaller than

the current inventory levels at the two facilities xk1 and xk2. The first two

terms on the right hand side of (3.1) are the production costs with c1, c2 and

T k1 , T
k
2 representing the marginal production costs and random capacities

at the two facilities respectively. The next two terms are the full revenue

collected over the realized demands, where r1, r2 and Dk
1 , D

k
2 are marginal

revenue and random demand respectively. The revenue for the lost sales is

deducted in the transshipment stage.

In the transshipment stage, in period k, the transshipment quantities or

equivalently, the inventory levels after transshipment ẑk1 and ẑk2 are decided,

whose sum is constrained to be equal to the inventory levels before trans-

shipment (but after demands realization) zk1 and zk2 . The first two terms on

the right hand side of (3.3) are the deducted revenue for the lost sales. The

next two terms are the holding costs, where h1 and h2 are unit holding costs

at the two facilities respectively. The two terms following are transshipment

costs with s1 (s2) being the unit transshipment cost from facility 1 (2) to 2

(1). Finally, α in (3.3) is the discount factor.

Hu et al. (2008), under the assumption of continuous demands and capac-

ities, prove the following properties on the profit-to-go function Gk
∗(x1, x2),

which are essential for their derivation of the optimal transshipment and

production policies.

A1: G
k−1
∗ (x1, x2) is jointly concave in x1 and x2, and

∂2

∂x2
1

Gk−1
∗ (x1, x2) ≤ ∂2

∂x1∂x2

Gk−1
∗ (x1, x2),

∂2

∂x2
2

Gk−1
∗ (x1, x2) ≤ ∂2

∂x2∂x1

Gk−1
∗ (x1, x2);

A2: G
k−1
∗ (x1, x2) is submodular and

∂2

∂x1∂x2

Gk−1
∗ (x1, x2) =

∂2

∂x2∂x1

Gk−1
∗ (x1, x2).

Through an inductive argument, their proof relies on a full characteriza-

tion of the optimal transshipment policy and a rather involved analysis of

the derivatives which spans several pages. In the following, we present our
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new approach by using what we have introduced earlier. Interestingly, our

approach does not rely on the characterization of the optimal policy and it

applies to discrete demands as well as capacities without any further efforts.

Denote dki as the realization of demand for facility i in period k, and define

qki = zki + dki , w
k
i = ẑki + dki . Furthermore, we change variables by letting

ỹk2 = −yk2 , x̃k2 = −xk2, T̃ k2 = −T k2 , q̃k2 = −qk2 , w̃k2 = −wk2 . Then the original

problem can be equivalently reformulated as

G̃k
∗(x

k
1, x̃

k
2) = max

yk1≥xk1 ,ỹk2≤x̃k2
ETk

1 ,T̃
k
2 ,D

k
1 ,D

k
2
{−c1(yk1 ∧ (xk1 + T k1 )− xk1)

+ c2(ỹk2 ∨ (x̃k2 + T̃ k2 )− x̃k2) + J̃k∗ (yk1 ∧ (xk1 + T k1 ), ỹk2 ∨ (x̃k2 + T̃ k2 ))},
(3.4)

where G̃k
∗(x

k
1, x̃

k
2) = Gk

∗(x
k
1,−x̃k2) and by introducing a new variable v

J̃k∗ (qk1 , q̃
k
2) = max

wk
1 ,w̃

k
2 ,v
J̃(wk1 , w̃

k
2 , v)

s.t. wk1 + v = qk1

w̃k2 + v = q̃k2 ,

(3.5)

where

J̃(wk1 , w̃
k
2 , v) = r1(wk1 ∧ dk1) + r2((−w̃k2) ∧ dk2)

− h1(wk1 − dk1)+ − h2(−w̃k2 − dk2)+ − s1v
+ − s2(−v)+

+ αG̃k−1
∗ ((wk1 − dk1)+,−(−w̃k2 − dk2)+).

(3.6)

In the following, we introduce a result developed in Chen, Hu & He (2013).

It establishes a preservation property of L\-concavity under optimization

operations when the constraint set may not be a sublattice.

Proposition 3.1. Consider the following optimization problem parameter-

ized by a two-dimensional vector x:

f(x) = max
y1,...,yN

{
N∑
n=1

fn(yn) :
N∑
n=1

yn = x, yn ∈ Sn, ∀n},

where Sn are subsets of <2, and f is defined on S = {
∑N

n=1 yn : yn ∈ Sn,∀n}.
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If Sn is of the following form:

{(x1, x2) ∈ <2 : l1 ≤ x1 ≤ u1, l2 ≤ x2 ≤ u2, l0 ≤ x1 − x2 ≤ u0},

and all fn are L\-concave on Sn, then f is L\-concave on S.

Now we are ready to state and prove our main result, which offers a new

approach that proves the key properties A1 and A2 when demands and ca-

pacities are continuous .

Theorem 3.1. Suppose that G̃k−1
∗ (·, ·) is L\-concave, then G̃k

∗(·, ·) is also

L\-concave.

Using Proposition 2.1 part (h), it is straightforward to check that Theorem

3.1 then implies the properties A1 and A2 of Gk
∗(·, ·) when demands and

capacities are continuous. We also point out that the structure of the optimal

policies can be derived from Theorem 3.1 for both continuous and discrete

demands as well as capacities with some minor modifications of the analysis

in Hu et al. (2008).

Our transformation technique provides a novel way to analyze a joint in-

ventory and transshipment control problem with uncertain capacities. Our

approach not only significantly simplifies the structural analysis but also can

be easily applied to some extensions as we discuss below, which otherwise

may require considerable amount of additional effort.

(1) Backorder case. In the case of backorder instead of lost sales, we re-

place the term αG̃k−1
∗ ((wk1 − dk1)+,−(−w̃k2 − dk2)+) in (3.6) by αG̃k−1

∗ ((wk1 −
dk1),−(−w̃k2 − dk2)), which is still L\-concave by induction hypothesis. Sim-

ilarly, it is easy to show that adding shortage cost does not change the L\-

concavity in (3.6). Thus, Theorem 3.1 holds in this case.

(2) Capacities on the transshipment quantities. In many practical scenar-

ios, a firm may not have the luxury to transship any arbitrary large amount

of quantities from one facility to another because for instance, it has only a

few fleet vehicles. In some settings, the transshipment can be restricted to a

single direction, i.e., one of the transshipment capacity is zero. Let S1 (S2)

be the capacity on the transshipment quantities from facility 1 (2) to facility
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2 (1). Then problem (3.5) is now reformulated as

J̃k∗ (q1, q̃2) = max
w1,w̃2,v

J̃(w1, w̃2, v)

s.t. w1 + v = q1,

w̃2 + v = q̃2,

− S2 ≤ v ≤ S1.

It is straightforward to check that Proposition 3.1 still applies and conse-

quently our conclusion still holds.

3.3 Dual Sourcing with Supply Capacity Uncertainty

Consider a firm managing a T -period periodic-review inventory system in

the presence of two capacitated suppliers (or delivery modes): a regular sup-

plier with a longer replenishment leadtime of lR periods and a unit ordering

cost cR, and an expedited (emergency) supplier with a shorter replenishmen-

t leadtime of lE periods and a unit ordering cost cE, where lR and lE are

nonnegative integers and lR > lE. There are no fixed ordering costs. Both

suppliers offer limited and uncertain capacities, denoted by KR,t and KE,t,

t ∈ {1, ..., T}, for regular and expedited suppliers, respectively. The process-

es {KR,t}Tt=1 and {KE,t}Tt=1 are both independent over time and independent

of each other. Note that the independence assumption on the supply ca-

pacity distributions can be justified by the dual sourcing practice with two

geographically distant locations, such as China and Mexico in the case study

of Van Mieghem (2008), where the production processes are typically inde-

pendent of each other. Demands of successive periods, denoted by Dt for

period t, are stochastic, independent over time, and independent of the sup-

ply capacities. For convenience, let D[t,t+l] be the total demand from period

t to period t+ l, i.e., D[t,t+l] = Dt + ...+Dt+l. We use dt and d[t,t+l] to denote

the realization of Dt and D[t,t+l].

It is notable that a typical assumption in the dual-sourcing literature with-

out capacity limits is that the expedited ordering cost cE is greater than the

regular ordering cost cR, because otherwise it is trivial for the firm to pro-

cure exclusively from the expedited supplier (see, e.g., Veeraraghavan and

Scheller-Wolf 2006, Sheopuri et al. 2010). We do not make this assumption
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here. In fact, if the expedited capacity is limited, even when the regular

ordering cost is higher, it may still be beneficial to order from the regular

supplier.

The sequence of events is as follows. At the beginning of period t, orders

from the regular supplier lR periods ago and the expedited supplier lE periods

ago (if lE ≥ 1) are received. (Note that if lE = 0, we assume that an order

from the expedited supplier is received right away.) The firm then reviews

the inventory level and the orders outstanding, and determines how much

to order from the two suppliers before observing the suppliers’ capacities

KR,t and KE,t. Let qR and qE be the (target) order quantities from the

regular and expedited channels, respectively. After the orders are placed,

the suppliers’ capacities KR,t and KE,t are realized. We use kR,t and kE,t

to denote realizations of KR,t and KE,t respectively. Then the amounts of

inventories shipped from the regular and expedited suppliers are qR∧kR,t and

qE ∧ kE,t, respectively. Note that here we assume that the supply capacity

uncertainties are resolved in the same period when the orders are placed

(see Federgruen and Yang 2011 for a similar treatment for the random yield

problem). This is reasonable when the capacity uncertainties are mainly

driven by the unreliability of the production process and the production

time is no more than the period length while the shipping time is long. The

ordering costs are given by cR(qR ∧ kR,t) and cE(qE ∧ kE,t). Here we assume

that the ordering cost is proportional to the quantity actually delivered,

which is a common assumption in the literature of inventory control with

random capacities (see Ciarallo et al. 1994, Wang and Gerchak 1996, Feng

2010, and so on). This assumption is appropriate when the payment is made

upon the receipt of the shipments and the firms only pay the actual delivered

amount. At the end of this period, the demand is realized and met with on-

hand inventory (if any). Unmet demand is fully backlogged with a unit

shortage cost h−. Excess inventory is carried over to the next period with a

unit holding cost h+.

The objective of the firm is to find a dual-sourcing strategy so as to min-

imize the total expected discounted cost, including ordering cost, holding

cost and backorder cost, over the planning horizon. To present the dynam-

ic programming model for deriving the optimal strategy, one can naturally

describe the system state right before the firm places orders by a vector

s = (s0, ..., slR−1), where si denotes the amount of on-hand net inventory
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plus outstanding orders that will arrive within i periods, i = 1, .., lR − 1.

However, in a backlogging model, since the orders of each period will have

an influence only lE periods later, and the on-hand net inventory level lE

periods later solely depends on slE , it suffices to use the now standard ac-

counting technique to discount the future inventory cost to the current period

and focus on the pipeline inventory levels slE , ..., slR−1. Specifically, we can

reduce the state space to k = lR− lE dimensions by defining the system state

as z = (z1, ..., zk), where zi = si+lE−1, i = 1, ..., k. The state space is given by

S = {(z1, . . . , zk) : z1 ≤ z2 ≤ . . . ≤ zk}.

Given the system state z, the system state of the next period is given by

z̃ = (z2 + qE ∧ kE,t− dt, ..., zk + qE ∧ kE,t− dt, y ∧ (zk + kR,t) + qE ∧ kE,t− dt),

where y = zk + qR is the (target) order-up-to level from the regular channel.

For reasons that will become clear later, we denote u = −qE and k̃E,t = −kE,t.
The dynamics of the system state can be rewritten as

z̃ = [(z2, ..., zk, y ∧ (zk + kR,t))− (u ∨ k̃E,t + dt)e],

where e is the k-dimensional all-ones vector.

We are now ready to present the dynamic program to derive the firm’s

optimal strategy. Let α ∈ (0, 1] be the discount factor. The optimality

equations can be written as follows. For t = 1, ..., T ,

vt(z) = min
y≥zk,u≤0

{
E[gt(z, y ∧ (zk +KR,t), u ∨ K̃E,t)]

}
∀ z ∈ S, (3.7)

where

gt(z, y, u) = cR(y−zk)−cEu+Bt(z1−u)+αE[vt+1((z2, ..., zk, y)−(dt+u)e)],

(3.8)

and

Bt(x) = αlEE[h+(x− d[t,t+lE ])
+ + h−(d[t,t+lE ] − x)+].

Note that the expectation of the right hand side of equation (3.7) is taken

over the random capacities. The function gt represents the expected total

discounted cost after the capacities are realized but before the demand is
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realized. The first term of the right hand side of equation (3.8) is the ordering

cost from the regular supplier, the second term is the ordering cost from

the expedited supplier, the third term is the expected discounted holding

and shortage cost of period t + lE, and the last term is the expected total

discounted future costs. For simplicity, we assume the terminal value function

vT+1(z) = 0 for any z, which implies that there is no salvage value for leftover

inventory and no backlogging cost for unfilled demand after period T + lE.

That is, the firm makes decisions in the first T periods but takes into account

the inventory cost up to period T + lE. Our structural results and analysis

still hold if vT+1(z) is assumed to be L\-convex.

Problem (3.7) admits optimal solutions under rather general and standard

conditions. Nevertheless, it is a challenging problem. First, the state space

is multi-dimensional. A more severe issue is that the objective function of

problem (3.7) is not convex. Note that for the last period with vT+1 = 0, the

objective function has a structure similar to that in (2.1), which may not be

convex. Thus, it is far from being clear whether the cost-to-go functions vt

are convex, and even if they are, the objective function of problem (3.7) is

not. However, with our transformation technique we can convert the non-

convex minimization problem (3.7) into an equivalent convex minimization

problem and show that vt is actually L\-convex.

In the following analysis, we assume that both cE and cR are smaller than

h−/(1 − α), which ensures that it is not optimal to never order anything

and merely accumulate penalty costs. Let (yt(z), ut(z)) denote the optimal

solution for problem (3.7). When there are multiple optimal solutions, we

assume it is the greatest one, which will be shown to be well defined later.

Theorem 3.2. For all t, vt(z) is L\-convex in z ∈ S. The optimal solution

(yt(z), ut(z)) is increasing in z with limited sensitivity. (When there are

multiple optimal solutions, we assume it is the greatest one.) That is, for

any ω > 0,

yt(z) ≤ yt(z + ωe) ≤ yt(z) + ω, ut(z) ≤ ut(z + ωe) ≤ ut(z) + ω (3.9)

The monotonicity and limited sensitivity of yt(z) imply that the opti-

mal regular order quantity qR,t(z), which is equal to yt(z) − zk, increases in

z1, ..., zk−1, but decreases in zk and satisfies −ω ≤ qR,t(z + ωe)− qR,t(z) ≤ 0.

To gain more insights, we can transform the state vector to x = (x1, ..., xk)
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where x1 = z1 and xi = zi − zi−1, i = 2, ..., k. Note that x1 = z1 represents

the amount of on-hand net inventory plus outstanding orders that will arrive

within lE periods, and xi represents the size of the outstanding order that

will arrive lE + i− 1 periods later. Denote the corresponding optimal order

quantities by q̂R,t(x) = qR,t(z) and q̂E,t(x) = qE,t(z). The monotonicity and

limited sensitivity of yt(z) imply the following inequalities.

− ω ≤ q̂R,t(x+ ωek)− q̂R,t(x) ≤ q̂R,t(x+ ωek−1)− q̂R,t(x) ≤ ...

≤ q̂R,t(x+ ωe1)− q̂R,t(x) ≤ 0.
(3.10)

The derivation of above equalities are shown in Appendix B. Compare states

z + ωei and z. For i = 1, the former has ω more units of on-hand inventory

or outstanding orders that will arrive within lE periods. For i = 2, ..., k,

the former has ω more units of outstanding order that will arrive lE + i− 1

periods later. Thus, inequalities (3.10) imply that the regular order quantity

decreases in on-hand inventory level and the sizes of the outstanding orders.

The sensitivity decreases in the age of the outstanding order, where the age

refers to the number of periods passed since the order was placed. In other

words, the regular order quantity is most sensitive to the size of the most

recently placed order.

Similarly, for the expedited order quantity q̂E,t(x) = −ut(z), we have

− ω ≤ q̂E,t(x+ ωe1)− q̂E,t(x) ≤ q̂E,t(x+ ωe2)− q̂E,t(x) ≤ ...

≤ q̂E,t(x+ ωek)− q̂E,t(x) ≤ 0.
(3.11)

That is, the expedited order quantity decreases in the sizes of outstanding

orders in the pipeline, but the sensitivity increases in the age of the outstand-

ing order. In other words, the expedited order quantity is least sensitive to

the most recently placed order, which is opposite to the sensitivity of the

regular order quantity. and in the joint inventory-pricing control problem-

s with positive leadtime where the replenishment decision has a decreasing

sensitivity in the age of the outstanding order whereas the pricing decision

has an increasing sensitivity in the age of the outstanding order (see, e.g.,

Chen et al. 2014). The implication is that the decisions whose immediate

impacts are closer to the on-hand stock (e.g., pricing or expedited order) are

more sensitive to the on-hand inventory level and older outstanding orders
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while the decisions whose immediate impacts are further away from the on-

hand stock (e.g., regular order) is more sensitive to the younger outstanding

orders.

3.4 Assemble-to-Order Systems with Random

Capacities

Consider an assemble-to-order (ATO) system over a planning horizon with

T periods. The ATO system consists of m components indexed by i ∈
{1, 2, ...,m} and n products indexed by j ∈ {1, 2, ..., n}. At the beginning of

each period, the firm observes on-hand inventory levels of the m components

x = (x1, ..., xm)T , and then decides the order-up-to inventory levels of com-

ponents y = (y1, ..., ym)T . The delivered quantity of each component i cannot

exceed a random capacity, denoted by Ξt,i, which is realized after the order is

placed. The capacities are independent of each other and over time. Inven-

tory replenishment leadtime is assumed to be zero. The demand for product

j in period t is Dt,j and we assume that they are independent over time and

independent of capacities. Let Dt = (Dt,1, ..., Dt,n)T . The bill of materials is

specified by an m × n matrix A, whose component aij denotes the units of

component i required to make one unit of product j. Unmet demands are

assumed to be lost. Let ci and hi represent the ordering cost and holding cost

of component i per unit respectively, and bj denote the per unit shortage cost

of product j. We use c, h, b to denote the vectors (c1, ..., cm)T , (h1, ..., hm)T ,

(b1, ..., bn)T respectively. The one-period discount factor is α ∈ (0, 1]. The

objective of the firm is to minimize the total expected discounted cost.

Let ft(x) be the cost-to-go function with initial inventory levels x at the

beginning of period t. We omit the subscript t for notational brevity when

no ambiguity occurs. The optimality equation is

ft(x) = min
y≥x
{E[cT (y ∧ (x+ Ξ)− x)] + E[gt(y ∧ (x+ Ξ)|D)]}, (3.12)

where

gt(z|d) = min
u:(z,u)∈U(d)

{L(z, u|d) + αft+1(z − Au)}, (3.13)
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and

L(z, u|d) = hT (z − Au) + bT (d− u). (3.14)

The boundary condition is assumed to be fT+1(x) = 0 without loss of gen-

erality. The first term in the objective function of (3.12) is the ordering

cost. Similar to the dual sourcing model, we assume that the ordering cost

is proportional to the quantity actually delivered. The feasible set in (3.13)

is given by U(d) = {(z, u)|Au ≤ z, 0 ≤ uj ≤ dj, j = 1, 2, ..., n}, where z is

the on-hand inventory level after the inventory ordered in the current period

arrives, and u is the vector of assembled-product quantities. The inventory

holding and shortage costs are given in L(z, u|d).

Due to the complexity of general ATO systems, some important special

systems are studied in the literature, one of which is a generalized M -system

(see Nadar et al. 2014). A generalized M -system has m components and

m + 1 products, where each product i requires a single unit of component i

for i ≤ m and product m + 1 consumes one unit of each component. This

ATO system reduces to an M -system when m = 2. The bill of materials

matrix has the following form:

A =



1 0 0 · · · 0 1

0 1 0 · · · 0 1

0 0 1 · · · 0 1
...

...
...

. . .
...

...

0 0 0 · · · 1 1


. (3.15)

We summarize the structural results of this section in the following theo-

rem.

Theorem 3.3. (a) For a general ATO system, the optimal cost function

ft(x) is convex in x for all t.

(b) For a generalized M-system, the optimal cost function ft(x) is L\-

convex in x for all t. The optimal order-up-to level yt(x) is increasing in

x with limited sensitivity. That is, for any ω > 0, yt(x) ≤ yt(x+ωe) ≤
yt(x) + ωe. (When there are multiple optimal solutions, we assume it

is the greatest one.)

Theorem 3.3 summarizes the sensitivity results for the stage when compo-

nents are ordered. For a generalized M -system, the order-up-to level yi of
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any component i increases in its own inventory level xi as well as the inven-

tory level of any other component j 6= i. The limited sensitivity implies that

for any component i the ordering quantity yi − xi decreases in the inventory

level of any component. One can easily check that the following sensitivity

results hold during the stage when products are assembled. For a general-

ized M -system, the quantity of product m + 1 increases in the quantity of

each component, while the quantity of product j(6= m + 1) increases in the

quantity of component j but decreases in the quantity of component k(6= j).

3.5 Network Revenue Management Using Booking

Limits

We consider a network system consisting of m resources (airline seats

in different legs), indexed by i ∈ {1, ...,m}, with initial capacity levels

C = (C1, ..., Cm)T , and n products (itinerary-class combinations), indexed

by j ∈ {1, ..., n}. The corresponding prices, denoted by p = (p1, ..., pn)T , are

exogenously given. Each product needs at most one unit of each resource.

Let A = (aij) be the resource coefficient matrix, where aij = 1 if product j

uses one unit of resource i and aij = 0 otherwise. Define Dt = (Dt,1, ..., Dt,n)T

where Dt,j is demand of product j in period t. Assume that the demands

of different products are independent and the demands are independent over

time. The objective of the firm is to decide the booking limits for all de-

mand classes dynamically so as to maximize the total expected profit over

the planning horizon.

As mentioned earlier, the model we consider here is MSSP in Chen &

Homem-de Mello (2010) with continuous relaxations. Chen & Homem-de

Mello (2010) point out that the major difficulty of the above model is that

it is not a concave maximization problem, since the decisions are truncat-

ed by random demands. Therefore, they re-solve a sequence of two-stage

stochastic programs for approximation. Interestingly, as we show in this sec-

tion, our transformation technique can overcome this difficulty and allows

us to preserve concavity in the dynamic programming recursions. Under

certain network structure, we further demonstrate that L\-concavity can be

preserved and use it to derive monotone properties of the optimal booking

limits. Note that the model considered here is different from the one in sec-

32



tion 3.2.1 of Talluri & Van Ryzin (2005). Their model assumes there is at

most one demand request in any period. We do not impose this assumption.

Since in our model each time period corresponds to the time when the firm

needs to revise its capacity allocation policy, it may not be practical to divide

the planning horizon so much so that there is at most one demand in any

period due to the increased computational complexity.

In the following, we omit the subscript t for notational brevity when no am-

biguity occurs. The state variable is denoted by the vector x = (x1, ..., xm)T

in which xi is the capacity level of the resource i in the current period. At

the beginning of the planning horizon, we have x = C. In each period,

the firm observes the current capacity level x and decides the booking lim-

its for different demand classes. The decision variable is denoted by vector

u = (u1, ..., un)T where uj is the booking limit for class j demand in the cur-

rent period. The action space can be defined as A = {(x, u)|Au ≤ x, u ≥ 0}.
Let ft(x) be the optimal value. The optimality equations can be expressed

as

ft(x) = max
u:(x,u)∈A

E
[
pT (u ∧D) + ft+1 (x− A(u ∧D))

]
, t = 1, ..., T, (3.16)

where fT+1(x) = 0. For ξ ∈ Fm+ , define the function gt : Fm+1
+ → < such

that

gt(x, ξ) = pT ξ + ft+1(x− Aξ).

Then the optimality equation can be expressed as

ft(x) = max
u:(x,u)∈A

E [gt(x, u ∧D)] , t = 1, ..., T. (3.17)

We also consider a special case where the resource coefficient matrix has

the same format as the bill of materials matrix in the assemble-to-order

generalized M -system, i.e., the resource coefficient matrix is given by (3.15).

When the number of resources m = 2, one can relate this type of resource

coefficient matrix to the following setting. There are two legs in the network:

A to B and B to C. There are three types of consumers. Type one consumers

travel from A to B, type two consumers travel from B to C, and type three

consumers travel from A to C with a transition at B.

We summarize the structural results in the following theorem.
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Theorem 3.4. (a) For the network revenue management problem (3.16),

the optimal value function ft(x) is concave in x for all t.

(b) If, in addition, the resource coefficient matrix is given by (3.15), then

for all t, ft(x) is L\-concave. The optimal booking limit u∗m+1(x) is

increasing in x with limited sensitivity, i.e., for any ω > 0, u∗m+1(x) ≤
u∗m+1(x + ωe) ≤ u∗m+1(x) + ω. For j = 1, ...,m, u∗j(x) is increasing in

xj and decreasing in xk, k 6= j, with limited sensitivity, i.e., u∗j(x) ≤
u∗j(x+ ωej) ≤ u∗j(x) + ω and u∗j(x)− ω ≤ u∗j(x+ ωek) ≤ u∗j(x) for any

ω > 0, k 6= j. (When there are multiple optimal solutions, we choose

the one such that (−u∗1(x), ...,−u∗m(x), u∗m+1(x)) is the greatest.)

The sensitivity result from Theorem 3.4 implies that if the current capacity

level of any resource i increases by ω, then the allocated capacity of product

i and m + 1 should also increase, but the allocated capacity of product

j, j 6= i, j 6= m + 1 will decrease. All the above changes are bounded by ω

because of the limited sensitivity.

Remark 3.1. Even though the resource coefficient matrix here is the same

as the bill of materials matrix in Section 3.4, the analyses of the two models

have a significant difference. For the ATO model, the decision variable is

truncated by random capacity and the bill of materials matrix does not en-

ter the constraints when we apply the transformation technique. However,

for the revenue management model the decision variable is truncated by ran-

dom demand and the resource coefficient matrix affects the constraints when

applying the transformation.
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Chapter 4

Generalizations

4.1 Introduction

In this chapter, we are going to generalize the transformation technique de-

veloped earlier in several directions.

First of all, we allow a more general objective function. Take the inven-

tory problem with random capacities as an example, the objective function

considered in this chapter allows the ordering cost to depend both on the

initial ordering quantity and the quantity actually received. Notice that sev-

eral papers studying inventory management problems with random yield (for

example Henig & Gerchak 1990 and Federgruen & Yang 2011) the firm’s or-

dering cost depends on the quantity actually received, as well as the quantity

initially ordered. This general cost structure is necessary if the production

is in-house, or the cost consequence of supply uncertainty is shared between

the supplier and the firm who places the order. Interestingly, all papers we

reviewed in earlier chapters which study inventory models with random ca-

pacities assume that the ordering costs only depends on the quantity actually

received. To the best of our knowledge, we are the first to allow the order-

ing costs to depend on both the quantity received and the quantity initially

ordered in a random capacity model.

Secondly, we consider the case where the random vector can have depen-

dent components. In particular, we focus on the case where the random

variables have “positive dependence”. In an inventory system where the

firm can order from multiple suppliers or produce in multiple facilities, it is

common that the supply capacities are influenced by common factors. For in-

stance, agricultural products in the same region are affected by local weather

or natural disasters; The suppliers may share a common second tier suppli-

er or they may import materials from the same country which has export
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restrictions.

Last but not least, we do not restrict to risk-neutral decision makers and

incorporate risk attitude into the model. For studies on inventory manage-

ment models with risk attitude, see Chen, Sim, Simchi-Levi & Sun (2007)

and the references therein. To model the decision maker’s risk measure, this

chapter considers a commonly used risk measure called Conditional Value-

at-risk (CVaR). Studies that address inventory models using CVaR as the

risk measure include Ahmed et al. (2007) and Chen et al. (2009), among

others. Based on the results under CVaR criterion, we extend results to a

more general class of risk measure called distortion risk measure.

4.2 More General Objective Functions, Dependent

Random Variables

Consider the following optimization problem

τ ∗ = inf
u∈Fn

l(u) + E[f(u ∧ Ξ)], (4.1)

where l : Fn → <̄, f : Fn → <̄, and Ξ is a random vector with support

X ⊆ Fn. One may associate problem (4.1) with an inventory management

problem with random supply capacities. The firm wants to minimize the cost

by choosing the ordering quantities before the random capacities are realized.

The effective inventory level after receiving the orders is the minimum of the

ordering quantities and the realized supply capacities. For now, we assume

that the decision maker is risk-neutral. Therefore, the objective function

simply takes expectation of the costs incurred with different realizations of

random capacities. Later we will extend to the case where the decision maker

is not risk-neutral, and thus minimizes some risk measure.

Different from problem (2.1) introduced in Chapter 2, we include the cost

term l(u) in the objective function. This term allows a more general cost

structure. For example, the ordering cost may depend on the quantity ac-

tually received as well as the quantity initially ordered. Moreover, we do

not need to assume that the random vector Ξ has independent components.

One technical challenge of problem (4.1) is that even though the function

l(·) and f(·) are jointly convex, the objective function may not be convex
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in u. Therefore, the main purpose of this section is to develop a transfor-

mation technique to convert the original problem to an equivalent convex

minimization problem.

Our transformation technique requires that the components of random

vector Ξ have some specific dependence structure. We begin by introducing

some definitions.

Definition 4.1 (Topkis 1998). Let {Ft(w) : t ∈ T} be a collection of distri-

bution functions on <n that are indexed by a parameter t, with t contained in

a subset T of <m. If
∫
h(w)dFt(w) is increasing in t on T for each increasing

real-valued function h(w) on <n, then Ft(w) is stochastically increasing in t

on T .

Given some random variables {Ξ1,Ξ2, ...,Ξn} which are dependent of each

other, we define that they have “positive dependence” as follows.

Definition 4.2. Let F̃ξi(w) be the joint distribution of Ξ1, ...,Ξi−1,Ξi+1, ...Ξn

conditioned on Ξi = ξi. We define that {Ξ1, ...,Ξi−1,Ξi+1, ...Ξn|Ξi} is s-

tochastically increasing if {F̃ξi(w) : ξi ∈ Xi} is a collection of stochasti-

cally increasing functions. And {Ξ1,Ξ2, ...,Ξn} have positive dependence if

{Ξ1, ...,Ξi−1,Ξi+1, ...Ξn|Ξi} is stochastically increasing for all i = 1, ..., n.

It is well-known that a collection of distribution functions {Ft(w) : t ∈ T}
on <1 is stochastically increasing in t on a subset T of <m if and only if

1−Ft(w) is increasing in t on T for each w in <1. Therefore, if there are only

two random variables Ξ1 and Ξ2, then {Ξ2|Ξ1} is stochastically increasing if

and only if

Pr(Ξ2 > ξ2|Ξ1 = ξ1) is increasing in ξ1 ∀ξ2.

Feng et al. (2015) consider a joint inventory and pricing model with depen-

dent random supply capacities, and show that when the random capacities

are positively dependent, the optimal value function in their problem is con-

cave in the state variables. Similar concepts are also used in Li et al. (2013)

when studying a supply diversification problem with responsive pricing. We

are now ready to present our transformation technique.

Theorem 4.1. Suppose that (a) the objective function of (4.1) is lower semi-

continuous and goes to ∞ when |u| → ∞. (b) f is componentwise convex
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(componentwise discrete convex if F = Z) and supermodular, l(u) is increas-

ing; (c) {Ξ1,Ξ2, ...,Ξn} are positively dependent. Then problem (4.1) has the

same optimal objective value as the following problem:

inf l(u) + E[f(v(Ξ))]

s.t. v(ξ) = (v1(ξ1), ..., vn(ξn)) ∈ Fn.
v(ξ) ≤ ξ ∀ξ ∈ X ,
v(ξ) ≤ u ∀ξ ∈ X ,
vj(ξj) is increasing ∀ξj ∈ Xj, j = 1, ...n

(4.2)

Given the above theorem, if l(·) and f(·) are jointly convex, then the

transformed problem 4.2 is a convex minimization problem. Notice that

when Ξ has independent components, condition (c) still holds and thus the

transformation applies.

Comparing Theorem 4.1 with Theorem 2.1, there are several differences.

First of all, In the transformed problem (4.2), we require that v(ξ) ≤ u ∀ξ ∈
X . This is due to the additional term l(u) in the objective function. In

addition, vj(ξj) need to be increasing. This is caused by the dependence

structure of Ξ.

Next we present an example showing that the monotone constraints are

needed when the random variables are dependent.

Example 4.1. Let l(u) = 0. We write f in standard quadratic form

f(x) =
1

2
xTHx+ cTx,

where cT = [−8,−2] and

H =

(
4 2

2 4

)
.

The function f is jointly convex since H is positive definite, and is super-

modular since the cross partial is positive. The random variable Ξ1 can take

values a1 = 0 or b1 = 2, Ξ2 can take values a2 = 1 or b2 = 3. The probability

matrix is[
P (Ξ1 = a1,Ξ2 = a2) = 0.4, P (Ξ1 = a1,Ξ2 = b2) = 0.2

P (Ξ1 = b1,Ξ2 = a2) = 0.1, P (Ξ1 = b1,Ξ2 = b2) = 0.3

]
.

Note that Ξ1 and Ξ2 are positively dependent. In this case, ”positively depen-
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dent” requires

P (Ξ2 = b1|Ξ1 = a2) ≤ P (Ξ2 = b1|Ξ2 = b2),

and

P (Ξ2 = b2|Ξ1 = a1) ≤ P (Ξ2 = b2|Ξ1 = b1).

The optimal solution of the original problem (4.1) is u∗1 = 35
18
, u∗2 = 1

9
with

optimal objective value −3.222. But the optimal solution of the transformed

problem (4.2) is v1(a1) = 0, v1(b1) = 2, v2(a2) = 0.3, v2(b2) = −0.1 with op-

timal objective value −3.3. Therefore, without the monotone constraints, the

transformed problem cannot generate the same optimal value as the original

problem.

However, if we impose the monotonic constraints on v(ξ), that is, v1(a1) ≤
v1(b1), v2(a2) ≤ v2(b2), we have u∗1 = 35

18
, u∗2 = 1

9
, and v1(a1) = 0, v1(b1) =

35
18
, v2(a2) = 1

9
, v2(b2) = 1

9
. One can easily check that the original problem has

the same optimal value as the transformed one after adding the monotone

constraints.

We also show an example that if the objective function is not supermodular

(submodular in this example), then after the transformation the optimal

value may change.

Example 4.2. Similar to Example 4.1, l(u) = 0,

f(x) =
1

2
xTHx+ cTx,

where cT = [−8,−2] and

H =

(
4 − 2

−2 4

)
.

Ξ1 can take values a1 = 0 or b1 = 2, Ξ2 can take values a2 = 1 or b2 = 3.

The probability matrix is[
P (Ξ1 = a1,Ξ2 = a2) = 0.4, P (Ξ1 = a1,Ξ2 = b2) = 0.2

P (Ξ1 = b1,Ξ2 = a2) = 0.1, P (Ξ1 = b1,Ξ2 = b2) = 0.3

]
.

The optimal solution of the original problem is u∗1 = 2, u∗2 = 0.9, optimal
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objective value of original problem is -4.82. For the transformed problem,

v1(a1) = 0, v1(b1) = 2, v2(a2) = 0.7, v2(b2) = 1.1, and the optimal objective

value is −4.9.

In the following we show an example that if the random variables do not

have positive dependence, then after the transformation the optimal value

may change.

Example 4.3. Similar to Example 4.1, but the probability matrix changes to[
P (Ξ1 = a1,Ξ2 = a2) = 0, P (Ξ1 = a1,Ξ2 = b2) = 0.5

P (Ξ1 = b1,Ξ2 = a2) = 0.5, P (Ξ1 = b1,Ξ2 = b2) = 0

]
.

Then the optimal solution of the original problem is u∗1 = 2, u∗2 = 0, and

the optimal objective value is −4. However, for the transformed problem the

optimal solution is v1(a1) = 0, v1(b1) = 2, v2(a2) = −0.5, v2(b2) = 0.5, and

the optimal objective value is −4.5.

Similar to the constrained case in Chapter 2, we can explicitly incorporate

constraints on u in Theorem 4.1 and consider a more general optimization

model. The problem of interest is

inf
u∈U

l(u) + E[f(u ∧ Ξ)], (4.3)

where f : Fn → <̄ and U ⊆ Fn. Define a set

V = {u ∧ ξ : u ∈ U , ξ ∈ X}. (4.4)

The following assumption identifies a condition under which the equivalent

transformation in Theorem 4.1 can be generalized to constrained optimiza-

tion problems.

Assumption 4.1. for any u ∈ Fn such that u ∧ ξ ∈ V ∀ξ ∈ X , there exists

u′ ∈ U , u′ ≤ u such that u′ ∧ ξ = u ∧ ξ ∀ξ ∈ X . The indicator function of V
is componentwise convex and supermodular.

Notice that we require u′ ≤ u in the above assumption, which is different

from Assumption 2.1. This is due to the additional term l(u) in the objective

function. In other words, if l(u) is a constant, then we can remove the
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requirement u′ ≤ u in the above assumption. The indicator function of V is

supermodular is equivalent to that V is a lattice.

The following theorem demonstrates the equivalent transformation for con-

strained optimization problems.

Theorem 4.2. Consider the optimization problem (4.3), where f : Fn →
<̄, l : Fn → <̄ and the random vector Ξ in Fn satisfy the assumptions in

Theorem 4.1. Suppose that Assumption 4.1 is satisfied, then problem (4.3)

and the following optimization problem have the same optimal objective value.

inf l(u) + E[f(v(Ξ)]

s.t. v(ξ) = (v1(ξ1), ..., vn(ξn)) ∈ V ∀ξ ∈ X ,
v(ξ) ≤ ξ ∀ξ ∈ X ,
v(ξ) ≤ u ∀ξ ∈ X ,
vj(ξj) is increasing ∀ξj ∈ Xj, j = 1, ...n.

(4.5)

4.3 Incorporating Risk Measure

In problem (4.3) the decision maker’s objective is to minimize the expected

cost (or equivalently to maximize the expected profit). This is under the as-

sumption that the decision maker is risk-neutral. However, evidently not all

decision makers are risk-neutral in real life, and many are willing to sacrifice

some expected profits for lower risks. To capture the decision maker’s risk

attitude, it is suitable to incorporate risk measure into the model. Intro-

duced by Rockafellar & Uryasev (2000), Conditional Value-at-risk (CVaR)

is a commonly used risk measure in practice. There are a number of studies

that address operations management problems using CVaR (see Chen et al.

2009 and the references therein).

CVaR of a random variable with confidence level α is defined as the mean of

the generalized α−tail distribution. In the following we present an equivalent

definition through a convex optimization problem which is more convenient

to work on:

CV aRα(X) = inf
λ∈<
{λ+

1

1− α
E[(x− λ)+]},

where α ∈ [0, 1) is the degree of risk aversion. The larger α is, the more

risk-averse the decision maker is.
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Now we investigate the following optimization problem under the CVaR

criterion:

inf
u∈U

CV aRα[l(u) + f(u ∧ Ξ)]. (4.6)

Theorem 4.3. Consider the optimization problem (4.6), where functions

f : Fn → <̄, l : Fn → <̄ and the constraint set U satisfy the assumptions in

Theorem 4.2, the random vector Ξ in Fn has independent components, then

problem (4.3) and the following optimization problem have the same optimal

objective value.

inf l(u) + E[g(v(Ξ), λ)]

s.t. v(ξ) = (v1(ξ1), ..., vn(ξn)) ∈ V ∀ξ ∈ X ,
v(ξ) ≤ ξ ∀ξ ∈ X ,
v(ξ) ≤ u ∀ξ ∈ X ,
λ ∈ <,

(4.7)

where g(u, λ) = λ+ 1
1−α(f(u)− λ)+.

The above results can be extended to a more general class of risk measure,

called distortion risk measure. A distortion risk measure ρ(·) can be repre-

sented as a weighted average of CVaRs with different degrees of risk aversion,

i.e.,

ρ(X) =

∫ 1

0

CV aRα(X)dµ(α).

where µ(·) is the probability measure function. A decision maker with a

distortion risk measure faces the following optimization problem:

inf
u∈U

ρ[l(u) + f(u ∧ Ξ)]. (4.8)

The next corollary demonstrates our transformation with any distortion

risk measure.

Corollary 4.1. Consider the optimization problem (4.8), where all assump-

tions in Theorem 4.3 are satisfied, then we have the following equivalent
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formulation

inf l(u) +
∫ 1

0
E[g(v(Ξ), λ(α), α)]dµ(α)

s.t. v(ξ) = (v1(ξ1), ..., vn(ξn)) ∈ V ∀ξ ∈ X ,
v(ξ) ≤ ξ ∀ξ ∈ X ,
v(ξ) ≤ u ∀ξ ∈ X ,
λ(α) ∈ < ∀α ∈ [0, 1),

(4.9)

where g(u, λ(α), α) = λ(α) + 1
1−α(f(u)− λ(α))+.
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Chapter 5

Algorithms and Computational Studies

5.1 Inventory Substitution with Random Capacities

The transformation technique enables us to convert the original non-convex

optimization problems to convex once, and therefore provide opportunities

for developing efficient algorithms. In this chapter we will illustrate the algo-

rithms and computational studies through an inventory substitution model.

Based on the transformed optimization problem, we develop a fast and ef-

fective heuristic method to solve this problem based on piecewise decision

rules. Through detailed computational studies, we show that this heuris-

tic approach can achieve a reasonable accuracy and is much faster than the

standard Monte Carlo method.

We briefly review the literature on inventory management with substitu-

tions. Parlar & Goyal (1984) and Pasternack & Drezner (1991) are among

the first to consider the two-product substitution problem. Bassok et al.

(1999) study a single-period multi-product inventory model with downward

substitution and arbitrary starting inventory levels. Hsu & Bassok (1999)

and Rao et al. (2004) extend this model by introducing random yield and

setup costs respectively. Both of these two papers focus on proposing ef-

ficient algorithms. Netessine et al. (2002) consider a capacity investment

model with single-level substitution and correlated random demands. Lat-

er Shumsky & Zhang (2009) extend the model by Netessine et al. (2002) to

multiple periods, and Yu et al. (2015) further extend it to allow general down-

ward substitutions. None of the aforementioned papers consider uncertain

capacities. In this chapter, we consider an inventory substitution problem

with random capacities and apply our transformation technique to achieve a

convex formulation.

The inventory substitution model is as follows. The firm manages N types
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of products to satisfy customer demands. The products are indexed by i =

1, ..., n with product 1 having the highest quality. Corresponding to each

product there is a demand class, indexed by j = 1, ..., n. If any demand class

j cannot be satisfied, products with higher quality (i ≥ j) can be used for

substitution. (some examples of downward substitution in real life) Let x =

(x1, ..., xN)T denote the initial inventory level at the beginning of the period.

After observing the initial inventory level, the firm decides the order-up-to

inventory levels y = (y1, ..., yN)T . The ordering quantity of each product

i cannot exceed a random capacity, denoted by Ki. Therefore, the actual

amount of product i when the order is received is the minimum of yi and

realized capacity ki. Let K = (K1, ..., Kn)T . Demands D = (D1, ..., DN)T are

then observed and the firm makes the substitution decision to use existing

inventory of different products to satisfy each demand class.

We assume that the demands are independent of capacities, while the

random capacities of different products can be dependent of each other. We

use d = (d1, ..., dN)T to denote the realized demands. The firm’s objective is

to minimize the expected total costs. The problem formulation is as follows.

min
y≥x

E[c(x, y,K) + L(y ∧ (x+K)|D)], (5.1)

where

L(y|d) = min
wij ,u

+
i ,u
−
j ≥0

N∑
i=1

hiu
+
i +

N∑
j=1

pju
−
j +

N∑
i=1

N∑
j=i

sijwij,

s.t.

j∑
i=1

wij + u−j = dj, ∀j = 1, ..., N,

n∑
j=i

wij + u+
i = yi, ∀i = 1, ..., N.

(5.2)

In (5.1), c(x, y, k) is the total ordering cost which depends on the ini-

tial inventory x, the target inventory level y, and the realized capacity

k. We assume that the ordering cost consists of two parts. The first

part is proportional to the quantity received (the effective quantity), while

the second part is proportional to the quantity initially ordered. so that

c(x, y, k) = cTe (y ∧ (x+ k)− x) + cTo (y − x). The two-part cost structure in-

cludes, as special cases, setting where the firm only pay for the effect units or
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where it pays exclusively for all ordered units. In general, this two-part cost

structure allows the cost consequence of capacity uncertainties to be shared

between the supplier and the retailer. The second term L(y|d) represents the

inventory holding and shortage costs as well as the substitution costs given

inventory level y and realized demands d. In (5.2), wij is the amount of sub-

stitution of product i to demand j, u+
i is the left-over inventory of product

i, u−j is the shortage of demand j, sij is the unit substitution cost to use

product i to satisfy demand j, and pj is the unit shortage cost for demand

j. The cost parameter h has two interpretations. If hi > 0, it represents the

holding cost of product i; If hi < 0, it represents the salvage value of product

i.

As is common in the inventory substitution literature, we make the follow-

ing assumptions of cost parameters.

Assumption 5.1. hi ≤ hj + sij, i.e., holding product i is less costly than

converting it to product j and holding product j; pj ≤ pi + sij, i.e., the

shortage cost of product j cannot exceed the cost of using product i to satisfy

the demand class j and incurring a shortage of product i.

Define g(y) = cTe y + E[L(y|D)], then (5.1) can be simplified as

min
y≥x

E[g(y ∧ (x+K))] + cTo y − (cTo + cTe )x. (5.3)

In order to apply our transformation technique, we firstly prove the fol-

lowing lemma.

Lemma 5.1. The function L(·|d) is convex and supermodular for any d.

Interestingly, in the proof of the above lemma, we convert the substitution

stage problem to an equivalent maximum weight circulation problem, and

then applied results from Murota (2005). The theorem below shows the

transformed problem for the inventory substitution problem.

Theorem 5.1. The original problem (5.3) is equivalent to the following prob-
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lem
min E[g(v(K))] + cTo y − (cTo + cTe )x

s.t. v(k) = (v1(k1), ..., vn(kn)) ∀k ∈ K,
vi(ki) ≥ xi, ∀ki ∈ Ki,∀i = 1, ..., n

vi(ki) ≤ xi + ki ∀ki ∈ Ki, ∀i = 1, ..., n

vi(ki) ≤ yi, ∀ki ∈ Ki,∀i = 1, ..., n

vi(ki) is increasing, ∀i = 1, ..., n.

(5.4)

5.2 Solution Procedures

The transformation technique we developed can be used to convert the orig-

inal problem given in (5.1) and (5.2) to an equivalent convex problem (5.4).

Notice that in the objective function of (5.4), the last two terms are con-

stants, which can be omitted without changing the optimal solution. Let

c̃i = ce,i+h+
i , ∀i = 1, ..., N, s̃ij = sij−h+

i −pj, ∀i = 1, ..., N, j = i, ..., N . Af-

ter incorporating g(·) into (5.4), we have the following reformulation, which

is referred to as P1 from now on.

min {
n∑
i=1

co,iyi + E[
N∑
i=1

c̃ivi(Ki) +
N∑
i=1

N∑
j=i

s̃ijwij(K,D)]} (5.5)

s.t. v(k) = (v1(k1), ..., vn(kn)) ∀k ∈ K, (5.6)

N∑
j=i

wij(k, d) ≤ vi(k), ∀i = 1, ..., N, ∀k ∈ K, d ∈ D, (5.7)

j∑
i=1

wij(k, d) ≤ dj, ∀j = 1, ..., N, ∀k ∈ K, d ∈ D, (5.8)

wij(k, d) ≥ 0, ∀i = 1, ..., n, j = 1, ..., N, ∀k ∈ K, d ∈ D, (5.9)

xi ≤ vi(ki) ≤ xi + ki, ∀i = 1, ..., N, ∀ki ∈ Ki, (5.10)

vi(ki) ≤ yi, ∀i = 1, ..., N, ∀ki ∈ Ki, (5.11)

vi(ki) is increasing, ∀i = 1, ..., N. (5.12)

To solve the above problem, we firstly present a linear programming for-

mulation based on Monte Carlo sampling. Then, we will provide a decision

rule heuristic algorithm.
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5.2.1 An LP formulation based on Monte Carlo Sampling

We use Monte Carlo methods to generate random samples of capacities

km,m = 1, ...,M , and random samples of demands dl, l = 1, ..., L. There-

fore, the total number of scenarios is ML. We use uml+, uml−, wml to

represent decisions u+, u−, w after observing the realizations of capacities

km and demands dl. Given the realization of capacities km, we have

v(km) = (v1(km1 ), ..., vi(k
m
i ), ..., vn(kmn )).

min {
∑N

i=1 co,iyi + 1
M

∑M
m=1

∑N
i=1 c̃ivi(k

m
i ) + 1

ML

∑M
m=1

∑L
l=1

∑N
i=1

∑N
j=1 s̃ijw

ml
ij }

s.t.
∑N

j=iw
ml
ij ≤ vi(k

m
i ) ∀i = 1, ..., N, ∀m, l,∑j

i=1 w
ml
ij ≤ dlj ∀j = 1, ..., N, ∀m, l,

wmlij ≥ 0 ∀i, j,m, l,
xi ≤ vi(k

m
i ) ≤ xi + kmi ∀i = 1, ..., N, ∀m,

vi(k
m
i ) ≤ yi ∀i = 1, ..., N, ∀m,

vi(k
m′
i ) ≤ vi(k

m′′
i ), ∀m′,m′′ s.t. km

′
i ≤ km

′′
i ,∀i = 1, ..., N.

(5.13)

The last constraint in (5.13) corresponds to the constraints “vi(ki) is increas-

ing” in P1. In our computational studies, for each component i we sort the

capacity scenarios generated by Monte Carlo methods, then we need at most

M inequalities to represent the monotonicity of vi(ki). The total number

of decision variables and constraints of problem (5.13) scales linearly with

the number of generated scenarios ML. Solving problem (5.13) is very time-

consuming. To strike a balance between accuracy and computation time, in

all our computational experiments we choose M = 100, L = 100.

5.2.2 A Heuristic Approach Using Piecewise linear decision
rules

This section presents a heuristic approach based on piecewise linear deci-

sion rules. Firstly we will briefly review some related papers on stochastic

optimization and decision rule approaches. Stochastic optimization problem-

s are notoriously difficult to solve. One suitable method to approximately

solve stochastic programs is to impose that the recourse decision is a linear

function of the uncertainties. This linear decision rule approximation pro-

vides a tractable and scalable methodology and hence attracted considerable
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interests in recent years. For instance, linear decision rule approaches have

been used to solve multistage stochastic linear programs (Ben-Tal et al. 2004,

Chen, Sim & Sun 2007). In terms of loss of optimality, for the stochastic op-

timization with expectation as objective function, Kuhn et al. (2011) propose

a primal-dual approach of linear decision rules to find both the upper and

lower bounds of the optimal value for linear dynamic systems. To improve

the performance of linear decision rules and reduce the approximation error,

Chen et al. (2008) introduce deflected and segregated linear decision rules.

The theory of piecewise linear decision rules and other nonlinear decision

rules has been developed in Goh & Sim (2010) and Georghiou et al. (2015).

There are many interesting applications which employ the aforementioned

decision rule approaches to conduct computational studies (see Atamtürk &

Zhang 2007, Chen & Zhang 2009, and See & Sim 2010 among others). In

this paper, we propose a heuristic approach to solve the optimization problem

after transformation using piecewise linear decision rules.

We start with a brief introduction of the piecewise linear decision rule

approach. Notice that problem (5.5) can be formulated as a multi-stage

stochastic linear program with some additional requirements as follows.

min EΞ[
∑T

t c
ᵀ
tut(Ξ

t)]

s.t.
∑t

s=1Atsus(ξ
s) ≥ bt(ξ

t) ∀ξ ∈ X , t = 1, ..., T,

ut(ξ
t) ≥ 0 ∀ξ ∈ X , t = 1, ..., T,

ut(ξ
t) ∈ Ut, ∀t = 1, ..., T.

(5.14)

In the above formulation, ξt = (ξ1, ..., ξt) is the observation history of random

variables up to stage t. There are 3 stages in our problem. In the first stage,

before any random variables are realized (for expositional reasons, we assume

that there is a dummy random variable realized, which is equal to constant

1), the decision vector is y; In the second stage, after the random capacities

are realized, the decision vector is v(k); In the third stage, after both the

random capacities and demands are realized, the decision vector is w(k, d).

Therefore, we have ξ1 = 1, ξ2 = k, ξ3 = d, u1 = y, u2 = v, u3 = w. In

the objective function, we have c1 = co, c2 = c̃, c3 = s̃. Constraints (5.7)-

(5.11) in P1 can be easily represented as the linear constraints in (5.14).

Constraints (5.6) and (5.12) in P1 are represents as ut ∈ Ut in (5.14). To be

more specific, we require U2 = {(v(k), k ∈ K)|v(k) = (v1(k1), ..., vn(kn)) ∀k ∈
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K, vi(ki) is increasing, ∀i.}
Let ξ = (ξ1, ..., ξT ). Define truncation operator Pt through Ptξ = ξt. The

support of ξ is denoted by X , which is assumed to be a bounded polyhedron

of the form X = {ξ ∈ <k : Wξ ≥ h} for some W ∈ <l×k and h ∈ <l. We

allow X to contain infinitely many scenarios. Assume that bt(ξ
t) = Btξ

t for

some matrix Bt.

Before we introduce the piecewise linear decision rule approach, we firstly

demonstrate the linear decision rule formulation. We model the decision rule

xt(ξ
t) as a linear function of ξt (an affine function of (ξ2, ..., ξt) since ξ1 = 1),

it can thus be expressed as xt(ξ
t) = Xtξ

t. The linear decision rule problem

of (5.14) is equivalent to:

min
∑T

t=1 c
ᵀ
tXtPtE[Ξ]

s.t. (
∑t

s=1AtsXsPs −BtPt)ξ ≥ 0 ∀ξ ∈ X , t = 1, ..., T,

XtPtξ ≥ 0 ∀ξ ∈ X , t = 1, ..., T,

Xt ∈ Xt, ∀t = 1, ..., T.

(5.15)

The last constraint Xt ∈ Xt corresponds to the last constraint in (5.14),

which can be represented as linear constraints. To see this, we need entries

(i, 1), (i, i + 1), i = 1, ..., N of X2 are nonnegative, and all other entries are

zero. This is represented as the following matrix, where + means that the

entry needs to be nonnegative:
+ + 0 · · · 0

+ 0 + · · · 0
...

...
...

. . .
...

+ 0 0 · · · +

 .

Clearly these requirements can be represented as linear constraints.

Problem (5.15) can have infinitely many constraints parameterised by ξ ∈
X . Applying Proposition 3.1 in Georghiou et al. (2011), we can reformulate

the ξ−dependent constraints in (5.15) in terms of a finite number of linear
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constraints and obtain

min
∑T

t=1 c
ᵀ
tXtPtE[Ξ]

s.t.
∑t

s=1AtsXsPs −BtPt = ΛtW, Λth ≥ 0, Λt ≥ 0 ∀t = 1, ..., T,

XtPt = ΓtW, Γth ≥ 0, Γt ≥ 0, ∀t = 1, ..., T,

Xt ∈ Xt, ∀t = 1, ..., T.

(5.16)

As mentioned earlier, constraints Xt ∈ Xt can be formulated as a finite

number of linear constraints. Therefore, problem (5.16) is a finite linear

program.

The piecewise linear decision rule approach model the decision rule xt(ξ
t) as

a piecewise linear function of ξt. Following Georghiou et al. (2015), we lift the

original random vector ξ to a higher space, so that xt can be expressed as an

affine function of lifted random vector ξ′. To define the lifted random vector,

select a set of breakpoints for each coordinate axis in X . The breakpoints

are denoted by

zi1 < ... < ziri−1 ∀i = 2, ..., k.

The number of breakpoints along the ξi axis is ri − 1. The dimension of the

lifted space is k =
∑k

i=1 ri. The lifted random vector can be written as

ξ′ = (ξ′1,1, ξ
′
2,1, ..., ξ

′
2,r2
, ..., ξ′k,1, ..., ξ

′
k,rk

)ᵀ.

Define the lifting operator L = (L1,1, ..., Li,j, ..., Lk,rk) which maps ξ to ξ′ as

follows

Li,j(ξ) =


ξi, if ri = 1,

min{ξi, zi1}, if ri > 1, j = 1,

max{min{ξi, zij} − zij−1, 0}, if ri > 1, j = 2, ..., ri − 1,

max{ξi − zij−1, 0}, if ri > 1, j = ri.

(5.17)

By construction, the piecewise linear decision rule of the original random

vector ξ with breakpoints {zij, j = 1, .., ri − 1, i = 2, ..., k} is equivalent to

the linear decision rule of the lifted random vector ξ′. We model the decision

rule xt(ξ
t) as a linear function of ξ′t, it can thus be expressed as xt(ξ

t) =

X ′tξ
′t = X ′tL(ξt).

The linear retraction operator corresponding to L is denoted by R =

(R1, ..., Rk), where the coordinate mapping Ri corresponds to the ξi axis
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in the original space is defined through

Ri(ξ
′) =

ri∑
j=1

ξ′i,j.

Define truncation operators P ′t which map ξ′ to ξ′t. The piecewise-linear

decision rule problem of (5.14) is equivalent to

min
∑T

t=1 c
ᵀ
tX
′
tP
′
tE[Ξ′]

s.t. (
∑t

s=1 AtsX
′
sP
′
s −BtPtR)ξ′ ≥ 0 ∀ξ′ ∈ X ′, t = 1, ..., T,

X ′tP
′
tξ
′ ≥ 0 ∀ξ′ ∈ X ′, t = 1, ..., T,

Xt ∈ X′t, ∀t = 1, ..., T.

(5.18)

Similar to the linear decision rule approach, the last constraint Xt ∈ X′t, ∀t =

1, ..., T can easily formulated using a finite number of linear constraints.

According to Georghiou et al. (2011), if the support of random vector ξ is a

hyperrectangle of the type X = {ξ ∈ <k : l ≤ ξ ≤ u}, then the convex hull

of the support of lifted random variables has the representation {ξ′ : W ′ξ′ ≥
h′}, and the ξ′−dependent constraints in (5.18) can be represented using

a finite number of linear constraints as well, which leads to the following

reformulation.

min
∑T

t=1 c
ᵀ
tX
′
tP
′
tE[Ξ′]

s.t.
∑t

s=1 AtsX
′
sP
′
s −BtPtR = ΛtW

′, Λth
′ ≥ 0, Λt ≥ 0, ∀t = 1, ..., T,

X ′tP
′
t = ΓtW

′, Γth
′ ≥ 0, Γt ≥ 0 ∀t = 1, ..., T,

Xt ∈ X′t, ∀t = 1, ..., T.

(5.19)

5.3 Computational Studies

Our numerical experiments implement the large scale LP formulation using

the Monte Carlo methods and the piece-wise linear decision rule approxima-

tion. Our objective is to compare the performance of these two methods in

terms of running time and accuracy. Our numerical studies are conducted

with the number of products N = 3, 5, 10 and 20. For each value of N , we

vary the model parameters as follows.

Experiment Setup. For each product i, the unit ordering cost ci =
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co,i+ce,i, where co,i is the unit ordering cost for each product initially ordered,

and ce,i is the unit ordering cost for each product actually received after the

realization of the random capacity. We let co,i = ce,i = 0.5ci and ci =

1 + η(N − i) for η = 0.1, 0.2, 0.3, 0.4, 0.5. Here η measures the variation of

products’ ordering costs. The cost of using product i to satisfy demand j

is chosen as sij = 0.5(ci − cj). We set the holding cost/savage value for

each product i as hi = −0.5ci, 0, or 0.5ci. Notice that hi = 0.5ci means

that product i incurs a holding cost which is equal to 50% of the ordering

cost, while hi = −0.5ci means that it has a savage value which is 50% of the

ordering cost. The penalty costs are chosen as pi = 2ci, 5ci, 10ci.

The demand of each product follows a truncated Gaussian distribution

with mean 100, and coefficient of variation, denoted by CVd of 0.1, 0.2, 0.3.

In order to model the positive dependence of random capacities, we consider

the case where products share a common “market risk”. In this case, the

capacity of each player i is given by Ki = Yi + Z, where Yi, i = 1, ..., N

and Z are mutually independent Gaussian variables. The “market risk”,

denoted by Z, is embedded in each product’s capacity. We let Z and Yi

follow a truncated Gaussian distribution with mean 50 and coefficient of

variation CVk = 0.1, 0.2, 0.3. The support of demands is chosen to be a

polyhedral {d ∈ <N : 50 ≤ dj ≤ 150, j = 1, ..., N}. The support of Z is

{z ∈ < : 25 ≤ z ≤ 75} and the support of Yi is {yi ∈ < : 25 ≤ yi ≤ 75}. For

each dimension we divided into r = 20 pieces for PLDR.

Performance Metrics. We run all experiments using MATLAB 2014a

which calls Gurobi to solve linear programs. The running time of the two

methods is measured in CPU seconds of a server with Intel Xeon CPUs E5-

4657L v2 2.4GHz and 256GB memory. We use the optimal costs obtained

from solving the LP formulation based on Monte Carlo sampling (there-

after as MCLP) as the bench mark, and define the performance error of the

piecewise-linear decision rule approach (thereafter as PLDR) as follows:

%error = (
C(PLDR)

C(MCLP )
− 1)× 100% (5.20)

To calculate PLDR’s optimal cost C(PLDR), we firstly obtain the optimal

ordering quantities by solving the PLDR problem, then employ a greedy

algorithm to obtain the substitution decisions (See Bassok et al. (1999) or

Rao et al. (2004) for details of the greedy algorithm). Then we conduct a
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simulation with one million cases using the optimal ordering and substitution

quantities to obtain the PLDR’s optimal cost.

Numerical Results. Table 5.1 demonstrates the average running time

for both the PLDR and MCLP methods. The PLDR is much faster than

the MCLP method. Notice that when there are N = 10 products, it takes

about three hours to run each instance using the MCLP method, therefore

we only run 15 instances. When N = 20, the server is out of memory for the

MCLP method. On the other hand, it takes less than 4 minutes to solve the

instance with N = 20 products using the PLDR method. While the PLDR

runs much faster than the MCLP method, it can also achieve a reasonable

performance accuracy. Table 5.2 shows the performance error as defined in

(5.20). We can see that for both N = 3 and N = 5 the PLDR have an

average error of less than 2.5%.

Table 5.1: Average running time, in CPU seconds, NA = not applicable.
For PLDR, 405 instances for each N . For MCLP, 405 instances for
N = 3, 5, and 15 instances for N = 10

N=3 N=5 N=10 N=20
PLDR 3.34 7.42 20.63 218.05
MCLP 848.42 2107.36 11855.48 NA

Table 5.2: Performance error of PLDR

Average (%) Std. dev. (%) Maximum (%)

% Error for N = 3 products 2.19 2.24 10.71
% Error for N = 5 products 2.48 2.29 11.83
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Chapter 6

Conclusions and Future Research

This thesis studies stochastic optimization problems with decisions truncat-

ed by random variables and its applications in operations management. We

develop a transformation technique to convert the original non-convex opti-

mization problems to convex ones while preservation some desired structural

properties, which are useful for characterizing optimal decision policies and

conducting comparative statics. Our transformation technique provides a

unified approach to analyze a broad class of models in inventory control and

revenue management. In additional, we develop efficient algorithms to solve

the transformed stochastic optimization problem.

There are several interesting directions which call for future research. Al-

though in Chapter 4 we provide generalizations of the transformation tech-

nique, they are by no means comprehensive. For example, Theorem 4.1

assumes that the random variables are positively dependent, it would be in-

teresting to consider some other dependence structures. In Chapter 4.3 we

incorporate distortion risk measures into the model. A natural question is

can we manage to incorporate more general risk measures, say coherent risk

measures.

Chapter 5 proposes a heuristic approach based on piecewise linear decision

rules. Whether there are methods to further improve the performance is an

interesting question. Moreover, considering a robust optimization formula-

tion and then applying the piecewise linear decision rule is also worth trying.

Apart from the inventory substitution problem, the piecewise linear decision

rule approach can also be applied to airline revenue management problems.

Further numerical studies need to be done to see whether it performs well in

revenue management settings.
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Appendix A

A.1 Proof of Lemma 2.1

The quasi-convexity of f implies that f(x) decreases in x as x ≤ x∗ and

increases in x as x ≥ x∗. If a ≥ x∗, we have b ≥ a ≥ x∗, which implies that

a ≥ x∗ ∧ b = x∗. If a ≤ x∗, since a ≤ b, we have a ≤ x∗ ∧ b ≤ x∗. In either

case, f(x∗ ∧ b) ≤ f(a). �

A.2 Proof of Theorem 2.1

Let π∗ be the optimal objective value of problem (2.3). Since for any u ∈ Fn,

v(ξ) = u ∧ ξ is feasible for problem (2.3), π∗ ≤ τ ∗.

It remains to show that τ ∗ ≤ π∗. Clearly, it holds when π∗ =∞. Thus, in

the following, we assume that π∗ < ∞, which together with assumption (a)

implies that all optimization problems involved below, as well as problems

(2.1) and (2.3), admit finite optimal solutions. Given any optimal solution of

(2.3) denoted by v∗ = (v∗(ξ)|ξ ∈ X ), we will show that we can find a solution

û ∈ Fn such that E[f(û ∧ Ξ)] = E[f(v∗(Ξ))].

We first show that it is true for n = 1. Let û = arg minu∈F f(u) (when

there are multiple optimal solutions, we choose the smallest one). Consider

any feasible solution v = (v(ξ)|ξ ∈ X ) of problem (2.3). We have f(û∧ ξ) ≤
f(v(ξ)) for any ξ ∈ X according to Lemma 2.1. Hence, E[f(û ∧ Ξ)] ≤ π∗.

Note that û is a feasible solution for problem (2.1), which implies that τ ∗ =

E[f(û ∧ Ξ)] ≤ π∗. Combined with the fact that π∗ ≤ τ ∗, we have τ ∗ = π∗.

We now consider the general case with n ≥ 1. Use v∗i to represent the ith

component of v∗ for i = 1, ..., n. Starting from the first component, define

π1(u1) = E[f(u1, v
∗
2(Ξ2), . . . , v∗n(Ξn))].
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The component-wise convexity of f implies that π1(u1) is convex in

u1. Since the components of the vector Ξ are independently distributed,

EΞ1 [π1(v1(Ξ1))] = EΞ[f(v1(Ξ1), v∗2(Ξ2), . . . , v∗n(Ξn))] for any measurable func-

tion v1(·), and the preceding analysis for n = 1 implies that there exists a û1

such that

π∗ = min{E[π1(v1(Ξ1))]|v1(ξ1) ≤ ξ1, v1(ξ1) ∈ F , ∀ξ1 ∈ X1}

= min
u1∈F

E[π1(u1 ∧ Ξ1)]

= E[π1(û1 ∧ Ξ1)].

Next define π2(u2) = E[f(û1 ∧ Ξ1, u2, v
∗
3(Ξ3), . . . , v∗n(Ξn))]. Clearly, π2 is

convex. Following the preceding analysis, there exists a û2 such that

π∗ = min{E[π2(v2(Ξ2))]|v2(ξ2) ≤ ξ2, v2(ξ2) ∈ F , ∀ξ2 ∈ X2}

= min
u2∈F

E[π2(u2 ∧ Ξ2)]

= E[π2(û2 ∧ Ξ2)].

Continue this process and define πi(ui) = E[f(û1 ∧ Ξ1, ..., ûi−1 ∧
Ξi−1, ui, v

∗
i+1(Ξi+1), . . . , v∗n(Ξn))]. Applying the same approach, we can find

ûi, i = 3, ..., n, such that

π∗ = min{E[πi(vi(Ξi))]|vi(ξi) ≤ ξi, vi(ξi) ∈ F , ∀ξi ∈ Xi}

= min
ui∈F

E[πi(ui ∧ Ξi)]

= E[πi(ûi ∧ Ξi)].

Therefore, we have

π∗ = E[πn(ûn ∧ Ξn)]

= E[f(û1 ∧ Ξ1, ..., ûn ∧ Ξn)].

Since û is a feasible solution to (2.1), we have τ ∗ ≤ E[f(û ∧ Ξ)] = π∗.

Combined with the fact that π∗ ≤ τ ∗, we have π∗ = τ ∗.
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A.3 Proof of Theorem 2.2

Problem (2.4) is equivalent to the following unconstrained optimization prob-

lem.

inf
u∈Fn
{E[f(u♦kΞ)] + δU(u)}. (A.1)

Define for any v ∈ Fn,

f̂(v) = f(v) + δV(v),

where V is defined in (2.5). Then by Assumption 2.1 the optimal objective

value of problem (A.1) is equivalent to that of the following problem

inf
u∈Fn

E[f̂(u♦kΞ)]. (A.2)

To see this, note that for any u ∈ U , we have u♦kξ ∈ V ∀ξ ∈ X , and

hence infu∈Fn E[f̂(u♦kΞ)] ≤ infu∈U E[f(u♦kΞ)]. On the other hand, due to

Assumption 2.1, we have infu∈Fn E[f̂(u♦kΞ)] ≥ infu∈U E[f(u♦kΞ)].

Define a new random vector Ξ̃ with (Ξ̃1, . . . , Ξ̃k, Ξ̃k+1, . . . , Ξ̃n) =

(Ξ1, . . . ,Ξk,−Ξk+1, . . . ,−Ξn) and a new function f̃ : Fn → <̄ by

f̃(u1, . . . , uk, uk+1, . . . , un) = f̂(u1, . . . , uk,−uk+1, . . . ,−un).

Then problem (A.2) is equivalent to the problem

inf
ũ∈Fn

E[f̃(ũ ∧ Ξ̃)].

By Theorem 2.1, it has the same optimal objective value with the following

problem.

inf E[f̃(ṽ(ξ̃))]

s.t. ṽ(ξ̃) ≤ ξ̃ ∀ξ̃ ∈ Supp(Ξ̃),

ṽ(ξ̃) = (ṽ1(ξ̃1), . . . , ṽn(ξ̃n)) ∈ Fn,

which is clearly equivalent to problem (4.5) from the definition of f̃ . Notice

that the indicator function of the set V needs to be componentwise convex

to ensure that f̃ is componentwise convex.
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A.4 Proof of Lemma 2.2

For notational convenience, we only prove the case where k = n, i.e., there

is only the ∧ operation. This is because we can apply the same technique

used in the proof of Theorem 2.2 to convert a problem with the ∨ operation

to a new one only with the ∧ operation. In this case the set U = {u|Au ≤
b, uj ≥ uj, j = 1, ..., n}, where aij ≥ 0 for all i = 1, ...,m, j = 1, ..., n, and

ξj ≥ uj ∀ξj ∈ Xj for j = 1, ..., n.

Recall that we define ξ̄j = ess sup{ξj|ξ ∈ X}. We first consider the case

where ξ̄j < ∞ for all j. Note that V = {u ∧ ξ|u ∈ U , ξ ∈ X} is equivalent

to the following set {w|Aw ≤ b, uj ≤ wj ≤ ξ̄j, j = 1, ..., n}, denoted by Vw.

For any w = u ∧ ξ ∈ V , we have Aw = A(u ∧ ξ) ≤ b since aij ≥ 0 for all i, j

and Au ≤ b; uj ≤ uj ∧ ξj = wj ≤ ξ̄j since uj ≤ ξj ∀ξj ∈ Xj. For any w ∈ Vw,

let u = w, ξj = ξ̄j for all j. Then w = u ∧ ξ since wj ≤ ξ̄j for all j, and

u ∈ U . Hence, V = Vw. Clearly V is a convex set. Given any u satisfying

u ∧ ξ ∈ V ∀ξ ∈ X , we define u′ such that for j = 1, ..., n,

u′j =

{
uj, if uj ≤ ξ̄j,

ξ̄j, if uj > ξ̄j.

One can easily check that u′ ∧ ξ = u ∧ ξ ∀ξ ∈ X . We only need to show

u′ ∈ U . Since ξ̄j ≥ uj and uj ≥ uj, we have u′j ≥ uj for j = 1, ..., n.

Because A(u∧ ξ) ≤ b ∀ξ ∈ X and Ξ has independent components, we obtain

A(u ∧ ξ̄) ≤ b, which is the same as Au′ ≤ b.

If ξ̄j =∞ for any j, then u′j = uj and following similar arguments we can

obtain the desired results.

Notice that in our proof the assumption Ξ has independent components

are needed. To see this, suppose that Ξ can be either ξ1 = 4, ξ2 = 2 or

ξ1 = 2, ξ2 = 4 with equal probability. Let A = [1, 1], b = 6 and u =

(3, 5). According to the construction in our proof we have u′ = (3, 4). Then

A(u ∧ ξ) ≤ b ∀ξ ∈ X but Au′ > b.

A.5 Proof of Proposition 2.1

Parts (a)-(c) are from Murota (2003). The proofs follow directly from the

definition.
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(d) We need to show that g[(x, λ) − ξ(e, 1)] is submodular. Notice that

g[(x, λ) − ξ(e, 1)] = g(v − ξe, λ − ξ) = f((v − ξe) − (λ − ξ)e) = f(v − λe),
which is submodular.

(e) We assume without loss of generality that A = Fn × Y ; otherwise we

can focus on the restriction of f on A and let f be infinity outside of A. We

know that r(x, y, ξ) = f [(x, y)−ξe] is submodular, and we want to show that

g(x− ξe) is submodular in (x, ξ). We have

g(x− ξe) = inf
y∈Y

f(x− ξe, y)

= inf
y∈Y

f [(x, y + ξe)− ξe]

= inf
y∈Y

r(x, y + ξe, ξ)

= inf
z−ξe∈Y

r(x, z, ξ).

Notice that {(z, ξ) : z − ξe ∈ Y} is a lattice and r(x, z, ξ) is submodular, it

follows from Theorem 2.7.6 of Topkis (1998) that g(x− ξe) is submodular in

(x, ξ).

(f) It follows from Theorem 2.8.2 of Topkis (1998) that

arg miny:(x,y)∈A f(x, y) is increasing in x. For any ω > 0 and

any x ∈ dom(g), define ωẽ + arg miny:(x,y)∈A f(x, y) as the set

{u + ωẽ : u ∈ arg miny:(x,y)∈A f(x, y)}. Pick y′ in arg miny:(x,y)∈A f(x, y)

and y
′′

in arg miny:(x+ωe,y)∈A f(x + ωe, y). Then for any ω > 0

such that (x + ωe, y′ + ωẽ) ∈ A and (x, y
′′ − ωẽ) ∈ A we have

(x + ωe, y
′′ ∧ (y′ + ωẽ)) = (x + ωe, y′′) ∧ (x + ωe, y′ + ωẽ) ∈ A,

(x, (y
′′ − ωẽ) ∨ y′) = (x, y′′ − ωẽ) ∨ (x, y′) ∈ A and

0 ≥ f(x+ ωe, y
′′
)− f(x+ ωe, y

′′ ∧ (y′ + ωẽ))

= f [(x, y
′′ − ωẽ) + ω(e, ẽ)]− f [(x, (y

′′ − ωẽ) ∧ y′) + ω(e, ẽ)]

≥ f(x, y
′′ − ωẽ)− f(x, (y

′′ − ωẽ) ∧ y′)

≥ f(x, (y
′′ − ωẽ) ∨ y′)− f(x, y′)

≥ 0,

where the first and the last inequalities are due to the optimality of y
′′

and

y′ for x + ωe and x respectively, the second inequality is due to the L\-

convexity of f which implies that f(x−ωe, y−ωẽ) is submodular in (x, y, ω),
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and the third inequality is due to the submodularity of f(x, y) in y. The

first and the last inequalities then imply that equality holds throughout the

above inequalities and so y
′′ ∧ (y′+ωẽ) ∈ arg miny:(x+ωe,y)∈A f(x+ωe, y), and

(y
′′−ωẽ)∨y′ ∈ arg miny:(x,y)∈A f(x, y) which then implies that y

′′∨(y′+ωẽ) ∈
ωẽ+ arg miny:(x,y)∈A f(x, y). Therefore,

arg min
y:(x+ωe,y)∈A

f(x+ ωe, y) v ωẽ+ arg min
y:(x,y)∈A

f(x, y).

(g) Let A = {x ∈ Y : l ≤ x ≤ u, xi − xj ≤ vij,∀i 6= j}. For any

x, x′ ∈ A, λ ∈ F+, we only need to show that (x+λe)∧x′, x∨ (x′−λe) ∈ A.

Firstly we have (x+λe)∧x′ ≤ x′ ≤ u, and l ≤ x∧x′ ≤ (x+λe)∧x′. For any

i 6= j, if x′i ≤ xi+λ, x
′
j ≤ xj+λ, then (xi+λ)∧x′i−(xj+λ)∧x′j = x′i−x′j ≤ vij.

If x′i ≥ xi + λ, x′j ≥ xj + λ, then (xi + λ)∧ x′i − (xj + λ)∧ x′j = xi − xj ≤ vij.

If x′i ≤ xi + λ, xj + λ ≤ x′j, then (xi + λ) ∧ x′i − (xj + λ) ∧ x′j = x′i −
(xj + λ) ≤ xi + λ − (xj + λ) ≤ vij. If x′i ≥ xi + λ, xj + λ ≥ x′j, then

(xi + λ) ∧ x′i − (xj + λ) ∧ x′j = (xi + λ)− x′j ≤ x′i − x′j ≤ vij. Thus we have

(x+ λe) ∧ x′ ∈ A. Similarly we can show that x ∨ (x′ − λe) ∈ A.

(h) Please see Proposition 2.3.3 (b) of Simchi-levi et al. (2014).

A.6 Proof of Theorem 2.3

Theorem 2.2 implies that problem (2.7) can be equivalently converted to the

following one:

inf E[f(x, v1(Ξ1), . . . , vn(Ξn))]

s.t. vj(ξj) ≤ zj + ξj ∀ξj ∈ Xj, ∀ j = 1, . . . , k

vj(ξj) ≥ zj + ξj ∀ξj ∈ Xj, ∀ j = k + 1, . . . , n

(x, z, v1(ξ1), . . . , vn(ξn)) ∈ AΞ ∀ξ ∈ X .

(A.3)

To see this, given fixed (x, z), let U(x, z) denote the constraint set {u :

(x, z, u) ∈ A}, fx(u) = f(x, u), Ξ̃z = z + Ξ, and X̃z = Supp(Ξ̃z). Then (2.7)

is equivalent to

inf
u∈U(x,z)

E[fx(u♦kΞ̃z)]. (A.4)

Let V(x, z) = {u♦kξ̃ : u ∈ U(x, z), ξ̃ ∈ X̃z}. Given any u♦kξ̃ ∈ V(x, z) ∀ξ̃ ∈
X̃z, we have (x, z, u) satisfying (x, z, u♦k(z + ξ)) ∈ AΞ ∀ξ ∈ X . According
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to Assumption 2, there exists (x, z, u′) ∈ A such that u′♦k(z + ξ) = u♦k(z +

ξ) ∀ξ ∈ X . Thus we have u′ ∈ U(x, z) and u′♦kξ̃ = u♦kξ̃ ∀ξ̃ ∈ X̃z. If

the indicator function of AΞ is componentwise convex in w, it is clear that

the indicator function of V(x, z) is also componentwise convex. Therefore, if

Assumption 2 is satisfied, then Assumption 1 is also satisfied. According to

Theorem 2, we can transform (A.4) into:

inf E[fx(v1(Ξ̃z1), . . . , vn(Ξ̃zn))]

s.t. vj(ξ̃j) ≤ ξ̃j ∀ξ̃j ∈ X̃zj, ∀ j = 1, . . . , k

vj(ξ̃j) ≥ ξ̃j ∀ξ̃j ∈ X̃zj, ∀ j = k + 1, . . . , n

(v1(ξ̃1), . . . , vn(ξ̃n)) ∈ V(x, z) ∀ξ̃ ∈ X̃z,

which is equivalent to (A.3).

It is straightforward to check that the constraint set involving

(x, z, (v1(ξ1), . . . , vn(ξn))ξ∈X is a convex set, a lattice, and an L\-convex set

(Proposition 2.1 part (g)) on the product set Fm×Fn× (Fn)X for cases (a),

(b) and (c) respectively.

In the following we show that the objective function

E[f(x, v1(Ξ1), ..., vn(Ξn))] is convex, submodular, L\−convex in

(x, (v1(ξ1), ..., vn(ξn))ξ∈X ∈ Fm×(Fn)X for cases (a), (b) and (c) respectively.

Define f̃ : Fm × (Fn)X × X → <̄ such that f̃(x, v, ξ) , f(x, v(ξ)) ∀ξ ∈ X .

Clearly, E[f̃(x, v,Ξ)] = E[f(x, v(Ξ))]. Given any realization ξ, if f(·, ·) is

convex/ submodular/ L\−convex, then one can easily prove by definition

that f̃(·, ·, ξ) is also convex/ submodular/ L\−convex. We show the proof

for convexity; the proofs for submodularity and L\−convex are similar and

simply follow their definitions respectively. Given ξ, for any (x, v), (x′, v′)

and λ ∈ [0, 1], we have

f̃(λx+ (1− λ)x′, λv + (1− λ)v′, ξ)

= f(λx+ (1− λ)x′, λv(ξ) + (1− λ)v′(ξ))

≤ λf(x, v(ξ)) + (1− λ)f(x′, v′(ξ))

= λf̃(x, v, ξ) + (1− λ)f̃(x′, v′, ξ).

Since f̃(·, ·, ξ) is convex/ submodular/ L\−convex for any given ξ, we have

that the objective function E[f(x, v(Ξ))] = E[f̃(x, v,Ξ)] is also convex/ sub-

modular/ L\−convex due to Proposition 2.1 part (c).
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Part (a) follows immediately from the theorem of convexity preservation

under minimization (see Simchi-levi et al. 2014, Proposition 2.1.15, for the

case with finite-dimensional spaces, and Zǎlinescu 2002, Theorem 2.1.3(v),

for the case with general vector spaces). Part (b) follows from Theorem 2.7.6

of Topkis (1998).

Part (c) follows from Proposition 2.1 part (e).

A.7 Proof of Theorem 2.4

In the following, we provide the proof for part (b). Since part (a) can be

proved using almost the same arguments (as L\-convexity includes submod-

ularity), its proof is omitted for brevity.

Let Ṽ(x, z) denote the constraint set of the transformed problem (A.3). De-

fine the projection of the solution set of the transformed problem, S∗(x, z) =

arg min(v(ξ),ξ∈X )∈Ṽ(x,z) E[f(x, v(Ξ))], on the constraint set U(x, z) as

ΠUS∗(x, z) = {u ∈ U(x, z)|(u♦k(z + ξ), ξ ∈ X ) ∈ S∗(x, z)}.

By Proposition 2.1 we know that S∗(x, z) is increasing in (x, z) and satisfies

the monotone sensitivity property with respect to (x, z) as follows:

S∗((x, z) + ωe) v ωe+ S∗(x, z).

We argue that ΠUS∗(x, z) is the solution set of the original problem for

any given (x, z), i.e., ΠUS∗(x, z) = U∗(x, z). In fact, if u∗ is an optimal

solution to the original problem, (u∗♦k(z + ξ), ξ ∈ X ) is a minimizer of

the transformed problem, i.e., (u∗♦k(z + ξ), ξ ∈ X ) ∈ S∗(x, z). On the

other hand, if u ∈ ΠUS∗(x, z), then (v(ξ)|v(ξ) = u♦k(z + ξ), ξ ∈ X ) is an

optimal solution of the transformed problem due to the definition of ΠUS∗.
Since E[f(x, v(Ξ))] = E[f(x, u♦k(z + Ξ))] = τ ∗, u is optimal for the original

problem. Therefore, our argument is true, which implies that we only need

to show that ΠUS∗(x, z) is increasing in (x, z) and ΠUS∗((x, z) + ωe) v
ωe+ ΠUS∗(x, z).

We firstly show that

ΠUS∗((x, z) + ωe) v ωe+ ΠUS∗(x, z). (A.5)
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Pick any u′ in ΠUS∗(x, z) and any u
′′

in ΠUS∗((x, z) + ωe) respectively.

We have

(u′♦k(z + ξ), ξ ∈ X ) ∈ S∗(x, z), (u′′♦k(z + ωe+ ξ), ξ ∈ X ) ∈ S∗((x, z) + ωe).

It suffices to show that u
′′∧(u

′
+ωe) ∈ ΠUS∗((x, z)+ωe) and (u

′′−ωe)∨u′ ∈
ΠUS∗(x, z). Since S∗((x, z) + ωe) v ωe+ S∗(x, z), we have

(u
′′
♦k(z + ωe+ ξ), ξ ∈ X ) ∧ (u′♦k(z + ξ) + ωe, ξ ∈ X ) ∈ S∗((x, z) + ωe).

Hence,

(u
′′
♦k(z + ωe+ ξ), ξ ∈ X ) ∧ (u′♦k(z + ξ) + ωe, ξ ∈ X )

= ((u
′′
♦k(z + ωe+ ξ) ∧ ((u′ + ωe)♦k(z + ωe+ ξ)), ξ ∈ X )

= ((u′′ ∧ (u′ + ωe))♦k(z + ωe+ ξ), ξ ∈ X )

∈ S∗((x, z) + ωe).

Since A is an L\−convex set, (u′, x, z) ∈ A, and (u′′, (x, z) + ωe) ∈ A, we

have (u′′, (x, z) + ωe) ∧ ((u′, x, z) + ωe) = (u′′ ∧ (u′ + ωe), (x, z) + ωe) ∈ A.

Here we use the following property of L\−convex set (page 128 of Murota

2003): if A is an L\−convex set, then for any p, q ∈ A, we have (p − ωe) ∨
q, p ∧ (q + ωe) ∈ A ∀ω ≥ 0. Hence, u′′ ∧ (u′ + ω) ∈ U((x, z) + ωe). Together

with ((u′′ ∧ (u′ + ωe))♦k(z + ωe + ξ), ξ ∈ X ) ∈ S∗((x, z) + ωe) we obtain

u′′ ∧ (u′ + ω) ∈ ΠUS∗((x, z) + ωe).

Similarly, since S∗((x, z) + ωe) v ωe + S∗(x, z), we have ((u′′ ∨ (u′ +

ωe))♦k(z+ωe+ξ), ξ ∈ X ) ∈ S∗(x, z)+ωe. Hence, ((u′′−ωe)∨u′)♦k(z+ξ), ξ ∈
X ) ∈ S∗(x, z). Since A is an L\−convex set, (u′, x, z) ∈ A, and (u′′, (x, z) +

ωe) ∈ A, we have ((u′′, (x, z)+ωe)−ωe)∨(u′, x, z) = ((u′′−ωe)∨u′, x, z) ∈ A.

Hence, (u′′−ωe)∨u′ ∈ U(x, z). Therefore, (u′′−ωe)∨u′ ∈ ΠUS∗(x, z). This

completes the proof of the inequality (A.5).

In the following we show that for any i and ω > 0, we have

ΠUS∗(x, z) v ΠUS∗((x, z) + ωei).

It suffices to show that u′ ∧ u′′ ∈ ΠUS∗(x, z), u′ ∨ u′′ ∈ ΠUS∗((x, z) +ωei) for

any u′ ∈ ΠUS∗(x, z) and u
′′ ∈ ΠUS∗((x, z) + ωei).
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If the increment ω is associated with a component of x, then we have

S∗(x, z) v S∗(x + ωei, z). Hence, (u′♦k(z + ξ), ξ ∈ X ) ∧ (u′′♦k(z + ξ), ξ ∈
X ) = ((u′ ∧ u′′)♦k(z + ξ), ξ ∈ X ) ∈ S∗(x, z), and (u′♦k(z + ξ), ξ ∈ X ) ∨
(u′′♦k(z + ξ), ξ ∈ X ) = ((u′ ∨ u′′)♦k(z + ξ), ξ ∈ X ) ∈ S∗(x+ ωei, z). Since A
is a lattice, (u′, x, z) ∈ A, and (u′′, x + ωei, z) ∈ A, we have (u′ ∧ u′′, x, z) ∈
A, (u′ ∨ u′′, x+ ωei, z) ∈ A. Hence, u′ ∧ u′′ ∈ U(x, z), u′ ∨ u′′ ∈ U(x+ ωei, z).

Therefore, u′ ∧ u′′ ∈ ΠUS∗(x, z), u′ ∨ u′′ ∈ ΠUS∗(x+ ωei, z).

If the increment ω is associated with a component of z, we firstly show

u′ ∧ u′′ ∈ ΠUS∗(x, z). Applying the previous arguments, we have u′ ∧ u′′ ∈
U(x, z). We only need to show that ((u′ ∧ u′′)♦k(z + ξ), ξ ∈ X ) ∈ S∗(x, z).

Since S∗(x, z) v S∗(x, z + ωei), we have

(u′♦k(z + ξ), ξ ∈ X ) ∧ (u′′♦k(z + ωei + ξ), ξ ∈ X ) ∈ S∗(x, z).

Here we have the following observation.

Lemma A.1. If u1 ≤ u2, z1 ≤ z2, then

(u1 ∧ z1) ∨ (u2 ∧ z2) = (u1 ∨ u2) ∧ (z1 ∨ z2).

Notice that if u′i ≤ u′′i or i ≤ k (corresponding to the ∧ operation), we

have

(u′i�(zi+ξi), ξ ∈ X )∧(u′′i �(zi+ω+ξi), ξ ∈ X ) = ((u′i∧u′′i )�(zi+ξi), ξ ∈ X ),

where � denote a ∧ or ∨ operation, which is the corresponding operation in

♦k for component i.

Therefore, it remains to consider the case where u′i > u′′i and i > k (corre-

sponding to the ∨ operation). Define ṽ(ξ) , (u′♦k(z+ξ))∧(u
′′
♦k(z+ωei+ξ)),

we have

ṽi(ξi) = (u′i ∨ (zi + ξi)) ∧ (u
′′
i ∨ (zi + ω + ξi))

=


zi + ξi, if ξi ≥ u′i − zi,
u′i, if u′i − zi − ω ≤ ξi < u′i − zi,
zi + ω + ξi, if u′′i − zi − ω ≤ ξi < u′i − zi − ω,

u
′′
i , if ξi < u′′i − zi − ω.

We use ṽ−i(ξ−i) to denote (ṽ1(ξ1), ..., ṽi−1(ξi−1), ṽi+1(ξi+1), ..., ṽn(ξn)).
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Let π∗ denote the optimal objective value of the transformed problem

with parameters (x, z). Similar to the arguments in Theorem 2.2, let

f̂(x, z, v) = f(x, v) + δV(x,z)(v), where V(x, z) denotes the constraint set

{v(ξ)|(x, z, v(ξ)) ∈ AΞ, ξ ∈ X}. Following the proof in Theorem 2.1, define

ĝ(·) = E[f̂(x, z, ṽ−i(Ξ−i), ·)]. Since the function f is componentwise convex,

lower semi-continuous with f(u) → +∞ for |u| → ∞ and the constraint

set is componentwise convex and closed, we have that ĝ(·) is convex, lower

semi-continuous and ĝ(u)→ +∞ for |u| → ∞. Therefore, minui∈F ĝ(ui) has

a greatest and a least minimizer, and given any ũi ∈ arg minui∈F ĝ(·), we

have

π∗ = min{E[ĝ(vi(Ξi))]|vi(ξi) ≥ zi + ξi,∀ξi ∈ Xi}

= min
ui∈F

E[ĝ(ui ∨ (zi + Ξi))]

= E[ĝ(ũi ∨ (zi + Ξi))].

We argue that u
′′
i ∈ arg minui∈F ĝ(ui). Let ūi and ui denote the greatest

and least minimizer respectively. We will show ui ≤ u′′i ≤ ūi. If, otherwise,

ūi < u′′i , then when ξi < u′i − zi we have ūi ≤ ūi ∨ (zi + ξi) < ṽi(ξi) and

thus ĝ(ūi ∨ (zi + ξi)) < ĝ(ṽi(ξi)). By the assumption we have ξ
i
+ zi + ω ≤

u′′i < u′i, hence we know Pr(ξi < u′i − zi) > 0. When ξi ≥ u′i − zi, we have

ĝ(ūi∨(zi+ξi)) = ĝ(zi+ξi) = ĝ(ṽi(ξi)). If ui > u′′i , then when ξi < ui−zi−ω,

we have ui ∨ (zi + ξi) > ṽi(ξi) and thus ĝ(ui ∨ (zi + ξi)) < ĝ(ṽi(ξi)). Since

ξ
i
+ ω + zi ≤ u′′i < ui, we have Pr(ξi < ui − zi − ω) > 0. In the following we

show that when ξi ≥ ui − z − ω, we have ĝ(ui ∨ (zi + ξi)) ≤ ĝ(ṽi(ξi)). When

ui − zi − ω ≤ ξi < ui − zi, we have ĝ(ui ∨ (zi + ξi)) = ĝ(ui) ≤ ĝ(ṽi(ξi)); when

ξi ≥ ui−zi, we have ĝ(ui∨ (zi+ξi)) = ĝ(zi+ξi) ≤ ĝ((u′i∨ (zi+ξi))∧ (zi+ω+

ξi)) = ĝ(ṽi(ξi)). Therefore, for ūi < u′′i or ui > u′′i , we have π∗ < E[ĝ(ṽi(Ξi))],

which contradicts the hypothesis that (ṽ(ξ), ξ ∈ X ) is an optimal solution

to the transformed problem. Hence, π∗ = minui∈F E[ĝ(u′′i ∨ (zi + Ξi))] and

((u′i ∧u′′i )∨ (zi + ξi), ṽ−i(ξ−i), ξ ∈ X ) ∈ S∗(x, z). Since for any j 6= i, ṽj(ξi) =

(u′j ∧ u′′j )�(zj + ξj),∀ξ ∈ X , we have ((u′ ∧ u′′)♦k(z + ξ), ξ ∈ X ) ∈ S∗(x, z).
It follows a similar logic to show that u′ ∨ u′′ ∈ ΠUS∗(x, z + ωei), i.e.,

((u′ ∨ u′′)♦k(z + ωei + ξ), ξ ∈ X ) ∈ S∗(x, z + ωei). We omit the details for

brevity.

In the following we show that the optimal solution set U∗(x, z) is a lattice,
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and it has a greatest element and a least element. Given fixed (x, z), let

h(u) = E[f(x, u♦k(z + Ξ))]. For any realization of Ξ, denoted by ξ, given

any u′ and u′′, we have

f(x, u′♦k(z + ξ)) + f(x, u′′♦k(z + ξ))

= f(x, u′1 ∧ (z1 + ξ1), ..., u′n ∨ (zn + ξn))

+f(x, u′′1 ∧ (z1 + ξ1), ..., u′′n ∨ (zn + ξn))

≥ f(x, (u′1 ∧ (z1 + ξ1)) ∧ (u′′1 ∧ (z1 + ξ1)), ...,

(u′n ∨ (zn + ξn)) ∧ (u′′n ∨ (zn + ξn)))

+f(x, (u′1 ∧ (z1 + ξ1)) ∨ (u′′1 ∧ (z1 + ξ1)), ...,

(u′n ∨ (zn + ξn)) ∨ (u′′n ∨ (zn + ξn)))

= f(x, (u′1 ∧ u′′1) ∧ (z1 + ξ1), ..., (u′n ∧ u′′n) ∨ (zn + ξn))

+f((u′1 ∨ u′′1) ∧ (z1 + ξ1), ..., (u′n ∨ u′′n) ∨ (zn + ξn)).

The inequality is due to the submodularity of f . Then h(u′) + h(u′′) ≥
h(u′∧u′′)+h(u′∨u′′). Therefore, the objective function of (2.7) is submodular

in u. By our assumptions the function f satisfies f(x)→ +∞ for |x| → ∞,

and the constraint set is closed and is a lattice, it is equivalent to restricting

our constraint set to a compact sublattice of <n. By Corollary 2.7.1 of Topkis

(1998) the solution set U∗(x, z) is a compact sublattice of <n, and there exist

a greatest element and a least element in the solution set. �

Remark A.1. Firstly, even though we know that if f is submodular then

E[f(u∧Ξ)] is submodular (see Proposition A.1), unfortunately E[f(u∧ (z+

Ξ))] may not be submodular in (u, z). To see this, we provide an example

here. Let f(x) = x, and Ξ = 0 with probability 1. Choose u = 3, u′ = 2, z =

1, z′ = 4. We have

f(u ∧ z) + f(u′ ∧ z′)

= f(1) + f(2)

< f(1) + f(3)

= f((u ∧ u′) ∧ (z ∧ z′)) + f((u ∨ u′) ∧ (z ∨ z′)).

Therefore, the objective function of problem (11) may not be submodular in

(x, z, u).
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A.8 A Comparison to the Stochastic Linearity

Approach

Feng and Shanthikumar, (hereafter referred to as FS, 2016) use the notion

of stochastic linearity in mid-point to develop a different technique to show

that a class of nonlinear supply and demand functions (in the almost sure

sense) are in fact linear in the stochastic sense. Like ours, their approach

allows them to convert some non-convex minimization problems, including

those in Ciarallo et al. (1994), Wang & Gerchak (1996), Feng (2010) and

Feng & Shi (2012), into convex minimization problems. Treating the means

of the supply and demand functions as decision variables instead of the o-

riginal decisions (ordering quantity and price), they show that supply and

demand functions are stochastically linear in mid point with respect to their

means and the objective functions are concave in the means of supply and

demand. Note that they focus on the concavity property but do not touch

upon supermodularity or L\−convavity. Different from their approach, our

approach works on the original decision variables and transforms the original

optimization problem into an equivalent constrained optimization problem,

which allows us to readily show the preservation of convexity, submodularity

and L\-convexity.

Here we provide a detailed comparison between our transformation tech-

nique and their approach. In particular, we show that although their ap-

proach can also preserve convexity and submodularity, it does not preserve

L\−convexity.

We start by a brief introduction about FS’s method. FS also consid-

er optimization problems with objective function E[f(u ∧ Ξ)] and convert

them to convex minimization problems using stochastic linearity in mid-

point (SL(mp)). Specifically, given a stochastic function Y (u) , ψ(u,Ξ),

let µ(u) = E[ψ(u,Ξ)], and u(µ) be the inverse of µ(u), i.e., u(µ) =

inf{u|E[ψ(u,Ξ)] ≥ µ}. Then g(µ) , E[f(Y (u(µ)))] is convex in µ as long as

Y (u(µ)) is SL(mp). FS prove that, along with several other supply functions,

if ψ(u,Ξ) = u∧Ξ, then Y (u(µ)) is SL(mp). This allows them to convert non-

convex minimization problems to equivalent convex minimization problems

by a variable transformation.

Our transformation technique can preserve convexity as well as submod-

ularity and L\−convexity. FS do not mention whether their approach can
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preserve submodularity or L\−convexity. It turns out that their approach

can preserve submodularity of the objective function, but can not preserve

L\−convexity. These are shown in the following Proposition A.1 and Exam-

ple A.1 respectively.

Proposition A.1. Suppose that f : <n → <̄ is a submodular function, and

Ξ is a random vector with support X ∈ <n, in which any component Ξi is

independent of each other. Let µ(u) = E[u ∧ Ξ] and u(µ) be the inverse of

µ(u). Then

(a) h(u) = E(f(u ∧ Ξ)) is submodular.

(b) g(µ) = E(f(u(µ) ∧ Ξ)) is submodular.

Proof. (a) For any realization ξ, given any u and u′, we have f(u∧ξ)+f(u′∧
ξ) ≥ f((u∧ξ)∧(u′∧ξ))+f((u∧ξ)∨(u′∧ξ)) = f((u∧u′)∧ξ)+f((u∨u′)∧ξ).

(b) Notice that for any component i = 1, ..., n, ui(µi) is increasing. It

follows from section 9.A.4 of Shaked & Shanthikumar (2006) and part (a)

that g(µ) is also submodular.

Example A.1. Consider E[f(u1 ∧ Ξ1, u2 ∧ Ξ2)], where f(u1, u2) = eu1−u2

is an L\−convex function. Suppose that both Ξ1 and Ξ2 follow exponential

distribution with mean 1, and they are independent of each other. Then

∀i = 1, 2, µi(ui) = E[ui ∧ Ξi] =
∫ ui

0
ξie
−ξidξi +

∫∞
ui
uie
−ξidξi = 1 − e−ui. We

have ui(µi) = − ln(1− µi) and

E[f(u1 ∧ Ξ1, u2 ∧ Ξ2)]

=

∫ u2

0

∫ u1

0

eξ1−ξ2e−ξ1e−ξ2dξ1dξ2 +

∫ u2

0

∫ ∞
u1

eu1−ξ2e−ξ1e−ξ2dξ1dξ2

+

∫ ∞
u2

∫ u1

0

eξ1−u2e−ξ1e−ξ2dξ1dξ2 +

∫ ∞
u2

∫ ∞
u1

eu1−u2e−ξ1e−ξ2dξ1dξ2

=
1

2
(1 + u1)(1 + e−2u2)

=
1

2
(1− ln(1− µ1))(1 + (1− µ2)2)

Define g(µ1, µ2) = 1
2
(1 − ln(1 − µ1))(1 + (1 − µ2)2). Let µ = [0.7, 0.2], µ′ =

[0.8, 0.4], α = 0.1. We have g(µ) + g(µ′) ≈ 3.5817 while g((µ + αe) ∧ µ′) +

g(µ ∨ (µ′ − αe)) ≈ 3.5860. Therefore,

g(µ) + g(µ′) < g((µ+ αe) ∧ µ′) + g(µ ∨ (µ′ − αe)),

74



which means that g(µ1, µ2) is not L\−convex.

Notice that the approach from FS requires computing the inverse of µ(u),

which may not have a closed form solution. If we consider a constrained

optimization problem, even if all the constraints in the original problem are

linear, the approach from FS will very likely add non-linear constraints ex-

plicitly. However, our transformation technique only adds linear constraints

though potentially infinite number of them. More importantly, under the

conditions in Lemma 2.2, the constraint set can also preserve L\−convexity

with our transformation technique, but this may not hold using the approach

in FS. We illustrate this in the following example.

Example A.2. Consider infu∈U E[f(u1 ∧ Ξ1, u2 ∨ Ξ2)], where f(·, ·) is an

L\−convex function and U = {(u1, u2)|u1 − u2 ≤ 1
2
, 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1}.

Suppose Ξ1 and Ξ2 are both uniformly distributed between 0 and 1, and they

are independent of each other. Applying our transformation technique, we

have
inf E[f(v1(Ξ1), v2(Ξ2))]

s.t. v(ξ1) ≤ ξ1 ∀ξ1 ∈ [0, 1],

v2(ξ2) ≥ ξ2 ∀ξ2 ∈ [0, 1],

(v1(ξ1), v2(ξ2)) ∈ V ∀ξ ∈ [0, 1]× [0, 1],

(A.6)

where V = {(v1, v2)|v1 − v2 ≤ 1
2
, 0 ≤ v1 ≤ 1, 0 ≤ v2 ≤ 1}. All constraints in

the transformed problem are linear, and they form an L\−convex set.

Next we apply the transformation of FS. We have

µ1(u1) = E[u1 ∧ Ξ1] = u1 −
1

2
u2

1,

µ2(u2) = E[u2 ∨ Ξ2] =
1

2
(1 + u2

2).

Then we have

u1(µ1) = 1−
√

1− 2µ1,

u2(µ2) =
√

2µ2 − 1.

Hence, the constraint set after the transformation becomes

Ũ = {(µ1, µ2)|
√

1− 2µ1 +
√

2µ2 − 1 ≥ 1

2
, 0 ≤ µ1 ≤

1

2
,
1

2
≤ µ2 ≤ 1},
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which consists of non-linear constraints. One can also check that Ũ is not

an L\−convex set. To see this, notice that µ = [0.3, 0.5] ∈ Ũ and µ′ =

[0.41, 0.51] ∈ Ũ , but µ ∨ (µ′ − αe) /∈ Ũ with α = 0.01.
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Appendix B

B.1 Proof of Theorem 3.1

For notational brevity, we omit the superscript k in the proof when there is no

ambiguity. Define u1, u2 as the inventory level after the sales assuming that

the firm can hold inventory with some demand unsatisfied. Then the realized

sales are given by w1 − u1 and w2 − u2 at the two facilities respectively. By

letting ũ2 = −u2, we claim that J̃(w1, w̃2, v) equals the optimal objective

value of the following problem:

max
u1,ũ2

r1(w1 − u1)− r2(w̃2 − ũ2)− h1u1 + h2ũ2

− s1v
+ − s2(−v)+ + αG̃k−1

∗ (u1, ũ2)

s.t. 0 ≤ u1, u1 − w1 ≤ 0,

w̃2 − ũ2 ≤ 0, ũ2 ≤ 0,

w1 − u1 ≤ d1, u2 − w̃2 ≤ d2.

(B.1)

Note that facing a stationary system, the firm should never hold inventory

and reject demand at the same time since it is always more profitable to sat-

isfy the current demand than holding the inventory to fulfill future demands.

Therefore, the optimal solution is u1 = (w1 − d1)+, u2 = −(−w̃2 − d2)+ and

our claim is correct.

We further claim that the objective function of the problem (B.1) is L\-

concave in (w1, w̃2, v, u1, ũ2). To see this, note that G̃k−1
∗ (u1, ũ2) is L\-concave

by our induction hypothesis. The L\-concavity of the rest of terms in the

objective function is straightforward to verify. The constraint set is L\-convex

according to Proposition 2.1 part (g). Then the L\-concavity of J̃(w1, w̃2, v)

follows from Proposition 2.1 part (e).

Note that the objective function in (3.5) is separable in variables (w1, w̃2)
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and (v, v). Thus, the L\-concavity of J̃k∗ (q1, q̃2) follows from Proposition 3.1.

By defining G̃(y1, y2) = ED1,D2{−c1y1 + c2y2 + J̃k∗ (y1, y2)}, (3.4) can be

expressed as

G̃∗(x1, x̃2) = max
y1≥x1,ỹ2≤x̃2

ET1,T̃2{G̃(y1 ∧ (x1 +T1), ỹ2 ∨ (x̃2 + T̃2))}+ c1x1− c2x̃2

Clearly G̃(y1, y2) is L\-concave in (y1, y2). Moreover, y1 ∧ (x1 + T1) = (y1 −
x1)∧T1 +x1 and ỹ2∨ (x̃2 + T̃2) = (ỹ2− x̃2)∨ T̃2 + x̃2. It is easy to see that by

transforming the variables ŷ1 = y1− x1 and ŷ2 = ỹ2− x̃2, the above problem

can be expressed in the form of (2.7). Then Proposition 2.3 implies that the

profit-to-go function G̃∗(x1, x̃2) is L\-concave.

B.2 Proof of Theorem 3.2

The proof is by induction. Suppose that vt+1 is L\-convex. By Proposition

2.1 (d), for any dt, vt+1[(z2, ..., zk, y)− (dt + u)e] is L\-convex in (z, y, u) and

so is αvt+1[(z2, ..., zk, y)− (dt + u)e]. Clearly all the other terms of gt are L\-

convex in (z, y, u) (That’s why we define u = −qE and k̃e,t = −kE,t). Thus,

gt is L\-convex in (z, y, u). Let A = {(z, y, u)|y ≥ zk, u ≤ 0} and

AΞ = {(z, y∧(zk+kR,t), u∨k̃e,t)|y ≥ zk, u ≤ 0, kR,t ∈ Supp(KR,t), k̃e,t ∈ Supp(K̃E,t)}.

Since KR,t ≥ 0 and K̃E,t ≤ 0 almost surely, it is easy to see that

AΞ = {(z, w1, w2)|zk + kuR,t ≥ w1 ≥ zk, k̃
l
E,t ≤ w2 ≤ 0},

where kuR,t = ess supSupp(KR,t) and k̃lE,t = ess inf Supp(K̃E,t).

The constraint set AΞ forms an L\-convex set because of Proposition 2.1

(g). It is straightforward to see that the set A = {(z, y, u)|y ≥ zk, u ≤ 0}
is of the form in Lemma 2.3. Applying Theorem 2.3, we know vt(z) is L\-

convex in z ∈ S. According to Theorem 2.4, the greatest optimal solution

(yt(z), ut(z)) is well defined and has the desired monotonicity property with

limited sensitivity.
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B.3 Derivation of Inequalities (3.10)

The state of the system is (z1, ..., zk), which is the cumulated inventory level.

Decisions are y = zk + qr and u = −qe. The L\−convexity gives us y(z) ≤
y(z+ωe) ≤ y(z)+ω, u(z) ≤ u(z+ωe) ≤ u(z)+ω. Let x1 = z1, x2 = z2−z1, ...,

q̂r(x) = qr(z), we only need to show that

−ω ≤ q̂r(x+ ωek)− q̂r(x) ≤ ... ≤ q̂r(x+ ωe1)− q̂r(x) ≤ 0.

We know that

(a) if ek = 1, −ω ≤ q(z + ωe)− q(z) ≤ 0,

(b) if ek = 0, 0 ≤ q(z + ωe)− q(z) ≤ ω.

Then (a) implies that

−ω ≤ q̂r(x+ ωei)− q̂r(x) ≤ 0, ∀i = 1, ..., k.

And (b) implies that

q̂r(x+ ωei)− q̂r(x) ≤ ... ≤ q̂r(x+ ωej)− q̂r(x), ∀1 ≤ j ≤ i ≤ k.

B.4 Proof of Theorem 3.3

(a) We prove by induction. Assume that ft+1 is convex. It is easy to see

that gt(z|d) in (3.13) is convex in z for any demand realization d since the

objective function is jointly convex in (z, u) and the constraints form a convex

set. Define Gt(z) , cT z + E[gt(z|D)], which is convex in z. Then ft(x) =

miny≥xE[Gt(y ∧ (x + Ξ))] − cTx. The constraint set is A = {(x, y)|y ≥ x}.
By definition, AΞ = {(x, y∧ (x+ ξ))|y ≥ x, ξ ∈ Supp(Ξ)}. This is equivalent

to the set {(x,w)|xi ≤ wi ≤ xi + ξ̄i,∀i = 1, ...,m}, which is convex. In

addition, Assumption 2.2 is satisfied since A is of the form given in Lemma

2.3. Therefore, following Theorem 2.3 we know that ft(x) is convex in x.
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(b) For j = 1, ...,m, define ûj = zj − uj. Let ûm+1 = um+1 and

Â =



−1 0 0 · · · 0 1

0 −1 0 · · · 0 1

0 0 −1 · · · 0 1
...

...
...

. . .
...

...

0 0 0 · · · −1 1


. (B.2)

Then gt(y|d) can be written as

gt(z|d) = min
û:(z,û)∈Û(d)

{L̂(z, û|d) + αft+1(û1 − ûm+1, ..., ûm − ûm+1)}, (B.3)

where

L̂(z, û|d) =
m∑
i=1

hi(ûi−ûm+1)+
m∑
j=1

bj(dj−zj+ûj)+bm+1(dm+1−ûm+1), (B.4)

and

Û(d) = {(z, û)|Âû ≤ 0, 0 ≤ zj − ûj ≤ dj, j = 1, 2, ...,m, 0 ≤ ûm+1 ≤ dm+1}.
(B.5)

We then prove by induction. Clearly fT+1(x) is L\-convex. If ft+1 is L\-

convex then the objective function of (B.3) is also L\-convex in (z, û) due to

Proposition 2.1 (a) and (d). The constraint set Û(d) forms a L\-convex set by

Proposition 2.1 (g). Therefore, gt(z|d) is L\-convex in z for any d according

to Proposition 2.1 (e). Similar to part (a) we have AΞ = {(x,w)|xi ≤
wi ≤ xi + ξ̄i,∀i = 1, ...,m}, which is L\-convex following Proposition 2.1 (g).

One can easily check that A is of the form given in Lemma 2.3. Therefore,

applying Theorem 2.3 and 2.4, we know that ft(x) is also L\-convex and the

sensitivity results hold.

B.5 Proof of Theorem 3.4

(a) We prove by induction. Assume ft+1 is concave. In the objective function

of (3.17), gt(·, ·) is clearly concave. Since A = {(x, u)|Au ≤ x, u ≥ 0},
AΞ = {(x, u∧d)|(x, u) ∈ A, d ∈ Supp(D)}, which is equivalent to the convex
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set {(x,w) : Aw ≤ x, 0 ≤ wj ≤ d̄j,∀j = 1, ..., n}. In addition, Assumption

2.2 is satisfied since A is of the form given in Lemma 2.3. Then it follows

from Theorem 2.3 that ft(x) is concave.

(b) For j = 1, ...,m, define ûj = xj − uj, ûm+1 = um+1 and Â is given in

(B.2). The optimality equations can be rewritten as

ft(x) = max
û:(x,û)∈A

E

[
πm+1 +

m∑
j=1

pjxj −
m∑
j=1

pj(ûj ∨ (xj − dj)) + ft+1 (x̃)

]
,

(B.6)

where πm+1 = pm+1(ûm+1 ∧ dm+1), Â = {(x, û)|û ≥ 0, Âû ≤ 0, xj − ûj ≥
0, j = 1, ...,m} and

x̃ = [û1 ∨ (x1 − d1), ..., ûm ∨ (xm − dm)]− (ûm+1 ∧ dm+1)e.

Define ht(x, ξ) = pm+1ξm+1 +
∑m

j=1 pjxj−
∑m

j pjξj+ft+1((ξ1, ..., ξm)−ξm+1e).

Then for t = 1, ..., T,

ft(x) = max
û:(x,û)∈A

E[ht(x, û1 ∨ (x1 − d1), ..., ûm ∨ (xm − dm), ûm+1 ∧ dm+1)].

Clearly fT+1(x) is L\-concave. If ft+1(x) is L\-concave, then ht(x, ξ) is

also L\-concave by Proposition 2.1 (a) and (d). We have that AΞ can be

expressed as

{(x, û1 ∨ (x1 − d1), ..., ûm ∨ (xm − dm), ûm+1 ∧ dm+1)|(x, û) ∈ Â}.

Notice that AΞ is equivalent to the following set

{(x,w)|(xj − d̄j) ∨ wm+1 ≤ wj ≤ xj, wj ≥ 0, j = 1, ...,m, 0 ≤ wm+1 ≤ d̄m+1},

where d̄j = ess sup{dj|d ∈ Supp(D)}. It follows from Proposition 2.1 (g) that

AΞ is L\-convex. One can easily check that A is of the form in Lemma 2.3.

Therefore, Theorem 2.3 can be applied to show that the L\-concavity of ft(x)

is preserved. It follows from Theorem 2.4 that there exists a greatest solution

û∗(x) such that û∗j(x) is increasing in x for all j with limited sensitivity, which

implies that u∗m+1(x) = û∗m+1(x) is increasing in x with limited sensitivity

while u∗j(x) = xj − û∗j(x) is increasing in xj, and decreasing in xk, k 6= j with
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limited sensitivity.
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Appendix C

C.1 Proof of Theorem 4.1

Let π∗ be the optimal objective value of problem (4.2). Since for any u ∈ Fn,

(u, (v(ξ), ξ ∈ X )) = (u, (u ∧ ξ, ξ ∈ X )) is feasible for problem (4.2), we have

π∗ ≤ τ ∗.

It remains to show that τ ∗ ≤ π∗. Clearly, it holds when π∗ =∞. Thus, in

the following, we assume that π∗ < ∞, which together with assumption (a)

implies that all optimization problems involved below, as well as problems

(4.1) and (4.2), admit finite optimal solutions.

We first show that it is true for n = 1. Let û ∈ arg minu g(u) and u∗ ∈
arg minu{l(u) + E[g(u ∧ Ξ)]}. Given any solution of problem (4.2), denoted

by (u′, (v′(ξ), ξ ∈ X )), we are going to show that

l(u∗) + E[g(u∗ ∧ Ξ)] ≤ l(u′) + E[g(v′(Ξ))].

For this purpose, we discuss two cases.

Case 1: if u′ ≤ û, then

l(u∗) + E[g(u∗ ∧ Ξ)] ≤ l(u′) + E[g(u′ ∧ Ξ)] ≤ l(u′) + E[g(v′(Ξ))].

The first inequality is due to the optimality of u∗. In the following we prove

the second inequality. If ξ ≤ u′, then g(u′∧ξ) = g(ξ) ≤ g(v′(ξ)) since v′(ξ) ≤
ξ ≤ u′ ≤ û and g(·) is convex. If ξ > u′, then g(u′ ∧ ξ) = g(u′) ≤ g(v′(ξ))

since v′(ξ) ≤ u′ ≤ û and g(·) is convex. Hence, g(u′ ∧ ξ) ≤ g(v′(ξ)) for any

ξ ∈ X .

Case 2: if u′ > û, then

l(u∗) + E[g(u∗ ∧ Ξ)] ≤ l(û) + E[g(û ∧ Ξ)] ≤ l(u′) + E[g(v′(Ξ))].
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The first inequality is due to the optimality of u∗. Since v′(ξ) ≤ ξ, it is easy to

see that g(û∧ξ) ≤ g(v′(ξ)) for any ξ ∈ X , and thus E[g(û∧Ξ)] ≤ E[g(v′(Ξ))].

Then the second inequality follows from l(·) is increasing.

Combing the above two cases we have τ ∗ ≤ π∗. This completes the proof

when n = 1. Notice that when n = 1, the last constraint in (4.2) is redundant.

We now consider the general case with n > 1. We start from the first

component. Let (u′, v′) = (u′1, ..., u
′
n, ((v

′
1(ξ1), ..., v′n(ξn)), ξ ∈ X ) denote an

optimal solution of problem (4.2). Given (u′2, ..., u
′
n, ((v

′
2(ξ2), ..., v′n(ξn)), ξ ∈

X )), π∗ is equal to the optimal objective value of the following problem

inf l(u1, u
′
2, ..., u

′
n) + E[f(v1(Ξ1), v′2(Ξ2), . . . , v′n(Ξn))]

s.t. v1(ξ1) ∈ F ,
v1(ξ1) ≤ ξ1 ∀ξ1 ∈ X1,

v1(ξ1) ≤ u1 ∀ξ1 ∈ X1,

v1(ξ1) is increasing ∀ξ1 ∈ X1.

(C.1)

We need to show that there exists a u∗1 such that

l(u∗1, u
′
2, ..., u

′
n) + E[f(u′1 ∧ Ξ1, v

′
2(Ξ2), . . . , v′n(Ξn))] = π∗.

For this purpose, we firstly prove the following lemma.

Lemma C.1. Suppose that the function g(v, ξ) : F×X → <̄ is supermodular

in (v, ξ), and for any ξ ∈ X , g(v, ξ) is convex in v. Consider the following

problem:

inf l(u) + E[g(v(Ξ),Ξ)]

s.t. v(ξ) ∈ F ,
v(ξ) ≤ ξ ∀ξ ∈ X ,
v(ξ) ≤ u ∀ξ ∈ X ,
v(ξ) is increasing ∀ξ ∈ X .

(C.2)

Then there exists a u∗ such that the optimal objective value of problem (C.2)

is equal to l(u∗) + E[g(u∗ ∧ Ξ,Ξ)].

Proof of Lemma C.1: We start by consider the following problem:

inf E[g(v(Ξ),Ξ)]

s.t. v(ξ) ∈ F ∀ξ ∈ X
(C.3)

84



Let ξ̃ = −ξ and g̃(v, ξ̃) = g(v,−ξ̃), then g̃(v, ξ̃) is submodular in (v, ξ̃), and

the optimal solution of minv g(v, ξ) is equivalent to that of minv g̃(v, ξ̃). It

then follows from Theorem 2.2.8 of Simchi-levi et al. (2014) that there exists

an optimal solution of minv g̃(v, ξ̃) which is increasing in ξ̃. Equivalently,

there exists an optimal solution of minv g(v, ξ) which is decreasing in ξ, de-

noted by v̂(ξ). Notice that (v̂(ξ)|ξ ∈ X ) is an optimal solution of problem

(C.3).

Let (u′, (v′(ξ), ξ ∈ X )) be an optimal solution of problem (C.2). We are

going to show that there exists a u∗ such that l(u∗) + E[g(u∗ ∧ Ξ,Ξ)] ≤
l(u′) +E[g(v′(Ξ),Ξ)]. We divide our discussion into the following three cases

and pick u∗ accordingly. (1) When exists some ξ̂ such that v̂(ξ) ≥ v′(ξ)

for ξ < ξ̂ and v̂(ξ) ≤ v′(ξ) for ξ ≥ ξ̂, choose u∗ = supξ<ξ̂ v
′(ξ); (2) When

v′(ξ) ≤ v̂(ξ) ∀ξ ∈ X , choose u∗ = sup v′(ξ); (3) When v′(ξ) ≥ v̂(ξ) ∀ξ ∈ X ,

let u∗ = inf v′(ξ).

Case (1): If ξ ≥ ξ̂, then u∗ ∧ ξ = u∗ since u∗ ≤ v′(ξ̂) ≤ ξ̂. We also have

v̂(ξ) ≤ u∗ since v̂(ξ) is decreasing, and v′(ξ) ≥ u∗ since v′(ξ) is increasing.

Since the function g(v, ξ) is convex in v for any ξ, and v̂(ξ) ≤ u∗∧ξ ≤ v′(ξ), we

have g(u∗∧ξ, ξ) ≤ g(v′(ξ), ξ). If ξ ≤ ξ̂, we have v′(ξ) ≤ u∗∧ξ since v′(ξ) ≤ ξ,

v′(ξ̂) ≤ u∗, and v′(ξ) is increasing. Because v′(ξ) ≤ u∗ ∧ ξ ≤ v̂(ξ) and g(v, ξ)

is convex in v for any ξ ∈ X , we obtain that g(u∗∧ξ, ξ) ≤ g(v′(ξ), ξ) ∀ξ ∈ X .

Since u∗ ≤ u′ and l(·) is increasing, we have l(u∗) +E[g(u∗ ∧Ξ,Ξ)] ≤ l(u′) +

E[g(v′(Ξ),Ξ)].

Case (2): When v′(ξ) ≤ v̂(ξ) ∀ξ ∈ X , we have v′(ξ) ≤ u∗∧ξ ≤ v̂(ξ) ∀ξ ∈ X .

Since g(v, ξ) is convex in v for any ξ, we have g(u∗∧ξ, ξ) ≤ g(v′(ξ), ξ) ∀ξ ∈ X .

Notice that in this case we must have u′ = u∗, hence l(u∗)+E[g(u∗∧Ξ,Ξ)] ≤
l(u′) + E[g(v′(Ξ),Ξ)].

Case (3): When v′(ξ) ≥ v̂(ξ) ∀ξ ∈ X , we have u∗ ∧ ξ = u∗. Hence,

v̂(ξ) ≤ u∗ ∧ ξ ≤ v′(ξ) ∀ξ ∈ X and g(u∗ ∧ ξ, ξ) ≤ g(v′(ξ), ξ) ∀ξ ∈ X . Since

u∗ ≤ u′, we obtain l(u∗) + E[g(u∗ ∧ Ξ,Ξ)] ≤ l(u′) + E[g(v′(Ξ),Ξ)].

This completes the proof of Lemma C.1.

Now back to problem (C.1). By the law of iterative expectation, we can
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rewrite the second term in the objective function of problem (C.1) as

E[f(v(Ξ))]

= EΞ1 [EΞ2,...,Ξn|Ξ1 [f(v1(Ξ1), v∗2(Ξ2), . . . , v∗n(Ξn))]]

=

∫
X1

g(v1(ξ1), ξ1)dFΞ1(ξ1),

where

g(v1, ξ1) = EΞ2,...,Ξn|Ξ1=ξ1 [f(v1, v
∗
2(Ξ2), . . . , v∗n(Ξn))].

Since f is componentwise convex, g(v1, ξ1) is convex in v1 for any ξ1. In

the following we show that g(v1, ξ1) is supermodular in (v1, ξ1). Define w =

(w2, ...wn) and

f̃(v1, w) = f(v1, v
∗
2(w2), ..., v∗n(wn)).

Then

g(v1, ξ1) =

∫
f̃(v1, w)dF̃ξ1(w),

where F̃ξ1(w) is the joint distribution of Ξ2, ...,Ξn conditional on Ξ1 = ξ1. By

assumption (c), we have that {F̃ξ1(w)|ξ1 ∈ X1} is a stochastically increasing

collection of distribution functions on <n−1. Because v∗j (ξj) are increasing

for j = 2, ..., n and f is supermodular, f̃ is supermodular in (v1, w) (See sec-

tion 9.A.4 of Shaked & Shanthikumar 2006). Then it follows from Theorem

3.10.1 of Topkis (1998) that g(v1, ξ1) is supermodular. Therefore, Lemma

C.1 implies that there exists a u∗1 such that

l(u∗1, u
′
2, ..., u

′
n) + E[f(u′1 ∧ Ξ1, v

′
2(Ξ2), . . . , v′n(Ξn))] = π∗.

Next move on to the second component. Similar to (C.1), π∗ is equal to the
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optimal objective value of the following problem

inf l(u∗1, u2, u
′
3, ..., u

′
n) + E[f(u∗1 ∧ Ξ1, v2(Ξ2), v′3(Ξ3), . . . , v′n(Ξn))]

s.t. v2(ξ2) ∈ F ,
v2(ξ2) ≤ ξ2 ∀ξ2 ∈ X2,

v2(ξ2) ≤ u2 ∀ξ2 ∈ X2,

v2(ξ2) is increasing ∀ξ2 ∈ X2.

(C.4)

Following the proceeding analysis, there exists a u∗2 such that

π∗ = l(u∗1, u
∗
2, u
′
3, ..., u

′
n) + E[f(u∗1 ∧ Ξ1, u

∗
2 ∧ Ξ2, v

′
3(Ξ3), ..., v′n(Ξn))].

Continue this process and applying the same approach we can find u∗j , j =

1, ..., n such that π∗ = l(u∗1, ..., u
∗
n) +E[f(u∗1 ∧Ξ1, ..., u

∗
n ∧Ξn)]. Therefore, we

have π∗ = τ ∗. �

C.2 Proof of Theorem 4.2

Problem (4.3) is equivalent to the following unconstrained optimization prob-

lem.

inf
u∈Fn

l(u) + E[f(u ∧ Ξ)] + δU(u). (C.5)

For any v ∈ Fn, let f̂(v) = f(v)+δV(v), where V is defined in (4.4). Then the

optimal objective value of problem (C.5) is equivalent to that of the following

problem

inf
u∈Fn

l(u) + E[f̂(u ∧ Ξ)]. (C.6)

To see this, note that for any u ∈ U , we have u∧ξ ∈ V ∀ξ ∈ X . Hence, given

any feasible solution u of infu∈U{l(u) + E[f(u ∧ Ξ)]}, we can always find a

û ∈ Fn (simply let û = u) such that l(û) +E[f̂(û∧Ξ)] = l(u) +E[f(u∧Ξ)].

Therefore, infu∈Fn{l(u) + E[f̂(u ∧ Ξ)]} ≤ infu∈U{l(u) + E[f(u ∧ Ξ)]}. On

the other hand, due to Assumption 4.1, given any feasible solution û of

infu∈Fn{l(u) + E[f̂(u ∧ Ξ)]}, we can always find a u ∈ U such that l(û) +

E[f̂(û ∧ ξ)] ≥ l(u) + E[f(u ∧ Ξ)]. Therefore, infu∈Fn{l(u) + E[f̂(u ∧ Ξ)]} ≥
infu∈U{l(u) +E[f(u∧Ξ)]}. Applying Theorem 4.1 to problem (C.6), we can

obtain the transformed problem (4.5). �
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C.3 Proof of Theorem 4.3

By the definition of CVaR, problem (4.6) is equivalent to

inf
u∈U

inf
λ̂∈<
{λ̂+

1

1− α
E[(l(u) + f(u ∧ Ξ)− λ̂)+]}. (C.7)

Define λ = λ̂ − l(u) and g(u, λ) = λ + 1
1−α(f(u) − λ)+, the above problem

can be reformulated as

inf
λ∈<,u∈U

l(u) + E[g(u ∧ Ξ, λ)].

Notice that if f is componentwise/jointly convex, then g(u, λ) is also com-

ponentwise/jointly convex. By Theorem 4.2, given any λ the problem

infu∈U l(u) + E[g(u ∧ Ξ, λ)] can be transformed to

inf l(u) + E[g(v(Ξ), λ)]

s.t. v(ξ) = (v1(ξ1), ..., vn(ξn)) ∈ V ∀ξ ∈ X ,
v(ξ) ≤ ξ ∀ξ ∈ X ,
v(ξ) ≤ u ∀ξ ∈ X .

Therefore, problem (4.6) is equivalent to problem (4.7). �

C.4 Proof of Corollary 4.1

Based on the definition of the distortion risk measure, problem (C.7) can be

formulated as

inf
u∈U

∫ 1

0

inf
λ(α)∈<, ∀α∈[0,1)

[l(u) + E[g(u ∧ Ξ, λ(α), α)]]dµ(α),

which is equivalent to

inf
λ(α)∈<,∀α∈[0,1)

inf
u∈U

[
l(u) +

∫ 1

0

E[g(u ∧ Ξ, λ(α), α)]dµ(α)

]
.

We have that
∫ 1

0
E[g(u, λ(α), α)]dµ(α) is componentwise convex in u. Then

the desired results follow. �
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Appendix D

D.1 Proof of Lemma 5.1

Consider the following maximum weight circulation problem:

F = max
wij ,fSi,fjT

−
N∑
i=1

N∑
j=1

sijwij +
N∑
i

hifSi +
N∑
j=1

pjfjT

s.t.
N∑
j=i

wij = fSi, ∀i = 1, ..., N

j∑
i=1

wij = fjT , ∀j = 1, ..., N

0 ≤ fSi ≤ yi, 0 ≤ fjT ≤ dj, 0 ≤ wij ∀i, j = 1, ..., N.

(D.1)

In this maximum weight circulation problem, we add two more nodes S

and T to the original product-demand graph (see Figure D.1 for an example

with n = 3). Let wij be the flow from product i to demand j, fSi be the

flow from node S to product i, and fjT be the flow from demand j to node

T . Flows fSi is bounded above by yi and fjT is bounded above by dj. The

weights for wij, fSi, fjT are −sij, hi, pj respectively. since the arcs associated

with flow fSi are parallel, then by Theorem 1.3 and 1.4 of Murota (2005), F is

concave and submodular. Notice that L(y|d) = −F +
∑N

i=1 hiyi +
∑N

j=1 pjdj,

thus L(y|d) is convex and supermodular in y. This completes the proof. �

D.2 Proof of Theorem 5.1

Let K denote the support of the random capacities K, and define k̄j =

ess sup{kj|k ∈ K}. Note that V = {y∧ (x+ k)|y ≥ x, k ∈ K} is equivalent to
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Figure D.1: The equivalent maximum weight circulation problem

1
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1

2

3

S T

the set {w|xj ≤ wj ≤ xj+ k̄j, j = 1, ..., n}, whose indicator function is convex

and supermodular. For any y ∈ Fn such that y ∧ (x + k) ∈ V ∀k ∈ K, we

must have y ≥ x. To see this, suppose that yj < xj for some j ∈ {1, ..., n}.
Since the random capacities have a positive support, pick any k ∈ K, we

have yj ∧ (xj + kj) = yj < xj, which is a contradiction. Hence, Assumption

4.1 is satisfied. Therefore, applying Theorem 4.2, the original problem can

be transformed to (5.4). �
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