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ABSTRACT 

Since agriculture started, there have been numerous occasions when plant diseases of crops 

had severe impact on human activities. From the famine caused by potato late blight 

(Phytophthora infestans) in Ireland in 1846, to the dramatic economic loss caused by downy 

mildew of grapes (Plasmopara viticola) in the Mediterranean in 1865, to the loss of the valuable 

banana cultivar ‘Gros Michel’ caused by Fusarium oxysporum Schlect. f. sp. cubense, plant 

diseases have caused significant historical and economic importance. The goal of plant disease 

management is to reduce the economic and aesthetic damage caused by plant diseases, and the 

focus of my thesis centers around studying diseases and their pathogen in an effort to supplement 

long-term effective management strategies for important diseases of soybean.  

Soybean cyst nematode (SCN; Heterodera glycines; HG) is a widely occurring and 

damaging pathogen with a wide host range. SCN is the leading cause of soybean yield loss in the 

US and it will likely become a major yield-limiting threat to common bean (Phaseolus vulgaris 

L.), another highly susceptible host of SCN. Developing resistant cultivars is the most cost-

effective method for managing this disease. In the first chapter of my thesis, I focused on 

identifying additional sources of resistance to SCN in perennial Glycine species which can be 

potentially used for improving resistance of soybean to SCN. 13 perennial Glycine species of 

282 PIs were inoculated with HG types 0, 2, and 1.2.3 first, and then 36 PIs out of this set were 

further evaluated by inoculating with HG type 1.2.3.4.5.6.7, a population that overcomes all the 

resistance genes in soybean. The Glycine species evaluated contains many PIs that are highly 

resistant to SCN with 10 species classified as immune or highly resistance to three HG types, 

indicating a much broader resistance in these PIs. With additional work on hybridizing the 

perennial Glycine species and soybean along with techniques of gene cloning and gene transfer, 



 iii 

many of the genes in the perennial Glycine species could be used to develop additional soybean 

genotypes with SCN resistance.  In the second chapter of my thesis, genome-wide association 

study (GWAS) was used to detect SNPs significantly associated with SCN resistance in the core 

collection of P. vulgaris and to make genomic predictions (GPs) of SCN resistance to two HG 

types. GWAS identified SNPs that are significantly associated with resistance to two HG types, 

and GP for resistance to two SCN HG types achieved high prediction accuracy. The findings in 

this chapter demonstrated GWAS and GP as valuable tools for developing new resistant common 

bean varieties with SCN resistance in the future.  

Epidemiology studies concerning the environmental and biological factors affecting 

disease entry, establishment and development are also extremely important for the successful 

management of diseases. The third chapter of my thesis focuses on developing mathematical 

models to predict the disease epidemic of soybean rust (Phakopsora packyrhizi), another 

devastating fungal disease of soybean with rapid establishment and development in the fields, 

using environmental and biological variables. Four machine learning models, including Absolute 

Shrinkage and Selection Operator (LASSO) method, zero-inflated Poisson/regular Poisson 

regression model, random forest, and neural network were built and compare to describe 

deposition of urediniospores collected in passive and active traps. The high prediction accuracy 

of some of the models demonstrated the applicability of machine learning in disease risk 

assessment, and the finding of this project is potentially helpful in guiding farmers to make 

proper and in-time disease management decisions.  
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CHAPTER 1.  ACCESSIONS OF PERENNIAL GLYCINE SPECIES WITH 

RESISTANCE TO MULTIPLE TYPES OF SOYBEAN CYST NEMATODE 

(HETERODERA GLYCINES)1 

ABSTRACT 

Soybean cyst nematode (SCN; Heterodera glycines; HG) is a widely occurring and 

damaging pathogen of soybean that limits soybean production. Developing resistant cultivars is 

the most cost-effective method for managing this disease. Genes conferring SCN resistance in 

soybean have been identified; however, there are SCN populations that overcome known 

resistance genes. In order to identify additional sources of resistance and potentially new 

resistance genes, 223 plant introductions (PIs) of G. tomentella and 59 PIs of 12 other perennial 

Glycine species were inoculated with HG Types HG 0, HG 2, and HG 1.2.3, and then 36 PIs out 

of this set were further evaluated by inoculating with HG type 1.2.3.4.5.6.7, a population that 

overcomes all the resistance genes in soybean.  Of 223 G. tomentella PIs evaluated, 86 were 

classified as resistant to three HG types, 69 as resistant to two HG types, and 22 as resistant to 

one HG type. Of the other 12 perennial Glycine species, all PIs of G. argyrea and G. 

pescadrensis were resistant to all three HG types. Of the 36 PIs challenged with HG type 

1.2.3.4.5.6.7, 35 were resistant with 16 showing no cyst reproduction. Our study confirms that 

there are high levels of resistance to SCN among the perennial Glycine species.  This represents 

an untapped resource for use in genetic studies and for improving resistance to SCN in soybean.  

 
 

 

1This chapter was published on Plant Disease（ISSN: 0191-2917）and reprinted from Wen, L., 

Yuan, C., Herman, T.K., and Hartman, G.L. 2017. Accessions of perennial glycine species with 

resistance to multiple types of soybean cyst nematode (Heterodera glycines).  Plant Dis. (ja). 

doi.org/10.1094/PDIS-10-16-1472-RE 

https://doi.org/10.1094/PDIS-10-16-1472-RE
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INTRODUCTION 

Soybean cyst nematode (Heterodera glycines) (SCN) is the most damaging pathogen to 

soybean [Glycine max (L.). Merr.] production, incurring about 2.2% losses in production 

averaged over Argentina, Brazil, and the USA, the top three soybean-producing countries in the 

world (Hartman 2015; Niblack and Riggs 2015).  Soybean plants are damaged when young 

juvenile nematodes feed on the vascular system and complete their life cycle, producing eggs 

inside cysts that protrude from the roots (Niblack and Riggs 2015).  

Developing soybean cultivars with resistance to SCN is one effective approach for managing 

SCN. Although a number of sources of resistance have been discovered in plant introductions 

(PIs) in the USDA Soybean Germplasm Collection, mainly one source, PI 88788, has been 

employed in breeding programs (Joos et al. 2013). Shifts in SCN populations have led to a 

decrease in resistance in soybean cultivars derived from PI 88788 (Colgrove et al. 2002; Niblack 

et al. 2003, 2008), increasing the need to utilize other sources of resistance. Other sources found 

in soybean, like PI 437654 and PI 89772 (Anand 1992; Arelli et al. 2015; Nickell et al. 1999), 

have not been fully effective due to the vast genetic diversity of SCN populations.  

The genetic variation in SCN populations was initially described by a race scheme in which 

the separation of different SCN populations was based on comparing female reproduction on 

four resistant differential lines (Golden et al. 1970). This system also was used to classify 

soybean genotypes based on responses to the various races ranging from immunity, or no 

reproduction, to highly susceptible (Schmitt and Shannon 1992).  However, with the extensive 

genetic diversity of H. glycines populations, the race scheme was shown to be inadequate for 

defining SCN populations. Therefore, the race scheme was replaced by a new scheme, which 
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uses seven soybean indicator lines to classify nematode populations to HG types (Niblack et al. 

2002).  

There are only a few studies that have reported searching plant species other than G. max for 

resistance to SCN, although the pathogen is known to reproduce on other legume plants (Riggs 

1992). The genus Glycine is composed of two subgenera, Glycine and Soja. Soja includes G. 

max and G. soja, an annual plant closely related and cross-compatible with soybean.  The 

subgenus Glycine includes 24 perennial Glycine species, which mostly originate from diverse 

geographical areas in Australia, and are not cross-compatible with soybean (Hymowitz and 

Hartman 2015). Riggs et al. (1998) evaluated a total of 8 perennial Glycine species with one 

accession of G. argyrea, G. arenaria, G. canescens, G. curvata, G. cyrtoloba, G. latifolia, and G. 

microphylla, and four accessions of G. tabacina and G. tomentella to three isolates of H. glycines 

and determined that all were resistant with most cases having no cyst production. The most 

extensive study evaluated 491 accessions of 12 perennial Glycine species for resistance to H. 

glycines HG type 0 and showed that all species, except G. curvata and G. pindanica, had at least 

one accession with an immune response (Bauer et al. 2007). In addition to SCN resistance, some 

perennial Glycine species have been reported with resistance to other soybean diseases including 

brown spot (Lim and Hymowitz 1987), Phytophthora root rot (Kenworthy 1989), powdery 

mildew (Mignucci and Chamberlain 1978), soybean rust (Hartman et al. 1992; Hymowitz 1995), 

Sclerotinia stem rot and sudden death syndrome (Hartman et al. 1999).  Thus, there is a reservoir 

of potentially new resistance genes in the perennial Glycine species that needs additional 

research and exploitation.  These sources of resistance may be especially useful in cases where 

the pathogen population, like that of SCN, is complex. To our knowledge, published reports of 

perennial Glycine species evaluated for SCN resistance have used either only one HG type to 
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characterize accessions (Bauer et al. 2007) or multiple HG types with a very limited number of 

accessions (Riggs et al. 1998). The objective of our study was to evaluate 13 perennial Glycine 

species against SCN HG 0, HG 2, HG 1.2.3, and HG 1.2.3.4.5.6.7. This information would 

provide a more comprehensive understanding of the resistance structure in perennial Glycine 

species to several populations of H. glycines. 

MATERIALS AND METHODS 

SCN source and HG type confirmation on a soybean differential set. SCN HG types 0, 2, 

and 1.2.3 were obtained from G. R. Noel, USDA-ARS, Urbana, IL and multiplied once on the 

roots of the susceptible soybean cultivar Lee 74 before beginning this study. The SCN HG Type 

1.2.3.4.5.6.7 (TN23) was collected from a field in Missouri and maintained in the greenhouse by 

mass selection on PI 437654. The isolate was obtained from Dr. Colgrove at the University of 

Illinois, and had been multiplied on the resistant soybean accession PI 437654 just before use in 

our study.  

The SCN HG types 0, 2, 1.2.3, and HG 1.2.3.4.5.6.7 were confirmed on the standard 

susceptible cultivar Lee 74 and seven soybean indicator lines, Peking, PI 88788, and PI 90763, 

PI 437654, PI 209332, PI 89772 and PI 548316 (Table 1.1; Niblack et al. 2002). For each HG 

type test, five seeds of each indicator line were planted in five polyvinyl tubes with steam-

pasteurized Torpedo sand (100 cm3), one seed per tube. The tubes were randomly arranged in 

plastic buckets (19 cm in diameter and 20 cm in height) filled with 5 L pasteurized Torpedo 

sand. A shallow hole was dug next to each one-week-old seedling to inoculate by pipetting 1ml 

of 2,000/ml egg solution of the assigned SCN HG type. Cysts were extracted and counted on 

each indicator line 35 days after inoculation and the female index (FI) was calculated based on 
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the formula: FI = (mean number of females on an indicator soybean line / mean number of 

females on standard susceptible)  100. The HG type of each SCN population was determined 

according to the FI of each indicator line with FI < 10 indicating negative host compatibility and 

FI >10 indicating positive host compatibility. The resistance level was classified into four 

categories based on FI value: resistant with FI  10, moderately resistant with 10<FI  30, 

moderately susceptible with 30<FI  60, and susceptible with FI >60 (Schmitt and 

Shannon,1992). The plastic buckets with plants were kept in a water bath at 28 oC in the 

greenhouse at 16 hr of fluorescent light per day during the experiment. 

Seed source and seed preparation of perennial Glycine species.  There were 223 G. 

tomentella PIs and 59 PIs of 12 other Glycine species obtained from the USDA ARS Soybean 

Germplasm Collection (www.ars-grin.gov) that were tested in three experiments. The first 

experiment consisted of 223 G. tomentella PIs.  The second experiment consisted of 59 PIs of 12 

Glycine species. The third experiment was based on a selection from the first two experiments. 

For all experiments, seeds of the perennial Glycine species were scarified (required for 

germination) by removing a tangential portion of the seed coat on the side opposite the hilum 

with a sharp razor blade. Each seed was placed in a rolled 6.5 mm diameter filter paper disk (No. 

3 Whatman, Fisher Scientific) inside a single well of a 96-well ELISA plate (12 columns and 8 

rows).  Twenty μl of distilled water were added to each well, and the plates were covered and 

incubated at 25° C under high humidity with 16 hr of fluorescent light per day for 3 to 5 days 

until the seeds germinated.  

Experimental set up and design. In the first and second experiment, PIs were inoculated 

with SCN HG 0, HG 2, and HG 1.2.3 (Table 1.2 and Table 1.3).  In the third experiment, 36 PIs 

out of the 282 PIs tested were further evaluated by inoculating with HG type 1.2.3.4.5.6.7, a 
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population that overcomes all the resistance genes in soybean (Table 1.4). The soybean cultivar 

Lee 74 was included in these experiments as a susceptible check. 

For the first and second experiment, each PI was inoculated with SCN HG 0, HG 2, and HG 

1.2.3 separately in a completely randomized design with five replications for each treatment (PI 

entry and HG group). Seedlings germinated on filter paper were transplanted into clay pots (10 

cm in diameter) filled with pasteurized Torpedo sand. A hole was dug between the edge of each 

pot the transplanted seedling and 15 cysts of similar size of each SCN HG type were placed into 

the hole and covered with sand at the time of sowing. Each pot was an experimental unit. The 

inoculated seedlings were grown in a greenhouse for 35 days at 27° ± 3 C. Supplemental 

illumination was provided by a mixture of high-pressure sodium vapor and metal halide lamps 

for a 16 h photoperiod.  The five replications were completed individually over time.  

For the third experiment, PIs were tested in water baths with controlled temperature using a 

randomized complete block design (RCBD) with 10 blocks (replications). Each block consisted 

37 polyvinyl chloride tubes (100 cm3) placed in two plastic buckets (19 cm dia. x 20 cm h) filled 

with 5 liters of pasteurized Torpedo sand (18 tubes in one bucket and 19 in the other). Seedlings 

of 36 perennial Glycine accessions and the standard susceptible check Lee 74 were randomly 

transplanted per block into pasteurized Torpedo sand, one plant per block. Each tube was an 

experimental unit with 10 replications for each accession. Seedlings were inoculated with 2,000 

eggs three weeks after seedlings were transplanted. Two seedlings per entry were sampled at 5 

days post inoculation (DPI), 10 DPI, and 15 DPI to evaluate nematode development on each 

perennial Glycine plant compared with the susceptible check Lee at each time point. Roots were 

washed, and stained with acid fuchsin (Byrd et al., 1983), and a dissecting microscope at 64X 

magnification was used to quantify juvenile nematodes of all stages (J2, J3, and J4) in the entire 
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root system. The remaining four plants of each PI were kept in the plastic buckets and harvested 

at 35 DPI for cyst counting. Plastic buckets with plants were set in a 28° C water bath in the 

greenhouse. Supplemental illumination was provided by a mixture of high-pressure sodium 

vapor and metal halide lamps for a 16 h photoperiod. The experiment was completed twice with 

a different randomization for the second run.  

Cyst extraction and counts. Thirty-five days after inoculation, plants were cut at the soil 

line and the content of each pot or tube was poured into a plastic bucket, and about 2 liters of 

water was added to make a soil suspension. The soil suspension was mixed well with pressurized 

water by hand for about 10 seconds, and then sediments were allowed to settle for 5 seconds 

leaving cysts floating. The suspension was poured through an 850 m sieve to remove larger 

debris, and then over a 250 m sieve. Finally, retained cysts and accompanying sediments were 

washed into a clean 50 ml plastic tube. 

Cysts collected in each 50-ml tube were decanted on to a glass Petri plate, marked with a 1 

mm2 grid, and individually counted under a dissecting microscope (Olympus SZX16, Tokyo, 

Japan) at 25X. The mean cyst counts were taken over four plants of each PI. Significant variation 

in root size among the tested 282 perennial PI accessions was observed in experiment 1. To 

adjust for this, root size at washing was recorded based on a visual scale from 1 to 10 with 1 = 

smallest to 10 = largest.  The FI was adjusted to accommodate size differences in the entire root 

system using an adjusted female index (AFI) calculated with the formula: AFI = (mean number 

of females on tested accession / root size) / (mean number of females on standard 

susceptible/root size)  100. Classification of resistance or susceptibility was as follows:  

resistant (R) = AFI 0-10; moderately resistant (MR) = AFI 11-30; moderately susceptible (MS) = 

AFI 31-60; and susceptible (S) = AFI 61 or greater. For the third experiment, FIs were calculated 
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and the data from the two runs were tested for homogeneity of error variances before combining 

data.  

Data analysis. For the first and second experiment, the AFI was used to separate the PIs into 

response categories. In the third experiment, nematode (J2-J4) counts were log transformed after 

adding 0.5 to the raw count data. Analysis of variance was done to compare nematode (J2-J4) 

counts among different PIs and at different time points (5 DPI, 10 DPI, 15 DPI) with the aov 

function in R 3.2.1 (R Core Team, Vienna, Austria), and multiple comparison was done between 

each PI pairs and time point pairs using Tukey’s HSD function in R 3.2.1. For cyst number 

comparison at 35 DPI in the third experiment, FI was used to separate the PIs into response 

categories.  

RESULTS  

SCN genotype confirmation. All SCN populations used in this study were confirmed using 

seven indicator lines (HG type test) (Table 1.1). The first population had FI > 10 on only PI 

88788 and was classified as HG 2. The second SCN population had FI < 10 on all the seven 

indicator lines and was classified as HG 0. The third population had FI > 10 on Peking, PI 

88788, and PI 90763 and was classified as HG 1.2.3. The fourth population had FI > 10 on all 

the seven indicator lines and was classified as HG 1.2.3.4.5.6.7. 

Evaluation of perennial Glycine species for resistance to HG 0, HG 2, and HG 1.2.3.  

Among the 223 G. tomentella PIs evaluated, resistance to the three SCN types was identified in 

86 PIs (Table 1.2), while only 6 PIs were susceptible to all three SCN types. One hundred and 

thirty-one PIs showed a differential reaction among the three SCN types from resistant to 

susceptible.  
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Of the 12 other perennial Glycine species evaluated, SCN reproduction was detected on 

accessions in 10 species, including first time reports for G. arenaria and G. rubiginosa as hosts 

to SCN. All PIs of G. pescadrensis and G. argyrea had no cyst reproduction regardless of the 

HG type. Of the 59 PIs evaluated, only 4 PIs (G. microphylla: PI 509487 and PI 509489; G. 

tabacina: PI 446974 and PI 509495) were susceptible to all three SCN HG types; all others were 

resistant to at least one SCN HG type (Table 1.3). Each of the 12 species had individual 

accessions that were resistant to all the three HG types of SCN, and 16 PIs in total that were 

resistant to all three SCN HG types.  

Evaluation of selected Glycine species for resistance to HG 1.2.3.4.5.6.7.  Based on 

germination rate, only 16 perennial Glycine lines were sampled and stained. Two seedlings of 

each PI were sampled at each time point, and juveniles of all stages (J2-J4) were counted in the 

entire root system for each PI. Experiment three was conducted twice, and the root staining data 

was combined for the two experiments. Nematode (J2-J4) counts in perennial species were 

compared among different PIs at different time points. Root staining of the 16 perennial Glycine 

lines and susceptible check Lee showed that at juvenile counts were significantly different 

among different PIs (P = 5.683e-13, Table 1.5). Lee 74 had significantly more cysts than all the 

perennial Glycine species, and among the perennial species, PI 505286, PI509451, PI 505235 

had significantly more cysts than PI 509462, PI 573064, PI 339657, and PI 339655 (Table 1.6). 

At 5 DPI, all accessions harbored J2 (Fig. 1.1A), and the development status of nematode was 

not different between the susceptible check Lee74 and perennial species. At 10 DPI, both J2 and 

J3 stages were observed in the roots of Lee 74 with nearly 50% being J3s (Fig. 1.1B); however, 

only J2s were observed in the roots of perennial Glycine accessions, indicating slower 

development of SCN in perennial Glycine species than in Lee 74. At 15 DPI, when most of the 
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nematodes in the roots of Lee 74 had developed to J4s, most of the nematodes in the perennial 

Glycine accessions were at the J2 stage (Fig. 1.1C). Nematode number in the perennial species 

differed (P < 0.01) at different time points as counts (indiscriminative J2 to J4 stages) changed 

from 2.3 to 7.0 to 1.8 at 5, 10, and 15 DPI, respectively, with the 10 DPI count being different 

from 5 and 15 DPI. At 35 DPI, FI calculations on all 36 PIs except one were classified as 

resistant (Table 1.4). The one susceptible entry was G. tabacina PI 373990. Of the resistant PIs, 

14 had no cyst production while 21 had low cyst counts (Table 1.4).  

DISCUSSION 

We evaluated 223 PIs of G. tomentella and 102 PIs of 12 other perennial species for 

resistance to SCN. In general, most of the PIs were classified as resistant to SCN and only a few 

as susceptible. These results are consistent with previous studies, in which immunity and high 

levels of resistance to SCN were identified in many PIs of the perennial Glycine species (Bauer 

et al. 2007; Riggs et al. 1998). In one of the earliest studies, Riggs et al. (1998) inoculated one PI 

from each of eight perennial Glycine species with four HG types (races 1,3,5 and 14) and found 

all PIs as immune or resistant except for PI 440956, which was moderately resistant to one HG 

type. In our study, 282 accessions from 13 perennial Glycine species were tested for resistance to 

three different SCN populations with PIs in each of the eight species used by Riggs et al. (1998), 

identified as resistant. Bauer et al. (2007) reported that 56% of the PI entries representing 12 

perennial Glycine species were immune or resistant to one HG type. In our study, 10 of the 12 

perennial Glycine species were classified as immune or highly resistant to three HG types, 

indicating a much broader resistance in these PIs.  
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It is clear that the germplasm of the perennial Glycine species contains many PIs that are 

highly resistant to SCN whereas the majority of the soybean germplasm is susceptible to SCN 

(Wang et al. 2003; Young 1990). In soybean, only a few PIs have been reported to be resistant to 

a specific or several SCN populations by several genes including Rhg1-3, Rhg4, and Rhg5 

(Concibido et al. 2004; Jiao et al. 2015). SCN populations are known to overcome the resistance 

source (Mitchum et al. 2007; Niblack et al. 2008). Although an immune response was identified 

in PI 437654 to all HG types tested (Anand et al. 1988), field populations isolated from Brazil 

were able to reproduce on Hartwig (derived from PI 437654) (Dias et al. 1998), and the isolate 

TN23 (later classified as HG 1.2.3.4.5.6.7) isolated from a field isolate in Missouri in 2005 

reproduced on PI 437654 (Bekal et al. 2003). The high level and broad resistance to SCN in the 

perennial Glycine species suggests that they may be very valuable sources to broaden the genetic 

base of soybean and develop new cultivars with more durable resistance to SCN.  

The differential reaction of PIs within some of the perennial Glycine species is interesting 

because these perennial Glycine species evolved primarily in Australia and presumably without 

SCN in many different niches (Doyle et al. 2004; Sherman-Broyles et al. 2014). Because of their 

susceptibility to SCN, the species are hosts with some remnant susceptibility genes from the 

common ancestor or ancestors of soybean and the perennial Glycine species. Since non-host 

resistance to a pathogen has been defined as an entire species being resistant to all genetic 

variation of the pathogen (Niks and Marcel 2009), the only species that fit this criterion in our 

study was G. argyrea. However, no conclusions can be made until more accessions of the 

species are evaluated. Glycine arenaria and G. rubiginosa were identified as hosts of SCN, 

which were not reported before.  The extent of SCN hosts are not known, but other hosts outside 

the legume family have been reported (Riggs 1992; Venkatesh et al. 2000).  
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One of the resistance mechanisms used by non-host plants is to prevent penetration of the J2 

stage worms into roots (Colgrove and Niblack 2008). In our study, we did not see evidence of 

this in the perennial Glycine species, but root staining showed that the number of nematode 

entering roots of the perennial Glycine species were fewer than that of Lee 74, and that the 

development of life stages past J2 was delayed or in the case of immunity did not occur.  

Information on the genomics and the molecular characterization of SCN resistance in the 

perennial Glycine species is limited. A comparative genomics study showed that the linkage 

group (LG) 18 of G. latifolia had a high degree of collinearity with the chromosome 18 in 

soybean with no interchromosal rearrangements (Chang et al. 2014). A genome wide association 

mapping study identified one locus containing four SNPs located in the linked regions (5.8–12.0 

Mb) of known Rhg1 on chromosome 18 in G. soja (Zhang et al. 2016). These studies suggest 

that the resistance genes to SCN in soybean and its relatives may be conserved. It is well known 

that the genetic base of soybean is very narrow with an estimation of 50% genetic diversity and 

81% less minor alleles lost in the process of domestication (Hyten et al. 2006; Zhou et al. 2015). 

Since a novel locus on chromosome 19 of G. soja was found associated with SCN resistance 

(Zhang et al. 2016), the perennial Glycine species may harbor novel SCN resistance genes not 

found in soybean, and thus would be important in developing novel SCN resistance in soybean. 

Despite the challenges in utilizing the genetic resources in perennial Glycine species due to 

genetic barriers, additional work on hybridizing the perennial Glycine species and soybean along 

with techniques of gene cloning and gene transfer may provide an avenue to incorporate genes 

from the perennial Glycine species into soybean. In an earlier study, based on an interspecific 

cross between soybean and G. tomentella, hybrid backcrossed lines were shown to be resistant 

to H. glycines (Riggs and Schmitt 1988). With so much resistance in the 

javascript:popRefFull('b44','','','aop')
javascript:popRefFull('b21','','','aop')
javascript:popRefFull('b45','','','aop')
javascript:popRefFull('b44','','','aop')
javascript:popRefFull('b35','','','aop')
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perennial Glycine species, over 100 highly resistant PIs identified in our study, there is a good 

chance that some of the SCN resistant genes from these sources will be used in future breeding 

programs. 
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TABLES 

Table 1.1. Heterodera glycines (HG) types confirmed on seven soybean indicator lines based on 

positive or negative host compatibility.  

 
        Female index of each HG typez 

   Indicator lines     HG 0 HG 2 HG 1.2.3 TN 23 

 PI 54840 (Peking)  

 

- - + + 

 PI 88788 

  

- + + + 

 PI 90763 

  

- - + + 

 PI 437654 

 

- - - + 

 PI 209332 

 

- - - + 

 PI 89772 

  

- - - + 

 PI 548316 (Cloud)    - - - + 

HG type determination   HG 0 HG 2 HG 1.2.3 HG 1.2.3.4.5.6.7 

z "+" indicates positive host compatibility as the number of females produced was equal to or 

greater than 10% of the number produced on the standard susceptible cultivar Lee; "-" indicates 

negative host compatibility as the number of females is less than 10% of cultivar Lee. Ratings 

were based on five replications for each soybean line and each HG type. 
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Table 1.2. Glycine tomentella accessions evaluated for their response to three Heterodera 

glycines (HG) types  

 
  Responsea 

Plant introductions HG 0 HG 2 HG 1.2.3 

320548, 339655, 339657, 339663, 373987, 373988, 440999, 441001, 441004, 

441006-441010, 446950, 446980, 446989, 446996, 483218, 483223, 

483225, 483227, 483228, 499919, 499920, 499927, 499928, 499933, 

499934, 499939, 499941, 505202, 505212, 505224, 505225, 505228, 

505230, 505231, 505233, 505235, 505239, 505240, 505243, 505245, 

505247, 505248, 505250, 505252, 505254, 505255, 505257, 505261, 

505262, 505266-505268, 505275, 505276, 505281, 505286, 505292, 

505297, 509491, 509501, 509502, 537294, 546957, 546958, 563881, 

563892, 563893, 563896, 563898, 563899, 573056, 573058, 573064, 

573068, 573070, 573071, 583969, 583971, 583975, 591606, 599422, 

604474, 604487, 604488, 604491, 604494 

R  R  R  

393556, 393557, 446963, 446984, 446985, 483220, 483224, 483226, 499938, 

499951, 505209, 505210, 505218, 505219, 505234, 505277, 505279, 

505285, 509499, 563878 

R  R  MR  

499930, 505258, 505260, 583973 R  MR  R  

373980, 399479, 440998, 446946, 446951, 446954, 446956, 446957, 446958, 

446959, 446981, 446988, 446998, 483219, 499916, 499935, 499936, 

505203, 505229, 505238, 505244, 505249, 505269, 505269, 563897, 

573062, 573066, 573067, 591609, 604476-604479, 604484, 604489, 

604490, 604492, 604493 

MR  R  R  

441011, 505213, 505206 R  MR  MR  

441005, 446955, 446994, 499937, 499945, 499947, 505215, 505220, 505226, 

505280, 505294, 583974, 604481 

MR  R  MR  

446991, 505264, 505298, 505304, 563895, 563976, 595823 MR  MR  R  

441012, 446995, 505217, 505232, 505236, 505237, 505256, 505263, 505272, 

505282, 505303, 509500 

MR  MR  MR  

233051, 320547, 37399, 505246, 505271 R  R  S  

505221, 505242, 591605, and 595824 R  S  R  

499990 R  MR  S  

446960b, 446992, 505205 MR  R  S  

446962c, 505216c MR  S  R  

505201b S  R  MR  

505222c R  S  S  

441000d, 446982d, 446993bcd S  R  S  

441003cd, 446952cd, 505214cd, 563900d S  S  R  

446953d, 505211d, 505241d, 505278d S  MR  MR  

446961, 446949c, 563877 MR  S  MR  

441002cd, 505300, 505301cd S  S  MR  

446947c, 573063c MR  S  S  

446983, 446948bcd, 505274bcd, 573059, 591607b, 595822 S  S  S  

    
w Resistant (R) = adjusted female index (AFI) 0-10; moderately resistant (MR) = AFI 11-30; moderately susceptible 

(MS) = AFI 31-60; and susceptible (S) = AFI 61 or greater. Rating based on five replications over time. 
x Variable result in repeat for HG 1.2.3 from resistant to susceptible; classified as susceptible. 
y Variable result in repeat for HG 2.5.7 from resistant to susceptible; classified as susceptible. 
z Variable result in repeat for HG 0 from resistant to susceptible; classified as susceptible. 
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Table 1.3. Glycine species accessions evaluated for their response to three Heterodera glycines (HG) typesz 

 

 Responsea 

Glycine spp. Plant introduction HG 0 HG 2 HG 1.2.3 
G. arenaria 505204 R R R 

G. argyrea 509451, 505151 R R R 

G. canescens 440942 MR R R 

G. canescens 446934 MS MS R 

G. canescens 509458 MS S MR 

G. canescens 573046 MS S R 

G. canescens 509457 R R R 

G. canescens 440932 R MS R 

G. canescens 509455 R R MS 

G. canescens 505154 R R S 

G. canescens 509456 R R MR 

G. canescens 573044 R MS MS 

G. canescens 509454 R MR MR 

G. canescens 573045 S S MR 

G. clandestina 440960 MR S R 

G. clandestina 509461, 505163 MS R R 

G. clandestina 509468 R R R 

G. clandestina 509462, 509466 R MS R 

G. curvata 505167 MS R R 

G. cyrtoloba 440962 MS R R 

G. cyrtoloba 373993, 509472 R R R 

G. falcata 509473 MS R R 

G. falcata 509475 R MS R 

G. falcata 440975 S S R 

G. latifolia 253238 MR MS R 

G. latifolia 505181 MS MR R 

G. latifolia 440978 R R R 

G. latifolia 509478, 509476 R MS R 

G. latifolia 509479 S R R 

G. latifolia 509480 S MS R 

G. microphylla 505188, 509486 R R R 

G. microphylla 446939 R MS R 

G. microphylla 505196 R MR R 

G. microphylla 509485 R S R 

G. microphylla 509489 S S MS 

G. microphylla 509483 S R R 

G. microphylla 509487 S MS MS 

G. pescadrensis  505199 R R R 

G. pescadrensis  505195, 505197 R R R 

G. rubiginosa  440954 R R R 

G. tabacina 509494 MR MS MR 

G. tabacina 339661, 509493 MS MS R 

G. tabacina 373986 MS S MR 

G. tabacina 509496 R R R 

G. tabacina 373990 R R R 

G. tabacina 509497 R R MS 

G. tabacina 440990 R MS MS 

G. tabacina 509492 R MS MR 

G. tabacina 509490 R S MR 

G. tabacina 446974 S MS MS 

G. tabacina 509495 S MS MS 

G. tabacina 509498 S MR S 
 

z Resistant (R) = (adjusted female index) AFI 0-10; moderately resistant (MR) = AFI 11-30; moderately susceptible 

(MS) = AFI 31-60; and susceptible (S) = AFI 61 or greater. Rating based on five replications over time. 
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Table 1.4. Number of cysts recovered from selected Glycine species plant introductions after inoculation with 

soybean cyst nematode HG 1.2.3.4.5.6.7 

 
Glycine spp. Plant introduction Chromosome (2n) Cyst count y  

G. argyrea   509451 40 0 

G. canescens 440932 40 0 

G. clandestina 509462 I z 0 

G. clandestina 509468 40 0 

G. latifolia 505181 I 1 

G. microphylla 505188 40 1 

G. falcata 509473 I 1 

G. cyrtoloba 509472 40 2 

G. latifolia 509479 40 2 

G. microphylla 509486 I 3 

G. canescens 573047 I 5 

G. pescadrensis 505197 80 6 

G. tabacina 446974 80 17 

G. tabacina 373990 40 148 

G. tomentella 339655 80 0 

G. tomentella 339657 78 0 

G. tomentella 441010 78,80 0 

G. tomentella 446996 78 0 

G. tomentella 483227 80 0 

G. tomentella 505235 78 0 

G. tomentella 505286 78 0 

G. tomentella 509502 78 7 0 

G. tomentella 573064 38 0 

G. tomentella 604474 I 0 

G. tomentella 320548 78,80 0 

G. tomentella 505240 80 0 

G. tomentella 583969 40 1 

G. tomentella 604494 I 1 

G. tomentella 499920 I 2 

G. tomentella 573059 I 3 

G. tomentella 446983 40 4 

G. tomentella 563899 40 8 

G. tomentella 546957 80 9 

G. tomentella 446950 80  14 

G. tomentella 373987 38 16 

G. tomentella 505292 40 35 

    

G. max Lee 74 40 676 

G. max Hartwig 40 254 

G. max 437654 40 224 

 
y Numbers averaged over two runs with three replications per run.  
z Chromosome number not known.  
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Table 1.5. Counts of Heterodera glycines juveniles in stained roots 5, 10, and 15 days after 

inoculation (DAI) and cysts counts 30 DAI on soybean cultivar Lee74 and on perennial Glycine 

species.  

 

 

 Juvenile count (DAI)   

Entryy 5 10 15 Cyst countsz 

Lee74  61.0 88.0 134.0 89.1 a 

PI 505286 0.5 13.0 2.0 4.9 b 

Pi 509451 1.5 8.5 2.0 4.2 b 

PI 505235 5.5 22.5 3.0 3.6 b 

PI 441010 4.5 8.5 1.0 2.5 bc 

PI 604474 1.5 6.0 3.0 2.5 bc 

PI 505188 4.0 10.5 3.0 2.1 b-d 

PI 505181 1.5 21.0 1.5 1.8 b-e 

PI 440932 7.5 4.0 0.0 1.8 b-e 

PI 509502 0.5 7.0 2.5 1.7 b-f 

PI 446996 3.5 10.5 0.0 1.6 b-g 

PI 509468 1.0 8.0 0.0 1.6 b-g 

PI 509473 1.3 6.8 0.8 1.4 b-g 

PI 483227 0.5 8.5 0.0 0.8 c-g 

PI 509462 4.5 6.5 0.0 0.4 d-g 

PI 573064 0.5 4.0 1.0 0.3 e-g 

PI 339657 0.5 2.5 0.0 0.2 fg 

PI 339655 0.5 0.5 0.0 0.2 g 
 

yPI = plant introductions (PI); most are G. tomentella except for 509451 (G. argyrea), 509462 

and 509468 (G. clandestina), 505181 (G. latifolia), and 505188 (G. microphylla). 

zMean nematode counts were back transformed for presentation; means with different letters are 

significantly different at P = 0.05 based on Tukey’s HSD test. Each mean is based on 20 

experimental units (two samples per 10 replications).  
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FIGURE 

Fig. 1.1. Comparison of Heterodera glycines type 1.2.3.4.5.6.7 SCN development in the roots of 

perennial Glycine species and standard susceptible check Lee 74 stained with acid fuchsin. 

Fewer nematodes progressed from J2 to J3 or J4 in the perennial Glycine accessions.  (A) A 

representative perennial Glycine accession, G. tabacina PI 505235 (left) and susceptible check 

Lee 74 (right) at 5 days post infection (DPI). (B) SCN development at 10 DPI in G. tabacina PI 

446974 (left) and Lee 74 (right). (C) SCN development at 15 DPI in PI 505235 (left) and Lee 74 

(right). Bar represents 500 microns in each image.           
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CHAPTER 2. GENOME-WIDE ASSOCIATION STUDY AND GENOMIC 

PREDICTION ELUCIDATE THE GENETIC ARCHITECTURE OF SOYBEAN CYST 

NEMATODE RESISTANCE IN COMMON BEAN 

ABSTRACT  

Genome-wide association study (GWAS) was used to detect SNPs significantly associated 

with soybean cyst nematode (SCN, Heterodera glycines (HG)) resistance in the core collection 

of Phaseolus vulgaris and to make genomic predictions (GPs) of SCN resistance to two HG 

types. There were 84,416 SNPs identified in 363 common bean accessions. GWAS identified 

SNPs on chromosome (Chr) 1 that were significantly associated with resistance to HG type 

2.5.7. These SNPs were in linkage disequilibrium with a gene cluster homologous to the three 

genes at Rhg1 locus in soybean. A novel signal on Chr 7 was detected to be responsible for 

resistance to HG type 1.2.3.5.6.7. Furthermore, GP for resistance to two SCN HG types were 

highly predictive. Our study reported a high-quality SNPs set for the common bean collection, 

and we demonstrated that both GWAS and GP were effective strategies to study the genetic 

architecture of SCN resistance in common bean.  

INTRODUCTION 

Common bean (Phaseolus vulgaris L.) is one of the most important grain legumes in the 

human diet and a major protein source in many developing countries (Broughton et al. 2003). 

Common bean has two geographical and genetic pools, one of which is the Mesoamerica genetic 

pool domesticated in Mexico and another is the Andean genetic pool domesticated in Central and 

South America (McClean et al. 2004; Singh et al. 1991).  
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Common bean and soybean (Glycine max (L.) Merr.) are in the Fabaceae family, and are 

attacked by some of the same pathogens (Miles et al. 2007; Singh and Schwartz 2010; Souza et 

al. 2014). Soybean cyst nematode (SCN), Heterodera glycines (HG) Ichinohe, one of the most 

destructive soybean pathogens with production loss estimates averaged over the three-top 

soybean-producing countries exceeding 2% (Hartman et al. 2015), also infects P. vulgaris. For 

example, the Kidney bean variety “Clark” was shown to be a host for SCN HG type 0 as the 

variety supported juvenile growth, enlargement, molting, and female reproduction similar to the 

susceptible soybean cultivar “Amsoy 71” (Abawi and Jacobsen 1984). Other reports include P. 

vulgaris susceptibility and resistance to SCN. Out of 23 snap bean varieties inoculated with two 

SCN populations, only one resistant variety was found while all the other varieties supported 

equal or greater cyst production than the susceptible soybean cultivar “William 79” (Melton et 

al. 1985). A range of SCN female indices from 5 (on a black bean cultivar) to 117 (on a Kidney 

bean cultivar) was found when 24 dry bean varieties were inoculated with SCN HG type 0 

(Poromarto and Nelson 2009).  

The genetic architecture of SCN resistance in soybean has been intensively studied and 

identification of quantitative trait loci (QTL) have been used to develop SCN resistance in 

soybean (Diers and Arelli, 1999; Concibido et al., 2004). Two genetic resistance loci, Rhg1 on 

chromosome (Chr) 18 and Rhg4 on Chr 8 were repeatedly detected in bi-parental linkage 

mapping in different soybean studies (Bao et al. 2014; Cook et al. 2012; Liu et al. 2012). More 

recently, genome-wide association study (GWAS) has been widely used to identify SCN 

resistance-associated SNPs in soybean. The first study with 159 Chinese soybean accessions 

identified six simple sequence repeat (SSR) markers associated with SCN resistance (Li et al. 

2011). The second study focused on SCN HG type 0 in 282 soybean breeding lines using the 
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universal soy linkage panel 1.0 SNP arrays, and discovered two previously identified QTLs, 

Rhg1 and FGAM1 (Vaghchhipawala et al. 2004) as well as a novel locus on the opposite end of 

Chr 18 to Rhg1 (Bao et al. 2014). SNPs discovered in a third study overlapped six previously 

reported QTL (including the Rhg1 and Rhg4) and eight novel QTLs were identified (Voung et al. 

2015). Another GWAS study detected 19 signals significantly associated with SCN HG type 0 

and HG type 1.2.3.5.7 among a collection of 440 diverse soybean landraces and elite cultivars. 

The SCN resistant loci, Rhg1 and Rhg4, were identified together with three novel loci (Han et al. 

2015). Recently, SNPs significantly associated with SCN race 1, 3 and 5 were also reported in 

the United States Department of Agriculture (USDA) Soybean Germplasm Collection (Chang et 

al. 2016a). One of these significant SNPs was in LD with five LRR-RLK genes on Chr 18 near 

to the Rhg 1 locus, and another SNP (ss715638409) was in the coding region of an LRR-RLK 

gene on Chr 20 with three additional LRR-RLK genes in the LD region.  

GWAS is suitable for identifying large-effect genetic loci that cause phenotypic variation. 

However, GWAS might miss a large proportion of total genetic variation caused by numerous 

loci of small-moderate effects, and this additional variation in SCN response can be captured by 

genomic prediction through fitting all genome-wide SNPs in a linear model assuming all the 

markers contribute to the phenotypic variation (Desta et al. 2014). However, when applying all 

markers to predict a phenotype, the number of predictor variables is greater than the number of 

observations. Collinearity is inevitable when too many variables are included in the model, 

resulting in over-fitting and instability of prediction model (Gianola 2013). To address this 

problem, several regularization approaches have been proposed for genomic prediction (GP) 

models. One of the models is ridge regression, which addresses the problems of ordinary least  

 

https://dl.sciencesocieties.org/publications/tpg/articles/7/3/plantgenome2013.11.0039#ref-50
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squares by imposing a penalty on the size of coefficients. The ridge coefficients minimize a 

penalized residual sum of squares, 

 

where,  is a complexity parameter that controls the amount of shrinkage: the larger the 

value of , the greater the amount of shrinkage and thus the coefficients become more robust to 

collinearity. Ridge regression genomic prediction model has been implemented for many traits 

(Bao et al. 2014; Chang et al. 2016b; Lorenz et al. 2012; Rutkoski et al. 2014), and has 

dramatically increased the efficiency of crop improvement (Heffner et al. 2009). 

GWAS has been applied on a number of traits in common bean. For example, a study for 

bacterial blight resistance used 132 SNPs in 469 common bean breeding lines (Shi et al. 2011) 

and identified 12 significant SNPs that were co-localized with previously reported QTL as well 

as two novel QTL. In another study, the genetic architecture of five agronomic traits were 

investigated using 233 amplified fragment length polymorphisms, 105 SNPs and 80 SSR 

markers in 66 common bean genotypes (Nemli et al. 2014). Nonetheless, there is no bi-parental 

mapping or GWAS focusing on SCN resistance in common bean. In order to identify SNPs that 

are associated with SCN resistance in common bean, the core collection of common bean was 

genotyped using genotyping-by-sequencing (GBS) and phenotyped against two SCN HG types 

that are commonly found in Illinois fields, the HG type 2.5.7 and the HG type 1.2.3.5.6.7. In 

addition to SCN resistance, two agronomic traits (seed coat color and seed weight) with known 

QTL were included in this study to validate the reliability of GWAS methodology. GP was 

applied to estimate the GEBVs of common bean accessions for resistance to two SCN HG types, 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4434860/#CR3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4434860/#CR29
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and prediction accuracies were evaluated using cross-validation. Our work may represent the 

first GWAS and GP for SCN resistance in common bean. 

MATERIALS AND METHODS 

Plant materials and DNA preparation 

A total of 363 common bean accessions representing from the Mesoamerican and Andean 

gene pool were used in this study. 171 accessions of the Central/South American (CA/SA) core 

collection, and 191 accessions of the Mexico (MA) core collection (Brick et al. 2006; McClean 

et al. 2012), were requested from the USDA/ARS Western Regional Plant Introduction Station 

(Pullman, WA, USA), and the accession G19833 with reference genome (Schmutz et al. 2014) 

was obtained from the International Center for Tropical Agriculture and used in this study.  

Genomic DNA was extracted from the emerging trifoliate leaf using a standard 

cetyltrimethylammonium bromide protocol (Doyle and Doyle, 1987). Genomic DNA was 

quantified in 96-well plates using PicoGreen (Invitrogen, Carlsbad, CA) and was normalized to 

20 ng/μl. A total of 500 ng DNA of each accession in a 96-well plate was digested by HindIII 

and BfaI restriction enzymes (New England Biolabs, Ipswich, MA), and 0.1 μM A1 adaptor and 

10 μM A2 adapters (IDT DNA) was used for ligation in each well. The genomic libraries were 

pooled and cleaned up using a PCR purification kit (Qiagen, Valencia, CA), followed by an 

amplification step for 12 cycles using Illumina primers and Phusion DNA polymerase (NEB). 

Average fragment size was estimated on a Bioanalyzer 2100 (Agilent, Santa Clara, CA) using a 

DNA1000 chip following by a second column-cleaning. 
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Genotyping-by-sequencing (GBS) 

Pooled libraries were adjusted to 10 nmol and sequenced with 100-bp single-end reads in 

one lane of HiSeq2500 (Illumina, San Diego, CA). SNP calling was performed using Tassel5 

GBS v2 variant calling pipeline IGST-GBS (Glaubitz et al. 2014; Sonah et al. 2013). All reads 

were trimmed to 64 bp at the 3’ end to make sure each base has Phred score greater than 30, and 

the trimmed sequence were aligned to the non-masked reference genome of P. vulgaris G19833 

Pvulgaris v1.0 obtained from Phytozome v11.0 (Glaubitz et al. 2014; Schmutz et al. 2014) using 

bowtie2 with the parameters -D 20 -R 3 -N 0 -L 20 -i S, 1, 0.50 (same as “very-sensitive” 

setting), which is computationally slower but more sensitive and more accurate than the default 

“sensitive” setting (Langmead and Salzberg 2012). Missing SNPs were imputed using BEAGLE 

version 4.1 (Browning and Browning 2013). Insertion-deletion polymorphisms (Indels), SNPs 

with minor allele frequency (MAF) less than 0.05, and SNPs with heterozygosity greater than 

0.05 were excluded from GWAS and GP analysis.  

Phenotyping for SCN resistance and two agronomic traits 

The 363 common bean accessions along with a soybean variety Williams 82 were planted in 

polyvinyl chloride tubes (3 cm diameter x 15 cm deep) and 18 to 19 tubes were randomly 

inserted in a plastic container (20 cm diameter x 25 cm deep) filled with pasteurized torpedo 

sand. Tubes without germination were replaced with extra seedlings from containers. Each tube 

is an experiment unit, and each plant at one-week-old stage was inoculated with 1 ml suspension 

containing approximately 2000 eggs of a SCN HG type (HG 2.5.7 or HG 1.2.3.5.6.7). All plants 

were maintained in 28oC water baths with 16 hours light in the greenhouse. Thirty-five days after 

inoculation, roots were washed and cysts were collected from each plant. Cysts were counted 

under a dissecting microscope, and the number of cysts on each plant was recorded. Cysts on 

http://genome.jgi.doe.gov/pages/dynamicOrganismDownload.jsf?organism=PhytozomeV11
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4799255/#CR7
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each common bean accession were counted and the female index (FI) was calculated by dividing 

the mean number of females that developed on a tested accession by the mean number of females 

on the susceptible check ‘W82’, multiplied by 100 (Niblack et al., 2002; Niblack et al., 2009). 

There were two replications in this experiment, and replication was achieved over time. Because 

of the complexity of seed coat color in common bean, only black, red and white seeds were 

included in GWAS, with black seeds rated as 2, red seeds rated as 1, and white seeds rated as 0. 

Seed weight data were obtained from the Germplasm Resources Information Network (GRIN) 

(www.ars-grin.gov), and the seed weight of each accession was represented by the weight of 100 

randomly selected seeds of that accession.  Box-Cox method was performed to transform non-

normally distributed trait including SCN HG type 1.2.3.5.6.7 resistance and seed weight.  

Genome-wide association study (GWAS) and Genomic Prediction (GP) 

GWAS was performed using the R package “Genomic association and prediction integrated 

tool (GAPIT)” (Lipka et al. 2012). Principal component analysis (PCA) was done based on SNPs 

identified using GBS. A kinship matrix was calculated to determine relatedness among 

individuals (Zhang et al. 2010). A unified mixed linear model (MLM), which includes both 

kinship and principal component, was used in this study. The Bayesian information criterion 

(BIC)-was calculated in GAPIT to determine number of PCs that should be included in the 

model.  All SNPs with false discovery rate (FDR) below 0.1 were reported. The R package 

“Ridge-regression best linear unbiased prediction (rrBLUP)” was applied to estimate SNP effects 

by solving the MLM through the restricted maximum likelihood (REML) method (Whittaker et 

al. 2000). The performance of the genomic prediction model was estimated using ten-fold cross 

validation. The 363 accessions were randomly partitioned into ten similar-sized subsets (nine 

subsets with 36 accessions each, and one subset with 39 accessions), with nine subsets as 
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training set and one subset as the validation set, and each subset has exactly one chance to be 

validation dataset. In each training process, the SNP effects were estimated for predicting the 

GEBVs of accessions in the validation dataset. The ten-fold cross-validation process was then 

repeated for 100 iterations, and the predicted GEBV was averaged over the 100 iterations. 

Prediction accuracy was calculated as the correlation between GEBVs and true phenotypic 

values. The effect of SNPs number on prediction accuracy was estimated by including different 

numbers of SNPs (1000, 5000, 20000, 50000) evenly distributed across the genome for GP.  

RESULTS 

Phenotypic analyses for SCN resistance, seed coat color, and seed weight  

Greenhouse evaluations of the common bean core collection for resistance to SCN HG type 

2.5.7 resulted in a range of FIs from 0.5 to 198.9 in a normal distribution (Fig. 2.1A). Only 16 

accessions showed high resistance (FI below 10) to SCN HG type 2.5.7 and 54 accessions 

showed moderate resistance (FI between 10 to 30). On the other hand, 160 accessions had high 

resistance and 164 accessions had moderate resistance to SCN HG type 1.2.3.5.6.7. The FI to 

SCN HG type 1.2.3.5.6.7 was left skewed and Box-Cox transformation was applied to normalize 

the phenotype data (Fig. 2.1B). There were 19 accessions with white seed coat, 50 accessions 

with red seed coats, and 90 accessions with black seed coats. The seed weight of the 363 

common bean accessions (weight of randomly selected 100 seeds) ranged from 2g to 91.6g, with 

approximately a normal distribution (Fig. 2.1C). 

SNP calling and linkage disequilibrium (LD) decay analysis 

Illumina sequencing yielded 264,276,230 raw reads. After quality control for raw reads, SNP 

calling using P. vulgaris G19833 as the reference genome, and SNP imputation, a total of 84,416 
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SNPs were obtained and these SNPs distributed over 11 chromosomes with an average of 7,674 

SNPs per chromosome (Table 2.1). LD decay was estimated for each chromosome and ranged 

from 50 kb to 70 kb at a cutoff of correlation coefficients (r 2) equal to 0.2, and there were about 

10 SNPs in one LD window.  

Population structure  

The population structure of the 363 common bean accessions was estimated by PCA using 

the 84,416 SNPs, and distinct subpopulations that matched with geographic origins were 

detected (Fig. 2.2A). The Mexico group and central American group had some overlap, but the 

southern American group clustered distinct from the other two groups, which is consistent with 

the two genetic pools theory of the common bean (Gepts et al. 1986; Koenig and Gepts 1989). 

On the other hand, accessions with different SCN resistance levels did not cluster into these 

distinct subgroups, indicating a mild confounding concern between subpopulations based on 

geographic origins and SCN resistance (Fig. 2.2B). BIC-based model selection also suggested 

that no principal component was required to control for population structure (Table 2.2). The 

kinship analysis with genetic relatedness among the 363 common bean accessions identified two 

clades, which is consistent with the prior knowledge of two genetic pools (Fig. 2.2B). Therefore, 

a unified MLM with a kinship matrix but no principal component was used for GWAS. 

Genome-wide association study (GWAS) for seed coat color and seed weight 

The GWAS for coat color and seed weight were compared to the results in the literature in 

order to validate our methodology. For seed coat color, the known locus V was mapped on 

linkage group 6 by several independent studies (Bassett 1997; McClean et al. 2002; McClean et 

al. 2002; Nodari et al. 1993). A random amplification of polymorphic DNA (RAPD) marker 

OD12800 on Chr 6 between 10480539bp to 10480584bp linked in coupling phase with the V  
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locus was reported (McClean et al. 2002), and it is in LD with the highly significant SNP 

detected in our study on Chr 6 9.6 Mb (Table 2.3; Fig. 2.3A and 2.3B). 

For seed weight, GWAS identified 14 SNPs distributed over six regions on four different 

Chrs (Chr 2, Chr 3, Chr 7, and Chr 11) with FDR lower than 0.05 (Table 2.3; Fig. 2.3C and 

2.3D). Previous linkage mapping studies for seed weight discovered QTL on linkage groups Chr 

2, Chr 3 (Tsai et al. 1998), Chr 6, Chr 7, Chr 8, and Chr 11 using biparental populations (Blair et 

al. 2006; Park et al. 2000; Tsai et al. 1998). Most of the identified seed weight candidate genes 

belong to components of the cytokinin synthesis and multiple-component phosphorelay 

regulatory system (Schmutz et al. 2014). The three significant SNPs on Chr 2 (43,368,553bp, 

43,379,956bp and 43,400,258bp) detected in our study are in LD with the candidate gene 

Phvul.002G282200 which was reported to be on Chr 2 between 44,603,605 bp and 44,608,648 

bp; and the significant SNPs on Chr 3 at 5,204,703bp in our study is in LD with the candidate 

genes Phvul.003G041200 which is on Chr 3 between 4,582,905bp and 4,584,971 bp. The 

success in re-discovering previously reported QTLs for seed coat color and seed weight indicated 

the correctness and robustness of GWAS methodology. 

Genome-wide association study (GWAS) for SCN resistance 

For the first SCN HG type that we evaluated, the HG type 2.5.7, a genomic region on Chr 1 

where four SNPs were identified with FDR below 0.05. Using a less stringent FDR cutoff at 0.1, 

SNPs located at two other regions (Chr 1 and Chr 9) were found (Table 2.3; Fig. 2.4A and 2.4C). 

The significant SNPs on Chr 1 explained about 5.9 % to 6.1 % of phenotypic variation, and 

additional 5.9 % and 5.3 % of phenotypic variation were explained by the two SNPs on other 

locations on Chr 1 and on Chr 9 (Table 2.3). Comparative genomic study mapped three genomic 
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clones (Bng122, Bng166, and Bng225) on common bean Chr 1 in the region near the Rhg1 locus 

on soybean by testing random common bean clones as RFLP probes in soybean the putative bean 

genome location on Chr 1 was syntenic to the SCN resistance gene Rhg1 in soybean by 

comparing RFLP marker Bng171a (Concibido et al. 1996). The Rhg1 locus in soybean 

comprises these three genes: Glyma18g02580 (amino acid transporter), Glyma18g02590 (α-

SNAP protein), and Glyma18g02610 (wound-inducible protein 12) (Cook et al. 2012). We 

blasted the three genes against the common bean genome, and the best hits for the three genes in 

the P. vulgarius genome are grouped together in a region from 50629261 bp to 50655828 bp on 

Chr 1. The hit for Glyma18g0258 was a hypothetical protein PHAVU_001G248000g on Chr 1 

between 50653407 bp and 506558280 bp. The hit for Glyma18g02590 was a hypothetical 

protein PHAVU_001G247900g on Chr 1 between 50646068 bp to 50650097 bp. The hit for 

Glyma18g02610 was the hypothetical protein PHAVU_001G247700g on Chr 1 between 

50629261 bp to 50630123 bp. Interestingly, the position of the three genes in the P. vulgaris 

genome are inverted from those in the soybean genome, and the significant SNPs on Chr 1 were 

in LD with the syntenic genomic region (Fig. 2.4B). 

For the second HG type of SCN, the HG type 1.2.3.5.6.7, only one SNP on Chr 7 was 

detected below FDR of 0.1 (Table 2.3; Fig. 2.5A and 2.5B), and phenotypic variation explained 

by this SNP was estimated around 5.9 %. However, blast of the gene sequences at Rhg 1 and Rhg 

4 locus did not return similar sequence match on Chr 7.  

Genomic prediction (GP) for SCN resistance, seed coat color, and seed weight 

Besides identifying SNPs associated with SCN resistance, seed coat color, and seed weight 

through GWAS, the effect of all the SNP markers were evaluated by GP models to predict SCN 

resistance, seed weight and seed color. The average prediction accuracy of the models estimated 
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by cross validation was 0.52, 0.41 and 0.82 for SCN HG2.5.7, HG 1.2.3.5.6.7 and seed weight. 

The prediction accuracy was not severely affected by marker size. For resistance to HG type 

2.5.7, slight decrease in prediction accuracy was observed when number of markers were 

reduced 5000 and 1000 (Fig. 2.6A). For resistance to HG type .1.2.3.5.6.7, only the prediction 

accuracy with 1000 SNPs showed decreased prediction accuracy (Fig. 2.6B). The prediction 

accuracy for seed weight was not affected by number of SNPs (Fig. 2.6C), which indicated 

redundancy of the markers due to high level of LD.  

DISCUSSION 

In this study, 363 common bean accessions from the USDA Germplasm Collection were 

evaluated for their responses to two SCN HG types as well as two agronomic traits, seed coat 

color and seed weight. The identification of SNPs that are significantly associated with SCN 

resistance not only helps the genetic improvement of cultivars but also facilitates the 

identification of genes and the understanding of molecular mechanisms involved in the resistance 

process. In our study, GWAS identified novel SNPs associated with seed weight on Chr 7 and 

Chr 11, previously reported seed coat color gene locus V on Chr 6, and SNPs associated with 

SCN resistance to two SCN HG types. The significant SNPs identified for resistance to HG type 

2.5.7 were in LD with the cluster of genes homologous to the Rhg 1 locus in soybean (Concibido 

et al. 1996; Kelly et al. 2003). The genome blocks in P. vulgaris are conserved with the genomic 

region near the SCN resistance locus Rhg1, and the homologous genes in P. vulgaris are inverted 

with the three genes at Rhg 1 locus in soybean. 

Before soybean underwent a major duplication event 11 million years ago it diverged from a 

common bean ancestor (Schlueter et al. 2004). Comparative genomics studies reported 55 



 35 

syntenic blocks between the two species (McClean et al. 2010) and it was shown that the linkage 

group D1 (Chr 1) of P. vulgaris was collinear with the top of linkage group G (Chr 18) of 

soybean (Concibido et al. 1996), which is consistent with our findings. Our findings support a 

gene cluster in common bean that is similar to the Rhg 1 locus in soybean.   

The advance in next generation sequencing technologies such as GBS in acquiring high 

quality and high density SNPs have not only enabled GWAS to achieve higher mapping 

resolution (Buckler and Thornsberry 2002; Yu and Buckler 2006) but also empowered GP to 

predict GEBVs for a quantitative trait in phenotype unknown accessions (Bao et al. 2014; 

Bernardo and Yu 2007; Chang et al. 2016a; Jannink et al. 2010; Lorenz et al. 2012; Rutkoski et 

al. 2014). Unlike marker-assisted selection, GP utilizes all the SNP information in the genome, 

which is expected to be more effective than marker assisted selection, especially for quantitative 

traits, in terms of capturing genetic variances with small effects (Heffner et al. 2009). GP 

provides the potential to increase genetic gain per generation through early selection for traits 

that are costly to phenotype. Phenotyping SCN resistance is a labor and time demanding process, 

thus implementation of genomic prediction in breeding for SCN resistance varieties might 

decrease the time and effort in phenotyping great number of crop accessions. Estimation of 

prediction accuracy for resistance to SCN HG 2.5.7 and HG 1.2.3.5.6.7 was 0.52 and 0.41, 

respectively, which is comparable to the prediction accuracy for SCN resistance in soybean (Bao 

et al. 2014). The prediction accuracy of GP for seed weight was as high as 0.82. Given the high 

prediction accuracy for both quantitative resistance and agronomic traits, GP holds great 

potential for common bean breeding programs.  

In this study, we acquired high-density and high-quality SNPs for the 363 common bean 

accessions using GBS, and successfully identified SNPs associated with resistance to two SCN 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4434860/#CR3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4434860/#CR29
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4434860/#CR3
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HG types. Our result detected the SCN resistances for two HG types located on different 

locations of Chr 1, Chr 7, and Chr 9. The most significant peak on Chr 1associated with 

resistance to HG type 2.5.7 was syntenic to a previously reported SCN resistance locus in 

soybean (Concibido et al. 1996; Kelly et al. 2003). The result of our study provided the first 

insight into the genetic architecture of SCN resistance in common bean, and we are also the first 

to apply GP to predict SCN resistance, and seed weight for 363 common bean accessions. 
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TABLES 

Table 2.1. Linkage disequilibrium (LD) decay estimated for different soybean chromosomes 

 

Chr No.1 Chr size (kb) No. of SNPs2 LD decay (kb)3 

1 52183.5 8571 70 

2 49033.7 8559 60 

3 52218.6 8549 60 

4 45793.2 8247 65 

5 40237.5 7313 65 

6 31973.2 8600 65 

7 51698.4 6289 60 

8 59634.6 9333 50 

9 37399.6 5073 60 

10 43213.2 7662 60 

11 50203.6 9220 50 

 
1Chr No. – Chromosome number 
2Number of SNPs used in present study. 
3LD decay at r 2 = 0.2.  
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Table 2.2. Bayesian information criterion (BIC)-based model selection for deciding the optimal 

number of PCs in the final model. Largest BIC value indicates best model.  

 

A: BIC information for association mapping analysis for HG 2.5.7 SCN resistance 

Number of PCs BIC log Likelihood Function Value 

0 -2080.58 -2071.76 

1 -2096.34 -2069.14 

2 -2098.14 -2069.88 

3 -2099.87 -2069.97 

4 -2101.36 -2070.73 

5 -2097.63 -2069.57 

 

B: BIC information for association mapping analysis for HG 1.2.3.5.6.7 SCN resistance 

Number of PCs BIC log Likelihood Function Value 

0 -206.59 -207.75 

1 -209.65 -209.18 

2 -212.31 -210.36 

3 -212.87 -210.76 

4 -210.34 -209.79 

5 -209.82 -209.23 
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Table 2.3. Significant SNPs detected in the genome-wide association study for four traits 

 

Trait Chr 
SNP 

Position 
P value maf 

R2 of 

model 

without 

SNP 

R2 of 

model 

with SNP 

FDR-

adjusted 

P value 

HG2.5.7 

SCN 

resistance 

1 18388403 1.02E-06 0.07 0.115 0.176 0.0304 

1 18388408 1.12E-06 0.07 0.115 0.176 0.0304 

1 18388378 1.36E-06 0.07 0.115 0.175 0.0304 

1 18388392 1.53E-06 0.068 0.115 0.174 0.0304 

9 35068146 1.80E-06 0.166 0.115 0.174 0.0304 

1 10061925 4.94E-06 0.071 0.115 0.168 0.0695 

HG1.2.3.5.6.

7 SCN 

resistance 

7 44761605 9.57E-07 0.204 0.158 0.217 0.0808 

Seed coat 

color 

6 9601167 7.95E-08 0.144 0.417 0.537 0.0067 

2 17276368 6.89E-07 0.403 0.417 0.519 0.0171 

2 17278934 8.51E-07 0.413 0.417 0.517 0.0171 

9 19120733 1.45E-06 0.028 0.417 0.512 0.0171 

2 47163511 1.53E-06 0.106 0.417 0.512 0.0171 

2 17278931 1.64E-06 0.459 0.417 0.511 0.0171 

3 50861768 1.81E-06 0.163 0.417 0.51 0.0171 

3 50928462 1.81E-06 0.163 0.417 0.51 0.0171 

6 5131072 1.82E-06 0.234 0.417 0.51 0.0171 

2 17294139 3.25E-06 0.406 0.417 0.505 0.0275 

Seed weight 

3 5204703 6.24E-07 0.167 0.617 0.645 0.0232 

11 16852607 6.40E-07 0.065 0.617 0.645 0.0232 

2 43368553 3.09E-06 0.193 0.617 0.641 0.0232 

2 43379956 3.09E-06 0.193 0.617 0.641 0.0232 

2 43400258 3.09E-06 0.193 0.617 0.641 0.0232 

7 17891385 3.10E-06 0.186 0.617 0.641 0.0232 

3 3306736 3.30E-06 0.198 0.617 0.641 0.0232 

3 3306784 3.30E-06 0.198 0.617 0.641 0.0232 

3 3307933 3.30E-06 0.198 0.617 0.641 0.0232 

3 3307946 3.30E-06 0.198 0.617 0.641 0.0232 

3 3307948 3.30E-06 0.198 0.617 0.641 0.0232 

3 3335111 3.30E-06 0.198 0.617 0.641 0.0232 

2 32146945 3.91E-06 0.193 0.617 0.641 0.0235 

2 32146953 3.91E-06 0.193 0.617 0.641 0.0235 
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FIGURES 

Fig. 2.1. Phenotypic analyses for SCN resistance, seed coat color, and seed weight. (A)  Frequency 

distribution of the diverse panel of 363 common bean accessions for SCN response to HG 2.5.7. 

Vertical axis shows the number of individuals in a particular range of cyst count, and the horizontal 

axis represents the SCN cyst count. (B) Frequency distribution of the diverse panel of 363 common 

bean accessions for SCN response to HG 1.2.3.5.6.7. Cyst count of the HG 1.2.3.5.6.7 was 

transformed to the 0.26th power. Vertical axis shows the number of individuals in a particular 

range of transformed cyst count, and the horizontal axis represents the transformed SCN cyst count. 

(C) Frequency distribution of the 363 common bean accessions in different ranges of seed weight. 

Vertical axis shows the number of individuals in a particular range of seed weight, and the 

horizontal axis represents the seed weight. 

 

  



 41 

Fig. 2.2. Principal component analysis (PCA) and kinship matrix of the 363 common bean 

accessions genotyped with 84,416 SNPs. (A) Genetic variation of the 363 common bean 

accessions explained by the first three principal components calculated with the 84,416 SNPs. 

Different colors represent different origins (CA: Central America; MX: Mexico; SA: Southern 

America), and the principle components indicates distinct population structure. (B) and (C) 

Genetic variation of the 363 common bean accessions explained by the first three principal 

components calculated with the 84,416 SNPs. Different colors represent different levels of 

resistance (MR: moderately resistant; MS: moderately susceptible; R: resistant; S: susceptible) to 

HG type 2.5.7 and HG type 1.2.3.5.6.7, respectively. The results showed minor confounding effect 

between population structure and SCN resistance. (D) A kinship matrix of the 363 common bean 

accessions.  

 
  



 42 

Fig. 2.3. GWAS for seed coat color and seed weight. (A) QQ plot for seed coat color (B) QQ plot 

for seed weight (C) Manhanttan plot for seed coat color (D) Manhanttan plot for seed weight. 

 

  



 43 

Fig. 2.4. GWAS for SCN resistance to HG type 2.5.7. (A) QQ plot for SCN resistance to HG 

type 2.5.7 (B) Pairwise LD displays of 15 SNPs located in the region surrounding SNPs detected 

by GWAS and the putative Rhg1 genes region on chromosome 1. The plot showed that the SNPs 

are in LD with the putative Rhg 1 gene. (C) Manhattan plot identified multiple significant SNPs 

on Chr. 1 and Chr.9.  
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Fig. 2.5. GWAS for SCN resistance to HG type 1.2.3.5.6.7. (A) QQ plot for SCN resistance to 

HG type 1.2.3.5.6.7 (B) Manhattan plot identified one significant SNPs on Chr. 7. 
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Fig. 2.6. Effect of SNP numbers used on prediction accuracy of genomic prediction. A) 

distribution of the prediction accuracy of 100 iterations of training process for predicting 

common bean resistance to SCN HG type 2.5.7. B) Distribution of the prediction accuracy of 

100 iterations of training process for predicting common bean resistance to SCN HG type 

1.2.3.5.6.7. C) A) distribution of the prediction accuracy of 100 iterations of training process for 

predicting common bean seed weight. 
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CHAPTER 3. PREDICTION OF SHORT-DISTANCE AERIAL MOVEMENT OF 

PHAKOPSORA PACHYRHIZI UREDINIOSPORES USING MACHINE LEARNING1 

ABSTRACT 

Dispersal of urediniospores by wind is the primary means of spread for Phakopsora 

pachyrhizi, the cause of soybean rust. Our research focused on the short distance movement of 

urediniospores from within the soybean canopy and up to 61 m from field-grown soybean rust 

infected plants. Environmental variables were used to develop and compare models including the 

least absolute shrinkage and selection operator regression, zero-inflated Poisson/regular Poisson 

regression, random forest, and neural network to describe deposition of urediniospores collected 

in passive and active traps. All four models identified distance of trap from source, humidity, 

temperature, wind direction, and wind speed as the five most important variables influencing 

short distance movement of urediniospores. The random forest model provided the best 

predictions, explaining 76.1% and 86.8% of the total variation in the passive- and active-trap 

datasets, respectively. The prediction accuracy based on the correlation coefficient (r) between 

predicted values and the true values were 0.83 (P < 0.0001) and 0.94 (P < 0.0001) for the 

passive- and active-trap datasets, respectively. Overall, we found that using multiple machine 

learning techniques identified the most important variables to make the most accurate predictions 

of movement of P. pachyrhizi urediniospores found a short distance from the source. 

 

 

 

 

 
 

1This chapter was published on Phytopathology (ISSN:0031-949X) and reprinted from Wen, L., 

Bowen, C.R, and Hartman, G.L. 2017. Prediction of short-distance aerial movement of 

Phakopsora pachyrhizi urediniospores using machine learning. Phytopathology. (ja). doi: 

10.1094/PHYTO-04-17-0138-FI. 
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INTRODUCTION 

Phakopsora pachyrhizi Syd. is the fungal pathogen that causes rust on soybean [Glycine max 

(L.) Merr.] and many other hosts (Hartman et al. 2015). Like many other fungi that cause plant 

rusts, P. pachyrhizi produces copious amounts of urediniospores that are readily wind-blown. 

Since the transoceanic spread of soybean rust from Asia to Hawaii, Africa, South America, and 

North America during the past two decades (Hartman et al. 2015), various models have been 

developed to predict P. pachyrhizi urediniospores dispersal from one location to another. In 

November 2004, soybean rust was reported for the first time in the continental United States in 

the state of Louisiana (Schneider et al. 2005). Based on long-distance transport models, P. 

pachyrhizi urediniospores may have been moved to the continental United States on winds 

associated with Hurricane Ivan (Isard et al. 2005), which occurred about two months before the 

discovery of soybean rust from Louisiana.  

The discovery of soybean rust in the continental United States brought about much research 

activity due to the potential of the pathogen to devastate soybean production (Kelly et al. 2015). 

Yield losses of up to 80% were reported in experimental plots in Taiwan (Hartman et al. 1991), 

30 to 75% in Brazil (Yorinori et al. 2005), and up to 31, 40, and 27% in Paraguay, South Africa, 

and Zimbabwe, respectively, (Miles et al. 2007). A network of sentinel plots was established to 

monitor the occurrences of the disease in the United States and information on its distribution 

was made available via the Pest Information Platform for Extension and Education (ipmPIPE) 

(Isard et al. 2006).  In the continental United States, P. pachyrhizi only survives winters on kudzu 

and overwintering volunteer soybeans below the frost line (Kelly et al. 2015; Sikora et al. 2014; 

Yang 2006), and perhaps throughout the Caribbean, causing a bottleneck and often slowing 

development of rust in the South each spring (Mundt et al. 2013). Data collected through the 
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sentinel plot network shows that rust occurred throughout the southern United States every year 

since 2004, but the spread of rust to the northern soybean-growing regions has been less common 

and, when it occurs, it develops late in the season (USDA 2017). Most commonly soybean rust 

has spread locally (within and among adjacent soybean fields), at a rate of 8.8 and 10.4 km per 

day in soybean in 2005 and 2006, respectively (Christiano and Scherm 2007).  

The dispersal of P. pachyrhizi urediniospores is an essential component of the spread of the 

pathogen, and occurs at all scales ranging from within the plant canopy to an entire hemisphere. 

The transport of urediniospores on different regional scales is important for disease modeling 

and forecasting. There is potential for P. pachyrhizi urediniospores to be lifted upward into the 

atmosphere for long-distance transport through rapidly moving air masses, similar to what may 

have occurred with Hurricane Ivan (Isard et al. 2005). Anticipating the spread of P. pachyrhizi 

urediniospores in the United States, simulation-based mathematical models were developed to 

assess the long-distance movement of P. pachyrhizi urediniospores from the southern to the 

northern United States (Isard et al. 2005; Isard et al. 2007; Isard et al. 2011; Krupa et al. 2006; 

Pan et al. 2006). One model used a climate-dispersion integrated model system to simulate long-

distance and long-term movement of P. pachyrhizi urediniospores one month in advance of an 

epidemic (Pan et al. 2006). This aerobiological model is based on the Hybrid Single-Particle 

Lagrangian Integrated Trajectory (HYSPLIT) model which simulates single trajectories of air 

parcels and deposition of particles originating from a source geographical location and time of 

year (NOAA 2006). Another model is the Soybean Rust Aerobiology Prediction System 

(SRAPS) (Isard et al. 2005), which simulates basic spore dispersal processes stated by Aylor 

(1999). These processes include spore production, release or removal from a substrate, escape 

from the canopy, transport and dilution by wind, loss of viability during transport, removal from 
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the atmosphere by precipitation, deposition on host tissue, and impact in a destination area (Isard 

and Gage 2001). Previous models that predict the long-distance movement of soybean rust were 

configured in a modular format to include all of the stages in the aerobiology process. For 

example, the SRAPS (Isard et al. 2005) includes the modules of spore release and canopy escape 

in source areas, mortality due to exposure to solar radiation during atmospheric transport, and 

wet deposition in destination regions using the National Center for Environmental Prediction–

Department of Energy Reanalysis 2 data set (Kalnay et al. 1996, Kanamitsu et al. 2002).  

The environmental variables governing each step of the aerobiological pathway of P. 

pachyrhizi urediniospores are important components in spore transport modeling, although there 

are gaps in knowledge about what influences the release and escape of rust urediniospores from 

the canopy to the atmosphere (Issard et al., 2005). The release and movement of P. pachyrhizi 

urediniospores from the canopy is influenced by wind and turbulence, the canopy structure, and 

location of the released spores within the canopy. Precipitation may also play a role in 

facilitating dislodgement of rust urediniospores from the uredinia (Del Ponte et al. 2006b). After 

escaping the soybean canopy, turbulent diffusion and wind shear dilute the spores that are 

transported by airflows, and weather variables such as solar radiation, temperature, and relative 

humidity affect the survival of spores and dry deposition by wind and turbulence (Gregory 1973) 

and wet deposition by precipitation (Aylor 1986). After spore deposition on soybean leaves, 

various variables such as leaf wetness, temperature, and relative humidity, will further affect the 

establishment of rust (Desborough 1984; Melching et al. 1989). 

The escape of P. pachyrhizi urediniospores from the substrate to the air above the canopy is a 

key component in the short- and long-distance movement modeling. However, since the short 

distance movement of soybean rust is poorly understood, parameters involved in this process, 
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including strength of inoculum source, escape rate of urediniospores (from infected leaves and 

the canopy), survival, and deposition rates, were often estimated based on previous knowledge 

and experience (Isard et al. 2005; Pan 2006; Yang 2006). Some quantitative data has been 

reported for the amount of urediniospores generated from soybean, susceptible kudzu, and 

resistant kudzu canopy in Florida; this was estimated at 6.7 × 1012, 4.4 × 1012, and 7 × 1011 

urediniospores per day, respectively (Kelly et al. 2015). The application of SRAPS makes 

multiple assumptions, including that 25% of the heavily-infected source plant releases 6 million 

urediniospores per day, 33% of which are released during the optimal transport period and that 

15% of them escape from the soybean canopy (Isard et al. 2005). Considering the varying local 

production and availability of P. pachyrhizi urediniospores, the accurate estimate of the short 

distance movement of rust urediniospores may be crucial to risk assessments and seasonal 

soybean rust forecasting. 

Understanding how environmental factors influence the early stages of aerobiological 

process provides useful information for modeling of short distance movement from field to field 

and long-distance spore movement from within a continent or from continent to continent. One 

model simulated urediniospores escape from the plant canopy through wind speed to predict 

urediniospores escape from the boundary layer of the canopy (Andrade et al. 2005). Along with 

wind speed, the release of P. pachyrhizi urediniospores also depends on other environmental 

factors like humidity, leaf wetness, precipitation, solar radiation, and temperatures (Del Ponte et 

al. 2006b; Isard et al. 2005; Isard et al. 2006a). However, direct evidence of the relationships 

among these factors and the short distance transport of rust urediniospores is not known. 

Predicting the short distance movement of rust spores with environmental variables include 

data that is complex with multicollinearity. Unlike traditional regression methods, machine 
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learning methods are appropriate for complex data including non-linear relationships between 

predictors and a response and are also able to process noisy data with multicollinearity 

(Recknagel 2001; Garzón et al. 2006).   

The absolute shrinkage and selection operator (LASSO) is a well-established method that 

reduces the variance of the coefficient estimates by shrinking the coefficients, some to zero, and 

has been used for both feature selection and multicollinearity (Oyeyemi et al. 2015). Poisson 

regression is a commonly used model for analyzing count variables. The zero-inflated Poisson 

regression model is a modification of the regular Poisson regression model, but it allows for 

excessive counts of zero in the data. The central idea of the zero-inflated Poisson regression 

model is that the data comes from two regimes; one is from counts of zero and the other follows 

a standard Poisson distribution (Lambert 1992).  Random forest model is a tree-based method, in 

which the data space is recursively partitioned based on the value of one of the predictor 

variables, such that the observations within a partition become more and more homogeneous 

(Matsuki et al. 2016). Building multiple decision trees using random samples of data points for 

each tree and random samples of predictors at each split point, random forest can provide more 

accuracy than those of any single tree and prevent overfitting (Breiman 2001). Neural network 

models are highly sophisticated pattern recognition systems capable of learning complex 

relationships. During the neural network learning process, input variables are weighted in various 

combinations, summed, and passed on to multiple layers. This combination of simple 

calculations results in the ability of neural networks to learn complicated non-learner 

relationships (Livingstone et al. 1997). 

The objective of our study was to develop empirical models to predict the short distance 

transport of P. pachyrhizi urediniospores based on environmental variables, using urediniospores 
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count data collected from passive and active spore traps at four environments in the southern 

United States. Our study compared models using the LASSO, zero-inflated Poisson/regular 

Poisson model, random forest, and neural network to predict the short distance transport of P. 

pachyrhizi urediniospores with environmental variables. 

MATERIALS AND METHODS 

Environments. Rust epidemics were monitored in soybean fields at Fairhope, Alabama from 

11-19 August 2005, Attapulgus, Georgia from 4-11 October 2005, and Quincy, Florida from 5-

12 October and 2-12 November 2005. Soybeans at Fairhope and Attapulgus were at growth 

stages (GS) R6-R7 and R7-R8, respectively, and at Quincy-1 at GS R2 and Quincy-2 at GS R4-

R6.  

At each environment, a Watchdog 700 weather station (Spectrum Technologies, Inc., 

Plainfield, Illinois 60585) logged average temperature (˚C), relative humidity (%), wind speed 

(km/h), wind direction (˚), solar insolation (watts/m2), precipitation (mm), and leaf wetness 

(scale of 0 to 15, where 0 = dry and 15 = wet) at 60 min intervals.  

Passive trap urediniospore collection.  A network of 16 passive wind-directional spore 

traps, modeled after the aeroconiscope (Maddox 1870; Maddox 1871), formed two concentric 

rings around the soybean rust source fields (Fig. A.1-A.2). Traps were positioned at 15 m and 61 

m from the edges of diseased plants in plots at 0° (north), 45° (northeast), 90° (east), 135° 

(southeast), 180° (south), 225° (southwest), 270° (west), and 315° (northwest) orientations. Each 

trap consisted of a 30-cm length of 10.2 cm diameter PVC pipe with a 25 cm x 25 cm x 2 mm 

tail of plastic sheeting fitted into a slit at one end and oriented perpendicular to the ground. Traps 

behaved like wind vanes as moving air on the surface of the tail caused traps to rotate on swivel 
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mechanisms orienting the front of the collection cylinder into the wind. Inside each trap, a 7-cm 

length of 1.9 cm diameter PVC pipe with a 45˚ slit cut partially through the pipe was anchored to 

the bottom inner surface of the trap, serving as a microscope slide holder. Slides were labeled, 

coated with a thin layer of silicone grease (covering approximately 75% of the length of the 

slide; G-697, General Electric Co., Waterford, NY, USA), and seated upright in the slide holder 

with the greased surface tilted back and facing upwind. The passive spore trapping device was 

mounted on 1.5 m (height of trap) x 1.9 cm diameter PVC pipe, which was slipped over a 1.2 m 

x 9.5 mm electric steel fencepost driven into the ground.  With this apparatus, air moving 

through the trap deposited particulates, including rust urediniospores, onto the silicone grease-

coated slides.  Slides were collected and replaced daily at 1600 h; samples were stored in 

microscope slide boxes.  

Active trap urediniospore collection.  Model 20 Rotorod Samplers (Multidata LLC, St. 

Louis Park, MN 55416) consisting of a motor, a rotating sampler head, and collector rods were 

used to actively collect urediniospores.  The motor was mounted with zip ties or hose clamps on 

2 cm diameter PVC pipe slipped over metal fence posts driven into the ground, and was powered 

by a 12 volts battery. The leading edges of clear polystyrene collector rods (1.52 x 1.52 x 32 

mm) were coated with a thin layer of silicone grease (General Electric Co.; Waterford, NY, 

USA).   

At each of the four environments, samplers were erected at two sites (three sites for 

Fairhope) within the field where actively developing rust lesions were observed (Fig. A.1). Each 

site within a field had a pair of samplers located together with one sampler being 25% above 

canopy height and the other at 75% of canopy height. Within the canopy, the sampling head and 

rods were located above the motor and inversed for sampling over the canopy. Rotorod heads 
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rotated at 2400-2440 rpm.  Samples were collected daily every 2 h from 08:00 to 18:00 h, except 

at Attapulgus, where the samples were collected at 08:30, 10:30, 12:30, 14:30, and 17:00 h.  

Each sampling interval lasted 30 min and the five sampling times were categorized as morning, 

mid-morning, noon, mid-afternoon, and late afternoon. Collector rods were subsequently adhered 

with white Elmer’s glue (Elmer’s Products, Inc., Columbus, OH, USA) to labeled microscope 

slides and stored in microscope slide boxes for further examination. 

Urediniospore counts. For passive traps, slides were observed through a compound 

microscope at 200x magnification. The number of collected urediniospores were enumerated by 

counting 20 to 60 sample areas (each was 0.58 mm2) depending on spore density. The 

represented area was 11.6 mm2 to 34.9 mm2 or 0.65% to 1.96% of the total 1775 mm2 greased 

area. Average number of spores were expressed as urediniospores per cm2 per day for passive 

traps and per m3 per 30 min for active traps.   

For active traps, urediniospores from the entire leading-edge surface of each collector rod 

were visually enumerated by observation under 200x magnification. Results were reported as 

number of spores/m3 of air sampled per 30 min time interval. To detect differences in active trap 

heights and times of day, a mixed model analysis was employed (Proc Mixed SAS) on all log-

transformed spore counts with trap position and time of day effects to be repeated measures. 

Means were separated by least significant difference (LSD) at a significance level of α = 0.05.   

Data preparation for model evaluation. The summary statistics including range and 

quartile of the response variables (spore counts) and all the input variables of both datasets were 

examined. Response variables were log scaled, adding 0.05 to the counts, to be in similar range 

as other variables for modeling purposes. The input variables in the passive trap dataset and 

active trap dataset are listed in Table 3.1. Correlations were calculated between each pair of 
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variables to check for multicollinearity. For model training and validation, 80% of the data points 

were randomly and uniformly selected from each location served as a training dataset and 20% 

of the data were reserved for testing model performance. Model validation was repeated 10 

times, randomly partitioning the datasets 10 times, and the average prediction accuracy for 

different models was calculated.    

LASSO model. A LASSO regression model was implemented with the GLMNET package 

in R v3.1.1 (R Development Core Team 2008). A “Gaussian” distribution response variable was 

used due to continuous output variables in the processed data. Five-fold cross validation was 

conducted to select the regularization parameter lambda.  A LASSO regression model was fitted 

using the minimized lambda value to predict the spore counts of the testing dataset. After the 

model was fitted, the variance inflation factor (VIF) was checked for each variable that remained 

in the model.  

Zero-inflation Poisson/regular Poisson model. This model used the “zeroinfl” function in 

the pscl package in R for the passive trap dataset. Only the important variables identified in the 

LASSO model were included to account for multicollinearity. In order to identify potential 

covariates that affect the probability of being in the all-zero component, analysis of variance 

analysis (ANOVA) was first conducted to compare the means of each predicting variable (Table 

A.1) in the ‘always-zero’ count group and ‘non-zero’ count group, and the variables with 

significant different means between the ‘always-zero’ count group and ‘non-zero’ count group 

were potential covariates that caused excess zeros and were included in the inflation component 

portion of the zero-inflated Poisson model. For the active trap dataset, a regular Poisson model 

was fitted using the “glm” function in R since there were few zero counts. 
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Random forest model. The random forest model was trained with the training dataset 

derived from the original data using the “caret” package in R environment. The number of 

variables (mtry) randomly sampled as candidates for node splitting during the tree growing 

process was optimized using the train function through five-fold cross validation. The numbers 

of trees (ntree) induced in the training process was based on a grid search ranging from 300 to 

1000. Once the model was trained with the optimized number of trees and variables, spore 

counts in the testing dataset were predicted using the fitted model. 

Neural network model. The neural network model also was developed using the “caret” 

package in R. Parameters considered and tuned in the neural network model were learning rate 

(learningrate), activation function (act.fct), number of hidden layers and number of neurons in 

each hidden layer (hidden), and maximum steps for the training of the neural network (stepmax). 

All input variables were centered and scaled by subtracting the mean from values followed by 

dividing values by standard deviation. The model was trained by comparing settings at three 

learning rates (0.1, 0.01, and 0.001) and at two stepmax (100,000 and 1,000,000) factorial 

combinations. The logistic activation function was used for smoothing the result of the cross 

product of neurons and the weights. Hidden layer and number of neurons in each hidden layer 

were optimized using the train function in the caret package through five-fold cross validation. 

The neural network model was then fitted with the optimized parameters, and spore counts in the 

testing datasets were predicted using the fitted model. 

RESULTS 

A total of 376 daily spore counts were obtained from passive traps at three environments, and 

728 hourly data counts were obtained from active traps at four environments. Spore counts 
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ranged from 0 to 43,503 and from 0 to 19,720 for passive trap and active trap datasets, 

respectively. There were 161 zero counts and 8 extreme high counts (> 30,000) in the passive 

trap dataset, and there were 4 zero counts and 9 extreme high counts (> 10,000) in the active trap 

dataset. All the data points were used to build the predictive models.  

Passive trap dataset. The sum of spores over both distances (15 and 61 m), all directions 

(eight traps for each distance), four environments, and all sampling times was over 1.0 million 

spores/m2 per day with an average count per location of 42,186 spores per day. The inner ring 

traps had 69% of the total number of spores/m2 while the outer ring had 31% of the total 

spores/m2. Correlation between spore counts and each of the 10 input variables showed that 

mean daily temperature (r = -0.565; P = 0.001), mean daily relative humidity (r = -0.539; P = 

0.001), and distance of trap from the source (r = -0.666; P = 0.000028) were negatively 

correlated with spore counts while minimum daily wind speed (r = 0.593; P = 0.02) was 

positively correlated with spore counts.  

Active trap dataset. Spore numbers within the canopy were significantly correlated to those 

above the canopy in all environments in 19 of the 30 days monitored, and the spore counts within 

the canopy were uniformly higher than those above the canopy (Table 3.2). Temperature was 

positively related to spore counts on 8 of the 30 days.  We observed 9 and 4 days when spore 

counts were significantly negatively correlated with leaf wetness and humidity, respectively. One 

significant correlation in opposition to general trends was detected on 12-Nov-2005 at Quincy-2, 

when the highest spore count was correlated with low temperature, high leaf wetness, and high 

humidity. There were only a few precipitation events during the sampling period, but significant 

correlations with spore counts were negative. Wind speed and spore count were significantly 

positively correlated on 9 of the 30 days.  
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There was considerable variation in the numbers of P. pachyrhizi urediniospores in the traps 

at the four locations. The trend lines for urediniospore counts at Fairhope and Attapulgus 

increased trend over time while the trend line for counts at Quincy-1 and Quincy-2 decreased 

(Fig. 3.1A).  Along with the correlated variables temperature, humidity, leaf wetness, and 

precipitation (Table 3.2), mean daily spore counts in the traps were correlated with wind speed 

during the same time period (Fig. 3.1B).  

Spore counts tended to be lower in the morning, increase through the day until afternoon or 

late afternoon (Fig. 3.2). Average spore counts from the active traps for each time of day in each 

environment and corresponding environmental variables were also correlated (Table 3.3). 

Seventeen of the 20 correlations between within canopy and above canopy data were positive 

and significant. The exceptions to this trend occurred at Quincy-1 where spore counts were low. 

There were no significant positive correlations of spore counts with temperature, leaf wetness, or 

humidity. Correlations of temperature, leaf wetness, and humidity with spore count were 

negative and significant for two, three, and, two occasions, respectively. 

LASSO regression. The average performance of the LASSO regression model as a function 

of smoothing parameter lambda cross validation identified the optimized smoothing parameter 

lambda, which ranged from 0.05 to 0.17 with 7 to 4 variables in the model for the passive trap 

dataset, and ranged from 0.007 to 0.05 with 13 to 9 variables in the model for the active trap 

dataset (Fig. A.3). The variables that significantly contributed to the spore count at lambda = 

0.05 for the passive trap dataset in decreasing order of importance were mean daily temperature, 

mean daily wind speed, mean daily wind direction, max and minimum wind speed, precipitation, 

position of trap, mean daily relative humidity, distance from source, and degree between trap and 

wind direction (Table 3.4). Variables that significantly contributed to active trap spore counts at 
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lambda = 0.007 for the active trap dataset in decreasing order of importance were precipitation, 

height of trap, time of day, mean previous two-hour temperature, previous second-hour 

temperature, mean hourly wind speed, mean hourly temperature, mean hourly relative humidity, 

previous hour temperature, leaf wetness, mean hourly wind direction, solar radiation, and 

previous hour humidity (Table 3.4).  

Selected variables used to fit regression model and predict spore counts in the testing dataset 

explained 48.2% and 47.3% of the variation for the passive dataset and active dataset, 

respectively (Fig. 3.3). The prediction accuracy of the LASSO regression model evaluated by 10 

repeats of validation ranged from 0. 28 to 0.71 for the passive trap dataset, and 0.61 to 0.70 for 

the active trap dataset (Table 3.5). The average prediction accuracy was 0.56 and 0. 65 for the 

passive and active trap dataset, respectively.  

Zero-inflation Poisson/regular Poisson model. Daily maximum wind speed and 

temperature were the only two variables that were significantly different between ‘always-zero’ 

group and the ‘non-zero’ group (Table A.1), therefore, these two variables were included in the 

inflation component portion. All the predictors included in the Poisson count portion of the zero-

inflated Poisson model were statistically significant for the passive trap dataset (P < 0.0001), and 

daily maximum wind speed in the inflation component portion was also significant (P = 0.0323) 

(Table A.2). The estimated odds of ‘excess zero’ was about exp (-0.11) = 0.89 times lower when 

the wind speed increased by one unit. All the parameters included in the Poisson model for the 

active trap dataset were significant (P < 0.0001). The prediction accuracy of the zero-inflated 

Poisson model evaluated by 10 repeats of validation ranged from 0.73 to 0.83 for the passive trap 

dataset, and the average prediction accuracy was 0.77. The prediction accuracy of the regular 

Poisson model evaluated by 10 repeats of validation ranged from and 0.69 to 0.82 for the active 
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trap dataset, and 0. 74 for the passive and active trap dataset (Table 3.5). The predicted values of 

the 10 testing datasets by the zero-inflation Poisson /regular Poisson model were plotted against 

the actual spore count values for the passive trap and active trap datasets (Fig. 3.4). 

Random forest. The optimized number of variables used at each node split in the final 

random forest model was m = 6 and m = 14 for the passive and active trap datasets, respectively 

(Fig. A.4), and 400 trees minimized the MSE of the random forest model for both datasets. The 

final model explained 76.1% and 86.8% of the total variation for passive and active trap datasets, 

respectively. The predicted values of the 10 testing datasets by the random forest model were 

plotted against the actual spore count values for the passive trap and active trap datasets (Fig. 

3.5). The prediction accuracy of the random forest model evaluated by 10 repeats of validation 

ranged from 0.75 to 0.86 for the passive trap dataset, and 0.93 to 0.95 for the active trap dataset 

(Table 3.5). The average prediction accuracy was 0.80 and 0. 94 for the passive and active trap 

dataset, respectively. In decreasing order of importance, the variables contributing to the model 

were mean daily temperature, minimum wind speed, mean daily wind direction, maximum and 

minimum wind speed, precipitation, position of trap, mean daily relative humidity, distance from 

source, and degree between trap and wind (Table 3.4). For the active trap dataset, variables in 

decreasing order of importance were mean hourly relative humidity, previous two-hour mean 

temperature, mean hourly temperature, mean hourly wind direction, previous second hour mean 

temperature, previous hour humidity, solar radiation, wind speed, previous hourly mean 

temperature, mean previous two-hour humidity, time of day, previous second-hour humidity, 

height of trap, hourly mean leaf wetness, and hourly total precipitation (Table 3.4). Like the 

LASSO regression model, the most important factors that affected the amount of rust spores in 
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the air were temperature, previous hour temperature, wind speed, wind direction, humidity, and 

time of day.  

Neural network. The optimal parameters for the neural network model selected by 5-fold 

cross validation was with one hidden layer with 14 and 19 neurons in the hidden layer for the 

passive and active trap datasets, respectively (Fig. A.5). The model converged relatively fast 

with learning rate = 0.001 and maximum step of stopping learning = 1,000,000. The predicted 

values of the 10 testing datasets by the neural network model were plotted against the actual 

spore count values for the passive trap and active trap datasets (Fig. 3.6). The prediction 

accuracy of the neural network model evaluated by 10 repeats of validation ranged from 0.76 to 

0.83 for the passive trap dataset, and 0.57 to 0.71 for the active trap dataset (Table 3.5). The 

average prediction accuracy was 0.79 and 0. 63 for the passive and active trap dataset, 

respectively. The neural network model indicated that the most important predictor variables that 

affected spore counts in the passive traps in decreasing order were mean daily temperature, 

minimum wind speed, mean daily wind speed, distance from source, mean daily relative 

humidity, precipitation, maximum wind speed, mean daily wind direction, degree between trap 

and wind, and position of trap (Table 3.4). The variables that significantly contributed to the 

spore count for the passive trap dataset in decreasing order of importance were mean daily 

temperature, mean daily relative humidity, distance from source, minimum wind speed, 

maximum wind speed, mean daily wind direction, position of the trap, precipitation, mean daily 

wind speed, degree between trap, and wind direction (Table 3.4). Variables that significantly 

contributed to active trap spore counts for the active trap dataset were mean hourly relative 

humidity, mean previous two-hour temperature, previous hour humidity, mean hourly wind 

direction, previous second hour temperature, mean previous two-hour humidity, mean hourly 
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temperature, previous hour temperature, previous second hour humidity, height of trap, solar 

radiation, mean hourly wind speed, time of day, and leaf wetness (Table 3.4). 

DISCUSSION 

The short-distance movement of the P. phychyrhizi urediniospores from infected soybean 

leaves to the surrounding air determines the inoculum availability for short- and long-distance 

spore dispersion and is dependent on many factors. Our results showed that temperature, wind 

speed, wind direction, relative humidity, leaf wetness, time of day, and distance from the source 

were the most important factors that affected urediniospore movement. There were positive 

correlations between the number of urediniospore with temperature and wind speed, and 

negative correlations between number of urediniospore with humidity, leaf wetness, and 

precipitation. These factors in combination resulted in a greater majority of the urediniospores 

counted between midday to mid-afternoon. Along with these factors, there may be additional 

biological explanations for higher spore counts around midday. In other studies, it was shown 

that Puccinia striiformis produces a mucilaginous layer around its spores that becomes thicker as 

relative humidity increases (Rapilly 1979), which may also be the case for P. pachyrhizi (Del 

Ponte et al. 2006b), resulting in fewer numbers of spores released into the air.  

It is not uncommon for fungi to have a diurnal pattern of peak spore release. Similar to what 

was found in our study, this was shown for capture of Podosphaera clandestina (powdery 

mildew of sweet cherry) conidia, where spore numbers peaked about midday, which was 

positively correlated with wind speed and temperature, but negatively correlated to relative 

humidity (Grove 1998). In another example, a diurnal pattern was shown for peanut rust as spore 

capture peaked at noon, which was positively correlated to relative humidity below 70% and to 
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increased wind speed (Savary and Janeau 1986). In the case of P. pachyrhizi, newly formed 

urediniospores push older spores upward often forming a chain under still conditions.  When the 

chain is disturbed, the urediniospores become airborne. As the spore chain gets longer, more 

urediniospores are released into the air. 

Precipitation events are generally perceived to wash spores from the atmosphere down to 

surfaces, including plant leaves. One report showed that precipitation washed P. pachyrhizi 

urediniospores from the leaves and out of the atmosphere (Default et al. 2010), but several 

reports speculate that rain events may disperse P. pachyrhizi urediniospores by rain splash (Del 

Ponte and Esker 2008; Melching et al. 1979). In our study, there were only a few precipitation 

events and trends related to precipitation were not easily discerned, although when precipitation 

occurred, it was associated with a reduction in urediniospore counts. However, precipitation and 

high moisture conditions are important in soybean rust epidemics as shown in several soybean 

field studies with P. pachyrhizi in Brazil (Del Ponte et al. 2006b), China (Tan et al. 1996), 

Taiwan (Tschanz et al. 1984), and Uganda (Kawuki et al. 2004), where precipitation events 

resulted in higher rust severity after the event.  Another key role played by precipitation is 

washing urediniospores from the air and onto host leaves, and providing the leaf wetness 

necessary for urediniospore germination.  

Disease forecasting models provide a way to predict the risk of disease. Regression models 

have been widely used to predict epidemics of plant diseases including soybean rust (Del Ponte 

et al. 2006a; Olatinwo et al. 2008; Paul and Munkvold 2005; Rosso and Hansen 2003; Uddin et 

al. 2003). Regression models have the advantage of simplicity and easy interpretation of 

predicted results. However, when response and predicting variables have relationships that are 

more complex than linear, other approaches such as random forest and neural network have been 
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used in making more accurate predictions in many areas, including plant disease epidemiology 

(Behmann et al. 2015; Mehra et al. 2016; Paul and Munkvold 2005). In our datasets, many 

significant interactions were detected between variables. The higher prediction accuracy of the 

random forest and neural network models over the linear model for predicting rust urediniospore 

counts in the traps shows the power of the non-linear models to help model these complex 

interactions.  

Our study developed and compared four machine learning models for the prediction of short 

distance movement of soybean rust urediniospores. The random forest model produced more 

accurate predictions than the LASSO regression model, the zero-inflated Poisson model, and the 

neural network model indicating that the relationships between the number of urediniospores 

released from the leaf surface into the air and the various meteorological variables are more 

complex than simply linear, and demonstrated the robustness of the random forest model to 

handle multicollinearity and inflated-zero issues. These four models all identified temperature, 

humidity, wind speed, wind direction, and leaf wetness as key factors affecting the rust 

urediniospores collected by the passive and active spore traps. The random forest and neural 

network models provide a way to analyze non-linear relationships between variables (Olden et 

al. 2008; Siroky 2009). However, it can be difficult to interpret the relationships between 

variables identified by these models due to the lack of simple representation, such as a linear 

formula. In addition, the values of many parameters in both random forest and neural network 

models are highly influential. The number of trees and number of variables used at each node in 

the random forest model and the learning rate, activation function, number of hidden layers, and 

number of neurons in each layer can greatly affect prediction accuracy.  
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Overall, we conclude that using multiple machine learning techniques was helpful, not only 

to identify the most important variables and make the most accurate predictions, but also to 

increase confidence for applying these models to obtain coherent results. The models built in our 

study are useful in predicting the numbers of soybean rust urediniospores found a short distance 

from the source, which in turn is critical for understanding long distance dispersion of the spores 

including for prediction and forecasting models that are used to advise producers. 
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TABLES 

Table 3.1. Input variables in the datasets for each model collected from the passive trap and 

active trap. 

 

Dataset Input Variables 

 1. Daily mean temperature (˚C) 

 2. Daily mean relative humidity (%) 

 3. Daily mean precipitation (mm) 

 4. Daily mean wind speed (km/h) 

Passive Trap 5. Daily mean wind direction (˚)  

 6. Minimum wind speed (km/h) 

 7. Maximum wind speed (km/h) 

 8. Position of trap (˚) 

 

9. Distance (m)  

10. Difference between trap location and wind (˚) 

 1. Time of day 

 2. Hourly mean temperature (˚C) 

 3. Hourly mean relative humidity (%) 

 4. Hourly total precipitation (mm) 

 5. Hourly mean wind speed (km/h) 

 6. Hourly mean wind direction (˚) 

Active Trap 7. Trap height (m) 

 8. Hourly mean leaf wetness (Centibar) 

 9. Hourly mean solar radiation (Wat/m2) 

 10. Previous hour mean temperature (˚C) 

 11. Previous hour mean relative humidity (%) 

 12. Previous second hour mean temperature (˚C) 

 13. Previous second hour mean relative humidity (%) 

 14. Previous two hours mean temperature (˚C) 

 15. Previous two hours mean relative humidity (%) 
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Table 3.2. Active trap daily mean Phakopsora pachyrhizi urediniospores concentrations at both 

canopy heights and all environments, correlated to within canopy spore concentration, 

temperature, leaf wetness, humidity, precipitation, and wind speed. 

 

   
Canopy Mean Correlation 

Environment Date Position Spores/m3 Within Canopy Temperature Leaf Wetness Humidity Rain Wind Speed 

Fairhope 

  

11-Aug-05 Above 94.88 0.26 
 

0.78 
 

-0.46 
 

-0.7 
 

-0.34   0.58 
 

 
Within 181.94 

  
-0.33 

 
0.74 

 
0.4 

 
0.81 

 
-0.5 

 

12-Aug-05 Above 100.69 0.87 
 

0.39 
 

-0.62 
 

-0.48 
   

0.69 
 

 
Within 347.41 

  
-0.09 

 
-0.18 

 
-0.03 

   
0.27 

 

13-Aug-05 Above 178.12 0.99 ** 0.88 * -0.98 ** -0.78 
   

0.8 
 

 
Within 379.51 

  
0.79 

 
-0.94 * -0.67 

   
0.79 

 

15-Aug-05 Above 204.91 0.86 
 

0.27 
 

0.34 
 

-0.76 
 

0.46 
 

0.98 **  
Within 549 

  
0.18 

 
0.4 

 
-0.53 

 
0.48 

 
0.79 

 

16-Aug-05 Above 11.06 0.36 
 

0.64 
 

-0.63 
 

-0.72 
 

0.65 
 

0.75 
 

 
Within 30.77 

  
0.34 

 
-0.26 

 
-0.34 

 
-0.46 

 
0.78 

 

17-Aug-05 Above 58.11 0.93 * -0.25 
 

-0.29 
 

-0.05 
 

-0.01 
 

-0.81 
 

 
Within 73.96 

  
-0.15 

 
-0.22 

 
-0.14 

 
0 

 
-0.66 

 

18-Aug-05 Above 50.28 0.98 ** 0.61 
 

-0.62 
 

-0.48 
   

0.67 
 

 
Within 64.35 

  
0.65 

 
-0.63 

 
-0.49 

   
0.66 

 

19-Aug-05 Above 22.34 0.92 * 0.92 * -0.67 
 

-0.93 * -0.09 
 

0.45 
 

  Within 23.34     0.78   -0.72   -0.82   -0.29   0.34   

Attapulgus 

  

5-Oct-05 Above 303.26 0.93 * -0.01 
 

0.39 
 

0.12 
  

  0.23    
Within 811.85 

  
0 

 
0.61 

 
0.16 

   
0.38 

 

6-Oct-05 Above 38.9 0.99 ** 0.79 
 

-0.82 
 

-0.77 
 

-0.93 * 0.86 
 

 
Within 118.93 

  
0.87 

 
-0.9 * -0.85 

 
-0.9 * 0.84 

 

7-Oct-05 Above 16.56 0.96 * 0.47 
 

-0.71 
 

-0.4 
 

-0.4 
 

0.76 
 

 
Within 51.32 

  
0.65 

 
-0.64 

 
-0.6 

 
-0.26 

 
0.73 

 

8-Oct-05 Above 32.9 0.7 
 

0.58 
 

-0.72 
 

-0.56 
   

0.64 
 

 
Within 66.18 

  
0.53 

 
-0.24 

 
-0.54 

   
0.49 

 

9-Oct-05 Above 36.95 1 ** 0.83 
 

-0.64 
 

-0.8 
   

0.17 
 

 
Within 126.43 

  
0.85 

 
-0.65 

 
-0.83 

   
0.2 

 

11-Oct-05 Above 52.35 0.98 ** 0.32 
 

-0.73 
 

-0.21 
   

0.45 
 

  Within 142.05     0.22   -0.69   -0.11       0.42   

Quincy-1 

  

5-Oct-05 Above 23.51 0.9 * -0.1 
 

0.79 
 

0.12 
 

0.81   0.19    
Within 30.07 

  
-0.17 

 
0.78 

 
0.09 

 
0.79 

 
0.12 

 

6-Oct-05 Above 17.22 0.98 ** 0.09 
 

-0.97 ** -0.96 ** 
  

0.73 
 

 
Within 25.66 

  
0.22 

 
-0.95 * -0.94 * 

  
0.8 

 

7-Oct-05 Above 3.79 0.59 
 

0.81 
 

-0.58 
 

-0.9 * 
  

-0.59 
 

 
Within 7.76 

  
0.12 

 
0.24 

 
-0.49 

   
-0.18 

 

8-Oct-05 Above 7.98 0.8 
 

0.53 
   

0.14 
   

0.07 
 

 
Within 25.76 

  
0.35 

   
0.36 

   
0.06 

 

11-Oct-05 Above 25.29 0.96 * 0.93 * -0.91 * -0.87 
   

0.96 *  
Within 93.22 

  
0.82 

 
-0.78 

 
-0.77 

   
0.86 

 

12-Oct-05 Above 25.65 0.77 
 

0.21 
 

-0.08 
 

-0.24 
   

0.73 
 

  Within 97.65     0.05   -0.26   0.02       0.69   

Quincy-2 

  

2-Nov-05 Above 310.12 0.89 * -0.35 
 
  

 
0.54 

  
  0.93    

Within 1106.68 
  

0.29 
   

-0.12 
   

0.5 
 

3-Nov-05 Above 821.92 0.93 * -0.43 
 

0.07 
 

0.52 
   

0.89 *  
Within 2228.37 

  
-0.57 

 
0.23 

 
0.64 

   
0.87 

 

4-Nov-05 Above 557.87 0.72 
 

0.89 * -0.64 
 

-0.86 
   

0.85 
 

 
Within 2961.87 

  
0.77 

 
-0.97 ** -0.83 

   
0.33 

 

6-Nov-05 Above 1688.61 0.85 
 

0.32 
 

-0.33 
 

-0.02 
   

0.97 **  
Within 6277.78 

  
0.66 

 
-0.69 

 
-0.3 

   
0.86 

 

7-Nov-05 Above 2225.24 0.99 ** 0.97 ** -0.92 * -0.87 
   

0.41 
 

 
Within 8085.5 

  
0.97 ** -0.89 * -0.84 

   
0.32 

 

8-Nov-05 Above 1256.53 0.98 * 0.67 
 

-0.8 
 

-0.51 
   

0.99 *  
Within 5335.04 

  
0.54 

 
-0.73 

 
-0.36 

   
1 ** 

9-Nov-05 Above 1437.29 0.99 ** 0.81 
 

-0.76 
 

-0.76 
   

0.62 
 

 
Within 3490.65 

  
0.8 

 
-0.78 

 
-0.73 

   
0.56 

 

10-Nov-05 Above 9446.19 0.98 ** 0.89 * -0.83 
 

-0.73 
   

0.89 *  
Within 16138.47 

  
0.9 * -0.86 

 
-0.75 

   
0.96 ** 

11-Nov-05 Above 4125.74 0.92 
 

-0.88 
   

0.83 
   

0.98 *  
Within 5956.31 

  
-0.85 

   
0.91 

   
0.89 

 

12-Nov-05 Above 1993.88 0.96 * -0.86 
 

0.82 
 

0.85 
   

-0.31 
 

  Within 4056.81     -0.96 * 0.92 * 0.94 *     -0.57   
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Table 3.3. Time of day mean spore concentrations in the active traps at both canopy heights and 

all environments, correlated to within canopy spore concentration, temperature, leaf wetness, 

humidity, precipitation, and wind speed 

 
Environment Time of Daya Canopy Mean Correlations 

  Position  Spores/m3 Within Canopy Temperature Leaf Wetness Humidity Rain Wind Speed 

Fairhope Morning Above 24.53 0.93 ** 0.1   -0.02   -0.22   0.39 
 

-0.07 
 

  Within 75.22   -0.16  0.24  0.01  0.31  -0.37  

 
MidMorning Above 61.69 0.92 ** 0.18 

 
-0.01 

 
-0.12 

   
0.52 

 

  Within 118.54   0.09  -0.16  -0.17    0.25  

 
Noon Above 71.32 0.95 ** 0.06 

   
0.12 

 
-0.43 

 
-0.02 

 

  Within 120.56   0.25    -0.03  -0.57  0.2  

 
Afternoon Above 139.86 0.93 ** 0.5 

 
-0.8 * -0.56 

   
0.38 

 
  Within 226.28   0.24  -0.59  -0.32    0.35  

 
LateAfternoon Above 68.68 0.93 ** -0.2 

 
0 

 
0.05 

 
0.45 

 
0.77 * 

    Within 106.8     -0.23   0.24   0.04   0.51  0.61   

Attapulgus Morning Above 13.02 0.93 ** 0.03 
  

-0.69 
  

-0.86 * -0.42 
 

0.81 
  

  Within 62.18   -0.16  -0.57  -0.78  -0.19  0.75  

 
MidMorning Above 66.38 0.97 ** 0.68 

 
-0.22 

 
-0.41 

   
0.79 

 

  Within 138.52   0.75  -0.22  -0.58    0.69  

 
Noon Above 119.14 0.89 * 0.13 

   
-0.43 

 

 

 
0.86 * 

  Within 282.5   0.29    -0.4    0.86 * 

 
Afternoon Above 59 0.94 ** -0.04 

 
-0.96 ** -0.49 

 
-0.96 ** 0.85 * 

  Within 147.86   -0.11  -0.87 * -0.38  -0.87 * 0.96 ** 

 
LateAfternoon Above 39.37 1 ** -0.8 

 
0 

 
0.71 

   
0.47 

 
    Within 135.47     -0.84 * -0.05   0.69     0.5   

Quincy-1 Morning Above 4.21 0.69 
  

0 
  

-0.63 
  

-0.37 
    

0.61 
  

  Within 12.59   -0.56  -0.36  0.37    0.02  

 
MidMorning Above 14.2 0.84 * -0.67 

 
-0.47 

 
-0.07 

   
0.6 

 

  Within 32.27   -0.82 * -0.16  0.23    0.13  

 
Noon Above 16.51 0.77 

 
0.37 

 
0.65 

 
-0.68 

   
0.43 

 

  Within 41.48   -0.01  0.28  -0.76    0.35  

 
Afternoon Above 30.72 0.89 * -0.12 

 
0.16 

 
-0.58 

   
0.43 

 
  Within 67.02   -0.4  -0.19  -0.88 *   0.49  

 
LateAfternoon Above 39.02 0.67 

 
0.08 

 
0.44 

 
0.49 

 
0.39 

 
0.04 

 
    Within 53.25     -0.34   0.68   0.23   0.67  0.75   

Quincy-2 Morning Above 592.91 0.84 ** -0.18 
  

-0.03 
  

-0.03 
    

0.74 * 

  Within 2250.9   -0.26  0.22  0.34    0.59  

 
MidMorning Above 2684.59 0.92 ** -0.32 

 
-0.17 

 
0.07 

   
0.41 

 

  Within 5592.45   -0.19  -0.09  0.31    0.11  

 
Noon Above 2048.23 0.96 ** 0.17 

 
0.31 

 
0.47 

   
-0.03 

 

  Within 4841.73   0.26  0.4  0.52    -0.18  

 
Afternoon Above 1625.6 0.95 ** 0.11 

   
0.33 

   
0.62 

 

  Within 4462.24   0.15    0.54    0.63  

 
LateAfternoon Above 802.88 0.75 * -0.03 

 
0.25 

 
-0.1 

   
0.54 

 
    Within 3144.28     -0.07   0.41   0.44     0.19   

 

aMorning=at 8:00 am to 8:30 am 
Mid-morning=at 10:00 am to 10:30am 

Noon = 12:00 pm to 12:30 pm 
Afternoon 14:00 pm to 14:30 pm 

Late Afternoon 16:00 pm to 16:30 pm
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Table 3.4. Relative importance of variables for predicting the spore counts in the spore traps as identified by the lasso regression, 

random forest, and neural network models. Variables importance was determined using the “varImp” function in the caret package in 

R, and all the measures of importance are scaled to have a maximum value of 100.  
 

  Lasso Regression  Random forest Neural network 

 Dataset Variables 

Relative 

importance 

(%) Variables 

Relative 

importance 

(%) Variables 

Relative 

importance 

(%) 

Passive trap 
  

Mean daily wind speed 100.0 Mean daily temperature      100.0 Mean daily temperature      100.0 

Mean daily temperature      56.0 Mean daily wind Speed 67.5 Min wind speed   48.4 

Mean daily wind direction 18.6 Mean daily wind direction 34.8 Mean daily wind speed 46.3 

Distance from source 15.5 Max wind speed 32.1 Distance from source 38.2 

Min wind speed 13.3 Min wind speed 28.8 Mean daily relative humidity 35.8 

Mean daily relative humidity   6.0 Precipitation 19.7 Precipitation 6.9 

Max wind speed 5.3 Position of trap 14.9 Max wind speed 6.4 

Position of trap 0.0 Mean daily relative humidity 13.58 Mean daily weed direction 3.0 

Precipitation 0.0 Distance from source 13.23 Degree between trap and wind 2.6 

Degree between trap and wind 0.0 Degree between trap and wind 4.2 Position of trap 0.0 

Active trap 
  

Precipitation 100.0 Mean hourly relative humidity  100.0 Mean hourly relative humidity  100.0 

Height of trap 27.5 Mean previous two hour temperature 69.7 Mean previous two hour temperature 92.8 

Time of day 3.9 Mean hourly temperature 54.8 Previous hour humidity 78.6 

Mean previous two hour temperature 3.8 Mean hourly wind direction 48.5 Mean hourly wind direction 71.4 

Previous second hour temperature 3.6 Previous second hour temperature 43.0 Previous second hour temperature 68.7 

Mean hourly wind speed 2.6 Previous hour humidity 38.3 Mean previous two hour humidity 68.4 

Mean hourly temperature 2.6 Solar radiation 36.8 Mean hourly temperature 62.8 

Mean hourly relative humidity  1.6 Mean hourly wind speed 31.8 Previous hour temperature 55.5 

Previous hour temperature 1.4 Previous hour temperature 30.4 Previous second hour humidity 52.3 

Leaf wetness  1.3 Mean previous two hour humidity 27.4 Height of trap 45.2 

Mean hourly wind direction 1.1 Time of day 25.9 Solar radiation 38.5 

Solar radiation 0.9 Previous second hour humidity 20.1 Mean hourly wind speed 11.7 

Previous hour humidity 0.5 Height of trap 15.7 Time of day 4.3 

Previous second hour humidity 0.0 Leaf wetness 11.7 Leaf wetness 2.5 

Previous two hour humidity 0.0 Precipitation 1.4 Precipitation 0.0 

 

 



 74 

Table 3.5. Prediction accuracy of the LASSO, zero-inflated Poisson/regular Poisson model, random forest, and neural network models 

in 10 validation process for the passive trap dataset and active trap dataset. In each validation, 80% of the data points were randomly 

and uniformly selected from each location and used as training dataset; 20% of the data was saved for testing model performance. 

Prediction accuracy was represented as the correlation coefficients between the predicted spore counts and the actual spore counts.  

 

 

  Passive Trap Dataset   Active Trap Dataset 

  
LASSO 

Zero-inflated 

Poisson 

Random 

Forest 

Neural 

Network   
LASSO Poisson 

Random 

Forest 

Neural 

Network 

1 0.5 0.75 0.78 0.81  0.28 0.76 0.94 0.67 

2 0.28 0.77 0.83 0.77  0.5 0.76 0.93 0.57 

3 0.59 0.77 0.85 0.77  0.59 0.73 0.93 0.6 

4 0.42 0.79 0.88 0.76  0.42 0.75 0.94 0.66 

5 0.53 0.79 0.78 0.78  0.53 0.83 0.94 0.58 

6 0.72 0.83 0.91 0.77  0.72 0.7 0.94 0.58 

7 0.72 0.74 0.82 0.76  0.72 0.72 0.94 0.66 

8 0.63 0.74 0.82 0.83  0.62 0.7 0.95 0.71 

9 0.65 0.79 0.81 0.79  0.65 0.73 0.94 0.68 

10 0.65 0.73 0.82 0.83  0.53 0.69 0.93 0.6 

Avg. 0.56 0.77 0.83 0.79   0.65 0.74 0.94 0.63 
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FIGURES 

Fig. 3.1. Enumeration of Phakopsora pachyrhizi urediniospores and wind speed over time in four 

environments. A, Mean daily urediniospore counts in active rotorod (above and below soybean 

canopy level) traps. B, Mean daily wind speed.  
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Fig. 3.2. Mean Phakopsora pachyrhizi urediniospores within canopy (black bars) and above 

canopy (gray bars) during the day at four environments. Same lowercase letters above bars 

within a time of day category indicate same mean spore counts (α = 0.05) within and above the 

canopy.  Same uppercase letters among time of day categories indicate same mean spore counts 

(α = 0.05) over the categories. 
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Fig. 3.3. Phakopsora pachyrhizi urediniospore counts predicted by the LASSO regression model 

vs. actual spore counts. A, The actual spore counts and the predicted spore counts in the plot 

were a combination of the actual and predicted values generated in the ten repeated model 

validation process for the passive trap dataset. B, The actual spore counts and the predicted spore 

counts in the plot were a combination of the actual and predicted values generated in the ten 

repeated model validation process for the active trap dataset. 
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Fig. 3.4. Phakopsora pachyrhizi urediniospore counts predicted by the zero-inflation Poisson 

/regular Poisson model vs. actual spore counts. A, The actual spore counts and the predicted 

spore counts in the plot were a combination of the actual and predicted values generated in the 

ten repeated zero-inflation Poisson model validation process for the passive trap dataset. B, The 

actual spore counts and the predicted spore counts in the plot were a combination of the actual 

and predicted values generated in the ten repeated regular Poisson model validation process for 

the active trap dataset. 
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Fig. 3.5. Phakopsora pachyrhizi urediniospore counts predicted by the random forest model vs. 

actual spore counts. A, The actual spore counts and the predicted spore counts in the plot were a 

combination of the actual and predicted values generated in the ten repeated model validation 

process for the passive trap dataset. B, The actual spore counts and the predicted spore counts in 

the plot were a combination of the actual and predicted values generated in the ten repeated 

model validation process for the active trap dataset. 
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Fig. 3.6. Phakopsora pachyrhizi urediniospore counts predicted by the neural network model vs. 

actual spore counts. A, The actual spore counts and the predicted spore counts in the plot were a 

combination of the actual and predicted values generated in the ten repeated model validation 

process for the passive trap dataset. B, The actual spore counts and the predicted spore counts in 

the plot were a combination of the actual and predicted values generated in the ten repeated 

model validation process for the active trap dataset. 
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APPENDIX A. SUPPLEMENTSRY TABLES AND FIGURES FOR PREDICTION OF 

SHORT-DISTANCE AERIAL MOVEMENT OF PHAKOPSORA PACHYRHIZI 

UREDINIOSPORES USING MACHINE LEARNING 

TABLES 

Table A.1. Analysis of variance (ANOVA) for the means of predicting variables under ‘always-

zero’ group and ‘non-zero’ group in the passive trap dataset. variables with significantly different 

means were included in the inflation component of the zero-inflated Poisson model.  

 

Predicting variables Zero counts Non-zero counts P valuez 

Mean Daily Temperature 73.17 68.18 0.037* 

Mean Daily Relative Humidity 83.85 81.44 0.56 

Mean Daily Wind Speed 1.39 1.74 0.042* 

Mean Wind Direction 215.59 220.58 0.76 

Distance from Source 41.95 32.55 0.084 

Minimum Wind Speed 3.92 4.49 0.06 

Maximum Wind Speed 5.3 5.8 0.011* 

Degree between trap and wind speed 88.05 91.78 0.49 

Trap Position 149.25 158.02 0.67 

Mean Daily Rainfall 0.13 0.09 0.19 

 
Z *refers to significant difference at p <0.05 
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Table A.2. The Poisson count model component and zero-inflation component in the zero-

inflation Poisson model. The table is showing the coefficients for each of the count 

predicting variables and the logit coefficients for the variable predicting excess zero along with 

standard errors, z-scores, and p-values for the coefficients. 

 

Count model coefficients (Poisson with log link):   

 Estimate Std. Error z value Pr>|t|z 

(Intercept)  15.61981868 0.016815355 928.90212 <0.0001*** 

Mean Daily Temperature  -0.046443393 0.000269455 -172.3604 <0.0001*** 

Mean Daily Relative Humidity -0.019355349 0.000150939 -128.23254 <0.0001*** 

Mean Daily Wind Speed  0.504454881 0.002485632 202.94836 <0.0001*** 

Mean Daily Wind Direction   -0.010359992 2.59866E-05 -398.66693 <0.0001*** 

Minimum Wind Speed -0.002963668 0.000811121 -3.65379 0.00026*** 

Distance  -0.022919075 5.75963E-05 -397.92596 <0.0001*** 

Zero-inflation model coefficients (binomial with logit link):   

 Estimate   Std. Error  z value Pr>|t| 

(Intercept) 0.22729205 0.30309002 0.74992 0.453305 

Max Daily Wind Speed  -0.11015005 0.05146499 -2.14029  0.032331 * 

 
Z *refers to significant difference at p <0.0001 
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FIGURES 

Fig. A.1. Example of passive (left) and active (right) traps set up to capture Phakopsora 

pachyrhizi urediniospore from infected plants in the field.  
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Fig. A.2. Examples of a circular histograms depicting spore counts at Attapulgus on 6 October 

2005.  Each bar represents the spores per slide at one spore trap.  A bar’s angle represents a 

trap’s position relative to the infected plot (0˚=north), and its magnitude represents spores/slide 

at (i) the 15 m distance and (ii) the 61 m distance.  Wind speed and direction are depicted in (iii) 

the arrow plot.  Each arrow represents mean wind speed and direction for 1 hr during active 

spore production and release (0700-1900 h).  Each arrow’s angle shows the direction toward 

which the wind was moving during an hour, and its magnitude represents the wind speed (km/h).   
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Fig. A.3. Performance profile to determine the optimal LASSO penalty tuning parameter lambda 

based on 10 repeats of 5-fold cross validation. The optimal penalty value corresponding to the 

best model is that which generated the smallest average MSE. A, Cross validation procedure on 

the passive trap dataset. B, Cross validation procedure on the active trap dataset. 
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Fig. A.4. Performance profile to determine the optimal number of variables randomly sampled as 

candidates at each split for the random forest model based on 10 repeats of 5-fold cross 

validation. The optimal number corresponding to the best model is that which generated the 

smallest average MSE. A, Cross validation procedure on the passive trap dataset. B, Cross 

validation procedure on the active trap dataset. 
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Fig. A.5. Performance profile to determine the optimal number of neurons in the first hidden 

layer based on 10 repeats of 5-fold cross validation for the neural network model. The optimal 

number of neurons corresponding to the best model is that which generated the smallest average 

MSE. A, Cross validation procedure on the passive trap dataset. B, Cross validation procedure on 

the active trap dataset. 
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APPENDIX B. GENOME-WIDE ASSOCIATION MAPPING FOR RESISTANCES TO 

SOYBEAN RUST AND SCLEROTINIA STEM ROT IN COMMON BEAN  

 

ABSTRACT 

Common bean (Phaseolus vulgaris L.) is a close relative of soybean (Glycine max (L.) Merr.), 

and some soybean pathogens can also infect P. vulgaris such as soybean rust (SBR), and 

Sclerotinia stem rot (SSR). Genetic resistance is the most effective strategy for disease 

management for both G. max and P. vulgaris, and new resistance sources for these diseases in P. 

vulgaris are needed for development of resistant common bean varieties. Genome-wide 

association study (GWAS) is a powerful tool to detect genetic markers that are significantly 

associated with resistant loci, which may harbor candidate resistance genes. With recent advance 

in acquiring single nucleotide polymorphism (SNP) markers, GWAS is regarded to have higher 

genomic resolution and mapping efficiency comparing to bi-parental linkage mapping. The 

objective of this study is to provide a comprehensive understanding of disease resistance to SBR, 

SSR in the core collection of P. vulgaris kept by the United States Department of Agriculture of 

Agricultural Research Service. Genotyping-by-sequencing was used to acquire SNPs for 363 P. 

vulgaris accessions. A total of 84,416 SNPs were identified by genotyping-by-sequencing with 

minor allele frequencies above 0.05. No significant SNPs were identified for SBR and SRR. 

INTRODUCTION  

Common bean, (Phaseolus vulgaris L.) is one of the most important grain legume in the 

human diet and a major protein source in some developing countries (Broughton et al., 2003) . It 

represents 50% of the grain legumes consumed worldwide (McClean et al., 2004). Common 
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bean has two geographically isolated and genetically different gene pools, with the Mesoamerica 

gene pool domesticated in Mexico and the Andean gene pool domesticated in Central and South 

America (McClean et al., 2004; Singh et al., 1991). 

Common bean and soybean (Glycine max (L.) Merr.) are two closely related members in the 

Phaseoleae, a clade within the economically important Papilionoideae legumes. Many of the 

important soybean diseases could also be threats to common bean. Sclerotinia stem rot (SSR) 

caused by the fungus Sclerotinia sclerotiorum, and soybean rust (SBR) caused by the fungus 

Phakopsora pachyrhizi, are two of the most destructive pathogens on soybean, and they were 

considered to be two important causes of soybean yield losses. Under favorable conditions, SSR 

and SBR can cause up to 100% and 75% yield loss to susceptible soybean (Hartman et al. 1998; 

Hoffman et al. 1998; Yorinori et al. 2005).  SSR is one of the most devastating fungal diseases 

on common bean and seed yield and quality loss due to this pathogen can be as high as 100 % 

under favorable conditions (Singh and Schwartz, 2010). SBR has been reported in common bean 

cultivars and elite lines under controlled and natural field conditions in South Africa, the United 

States, Argentina, and Brazil and is likely to become a new threat to common bean (Du Preez et 

al. 2005; Lynch et al. 2006; Pastor-Corrales et al. 2007; Ivancovich et al. 2005; Souza et al. 

2014).  

Developing resistant varieties is the most practical way to manage the two diseases, and 

characterization and identification of quantitative trait loci (QTLs) has been a great asset that 

facilitates the development of novel varieties with resistance to diseases in many crops. The 

genetic basis of resistance to the two diseases has been studied intensively in soybean.  Ten loci 

(Rpp1-Rpp6, Rpp1-b, Rpp[PI 567068A], Rpp? (Hyuuga), and Rpp6907) conferring resistance to 

SBR have been identified so far and mapped on four chromosomes through bi-parental mapping 
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in soybean (Chakraborty et al. 2009; Chen et al. 2015; Garcia et al. 2008; Harris et al. 2015; 

Hossain et al., 2014; Hyten et al., 2007; Hyten et al. 2009; King et al. 2015; McLean and Byth 

1980; Monteros et al. 2007; Silva et al. 2008). Similarly, QTLs associated with partial resistance 

to SSR have also been identified in a large number of plant introductions (PIs) using a range of 

inoculation methods in soybean. At least 35 QTLs have been identified thus far in soybean that 

have been associated with resistance to SSR (Chung et al., 2008; Miklas et al.,2013; Mkwaila et 

al., 2011; Pérez-Vega et al., 2012; Soule et al., 2011). 

In comparison, the genetic basis of SBR resistance in common bean is not known, and there 

is no mapping study for SBR resistance in common bean. In order to develop resistant common 

bean varieties to SBR and improve marker-based selection, it is important to identify markers 

associated with SBR resistance in common bean. As for SSR resistance, some QTL mapping 

studies have been done and QTLs associated with partial resistance to SSR were identified in a 

large number of PIs using a range of inoculation methods in common bean. However, due to the 

quantitative nature and low heritability of the physiological resistance and architectural 

avoidance (upright plant architecture with open canopy) (Miklas et al., 2004; Park et al., 2001), 

there is still need to map additional or different QTLs in common bean. 

In common bean, efforts have been made to use GWAS to detect and characterize QTL 

conveying a number of traits. Shi et al. (2011) studied common bacterial blight resistance with 

132 SNPs in 469 dry bean breeding lines; they identified and confirmed 12 significant SNPs that 

were co-localized with or close to the common bacterial blight QTLs identified previously in bi-

parental linkage mapping, and they also reported two novel QTLs for common bacterial blight 

resistance. In another study, the genetic architecture of five agronomic traits including pod fiber, 

seeds per pod, plant type, growth habit, and days to flowering were investigated by GWAS with 
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233 AFLP, 105 SNP and 80 SSR markers in 66 common bean genotypes (Nemli et al. 2014). 

They reported 13 pod fiber associated QTLs, 11 plant type associated QTLs, 14 growth habit 

associated QTLs, 2 QTLs for seed per pod, and 22 QTLs associated to days to flowering, and 

among the 62 significant markers identified, five of them had mutual associations for four traits.  

There is no association mapping for SBR resistance in common bean, and no common bean 

variety with full resistance to SSR has been developed due to the quantitative nature and 

complexity of SSR resistance. GWAS has been employed as an effective strategy to identify 

complex traits in multiple genetic backgrounds, therefore, GWAS was applied to study the 

genetic architecture of SBR, and SSR resistance in the core collection of common bean.  

MATERIALS AND METHODS 

Plant material and phenotyping for soybean rust (SBR) and Sclerotinia stem rot (SSR) 

The Central/South American (CA/SA, 171 accessions representing accessions from the 

Mesoamerican and Andean gene pool), and Mexico (MA, 191 accessions representing 

accessions from the Mesoamerican gene pool) core collections of common bean with 363 PIs 

maintained at the USDA/ARS Western Regional Plant Introduction Station, Pullman, WA were 

obtained (Brick et al., 2006; McClean et al., 2012). The reference genome of common bean 

G19833 was obtained from the International Center for Tropical Agriculture and used in this 

study (Schmutz et al., 2014).  

For evaluating the resistance of the 363 common bean accessions to S. sclerotiorum, all the 

accessions were randomly planted in the 16 4X6-celled flats in soilless mix LC1 (Sun Gro  

Horticulture Inc., WA), with two seeds of each accession in each cell. The plants were 

maintained in the greenhouse at 25 ± 1oC and 16-h photoperiod under 300 μmol m-2 s-1 light 

intensity. Seven-day-old seedlings were thinned to one plant per cell. All plants were inoculated 
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with the cut stem method described in a previously published paper three weeks after planting 

(Vuong et al., 2004). Plants were cut with a sterile razor blade 2 cm above the second node.  The 

200 μl pipette tips (Fisher Scientific) were pushed into the margin of the actively growing S. 

sclerotiorum cultures growing on potato dextrose agar. The pipette tip containing the agar disk 

with S. sclerotiorum mycelium was immediately placed over the cut stem and pushed down as 

far as possible to ensure greatest contact of the stem with the pathogen and to secure the tip on 

the stem. Inoculated plants were incubated in a greenhouse mist chamber with about 80% 

relative humidity overnight, and then plants were moved back to the greenhouse at 25 ± 1 oC 

with the same photoperiod and light intensity as before inoculation. Lesion length (cm) on each 

plant was measured a week after inoculation. The experiment was repeated once.  

For evaluating the resistance of the 363 common bean accessions to  

P. pachyrhizi, all the accessions were also planted and arranged on the 16 4X6-celled flats, with 

two seeds of each accession in each cell. The plants were maintained in the greenhouse at 25 ± 

1oC and 16-h photoperiod under 300 μmol m-2 s-1 light intensity. Seven-day-old seedlings were 

thinned to one plant per cell, and all the seedlings were cut with only the uniforliate left. P. 

pachyrhizi isolate collected in Florida (FL07-1) in 2007 was multiplied as inoculum on 

susceptible soybean William 82, adult leaflets with P. pachyrhizi were harvested and placed in 

0.01% Tween 20 (Vittal et al., 2014). The concentration was adjusted to 2.5 × 104 spores/ml. 

Three weeks after planting, all the accessions were inoculated with P. pachyrhizi by spraying the 

P. pachyrhizi urediniospores solution until run off. Inoculated plants were incubated in a 

greenhouse mist chamber with about 80% relative humidity overnight, and then plants were 

moved back to the greenhouse at 25 ± 1oC with the same photoperiod and light intensity as 

before inoculation. Unifoliate leaves were collected for evaluation three week after inoculation. 
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A 1 cm2 area was chosen on each leave on the area with most dense rust lesions. Lesion numbers 

was counting under a compound microscope with 20X magnification. The experiment was 

repeated once. 

Genotyping of common bean collections 

Genomic DNA was extracted from the emerging trifoliate leaf for each accession. Total 

genomic DNA was isolated using a standard cetyltrimethylammonium bromide protocol (Doyle 

and Doyle, 1987). DNA was quantified in 96-well plates using PicoGreen (Invitrogen, Carlsbad, 

CA) and DNA concentrations were normalized to 20 ng/ul.  Restriction/ligation reactions were 

performed in 96-well plates using 500 ng of DNA from each individual, digestion with HindIII 

and BfaI (New England Biolabs, Ipswich, MA), and 0.1 μM and 10 μM of A1 and A2 adapters 

per well, respectively. The genomic libraries were pooled, column-cleaned using a PCR 

purification kit (Qiagen, Valencia, CA), and amplified for 12 cycles using Phusion DNA 

polymerase (IDT DNA). Average fragment size was estimated on a Bioanalyzer 2100 (Agilent, 

Santa Clara, CA) using a DNA1000 chip following a second column-cleaning. Pooled libraries 

were adjusted to 10 nmol and sequenced with 100-bp, single-end reads on an HiSeq2000 

(Illumina, San Diego, CA). SNP calling was performed using Tassel 5 GBS v2 variant calling 

Pipeline IGST-GBS with G19833 as the reference genome (Glaubitz et al. 2014). A total of 

212,281 “raw” SNPs and InDels were identified. Missing SNPs were imputed using BEAGLE 

version 4.1 (Browning and Browning, 2013). SNPs were further filtered with a minor allele 

frequency (MAF) and heterozygosity of 0.05. 

Genome-wide association study (GWAS) 

A total of 84,416 SNP markers were finally used for GWAS after imputation missing data 

and excluding ones with minor allele frequencies less than 5% or heterozygosity higher than 
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0.05. GWAS was performed using the Genomic Association and Prediction Integrated Tool 

(GAPIT) R package (Lipka et al., 2012).  A kinship matrix (K) was calculated to determine 

relatedness among individuals (Zhang et al., 2010).  The unified mixed linear model (MLM) 

which keeps kinship and population structure (K + P model) was used in this study to control 

population structure. SBR lesion numbers on the common bean PIs were log transformed to 

become normal. Significance was determined at false discovery rate (FDR) < 0.05. 

RESULTS  

Phenotypic analysis of resistance to SBR and SSR 

P. pachyrhizi produced different types of lesions on the common bean collection (Fig. B.1), 

mainly differing in size. However, comparing to the tan lesion on the susceptible William 82, 

most of the lesions on common bean accessions are red-brown lesion with no or sparsely 

sporulating uredinia (Fig. B.2). There was a significant difference in SBR lesion numbers on 

common bean PIs (Table B.1) and the frequency distribution of soybean rust severity scores 

showed a continuous variation with population mean shifted towards susceptibility. A significant 

difference in SSR lesion length among common bean genotypes was also detected (Table B.2). 

The mean length of lesions covered a broad range, from as little as 0 mm to as long as 83 mm. 

susceptible checks had lesions averaging more than 63 mm. 

SNP discovery and distribution 

The identified 84,416 SNP markers were distributed over all 11 chromosomes with an 

average of 7674 SNP markers per chromosome (Table B.3). Chromosome 8 had the greatest 

number of SNPs (9333), and the chromosomes 9 had the lowest number of SNPs (5073). 

  

http://bioinformatics.oxfordjournals.org/content/28/18/2397.long
http://www.nature.com/ng/journal/v42/n4/full/ng.546.html


 99 

Population structure  

The population structure of the 363 common bean accessions was explored by principal com

ponent analysis (PCA) using the 84,416 SNP markers and no distinct subpopulations among the 

363 common bean PIs for any of the two diseases (Fig. B.3A), which is consistent with the result

 of the Baysian information criterion (BIC)-based model selection procedure. Therefore, no PC 

was included in the mixed linear model. A heatmap of the Kinship matrix with genetic relatednes

s among the 363 common bean accessions indicated the two known gene pools (Andean gene po

ol and Mesoamerican gene pool, Fig. B.3B) and three subpopulations in our bean collection. The

refore, the Kinship was included in the mixed linear model for GWAS. 

Linkage disequilibrium (LD) decay and candidate gene enrichment analyses. 

The correlation coefficients (r 2) between all possible pairs of SNPs on each chromosome 

was calculated to establish LD relationships among loci. As expected, the r 2 value declined as 

the physical distance between the loci increased. LD decay for each chromosome was different 

(Table B.3). In addition, LD decay varied among all chromosomes, ranging from approximately 

50 kb to 70 kb cut off r2 = 0.2. The average LD decay for all chromosomes was estimated at 

approximately 60 kb. 

GWAS for resistance to SBR and SSR 

SSR lesion lengths and Log transformed SBR lesion numbers were normally distributed 

(Fig. B.4). A QQ plot of the GWAS for SSR and SBR resistance showed good false positive 

control (Fig. B.5). None of the tested SNPs were significantly associated with SBR and SSR 

resistance at 5% or 10% FDR (Fig. B.6).  
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DISCUSSION 

Common bean shares multiple diseases with soybean, SBR and SSR are two top soybean 

diseases with highest damage potential on common bean. Resistances to the two diseases are 

very complex traits involving multiple genes. The identification of loci governing resistance not 

only help the genetic improvement of cultivars but also facilitates the identification of genes and 

the understanding of molecular mechanisms involved in the resistance process.  

Although GWAS was proven a powerful tool for identifying and dissecting significant 

genomic regions harboring candidate genes with high genomic resolution and mapping 

efficiency, significant association between markers and traits is not guaranteed to be detected by 

GWAS. In our study, no significant SNPs were detected for resistance to SBR and SSR. The 

power of GWAS to identify a true association between a SNP and disease resistance is 

dependent on the effect size of the resistance allele and its allele frequency in the population 

(Korte and Farlow, 2013). Resistance to SSR in common bean is quantitatively inherited with 

low to moderate heritability, and the resistance mechanism is complex including physiological 

resistance and architectural avoidance. Therefore, the small allele effect size especially when 

confounding with genetic background may cause problem for the detection of significant 

association by GWAS. The negative GWAS result of soybean rust resistance suggested the 

complex genetic background of this trait. Traditional biparental mapping usually has advantage 

over GWAS in this situation by disentangling the population structure confounding effect and 

elevating the resistance allele frequency to intermediate level.  
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TABLES 

Table B.1. Mean soybean rust lesion numbers on the PIs of the core collection of common bean. 

LSMeans difference of Tukey HSD test at =0.05. 

 

 Raw measurements   

PI Rep1 Rep2 LSMeansy Groupsz 

PI316016 27.3 28 27.65 a 

PI313842 22 21 21.5 ab 

PI511767 27.5 15 21.25 abc 

PI209486 23.7 18 20.85 abcd 

PI415886 20.5 20 20.25 abcde 

PI181996 13.8 7 10.4 abcdef 

PI189408 16.3 6 11.15 abcdef 

PI196463 18.5 4.5 11.5 abcdef 

PI198026 16.5 2 9.25 abcdef 

PI198037 17.5 0 8.75 abcdef 

PI207136 14.8 10 12.4 abcdef 

PI208774 17 0 8.5 abcdef 

PI269210 13.8 7 10.4 abcdef 

PI282016 16.8 8 12.4 abcdef 

PI290995 21.8 15 18.4 abcdef 

PI293355 14.3 18 16.15 abcdef 

PI297295 12.3 9 10.65 abcdef 

PI299019 17.5 15 16.25 abcdef 

PI307810 17.5 12 14.75 abcdef 

PI309844 17.8 12 14.9 abcdef 

PI313272 14.5 9 11.75 abcdef 

PI313334 10.3 11 10.65 abcdef 

PI313459 25 0 12.5 abcdef 

PI313639 15.5 9.5 12.5 abcdef 

PI313658 12.5 5 8.75 abcdef 

PI313667 10.3 12 11.15 abcdef 

PI313671 6.5 10.5 8.5 abcdef 

PI313693 13.8 10.5 12.15 abcdef 

PI313701 20.5 17.5 19 abcdef 

PI316031 18.5 6 12.25 abcdef 

PI317350 19 18 18.5 abcdef 

PI319595 16.3 12.5 14.4 abcdef 
 

y LSMeans of soybean rust lesion numbers on different common bean PIs calculated by Tukey HSD test  
z LSMeans not connected with same letters are significantly different.  
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Table B1. (Cont.) 

 

 Raw measurements   

PI Rep 1 Rep 2 LSMeansy Groupsz 

PI325618 18.8 15 16.9 abcdef 

PI415936 11.3 6.5 8.9 abcdef 

PI415950 13.5 9.5 11.5 abcdef 

PI417641 21 15 18 abcdef 

PI417653 17.8 0 8.9 abcdef 

PI430210 15.5 9 12.25 abcdef 

PI510574 9 14 11.5 abcdef 

PI533312 12.5 6.5 9.5 abcdef 

PI533332 12.8 8.5 10.65 abcdef 

PI533510 21 0.5 10.75 abcdef 

PI557483 13.5 9 11.25 abcdef 

PI151407 9.3 0 4.65 bcdef 

PI152208 6.5 1 3.75 bcdef 

PI152311 8.5 1.5 5 bcdef 

PI165422 5.3 0 2.65 bcdef 

PI165462 8.3 1.5 4.9 bcdef 

PI165466 3.8 2 2.9 bcdef 

PI182004 7.3 0.5 3.9 bcdef 

PI190078 10 0.5 5.25 bcdef 

PI194574 11 0 5.5 bcdef 

PI195402 12 2 7 bcdef 

PI195801 7.7 0 3.85 bcdef 

PI200967 5.3 0.5 2.9 bcdef 

PI201004 4 3 3.5 bcdef 

PI201010 6 0.5 3.25 bcdef 

PI201296 3.5 3.5 3.5 bcdef 

PI201329 13.8 0 6.9 bcdef 

PI201343 14.5 0.5 7.5 bcdef 

PI201369 5.5 0 2.75 bcdef 

PI201370 7 0.5 3.75 bcdef 

PI201480 7.5 0 3.75 bcdef 

PI203920 6.5 0 3.25 bcdef 

PI203924 6.5 0 3.25 bcdef 

PI206223 3.8 1.5 2.65 bcdef 
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Table B.1. (Cont.) 

 

 Raw measurements   

PI Rep 1 Rep 2 LSMeansy Groupsz 

PI207127 4 3 3.5 bcdef 

PI207148 7.5 2 4.75 bcdef 

PI207165 7 4 5.5 bcdef 

PI207193 3.3 2 2.65 bcdef 

PI207203 14 0 7 bcdef 

PI207207 10 0 5 bcdef 

PI207279 5 0.5 2.75 bcdef 

PI207373 4.3 2 3.15 bcdef 

PI207420 8 0 4 bcdef 

PI207428 8.5 1.5 5 bcdef 

PI209482 9.3 0 4.65 bcdef 

PI209498 3.8 2 2.9 bcdef 

PI224728 10 0.5 5.25 bcdef 

PI241794 12 1 6.5 bcdef 

PI260418 6.3 2 4.15 bcdef 

PI263596 11.5 0 5.75 bcdef 

PI268110 9.5 0 4.75 bcdef 

PI269209 10 2 6 bcdef 

PI293353 8.8 0 4.4 bcdef 

PI307788 0.3 7.5 3.9 bcdef 

PI307790 5.5 5 5.25 bcdef 

PI307808 3.5 2 2.75 bcdef 

PI308894 13 3 8 bcdef 

PI308908 3.8 1.5 2.65 bcdef 

PI309698 8.3 3 5.65 bcdef 

PI309701 5.8 2.5 4.15 bcdef 

PI309830 4.5 0.5 2.5 bcdef 

PI309845 5 3 4 bcdef 

PI309877 5 0 2.5 bcdef 

PI310511 7.3 1 4.15 bcdef 

PI310515 6 1 3.5 bcdef 

PI310556 7.3 2.5 4.9 bcdef 

PI310663 8.5 2 5.25 bcdef 

PI310726 4.8 0.5 2.65 bcdef 

PI310739 5.5 0 2.75 bcdef 
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Table B.1. (Cont.) 

 

 Raw measurements   

PI Rep 1 Rep 2 LSMeansy Groupsz 

PI310826 6 0 3 bcdef 

PI310829 7.5 3 5.25 bcdef 

PI310850 5 2 3.5 bcdef 

PI310865 11 4 7.5 bcdef 

PI310886 4.8 5.5 5.15 bcdef 

PI310891 6 2.5 4.25 bcdef 

PI311794 3.3 5.5 4.4 bcdef 

PI311843 5 5 5 bcdef 

PI311853 3.5 2.5 3 bcdef 

PI311940 4.5 1 2.75 bcdef 

PI311947 8 0.5 4.25 bcdef 

PI312017 14.5 0.5 7.5 bcdef 

PI312083 5.5 0 2.75 bcdef 

PI312098 8.8 4.5 6.65 bcdef 

PI313270 10.5 1 5.75 bcdef 

PI313297 4.5 0.5 2.5 bcdef 

PI313328 4.8 0 2.4 bcdef 

PI313357 8.3 4.5 6.4 bcdef 

PI313394 3.5 2 2.75 bcdef 

PI313408 3 2 2.5 bcdef 

PI313412 9 1.5 5.25 bcdef 

PI313429 6.3 0.5 3.4 bcdef 

PI313444 8 0.5 4.25 bcdef 

PI313445 6.5 0 3.25 bcdef 

PI313458 3.3 1.5 2.4 bcdef 

PI313483 4.8 0 2.4 bcdef 

PI313490 10 0.5 5.25 bcdef 

PI313532 3.8 1 2.4 bcdef 

PI313537 4 1 2.5 bcdef 

PI313571 5.3 1.5 3.4 bcdef 

PI313572 7.8 0 3.9 bcdef 

PI313598 6 1 3.5 bcdef 

PI313608 4.3 1 2.65 bcdef 

PI313613 5.3 0.5 2.9 bcdef 

PI313630 4.8 3.5 4.15 bcdef 
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Table B.1. (Cont.) 

 

 Raw measurements   

PI Rep 1 Rep 2 LSMeansy Groupsz 

PI313633 3.3 6 4.65 bcdef 

PI313634 7.5 3 5.25 bcdef 

PI313664 10 2 6 bcdef 

PI313665 10.3 1 5.65 bcdef 

PI313709 3.5 7 5.25 bcdef 

PI313720 8.8 1 4.9 bcdef 

PI313727 6.5 1 3.75 bcdef 

PI313782 9.5 5.5 7.5 bcdef 

PI313809 5 0 2.5 bcdef 

PI313830 4 1 2.5 bcdef 

PI313837 5.8 0 2.9 bcdef 

PI313839 8 0 4 bcdef 

PI313850 6 4 5 bcdef 

PI317027 9.8 4.5 7.15 bcdef 

PI318694 0 9 4.5 bcdef 

PI319554 6.5 2.5 4.5 bcdef 

PI319592 3.3 2.5 2.9 bcdef 

PI319618 7.5 0 3.75 bcdef 

PI319619 16 0.5 8.25 bcdef 

PI325614 4.7 0.5 2.6 bcdef 

PI325626 6.3 0.5 3.4 bcdef 

PI325630 7 2 4.5 bcdef 

PI325635 6.5 1 3.75 bcdef 

PI325642 5.5 0 2.75 bcdef 

PI325684 5 0 2.5 bcdef 

PI325685 9.5 0 4.75 bcdef 

PI325687 5 0 2.5 bcdef 

PI325721 9.3 0 4.65 bcdef 

PI325722 7.5 0 3.75 bcdef 

PI346955 7.5 0 3.75 bcdef 

PI346960 11 0 5.5 bcdef 

PI355419 10.8 1 5.9 bcdef 

PI387862 15.5 1 8.25 bcdef 

PI387865 4 1 2.5 bcdef 

PI399169 8 0.5 4.25 bcdef 
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Table B.1. (Cont.) 

 

 Raw measurements   

PI Rep 1 Rep 2 LSMeansy Groupsz 

PI415913 10.3 3 6.65 bcdef 

PI415949 8.3 5 6.65 bcdef 

PI415955 9.5 1 5.25 bcdef 

PI415975 9 2 5.5 bcdef 

PI415986 6 4.5 5.25 bcdef 

PI415987 5.3 1 3.15 bcdef 

PI417621 4 1 2.5 bcdef 

PI417622 4 1 2.5 bcdef 

PI417628 3.8 2 2.9 bcdef 

PI417630 6.5 2 4.25 bcdef 

PI417633 9 4 6.5 bcdef 

PI417634 7 3 5 bcdef 

PI417645 6 2 4 bcdef 

PI417647 8.5 0.5 4.5 bcdef 

PI417654 6 4 5 bcdef 

PI417657 7.5 3 5.25 bcdef 

PI417679 11 3 7 bcdef 

PI417707 1 4.5 2.75 bcdef 

PI417708 9 4.5 6.75 bcdef 

PI417739 5 3.5 4.25 bcdef 

PI417742 6 0.5 3.25 bcdef 

PI417743 7.5 0 3.75 bcdef 

PI430167 7 1 4 bcdef 

PI430201 4 1 2.5 bcdef 

PI430204 11.3 1 6.15 bcdef 

PI449389 2.3 2.5 2.4 bcdef 

PI449422 3 2 2.5 bcdef 

PI451885 4.5 5.5 5 bcdef 

PI451906 2.5 5 3.75 bcdef 

PI451917 5 0.5 2.75 bcdef 

PI451921 6.5 2 4.25 bcdef 

PI476751 2.3 3 2.65 bcdef 

PI512003 7 0 3.5 bcdef 

PI533249 3.8 1 2.4 bcdef 

PI533259 7.5 3 5.25 bcdef 
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Table B.1. (Cont.) 

 

 Raw measurements   

PI Rep 1 Rep 2 LSMeansy Groupsz 

PI533363 9 5 7 bcdef 

PI533373 2.8 2 2.4 bcdef 

PI533428 7 0 3.5 bcdef 

PI533475 11.3 4.5 7.9 bcdef 

PI533476 7.8 1 4.4 bcdef 

PI533484 8 0.5 4.25 bcdef 

PI533502 6 0 3 bcdef 

PI533584 8.5 1 4.75 bcdef 

PI535395 3.8 2.5 3.15 bcdef 

PI197031 4.3 0 2.15 cdef 

PI207154 3.5 1 2.25 cdef 

PI209479 4.5 0 2.25 cdef 

PI309823 4.3 0 2.15 cdef 

PI311999 4 0.5 2.25 cdef 

PI313373 4 0.5 2.25 cdef 

PI313486 3.5 1 2.25 cdef 

PI313674 1 3.5 2.25 cdef 

PI533420 3.8 0.5 2.15 cdef 

PI165423 3 0.5 1.75 def 

PI182000 4 0 2 def 

PI189407 4 0 2 def 

PI201360 3 1 2 def 

PI203958 2.3 1.5 1.9 def 

PI207253 2.5 1 1.75 def 

PI290990 2.8 1 1.9 def 

PI307816 2.8 1 1.9 def 

PI307823 3.5 0 1.75 def 

PI310883 1.3 2.5 1.9 def 

PI310915 2 2 2 def 

PI312031 4 0 2 def 

PI312052 3 1 2 def 

PI313237 2 2 2 def 

PI313583 3 1 2 def 

PI313597 2.5 1 1.75 def 

PI313733 3.5 0 1.75 def 
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Table B.1. (Cont.) 

 

 Raw measurements   

PI Rep 1 Rep 2 LSMeansy Groupsz 

PI319607 2.5 1 1.75 def 

PI319636 0.3 3.5 1.9 def 

PI319683 3 1 2 def 

PI325691 4 0 2 def 

PI415900 3 0.5 1.75 def 

PI416713 2.5 1.5 2 def 

PI417616 1 3 2 def 

PI417667 1.8 2 1.9 def 

PI417778 2 1.5 1.75 def 

PI533286 2.5 1 1.75 def 

PI533311 3.3 0.5 1.9 def 

PI533313 3 0.5 1.75 def 

PI533316 3.5 0.5 2 def 

PI533498 2 1.5 1.75 def 

PI150957 2.5 0 1.25 ef 

PI200956 3 0 1.5 ef 

PI201388 2.3 0 1.15 ef 

PI202834 3 0 1.5 ef 

PI202835 2.3 0 1.15 ef 

PI203921 2 1 1.5 ef 

PI203936 2.8 0.5 1.65 ef 

PI207182 2 1 1.5 ef 

PI207216 2.5 0.5 1.5 ef 

PI207336 3 0 1.5 ef 

PI207389 1.5 1 1.25 ef 

PI207443 2 1 1.5 ef 

PI304113 2 1 1.5 ef 

PI308898 2.5 0 1.25 ef 

PI309715 2.5 0 1.25 ef 

PI309759 2.3 1 1.65 ef 

PI309787 3 0 1.5 ef 

PI309825 3 0 1.5 ef 

PI310561 1.3 1.5 1.4 ef 

PI310586 2.5 0 1.25 ef 

PI310599 2.8 0 1.4 ef 



 109 

 

Table B.1. (Cont.) 

 

 Raw measurements   

PI Rep 1 Rep 2 LSMeansy Groupsz 

PI310690 3 0 1.5 ef 

PI310814 2.5 0 1.25 ef 

PI311962 2 0.5 1.25 ef 

PI312064 1.8 1.5 1.65 ef 

PI312090 1.8 0.5 1.15 ef 

PI313366 3 0 1.5 ef 

PI313440 2 0.5 1.25 ef 

PI313470 2.5 0 1.25 ef 

PI313495 2.3 0 1.15 ef 

PI313501 2.3 0 1.15 ef 

PI313531 2.8 0.5 1.65 ef 

PI313609 2.3 1 1.65 ef 

PI319573 1 1.5 1.25 ef 

PI319684 2.5 0 1.25 ef 

PI326106 2 0.5 1.25 ef 

PI326110 2 1 1.5 ef 

PI417716 0.5 2 1.25 ef 

PI417721 1.3 1 1.15 ef 

PI417731 0.5 2 1.25 ef 

PI430200 2.8 0 1.4 ef 

PI430206 2.5 0 1.25 ef 

PI533281 2.8 0 1.4 ef 

PI150409 0.8 0 0.4 f 

PI165455 1.5 0 0.75 f 

PI189016 0 0 0 f 

PI201324 2 0 1 f 

PI201354 1.5 0 0.75 f 

PI201387 0.5 1 0.75 f 

PI207180 1.5 0 0.75 f 

PI207186 1 0.5 0.75 f 

PI207300 1.5 0 0.75 f 

PI209491 2 0 1 f 

PI224715 1.3 0 0.65 f 

PI224718 1.3 0.5 0.9 f 

PI288016 0.5 1 0.75 f 
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Table B.1. (Cont.) 

 

 Raw measurements   

PI Rep 1 Rep 2 LSMeansy Groupsz 

PI307791 2 0 1 f 

PI307806 2 0 1 f 

PI307820 1.5 0.5 1 f 

PI309700 1.5 0 0.75 f 

PI309810 1 0 0.5 f 

PI309827 1 1 1 f 

PI309837 1.8 0 0.9 f 

PI309857 1.5 0.5 1 f 

PI310546 0 0.5 0.25 f 

PI310611 0.8 0 0.4 f 

PI310660 1.5 0 0.75 f 

PI310778 0 0.5 0.25 f 

PI310828 0 0.5 0.25 f 

PI310836 0.8 0.5 0.65 f 

PI311942 1.8 0 0.9 f 

PI311967 1 0 0.5 f 

PI311974 0.8 0.5 0.65 f 

PI312016 0 1 0.5 f 

PI312018 1.5 0 0.75 f 

PI313254 0 0.5 0.25 f 

PI313386 0 0.5 0.25 f 

PI313512 1.3 0 0.65 f 

PI313592 1.5 0 0.75 f 

PI313749 1.3 0 0.65 f 

PI313833 2 0 1 f 

PI313835 0 0.5 0.25 f 

PI313847 1.8 0 0.9 f 

PI319587 1.5 0 0.75 f 

PI319640 1.3 0.5 0.9 f 

PI319674 2 0 1 f 

PI325653 0 1 0.5 f 

PI325676 1 0 0.5 f 

PI325732 1.5 0.5 1 f 

PI325750 0.3 0 0.15 f 

PI345576 1.3 0 0.65 f 
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Table B.1. (Cont.) 

 

 Raw measurements   

PI Rep 1 Rep 2 LSMeansy Groupsz 

PI345581 0 0 0 f 

PI406940 0 0.5 0.25 f 

PI417754 1.5 0 0.75 f 

PI417780 1 0.5 0.75 f 

PI417784 1 0 0.5 f 

PI417790 0 0.5 0.25 f 

PI451889 1.5 0 0.75 f 

PI533277 1.3 0.5 0.9 f 

PI533299 2 0 1 f 

PI533432 0 1 0.5 f 

PI533437 0.5 0.5 0.5 f 

PI533528 1 0 0.5 f 

PI533545 0 2 1 f 

PI533561 0.5 1 0.75 f 
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Table B.2. Mean Sclerotenia stem rot lesion length on the PIs of the core collection of common 

bean. LSMeans difference of Tukey HSD test at =0.05. 

 

 Raw measurements   

PI Rep1 Rep2 LSMeansy Groupsz 

PI309700 9 9.1 9.05 a 

PI309825 8.7 8.7 8.7 ab 

PI325684 8.5 8.5 8.5 abc 

PI207186 8.5 8.4 8.45 abcd 

PI319674 5.6 10.9 8.25 abcde 

PI207279 8.7 7.1 7.9 abcdef 

PI150409 2.5 3.5 3 abcdefg 

PI150957 3.5 0.2 1.85 abcdefg 

PI151407 4 6 5 abcdefg 

PI152208 4.9 5.5 5.2 abcdefg 

PI152311 4.5 5.6 5.05 abcdefg 

PI165422 3.8 5.2 4.5 abcdefg 

PI165423 3.5 3.6 3.55 abcdefg 

PI165455 2.8 4.8 3.8 abcdefg 

PI165462 0.5 2.6 1.55 abcdefg 

PI181996 5.9 0 2.95 abcdefg 

PI182000 8.5 6 7.25 abcdefg 

PI182004 0 4.5 2.25 abcdefg 

PI189016 4.5 4.6 4.55 abcdefg 

PI189407 4 5.5 4.75 abcdefg 

PI189408 0 3 1.5 abcdefg 

PI190078 5.5 4 4.75 abcdefg 

PI194574 4.5 3.7 4.1 abcdefg 

PI195402 5.5 5.5 5.5 abcdefg 

PI195801 6 1 3.5 abcdefg 

PI196463 4.5 2.1 3.3 abcdefg 

PI197031 1.5 3.2 2.35 abcdefg 

PI198026 4.9 4.9 4.9 abcdefg 

PI198037 2.5 5.5 4 abcdefg 

PI200956 1.4 2.2 1.8 abcdefg 

PI200967 6 3.8 4.9 abcdefg 

PI201004 1.3 2.6 1.95 abcdefg 

PI201010 2.8 2.3 2.55 abcdefg 

PI201296 8.2 3.8 6 abcdefg 

y LSMeans of soybean rust lesion numbers on different common bean PIs calculated by Tukey 

HSD test  
z LSMeans not connected with same letters are significantly different.  

 



 113 

Table B.2. (Cont.) 

 

 Raw measurements   

PI Rep 1 Rep 2 LSMeansy Groupsz 

PI201324 7.6 7 7.3 abcdefg 

PI201329 8.6 5.5 7.05 abcdefg 

PI201343 4.1 2 3.05 abcdefg 

PI201354 3.5 5.2 4.35 abcdefg 

PI201360 7.5 5.8 6.65 abcdefg 

PI201369 2.6 4.7 3.65 abcdefg 

PI201370 6.1 6.5 6.3 abcdefg 

PI201387 5 4.2 4.6 abcdefg 

PI201388 6 6.2 6.1 abcdefg 

PI201480 5.2 5.9 5.55 abcdefg 

PI202834 2.1 5.5 3.8 abcdefg 

PI202835 2.2 1.2 1.7 abcdefg 

PI203920 5 2.6 3.8 abcdefg 

PI203921 7.5 4.5 6 abcdefg 

PI203924 4 5.4 4.7 abcdefg 

PI203936 6 4.5 5.25 abcdefg 

PI203958 8.5 6.5 7.5 abcdefg 

PI206223 4.1 1.2 2.65 abcdefg 

PI207136 0.2 3 1.6 abcdefg 

PI207154 0.2 2.7 1.45 abcdefg 

PI207165 0.2 3 1.6 abcdefg 

PI207180 0.2 4.6 2.4 abcdefg 

PI207193 7.2 5.8 6.5 abcdefg 

PI207203 1 2.8 1.9 abcdefg 

PI207207 3.8 4 3.9 abcdefg 

PI207216 3.5 3.3 3.4 abcdefg 

PI207300 2.8 3.4 3.1 abcdefg 

PI207336 3.5 6.5 5 abcdefg 

PI207373 4.7 4.2 4.45 abcdefg 

PI207389 3.2 2.6 2.9 abcdefg 

PI207420 4 5 4.5 abcdefg 

PI207428 3.1 1.7 2.4 abcdefg 

PI207443 6 5 5.5 abcdefg 

PI208774 2 3.5 2.75 abcdefg 

PI209479 6 3.5 4.75 abcdefg 
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Table B.2. (Cont.) 

 

 Raw measurements   

PI Rep 1 Rep 2 LSMeansy Groupsz 

PI209482 7 2.9 4.95 abcdefg 

PI209491 3.4 5.5 4.45 abcdefg 

PI209498 0 3 1.5 abcdefg 

PI224715 7 1.2 4.1 abcdefg 

PI224718 5 4.3 4.65 abcdefg 

PI224728 1 3.9 2.45 abcdefg 

PI241794 5.3 5.6 5.45 abcdefg 

PI260418 3 4.5 3.75 abcdefg 

PI268110 3.2 4.5 3.85 abcdefg 

PI269209 7.9 7 7.45 abcdefg 

PI269210 6.5 6.7 6.6 abcdefg 

PI282016 3.6 4.2 3.9 abcdefg 

PI288016 1.2 4.1 2.65 abcdefg 

PI290990 3.8 0.5 2.15 abcdefg 

PI290995 1.9 6 3.95 abcdefg 

PI293353 0.2 2.6 1.4 abcdefg 

PI293355 2.5 6 4.25 abcdefg 

PI297295 0.5 2.6 1.55 abcdefg 

PI299019 0.5 4.5 2.5 abcdefg 

PI304113 7 7.6 7.3 abcdefg 

PI307788 5.5 1.7 3.6 abcdefg 

PI307790 6.5 0 3.25 abcdefg 

PI307806 2.7 0.7 1.7 abcdefg 

PI307808 7.5 7 7.25 abcdefg 

PI307810 4.6 2.5 3.55 abcdefg 

PI307816 2.5 0.6 1.55 abcdefg 

PI307820 3 8.5 5.75 abcdefg 

PI307823 2.6 1.2 1.9 abcdefg 

PI308894 4 4.7 4.35 abcdefg 

PI308898 3.5 5.5 4.5 abcdefg 

PI308908 3.3 4.4 3.85 abcdefg 

PI309698 4.2 5.2 4.7 abcdefg 

PI309715 1.5 5.2 3.35 abcdefg 

PI309759 4.5 4.5 4.5 abcdefg 

PI309787 2 2 2 abcdefg 
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Table B.2. (Cont.) 

 

 Raw measurements   

PI Rep 1 Rep 2 LSMeansy Groupsz 

PI309810 0.8 2.9 1.85 abcdefg 

PI309823 8.5 4.2 6.35 abcdefg 

PI309827 5.5 3.1 4.3 abcdefg 

PI309830 6.1 3.5 4.8 abcdefg 

PI309837 3.2 5.5 4.35 abcdefg 

PI309844 3.9 3 3.45 abcdefg 

PI309857 6.2 8.3 7.25 abcdefg 

PI309877 6 2.5 4.25 abcdefg 

PI310515 1 4.1 2.55 abcdefg 

PI310556 5.7 4.1 4.9 abcdefg 

PI310561 5.5 4.2 4.85 abcdefg 

PI310586 2.6 2.5 2.55 abcdefg 

PI310599 5.2 5.2 5.2 abcdefg 

PI310611 4.4 5.6 5 abcdefg 

PI310660 3 5.6 4.3 abcdefg 

PI310663 5.6 3 4.3 abcdefg 

PI310690 2.1 3.5 2.8 abcdefg 

PI310726 2 6.9 4.45 abcdefg 

PI310778 4.1 3.4 3.75 abcdefg 

PI310826 3 2.5 2.75 abcdefg 

PI310828 2.9 2.1 2.5 abcdefg 

PI310829 7 5.1 6.05 abcdefg 

PI310836 3.5 2.2 2.85 abcdefg 

PI310850 3.5 3 3.25 abcdefg 

PI310865 0.2 3.6 1.9 abcdefg 

PI310883 5.6 1.5 3.55 abcdefg 

PI310886 3 5.7 4.35 abcdefg 

PI310891 3.4 3.2 3.3 abcdefg 

PI310915 5.4 4.5 4.95 abcdefg 

PI311794 7 2.5 4.75 abcdefg 

PI311940 8.5 4.5 6.5 abcdefg 

PI311942 3.5 5.5 4.5 abcdefg 

PI311947 3.8 6.9 5.35 abcdefg 

PI311962 3.5 1 2.25 abcdefg 

PI311967 2 5 3.5 abcdefg 
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Table B.2. (Cont.) 

 

 Raw measurements   

PI Rep 1 Rep 2 LSMeansy Groupsz 

PI311974 2 3.7 2.85 abcdefg 

PI311999 3.5 0.5 2 abcdefg 

PI312016 0.2 3.5 1.85 abcdefg 

PI312017 0 4 2 abcdefg 

PI312018 0 4.7 2.35 abcdefg 

PI312031 3 2.8 2.9 abcdefg 

PI312052 4.5 3.4 3.95 abcdefg 

PI312064 1 4.5 2.75 abcdefg 

PI312083 4 0.5 2.25 abcdefg 

PI312090 2.7 7.5 5.1 abcdefg 

PI312098 3.7 2.5 3.1 abcdefg 

PI313237 2.8 2.8 2.8 abcdefg 

PI313254 4.3 2 3.15 abcdefg 

PI313270 2.5 1.9 2.2 abcdefg 

PI313272 2.2 2.9 2.55 abcdefg 

PI313297 2.5 1.2 1.85 abcdefg 

PI313328 6.2 6.5 6.35 abcdefg 

PI313334 5.5 4.5 5 abcdefg 

PI313357 2.6 5.6 4.1 abcdefg 

PI313373 2 6.5 4.25 abcdefg 

PI313386 7 0.4 3.7 abcdefg 

PI313394 3.4 4 3.7 abcdefg 

PI313408 2.5 2.2 2.35 abcdefg 

PI313412 5 4.5 4.75 abcdefg 

PI313429 0.5 3.5 2 abcdefg 

PI313440 0.6 5 2.8 abcdefg 

PI313444 3 0 1.5 abcdefg 

PI313445 3 4.9 3.95 abcdefg 

PI313458 2 3.5 2.75 abcdefg 

PI313459 0.2 2.7 1.45 abcdefg 

PI313470 6 5.8 5.9 abcdefg 

PI313483 5.5 5.8 5.65 abcdefg 

PI313486 7.5 7.2 7.35 abcdefg 

PI313490 7 5.9 6.45 abcdefg 

PI313495 8 7.2 7.6 abcdefg 
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Table B.2. (Cont.) 

 

 Raw measurements   

PI Rep 1 Rep 2 LSMeansy Groupsz 

PI313501 3.5 3 3.25 abcdefg 

PI313512 6.5 6.2 6.35 abcdefg 

PI313531 6.3 2.5 4.4 abcdefg 

PI313532 3 5.4 4.2 abcdefg 

PI313537 2.9 2.9 2.9 abcdefg 

PI313571 5 0 2.5 abcdefg 

PI313572 5.5 4.9 5.2 abcdefg 

PI313592 3.2 2.5 2.85 abcdefg 

PI313597 7.5 3 5.25 abcdefg 

PI313598 4.2 2.5 3.35 abcdefg 

PI313608 6.5 6.1 6.3 abcdefg 

PI313613 4.5 3 3.75 abcdefg 

PI313630 3.5 2.1 2.8 abcdefg 

PI313633 6 2.7 4.35 abcdefg 

PI313634 4.7 5.9 5.3 abcdefg 

PI313639 5.5 6.4 5.95 abcdefg 

PI313658 2.2 3.2 2.7 abcdefg 

PI313665 3.7 3 3.35 abcdefg 

PI313671 3 5 4 abcdefg 

PI313674 2.6 0.5 1.55 abcdefg 

PI313693 2.4 0.5 1.45 abcdefg 

PI313701 3.8 0.5 2.15 abcdefg 

PI313709 6 6.1 6.05 abcdefg 

PI313720 5.3 3.2 4.25 abcdefg 

PI313727 7 6.8 6.9 abcdefg 

PI313733 2.1 1.9 2 abcdefg 

PI313749 7.2 6.7 6.95 abcdefg 

PI313782 6 2 4 abcdefg 

PI313809 7.5 5.1 6.3 abcdefg 

PI313830 7 1.4 4.2 abcdefg 

PI313835 1 5.6 3.3 abcdefg 

PI313837 0.8 3 1.9 abcdefg 

PI313839 6.8 4.9 5.85 abcdefg 

PI313842 5.6 5.9 5.75 abcdefg 

PI313850 2.9 3.2 3.05 abcdefg 
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Table B.2. (Cont.) 

 

 Raw measurements   

PI Rep 1 Rep 2 LSMeansy Groupsz 

PI316031 4 3.6 3.8 abcdefg 

PI317027 3.2 3.1 3.15 abcdefg 

PI317350 2.6 2 2.3 abcdefg 

PI318694 3.1 3 3.05 abcdefg 

PI319554 2 3.5 2.75 abcdefg 

PI319587 6.5 6.1 6.3 abcdefg 

PI319592 6.5 5.3 5.9 abcdefg 

PI319595 3 7.7 5.35 abcdefg 

PI319607 5.1 4.9 5 abcdefg 

PI319618 5.1 1.5 3.3 abcdefg 

PI319619 5.2 5.9 5.55 abcdefg 

PI319636 3.2 1.5 2.35 abcdefg 

PI319683 3.5 1.7 2.6 abcdefg 

PI319684 3.8 9.1 6.45 abcdefg 

PI325614 6 7 6.5 abcdefg 

PI325618 8 7 7.5 abcdefg 

PI325626 6.7 5.6 6.15 abcdefg 

PI325630 6.8 5.2 6 abcdefg 

PI325635 8.2 3.6 5.9 abcdefg 

PI325642 3.2 4.6 3.9 abcdefg 

PI325653 1.5 3.5 2.5 abcdefg 

PI325676 3.2 3 3.1 abcdefg 

PI325685 4 1.5 2.75 abcdefg 

PI325687 3 2.8 2.9 abcdefg 

PI325691 2.5 1.8 2.15 abcdefg 

PI325721 3.5 1.7 2.6 abcdefg 

PI325732 6.6 3.1 4.85 abcdefg 

PI325750 5.5 6 5.75 abcdefg 

PI326106 5.2 2.6 3.9 abcdefg 

PI326110 3 1.4 2.2 abcdefg 

PI345576 4.1 2.4 3.25 abcdefg 

PI345581 6.4 8.2 7.3 abcdefg 

PI346955 3.2 3.2 3.2 abcdefg 

PI346960 7 6.9 6.95 abcdefg 

PI387862 11 3.6 7.3 abcdefg 
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Table B.2. (Cont.) 

 

 Raw measurements   

PI Rep 1 Rep 2 LSMeansy Groupsz 

PI387865 3 0 1.5 abcdefg 

PI399169 3 0 1.5 abcdefg 

PI406940 7 5.7 6.35 abcdefg 

PI415913 3.5 4.5 4 abcdefg 

PI415936 5 0 2.5 abcdefg 

PI415949 6.5 3.9 5.2 abcdefg 

PI415987 0.2 4.2 2.2 abcdefg 

PI417616 5.5 6 5.75 abcdefg 

PI417621 3.2 4.6 3.9 abcdefg 

PI417622 5 5 5 abcdefg 

PI417628 5.6 4.5 5.05 abcdefg 

PI417630 6.5 3.7 5.1 abcdefg 

PI417633 4.8 5.2 5 abcdefg 

PI417634 5.5 5.8 5.65 abcdefg 

PI417641 4.5 3.9 4.2 abcdefg 

PI417645 6.5 6 6.25 abcdefg 

PI417647 2.5 1.5 2 abcdefg 

PI417653 3.5 5 4.25 abcdefg 

PI417657 3.7 6.5 5.1 abcdefg 

PI417679 4.5 5 4.75 abcdefg 

PI417708 6 6.3 6.15 abcdefg 

PI417716 7.2 5.3 6.25 abcdefg 

PI417721 3.1 4.9 4 abcdefg 

PI417731 2.9 2.2 2.55 abcdefg 

PI417739 6 4.6 5.3 abcdefg 

PI417742 6 6.8 6.4 abcdefg 

PI417743 7.5 6.5 7 abcdefg 

PI417754 3.5 5.2 4.35 abcdefg 

PI417778 4 3.5 3.75 abcdefg 

PI417780 4 3.2 3.6 abcdefg 

PI417784 7 6.8 6.9 abcdefg 

PI417790 5.9 6 5.95 abcdefg 

PI430200 6.5 3.7 5.1 abcdefg 

PI430201 5 4.6 4.8 abcdefg 

PI430204 6.5 7 6.75 abcdefg 
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Table B.2. (Cont.) 

 

 Raw measurements   

PI Rep 1 Rep 2 LSMeansy Groupsz 

PI430206 3 4 3.5 abcdefg 

PI430210 3 4.4 3.7 abcdefg 

PI449389 3.4 4.4 3.9 abcdefg 

PI449422 2.5 4.5 3.5 abcdefg 

PI451885 6 3.5 4.75 abcdefg 

PI451889 3 3 3 abcdefg 

PI451906 1.2 2.2 1.7 abcdefg 

PI451917 5.5 4 4.75 abcdefg 

PI451921 4.7 6.6 5.65 abcdefg 

PI476751 3.7 0.5 2.1 abcdefg 

PI510574 2.7 6.5 4.6 abcdefg 

PI511767 2.5 2.1 2.3 abcdefg 

PI512003 2.7 2 2.35 abcdefg 

PI533249 5.7 4 4.85 abcdefg 

PI533259 3.5 2 2.75 abcdefg 

PI533277 5 3.2 4.1 abcdefg 

PI533281 3 2.5 2.75 abcdefg 

PI533286 3.5 1 2.25 abcdefg 

PI533299 3.6 3.1 3.35 abcdefg 

PI533311 7.2 3.5 5.35 abcdefg 

PI533312 5.8 7.4 6.6 abcdefg 

PI533313 3.7 1.1 2.4 abcdefg 

PI533316 3.5 3.2 3.35 abcdefg 

PI533363 3.5 5.5 4.5 abcdefg 

PI533373 7 4 5.5 abcdefg 

PI533420 5.1 4.1 4.6 abcdefg 

PI533428 4.6 8.5 6.55 abcdefg 

PI533432 7.2 2.3 4.75 abcdefg 

PI533437 1.5 2.9 2.2 abcdefg 

PI533475 3.5 3.6 3.55 abcdefg 

PI533476 6.2 3.1 4.65 abcdefg 

PI533484 3.6 5 4.3 abcdefg 

PI533498 1.1 2 1.55 abcdefg 

PI533502 2.5 2.5 2.5 abcdefg 

PI533510 3.2 4.2 3.7 abcdefg 
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Table B.2. (Cont.) 

 

 Raw measurements   

PI Rep 1 Rep 2 LSMeansy Groupsz 

PI533528 5.6 4 4.8 abcdefg 

PI533545 4.8 4 4.4 abcdefg 

PI533561 2.1 3.2 2.65 abcdefg 

PI533584 3.3 3.5 3.4 abcdefg 

PI535395 2 2.1 2.05 abcdefg 

PI557483 3.9 3.1 3.5 abcdefg 

PI207182 0.8 1.6 1.2 bcdefg 

PI310546 2 0.2 1.1 bcdefg 

PI310814 0 2.5 1.25 bcdefg 

PI313609 2.5 0 1.25 bcdefg 

PI313833 1.5 1.1 1.3 bcdefg 

PI415955 1 1.5 1.25 bcdefg 

PI416713 0.5 1.5 1 bcdefg 

PI417707 2.5 0 1.25 bcdefg 

PI207127 0.5 1.3 0.9 cdefg 

PI309845 0.2 1.7 0.95 cdefg 

PI415900 0.2 1.5 0.85 cdefg 

PI415975 0.3 1.5 0.9 cdefg 

PI430167 1.5 0.2 0.85 cdefg 

PI307791 0.5 1 0.75 defg 

PI309701 0.5 1 0.75 defg 

PI313667 1 0.5 0.75 defg 

PI165466 0.2 1 0.6 efg 

PI310739 0 1.2 0.6 efg 

PI319640 0.9 0.3 0.6 efg 

PI325722 0 1.1 0.55 efg 

PI415950 0 1.2 0.6 efg 

PI417667 1 0.2 0.6 efg 

PI533332 1 0.2 0.6 efg 

PI207148 0.2 0.2 0.2 fg 

PI209486 0.5 0.5 0.5 fg 

PI263596 0.5 0.5 0.5 fg 

PI310511 0.2 0.8 0.5 fg 

PI311843 0 0.8 0.4 fg 

PI313366 0.6 0.2 0.4 fg 
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Table B.2. (Cont.) 

 

 Raw measurements   

PI Rep 1 Rep 2 LSMeansy Groupsz 

PI313583 0.5 0.5 0.5 fg 

PI313664 0 0.6 0.3 fg 

PI313847 0.5 0.5 0.5 fg 

PI316016 0.7 0 0.35 fg 

PI319573 0.2 0.5 0.35 fg 

PI415886 0.3 0.2 0.25 fg 

PI415986 0.2 0.5 0.35 fg 

PI417654 0 0.8 0.4 fg 

PI207253 0 0.2 0.1 g 

PI318703 0 0.2 0.1 g 

PI355419 0 0 0 g 
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Table B.3. Linkage disequilibrium (LD) decay estimated for different soybean chromosomes 

 

Chr No.w Chr size (kb) No. of SNPsx LD decay (kb)y SNPs neededz 

1 52183.5 8571 70 745 

2 49033.7 8559 60 817 

3 52218.6 8549 60 870 

4 45793.2 8247 65 705 

5 40237.5 7313 65 619 

6 31973.2 8600 65 492 

7 51698.4 6289 60 826 

8 59634.6 9333 50 1193 

9 37399.6 5073 60 623 

10 43213.2 7662 60 720 

11 50203.6 9220 50 1004 

 
wChr No. – Chromosome number 
xNumber of SNPs used in present study. 
yLD decay at r 2 = 0.2.  
zAverage SNPs needed was calculated by deviding chromosome size by LD decay. 
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FIGURES 

Fig. B.1. Different severity levels of soybean rust with different lesion types on different PIs of 

common beans. A) Big red-brown soybean rust lesions on some common bean PI. B) small tan 

soybean rust lesions on some common bean PIs.  
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Fig. B.2. Red-brown lesions caused by soybean rust on common bean accessions with A) 

sparsely or B) no sporulating uredinia. 
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Fig. B.3. (A) Principal Component Analysis (PCA) of a diverse 363 common bean accessions 

genotyped with 84,416 SNPs identified through genotyping by sequencing. (B) Kinship matrix 

among the diverse 363 common bean accessions estimated using the 84,416 SNPs identified 

through genotyping by sequencing. 
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Fig. B.4.  Frequency distribution of the diverse panel of 363 common bean accessions for mean 

soybean rust lesion numbers and Sclerotenia stem rot lesion length. Vertical axis shows the 

number of individuals for a given log SBR lesion number or log SSR lesion length, and the 

horizontal axis corresponding the log SBR lesion number and the log SSR lesion length for the 

363 common bean accessions. (A) Frequency distribution of the diverse panel of 363 common 

bean accessions for mean soybean rust lesion numbers. (B) Frequency distribution of the diverse 

panel of 363 common bean accessions for mean Sclerotenia stem rot lesion length.  
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Fig. B.5 Manhattan plot produced by the genome-wide association mapping study (GWAS) 

showing the strength of associations of single nucleotide polymorphism (SNP) in common bean 

genome with soybean rust (SBR) and Sclerotenia stem rot (SSR). No SNP was detected to be 

significantly associated with SBR or SSR.  
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Fig. B.6. QQ plot showing quality control of the genome-wide association mapping studies 

(GWAS) for resistance to soybean rust (SBR) and Sclerotenia stem rot (SSR) in the core 

collection of common bean. (A) QQ plot of the GWAS for SBR resistance. (B) QQ plot of the 

GWAS for SSR resistance.  
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