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ABSTRACT

Machine learning (ML) systems are finding excellent utility in tackling the data deluge of
the big data era thanks to the exponential increase in computing power. Current ML sys-
tems adopt either centralized cloud computing or distributed edge computing. In both, the
challenge of energy efficiency has been drawing increased attention. In cloud computing,
data transfer due to inter-chip, inter-board, inter-shelf and inter-rack communications (I/O
interface) within data centers is one of the dominant energy costs. This will intensify with
the growing demand for increased I/O bandwidth of high-performance computing in data
centers. On the other hand, in edge computing, energy efficiency is the primary design
challenge, as mobile devices have limited energy, computation and storage resources. This
challenge is being exacerbated by the need to embed ML algorithms such as convolutional
neural networks (CNNs) for enabling local on-device inference capabilities. In this disserta-
tion, we investigate techniques to address these challenges.

To address the energy efficiency challenge in data centers, this dissertation focuses on
reducing the energy consumption of the I/O interface. Specifically, in the emerging analog-
to-digital converter (ADC)-based multi-Gb/s serial link receivers, the power dissipation is
dominated by the ADC. ADCs in serial links employ signal-to-noise-and-distortion-ratio
(SNDR) and effective-number-of-bits (ENOB) as performance metrics because these are the
standard for generic ADC design. This dissertation presents the use of information-based
metrics such as bit-error-rate (BER) to design a BER-optimal ADC (BOA) for serial links.
First, theoretical analysis is developed to show when the benefits of BOA over a conventional
uniform ADC (CUA) in a serial link receiver are substantial. Second, a 4 GS/s, 4-bit on-chip
ADC in a 90 nm CMOS process is designed and integrated into a 4 Gb/s serial link receiver

to verify the aforementioned analysis. Specifically, measured results demonstrate that a 3-bit
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BOA receiver outperforms a 4-bit CUA receiver at a BER < 107!2 and provides 50 % power
savings in the ADC. In the process, it is demonstrated conclusively that BER as opposed to
ENOB is a better metric when designing ADCs for serial links.

For the problem of resource-constrained computing at the edge, this dissertation tack-
les the issue of energy-efficient implementation of ML algorithms, particularly CNNs which
have recently gained considerable interest due to their record-breaking performance in many
recognition tasks. However, their implementation complexity hinders their deployment
on power-constrained embedded platforms. This dissertation develops two techniques for
energy-efficient CNN design.

The first technique is a predictive CNN (PredictiveNet), which makes use of high sparsity
in well-trained CNNs to bypass a large fraction of power-dominant convolutions at run-
time without modifying the CNN structure. Analysis supported by simulations is provided
to justify PredictiveNet’s effectiveness. When applied to both the MNIST and CIFAR-10
datasets, simulation results show that PredictiveNet achieves 7.2x and 4.4x reduction in
the computational and representational costs, respectively, compared with a conventional
CNN. It is further shown that PredictiveNet enables computational and representational
cost reductions of 2.5x and 1.7x, respectively, compared to a state-of-the-art CNN, while
incurring only 0.02 classification accuracy loss.

The second technique is a variation-tolerant architecture for CNN capable of operating
in near threshold voltage (NTV) regime for aggressive energy efficiency. It is well-known
that NTV computing can achieve up to 10X energy savings but is sensitive to process,
temperature, and voltage (PVT) variations which can lead to timing errors. To leverage the
great potential of NTV for energy efficiency, this dissertation develops a new statistical error
compensation (SEC) technique referred to as rank decomposed SEC (RD-SEC). RD-SEC
makes use of inherent redundancy in CNNs to handle timing errors due to NTV computing.
When evaluated in CNNs for both the MNIST and CIFAR-10 datasets, simulation results
in 45nm CMOS show that RD-SEC enables robust CNNs operating in the NTV regime.
Specifically, the proposed RD-SEC can achieve up to 11X improvement in variation tolerance
and enable up to 113x reduction in the standard deviation of classification accuracy while

incurring marginal degradation in the median classification accuracy.
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Chapter 1

INTRODUCTION

Machine learning (ML) systems have been dramatically transforming the way we live and
work by enhancing our ability to recognize, analyze, and classify the world around us. In
fact, many see this as the fourth industrial revolution [1]. Such unprecedented transfor-
mation is made possible by the explosion in computing power and the availability of vast
amounts of data. Indeed, ML systems have transformed science fiction into everyday reality.
Examples include self-driving cars or aircraft, household robots, virtual assistants, and many
others. Recently, ML systems exceeded human performance in some applications such as
million-scale object recognition [2|. However, this record-breaking performance comes at a
large energy cost. For example, Google’s AlphaGo, which amazed everyone by beating the
human Go champion early in 2016, runs on 1202 CPUs and 176 GPUs [3] and consumes
more than four-orders-of-magnitude higher power than the human brain. Therefore, there
is an imperative need to design energy-efficient ML systems for enabling their pervasive
deployment in our daily lives.

Current ML systems are either centralized in a cloud (see Fig. 1.1(a)) or distributed at the
edge (see Fig. 1.1(b)). Specifically, in cloud platforms, data from the devices of end users,
such as mobile phones, are transferred to the data centers which execute ML algorithms on
CPU and GPU clusters. The extracted information is then transferred back to users’ devices.
While cloud computing is rapidly expanding, recent work [4] shows that the energy cost of
transferring data between data centers and local devices can be a significant percentage
of the total energy cost in cloud computing if the usage rate and data volume are large.
Therefore, there has been an increasing interest in enabling local inference capability at the
edge such as end users’ devices. Local processing of raw data reduces energy and latency,

and enhances privacy. In both centralized cloud computing and distributed edge computing,
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Figure 1.1: Hlustration of: (a) centralized cloud computing, and (b) distributed edge com-
puting.
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Figure 1.2: Power breakdown in a state-of-the-art 48-core processor at both low and high
power modes |5].

there is a grand energy efficiency challenge as described next.

e Energy Efficiency Challenge in the Data Center: It is reported that US data
centers consumed about 70 billion kilowatt-hours of electricity in 2014, representing
2% of the country’s total energy consumption [5]. Indeed, the costs of power and
cooling are becoming significant factors in the total expenditures of large-scale data
centers [8]. In particular, data transfer due to inter-chip, inter-board, inter-shelf and
inter-rack communications within data centers is one of the dominant energy costs.
For example, the 1/O interface consumes about 20% — 70% of the total power in a
state-of-the-art 48-core processor [5], as shown in Fig. 1.2. This will be made worse
by the growing demand for increased I/O bandwidth of high-performance computing
in data centers. For example, a recent projection [9] indicates that the I/O bandwidth
demand will exceed 750 TB/s for super-computers by the year 2020, and the I/0 power
could reach half of the CPU power.

e Energy Efficiency Challenge at the Edge: Devices at the edge including smart
phones, autonomous vehicles, wearable devices, and many others have limited energy,
computation and storage resources since they are battery-powered and have a small
form factor. For example, the comparison in Fig. 1.3 shows that the CPU power of a

Google glass is about one eightieth of a standard desktop [6,7]. On the other hand,
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Figure 1.3: Comparison of available resource between a standard desktop and a Google
glass [6,7].

the required implementation complexity of many ML algorithms is high due to the
need to process hundreds of computations and a significant amount of data movement.
For example, a state-of-the-art convolutional neural network (CNN), AlexNet, requires
666 million multiplier-accumulators (MACs) per 227 x 227 image (13k MACs/pixel)
and hundreds of megabytes for weight storage [10]. Therefore, the energy efficiency
challenge will be aggravated due to the need for ML algorithms to enable inference
capability in these platforms. Conventional designs rely on voltage and process scaling

for energy efficiency, which have already stagnated as shown in Fig. 1.4 [11].

Therefore, we aim to explore techniques to address energy efficiency challenges in both
data centers and resource-constrained platforms at the edge. Specifically, to address the
energy efficiency challenge in data centers, we focus on reducing the energy of the 1/O
interface by exploring the design of analog-to-digital converter (ADC)-based multi-Gb/s
serial link receivers. In addition, we also investigate energy-efficient design of complicated
ML algorithms such as CNNs for their employment in resource-constrained platforms.

In the remainder of this chapter, we provide an overview of related prior work, and then

present the contributions and organization of this dissertation.
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Figure 1.4: The scaling of supply voltage, a quadratic knob for energy efficiency, remains
stagnant beyond 45 nm [11].

1.1 Related Work

1.1.1 ADC-based Links

In conventional ADC-based serial links (see Fig. 1.5(a)), the ADC is designed to be a trans-
parent conduit of the input analog waveform z.(t). In such ADCs, the quantization thresh-
olds t are set uniformly within their full-scale range (FSR). We refer to such an ADC as
a conventional uniform ADC (CUA). The signal-to-quantization noise ratio (SQNR) of a
CUA can be approximated by SQNR = 6.02B, + 4.8 — 2010g 10 (Vinaz/02) [12], where o2
is the average signal power at the ADC input, B, is the ADC resolution, and V., is the
maximum input amplitude. The SQNR is a signal fidelity metric as it measures the aver-
age squared difference between the ADCs sampled input z.(nT') and its quantized output
x[n]. Other signal fidelity based metrics such as signal-to-noise-and-distortion-ratio (SNDR)
or effective-number-of-bits (ENOB) are also employed. Such fidelity-based metrics impose
overly stringent specifications on the ADC because they ignore the true role of the ADC
in a communication link, which is to preserve the information content in the input signal
xc(t) in order to recover the transmitted data reliably. One direct consequence of employing

fidelity-based metrics is that the ADC needs more resolution B, than needed. In such ADCs,
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Figure 1.5: Role of an ADC in a serial link: (a) block diagram of a serial link, and (b) ide-
alized model for the ADC in (a).

a single bit reduction in B, can result in significant power savings. For example, in flash
ADCs, the area, power consumption, and input capacitance increase exponentially with B,.
These result in large preamplifier bandwidth and multiple stages of latches which exacer-
bate the ADC power consumption problem [13,14]. Therefore, the design of low-power and
high-speed ADCs in serial links is a major challenge, which has drawn great interest from
both industry and academia.

Recently, there has been research that attempts to employ the link bit-error-rate (BER) as
a design metric for energy-efficient link design. Past work on BER-optimal link components
includes [15], in which an adaptive minimum BER (AMBER) algorithm is proposed to
adapt the equalizer coefficients. It was shown that minimum-BER equalizers outperform
conventional minimum mean square error (MMSE) equalizers over a wide variety of channels
especially when the BER lies in a regime of rapid descent with the number of equalizer
coefficients. Chen et al. [16] demonstrated the benefits of adapting the equalizer coefficients
and the sampling phase of the clock-data-recovery (CDR) to minimize the BER in serial links
via the design of a prototype IC in 65nm CMOS for a 6.25 Gb/s serial link. In [17,18], an



algorithm to determine the BER-optimal ADC (BOA) representation levels was proposed.
The ADC shaping gain SG(pe, By, B,) defined below was employed to quantify the benefits
of BER optimality:

SG(pe> Bua Bo) = SNRu(pe7Bu) - SNRo(pea Bo)a (11)

where SNR,(p., B,) and SNR,(p., B,) are the signal-to-noise ratios (SNRs) needed by a
CUA and a BOA, respectively, to achieve a BER equal to p. with identical receiver pro-
cessing, and B, and B, are the resolutions of the CUA and the BOA, respectively. This
ADC shaping gain quantifies the reduction in the required channel SNR to achieve a given
BER p. due to the use of a BOA. The ADC shaping gain is analogous to a coding gain
when evaluating links with error control coding. Tt was shown in [17,18] that SG(107'%,3, 3)
ranged from 2.5dB to more than 30dB for highly dispersive channels. We note that a BOA
employs representation levels that are dependent on signal statistics and BER, and hence
are typically non-uniformly spaced within the FSR of the ADC. The works in [17, 18] also
showed that the non-uniform BOA representation levels are significantly different from and
superior to the non-uniform (also signal statistics-dependent) representation levels obtained
from the well-known Lloyd-Max (LM) quantization algorithm [19,20]. This is because the
LM algorithm minimizes the SQNR, which is also a fidelity metric. In [21], it was shown
that BOA can relax the component specifications of ADCs. In particular, BOA can achieve
the same or even better BER while it has less stringent metastability and preamplifiler
bandwidth requirements on the ADC comparators.

A power-optimized ADC-based 10 Gb/s serial link receiver in 65 nm CMOS was designed in
[22] using a low-gain analog and mixed-mode pre-equalizer in conjunction with non-uniform
representation levels for the ADC. The works in [22, 23] propose to merge slicers whose
thresholds are similar into one for loop-unrolled decision feedback equalizers (DFEs) and
adjusts a pseudo-BER metric (voltage margin) to minimize BER, which in effect emulates a
BOA followed by a DFE. However, this technique is applicable only to loop-unrolled DFEs,
and has to rely on a continuous-time linear equalizer to cancel the precursor ISI. Second,

as mentioned in [23], their procedure to determine the optimal threshold placement is not



suitable for online calibration. More recently, Son et al. [24] proposed a power efficient
equalizing receiver front-end that includes a two-step adaptive BER-minimizing equalizer
algorithm. These works mentioned above demonstrate that the use of information-based
metrics such as the BER are indeed quite effective in reducing link component power in

serial links.

1.1.2  Energy-efficient CNNs

Many emerging applications in pattern recognition and data mining require the use of ML
algorithms to process massive data volumes on energy-constrained platforms [25]. CNN is
a powerful ML algorithm that achieves state-of-the-art performance in various recognition
tasks [2]. For example, the Microsoft ResNet achieved a better-than-human accuracy of
3.57% in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2015 [26], which
is a benchmark in object category classification and detection consisting of hundreds of object
categories and millions of images. The implementation complexity of CNNs is very high due
to the need to compute a large number of convolutions usually taking up over 90% of the
total computational cost [27] and to process a significant amount of data movement. This
high complexity of CNNs hinders their implementation on power-constrained embedded
platforms.

Substantial research efforts have been invested in reducing the complexity of CNNs. One
line of research attempts to reduce the precision of weights and activations, and has shown
that 8-bit [28] or even binary [29] fixed-point representation is sufficient for evaluating CNNs.
Another approach focuses on optimizing the structure of CNN itself. The work in [30]
employs a three-step method, where the network is trained to learn important connections,
prune redundant connections in pre-trained CNNs, and then retrain the pruned networks
to restore the performance. Zhang et al. [31] proposed to replace convolutional layers by
several convolutional layers applied sequentially, which have a lower total complexity. Other
research thrust exploits sparsity in well-trained CNNs or enhances sparsity in CNNs via
regularization, and skips operations with zero entries (zero-skipping) [10,32|. Recent work

[33,34] showed that it is possible to avoid evaluation of certain computations with a marginal



performance loss. In [33], a linear regression model was trained for each convolutional layer
to predict the importance of each convolutional filter and prune low-impact filters at runtime.
Panda et al. [34] proposed conditional deep learning (CDL) by adding a linear network to
each convolutional layer and monitoring the output to decide whether classification can be
terminated at the current stage.

The above mentioned techniques have the potential to reduce both the computational
and data movement costs in CNN implementations. In general, data movement (memory
access) cost tends to dominate the overall energy consumption in data-intensive computing
systems [35]. This is especially true for large-scale CNN implementations [36,37]|. Thus,
research focus has been on reducing data movement cost via maximally reusing data locally
[36,37| or in-memory computing [38,39]. Once these techniques aggressively trim down the
data movement cost of large-scale CNNs as well as in the case of small-scale CNNs, the
computational cost will be on the same order or even dominate the overall energy cost [40].
In these cases, how to reduce the computational cost of CNNs becomes the primary concern.
In line with this direction, one opportunity in CNNs is that matrix-vector multiply (MVM)
is the most power hungry kernel and accounts for 90% of the computational cost in state-of-
the-art integrated circuit implementations [10]. In a MVM, an input vector x is projected

to a set of weight vectors, i.e.:

y = Whx (1.2)

where W = [wy, ..., wy] is the N x M weight matrix, wy, is the k" N x 1 weight vector,
x is the N x 1 input vector, y = [y1, ..., ya]" is the M x 1 output vector, and y; is the k'
element of y which can be expressed as a dot product (DP) y, = w] x.

As a result, energy-efficient MVM architectures are of great importance for energy-efficient
CNN design. Techniques such as low power parallel filter design [41] and common subexpres-
sion elimination (CSE) [42] can be applied to MVMs to reduce computational complexity.
These techniques exploit the redundancy within a multiplier or a DP. To further reduce

energy consumption, near threshold voltage (NTV) designs have been proposed where the

supply voltage is reduced to close to the transistor threshold voltage of 0.3V-0.7V. This de-



sign paradigm is well-suited for low throughput sensor based applications such as biomedical
monitoring [43|, surveillance [44], and structural sensing within critical infrastructures [11].
Past research has shown that NTV designs can achieve up to 10x savings in energy, but suf-
fer from a significant increase in variations, which can be as high as 20x [11]. Error-resilient
techniques [45-51] have been employed at various levels of design abstraction to compensate
for the resultant timing errors caused by NTV operation. At the logic or circuit level, RA-
ZOR [45], error detection sequential (EDS) [46], and Markov Random Field [47] have been
proposed. These techniques either compensate for small error rates (< 2%) or have large
overhead (> 5x), limiting their ability to enhance energy efficiency. At the system level, con-
ventional fault-tolerance techniques such as N-modular redundancy (NMR) [48] incur N x
complexity and power overhead, restricting their applicability. Statistical error compensa-
tion (SEC) [49-51| has been shown to be a promising solution. SEC employs detection and
estimation-based techniques for error compensation. SEC techniques such as algorithmic
noise-tolerance (ANT) are able to compensate for error rates of 21% — 89% while achieving

35% — 72% energy savings [50].

1.2 Dissertation Contributions and Organization

The design of energy-efficient ML systems is challenging due to the need for intensive com-
putation and massive data movement. In this dissertation, we address this challenge by (1)
employing information-based system metrics, as opposed to fidelity circuit metrics, to design
power-dominant components in ML systems, (2) making use of inherent redundancy in ML
algorithms for reduced complexity, and (3) computing at the limits of energy efficiency and
robustness and developing SEC technique to efficiently compensate for the resultant errors.
The major contributions and organization of this dissertation are summarized as follows:
Chapter 2 presents an investigation of the use of link BER for designing a BOA based
serial link. Channel parameters such as the m-clustering value and the threshold non-
uniformity metric h; are introduced and employed to quantify the BER improvement achieved
by a BOA over a CUA in the receiver. Analytical expressions for BER improvement are

derived and validated through simulations. A prototype of BOA is designed, fabricated
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and tested in a 1.2V, 90nm LP CMOS process to verify the results of this study. BOA’s
variable-threshold and variable-resolution configurations are implemented via an 8-bit single-
core, multiple-output passive digital-to-analog converter (DAC), which incurs an additional
power overhead of < 0.1% (approximately 50 uW). Measurement results show that the BER
achieved by the 3-bit BOA receiver can be lower by a factor of 10 and 10'°, as compared to
the 4-bit and 3-bit CUA receivers, respectively, at a data rate of 4-Gb/s and a transmitted
signal amplitude of 180 mVppd.

Chapter 3 presents a predictive CNN (PredictiveNet), which predicts the zero outputs of
the nonlinear layers using low-cost predictors thereby bypassing a majority of computations.
PredictiveNet skips a large fraction of power-dominant convolutions in CNNs at runtime
without modifying the CNN structure or requiring additional branch networks. Analysis
supported by simulations validates the proposed PredictiveNet technique. When applied to
CNNs for both the MNIST and CIFAR-10 datasets, simulation results show that Predic-
tiveNet is able to achieve up to 2.5x and 1.7x reduction in the computational cost (number
of 1-bit full adders) and representational cost (number of bits to represent data and weights),
respectively, compared with a state-of-the-art CNN, while incurring only 0.02 classification
accuracy degradation.

Chapter 4 presents a variation-tolerant architecture for CNNs capable of operating in
NTV regime for energy efficiency. A SEC technique referred to as rank decomposed SEC
(RD-SEC) is proposed. The key idea of RD-SEC is to exploit inherent redundancy within a
MVM, a power-hungry operation in CNNs, to derive low-cost estimators for error detection
and compensation. When evaluated in CNNs for both the MNIST and CIFAR-10 datasets,
simulation results in 45 nm CMOS show that the proposed RD-SEC can enable up to 11x im-
provement in variation tolerance and achieve up to 113X reduction in the standard deviation
of classification accuracy while incurring marginal degradation in the median classification
accuracy.

Chapter 5 concludes this dissertation and provides directions for future research activi-

ties.

11



Chapter 2

BER-OPTIMAL ADC-BASED RECEIVER FOR
SERIAL LINKS

ADC-based multi-Gb/s serial link receivers have gained increasing attention as a promising
scheme for data transfer in data centers because they have enabled the application of digital
signal processing (DSP) techniques to recover data under severe channel impairments such as
channel loss, reflection, and crosstalk, while being constrained by a stringent power budget
[22,52-56]. This chapter presents the effectiveness of employing information-based system
metrics such as the link BER to reduce the energy consumption of serial link components
such as the ADC, which tends to be the most power hungry block. For example, the ADC
itself (excluding the clock buffer) consumes 41% of the total receiver power in [22].

The rest of this chapter is organized as follows. Section 2.1 reviews the theory behind the
BOA. Section 2.2 discusses how to maximize the benefits of a BOA receiver over a CUA
receiver. In Section 2.3, the design of a 4 GS/s, 4-bit BOA IC in a 90 nm CMOS process is
described. Both stand-alone ADC and link measurement results are summarized in Section

2.4, and a summary of this chapter is provided in Section 2.5.

2.1 Background

In this section, the concept of the BOA is reviewed. Figure 1.5(a) depicts a typical ADC-
based serial link, where the ADC is followed by an equalizer prior to detection. When
considering an equivalent discrete-time, symbol-spaced, time-invariant channel corrupted by
additive white Gaussian noise (AWGN), and 2-PAM modulation, the channel output at time

n is given by

ze[n] = x.(nT) = ZiL:_Ol hlilb[n — 1] + v[n],
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Figure 2.1: Channel response h = [0.0949,0.2539, 0.1552,0.0793, 0.0435, 0.0356, 0.0220]
with L = 7 of a 20-inch backplane channel carrying 10 Gb/s data [57].

where b[n] € {1} is the transmitted sequence, h[n| is the equivalent discrete time channel
impulse response (see Fig. 2.1 for an example) with memory L, and v[n] is AWGN with
variance o2. At the receiver, the processor estimates the transmitted symbols from quantized
channel outputs through the ADC. A subsequent slicer determines the transmitted bit.
Figure 2.1 shows an example of the channel response h for a 20-inch backplane channel

carrying 10 Gb/s data [57].

2.1.1 Comparison Metric

Comparison of a BOA and a CUA requires an appropriate metric to be defined. The ADC
shaping gain SG(p., By, B,) in (1.1) is one such metric. In applications where it is difficult to
measure the underlying circuit and environmental noise, comparing the ratio of the resulting
bit-error-rates, or the “BER ratio”, may be of interest. Similarly, when two systems are being
compared, and only one of the two experiences an exponential decay in BER with SNR as
shown in Fig. 2.2(e), it may not be possible to measure SG(p,, B., B,). However at a given
SNR, the ratio of the measured BERs may be readily measurable. Once again, the BER
ratio becomes a quantity of interest. In our application, as the resolution of the ADC may
be insufficient to reach the so-called “waterfall” regime of the BER vs. SNR curve, we will
use the BER ratio as a metric of comparison. We recognize that this metric may be more

susceptible to measurement sensitivities since we are comparing quantities that may differ
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by orders of magnitude. However, we proceed with this metric for the above mentioned

reasons. Therefore, in this chapter we employ the BER ratio (BERR) defined as:

_ eu(SNRvBU)
BERR(SNR, By, B,) = beseimepe),

where p.,(SNR, B,) and p.,(SN R, B,) are the BERs achieved by a B,-bit CUA and a B,-bit
BOA with identical receiver processing and channel SNR given by SNR = S5 " |h[i][2/o2.

2.1.2  An Illustrative Example

A BOA [17] exploits signal statistics to maximize the probability of correctly detecting the
transmitted bits. To provide insight into the operation of a BOA, we consider an ADC
followed by a memoryless symbol-by-symbol maximum likelihood (ML) detector (ADC-ML)
receiver, as shown in Fig. 2.2(a), and provide an example to illustrate the point.

First, we define the set of quantization thresholds for the CUA and the BOA.

Definition 1. The vectors t, = [tu1,tu2, - s tum), Tu = [Tu1, Tu2, -, Tum+1], and the set
I, ={Ily1,Lus, -+, Iun+1} are the thresholds, output representation levels, and interval set
of a loga(M + 1)-bit CUA, where 1,1 = (—oo,tya], Lux = [tuk—1,tur] for k = 2,--- M,
Luns1 = [tum, +00), and the CUA output x[n] = ryg if xo(nT) € Ly fork=1,--- M +
L. Similarly, the vectors t, = [to1,t02, s, toN], To = [Fo1:To2: * sTon+1), and the set
I,={I,1,1,2, - ,I,n+1} are the thresholds, output representation levels, and interval set
of a loga(N + 1)-bit BOA, where 1,; = (—00,to1], lox = [tox—1,tox] for k = 2,--- N,
I, N1 = [ton, +00), and the BOA output x[n] =1,y if x.(nT) € I,y fork=1,--- N + 1.

Consider a 4-tap channel with impulse response h = [0.08,0.07,0.1,0.04]. The conditional
probability density functions (pdfs) P(z.[n]|b[n] = —1) and P(z.[n]|bln] = +1) correspond-
ing to the marginal pdf of the channel output conditioned on the bit b[n| being either —1
or +1 at time n, are illustrated in Fig. 2.2(b) and Fig. 2.2(c), respectively. In a CUA, the
thresholds are set uniformly within the ADC’s FSR. Assuming that the FSR is [-0.3,+0.3], a
4-bit CUA will have its thresholds at ¢, = [£0.26005, +0.2290, £0.18575, +0.14875, £0.1145,
+0.0743,4+0.03715, 0] (Fig. 2.2(d)). In contrast, the thresholds in a BOA are positioned at
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Figure 2.2: An illustrative example: (a) the block diagram of an ADC-ML receiver, (b)
the conditional pdf of the channel output given b[n] = —1, (¢) the conditional pdf of

the channel output given b[n] = +1, (d) BOA’s quantization thresholds (inverted tri-
angles in yellow) and uniform quantization thresholds (dashed lines in red) for channel
h = [0.08,0.07,0.1,0.04] when SNR = 36dB, and (e) the simulated BERR(SNR, 4,3),
Peo(SNR,3) and pe,(SNR,4) versus SN R plot.
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the crossover points of the two conditional pdfs. For this example, the BOA’s thresh-
olds are found to be t, = [£0.11, £0.08,+0.03,0] (see Fig. 2.2(d)) as there are 7 crossover
points. Thus, the BOA illustrated here is a 3-bit ADC. Figure 2.2(e) shows that the BOA
achieves a 1-bit reduction in the ADC resolution while achieving BERR(40,4,3) ~ 10® and
SG(1073,4,3) ~ 8dB.

In order to compute t,, we need the following definition of noise-free channel outputs:

Definition 2. The p-set of a channel h = [ho,hy,--- ,hr_1] is an ordered set defined as
p={put Up}, where both ut = {p V2" and p= = {u; Y2, are ordered sets of noise-
free channel outputs conditioned on the transmitted symbol b[n] taking the value +1 and —1,

respectively. The p, pt and p= sets have elements in ascending order.

In general, the N thresholds of a BOA for an ADC-ML receiver can be obtained [17] as
the N solutions for the unknowns {¢,;} (i =1,---, N) to the following equation:

2L—1 2L—1

9~ L+1 Z N (tois 1 0m) = 9—L+1 Z N(tois gy s0n), (i=1,---,N), (2.1)
=1 I=1

) —(z—p)?

where N (z;pu,0,) = e 2n N <2l — 1 pf and p7 (1 < 1 < 2871) are the
) I \/ﬁ ’ — M l — —

2L~1 noise-free channel outputs (see Definition 2). In the example shown in Fig. 2.2,

h = [0.08,0.07,0.1,0.04], L = 4, {y}5, = {—0.09 , —0.01,0.05,0.07,0.13,0.15,0.21, 0.29}
and {p7 18, = {—0.29,—0.21, —0.15, —0.13, —0.07, —0.05, 0.01, 0.09}.

2.1.3 BOA with a Linear Equalizer (LE)

Consider a BOA followed by a K-tap linear equalizer (LE) with taps w = [wg, w1, . .., wx_1],
such that the equalizer output ye,[n] = S0 wpz[n — k. In a BOA, the representation
levels 7, = {ry1,702, ..., 7on+1} and the thresholds ¢, are chosen to minimize the link BER.
Obtaining a closed form expression for the BOA’s representation levels in the presence of
channel ISI and a LE is in general intractable. Therefore, the gradient descent algorithm [17]

is employed to compute the representation levels iteratively as follows:
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BER = f(h, To, t07 w, Un)

ABER = f(h,ro + Aro,t, + Ato,w,0,)) — f(h, 7o, t0,W, 04), (2.2)
OBER
o | = o — 1
rold] = 7ol — 1] + ( - )H
_ ABER
R Tolj — 1]+ p ( Ar. ) , (2.3)

IT’o:TO[jfl]

where it is assumed that BER = f(h, 7o, t,, W, 0,,) is known, and v,[j] = {ro1[j], 7o2lj], - - -
ro.n11l]} are the ADC representation levels in the j* iteration of the gradient search. The

thresholds in the 7! iteration are obtained as follows:

Toild] + Toi41d]
2

to,i[j]: 7(1.:17"' 7N>' (2'4)

The BOA’s representation levels adaptation algorithm is as follows. First, the ADC pa-
rameters r, and £, are initialized. Then, the gradient vector is estimated by computing finite
differences based on (2.3). The next step is to update ¢, using (2.4). The last two steps are
repeated until the BER converges, i.e., when the difference in the BER between adjacent

iterations is less than a pre-specified value.

2.2 Achievable BER Improvement via BOA

In this section, we study through analysis and simulations how to maximize the benefits
of the BOA over the CUA. Note: a BOA receiver always achieves the same if not better
BER as compared to a CUA receiver, given the same number of bits, channel and noise
power, because a CUA is a special case of the BOA. An important question to ask is: Under
what conditions are the benefits offered by a BOA over a CUA substantial? In particular,
we wish to determine channel conditions under which BERR(SNR, B,, B,) is say at least
10x. BERR(SNR, B,, B,) is empirically observed to depend strongly on the difference
between the CUA’s and the BOA’s thresholds, the number of adjacent noise-free channel
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outputs with opposing signs, channel SNR and the ADC resolution. We therefore discuss
the relationship between these factors on BERR(SNR, By, B,). We restrict our analysis to
channels with memory L < 7 in order to enable the derivation of useful insights analytically.
Note that the performance of BOA for channels with large memory L > 7 has been studied
in [18].

In this section, for tractability of analysis, we assume that the ADC (BOA or CUA) is
followed by a memoryless symbol-by-symbol ML decoder and that binary phase-shift keying
(BPSK) signaling is used over a known channel with impulse response h. Thus, dropping
the time index ‘n’, and employing the notation X, and X, to represent the random variables

(RVs) corresponding to z.(nT") and x[n], respectively, for a CUA, we have:
P(Xy =ryklb) = P(X. € Lb), (k=1,--- M+ 1),

where X, € {ru1,7u2, "+, Tusrs1}s Tuk i the k" CUA representation level (see Definition

1). Then, the memoryless ML decision rule for a CUA is given by:

.r P(Xylb=+41)
+1, if Wb:—l) > 1

oo
I

—1, otherwise

Similarly, let X, be the RV corresponding to z[n] for a BOA. Then,
P(X, =71,4lb) = P(X. € Lx|b), (k=1,--- ,N+1),

where X, € {ro1,709," + ,Ton+1} and r,y is the k™ BOA representation level (see Defini-

tion 1). Then, the memoryless ML decision rule for a BOA is given by:

e P(Xolb=t1)
+1, if PX=1) > 1

S
I

—1, otherwise

2.2.1 BERR Expression

We wish to analytically predict BERR(SNR, B,, B,) given its arguments and the channel

h. Such analysis will eliminate the need for expensive Monte Carlo (MC) simulations.
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Furthermore, conditions under which a BOA can offer a BERR(SNR, B,, B,) of 10" can be
derived.

First, the following definitions are provided.

Definition 3. A channel h is said to be m-clustered if there are m transitions (pu-transitions)
in its p-set, where a p-transition occurs when an element of the p™ set is followed by an
element of the p~ set or vice versa. Note: m > 0 and takes odd values only, and m > N at

low SNR scenario while m = N at high SNR scenario.

Definition 4. The threshold non-uniformity metric hy of a loga(N+1)-bit BOA is a measure

of the difference between t, and t,, and is defined as:

1 (N+1)/2
ht -
5092(%> ;

|:(toi_toi—1> (toi_toi—l)
) ) lOgQ ) )
ymaac ymaa:

tO + max tO + max
N (i) logs <i) (2.5)
ymaaj ymaa:

where [—Ymaz, Ymaz] 15 the ADC FSR, and only the non-positive BOA thresholds are used
since the BOA’s thresholds are symmetric about the origin. Note: 0 < hy < 1, and the larger
the value of hy the closer are the BOA’s thresholds to those of the CUA.

Figure 2.3(a) shows an example when m = 3 for a 4-tap channel (thus there are 2! = 16
elements in p), and Fig. 2.3(b) illustrates two examples when h; = 0.7564 and h; = 1,

respectively. Algorithm 1 can be employed to obtain m and h; for a specific channel.

Definition 5. Let d*, = min(|t,r — p|) be the minimum distance of the k'™ BOA threshold
’ HEWR
tox (k=1,---,N) to the nearest noise-free channel output p. Then, the minimum BOA

distance dopmin, = min (df,).
’ 1<k<N " ™

Definition 6. Each of the (M + 1) intervals I,y withk =1,--- M +1, in a CUA has a

dominant noise-free channel output uj, given by
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Figure 2.3: Examples of m-clustering and h;: (a) m-clustering with m = 3, and (b) h; for
t, = [£0.3,£0.2,£0.1,0] (case I where hy = 1) and ¢, = [£0.3,£0.11,£0.09, 0] (case 1T
where hy = 0.7564) with ¥,4, = 0.3.

. ¢ P(Xy=rq o |b=-+1)
arg mazx J Ny on)da |, if m > 1
% w €™ [Luk
/"Lk = = .
arg maz | [ N(x; ", 00)dz |,  otherwise
/.L?_GM+ _Iu,k' i
Definition 7. Let d;,, = —min(p} — tug—1, tur — 1}) be the minimum distance of the k™

CUA’s dominant noise-free channel output yi} from the boundaries of the k' interval I,

Then, the minimum CUA distance dy min = min  (d ).
1<k<(M+1)°

Figure 2.4 shows an example of the marginal pdf of the channel output, illustrating the

Algorithm 1 Algorithm to obtain m-clustered value and h; for an ADC-ML receiver.

1. Initialize the channel h and the SNR, calculate noise variance o2 based on h and the
SNR.

2. Define the main cursor of h, calculate pt={z}> " and p=={u7}2-, ", respectively, and
obtain the ordered set pu = {u*tJp ™}

3. Count the number of transitions in p, which is the m-clustered value.

4. Obtain to using equation (2).

5. Calculate h; using equation (6).
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In Section 2.6, we show that BERR(SNR, B,, B,) is given by:

corresponding d ., py and d; ,.

BERR(SNR, B,, B,)

r a2

o,minfdu,min
%e 2% if dygin > 0
. in
N VElmne 2 i dyn < 0 (2.6)
2 .
(VR i =0
Equation (2.6) indicates that BERR(SNR, B,, B,) increases with d2 ., or (2., —
d ppin)- Furthermore, BERR(SNR, By, B,) can be predicted given the channel h (thus
L2 /*l’+7 dg,min and di,mzn) and SNR.

MC simulations of link BER were run with 10® (for SNR < 36dB) or 10'? (for SNR >
36 dB) samples and for SNR ranging from 18dB to 40dB for channels h = [0.09,0.1,0.08,
—0.05] and h = [0.08,0.07,0.1,0.04], respectively. Figure 2.5 indicates that the analytical
expressions (2.9) and (2.12) can predict the results of the MC simulations to within an
order of magnitude, and thus can be employed to estimate the p., and p.,. Furthermore, as
expected, the expressions (2.9) and (2.12) become more accurate at high SNRs. Finally, it
can be seen in Fig. 2.5 that 3-bit BOA achieves a shaping gain of 2dB (8dB) over a 6-bit
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Figure 2.6: Comparison between BERR(SNR, B,, B,) from MC simulation (BERR,),
and BERR(SNR, By, B,) estimated using (2.6) (BERR(z) for channels (a) h =
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B, =4 and B, = 3, respectively.
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(4-bit) CUA at a BER of 107° (107%). Figure 2.6 shows that BERR can also be predicted

via (2.6) to within an order of magnitude of MC simulations, and that it increases with SNR.

2.2.2 BER Improvement vs. Channel ISI

This subsection presents an empirical study of BERR as a function of channel ISI. In the rest
of this subsection, we consider the special case of logs(m + 1)-bit BOA and CUA, i.e., B, =
B, = loga(m + 1). Specifically, we study the relationship between BERR(SNR, B,, B,)
and m-cluster and hy, for a set of 4-tap channels h = [1,a;,as,a3] (a; =0.1:0.1:0.9,i =
1,2,3) using an ADC-ML receiver. The corresponding results are shown in Fig. 2.7, where
BERR(SNR, By, B,) is calculated using BER expressions (2.9) and (2.12) when SNR =
38dB. Note: the results when p., > 107!, which occurs because m = 1 or the channel
IST is too large for the given SNR, are removed in Fig. 2.7 for better illustration. The
BERR(SNR, By, B,) and h; for the channel (under which the measured results are shown
in Fig. 2.17) is also shown in Fig. 2.7, which has loga(m + 1) = 2.6 ~ 3 and h; ~ 0.46.
Figure 2.7 indicates that smaller h; and larger m combinations are likely to result in larger
BERR(SNR, B,, B,). Furthermore, Fig. 2.7 shows that BERR(SNR, B,, B,) > 10°, when

m > 5 and h; < 0.8.

2.2.3 BER Improvement vs. Number of Bits B, in the ADC

In this subsection, we claim that for any given realization of the type considered in this
section, there exists an optimal ADC resolution in the sense that it achieves the maximum
of the function BERR(SNR, B,., B;). To see this, note that p., decreases with B,, which
is a consequence of p.,(SNR, B, + 1) being defined through a maximization over the set
of decision regions that includes those used to achieve p.,(SNR, B,) as a subset. Except
on a set of measure zero (for which pe,(SNR, B;) = peo(SNR, B;)), pew(SNR, B, + 1)
< peu(SNR, B,), for all B,. On the other hand, we note that p., decreases with B, for
B, < logy(N + 1), following the same reasoning. However, once B, = logs(N + 1), further

increases in B, provide no additional improvement in p., (for the memoryless symbol-by-
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Figure 2.7: BERR(SNR, B,, B,) vs. h;, where B, = B, = log,(m + 1), for channels

h = [1l,a1,a9,a3) (a; = 0.1 : 0.1 : 0.9,4 = 1,2,3) using an ADC-ML receiver when
SNR = 38dB. The value of h; and measured BERR(SNR,4,3) for a FR4 channel using
an ADC-LE receiver (described in section 2.3) are also shown.

symbol detector used in this analysis). As a result, the ratio BERR(SNR, B,, B,) will
monotonically decrease for B, > logs(IN + 1). Hence, it must achieve a maximal value for
one (or more) B, < logs(N + 1). The BERR(SNR, B,, B,) versus B, plot in Fig. 2.8(a)
shows that BERR(36dB, B,, B,) is maximized when B, = 3.

The intuition gained from the analysis of the ADC-ML receiver holds for the ADC-
LE receivers. This is confirmed by the simulated BERR(SNR, B,, B,) versus B, plot
shown in Fig. 2.8(b), which is obtained for a FR4 channel at 10Gb/s in Fig. 2.1, when
SNR = 36dB. Figure 2.8(b) also shows, under the given condition, B, = 3 maximizes the
BERR(SNR, B,, B,).

2.3 Implementation of BOA Receiver

In this section, a prototype IC implementation of BOA receiver is described. Figure 2.9
shows the block diagram of the receiver, which consists of a BOA chip and an Altera FPGA
board. The FPGA board implements the back-end DSP blocks. The ADC chip includes a
reconfigurable 4-bit 4 GS/s flash ADC and an 8-bit digital-to-analog converter (DAC). The
8-bit DAC enables variable-threshold and variable-resolution ADC configurations, so that
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and SNR = 36 dB.

the performance of a CUA receiver can be compared with that of the BOA receiver. The
back-end DSP block includes a LE and QL-UD. In the BOA receiver, the ADC quantizes
the channel outputs and provides these into the back-end DSP block, which implements
an adaptive LE. Once the equalizer coefficients converge, the quantization levels r, that
minimize link BER are obtained using gradient descent search algorithm. The updated

quantization thresholds ¢, are then fed back into the ADC chip.

Composite Receiver

[ pata ]Backend FPGA,
. |
b[n] hIn] x.[n] B — ] Slicer | b[n]
Fr
Channel - I
vin] e[n] PRBS|'
Gen. |’
bln—4] ,

Figure 2.9: Block diagram of the BOA receiver.
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Figure 2.10: Block diagram of the BOA chip.

2.3.1 ADC Full-chip Block Diagram

The ADC chip consists of an 8-bit DAC, storage capacitor array, and a 4-bit flash ADC, as
illustrated in Fig. 2.10. In a conventional flash ADC, the threshold voltages are generated by
a resistor ladder. A BOA, however, requires variable thresholds. Thus, a DAC is employed
for threshold generation. System analysis shows that an 8-bit DAC is required to ensure
that the 3-bit BOA receiver can achieve similar or better BER performance compared to a
4-bit CUA receiver. In principle, 30 DACs are needed for 4-bit ADC threshold generation.
To minimize power and area overhead, a single-core, multiple-output passive DAC, which
is an extension of the single-core single-output passive DAC presented in 58], is proposed
to generate the variable threshold voltages. The threshold voltage generator has a power
overhead of 10% (~ 50 uW) compared to a fixed resistor string for a CUA.

Figure 2.11 illustrates the operation of the 8-bit DAC. A single voltage threshold update
occurs over two phases of non-overlapping clocks ¢ and ¢o. In phase I (¢ = 1, ¢ =
0), the 4 MSBs of the 8-bit DAC input selects a 4-bit section of the resistor ladder to
charge the 4-bit unit capacitor (C,) array. In phase II (¢, = 0, ¢ = 1), C, and C,.s are
connected together. The resulting charge sharing shifts the threshold voltage toward the
desired value. The nominal, post-layout extracted operating frequency of the DAC core is
12 MHz, resulting in an update frequency per C,.; of 375kHz. This is more than sufficient
to compensate for leakage. The 8-bit DAC updates the thresholds of the comparator array
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Figure 2.11: The 8-bit single-core multiple-output DAC: (a) circuit schematic, and (b)
timing diagram.

sequentially. Therefore, only the threshold of one comparator is updated at each moment.
The storage capacitors hold the thresholds for the other comparators. In a flash ADC,
one input of each comparator is connected to the analog input, while the other input is
connected to the corresponding threshold. The comparator array compares the analog input
with the threshold voltages simultaneously and produces comparison results in the form of
a thermometer code. Thus, a binary encoder following the comparator array is needed for

the ease of back-end digital processing.
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2.3.2 Back-end DSP in the FPGA

The back-end DSP units are implemented in an Altera Transceiver Signal Integrity Develop-
ment FPGA board [59], in which the DSP units operate at a frequency of 100 MHz. Thus, 40
parallel channels are used to handle the 4 Gb/s outputs from the ADC chip. As shown in Fig.
2.9, the back-end DSP block consists of an encoder (ENC), data synchronization unit (Data
Sync), LE, and QL-UD. The binary encoder converts the ADC output z[n] into two’s com-
plement number representation x,[n|, while the data synchronization unit provides the start
position of the pseudorandom binary sequence (PRBS). A 3-tap least mean squares (LMS)
adaptive equalizer is designed to compensate for channel IS, while the QL-UD unit adjusts
the ADC quantization thresholds t, and representation levels r, to achieve the minimum
BER. As other blocks are standard DSP functional blocks, we focus on the implementation
of the QL-UD unit. The equalizer computes an estimate of the transmitted symbol b[n — A]

based on the encoder output [z,[n],...,z,[n — M + 1]] 7 as:
b — 2] = Y0 ik, o — K.

The estimation error e[n] = b[n — A] —bln — A] is used to adjust the equalizer coefficients
w. Once w converges, e[n| can be used to update the ADC representation levels. Fixing
the quantization thresholds t,, the optimal representation levels r, that minimize the MSE
between b[n] and b[n] can be obtained from gradient descent search. The LMS update
of the quantization levels is obtained by approximating the gradient of the MSE by its

instantaneous value,

rosln + 1] = ron] + peln] Dy niy=r,, WIK]-

The LMS update can be further modified to the AMBER algorithm [15]:

roiln + 1] = ron] + p I [nfsgn(en]) X oy.e, pn=r,, WIkI,

where I[n] is the bit error indicator function. Figure 2.12 is the block diagram of the quan-
tization level update unit and the individual RL-UD block, which update each quantization
level based on the current ADC output, equalizer estimation error, and equalizer coefficients.

The architecture of the update unit for each representation level r,; is shown in Fig. 2.12(b).
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A total of 25° such units are needed to update the representation levels r,. The total number
of gates and power consumption of the QL-UD unit are estimated to be about 90K (NAND
gates equivalent) and 12.3 mW, respectively. This power accounts for about 44% of the total
power of the back-end DSP, and is expected to reduce with technology scaling. Note: the

QL-UD unit can be turned off once BOA representation levels are obtained.

2.3.3 Comparator Design

The comparator consists of a preamplifier and 3 cascaded latches, and Fig. 2.13 illustrates
the schematics of the preamplifier and latches. The preamplifier subtracts the analog input
from the threshold and provides polarity of the comparison result. The cascaded latches
amplify the preamplifier output to reduce the occurrence of meta-stability. The preamplifier
design is shown in Fig. 2.13, which is widely employed for high-speed ADCs [12,13]. The first
latch is a current-mode latch [12]|, which is composed of an input differential pair (M;, M,)
and a cross-coupled regenerative latch pair (Ms, M,) sharing the same resistive load, Rp.
When CLK is high, the circuit is in tracking mode with low gain and large bandwidth. When
the CLK is low, the circuit shifts to the regenerative mode, and the sampled signal from the
tracking mode is amplified and delivered to the next stage. The second and third latches
do not consume static power once they fully regenerate, and are referred to as dynamic
latches [60], [61]. In this design, only the first latch uses a current mode latch because it is
the most critical to guarantee accurate comparison results. For example, if the first latch does
not have a large enough bandwidth to follow the updated polarity of the preamplifier output,
the comparator may generate an incorrect output, regardless of how well the following latches
perform. Tt should be noted that the cascaded latches operate in a pipelined manner for
speed consideration. In particular, when the preceding latch is working in a tracking mode,

the subsequent latch is working in regeneration mode, and vice versa.
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Figure 2.13: Schematics of the preamplifier and latches.

2.3.4  Encoder Design

A Gray encoder is used because it is more compact and faster than a summing encoder [13].
Since less pipelining is required for multi-gigahertz operation, the Gray encoder consumes less
power than a summing encoder. There are three steps to encoding. First, the thermometer
code is converted to a 1-of-N code. And then, the 1-of-N code is converted to a Gray code
to suppress bubble errors. The Gray code is finally converted to binary code by XOR gates,
for the purpose of further DSP processing in the subsequent blocks. In this chip, pipelined
D flip-flops (DFFs) are used between adjacent logic gates in the encoder to guarantee 4 Gb/s

operations.

2.4  Measurement Results

This section summarizes the measurement results of both the stand-alone ADC chip and
the ADC-based receiver. A 4-bit 4 GS/s ADC chip is fabricated in a 90 nm low power (LP)
CMOS technology with an active area of 0.33 mm? and tested in a chip-on-board assembly.
The chip’s micrograph is shown in Fig. 2.14(a).

First, we ensure the standalone ADC performance is sufficient to support link operation.
Since the ADC chip includes an 8-bit DAC for variable-threshold and variable-resolution

ADC configuration, we utilize it to configure the ADC’s threshold voltages for calibration.

31



ald a4 ™~ 1
Q Q00QUUQQUUACUT BERT

(o] DATA CLK

3 ® O ® O

+ |

- FR4 channel

g board

3 CLK+ | CLK-

4. ADC- OUT[4:1

- ADC .

- —>  Test j‘> FPGA board

’ +

- Function Board

— generator | DAC clock O N

a Shift register control
DC power
Supply

(a) (b)

Figure 2.14: (a) Micrograph of the BOA chip, and (b) the test set-up.
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Figure 2.16: Measured ADC output: (a) eye diagram, and (b) histogram for a 20-inch
FR4 channel at 4 Gb/s when TX amplitude is 180 mV,,q and ADC FSR is 100 mV 4.

The measured DNL and INL characteristics before and after calibration are shown in Fig.
2.15(a) and (b), respectively. The DNL and INL are reduced from +1.3 LSB and 4 LSB to
+0.04 LSB and 0.14 LSB, respectively, after calibration, indicating the effectiveness of the
calibration process. Figure 2.15(c) illustrates that the ADC can achieve up to 3.4 bits of
ENOB at near-Nyquist rate input frequency of 1.9375 GHz. The figure of merit (FOM) of
the ADC is 1.42 pJ/conv.step at 4 GS/s excluding clock buffers, which is comparable to the
state-of-art using a similar technology [13,14].

Figure 2.14(b) shows the block diagram of the link test set-up, which mainly consists of
a BER tester (BERT), channel board, ADC PCB board, and FPGA board. The BERT
provides 4 Gb/s synchronous data and clock, with the data passing through a 20-inch FR4
channel before entering the ADC board. The ADC chip quantizes the incoming analog signal
and its outputs are fed into the FPGA board. The back-end DSP units in the FPGA then
perform equalization and optimal ADC representation levels search. Finally, the updated
representation levels are fed back to the ADC chip. However, in our experiment, the BOA’s
representation levels are obtained off-line due to a synchronization problem in the interface
between the BOA chip and the FPGA board.

Link tests were conducted at 4 Gb/s over a 20-inch channel with 2?* — 1 PRBS data.
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Figure 2.17: ENOB and BER measurements: (a) ENOB vs. input frequency, and (b) BER
vs. TX amplitude at 4 Gb/s when the FSR of the CUA is 100 mV,,q.

The BOA’s representation levels were obtained by first extracting the converged equalizer
coefficients with the ADC IC in a 4-bit uniform mode, followed by an off-line adaptive
channel estimation and gradient search procedure [17]. The ADC representation levels were
then manually set in the lab. Figure 2.16 shows the post-ADC eye diagram and histogram
of the ADC code at a 20-inch FR4 channel, with TX amplitude of 180mV,q and a CUA
FSR of 100mV,,,q, which indicate that the received eye is closed. In particular, the channel
loss at Nyquist rate is about —22dB.

Figure 2.17(a) compares the measured ENOB when the FSR of the CUA is 100 mV ppq.
The FSR of the 4-bit CUA was adjusted to achieve the best BER under the given TX
amplitude and channel loss. The 3-bit BOA has the lowest ENOB. The ENOB difference
between the 4-bit CUA and the 3-bit BOA is in the range of 1.37-bit to 1.08-bit, while the
difference between the 3-bit CUA and the 3-bit BOA is in the range of 0.74-bit to 0.48-bit.
Figure 2.17(b) illustrates that the BER achieved by the 3-bit BOA receiver is lower by a
factor of 10° and 10'°, as compared to the 4-bit and 3-bit CUA receivers, respectively, at a
TX amplitude of 180 mV,,q. This is in spite of the 3-bit BOA having a poorer ENOB than
both the 3-bit and 4-bit CUA. Furthermore, the 3-bit BOA requires a 60 mVpq lower TX
swing compared to a 4-bit CUA to achieve BER < 107!2. Thus, Fig. 2.17 indicates that
ENOB is not the best ADC design metric for serial links. The bathtub curve in Fig. 2.18
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Table 2.1: Performance Summary of the ADC-based Receivers

ADC operating mode

[ 3-bit BOA |

4-bit CUA

Technology

90nm LP CMOS (1P8M)

Core die area

0.38 mm?

Supply voltage

1.2V for analog, 1.28 V for digital & clock

Data rate

4Gb/s

ADC [mW]|

Power consumption

30.7

59.7

B/E digital [mW]

“(30/717.7)

*16.4

*Digital back-end power estimated from synthesis in 90 nm LP CMOS.

**The power of the QL-UD unit is excluded.

shows that the 3-bit BOA can tolerate a peak-to-peak jitter of about 43 ps (~0.17UI) at
BER=10""? with a TX amplitude of 180 mV 4, while the 4-bit and 3-bit CUAs are unable

to achieve BER < 10™* and 1073, respectively, under identical conditions.

Table 2.1 summarizes the performance of the proposed BOA receiver, and Table 2.2

compares this work against state-of-the-art ADC-based receivers [22,53-55] and analog re-

ceivers [62,63] in CMOS. The ADC IC consumes 59.7mW in 4-bit CUA mode and 30.7 mW

in 3-bit non-uniform mode excluding the clock buffers. The clock buffers in our design accept

external clocks and have to drive a long interconnect before they reach the ADC compara-

tors, as the ADC occupies a small fraction (< 9%) of the die area. Furthermore, the power
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Table 2.2: Performance Comparison with State-of-the-art ADC-based Receivers and Ana-
log Receivers in CMOS

‘ ADC-based Receivers ‘ Analog Receivers
| Thiswork [ [22] | [53] | [54] [ [55] [ [62] | [63] | [64]

Process ‘ 90nm LP ‘ 65 nm ‘ 65 nm ‘ 65 nm ‘ 65 nm ‘ 40 nm ‘ 40 nm ‘ 90 nm
Sampling rate [GS/s] 4 2.5 2.575 2.5 1.2875 | 5.1563 7.0125 3.125
Number of bits 3 3 6 5 8 N/A N/A N/A
BER@Channel <107 <1077 [ <107B [ <1072 | N/JA | <1072 | <107® | <1071
Channel loss —22dB —17dB | —26dB 34" N/A | ~—-28dB| —26dB | —15dB
RX power [mW] ‘ 60.7 ‘ 106 ‘ 500 ‘ 192 ‘ 1600 ‘ 87 ‘ 410 ‘ 8.0
Efficiency [pJ/bit] *(15.2/*12.1) 10.6 48.5 38.4 155.3 8.4 #%%29.23 1.28
FOM2 *(10.9/*13.7) 18.8 10.3 0.5568 N/A 74.8 13.6 24.7

*Digital back-end power estimated from synthesis in 90 nm LP CMOS.
**The power of the QL-UD unit is excluded.
***With both Tx and Rx.

**With both Tx and Rx and under the worst case PVT conditions.
Note: FOM2 = DR(Gb/s) x 10'%" /Power(mW) [65], where DR stands for data rate.

consumption of the clock buffers for the ADC core alone could not be measured because
the power pins of the clock buffers driving the interconnect and the ADC core are shared.
The power of the clock buffers driving the ADC core alone, extracted from post-layout sim-
ulations, is about 10 mW when the ADC operates at 4 GS/s, 4-bit CUA mode. The digital
back-end power including all the functional blocks in the FPGA was estimated to be 30 mW
and 17.7mW via synthesis when including and excluding the QL-UD unit, respectively. The
energy efficiency of this receiver excluding the clock buffers is 15.2 pJ/bit and 12.1 pJ/bit
when including and excluding the QL-UD unit, respectively.

The presented receiver achieves a BER of less than 107! with the lowest ADC resolution
(3-bit non-uniform; Note: a 3-bit CUA was not able to achieve BER < 1073 under the
same conditions) at the highest ADC sampling rate (4 GS/s) while achieving more than
2% higher energy efficiency compared with [53|, [54] and [55]. Taking channel loss into
account, our solution achieves higher (better) figure-of-merit FOM2 (proposed in [65]) than
[53] and [54]. Implemented in a more advanced technology and combining several low power
circuit techniques, [22| achieves a better energy efficiency than this work. However, 22| only
showed measured BER of 1077 although an extrapolated BER of 10~ was reported. A
2.3-bit (5 comparators) BOA is sufficient if the target BER is relaxed from 10712 to 1077

based on simulations, which translates to about 2/7 power savings in the ADC. As a result,
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the efficiency is improved to 13.0 pJ/bit from 15.2 pJ/bit. Furthermore, it should be noted
that the power consumption of a flash ADC is mostly determined by its sampling rate and
the process technology. Compared to [22|, our ADC has higher sampling rate (4 GS/s vs.
2.5GS/s in |22]) while being implemented in a slower technology (90nm LP vs. 65nm
in [22]). Therefore, it is expected that our solution will achieve comparable or better energy
efficiency if the sampling rate and process technology are identical. On the other hand,
Table 2.2 shows that energy efficiency and FOM2 of ADC-based receivers need to be further
improved compared with analog receivers [62-64].

A key outcome of this work is the demonstration of information-based metric benefits,
such as the BER, in reducing the ADC precision requirements, and the identification of
conditions that maximize the BER improvement offered by a BOA receiver over a CUA
receiver under the same condition. Although we demonstrate the BOA concept via a flash
ADC, BOA is in principle applicable to different ADC architectures because it adjusts the
ADC thresholds but does not change the ADC architecture. However, the power savings
when designing BOA using other ADC architectures will not be as great as with flash ADCs.
In particular, for flash ADC every bit decrease in resolution almost halves the size of the
ADC core circuitry and the power. In contrast, for a SAR, pipelined, or sigma-delta ADC,

the die size and power will decrease linearly with a decrease in resolution.

2.5 Summary

This chapter describes our study on the benefits of BOA for serial links. First, we discuss
conditions that maximize BER improvement by a BOA receiver over a CUA receiver, and
propose two channel-dependent parameters to quantify these conditions. Furthermore, a
4 Gb/s BOA receiver, which employs the true system BER to adjust the ADC representation
levels and a linear equalizer, was implemented in 90 nm LP CMOS to show that a 3-bit BOA
needs a lower SNR than a 4-bit CUA at a BER < 1072, This study demonstrates that the
use of information-based system metrics such as the BER are very effective in reducing the
component power of information transfer in ML systems. It inspires us to extend such a

design principle to address the challenge of energy-efficient information processing in ML
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systems as described in the following chapters.

2.6 Derivation of BERR

In this section, we derive (2.6).

In an ADC-ML receiver, the BER of a loga(N + 1)-bit BOA is given by:

peo SNR B Zpeok, (27)

where p.,; is the BER contribution from the k™ p-transition. In particular, Deor includes
the BER contribution from all the peaks N(z; ", 0,) with g7 € p™(N(x;p,,0,) with
;. € ) to the interval [t) ¢, ) and the BER contribution from all the peaks N (x; ;" 0,
with y; € p= (N (z; 1, 0,) with g € u™) to the interval [t,, to ) if the memoryless ML

decision for the interval [t} tos) is —1 (+1), where £/, and t} , are defined as follows:

—00 ifk=1
t = ’
ka - to,k—1+t0,k .

. Jifl<k<N
to,k+to,k+1 : <
- R ?fl_k<N.
’ ~+00, if k=m

Note: if the decision for the interval [t} ,, to) is +1 (or —1) then the decision for the interval

[tok,th,) is —1 (or +1). At high SNR, this contribution is well-approximated by:

*

d
Peor = 2-EVQ (—’“) : (2.8)

On

where df . (see Definition 5) is the minimum distance of the k™ BOA threshold to the
nearest noise-free channel output pu.
Substituting (2.8) into (2.7), employing the high SNR approximation for the Q-function
mazx(ak)

2
(Qy) = y\/#%eTJ, for y > 0), and the approximation ) e™ ~e * | we get:
%
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k=1 k=1
N dy 2

=3 |2 2 e_%(””’k) . (2.9)
Pt \/27rd’;7k

~ 2—(L—1) On 67%<d00721">

Similarly, the BER of a logs(M + 1)-bit CUA receiver is given by:

M+1

Peu(SNR, B,) prk, (2.10)

where pe, 1, denotes the BER contributed by the k" interval I, - Specifically, pe, x includes
BER contribution from all the peaks N (z; 1", 0,,) with ;" € p* (N (; 1, 0,) with ;7 € p™)
to the interval I, if the memoryless ML decision for the interval I, is —1 (41). At high

SNR, this contribution is well-approximated by:

d*
Peus = 271Q ( “’“) , (2.11)

n

where d; , (see Definition 7) is the minimum distance of the £ dominant noise-free output
iy, from the boundaries of the interval I, .
Substituting (2.11) into (2.10), employing the high SNR approximation for the Q-function,
mazx(ag)

the approximation Ze“k ~e + ,and the relationship Q(y) = 1 — Q(—y) for y < 0, we
get:
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Ay min
oL 3 (7)) if dy in > 0

\/ﬂzz,mzn
du,min
27+, if dymin = 0

Therefore, from (2.9) and (2.12), we obtain:

BERR(SNR, B,, B,)
_ Peu(SNR, B,)
 peo(SNR, B,)

2 a2
o,min_ “u,min

5 .
207 , if du,mz‘n >0
a2

2
o,min_d

do,min 6Tﬂ’ (1 + X) : if du,min < 0> (213)

2du,min

do,min

2du,min

Q

q2

0,min

do.mi .
\ \/g—o’"”"e . if dy min =0

On

a2
w,min
\4 27rdu,min -

where y = Sote n Note: domin > dumin and domin > 0. Applying the approxi-
mazx(ag)
mation » e% &~ e * "’ to the case when dymin < 0, (2.13) can be further simplified to
k
(2.6).
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Chapter 3

PREDICTIVENET

In the previous chapter, the energy efficiency of information transfer in ML systems is im-
proved by using information-based metrics such as the BER to design power dominant
components. In this chapter, we explore a similar approach to reduce the implementation
complexity of information processing such as CNNs in ML systems. As such, the power dom-
inant convolutions in CNNs are designed to maintain the information-based system metric
(i.e. classification accuracy) rather than fidelity circuit metrics such as SNR. Specifically, we
make use of CNN structure to propose a technique referred to as PredictiveNet which pre-
dicts zero activations using low-cost predictors to skip a significant amount of convolutional
operations. PredictiveNet first evaluates the most significant bit (MSB) part of the convolu-
tion to predict whether the nonlinear layer output corresponding to the current convolution
is zero, and then decides if the remaining least significant bit (LSB) part’s computation
can be skipped or not. PredictiveNet takes advantage of the fact that the MSB part has
an exponentially larger contribution to the final output and well-trained CNNs have high
sparsity.

The rest of this chapter is organized as follows. Section 3.1 provides the relevant back-
ground. Section 3.2 presents the PredictiveNet technique and analysis to justify Predic-
tiveNet’s effectiveness. Simulation results are shown in Section 3.3. Section 3.4 provides

conclusions.
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3.1 Background

3.1.1 Convolutional Neural Networks (CNNs)

CNNs are a class of multi-layer neural networks [66]. A CNN consists of a cascade of
multiple convolutional layers (C-layers), subsampling layers (S-layers) (feature extractor),
and fully-connected layers (F-layers) (classifier). Figure 3.1 illustrates a state-of-the-art CNN
for object recognition [66]. In a C-layer, DPs between receptive fields and weight vectors
are computed, to which a bias term is added, and passed through a nonlinear function to
generate the output feature maps (FMs). The computation of one output pixel for the

C-layer is described as follows:

Zm[]]:f<ym[3]+6M)v (m:L"'aM) (31)
Umlj] = wadxﬂ, (m=1,...,M), (3.2)

where L and M are the number of input and output FMs, respectively. w,,; is the N-tuple
weight vector connecting the I input FM X; = [xy;, ..., xz] (where x;; is the j receptive
field in X;) to the m'* convolutional output y,,, 6, is the bias term, and z,, denotes the
m!" output FM in the C-layer. Equation (3.2) shows that the j™ pixel y,,[j] of the m"
convolutional output y,, is obtained by first performing DPs between the L input vectors
x; and the weight vectors w,,;, and summing up the result. The nonlinear function f(-)
typically takes a sigmoid or hyperbolic form. However, a rectified linear unit (ReL.U) has
emerged recently as increased evidence shows that it improves performance of CNNs [67].

The S-layer reduces the dimension of its input FMs via either an average or a max pooling.

3.1.2  Sparsity in CNNs

Sparsity has become a concept of interest in the fields of neuroscience, machine learning, and
signal processing. It was first introduced in the context of sparse coding in visual systems [69],

which seeks to find an overcomplete basis set and represent images as a linear superposition
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Figure 3.1: Illustration of a state-of-the-art CNN [68] showing a convolutional layer (C-
layer), a subsampling layer (S-layer), feature maps (FMs), and the squashing function f(-).

of basis functions from the resulted set. Owercomplete means that the number of basis
functions M is greater than the effective dimensionality of the image space L, which gives
rise to sparsity as only L out of M nonzero coefficients are needed to represent arbitrary L-
dimensional images. As similar sparse overcomplete representation was observed in biological
neurons, it becomes a plausible model for the visual cortex [70,71]. In ML models, sparse
overcomplete representation has been claimed to be a fundamental reason behind the success
of deep neural networks, such as CNNs [72]. Specifically, it has a number of theoretical and
practical advantages [72-74|, including 1) greater flexibility in capturing inherent structure
of underlying data; 2) increased robustness to small perturbations of the data; and 3) better
separability because the information is represented in a high-dimensional space. State-of-
the-art CNN models can obtain sparsity from 50% to 85% in their activations [67]. It is worth
noting that while conventional hyperbolic tangent or sigmoid nonlinear function generates

sparse activations taking small but non-zero values, the recently emerged ReLU is able to
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produce real zeros of activations and thus truly sparse representations while achieving better

classification accuracy.

3.2 The Proposed PredictiveNet Technique

This section describes the PredictiveNet technique and its analytical justification.

3.2.1 Principle and Architecture

Without loss of generality, we drop the indices for j and m in (3.1) and (3.2) and assume
f(-) is a ReLU, i.e.,

L
2 = max (Z wlx; + 0, O) : (3.3)

=1
N
where wix; = >~ wji]z[d].

i=1
We first decompose x;[i], w;[i], and ¢ into MSB and LSB parts. If we assume that By is

the precision of the MSB part of w;, x;, and 9, then:

L
z = max (y,0) = max (Z wix; + 9, 0)
=1

Ymsb + ylsb27(Bme71) if ZZL:I WJTXI + 6 >0

= , (3.4)
0 otherwise
where ymsp, and g, can be expressed as follows:
L
Ymsb = Z ngsbxl,msb + Omsb (3.5)
=1
L
Yish = D (X[ 10 Wimsb + X! Witsh) + s, (3.6)

=1

where X;msh, Wimsb, and dmg, denote the MSB parts of x;, w;, and 9, respectively. Also,
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Figure 3.2: An architecture implementing (3.4) in PredictiveNet.

X11sb, Wiish, and Oigp denote the LSB parts of x;, w;, and d, respectively.

The PredictiveNet architecture (Fig. 3.2) includes a C-MSB block that predicts the sign
of y by computing only ymsp in (3.5). If ymgp < 0 (i-e., sign(ymsp) = 1), then we set z = 0
without computing v in (3.6) and Yus, + Y2~ P>~ according to (3.4). If yue > 0
(i.e., sigh(Ymsp) = 0), then C-LSB computes (3.6) and sets 2z = yugp + Yisp2~ Pmsp =1 in (3.4).
By doing so, PredictiveNet avoids evaluating a significant number of convolutions while
incurring only marginal accuracy loss.

The reasons for the accuracy loss to be marginal in PredictiveNet are as follows: 1) the
contribution of yg, for calculating z is 2~(Bm>=1) smaller than ymg, as shown in (3.4); 2) the
specific value of Ymsp + yisp2~ Pmsp 1) is not important if it is negative due to the rectification
effect of ReLLU; and 3) the high sparsity in CNNs as mentioned in Section 3.1.2 implies that
the term ypsp + ylsb2_(Bmsb_1) is very likely to be negative, which will result in zero C-layer

outputs after being passed through the ReL.U function.
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Table 3.1: Errors of MSB-CNN and PredictiveNet with Respect to FP-CNN

. MSB-CNN | PredictiveNet
Event Condition
error error
HO Ymsb S 07 ) S 0 0 0
Hl Ymsb S 07 ) >0 Yy Yy
H2 Ymsb > 07 ) S 0 —Ymsb 0
H3 Ymsb > 07 ) >0 Y — Ymsb 0

3.2.2  Analysis

In this subsection, analysis and empirical simulation results are presented to justify why
PredictiveNet incurs marginal accuracy loss while greatly decreasing the computational cost.
Our analysis is based on the trade-offs between accuracy and precision. Recently, such a
trade-off has been analytically characterized for simple ML algorithms such as support vector
machine (SVM) [75]. Such insights have not yet been leveraged for complex algorithms such
as CNNs.

Assume that By, Bx and Bs denote the required precisions of w;, x;, and ¢, respectively.
Also, let By msb, Bxmsb and Bsmg, denote the precisions of Wi s, Ximsb, and dpygp in (3.5),
respectively. For convenience, we term the CNN comprising only C-MSB as MSB-CNN,
and the CNN implemented using By, Bx and Bj as the full precision CNN (FP-CNN),
respectively.

In Table 3.1, we compare the ReLLU output errors of MSB-CNN and PredictiveNet with
respect to the outputs of FP-CNN (i.e., z) in (3.3) for four disjoint events from H, to Hs.
Note that each possible outcome is included in exactly one of these events. The MSE at the

outputs of the ReLLU with respect to FP-CNN are:

MSEysp-ony = E[Y?|H\|P(H,) + E[Yz2,| Ho) P(H,)
+ E[|Y — Ymsb|2}H3]P(H3) (3.7)
MSEPredictiveNet - E[YQ‘HI]P<H1); (38)

where upper case letter denotes random variables. By comparing (3.7) and (3.8), we see
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that:
M S EpredictiveNet < MSEnsB-cNN- (3-9)

Furthermore, P(H;) has been found to be small in practice and can be upper bounded as

follows:
P(H,) < AL B + ALE, + AJE;, (3.10)

where A, = 2= Bwmsb—1) A = 2= Brxms=1) and Ay = 2~ Bomsp=1) are the quantization noise
step sizes of Wi meb, Ximsp and dmep, respectively, and E;, Es, and Ej are given in Section 3.5
along with the proof of (3.10).

Similarly, the E[Y2‘Hl] can be upper bounded as follows:
E[Y?|Hy| < ALE,+ AZEs + A}, (3.11)

where B, = E [Zle 1%, 1> \Hl] and s = 27 wi]|>. The proof of (3.11) can also be
found in Section 3.5.

Combining (3.10) and (3.11), we can obtain an upper bound on M S Ep edictiveNet

M S Epredictivenet < A Eg + ALE; + ASEg + (Awa)z Ey

+ (AWA;) Erg + (AAs) By, (3.12)

where Eg, ..., Eq; are the cross product terms associated with the product of (3.10) and
(3.11).

We observe that every term in (3.12) is a fourth order multiplicative combination of
quantization steps. Each quantization step is of the order of 27 Bms>. Hence, the upper
bound in (3.12) is of the order of 274Pmsb,

Figure 3.3 shows empirical values for M SFEyisp.cnn and M.S Ep edictivenet for the two C-
layers in a CNN designed for handwritten digit recognition |76]. Figure 3.3 supports (3.9)
and shows that the MSE of PredictiveNet is much smaller than the MSE of MSB-CNN. This

results from the exponentially larger weighting factor of g, contributed to y over that of
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Figure 3.3: Illustration of the empirical values of MSFEysp.cny and M.S Epegictivenes and
the upper bound on M S Ep edictivenet With respect to By mgs, for: the (a) first and (b) sec-
ond C-layers over FP-CNN where By mg, = 5 bits, By, = 8 bits, By = B; = 7 bits, and

Bsmsb = Bxmsb. Both curves are obtained by averaging over all pixels of the two C-layers’
output FMs.
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Yisb and the high sparsity of the C-layer outputs in well trained CNNs.

3.3 Simulation Results

In this section, we evaluate the performance of PredictiveNet on two datasets: MNIST
and CIFAR-10, which are benchmark datasets for handwritten digit and object recognition,

respectively.

3.3.1 System Set-up

The term 6, and kernel w,,; in (3.2) are trained using the back propagation algorithm [66].
The following four architectures are considered: 1) FP-CONV: a conventional FP-CNN; 2)
FP-ZS: a full-precision input zero skipping CNN; 3) PredictiveNet; and 4) MSB-CNN: a

predictor-only CNN. These architectures are evaluated in terms of the following metrics:

e Classification error rate p.: p. = P{T # t}, where T and t are the decision of the
evaluated CNN and the true label, respectively.

e Computational cost: the total number of full adders (FAs) in the network, where
an FA is a basic building block of arithmetic units. We assume that the evaluated
CNNs are implemented using the commonly used Baugh-Wooley multiplier and ripple
carry adder (RCA) designed using FAs. Therefore, the number of FAs to compute an

R-dimensional DP between the kernel weights and the activations is [77]:

RByBy + (R — 1)(By + By + [logy(R)] — 1). (3.13)

e Representational cost: the total number of bits associated with non-zero activations
and weights in the network, which represents the data storage and movement costs.

For a fixed-point network, it is defined as:

| X[ Bx + |W| Bw, (3.14)
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Table 3.2: Parameters Summary of the CNN for the MNIST Dataset

Parameter Definition CNN Parameter Summary
Parameter Description Layer | L | M| I1 xI, | Kx K
L/M # of input/output FMs Cl1 1 [16]28%x28| 5x5
KxK size of kernels C2 16 |32 12x12| 5x5
I x I, size of input FFMs F1 100 [ 10 | 4x4 4 x4

where X' and W are the sets of all non-zero activations and weights in the network, respec-
tively. Together, the computational and representational costs capture the implementation

complexity of a CNN, and are equally important metrics.

3.3.2 Evaluation on CNNs for MNIST

The parameters of the CNN for the MNIST dataset are summarized in Table 3.2, which is
developed based on the CNN architecture in [66]. The precision By and B, are set to be 7
bits and 8 bits, respectively, ensuring the error-free fixed-point p, increases by only 4 x 1073
compared with the floating-point p. of 0.016.

Figure 3.4 compares FP-CNN (FP-CONV and FP-ZS), PredictiveNet, and MSB-CNN in
terms of their classification error rates, computational and representational costs normalized
over that of FP-CONYV. Figure 3.4 shows that PredictiveNet is able to achieve a classification
error rate that is only 1.9 x 1072 larger than that of FP-CNN while reducing the compu-
tational cost by 2.5x compared to the state-of-the-art FP-ZS. Furthermore, PredictiveNet
achieves 1.7x reduction in the representational cost over that of FP-ZS. On the other hand,
when compared to MSB-CNN, PredictiveNet reduces the classification error rates by 12x
(0.475/0.039) at the cost of only 1.6x greater computational cost.

It is interesting to observe that PredictiveNet has even 19% smaller representational cost
than its predictor-only counterpart, i.e., MSB-CNN (see Fig. 3.4 (c¢)). This can be justi-
fied by the higher sparsity observed in the PredictiveNet than the latter. In particular, the
computational and representational costs for a CNN applied on top of FP-ZS depend not

only on the precision requirement associated with By and B, but also the sparsity in the
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Table 3.3: Computational and Representational Cost Comparison among CNNs for the
MNIST Dataset

FP-CONV | FP-ZS | PredictiveNet | MSB-CNN
Computational cost (million) 77.13 40.88 16.43 10.18
Representational cost (million) 0.5376 0.2640 0.1586 0.1951

Table 3.4: Parameters Summary of the CNN 78] for the CIFAR-10 Dataset

Parameter Definition CNN Parameter Summary

Parameter Description Layer | L | M | [ xI, | K XK
C1 3 192 (32x32| 5x5
L/M # of input/output FMs C2 1921160 |32x32| 1x1
C3 |160| 96 | 32x32| 1x1
C4 96 | 192 | 15 x 15| 5x5
K x K size of kernels Co 1921192 |15 x15| 1x1
C6 |[192 192 |15x15| 1x1
Cr 1921192 | 7x7 3x3
I x I size of input FMs C8 192 1192 | 7x7 1x1
C9 |192 | 10 Tx T 1x1

C-layer inputs. For example, Fig. 3.5 (a) shows that the input sparsity of PredictiveNet’s
C2 and F1 layers are 14.6% and 1.6x higher than those of the MSB-CNN, respectively. As
the representational cost of the C2 and F1 layers accounts for > 90% of the total represen-
tational cost, the higher sparsity in PredictiveNet’s C2 and F1 layers explains its smaller
representational cost over the MSB-CNN.

Table 3.3 summarizes the computational and representational costs to implement the four
CNNs. Figure 3.4 and Table 3.3 show that PredictiveNet’s accuracy is slightly worse than
FP-CNN (FP-CONV or FP-ZS) but with significantly lower complexity.

3.3.3 Evaluation on CNNs for CIFAR-10

To demonstrate the generality of the proposed PredictiveNet technique, it is also applied
to the CIFAR-10 dataset [79]. The parameters of the CNN for the CIFAR-10 dataset are
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Figure 3.4: Simulation results for the MNIST dataset comparing FP-CNN (FP-CONV and
FP-ZS), PredictiveNet, and MSB-CNN in terms of: (a) classification error rates, (b) nor-
malized computational cost (# of full adders (FAs)), and (¢) normalized representational

cost (# of bits), where Bx msb = Bsmsb = 4 bits and By s, = 5 bits.
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Figure 3.5: Comparison on the C-layer input sparsity of FP-CONV /FP-ZS, PredictiveNet
and MSB-CNN for the MNIST dataset.

summarized in Table 3.4 [78]. The precision By and B,, are set to be 9 bits and 8 bits,
respectively, ensuring the error-free fixed-point p. to be within 2.4 x 1072 of the floating-
point p, of 0.124. Although both the MNIST and CIFAR-10 datasets contain data of 10
categories, the data of the latter are more diverse and thus the data statistics are more
complex. As a result, it can be seen from Tables 3.2 and 3.4 that the CNN architecture for
the CIFAR-10 dataset is more complicated and the achievable classification error rates are
higher than those of the CNNs for the MNIST dataset.

Figure 3.4 compares the performance of FP-CNN (FP-CONV and FP-ZS), PredictiveNet,
and MSB-CNN in terms of classification error rates, computational and representational
costs normalized over that of FP-CONV. It can be seen from Fig. 3.4 that PredictiveNet is
able to maintain a classification error rate that is only 1.7 x 1072 larger than that of FP-CNN
while achieving a 2.3x reduction in the computational cost over the state-of-the-art FP-ZS.
Furthermore, PredictiveNet reduces the representational cost by 1.4x compared to FP-ZS.
On the other hand, when compared to MSB-CNN, PredictiveNet shrinks the classification

error rates by 3.7x (0.527/0.144) at the cost of 1.5x greater computational cost.
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Table 3.5: Computational and Representational Cost Comparison among CNNs for the
CIFAR-10 Dataset

FP-CONV | FP-ZS | PredictiveNet | MSB-CNN

Computational cost (billion) 17.60 5.52 2.45 1.69
Representational cost (million) 11.95 3.94 2.74 2.63

Similar to the case in CNNs for the MNIST dataset, it is observed in Fig. 3.6(c) that
PredictiveNet requires negligible (0.4%) higher representational cost than its predictor-only
counterpart, i.e., MSB-CNN. Again, this can be explained by the higher sparsity observed in
the PredictiveNet than the latter as shown in Fig. 3.7. Specifically, the input sparsity of the
C2-C9 layers in the PredictiveNet is higher than those of the MSB-CNN, and the represen-
tational cost corresponding to these layers accounts for > 90% of the total representational
cost, therefore justifying the lower representational cost of PredictiveNet over MSB-CNN.

Table 3.5 lists the number of FAs and bits associated with the four CNNs for the CIFAR-
10 dataset. Similarly, it can be observed from Fig. 3.6 and Table 3.5 that PredictiveNet is
able to significantly reduce the complexity while maintaining classification accuracy close to

that of the FP-CNN (FP-CONV or FP-ZS).
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3.4 Summary

In this chapter, we propose a new technique, PredictiveNet, which predicts sparse nonlinear
outputs and skips corresponding convolution operations for reduced complexity CNN design.
Analysis is performed to justify the effectiveness of PredictiveNet and predict the behavior
of CNNs with respect to precision of its predictors. PredictiveNet takes advantage of the
fact that the weighting factors in fixed-point representation decrease exponentially and high
sparsity is commonly observed in well trained CNNs. This work opens up a new research
dimension to greatly reduce CNNs’ implementation cost without degrading their detection
accuracy. Future work includes the application of PredictiveNet to other ML algorithms such
as multilayer perceptron and spiking neural networks, where high sparsity is also commonly
observed. Imposing additional constraints that favor the reduction of prediction errors in

PredictiveNet into the training algorithms is also an interesting research topic.

3.5 Derivation of (3.10) and (3.11)

We provide a detailed derivation of (3.10) and (3.11).
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where fx|yso(x) is the conditional distribution of X given ¥ > 0 and ¢, = S (awl X+
qszWl) + ¢5. Note that qw;,qx;, and gs are the quantization noise terms of Wi mgh, Ximsh,
and dygp, respectively. 14 denotes the indicator function of the event A. The % in the second

step is due to the symmetric distribution of ¢,. The fourth step comes from Chebyshev’s

inequality. Note that
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Furthermore, under H; we have ymg, = y+¢, < 0 and y > 0 which means that 0 <y < —¢,
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Chapter 4

RANK DECOMPOSED STATISTICAL ERROR
COMPENSATION

In previous chapters, the energy efficiency of both information transfer and processing in
ML systems is improved by employing information-based system metrics rather than fidelity
circuit metrics to aggressively reduce component power of information transfer or complexity
of ML algorithms for information processing. This new dimension of energy efficiency vs.
robustness trade-off is made possible by taking advantage of accuracy relaxation on circuit
level operations offered by the probabilistic nature of information-based system metrics or
the inherent structure in ML algorithms.

Such energy efficiency vs. robustness trade-off can also be leveraged to address the robust-
ness challenge of implementing information processing subsystems on stochastic unreliable
fabrics such as NTV for more aggressively reduced computational cost. Aligning with this
thought, this chapter proposes a new SEC technique referred to as RD-SEC that enables ro-
bust CNNs operating in the NTV regime. The opportunity is that one commonly employed
operation in signal processing and ML applications is MVMs in which the same input vector
is projected to a set of weight vectors. Examples include CNNs [66], filter banks for fea-
ture extraction [80], principal component analysis (PCA) [81], and wavelet transforms [82].
RD-SEC exploits inherent structure within M'VMs for low-cost error detection and compen-
sation.

The remainder of this chapter is organized as follows. Section 4.1 provides background
on low power design techniques, ANT and rank decomposition. Section 4.2 presents the
proposed MVM-based CNN architecture and RD-SEC technique to enhance robustness.
The error model generation and validation are presented in Section 4.3. Simulation results

are shown in Section 4.4. Finally, conclusions and future work are presented in Section 4.5.
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4.1 Background

4.1.1 Low Power Design Techniques

Various low power techniques can be used to reduce the energy consumption of MVMs. At
the logic level, programmable CSE [42] is a low power technique, where common subexpres-
sions (CSs) in the coefficients are first computed using shift and add, and then summed up
to obtain the final product. Programmability is enabled via a look-up table.

In order to further reduce energy, NTV was proposed to operate the devices at or near their
threshold voltage (V;,), and has shown an energy reduction on the order of 10x [11|. How-
ever, the energy efficiency of NTV comes at a cost of exponential increase in the normalized
delay variation, leading to an increased functional failure. Specifically, circuit simulations in a
commercial 45 nm CMOS show that the delay variation of an 8-bit ripple-carry adder (RCA)
increases by 8.5x at Vg = 0.35V (NTV) compared with that at the nominal V; = 1.1V
due to process variations. To address the variation challenge, the traditional approach is to
add design margin, which substantially reduces the benefits of NTV [11|. For example, it
is estimated that the employing of voltage margining to ensure error-free operation results
in 3.1x energy overhead for the 8-bit RCA operating at 0.35V. Techniques such as body
biasing [83] or variable pipeline stage latency [84] have been proposed. Although these tech-
niques demonstrated some degree of effectiveness, they can incur significant overheads due

to the local nature of variations.

4.1.2  Algorithmic Noise-Tolerance (ANT)

ANT is an algorithmic technique that employs error statistics to perform error compensation,
and has been shown to be effective for signal processing and ML kernels [49]. Specifically,
ANT incorporates a main block (M-block) and an estimator block (E-block) which is an
approximate version of the M-block (see Fig. 4.1(a)). The M-block is subject to large
magnitude errors 1 (e.g., timing errors which typically occur in the MSBs) while the E-
block is subject to small magnitude errors e (see Fig. 4.1(b), e.g., due to quantization noise

in the LSBs), i.e.:
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Figure 4.1: Algorithmic noise-tolerance (ANT): (a) architecture, and (b) the error statis-
tics in the M-block and E-block [50].

Ya = Yo + 1 (41)

Ye = Yo T € (4'2)

where y,, ¥,, and y. are the error-free, the M-block and E-block outputs, respectively. ANT
exploits the difference in the error statistics of n and e to detect and compensate for errors

and obtain the final corrected output y as follows:
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R Ya, if|ya_ye| STh
Y= , (4.3)

Yo otherwise

where T}, is an application dependent threshold parameter chosen to maximize the perfor-

mance of ANT.

4.1.3 Rank Decomposition

Rank decomposition exists for every finite-dimensional matrix [85]. Assume A is an N x M
matrix (N < M) whose rank is R, then R < N and there exist R linearly independent rows
in A. A rank decomposition of A is a product A = BC, where B = [by,...,bg|isa N x R
basis matrix, b, (r = 1,..., R) is the 7' N x 1 basis vector, and C = [cy,...,cy] is a
R x M coetficient matrix. Every column vector of A is a linear combination of the columns
in matrix B. That is, the j%* column a; in the matrix A = [ay,...,ay| can be expressed as

aj = BCj = Cljbl + -+ CijR with Cj = [Clja c. ,CRj]T.

4.2 The Proposed RD-SEC Technique

This section describes the proposed error compensation technique RD-SEC to enable robust

CNN design in the NTV regime. First, we reformulate the C-layer computation in terms of

the MVM.

4.2.1 MVM-based CNNs

Equation (3.2) can be rewritten in a vector form as follows:
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where W, = [wy, ..., wyy]. It can be seen that (4.4) is the sum of L MVMs, where the
" MVM is given by Wi'x;;. A single stage of an MVM-based CNN in Fig. 4.2 consists
of input and weight buffers, an MVM-based C-layer, and an S-layer. Specifically, the input
vectors and weight matrices are streamed from the input and weight buffers, respectively.
The MVM-based C-layer accepts the input vectors and weight matrices, and obtains the M
outputs according to (3.1) and (3.2). In the S-layer, the spatial resolution of the C-layer

output FMs is reduced by either averaging or max pooling.

4.2.2  Rank Decomposed SEC (RD-SEC): Principle and Architecture

The formulation of an MVM-based CNN in Section 4.2.1 enables us to exploit redundancy
within an MVM for statistical error compensation. The proposed approach RD-SEC employs
low-cost estimators from a set of basis vectors in the N x M weight matrix W (see (1.2)).

To do so, we make use of the rank decomposition of W [85]:

W = BC, (4.5)

where B = [by,...,bg| is an N x R basis matrix with R = rank(W) (assume M > N,
then R < N), b, (r=1,...,R) is the " N x 1 basis vector, C = [cy,...,cy] is an R x M

th

coefficient matrix, and c,,, (m = 1,..., M) is the m' R x 1 coefficient vector. We choose

b, =w; (i =1,...,R) so that

W=BC=B[1, C, (46)
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Figure 4.2: Architecture of: (a) a (N, M) dot product ensemble (MVM), where w,,, =
[Wimi, -+ W] and W = [wyy, -+, wyy], and (b) one stage MVM-based CNN consisting
of a C-layer and an S-layer.
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where Ig is an R x R identity matrix, and C, = [c. 1, ..., Cen—g) is an R X (M — R) matrix.

Substituting (4.6) into (1.2), we have:

y=[1g C,]"(B™x)

=1z C.1'vo (4.7)

Yo

Ya

where y, = B'x = [yo1, ..., Yor)" is the error-free R x 1 vector, and y, = CTy, =[ya.1, .- -,
Ya,(M—p)] " 18 an (M — R) x 1 output vector from the M-block subject to errors. In RD-SEC,
we derive a low-cost estimator of y, using the error-free output y, and a rounded coefficient
matrix CT, i.e.:

Ye = C;FYOI [66,17 s 766,(M—R)]TYO7 (48)

where yo =[ye1, ., Yeu_m)]" is an (M — R) x 1 estimation vector, CI = round(CT)
where the round(-) operator rounds an element to the nearest power of 2, and ¢.,, =
[Cetms -+ - Ce.rm] T is the m™ R x 1 coefficient vector corresponding to ... Equation (4.8)
indicates that y.,, can be implemented using only shifts and adds. Finally, the m' error

compensated output g, is obtained as follows:

Yoom if m < R

Ym = Ya,(m—R) ifm>R& {ya,(m—R) — Ye,(m—R) < T, (49)

Ye,(m—R) Otherwise
\

where the threshold T}, is an application dependent parameter chosen to maximize system

performance [49]. The RD-SEC architecture is shown in Fig. 4.3.
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4.2.3 RD-SEC Overhead

The overhead of an RD-SEC-based CNN can be approximated relative to the M-block in
an MVM. The computational overhead  of RD-SEC relative to the M-block is defined as:

Np — Newy (M —R)
pr— p— 4-1
i Noors Mo (4.10)

where Np and N, denote the complexities of the RD-SEC-based MVM and the conven-
tional MVM in terms of the number of full adders (FAs), respectively, and « quantifies the
ratio of the complexities of one E-block and M-block (only M — R out of M channels have
E-blocks (see Fig. 4.3)). The detailed expression for « is provided in Section 4.6.

The 7., and 7, in Fig. 4.4 correspond to the computational overhead of the C1/C2 layers
and the F1 layer of the CNN in [68], respectively. Figure 4.4 shows that v, increases with
N for N < 5, and then decreases with N. This is because « increases with N due to the
increased number of adders in (4.8), while at the same time, the number of E-blocks M — R
reduces since R = N. Similar results were obtained for 7,. This indicates that RD-SEC
overhead reduces with N for large vector length (i.e., N > 10). Specifically, v, ~ 5% and
7. ~ 15% when RD-SEC is applied to the CNN in [68].

02

0.15 | {7
N, 01Ff

0.05}

0 20 40 60 80

Figure 4.4: Overhead of the RD-SEC-based MVM: computational overhead ~ vs. N,
where the corresponding parameters are summarized in Table 4.1.
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Table 4.1: Parameters for the ., and ~, in Fig. 4.4

Parameters
Yo | Bin="7, By, =8 R=N, M = 32
Y | Bin="7, B, =8 R=N, M =100

4.3 Error Model Generation and Validation

This section presents the timing error model generation methodology [86] and the validation

of this timing error model in a commercial 45 nm CMOS.

4.3.1 FError Model Generation

The error model generation methodology is shown in Fig. 4.5, and described below:

1) Characterize the gate delay distribution vs. operating voltage V4 of basic gates such
as AND and XOR using HSPICE. Specifically, the gate delay d is modeled as a Gaussian
random variable, i.e., d ~ N(fiy, 04), where the mean [i; and standard variation 6, are
estimated from HSPICE Monte Carlo (MC) simulations with 1000 iterations.

2) Implement the MVM architecture shown in Fig. 4.2(a) using structural Verilog HDL
and the basic gates characterized in Step 1.

3) Emulate process variations at NTV by generating multiple (30) architectural instances
and assigning random gate delays obtained via sampling the gate delay distributions obtained
in Step 1.

4) Generate the error PMF P(n) employing the procedure in [86].

Specifically, Steps 3-4 are performed according to Algorithm 2. During system level simu-
lations, the system performance (i.e. the probability of detection) is evaluated by performing
error injection using the HDL error PMF P(n).

Figure 4.6 shows that the extent of within-the-die (WID) delay variation (6/f)s of an
AND gate increases from 0.03 at the supply voltage Vyg = 1.2V (see Fig. 4.6(a)) to 0.24 at
Vg = 0.4V (see Fig. 4.6(b)), indicating an 8x increase in the WID delay variation at NTV
compared with that of the super-threshold regime. The worst-case normalized confidence

intervals (with a 99% confidence level) for fi; and G4 of the AND gate delays are 1% and
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Algorithm 2 Algorithm to obtain the kernel error PMF P(n) under each operating voltage
Vdd.

1: Initialize the frequency to be the maximum error free frequency with delay of basic
gates set to their estimated means, and obtain the error free output y, for N = 10°
ramdon inputs
for each kernel instance ¢ do

instantiate die-to-die (D2D) delay dpop via sampling the D2D delay distribution
for each gate within the instance ¢ do
instantiate WID gate delay dy;p by sampling the WID delay distribution, and
set dg = dDQD + dWID

6: end for

7 for each of the n-th random input do

8: obtain kernel output y;(n) and error €;(n) = yo(n) — y;(n)
9: end for

10: obtain the error PMF: P(n); = hist(e;)/N

11: end for

5%, respectively, where a confidence interval with a p (0 < p < 1) confidence level implies
that the probability of the (random) confidence interval contains the true percentage is at
least p [87]. These results indicate that the 1000 MC iterations are sufficient to provide high

accuracy estimation for the gate level delay models.

4.3.2 FError Model Validation

This subsection validates the error model generation methodology in Section 4.3.1. A com-
plete HDL simulation for the entire CNN is infeasible due to the large amount of the MV Ms;
thus, we validate the model for a single MVM employing the circuit-level SNR of the main
block (see Fig. 4.1 and (4.1)) as follows:

2
g
n

2 and o2 are the variances of the error-free output 7y, and the timing error 7,

where oy, .

respectively.

The validation procedure is as follows. First, HDL (bit and clock accurate) simulations of
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Figure 4.7: Validating the error model generation methodology by comparing SN R from
HDL simulations and the NTV methodology based on 30 MVM instances with 10° ran-
dom input samples for each instance operating at gate level delay variation of 3%-39%.

each instance in Step 3 are run to obtain error samples and circuit-level SNR SN R;,. Second,
fixed-point MATLAB simulations using the PMF from Step 4 to inject errors for the MV Ms
are run to obtain circuit-level SNR SN R,. Third, we compare SN R, with SNR},.

Figure 4.7 plots SN R;, obtained via HDL simulations using the characterized gate delay
distributions and SN R, obtained via MATLAB simulations using error PMF as a function
of the gate level delay variation (o/u)q. It is found that the difference between the median
SNRy, (SNRy) and SNR, (SNR,) is no more than 5% when (0/u)q increases from 3% to
39%. Figure 4.7 shows that the variation of SN R increases for 3% < (o/pu)q < 34%, and
then decreases because all the instances are subject to large timing errors. Figure 4.7 further
shows that the maximum and minimum values of SN R, and SN R, differ by no more than
6% and 4%, respectively. These results indicate that the timing error is well-modeled by its
PMF.
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Figure 4.8: Characterization of: (a) process variations in terms of (o/u)q vs. Vyq, and (b)
the impact of process variations on MVM error rate p, based on 30 MVM instances.

4.4 Simulation Results

In this section, we evaluate the performance of RD-SEC-based CNNs employing the error
PMFs from Section 4.3 for the MNIST [68] and CIFAR-10 datasets [79].

4.4.1 System Set-up

Similar to the case in PredictiveNet, the bias term 6,, in (3.1) and kernel w,,; in (3.2) of the
CNNs being studied are trained using the back-propagation algorithm [66]. The following
two architectures are considered: 1) a slow CNN architecture with RD-SEC applied to the
C-layers and F1 layer (denoted as RD-SEC CNN), where the multipliers and adders are
implemented using Baugh-Wooley (BW) multiplier and RCA, respectively; 2) an uncom-
pensated fast CNN architecture (denoted as Conv CNN), where the multipliers and adders
are implemented using the programmable CSE technique in [42] and Kogge-Stone adder,
respectively. The fast architecture is chosen for comparison because it will result in the

largest energy savings in the error-free case when voltage scaling is employed.
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Figure 4.9: Simulation results for the MNIST dataset: (a) pger vs. (0/pu)q, and (b) o, vs.
(0/u)a, based on 30 CNN instances in the presence of process.

4.4.2 Characterization

First, the extent of process variation in NTV is characterized in terms of (0/u)4. Figure
4.8(a) shows that (o/u)4 increases by 13x from 3% to 39% as the supply voltage V,; decreases
from 0.7V to 0.3 V. Note that process variation makes the detection accuracy pge; = P{T =
t} (T and t are the classifier decision and the true label, respectively) a random variable,
which is denoted as Py,. Figure 4.8(b) shows that the median error rate p, (where the error
rate is defined as p, = P{n # 0}) increases by 70x from 1.4 x 1072 to 0.99 as Vy, decreases
from 0.7V to 0.3 V. At a (0/u)s = 34%, the median error rate p, = 0.57.

Next, we employ the error PMFs obtained from Step 4 of the NTV error modeling method-
ology (see Section 4.3.1) to inject errors in fixed-point MATLAB simulations of CNN archi-
tectures to evaluate their robustness to timing errors in NTV. We compare the two archi-
tectures in terms of median (pge) and standard deviation (o,,,,) of the detection accuracy
Pje;. This is because p, and pg.; are spatially distributed random variables in the presence
of process variations, where the path delay distribution and the timing violations (hence p,

and pge;) are different for each MVM or CNN instance.
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Table 4.2: Summary of CNN Parameters from [68]

Parameter Definition CNN Parameter Summary
Parameter Description Layer | L | M | 1 x I, | K x K
L/M # of input/output FMs Cl1 1] 32 [28%x28| 5x5
Kx K size of kernels C2 |32 64 [12x12| 5x5
I x I size of input FMs F1 64 | 100 | 4 x4 2x1

4.4.3 Comparison of pge; and op,, for CNNs using MNIST

The parameters of the CNNs for the MNIST dataset are summarized in Table 4.2 [68].
The precision B;, and B, are set to 7 bits and 8 bits, respectively, ensuring the error-free
fixed-point detection accuracy to be within 0.2% of the floating-point detection accuracy of
0.98.

Figure 4.9(a) shows that RD-SEC CNN is able to maintain pg; > 0.9 (the worst-case con-
fidence interval with a 95% confidence level is [0.92, 0.95]) for (o/u)q < 34%, whereas Conv
CNN can only maintain the same performance for (o0/u)q < 3% (the worst-case confidence
interval with a 95% confidence level is [0.80, 0.90]). Thus, RD-SEC CNN is able to deliver
a high detection accuracy in the presence of high error rate of p, < 0.57 (see Fig. 4.8(b)).
This indicates an 11 x improvement compared with the Conv CNN. Figure 4.9(b) shows that
the RD-SEC CNN can achieve o, , = 2.6 x 107% (with a 95% level confidence interval of
2.1 x 1073, 3.6 x 1073]), indicating an 113x reduction in o, as compared to that of the
Conv CNN o, , = 0.3 (with a 95% level confidence interval of [0.24, 0.4]) at (o/p)a = 11%.
Figure 4.9(b) also shows that o,,,, of the RD-SEC CNN is no more than 4.8 x 102 , whereas
the maximum o, , of the Conv CNN is 0.32 for 3% < (o/p)a < 39%.

Furthermore, Fig. 4.9(b) demonstrates that o,,, of the RD-SEC CNN increases from
1.8 x 1072 to 4.8 x 1072 when (o /)4 increases from 3% to 34%, and then decreases. When
(o/pw)a > 34%, op,,, of the RD-SEC CNN is larger than that of the Conv CNN because
all the instances of the Conv CNN achieve a low P,; ~ 0.1, whereas some instances of the
RD-SEC CNN can still achieve a Py, > 0.9, leading to a larger o,,_,.

To understand the robustness improvement achieved by RD-SEC, the input, C1 FMs (12

out of 32), the output vector and the final decision T are analyzed (see Fig. 4.10). Note
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Figure 4.10: An example of the C1 FMs and the output vector from: (a) the Conv CNN;
and (b) the RD-SEC CNN, when the input digit is “5” and (o/u)s = 27%.

that 7T is chosen as the index of the maximum element in the output vector. Figure 4.10(a)
shows that the timing errors contaminate the extracted features in the Conv CNN; leading to
classification failure. Specifically, the output vector has two peaks (at positions “3” and “5”)
due to the contaminated features, resulting in a wrong decision “3” instead of the correct one
“5”. On the other hand, RD-SEC is able to compensate for timing errors, and thus enables
the RD-SEC CNN to extract correct features for correct classification even in the presence

of a large number of timing errors.
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Table 4.3: Summary of CNN Parameters for CIFAR-10 Dataset |79]

Parameter Definition CNN Parameter Summary
Parameter Description Layer L M LI xI, | K xK
L # of input FMs C1 3 3x32[132x32| 5x5
M # of output FMs C2 |3x32|3x32|16x16| 5x5

Kx K size of kernels C2 I3x32[3x64| &8x%8 X5
I x I size of input FMs F1 3x64|3x64| 4x4 2x1

4.4.4 Comparison of pges and o, for CNNs using CIFAR-10

To demonstrate the generality of the proposed RD-SEC technique, RD-SEC based CNN is
also applied to the CIFAR-10 dataset [79], which contains three C-layers and S-layers and
one F-layer. The parameters of the CNNs for the CIFAR-10 dataset are summarized in Table
4.3, which is developed based on the LeNet-5 CNN in [66]. The precision B;, and B, are
set to 8 bits and 7 bits, respectively, ensuring the error-free fixed-point detection accuracy
to be within 0.3% of the floating-point detection accuracy of 0.8.

Figure 4.11(a) shows that RD-SEC CNN is able to maintain pg.; > 0.8 (the worst-case con-
fidence interval with a 95% confidence level is [0.78, 0.80]) for (o/p)q < 29%, whereas Conv
CNN can only maintain the same performance for (0/u)s < 6% (the worst-case confidence
interval with a 95% confidence level is [0.63, 0.80]). This indicates a 5x improvement in error
rate tolerance compared with the Conv CNN. Figure 4.11(b) shows that the RD-SEC CNN
can achieve o,,,, = 2.6x 1073 (with a 95% level confidence interval of [2.1x 1073, 3.6 x 107?]),
indicating an 85x reduction in o,,, as compared to that of the Conv CNN o, , = 0.229
(with a 95% level confidence interval of [0.18, 0.30]) at (o/p)q = 13%. Figure 4.11(b) also
shows that o,,, of the RD-SEC CNN is no more than 2.3 x 1072, whereas the maximum
Opye, Of the Conv CNN is 0.23 for 3% < (o/u)a < 39%.

Similar to the observation for CNNs using the MNIST dataset in Fig. 4.9(b), Fig. 4.11(b)
demonstrates that o,,, of the RD-SEC CNN increases from 1.6 x 1072 to 2.3 x 1072 when
(0/p)q increases from 3% to 34%, and then decreases. When (o/p)q > 34%, o,,., of the
RD-SEC CNN is larger than that of the Conv CNN because all the instances of the Conv
CNN achieve a low Py,; ~ 0.1, whereas some instances of the RD-SEC CNN can still achieve

76



=8=Conv CNN
0.8 RD-SEC CNN
107"
06
- Y
<= By
|, 0.4 1B ,
Conv CNN 1074
::RD-SEC CNN
0.2 1
oL : : : : : 103 - - - - - -
0.03 0.09 0.13 0.19 0.29 0.39 0.03 0.09 0.13 0.19 0.29 0.39
(6/1n)q (o/p )
(a) (b)

Figure 4.11: Simulation results for the CIFAR-10 dataset: (a) pge vs. (0/1)q, and (b)
Opae; VS- (0/11)a, based on 30 CNN instances in the presence of process variations.

a Pger > 0.8, leading to a larger oy,

Comparing the simulation results for the MNIST (see Fig. 4.9) and CIFAR-10 (see Fig.
4.11) datasets, there are three observations. First, the Conv CNN for the CIFAR-10 dataset
can tolerate larger process variation in terms of (o/u)s (< 6%) than that of the MNIST
dataset (< 3%). This could result from its deeper structure and thus better inherent ro-
bustness. Second, the Conv CNN for the CIFAR-10 dataset fails more abruptly as (o/p)q
increases than the Conv CNN for the MNIST dataset. This is likely due to the fact that
data statistics in the CIFAR-10 dataset are more diverse and thus more sensitive to com-
putation errors. Third, RD-SEC can effectively enhance robustness of the CNNs for both
the MNIST and CIFAR-10 datasets even in the presence of a large number of computation

errors, indicating its generality as a low power error resiliency algorithmic technique.

4.5 Summary

In this chapter, a new SEC technique named RD-SEC is proposed for MVMs, which is a
power-hungry and commonly employed kernel in many signal processing and ML algorithms.

RD-SEC is able to significantly enhance the robustness of information processing when op-
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erating in NTV for energy efficiency. Therefore, RD-SEC has the potential to enable the
deployment of powerful but power-hungry ML algorithms on power-constrained platforms.
This work opens the possibility to exploit inherent redundancy or structure within signal
processing and ML algorithms to develop low-cost SEC techniques that enable robust com-

puting on unreliable stochastic fabrics for significant improvement in energy efficiency.

4.6 Derivation of « in (4.10)

In this section, we provide a detailed expression for « in (4.10). The complexity is calculated

in terms of the number of FAs. From (4.10), « is given by:

N I\ N
o= VB _ Nadd R+ MUXj (4.12)
N Npp

where Ng and N, denote the complexities of one E-block and M-block, respectively, Nygq—r
denotes the complexity of the summer in (4.8), Ny x denotes the complexity of MUX-based
shifter in (4.8), Npp denotes the complexity of one DP implemented using a Baugh-Wooley
(BW) multiplier and ripple-carry adder (RCA). Specifically,

Nada-r = (R = 1)(Bou + [logy(R)] — 1) (4.13)
Nuux = BOUt(HOgQ(Bout + 1)—| T]W2F)R (414)
NDP = NBme + (N — 1)<Bm + Bw + ﬂogz(Nﬂ — 1), (415)

where r denotes the normalized complexity of a 2 : 1 MUX over a FA and we use

M2F

Toor = 3.5/9 [88], the [a] is the ceiling operation, and B;,, By, and B,, denote the precision
for the input/output and weights, respectively.
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Chapter 5

CONCLUSIONS AND FUTURE WORK

With ML systems increasingly becoming woven into our daily lives, energy efficiency will be
the key enabler for their pervasive applications. The design for energy-efficient ML systems is
made challenging by the need for intensive computation and massive data movement. This
dissertation explores techniques to address this challenge for energy-efficient information

transfer and processing in ML systems.

5.1 Dissertation Contributions

Current ML systems adopt either centralized cloud computing or distributed edge computing.
In both cases, there is an imperative challenge of energy efficiency which will only be made
worse with the growing demand for increased 1/0 bandwidth of high-performance computing
in data centers as well as the increasing need to embed complicated ML algorithms to local
devices.

To address the energy efficiency challenge in data centers, this dissertation has presented
our study on the use of link BER for designing a BOA-based serial link. First, we study,
through analysis and simulations, the benefits of the BOA over the CUA in a serial link
receiver. In particular, we propose two channel-dependent parameters to quantify these
benefits: 1) m-clustering value, and 2) the threshold non-uniformity metric h;. Further-
more, we show that the BER improvement is greater than 10° when m > 5 and h; < 0.8
for a family of channels. Second, we present the design of a 4GS/s, 4-bit BOA IC in a
90 nm CMOS process that includes a single-core, multiple-output passive DAC to enable a
variable-threshold and variable-resolution ADC configuration and verify the aforementioned

analysis. Measured results demonstrate that a 3-bit BOA has lower SNR requirement than
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a 4-bit CUA, thereby supporting the BOA idea in the presence of non-idealities such as
finite sampling bandwidth and metastability. In the process, we demonstrate conclusively
that ENOB is not the best metric when designing ADCs for serial links. Third, we propose
architectures to implement the gradient descent algorithm to compute the representation
levels of BOA iteratively. In particular, the architectures for the QL-UD and the individual
RL-UD block are proposed.

For the problem of resource-constrained computing at the edge, this dissertation focuses on
energy-efficient implementation of ML algorithms, particularly CNNs, for their application
on power-constrained embedded platforms. This dissertation develops two techniques for
energy-efficient CNN design:

First, this dissertation proposes PredictiveNet which predicts the zero activations (zero
prediction) and thereby avoids computing those. In this way, a significant reduction in the
number of convolutional operations is achieved without altering the structure or introducing
additional side networks. Thus, PredictiveNet has negligible overhead and can easily be
applied on top of existing techniques to obtain an even greater reduction in implementation
complexity. When applied to CNNs for the MNIST and CIFAR-10 datasets, simulation
results show that PredictiveNet can achieve up to 7.2x and 4.4x reduction in the compu-
tational and representational costs, respectively, compared to a conventional CNN, and up
to 2.5x and 1.7x reduction in the computational and representational costs, respectively,
compared to a zero-skipping CNN, while incurring only 0.02 degradation in classification
accuracy.

Second, this dissertation proposes a new SEC technique referred to as RD-SEC that is
particularly well-suited for MVMs, which is a commonly used signal processing and ML
kernel. RD-SEC makes use of the fact that a large fraction of computation inside a MVM
can be derived from a small subset, and employs these for low-cost error detection and cor-
rection. Simulation results in 45nm CMOS for an RD-SEC-based CNN architecture show
that RD-SEC enables robust CNNs operating in the NTV regime for aggressive energy sav-
ings. Specifically, when applied to CNNs for the MNIST dataset, the proposed architecture
can achieve a median classification accuracy Py; > 0.9 in the presence of gate level delay

variation of up to 34%. This represents an improvement in variation tolerance of 11x as
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compared to a conventional CNN. We further show that RD-SEC-based CNN enables up
to 113x reduction in the standard deviation of Pj; compared to the conventional CNN.
When applied to CNNs for the CIFAR-10 dataset, the proposed architecture improves vari-
ation tolerance by 5x and reduces variation in CNN classification accuracy (Pye) by 85X

compared with a conventional CNN.

5.2  Future Work

Since ML systems have their unique properties, it is important to consider non-traditional
approaches and explore innovations at various levels of design abstraction to address the
challenge of designing energy-efficient ML systems. This is because the design space of
ML systems is complex due to their interlinked challenges and opportunities at system,

architecture, circuit and device levels.

5.2.1 System Level

Designing ML systems in many emerging applications leads to new problems compared to
those in the mature areas of signal processing and communication systems. The current
practice of ML systems design is being conducted in an ad-hoc manner. Therefore, sys-
tematic design methodology and system innovations are critical for realizing ML systems
with optimal energy efficiency. ML algorithms are essentially optimization problems and try
to minimize certain loss functions. Furthermore, many ML algorithms such as CNNs have
been shown to achieve satisfactory performance even when the training reaches only a local
minimum rather than the global minimum in the search space. In addition, there are usually
more than one local minimum that would lead to the specified system performance. This
provides a system-level opportunity to improve energy efficiency: the original optimization
problem can be reformulated to include additional constraints on architecture, circuit, and
data movement for energy efficiency. Such energy-constrained reformulation aims to achieve
a holistic optimal realization of the entire information gathering and processing stack in ML

systems. In line with this direction, the PredictiveNet and RD-SEC techniques proposed
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in this dissertation offer two future directions. First, one natural next step is to constrain
the ML training algorithms such that the zero predictors in PredictiveNet can be shared by
many kernels thereby further reducing both the computational and representational costs
significantly. Second, imposing additional constraints that favor the reduction of estimation
errors in the RD-SEC technique could suppress the estimation errors. Possibly, the low-cost
estimators themselves can guarantee marginal system performance loss and eliminate the

need for power-hungry implementations.

5.2.2  Architecture Level

Conventional computing architectures separate sensing, computation and storage units. Such
architectures may not be energy-efficient for ML systems due to the required large amounts
of data movement. New architectures should reduce the need for costly massive data move-
ment in the entire information gathering and processing chain of ML systems and make
use of the probabilistic nature of performance metric in ML algorithms for significant en-
ergy reduction. The recently proposed in-memory computing architecture |38] is one such
example. The MVM-based architecture presented in this dissertation offers another di-
rection to be extended. In the case when data movement is much more expensive than
computation, one energy-efficient architecture taking advantage of conventional computing
architectures is to store only the basis weights and then derive computations associated with
the non-basis weights from those associated with the basis weights. The energy efficiency of
such architecture is achieved by trading the more costly data access with relatively low-cost
computation. Another possible direction is to develop energy-efficient sensing, storage and
processing combo units, and distribute many of such in a systematic and energy-minimizing

manmner.

5.2.3 Circuit and Device Level

Each decision of many ML algorithms involves hundreds of operations; therefore, the correct-

ness of final decision may not require each operation to be always accurate. This inherent
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robustness of ML algorithms can be leveraged to design circuits using non-traditional infor-
mation metrics such as classification accuracy. The resultant new circuits would be more
energy-efficient as they have more relaxed mismatch, precision or linearity requirements
than those designed using traditional fidelity metrics such as SQNR. The BOA technique
presented in Chapter 2 is one such example. Essentially, new techniques should bridge the
probabilistic nature of ML systems and the statistical behavior of circuits in scaled CMOS
and emerging technologies for energy efficiency. On the device side, the performance ben-
efits of CMOS scaling have become stagnant if adopting conventional designs. Although
emerging technologies such as spin [89] have been shown to have a potential to achieve large
energy savings, they have various robustness issues. A promising future direction is to in-
vestigate SEC techniques to address those robustness issues and thus enable energy-efficient
and robust ML systems on scaled CMOS or emerging beyond-CMOS technologies. In fact,
the RD-SEC technique in Chapter 4 is one such example where SEC is shown to enable
robust ML systems designed in unreliable stochastic circuit/device fabrics for aggressive

improvement in energy efficiency.
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