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Abstract 

This thesis proposes a method for accurate temperature estimation of thermally-aware 

power electronics systems. The duality between electrical systems and thermal systems was 

considered for thermal modeling. High dimensional thermal models present a challenge for 

online estimation. RC (resistor-capacitor) circuits that create a tradeoff between accuracy and 

complexity were used to simulate the dynamic thermal behavior of power electronics. The 

complexity of the thermal network was further reduced by applying a structure-preserving 

model order reduction technique. The reduced order thermal model was an RC circuit with 

fewer capacitors. Preserving the physical correspondence between the reduced order model 

and the physical system allows the user to use the reduced order thermal model in the sensor 

placement optimization process. The accuracy of the thermal estimates can be easily increased 

by increasing the number of sensors in the system. However, a large number of sensors 

increases the cost and complexity of the system. It might also interfere with the circuit design 

and create packaging problems. An optimal number and optimal placement of temperature 

sensors was found. The optimal sensor placement problem was solved by maximizing the trace 

of observability Gramian. The optimal number of temperature sensors was based on the state 

estimation error obtained from a Kalman filter. The dynamic thermal behavior of the power 

electronics systems was represented by a linear state space model by applying the conservation 

of energy principle. Therefore, assuming Gaussian noise, it is well-known that a Kalman filter 

is an optimal estimator for such systems. A continuous-discrete Kalman filter was used to 

estimate the dynamic thermal behavior of power electronics systems using an optimal number 

of temperature sensors placed at optimal locations. The proposed method was applied on 2-D 

and 3-D power electronics systems. Theoretical results were validated experimentally using IR 

thermal imaging and thermocouples. It was shown that the proposed method can accurately 
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reconstruct the dynamic temperature profile of power electronics systems using a small number 

of temperature sensors.  
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Ĝ   Reduced order transfer function 

   Stationary distribution of the Markov chain 

( )P t   Markov chain transition matrix 

e   State estimation error 

L   Observer gain 

   Observability matrix 

H   Mapping from true states to observed states 

( )v m   Sensor noise 

kR   Covariance matrix 

ˆmx   A priori at instant m 

ˆmx   A posteriori at instant m 

1( , )m mt t   State transition matrix 

mK   Kalman gain matrix 



 xvii  

,o linearW  Linear observability Gramian 

oC   Condition number 

multilayeredC  Effective thermal capacitance of a multilayered structure 

aT   Ambient temperature 

convQ   Convective heat transfer 

 

 

 

 

 

 



 1  

Chapter 1     

Introduction 

Power electronics systems are used for the conversion and control of electric power. 

Rectifiers are used to convert electric power from AC to DC. Inverters are used to convert 

electric power from DC to AC. Also, DC-DC converters can be used to control the voltage 

magnitude. AC-AC converters can be used to change the magnitude and frequency of the 

voltage. Power electronics have a wide range of applicability. They are used in industrial 

applications, transportation, domestic applications, telecommunication, power transmission, 

etc. Also, power electronics systems operate in a wide power range. For example, less than 1 

W converters are found in portable equipments. 10-1000 W converters are found in computers. 

kW to MW converters are found in variable-speed motor drives. And 1000 MW converters are 

found in energy transmission applications [1]. 

However, power electronics systems are not ideal. They have dissipative elements, i.e. 

resistors. The nonideal behavior of power electronics is manifested as power loss converted 

into heat. The amount of heat dissipated into the system is related to the amount of power 

converted in the power electronics system. Furthermore, the new trend in the field of power 

electronics is the increase of power density. Smaller devices are used to convert higher power 

levels. Therefore, the amount of heat dissipated in these systems increases and creates localized 

hotspots that might lead to the failure of the power electronics system.  

This thesis proposes a method for accurate dynamic thermal estimation of power 

electronics systems. A dynamic thermal estimation scheme composed of dynamic thermal 

modeling, model order reduction, sensor optimization, and filtering will be presented. The 
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method is applied on a heterogeneous highly-complex thermally coupled power electronics 

system.  

1.1 Motivation 

With the emerging trend of increasing the power density of power electronics comes 

the limitation of the power dissipation in the system. Power dissipation is transformed into heat 

in the power electronics systems. Therefore, the increase of power dissipation leads to an 

increase in temperature [2] that has negative effects on the performance and lifetime of the 

components operating in the power electronics system. Also, higher temperature increases the 

cooling cost which is a major problem in the current power electronics field [2]–[7].  

Dynamic thermal management (DTM) was proven to be an effective solution to control 

the temperature of power electronics by guaranteeing that the temperature of the hotspots in 

the system will not violate a specific threshold. However, this technique typically relies on 

thermal measurements obtained from on-board sensors. Therefore, accurate temperature 

readings of the system are essential for a successful DTM [8]–[10]. 

Power electronics systems that estimate their own temperature to apply thermal 

management techniques, possibly by reducing their power flow, are known by thermally-aware 

power electronics [6]. Increasing the power density becomes safer in this new breed of power 

electronics systems since the availability of the accurate dynamic temperature profiles in these 

systems activates the DTM at the right time. 

Accurate thermal readings can be obtained easily by increasing the number of sensors 

in the system. However, a large number of sensors influences the reliability and packaging of 

the power electronics system, increases its cost, and interferes with its circuit design [8]. 

Furthermore, the locations of the temperature sensors in the system affect the accuracy of the 

estimated parameters. Placing temperature sensors at random locations might lead to large 

thermal estimation errors. Therefore, finding the optimal number and optimal placement of 

temperature sensors is an essential task for the success of the dynamic thermal estimation 

process. 

The objective of this research is to obtain an accurate estimation of the spatial dynamic 

thermal profile of thermally-aware power electronics systems using the smallest number of 
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temperature sensors in the system. Current power electronics systems do not have the ability 

to extract their dynamic spatial temperature distribution. Some work has been done on 

temperature estimation of a single chip [8]. However, the method proposed in this thesis 

provides a methodology for accurate thermal estimation of highly complex and heterogeneous 

systems using an online model-based estimator and compact thermal models. 

In practice, some power electronics systems are open to the ambient atmosphere. 

Convective heat transfer in these systems happens directly between the components of the 

system and the ambient atmosphere. Those systems are treated as 2-dimensional (2-D) systems 

in this work since it is assumed that there is conduction only along the x and y directions in the 

plane of the system.  Therefore, the dynamic thermal behavior of these systems is simulated 

using 2-dimensional thermal models. 

In some other cases, the power electronics systems are enclosed by a heat sink that 

enhances heat transfer by convection from the system to the environment. In this case, 

convective heat transfer happens between the heat sink and the ambient atmosphere, i.e. there 

is no direct convective heat transfer between the components of the system and the ambient 

atmosphere. Heat is transferred by conduction from the components of the power electronics 

systems to the heat sink in the z-direction. Furthermore, there is conductive heat transfer along 

the x and y directions in the plane of the power electronics system. Therefore, enclosed power 

electronics systems will be treated as 3-dimensional (3-D) systems in this work because there 

is conduction along 3 dimensions in the system. The dynamic thermal behavior of these 

systems is simulated using 3-dimensional thermal models.   

1.2 Thesis organization 

The rest of this thesis is organized as follows. Chapter 2 describes the thermal network 

modeling procedure used in this work to simulate the dynamic thermal behavior of power 

electronics systems. In Chapter 3, a brief literature review of some well-known model order 

reduction techniques is presented. Also, the algorithm of the structure-preserving aggregation-

based model order reduction technique used in this work to reduce the complexity, i.e. number 

of states, of the dynamic thermal models of power electronics systems is presented. In Chapter 

4, a brief review of some well-known filters is presented. The continuous-discrete Kalman 
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filter used in this work to estimate the dynamic thermal behavior of power electronics systems 

is presented in some detail. In addition, the analysis used to find the optimal number and 

optimal placement of temperature sensors is presented in this chapter. In Chapter 5, the 2-

dimensional dynamic thermal profile of an actual inverter is estimated using the proposed 

method. In Chapter 6, the 3-dimensional dynamic thermal profile of an inverter enclosed with 

a heat sink is estimated. The summary of research contributions and future work are presented 

in Chapter 7. 
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Chapter 2     

 Network Modeling 

2.1 RC modeling 

The dynamic physical systems of interest have temporally and spatially varying 

temperature profiles. Detailed modeling of thermal interaction in these systems results in high 

dimensional complex models that are inappropriate for estimation and control design purposes. 

The appropriate modeling approach needs to balance complexity versus accuracy. The thermal 

models should to be simple enough for on-line implementation and detailed enough to simulate 

the dynamic thermal behavior of the systems at an acceptable level of accuracy. Also, the 

number of powerful analysis tools drops significantly for non-linear systems compared to 

linear systems [11] leading to a strong preference for linear models. Therefore, the physical 

systems analyzed were approximated by lumped parameter models by deriving an equivalent 

thermal circuit [7]. Collecting these models results in a directed connected graph of linear 

systems. Model order reduction techniques can be used to further reduce the dimension of the 

lumped parameters models making them more suitable for estimation and control purposes.  

The first step towards getting an accurate temperature estimation of thermally-aware 

power electronics systems is to create a thermal model that provides an accurate representation 

of the dynamic thermal behavior of the system. In order to account for all the thermal effects 

in the system in full detail, numerical thermal analysis methods such as the finite element 

method must be used in the modeling procedure. However, these techniques result in complex 

high-dimensional models that are not suitable for estimation and control design purposes. 

Therefore, a tradeoff between accuracy and complexity must be done in order to obtain a 
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thermal model that generates the dynamic thermal behavior of the system at an acceptable level 

of accuracy with low computational efforts [3]. 

As shown in the literature, a resistor-capacitor (RC) thermal model can successfully 

simulate the spatial dynamic temperature distribution of the system with a reasonable accuracy 

and complexity tradeoff [3], [10], [12]–[14]. Also, another advantage of RC thermal models is 

that they have a physical correspondence with the physical system. In other words, each 

capacitor in the RC thermal model represents the thermal capacitance of a specific part of the 

physical system. RC thermal models are created by considering the similarity between an 

electric circuit and a thermal circuit since current and heat flow are described with the same 

differential equations. This similarity converts the heat conduction problem into an electric 

problem where the voltage in the RC circuit represents the temperature in a thermal problem, 

the current represents the heat transfer or the power flow, and the electrical resistances 

represent the thermal resistances. The capacitors used in the RC model simulate the transient 

behavior of the system by modeling the thermal lag that occurs before the temperature of the 

system reaches a steady state value following a step change in the heat input. The thermal-

electrical analogy is shown in table 2.1 

Table 2.1 Thermal-electric analogy used to model resistor-capacitor thermal models. 
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The heat conduction problem can be solved as a 1 dimensional (1-D) problem, 2 

dimensional (2-D) problem, or 3 dimensional (3-D) problem [15]. For a 1-D heat conduction 

problem, the system is divided into blocks along just one direction. It is assumed that 

conduction occurs along just one direction in the system. The blocks are connected to each 

other through a thermal resistance that represents conduction resistance along that direction in 

the system. For a 2-D heat conduction problem, the system is considered as a plate that is 

divided into pixels along its width and length with an assigned capacitor to each one of these 

elements and assigned resistors that connect each capacitor to one other in the x and y 

directions. In this system, it is assumed that conduction occurs along 2 directions in the system. 

For a 3-D heat conduction problem, the system is divided into small cubes, or voxels, with 

assigned resistors and capacitors that account for the conduction along three dimensions. The 

1-D, 2-D, and 3-D RC thermal models will be explained in more details in the next subsections. 

2.1.1 1-D RC thermal models 

Dynamic thermal estimation requires computationally efficient thermal models. The 

desired thermal models should simulate the offline dynamic thermal behavior of the power 

electronics system using a small number of states. In a 1-D RC thermal model, it is assumed 

that there is conduction only along the x direction in the system. It can also be assumed that 

there is convective heat transfer from the system to the environment. In order to design a 1-D 

RC thermal model, the system is discretized along its length into pixels. Each pixel is 

represented by a capacitor in the RC thermal model.  Each capacitor represents the ability of 

the corresponding part of the system to store heat in it. Adjacent capacitors are connected to 

each other through conduction resistances. Since the temperature in a thermal model is 

represented by the voltage in an electric model, the ambient temperature is represented by a 

voltage source in the RC thermal model. Each capacitor in the RC thermal model is connected 

to the voltage source through a resistor that represents the convective heat transfer resistance 

from that specific part of the system to the ambient atmosphere. Figure 2.1 shows an example 

of the discretization and the modeling of a 1-D RC thermal model. The system was discretized 

into 2 pixels. Each pixel was represented by a capacitor in the RC thermal model. Rcd represents 

the conduction resistance along the x direction between the two pixels.  Q represents a heat 
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source.  It was shown in table 2.1 that the heat flow in a thermal system is represented by the 

current in an electric system. Therefore, the heat source Q that exists in the first pixel of the 

physical system is represented by the current source connected to C1 in the RC thermal model. 

Each of the capacitors is connected to the voltage source through a Rcv that represents the 

convection resistance from that part of the system to the ambient atmosphere. The voltage 

source represents the ambient atmosphere. Therefore, it can be seen that there is a physical 

correspondence between the RC thermal model and the physical system. Each capacitor in the 

RC thermal model represents the heat storage capacitance of a specific part of the physical 

system. This physical correspondence between the RC thermal models and the physical 

systems is a feature of the 3 versions of the RC thermal models, i.e. 1-D, 2-D, and 3-D RC 

thermal models.   

It should be noted that the type of heat transfer from a surface of a system depends on 

whether that surface is a free surface or a connected surface. A free surface experiences 

convective heat transfer to the ambient atmosphere. A connected surface experiences 

conductive heat transfer to the surface connected to it as shown in Figure 2.2. Therefore, 

spatially adjacent pixels will be connected through conduction resistances. And every pixel 

that is exposed to the ambient atmosphere will be connected to a voltage source through a 

convection resistance. 

 

 

Figure 2.1 An example of a 1-D RC thermal model that was discretized into 2 pixels. 

Conduction was assumed along the x direction only. 
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Figure 2.2 Heat transfer modes from a system with 2 functional elements. 

The thermal capacitance is a function of the density of the material  , the specific heat 

capacity of the material c , and the volume of the corresponding part of the system v . The 

thermal capacitance is given by  

 .C cv   (2.1) 

The conduction resistance is a function of the length through which the heat is 

conducted L , the thermal conductivity of the material K , and the cross-sectional area through 

which the heat is conducted cA . The conduction resistance is given by  

 .cond
c

L
R

KA
   (2.2) 

The convection resistance is a function of the heat transfer coefficient h , and the 

surface area from which the heat is transferred to the ambient atmosphere sA . The convection 

resistance is given by  

 
1

.conv
s

R
hA

   (2.3) 

In general, printed circuit boards of power electronics are composed of several layers 

of varied materials. If the system is composed of multiple layers of different materials, it is 
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convenient to treat the multilayered structure as a homogeneous material and use an in-plane 

effective thermal conductivity to calculate the conduction resistance condR . The in-plane 

effective thermal conductivity is given by   

 1

1

,

N
i ii

in plane N
ii

K t
K

t










  (2.4) 

where ik is the thermal conductivity of a specific layer, it  is the thickness of the corresponding 

layer, N  and is the total number of layers. The effective thermal capacitance of the 

multilayered structure is the sum of the thermal capacitance (2.1) of each layer  

 
1

.
N

ii
C C


   (2.5) 

2.1.2 2-D RC thermal models 

2-D RC thermal models account for conduction along the x and y directions in the plane 

of the system in addition to the convective heat transfer from the system to the ambient 

atmosphere. 2-D RC thermal models are used to simulate the dynamic thermal behavior of the 

power electronics systems that are open to the ambient atmosphere. In other words, 2-D RC 

thermal models can be used to simulate the dynamic thermal behavior of power electronics 

systems that are not enclosed by a heat sink and do not experience conductive heat transfer 

along the z direction. In these systems, convective heat transfer occurs directly between the 

components of the system and the environment. The first step in designing a RC thermal model 

is to discretize the system into pixels. For a 2-D RC thermal model, the system is discretized 

along its width and length into pixels or nodes.  To reduce the complexity of the thermal model, 

the level of granularity chosen can be done at the level of the functional elements [3]. 

Therefore, each functional block in the power electronics system, i.e. the inverter, is 

represented by a single node and assigned a capacitor in the 2-D RC thermal model. The 

resulting RC model is characterized by a spatial correspondence with the physical system. Each 

capacitor in the RC model refers to a specific functional block in the physical system. The heat 

generated from the functional blocks is modeled as current sources connected to the 

corresponding capacitors in the 2-D RC model. The convective heat transfer from each 
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functional block or each part of the system to the ambient atmosphere is represented in the 2-

D RC thermal model by a resistor that connects each capacitor of a free surface to the ambient 

atmosphere. The ambient atmosphere is represented in the 2-D RC model by a voltage source 

that allows the user to specify the specific ambient temperature that the system is subjected to. 

Figure 2.3 shows an example of a 2-D RC circuit for a system divided into 4 elements. The 

heat generated in the first functional element was modeled by the current source connected to 

the first capacitor. R12 and R34 represent the conduction resistance along the x direction. R24 

and R13 represent the conduction resistance along the y direction. Rc1, Rc2, Rc3, and Rc4 

represent the convection resistance between every pixel and the ambient atmosphere. The 

thermal capacitances, the conduction resistances, and the convection resistances are found 

using (2.1), (2.2), and (2.3). 

 

 

Figure 2.3 Example of a 2-D RC thermal model that was partitioned into 4 pixels.  

 



 12  

2.1.3 3-D RC thermal models 

Some power electronics systems are enclosed with heat sinks. Since the convection 

resistance is inversely proportional to the surface area from which the heat is transferred to the 

atmosphere, increasing that surface area decreases the convection resistance and hence 

enhances the heat transfer by convection from the system to the atmosphere. Therefore, heat 

sinks enhance the convective heat transfer from the power electronics system to the ambient 

temperature by increasing the surface area of the system exposed to the ambient temperature.  

In the case of enclosed power electronics systems, there is no direct convective heat transfer 

between the components of the system and the ambient atmosphere. In these systems, the 

components of the system experience conductive heat transfer with the heat sink. Convective 

heat transfer occurs between the heat sink and the atmosphere. A heat sink is usually referred 

to as an extended surface [16].  

Extended surfaces or fins can have different configurations. Fins can be straight with a 

uniform cross section, straight with a nonuniform cross section, annular, or pin fins. Figure 2.4 

shows different fin configurations [16]. Furthermore, fins can operate with a longitudinal air 

flow or a lateral air flow. Figure 2.5 shows an example of a DC-DC converter enclosed with a 

longitudinal air flow heat sink and an example of a DC-DC converter enclosed with a lateral 

air flow heat sink [17]. 

In the case of enclosed power electronics systems, conduction occurs in the x, y, and z 

directions. More specifically, it is assumed that conduction exits in the x and y directions along 

the plane of the power electronics system, in addition to conduction in the z direction from the 

power electronics system to the heat sink.  

Similar to the 1-D and 2-D RC thermal models, the first step in designing 3-D RC 

thermal models is to discretize the system. In the case of 3-D systems, the system is discretized 

into voxels. Each voxel is assigned a capacitance value. For simplicity, the discretization can 

be done at the level of the functional element. Each functional element in the 3-D system is 

represented by a voxel and is assigned a capacitance value. Adjacent voxels that do not have 

an exposed surface to the ambient conditions are connected to each other along the x, y, and z 

directions through conduction resistances only. However, the voxels that are exposed to the 

ambient conditions have an additional resistance that connects them to a voltage source in the 
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3-D RC thermal model. The additional resistance represents the convective heat transfer from 

the corresponding part of the overall system to the ambient conditions. The conduction 

resistances along the x, y, and z directions are calculated using (2.2). However,  𝐿 and 𝐴𝑐 

depend on the direction along which the heat is being conducted. The convection resistances 

cannot be calculated using (2.3). To calculate the convection resistances from the voxels of the 

finned structure to the ambient conditions, the equations of heat transfer from extended 

surfaces must be used [16]. The effective resistance that accounts for convection in extended 

surfaces can be found using  

 ,0
0

1
,t

t

R
hA

   (2.6) 

where ,0tR  is the overall effective resistance, 0  is the overall efficiency of an array of fins, h  

is the convective heat transfer coefficient, and tA  is the total surface area of the extended 

surface. The overall efficiency for an array of fins is found using 

 0 1 (1 ),
f

f
t

NA

A
      (2.7) 

where N  is the number of fins in an array, fA is the surface area of a single fin, and f  is the 

efficiency of a single fin. The total surface area tA  for N  fins in an array is found using  

 ,t f bA NA A    (2.8) 

where bA  is the surface area of the exposed part of the base of the extended surface. For 

straight rectangular fins with active tip, the efficiency of every fin in the array can be found 

using  

 
tanh

,c
f

c

ml

ml
    (2.9) 

where  cl  is a corrected length found using 

 .
2

c

t
L L    (2.10) 
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Here 𝐿 is the length of the fin, and 𝑡 is the thickness of the fin. If the width of a rectangular fin 

is much larger than its thickness, the parameter 𝑚 can be found using 

 
2

,
h

m
kt

   (2.11) 

where 𝑘 is the thermal conductivity of the material of the extended surface, and ℎ is the heat 

transfer coefficient.  

 

 

Figure 2.4 Different fin configurations. (a) Straight fin of uniform cross section. (b) 

Straight fin of nonuniform cross section. (c) Annular fin. (d) Pin fin.   
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Figure 2.5 Enclosed DC-DC converter. (a) Enclosed DC-DC converter with longitudinal 

air flow heat sink. (b) Enclosed DC-DC converter with lateral air flow heat sink. 

2.2 Network modeling 

2.2.1 Thermal network representation 

In order to design a filter that provides an accurate dynamic spatial thermal estimation 

of power electronics systems, a state space representation of the thermal model is needed [8]. 
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The state space is derived from a directed weighted graph ( , , )G V E W  that can represent the 

interconnected RC thermal model, where {1,2,..., }V n  denotes the set of vertices of a graph 

of n nodes, E  denotes the set of edges that connect adjacent vertices, and W denotes the 

weights of the edges which represent the thermal resistance values between the capacitances 

of the thermal model in the case of RC models. Graph-based modeling has been used in the 

literature in different areas. It was found to be a useful tool for modeling of power electronics 

systems [18], thermal modeling of buildings [19][20][21], among many other applications. The 

main advantage of this modeling technique is that it captures the structure of the conservation 

of mass and energy laws in these systems [22].    

The RC thermal models described in the previous subsections can be represented by 

directed weighted graphs in which each vertex represents a capacitor of the RC thermal model, 

each directed weighted edge represents a conduction or a convection resistance of the RC 

thermal model, and each weight represents the value of the corresponding resistance of the RC 

thermal model. The ambient atmosphere is modeled by a single node or vertex with an infinite 

capacitance in the graph-based themal model. The direction of the edges represents the 

direction of positive heat flow between the corresponding adjacent nodes. The resistance 

values of the edges are equal in both directions, i.e. ij jiR R on the edge ( , )i j . However, since 

the heat can flow only in one direction (from the higher temperature node to the lower 

temperature node), a direction was assigned to every node in the graph. This makes the graph 

directed. Graph-based model can be used to represent 1-D, 2-D, or 3-D RC thermal models. 

Figure 2.6 shows the 2D graph-based model representation of the 2-D RC thermal model of 

Figure 2.3. The edges in Figure 2.6 represent the conduction along the x and y direction 

between adjacent nodes, in addition to convection from each node to the ambient atmosphere. 

The ambient atmosphere is modeled by the center node Ta. 

The state space thermal models for power electronics systems that are enclosed with a 

heat sink are derived from 3-D RC thermal models. The thermal networks for those systems 

can also be represented by directed weighted graphs ( , , )G V E W . However, in this case the 

edges of the thermal networks represent conduction in the x, y, and z directions. Figure 2.7 

shows an example of a 3-D graph-based thermal model. The first vertical layer that contains 

the first 4 nodes represents the power electronics system, i.e. the inverter of a power electronics 
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system that is enclosed with a heat sink. The current source connecting to the first node in the 

inverter layer represents a source of heat that exists in the corresponding location of the 

inverter. The second vertical layer that contains the second 4 nodes represents the nodes of the 

heat sink. The edges in each of the two vertical layers represent conduction resistances in the 

x and y directions between adjacent nodes. The edges that connect the two vertical layers 

represent the conduction resistances in the z direction between the inverter and the heat sink. 

Furthermore, the layer that represents the heat sink contains additional edges connected to the 

ambient atmosphere node. Those additional edges represent the convection resistances from 

the heat sink to the ambient atmosphere.  

The dynamic thermal behavior of the power electronics systems is then obtained by 

applying the conservation of energy law on every vertex in the graph-based model. The same 

strategy can be applied on 1-D, 2-D and 3-D graph-based thermal models. The energy balance 

equation states that the thermal energy stored in each node is a function of the thermal energy 

entering the node, the thermal energy leaving the node, and the thermal energy generated in 

that node. Therefore, the dynamics of the system are represented by a system of coupled first 

order differential equations given by 

 ,i
i i

dT
C q

dt
   (2.12) 

where iC  denotes the thermal capacitance of node i , iT  denotes the temperature of node i , 

and iq  denotes the net heat flow into node i . 

 

Figure 2.6 Example of a 2-D graph-based thermal model. 
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Figure 2.7 Example of a 3-D RC graph-based thermal model. 

The net heat flow iq  into node i  is the difference between the heat flow entering into 

node i  and the heat flow leaving from node i . The heat flow entering into a node can be 

through conduction from adjacent nodes or through heat generation sQ  from the active 

component represented by the corresponding node in the graph-based thermal model. The heat 

flow leaving from a node can be through conduction from that node to the adjacent nodes or 

through convection from that node to the ambient atmosphere. The heat flow from node i  to 

node j  is calculated as ( ) /i j ijT T R , where 𝑅𝑖𝑗 can be the conduction resistance or the 

convection resistance. The set of the coupled differential equations can be expressed in a state 

space form as 

 ,x Ax Bu V d     (2.13) 

where the state vector x  represents the temperature of each node or vertex of the graph-based 

model, the matrix [ ]ijA a  represents the system dynamics, the vector u  represents the heat 

input from the heat generating components in the system, and d  represents the disturbance to 
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the system which is the ambient atmosphere in this case. The state space derivation from the 

graph-based thermal model will be explained in more detail in the following subsection. 

2.2.2 State space model 

By applying the conservation of energy on every vertex in the graph-based thermal 

model of the power electronics system, the linear state space thermal model (2.13) can be 

obtained. The state space thermal model of the 2-D graph-based model shown in Figure 2.6 

will be obtained as an example of this concept. The graph-based thermal model has 4 nodes. 

Therefore, the state space thermal model will have 4 states. By applying the conservation of 

energy equation on each vertex of the 2-D graph-based thermal model, the system of 4 first 

order coupled differential equations shown below will be obtained. 

 3 1 12 1
1 1

12 13 1

a
s

c

T T T TT T
C T Q

R R R

 
      (2.14) 
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Rearranging these 4 differential equations, the linear state space model (2.13) can be obtained, 

where 
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Therefore, it can be seen that the system dynamics matrix [ ]ijA a  is given by 
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  (2.18) 

The previous example shows how to derive the linear state space thermal models of 2-

D systems. However, the dynamic thermal behavior of 3-D systems is obtained using (2.12) 

also which results in a system of coupled first order differential equations that can be 

rearranged in the same form as that of the 2-D state space thermal models. Hence, the state 

space model structure of 3-D systems is similar to that of 2-D systems.   

It will be shown in Chapters 5 and 6 that an actual power electronics system usually 

has many components. Discretizing the system at the level of the functional elements will result 

in a large number of capacitors in the RC thermal model which means a large number of nodes 

in the graph-based thermal model. Therefore, the resulting state space thermal model of an 
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actual power electronics system will have a large number of states which imposes a high 

computational cost. Also, it will be problematic to implement such a complex system in an 

online estimator. Hence, a method that reduces the complexity of the thermal model while 

preserving its accuracy and structure is needed. 
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Chapter 3     

Model Order Reduction 

3.1 Literature review 

The design, analysis, optimization, control and estimation of complex physical systems 

require the use of a virtual model that captures, as accurately as possible, the behavior and 

different interactions of the system. Virtual models or computer simulations are useful in 

reducing the time needed to obtain the output of a system that might take hours, weeks, or even 

days to get if the experiment was performed on the physical system directly. Furthermore, 

running the experiment on the physical system directly might be costly, dangerous, and even 

impossible in some cases. Therefore, the need of realistic computer simulations of complex 

systems is increasing [23].  

In 1965, Moore predicted that computer speed will double every 18 months [24]. Figure 

3.1 shows the increase in the number of transistors in typical Intel chips as a function of years 

[25]. The figure shows that there are 42 million transistors in the Pentium 4 chip compared to 

less than 10 thousand transistors in chips that were almost 30 years old at that time. This 

significant increase in the computational power made it possible for researchers to create more 

realistic models that include complex interactions of different domains of the physical system.  

However, even with the increase of the computational power, the complexity of the 

highly realistic models can become problematic in some cases. Modeling all the interactions 

of physical systems in full detail increases significantly the dimensionality of the model and 

might require unrealistic storage capacity and computational power. Therefore, decreasing the 
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dimensionality or the complexity of the simulation model is crucial for the analysis or control 

of some physical phenomena [26].  

It might be reasonable to think that decreasing the complexity of the model decreases 

its accuracy. However, it was shown that in most cases it is possible to neglect some details of 

the physical system and still be able to extract the output or the information needed from the 

model. Figure 3.2 shows a graphical representation of the model order reduction concept [27]. 

It can be seen that many details of the model can be neglected, but the final result can still be 

captured. Operational model order reduction depends on the intuition of the researcher in order 

to neglect some details in the model and hence obtain a relatively low dimensional model. This 

approach is used for example to model the blood flow in the entire human body [27]. 

In some other applications, it is not possible to reduce the complexity of the model a 

priori, and a high dimensional model that requires huge storage capacity and computational 

power is obtained. Therefore, control design and filtering become computationally expensive 

or even impossible. In such cases, model order reduction (MOR) techniques are used.  

 

 

Figure 3.1 The increase in the number of transistors in typical Intel chips as a function 

of years. There are 42 million transistors in the Pentium 4 chip [25]. 
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MOR is a huge research field. Researchers have already developed many methods to 

reduce the complexity of a model while preserving its input-ouput behavior. Every MOR 

technique is useful for a certain application but the main objective of all the MOR techniques 

is to obtain a simpler model while preserving, as much as possible, the details of the original 

model. 

Besides the significant decrease of the dimensionality of the original highly complex 

large-scale model, MOR techniques should have some other properties such as having a good 

representation of the physical system, preserving some system properties like stability and 

passivity, having a small approximation error, having a global error bound, and being 

numerically stable, and efficient [26]. 

 

 

Figure 3.2 Graphical representation of the model order reduction concept [27]. 

 

Research has been done for developing MOR techniques for linear systems and 

nonlinear systems. Hence, MOR techniques can be classified under methods suitable for linear 

systems and methods suitable for nonlinear systems. Figure 3.3 shows that singular value 

decomposition (SVD) based methods, moment matching methods, modal based reduction 

methods, and hybrid methods can be classified under MOR techniques used for linear systems. 

On the other hand, proper orthogonal decomposition (POD) methods, and the trajectory 

piecewise linear method can be used for MOR of nonlinear systems.  

The problem formulation of MOR is as follows. Given the following dynamical system  
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where 
nx R  . Find a lower dimensional system  
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where ˆ mx R , with m n , while preserving the input-output relationship.  

There are many MOR methods based on the singular value decomposition approach. 

The Hankel norm approximation method is a well known MOR technique based on SVD 

[28][29].  This method was introduced in 1971 and is based on minimizing a certain norm of 

the error between the full order model and the reduced order model. Balanced truncation, 

introduced by Moore in 1981, is another famous MOR technique based on SVD. Balanced 

truncation is a projection based method in which the system is transformed into a basis in which 

the states that are difficult to reach are also difficult to observe. The reachability and the 

controllability grammians are diagonalized. Then the method is applied by truncating the states 

that are hard to reach and simultaneously hard to observe [30][31] . Another method that falls 

under SVD based methods is the singular perturbation method [32]. The main difference 

between the singular perturbation method and the direct truncation method is that the latter 

method tends to have small errors at high frequencies and larger errors at low frequencies, 

while the former method tends to have large errors at high frequencies and smaller errors at 

low frequencies.  

Another set of methods that can be used for the model order reduction of linear systems 

is the moment matching methods, known as the Krylov subspace methods [33], or Pade 

approximation methods [34]. These methods are projection based methods. In these methods, 

the transfer function is expanded using a Laurant series around a given point 0s  in the complex 

plane [26]  as shown below.  

 2
0 0 1 2( ) ....G s             (3.3) 
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t  are the moments of the linear system at the expansion point. The Laurant series of the 

reduced order model is given as 

 2
0 0 1 2

ˆ ˆ ˆ ˆ( ) ....G s             (3.4) 

The method is applied by matching k moments such that 

 , 1,2,...,i i i k     (3.4) 

where  k n . 

 

 

Figure 3.3 Classification of model order reduction techniques.  
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Using modal techniques, a closed-form formulation can be obtained in the reduction of 

linear systems. Before deciding on the modal technique used to reduce the complexity of the 

large-scale model, the user needs to determine the order of the reduced order model, the 

dominant modes, and the most sensitive state variables that should be kept in the reduced order 

model. There are many methods that fall under modal techniques. However, the main concept 

behind all these methods consists of neglecting the dynamics of the fast nodes in the large-

scale model. [35] reviews six commonly-used modal based model order reduction techniques.  

Furthermore, reducing the complexity of large-scale models can be done using a 

combination of several model order reduction techniques methods. This approach is known as 

a hybrid method. For example, Krylov subspace methods can be combined with other MOR 

techniques to reduce the number of states of the model [36]. Using hybrid methods, the user 

can take advantage of the benefits of each model order reduction technique used which makes 

hybrid MOR methods suitable for various applications.  

Some model order reduction techniques can be applied to nonlinear systems. Proper 

orthogonal decomposition (POD) is an example of a MOR technique that can be used to reduce 

the complexity of large-scale nonlinear systems. POD can be seen as a MOR technique or as a 

data analysis tool. POD is also known as Principal Component Analysis or the Karhunen-

Loeve Decomposition [37]. It should be noted that the discrete version of the POD is the SVD. 

This method consists of approximating a time-varying function over some domain of interest 

as the sum of some special ordered orthonormal functions called the proper orthogonal nodes 

of the time-varying function. The large-scale model is then reduced by representing it with its 

most energetic nodes.  

Another MOR technique that can be applied to large-scale nonlinear models is the 

trajectory piecewise linear MOR technique. In this technique, the large-scale nonlinear system 

is represented by a piecewise linear system and then the reduction of these pieces is done with 

a Krylov projection [38].  

A lot of research is being conducted in the MOR field as the need to analyse and control 

highly complex physical systems involves the use of low dimensional models that do not 

require huge storage capacity and computational cost. Hence, there is a huge number of MOR 

techniques that were developed. Each method is useful for a specific application. It should be 
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noted that many of the MOR techniques that were originally created for reducing the 

complexity of linear systems were extended to be applied on nonlinear systems as the need to 

use more realistic models requires including nonlinearities in the system. For instance, a lot of 

research has been done to extend the balanced truncation MOR technique towards nonlinear 

systems [39], [40], [41], [42].  

In the next section, a MOR technique that reduces the complexity of large-scale models 

while preserving the structure or the physical meaning of the states in the reduced order model 

will be presented. The importance of this property in the MOR techniques will become clear 

in the 2-dimensional and 3-dimensional case studies presented in the upcoming chapters.  

3.2 A structure-preserving model order reduction technique 

3.2.1 Advantage of a structure-preserving MOR technique 

A very brief overview of some commonly used MOR techniques was presented in the 

previous section. The focus of these MOR techniques was to reduce the complexity of the 

large-scale models while preserving the input-output behavior of the system in addition to 

some other properties like passivity and stability. However, preserving the structure of the full 

order model was not presented as an important property that should be found in these MOR 

techniques.  

In chapter 2, it was shown that RC models can be used to simulate the dynamic thermal 

behavior of power electronics systems with good accuracy and relatively small computational 

cost compared to other numerical thermal analysis methods such as finite element analysis, for 

example. However, the RC thermal models of actual power electronics systems, i.e. an inverter 

or a set of coupled inverters, result in a large number of capacitors. This will result in a large 

number of states when the RC model is converted to its state space form. Therefore, a MOR 

technique that reduces the complexity of the RC thermal model, or the number of states of the 

state space thermal model, is needed especially when 3-dimensional RC thermal modeling is 

used.  

MOR of RLC (resistor-inductor-capacitor) circuits have been extensively studied in the 

literature in order to generate reduced order macroscale models [43], [44], [45], [46]. However, 
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an ideal MOR technique for RLC circuits would result in a reduced order model in the form of 

a RLC circuit [47], [48].  This is the objective of structure-preserving MOR techniques. This 

feature in the structure-preserving MOR techniques is known by reciprocity.  

The dynamic thermal estimation of power electronics systems requires the use of the 

less general from of RLC ciruits. More specifically only RC circuits will be used to model the 

dynamic thermal behavior of the power electronics systems. Hence, a structure-preserving 

MOR technique for RC circuits will be used in order to obtain a lower dimensional RC circuit 

that is easier to work with in a filter or a controller.  

This reciprocity between the full order RC thermal model and the reduced order RC 

thermal model will allow the user to analyze the reduced order model as a RC circuit. More 

specifically, the user will be able to analyze and monitor the dynamical thermal behavior of 

every component of the power electronics system using the reduced order RC thermal model. 

This is possible since, as it was shown in the RC modeling section, every component of the 

power electronics system is represented by a specific capacitor in the RC thermal model. 

Therefore, if the states of the reduced order RC thermal model still have their physical 

meaning, the user will be able to track the dynamical thermal behavior of every component of 

the power electronics system using the reduced order RC thermal model.  

Furthermore, the dynamic thermal estimation of power electronics systems requires 

solving a sensor placement problem. The user needs to find an appropriate number and 

placement of temperature sensors that should be used with an observer in order to recreate the 

dynamical thermal behavior of all the states of the power electronics system. Having this 

reciprocity between the full order RC thermal model and the reduced order RC thermal model 

allows the user to use the reduced order RC thermal model to solve the sensor placement 

problem. More specifically, when there is a physical correspondence between the states of the 

reduced order RC thermal model and the power electronics system, the user will be able to 

identify the locations of the temperature sensors on the physical system using the reduced order 

RC thermal model to solve the sensor placement problem. Without this reciprocity, the 

physical locations of the temperature sensors on the power electronics system will be lost. This 

idea will become clear in the upcoming chapters where a 2-dimensional and a 3-dimensional 

case studies are presented. 
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In the next two subsections, a structure-presesrving model order reduction technique 

for RC circuits will be reviewed. This method was previously developed in the literature. The 

technique is based on Markov chain aggregation. The main idea behing this MOR technique 

is to aggregate the capacitors of the full order RC thermal model into “super-capacitors” that 

represent a larger portion of the power electronics system modeled, i.e. the inverter. The 

aggregation of the capacitors will reduce the number of states of the RC thermal model by 

applying a spectral algorithm. The computation steps needed to obtain the reduced order RC 

thermal model will be presented. This method will be applied to reduce the complexity or the 

number of states of the 2-dimensional RC thermal models and 3-dimensional RC thermal 

models. The reduced order RC thermal model will be then used in an observer in order estimate 

the dynamic thermal behavior of all states of the system.  

3.2.2 An aggregation-based model order reduction technique 

The MOR technique used in this work to reduce the complexity of the RC thermal 

models of the power electronics systems is based on the method developed in [48], [49],[50]. 

This method was developed for the reduction of linear systems and was extended for the 

reduction of nonlinear systems. This MOR method is based on the Markov chain aggregation. 

It was previously used to reduce the RC thermal models of buildings. In the linear version of 

the method, the thermal model of the building was represented by a RC thermal model that 

resulted in a linear state space model. To reduce the number of states of the linear state space 

model, the linear thermal model was connected to a Markov chain and was reduced by applying 

the aggregation of Markov chains. In the extended version of the method, the thermal models 

of the buildings were more sophisticated and resulted in a linear part that captures the nodal 

thermal interactions of the building thermal model and a bilinear part that resulted from the 

heat flux into the zone space. To reduce the nonlinear thermal models, their linear terms were 

connected to a continuous time Markov chain and the aggregation method of Markov chains 

was applied. Then the nonlinear term is aggregated based on some optimal coordination.  

The main advantage of this aggregation-based MOR method is that it results in a 

reduced order thermal model that has the same structure as the full order thermal model without 
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computational difficulties. More specifically, the resulting reduced order thermal model has 

the structure of a RC thermal model.  

It was shown that the thermal dynamics of the buildings are similar to a time-

homogeneous Markov chain. However, since the thermal model used to simulate the dynamic 

thermal behavior of the power electronics systems is similar to the thermal model of buildings, 

it is clear that the thermal dynamics of the power electronics systems are also similar to a time-

homogeneous Markov chain. Hence, the thermal model of the power electronics systems can 

be aggregated using Markov chains aggregation techniques. 

It should be noted that this aggregation-based MOR technique is applied on the thermal 

networks that represent the RC thermal models of the power electronics systems. Developing 

a thermal network that represents a RC thermal model was presented in the previous chapter. 

It was shown that a thermal network is represented as ( , , )G V E W  , which is a set of vertices, 

edges, and weights. Each vertex represents a capacitor, each edge represents a resistor, and 

each weight represents the value of that resistance.  

The main idea behind this model order reduction technique is to find an optimal 

partition function :V M  , where {1,2,..., }M m  with m n . The partition function   

reduces the dimension of the state space from n  nodes in the full order model into m  nodes 

in the reduced order model. Each super node has a super capacitance C  and a super-

temperature T . Super nodes are connected by super-resistances R . The super-capacitance and 

the super- resistance are given by 

 ,k ii V
C C


   (3.5) 
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
  (3.6) 

In order to aggregate the nodes of the full order model, the optimal partition function 

  has to be found. This function is difficult to get exactly when the order of the reduced order 

model is greater than 2 which is the general case in these applications. Instead, the reduced 

order model is obtained by applying a spectral algorithm on the second eigenvector of the 

symmetric matrix  
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derived from the thermal network that represents the RC thermal model of the system. Here  

 ( ),diag     (3.9) 

where   is the stationary distribution of the Markov chain, and ( )P t  is the Markov transition 

matrix. It was also shown in the previous chapter that a linear state space model is derived 

from the thermal network of the power electronics systems. Therefore, the Markov transition 

matrix ( )P t  is given by  

 ( ) : .AtP t e   (3.8) 

The stationary distribution of the Markov chain is given in terms of the capacitances by 
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  (3.9) 

The computation steps performed to aggregate the capacitors of the full order RC 

thermal model into super-capacitors in the reduced order RC thermal model will be presented 

in the next subsection.  

3.2.3 Computation steps of the reduced order thermal model 

The reduction of the number of capacitors in the RC thermal model or the number of 

states in the state space form of the thermal model of the power electronics systems is done by 

aggregation in this work. A spectral partitioning algorithm is performed on the second 

eigenvector of (3.7). The computation steps of the algorithm used by this aggregation-based 

MOR technique are as follows. 

1. Compute the symmetric matrix P̂  using (3.7), (3.9), (3.8), and (3.9). 

2. Check the sign of the second eigenvector of P̂ . 

3. Aggregate the spatially adjacent nodes of the thermal network that share the 

same sign into super-nodes. 
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4. Calculate the super-capacitances of the super-nodes using (3.5), and the super-

resistances that connect adjacent super-nodes using (3.6). Internal resistances 

in super-nodes are neglected. 

5. Add the current sources that exist in the same super-nodes into a single current 

source. 

An example of this aggregation-based MOR technique is illustrated in Figure 3.4  below. In 

this figure, a 2-D thermal network is shown. The network is composed of 10 nodes. Based on 

the sign structure of the second eigenvector of the matrix P̂ , every node in the thermal network 

was assigned a sign. The red nodes represent the nodes that share the positive sign according 

to ˆ.P  The blue nodes represent the nodes that share the negative sign. The aggregation 

algorithm states that the spatially adjacent nodes that share the same sign can be aggregated 

into super-nodes. Therefore, it was possible to aggregate the 10 nodes of the full order RC 

thermal model into 4 super-nodes in the reduced order RC thermal model. Each of the 4 super-

nodes has a super-capacitance calculated using (3.5). The external resistances that connect 

super-nodes should be grouped together into super-resistances calculated using (3.6). The 

internal resistances that exist inside super-nodes are neglected. 

 

 

  

Figure 3.4 Graphical illustration of the aggregation-based MOR technique. The 

thermal network was reduced from 10 nodes in the full order thermal model into 4 

nodes in the reduced order thermal model. 
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Chapter 4     

Thermal Estimation 

4.1 Filters 

 Measuring all the states of a dynamical system is essential to control the system, 

monitor its behavior and make sure it does not fail [51]. Using a sensor to measure every state 

in a system is usually expensive or even impossible. For example, using a temperature sensor 

to measure the dynamic thermal behavior of every component in an inverter increases the cost 

of the system significantly, reduces its reliability, and might cause packaging problems [8]. 

Hence, reconstructing the dynamic behavior of all the states of a dynamic system using a small 

number of sensors or a small number of state measurements is often desirable.  

 Observers, filters, or estimators, are dynamical systems that can reconstruct the entire 

state space of a system when some states cannot be measured directly. In most cases, 

measurements of the entire state vector are not available. However, using a state feedback 

control for example requires the knowledge of all the states of a system. In this case, an 

observer can be used to provide information about the missing internal states of the system that 

cannot be measured directly [52]. 

 A lot of research has been done to develop observers and enhance their performance. 

The first attempt to develop an observer is presented in [53] where an observer that reconstructs 

the state vector of a linear state space model was developed. Observers were initially developed 

for linear systems and then extended towards nonlinear systems, nondeterministic systems, 

among many other forms of systems.  
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 Observers can be grouped into two large categories. In the first category, a 

mathematical model of the plant is required to reconstruct the entire state vector. In the second 

category, the input output data is used to estimate the disturbance to the system [54]. A brief 

overview of some types of observers that require the use of a mathematical model to estimate 

the entire state vector will be presented. Two well known observers that belong to this category 

will be reviewed in some detail: the Luenburger observer, and the Kalman filter.  

 The Luenberger observer is a modification of the open-loop observer. The open-loop 

observer is one of the simplest forms of observers that can be used to estimate the state vector 

of a deterministic linear time-invariant system. In this type of observers, only the output of the 

plant is used by the observer to reconstruct the entire state vector. The problem formulation is 

as follows. Given the linear time-invariant system  

 
,

x Ax Bu

y Cx

 


  (4.1) 

where the matrices A , B , and C  are known and deterministic. The input vector u  is known. 

y  is the measurable output vector.  The initial conditions (0)x  are usually unknown. The 

objective of the open loop observer is to estimate a state vector x̂ , such that x̂ x , using the 

output vector y  only. The dynamics of an open-loop observer are given by 

 
ˆ ˆ

ˆ ˆ.

x Ax Bu

y Cx
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
  (4.2) 

  Since both the state space of the original system and the state space of the observer are 

using the same matrices, it can be seen that the estimated state vector converges to the actual 

state vector only if the initial condtions of the plant are known. However, this is usually not 

the case. Figure 4.1 shows a graphical illustration of an open loop observer. Since the observer 

is a dynamical system that has the same dynamics as the original system, it can be seen that 

the output of the observer ŷ  will be equal to the output of the original dynamical system, given 

that the initial conditions of the observer ˆ(0)x  are equal to the initial conditions of the plant 

(0)x . If the initial conditions of the original system and the initial conditions of the observer 

are not equal, the estimated state vector will never converge to the actual state vector. 
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Furthermore, the performance of an observer can be studied in terms of the state estimation 

error. The state estimation error is the difference between the actual values of the states 

obtained from the state space model of the original system and the estimated values of the 

states obtained from the observer. The estimation error is defined as 

 ˆ.e x x    (4.3) 

The goal is to drive the estimation error of the observer to 0. The dynamics of the state 

estimation error of an open-loop observer are given by 

 ˆe x x    (4.4) 

 ˆ( ) ( )e Ax Bu Ax Bu      (4.5) 

 e Ae .  (4.6) 

Therefore, the state estimation error of an open-loop observer converges to 0 only if the original 

system is stable. If the original system is not stable, the state estimation error of the open-loop 

observer diverges. Also, the user has no control over the rate of convergence of the estimated 

states to the actual states [55].  

  

Figure 4.1 Graphical representation of an open-loop observer.  

 A well-known observer that can be used to recover the entire state vector of a system 

with unmeasurable states and unknown initial conditions is the Luenberger observer, also 

known by the closed-loop observer. The Luenberger observer was originally developed for 

deterministic linear time-invariant systems (4.1). Figure 4.2 shows a graphical representation 
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of the Luenberger observer. The main concept behind this closed-loop observer is that the 

difference between the estimated output vector and the actual/true output vector is fed back as 

an input to the observer.  

The dynamics of the Luenberger observer are given by 

 
ˆ ˆ ˆ( )

ˆ ˆ,

x Ax Bu L y y

y Cx

   


  (4.7) 

where L  is the observer gain. The main difference between the open-loop observer and the 

Luenberger observer is the additional term in the observer dynamics equation that represents 

the difference between the actual output vector y and the estimated output vector ŷ  multiplied 

by the observer gain. The problem formulation of the Luenberger observer is follows. Given 

the deterministic linear time-invariant system (4.1), find the observer gain L  such that the state 

estimation error (4.3) converges to 0, i.e. the estimated state vector converges to the actual 

state vector. The dynamics of the estimation error of the Luenberger observer are then given 

by 

 ˆe x x    (4.8) 

 ˆ ˆ( ) ( ( ))e Ax Bu Ax Bu L y Cx        (4.9) 

 ( )e A LC e    (4.10) 

From (4.10), it can be seen that the state estimation error e  tends to 0 as t   when ( )A LC  

is Hurwitz, i.e. all the eigenvalues of A LC  have strictly negative real parts. Therefore, the 

observer gain L  must be chosen such that A LC  is Hurwitz. It should be noted that the 

eigenvalues of ( )A LC  can be placed arbitrarily iff the system is completely observable, i.e. 

the observability matrix is full rank. For the linear time-invariant system (4.1), the 

observability matrix is given by  
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Therefore, it was shown that in the Luenberger observer the need for accurate initial 

conditions is eliminated by the process of feeding back the difference between the actual output 

of the system and the estimated output of the observer as an input to the observer.  

 

 

 

Figure 4.2 Graphical representation of the Luenberger observer. 

It should be noted that the dynamic thermal models of the power electronics systems 

used in this work account for convective heat transfer from the system to the atmosphere. This 

heat transfer mode results in the additional vector d  in the linear time-invariant thermal model 

of the system. The additional vector d  represents the ambient temperature. Hence, the 

dynamics of the thermal model of the power electronics systems will be given by  

 
x Ax Bu Vd

y Cx

  


  (4.12) 
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In this case, the dynamics of the Luenberger observer are given by 

 
ˆ ˆ ˆ( )

ˆ ˆ

x Ax Bu Vd L y Cx
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
  (4.13) 

The dynamics of the state estimation error and the design of the observer gain L  are the same 

as in the case with no disturbances in the system.  

Many extensions have been performed on the original Luenberger observer. The 

observer was extended towards removing the steady state error. This extension of the 

Luenberger observer is known by the proportional integral observer (PIO). This observer has 

an additional integral gain used to reconstruct the disturbances and the unmodeled dynamics 

in addition to the state vector of the system. This observer has more robust estimation 

performance compared to the original Luenberger observer in the presence of unknown 

disturbances in the system [56]. The dynamics of the PIO are given by 

 
ˆ ˆ ˆ ˆ( ) ( )

ˆ ˆ,

ix Ax Bu L y y L L y y

y Cx

     



   (4.14) 

where iL  is the integral gain of the PIO observer.  

Furthermore, the Luenberger observer was extended towards nonlinear systems [57]. 

However, this form of the Luenberger observer is based on the assumption that knowledge 

about the nonlinear plant is available [54]. 

The dynamical systems estimated so far are deterministic, i.e. not stochastic. However, 

there is a type of observers that can be used to estimate the states of a stochastic system. In the 

next section, the well known Kalman filter that can be used to estimate the states of a dynamical 

system using noisy sensor measurements will be reviewed.  

4.2 Kalman filter 

The Kalman filter is a well-known optimal filter for linear systems in the case of 

Gaussian noise. This filter provides optimal estimates by minimizing their mean square error. 

It is a recursive procedure in which only the most recent sensor measurements are needed. 

Hence, it reduces the data storage capacity and the computation requirements needed. The 
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Kalman filter is a popular online processing form that provides very satisfying results in 

practice due to its optimality and ease of implementation.  

The Kalman filter can be used to estimate the states of a discrete time plant with discrete 

time observations. This version of the Kalman filters is known as the discrete Kalman filter. 

Furthermore, the Kalman filter can be used to estimate the states of a continuous time plant 

with continuous time observations. This version of the Kalman filters is known as the 

continuous Kalman filter. Also, the Kalman filter can be used to estimate the states of a 

continuous time plant with discrete time observations. This version of the Kalman filters is 

known as the continuous-discrete Kalman filter [58].  

In addition, many extensions and modifications were applied to the Kalman filter.  The 

extended Kalman filter (EKF) is another version of the Kalman filters that was used to estimate 

the states of nonlinear systems [59].  It was shown later that the EKF might lead to sub-optimal 

estimates and in some cases, it might diverge. The Unscented Kalman filter (UKF) is a more 

recent version of the Kalman filters that can be applied to nonlinear systems and can address 

this issue in the EKF while having the same computational complexity [60]. Also, another 

version of the Kalman filters that deals with the state estimation of nonlinear systems in the 

Ensemble Kalman filter (EnKF). This version of the Kalman filters belongs to the class of 

particle filters [61],[62].  

In this section, a brief overview of the most popular variations of the Kalman filters is 

presented. Next, the continuous-discrete version of the Kalman filters for linear systems will 

be reviewed in more details. This version of the Kalman filters will be used in this work to 

estimate the dynamic thermal behavior of the power electronics systems.    

 4.2.1 Continuous-discrete Kalman filter 

In this section, the continuous-discrete Kalman filter will be presented. This version of 

the Kalman filter is a linear sequential continuous estimation from discrete observations. In a 

continuous-discrete Kalman filter, intermittent observations are easy to handle and sensor 

measurements can be taken at irregularly spaced instants of time. Another advantage of the 

continuous-discrete Kalman filter is that this approach provides optimal state estimates 
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continuously, including the instants between the observations [58]. The dynamics of the 

continuous- time plant are given by (4.1). The discrete-time observations are given by    

 ( ) ( ) ( ),y m Hx m v m    (4.15) 

where ( )y m  is the sensor output, H  is a mapping from the true states into the observed states, 

and (0, )kv N R  is the measurement noise which is assumed to be white noise with zero mean 

and covariance kR . The computational cycle of the sequential estimation process of a 

continuous-discrete Kalman filter is shown in Figure 4.3. The Kalman filter can be seen as a 

predictor-corrector with a time update stage and a measurement update stage. In the time 

update stage, the state estimate is called a priori and represents a predicted value of the true 

state. In the measurement update stage, the state estimate is called a posteriori and represents 

a corrected version of that prediction. The a priori state estimate ˆmx  is obtained by propagating 

the a posteriori state of the previous cycle 1ˆmx  through the state transition matrix 1( , )m mt t . 

The a priori ˆmx  is given by  

 1 1ˆ ˆ( , )m m m mx t t x 
    (4.16) 

 where the state transition matrix is defined by  

 
( , )

( , )
d t

A t
dt





  .  (4.17) 

The a posteriori ˆmx  is then obtained by updating ˆmx   by the observations at time .mT

The recursive updating procedure is given by 

 ˆ ˆ ˆ( ( ) ).m m m mx x K y m Hx       (4.18) 

The Kalman gain matrix mK  that results in the minimum variance estimate is given by 

 1[ ] ,T T
m m m mK P H HP H R      (4.19) 

where the error covariance matrix mP  is the solution of 
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Figure 4.3 Graphical illustration of the computational cycle of the continuous-discrete 

Kalman filter.  

A detailed derivation of the continuous-discrete Kalman filter is presented in [58]. This 

filter, along with an optimal number and optimal placement of temperature sensors, will be 

used in chapters 5 and 6 to obtain accurate dynamic temperature estimation of an actual power 

electronics system. It should be also noted that the continuous-discrete Kalman filter is the 

most intuitive version of the Kalman filters. In fact, the dynamics of the thermal model of the 

power electronics systems are continuously changing with time. Furthermore, the sensors 

measurements are obtained only at discrete instants in time. Hence, the dynamical estimation 

thermal problem of the power electronics system is a continuous- discrete problem by nature.  

4.3 Optimal sensor placement 

 Increasing the number of sensors in a system increases the accuracy of the estimation 

process. However, it increases the cost of the system, interferes with its layouts, and might 

cause packaging problems. Therefore, optimizing the number of sensors is always desirable. 

Furthermore, the locations of the sensors in the system affect the accuracy of the estimation 

process as well. Placing the sensors at random locations might result in poor state estimates 

and consequently poor control designs. Therefore, finding the optimal locations of the sensors 

in a system is also crucial for the effectiveness and accuracy of the estimation process [63]. 

An optimization process with respect to the number and placement of temperature 

sensors was performed in this work. The optimization formulation has been done with the 
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underlying assumption that there be can a maximum of 1 sensor per each state. It means that a 

particular state may either have a sensor or not. Therefore, it is a binary condition.  

There are many strategies that can be used to solve the optimal sensor placement 

problem. These strategies include integer programming methods, continuous relaxation 

methods, or even intuition-based methods [64]. The strategy adapted to solve the optimal 

sensor placement problem in this work is related to information-based performance metrics. 

More specifically, sensors can be placed based on the measure of the degree of observability 

of a dynamical system. The RC thermal model used in this work to model the dynamic thermal 

behavior of the power electronics systems is a linear time invariant model. Therefore, the linear 

observability Gramian can be used in solving the optimal sensor placement problem. The linear 

observability Gramian is given by 

 ,

0

TA t T At
o linearW e H He dt



    (4.21) 

There are many metrics by which one can determine the degree of observability of the 

states of a dynamic system  [63], [65]–[68]. The trace analysis of the observability Gramian 

[69], [70] and the condition number of the observability Gramian have been considered as 

performance metrics in this work [71]. The trace of the observability Gramian refers to the sum 

of all Gramian eigenvalues. The trace of the observability Gramian is given by 
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Maximizing the trace of the observability Gramian increases the system observability.  

On the other hand, smaller observability Gramian condition numbers correspond to 

improved observability [71]. The condition number of a matrix refers to the ratio of its largest 

and smallest magnitude eigenvalues. The condition number of the observability Gramian using 

logarithmic scaling is given by   
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Maximizing the trace of the observability Gramian or minimizing the condition number 

of the observability Gramian result only in an optimal placement of a specific number of 

sensors. To find the optimal number of sensors, the state estimation error obtained from the 

continuous-discrete Kalman filter will be used. A comparison of the results of the optimal 

sensor placement problem obtained from the trace of observability Gramian and from the 

condition number of observability Gramian will be performed in chapter 5. Also, the analysis 

used to find the optimal number of temperature sensors will be presented in the case studies in 

chapter 5 and chapter 6.   
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Chapter 5     

Dynamic Thermal Estimation of 2-D Power 

Electronics Systems 

5.1 System description 

 The thermal estimation technique developed in this work was applied on a 2 kW, dc-

ac,  single-phase, 7-Level flying capacitor multilevel inverter [72] shown in Figure 5.1. This 

inverter is a highly power-dense device (216 W/in3, input Vmax = 400V). The main components 

of the circuit are Gallium Nitride (GaN) gate drivers, GaN transistors, ceramic capacitors, and 

Adum5210 digital isolators with integrated dc-to-dc converters. The Adum5210 devices are 

isolated level shifters that power the gate drivers. The ceramic capacitors help transfer 

electrical energy and reduce stress on switching devices. The main sources of heat in the board 

are the 12 GaN transistors. It should be noted that the temperature of the GaN transistors 

generally increases as power levels increase. In contrast, the temperature of the Adum5210 

does not change significantly with the power level due to constant control losses.  

The main printed circuit board (PCB) that represents the blue part of the board shown 

in Figure 5.1 is a 4-layer board composed of four layers of copper, three layers of a glass-

reinforced epoxy laminate FR4, and two solder mask layers. The daughterboard that represents 

the red part of the board shown in Figure 5.1 is a 2-layer board composed of two copper layers, 

one FR4 layer, and two solder mask layers. The structure and thickness of the layers of the 

main board and the daughterboard are shown in Figure 5.2.  
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Figure 5.1 A 2 kW, dc-ac, single-phase, 7-level flying capacitor multilevel inverter [64].   

 

 

Figure 5.2 The structure and thickness of the layers of the main ciruit board (the blue 

part in Figure 5.1) and the daughterboard (the red part in Figure 5.1). The main circuit 

board is a 4-layer board and the daughterboard is a 2 layer-board.    
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5.2 2-D full order RC thermal model 

 The multilevel inverter shown in Figure 5.1 is open to the environment, i.e. not 

enclosed with a heat sink. Therefore, there is no conductive heat transfer in the z-direction in 

the system. However, there is conductive heat transfer in the x and y directions along the 

inverter. Hence, the thermal dynamics of the inverter shown in Figure 5.1 will be modeled 

using a 2-dimensional (2-D) RC thermal model. Using a 2-D RC thermal model, conduction 

along the x and y directions in the plane of the inverter, in addition to convection from the 

inverter to the environment, will be considered.  

 The first step in designing a RC thermal model is to discretize the inverter into pixels 

and assign a capacitance to each pixel. The thermal capacitance represents the ability of that 

corresponding part of the board to store heat in it. Also, the thermal capacitance models the 

thermal lag that occurs before the temperature of the system reaches a steady state value 

following a step change in the heat input. The discretization of the board is specified by the 

user. In this work, for the purpose of reducing the complexity of the full order thermal model, 

the discretization of the board was chosen at the level of the functional elements, i.e. each 

functional element of the board will be represented by capacitor in the RC thermal model. 

Adjacent capacitors will be connected to each other through resistances that represent the 

conduction resistances along the x and y direction since the RC thermal model is 2-

dimensional. Figure 5.3 shows the discretization of the inverter.  

The next step in designing a RC thermal model is to calculate the resistances and 

capacitors values. This step depends on the geometric properties and the material properties of 

the pixels. In particular, the length, the width, and the thickness of the pixels are required to 

calculate the capacitance and resistance values. The dimensions of an inverter sample have 

been enumerated. Numerical names were applied to the grid regions on the inverter as shown 

in Figure 5.4. The vertical (length) and horizontal (width) dimensions were acquired using 

electronic calipers. The dimensions for all the grid regions are shown in Table 5.1. 

Furthermore, the thermal conductivity, the specific heat coefficient, and the density of the 

material of the board are needed. As shown in Figure 5.2, the board is composed of copper and 

FR4. Table 5.2 shows the material properties for FR4 and copper. It should be noted that the 
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multilayered structure was treated as a homogeneous material with an in-plane effective 

thermal conductivity given by  

 1
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N
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where iK  is the thermal conductivity of a single layer, it  is the thickness of the corresponding 

layer, and N  is the total number of layers. The effective thermal capacitance of the 

multilayered structure is the sum of the thermal capacitance of each layer, 
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where iC  is the thermal capacitance of a single layer.  

 

Figure 5.3 The discretization of the 2 kW multilevel inverter. The inverter was 

discretized at the level of the functional element. The discretization resulted in 39 

capacitors in the 2-D RC thermal model.   
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Figure 5.4 Applying labels R1 to R11 to the given inverter grid in order to extract the 

geometric properties of the pixels. 

 

The conduction resistances along the x and y directions, the convection resistances and 

the capacitance values of each pixel are calculated according to the formulas presented in 

chapter 2. Using the 2-dimensional RC thermal model, the dynamic thermal behavior of the 

multilevel inverter can be modeled in Simscape in SIMULINK as a circuit of capacitors and 

resistors. Another strategy that can be used to obtain the dynamic thermal behavior of the 

multilevel inverter using the 2-dimensional RC thermal model is to derive the linear state space 

thermal model of the inverter by applying the conservation of energy principle on every vertex 

in the graph-based thermal model of the inverter. This strategy will be presented in the next 

section. The theoretical dynamic thermal behavior of the inverter obtained from the 2-

dimensional RC thermal model will be presented. Furthermore, the Simscape model of the 2-

D RC thermal model of the inverter will be shown. Both models, i.e. the Simscape model and 

the state space model, have the same exact results. 

 



 50  

 

 

Table 5.1 Dimesions for the inverter regions defined in Figure 5.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.2 Material properties for FR4 and Copper. 

Material 

Specific 

Heat   

(KJ/g*C) 

Thermal 

Conductivity   

(W/m*K) 

Density 

(g/cm^3) 

Copper 0.385 to 0.4 385 to 390 8.9 to 8.96 

FR4 0.6 to 0.95 0.25 to 0.3 1.85 to 1.91 

 

 

  

  (mm) (mm) 

Region # 
Length          
(Vertical 

Dimension) 

Width 
(Horizontal 

Dimension) 

Total Board 47.32 67.04 

1 47.32 3.73 

2 12.86 10.33 

3 4.09 10.33 

4a 4.60 10.33 

4b 4.60 10.33 

5 4.12 10.33 

6a 4.60 10.33 

6b 4.60 10.33 

7 4.09 10.33 

8 12.86 10.33 

9 16.45 13.12 

10 4.55 13.12 

11 5.34 13.12 
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5.2.1 2-D full order RC thermal model results 

 The dynamic thermal behavior of the multilever inverter shown in the previous section 

can be obtained by deriving a linear state space thermal model of the system. The linear state 

space model is derived from a graph-based model that represents the 2-dimensional RC thermal 

model of the multilevel inverter. Figure 5.5 shows the 2-dimensional graph-based mode of the 

multilevel inverter. As it is shown in Figure 5.3, the inverter was discretized into 39 pixels. 

Hence, the graph-based model has 39 vertices. Each vertex represents the thermal capacitance 

of the corresponding pixel of the inverter. The edges shown in Figure 5.5 represent the 

conduction resistances along the x and y directions. It should be noted that there is a convection 

resistance from every vertex of the graph to a voltage source that represents the ambient 

temperature. These convection resistances are not shown in Figure 5.5 for simplicity. The 12 

GaN transistors are the main heat sources in the multilevel level. These components have 

additional current sources connected to the vertices that represent their thermal capacitance in 

the graph-based thermal model.  

 The linear state space model of the multilevel inverter will have 39 states. Each state 

represents the dynamic temperature profile of a pixel. To derive the state space thermal model 

of the multilevel inverter the conservation of energy principle is applied on every vertex of the 

2-D graph-based thermal model. The conservation of energy principle is as follows. 

 _ _ _ .Energy stored Energy entering Energy leaving    (5.3) 

The energy enters a node through conduction in the x or y directions from adjacent nodes or 

from the current source connected to it. The energy leaves a node either through conduction in 

the x or y direction to adjacent nodes or through convection to the environment. Equation (5.4) 

is an example of the conservation of energy applied on vertex 1 in the graph-based thermal 

model of the multilevel inverter.  

 8 1 19 1 32 1 35 1 12 1 11 1 24 1
1 1

1,2 1,8 1,11 1,19 1,24 1,32 1,35 1

,a

c

T T T T T T T T T TT T T T T T
C T

R R R R R R R R

      
         

 (5.4) 
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where ,i jR  represents the conduction resistance between nodes i and j , 1C  represents the 

thermal capacitance of vertex 1, 1T  represents the temperature of vertex 1, and 1cR  represents 

the convection resistance from vertex 1. The full set of equations for the 39 vertices is shown 

in the appendix. 

 

Figure 5.5 2-D graph-based thermal model of the multilevel inverter shown in Figure 

5.3. The 39 vertices represent the thermal capacitances of the 39 pixels of the inverter. 

The edges that connect adjacent vertices represent the conduction resistances in the x 

and y directions. The convection resistances that connect every vertex of the graph to a 

voltage source that represents the ambient temperature are not shown in the figure for 

simplicity. The heat sources that represent the 12 GaN transistors are represented by 

the 12 current sources in the graph-based model.  
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 Rearranging the terms in the 39 equations of the dynamic thermal behavior of the 

multilevel inverter, a linear state space model of the form  

 aT AT Bu VT     (5.5) 

is obtained. u  represents the heat input generated from the current sources, T  represents the 

temperature of every pixel, and aT  represents the ambient temperature. It should be noted that 

the ambient temperature represents a disturbance to the system. The dynamic thermal behavior 

of the full order (39 states) RC thermal model is shown in Figure 5.6. However, 39 is a large 

number of states if this model is used in a filter. Therefore, a structure-preserving aggregation-

based model order reduction technique will be used to reduce the number of states of the full 

order RC thermal model while preserving its accuracy and structure. Also, it was mentioned 

in the previous section that the dynamic thermal behavior of the inverter can be obtained by 

modeling a circuit of capacitors and resistors in Simscape in Simulink. Figure 5.7 shows the 

2-dimensional RC thermal model of the multilevel inverter modeled in Simscape in Simulink. 

The figure shows how the first row of the inverter that was discretized into 7 pixels is 

represented by 7 capacitors in the RC thermal model. The capacitors are connected in the x 

and y directions through conduction resistances. Also, every capacitor is connected to a voltage 

source through a resistor that represents the ambient temperature. 

 

Figure 5.6 Dynamic thermal behavior of the full order RC thermal model (39 states). 



 54  

 

Figure 5.7 Modeling the 2-dimensional RC thermal model in Simscape in Simulink.The 

thermal model is modeled as a circuit of resistors and capacitors. The inverter is 

discretized into 39 pixels. Hence, the RC circuit is composed of 39 capacitors. The 

spatially adjacent capacitors are connected in the x directions through resistances that 

represent conduction resistance in the x directions. Also, the spatially adjacent 

capacitors are connected in the y direction through resistances that represent 

conduction resistance in the y direction. Every capacitor is connected to a voltage 

source that represents the ambient temperature through a convection resistance.  
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5.3 2-D reduced order RC thermal model 

 The model order reduction technique used to reduce the number of capacitors in the 

full order 2-dimensional RC thermal model is the structure preserving aggregation-based 

model order reduction technique presented in chapter 3. The first step of the algorithm of this 

method is to assign a sign to every vertex in the graph-based thermal model of the system 

according to the sign structure of the second eigenvector of the symmetric matrix P̂ . The 

spatially adjacent nodes that share the same sign can be aggregated together into super-nodes. 

The aggregation structure is specified by the user if the spatially adjacent nodes share the same 

sign. Table 5.3 shows the sign structure of the second eigenvector of the P̂  matrix. Figure 5.8 

shows the 2-dimensional full order graph-based thermal model of the multilevel inverter with 

a sign assigned to every vertex in the graph according to the sign structure of the second 

eigenvector of the P̂  matrix. The red vertices share the negative sign and the white vertices 

share the positive sign. Figure 5.9 shows the 2-dimensional reduced order graph-based thermal 

model of the multilevel inverter. The 39 nodes of the full order RC thermal model were 

aggregated into 9 super-nodes in the reduced order RC thermal model. The main advantage of 

this aggregation-based model order reduction technique is that it preserves the physical 

correspondence between the original full order system and the reduced order model. More 

specifically, the reduced order model is still a RC thermal model. Each super-node represents 

the thermal capacitance of a specific portion of the multilevel inverter. Furthermore, the 

reduced order RC thermal model can still simulate the dynamic thermal behavior of the 

multilevel inverter with good accuracy. Figures 5.10-5.14 show the states of the reduced order 

RC thermal model (super-nodes) versus their corresponding states in the full order RC thermal 

model. It can be seen that, the error between the super-nodes of the reduced order thermal 

model and their corresponding nodes in the full order thermal model is less than 3oC.   

 Therefore, using this aggregation-based model order reduction technique, the 

complexity of the RC thermal model was reduced from 39 states in the full order RC thermal 

model to 9 states in the reduced order RC thermal model while preserving the accuracy of the 

thermal model and the physical meaning of the states in the reduced order thermal model.  
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The next step is to estimate the dynamic thermal behavior of the multilevel inverter 

from the reduced order RC thermal model using an optimal number and an optimal placement 

of temperature sensors in a continuous-discrete Kalman filter.  

 

Table 5.3 The sign structure of the second eigenvector of the P̂  matrix. Each vertex of 

the 2-D full order thermal network will be assigned a sign accordingly. 

1 -0.01086 21 0.311361 

2 -0.0186 22 0.568512 

3 -0.03063 23 0.113749 

4 -0.05283 24 0.068634 

5 -0.07079 25 0.068642 

6 -0.08474 26 -0.02265 

7 -0.08273 27 0.158162 

8 0.069911 28 0.158157 

9 0.160387 29 -0.06227 

10 0.024707 30 0.009841 

11 0.069924 31 0.009828 

12 0.069933 32 0.068619 

13 -0.01858 33 0.158127 

14 0.160421 34 0.009812 

15 0.160417 35 -0.02037 

16 -0.05705 36 -0.0349 

17 0.02473 37 -0.05814 

18 0.024715 38 -0.0759 

19 0.159179 39 -0.08709 

20 0.555742 
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Figure 5.8 The 2-dimensional full order graph-based thermal model of the multilevel 

inverter with a sign assigned to every vertex according to the sign structure of the 

second eigenvector of the P̂  matrix. The red vertices share a negative sign and the 

white vertices share a positive sign. The spatially adjacent nodes that share the same 

sign can be aggregated together into super-nodes.  
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Figure 5.9 The 2-dimensional reduced order graph-based thermal model of the 

multilevel inverter. The 39 nodes of the full order RC thermal model were aggregated 

into 9 super-nodes in the reduced order RC thermal model. Each super-node represents 

a specific portion of the inverter.  
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Figure 5.10 First and second states of the reduced order RC thermal model vs their 

corresponding states in the full order RC thermal model. 

 

Figure 5.11 Third and fourth states of the reduced order RC thermal model vs their 

corresponding states in the full order RC thermal model. 
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Figure 5.12 Fifth and sixth states of the reduced order RC thermal model vs their 

corresponding states in the full order RC thermal model. 

 

 

Figure 5.13 Seventh and eighth states of the reduced order RC thermal model vs their 

corresponding states in the full order RC thermal model. 
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Figure 5.14  Ninth state of the reduced order RC thermal model vs its corresponding 

states in the full order RC thermal model. 

5.4 Sensor placement optimization  

 Finding the optimal number and the optimal placement of the temperature sensors that 

should be used in the continuous-discrete Kalman filter is an essential task of the dynamic 

thermal estimation technique. Reducing the number of sensors in the power electronics system 

reduces its cost, increases its reliability, and prevents packaging problems.  

 The optimal placement of temperature sensors was found using two information-based 

performance metrics: the observability Gramian condition number and the observability 

Gramian trace. Maximizing the trace of the observability Gramian or minimizing the 

observability Gramian condition number result in the optimal placement for a specific number 

of temperature sensors. However, measures based on Gramian condition number are limited 

in their ability to get information from the entire range of states of the system. The trace of the 

observability Gramian metric does not have this limitation.  

 Since the super-nodes of the reduced order thermal model have a physical meaning, 

placing sensors on the states of the reduced order model is equivalent to placing sensors on 

specific components in the inverter. This is the main advantage of using a structure-preserving 

model order reduction technique. Tables 5.4 and 5.5 show the optimal sensor locations in the 

reduced order model using the trace of the observability Gramian and the logarithm of the 

condition number of the observability Gramian as a trade-off respectively. 
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Table 5.4 Optimal sensor locations for the reduced order RC thermal model using the 

trace of the observability Gramian as a trade-off.  

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.5 Optimal sensor locations for the reduced order RC thermal model using the 

logarithm of the condition number of the observability Gramian matrix as trade-off. 

 

 

 

Number of sensors State Locations Trace of Obs. Gramian Matrix 

1 1 10.0148 

2 1,2 20.029 

3 1,2,6 27.1776 

4 1,2,6,7 34.0721 

5 1,2,5,6,7 40.9665 

6 1,2,3,5,6,7 47.7939 

7 1,2,3,5,6,7,9 54.6079 

8 1,2,3,5,6,7,8,9 61.1881 

9 1,2,3,4,5,6,7,8,9 67.7681 

Number of sensors State Locations Cond. Number of Obs. Gramian Matrix 

1 9 41.8178 

2 3,5, 22.8861 

3 3,5,7 17.1946 

4 3,5,8,9 15.7651 

5 3,4,5,7,9 11.2315 

6 3,4,5,7,8,9 5.8806 

7 1,3,4,5,7,8,9 5.3285 

8 2,3,4,5,6,7,8,9 4.8737 

9 1,2,3,4,5,6,7,8,9 4.7171 
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 The performance of these two metrics will be compared in the next section using the 

Kalman filter. The best metric will be used to place the sensors on the inverter. Furthermore, 

using these two metrics, only the optimal placement of the temperature sensors can be found. 

To find the optimal number of temperature sensors that should be used, the estimated states of 

the reduced order thermal model obtained from the Kalman filter will be compared to the actual 

states of the reduced order thermal model obtained from the reduced order RC model. This 

analysis will be shown in the next section.  

5.5 Continuous-discrete Kalman filter 

 As it was shown in chapter 4, the Kalman filter is an optimal estimator for linear 

systems in the case of white noise. Also, the dynamic thermal model of the inverter is 

represented by a linear time-invariant state space model. Hence, a continuous-discrete Kalman 

filter in which the RC thermal model is continuously changing in time and the sensor 

measurements are obtained at discrete instants in time will be used to reconstruct the dynamic 

thermal behavior of the multilevel inverter using an optimal number of sensors placed at the 

optimal locations.  

 In the previous section, the optimal sensor placement was found using two metrics: the 

trace of the observability Gramian and the condition number of the observability Gramian. The 

performance of these two metrics is compared based on the estimation error obtained from the 

Kalman filter. Figures 5.15 and 5.16 show the estimation error of the 9 states of the reduced 

order RC thermal model using the trace of observability Gramian and the condition number of 

observability Gramian, respectively, to place 5 sensors at the optimal locations on the inverter. 

It can be seen that the absolute value of the maximum state estimation error is 1oC using the 

trace of observability Gramian to place the sensors, whereas it is around 2oC when the 

condition number of the observability Gramian is used to place the 5 sensors on the inverter. 

Hence, in this work the optimal locations of the temperature sensors will be found using the 

trace of the observability Gramian as an information-based performance metric.  

 Furthermore, the optimal number of temperature sensors is found based on the state 

estimation error obtained from the Kalman filter. Figure 5.17  shows the sum of the absolute 

value of the state estimation error of the reduced order thermal model versus the number of 
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temperature sensors used. It can be seen that adding more than 5 temperature sensors in the 

system does not reduce the estimation error further since it is only related to the sensor noise 

at this number of sensors. Hence, it can be deduced that 5 is the optimal number of temperature 

sensors that should be used in this power electronics system. The optimal placement of the 5 

sensors is on super-nodes 1,2,5,6, and 7 according to the trace of the observability Gramian.  

However, each super-node represents a large area of the physical system, i.e. several 

components of the inverter. Therefore, in order to obtain the exact locations of the temperature 

sensors on the inverter, an optimal sensor placement problem for the full order RC thermal 

model using the trace of the observability Gramian as an information-based performance 

metric was solved. Table 5.6 shows the optimal sensor placement for the full order RC thermal 

model using the trace of the observability Gramian as a trade-off. Using that table, the optimal 

locations of the 5 sensors in the full order thermal model can be found by checking the 

redundancy of the states of the full order RC thermal model that correspond to the optimal 

locations in the reduced order RC thermal model in that table [64].  

 Using 5 sensors at the optimal locations in the inverter, the dynamic thermal behavior 

of the power electronics system was accurately reconstructed using the continuous-discrete 

Kalman filter. Figures 5.18-5.22 show the theoretical (RC model) versus the estimated 

(Kalman filter) values of the states of the reduced order thermal model. These plots show that 

the Kalman filter was able to track the dynamic thermal behavior of the board accurately.  

 It was shown that the 9 states of the reduced order RC thermal model were accurately 

estimated using the Kalman filter. However, the ultimate goal of the proposed dynamic thermal 

estimation technique is to reconstruct the dynamic thermal behavior of the full order RC 

thermal model since full order models are usually more accurate than reduced order models. 

Therefore, the estimated dynamic thermal behavior of the reduced order RC thermal model 

was compared to the dynamic thermal behavior of the full order RC thermal model. Figures 

5.23-5.27 show the estimated values of the 9 states of the reduced order RC thermal model 

obtained from the Kalman filter versus their corresponding theoretical equivalent states in the 

full order model obtained from the RC model. The estimation error in these plots was less than 

3oC. Hence, by comparing the estimated states of the reduced order model to the states of the 

full order model, the estimation error was slightly higher than when they were compared to the 
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theoretical states of the reduced order thermal model. However, this result was expected since 

there is originally a small error between the states of the reduced order model and the states of 

the full order model. 

All these results are theoretical, i.e. obtained from the RC thermal model and the 

Kalman filter. The experimental validation of the reduced order RC thermal model will be 

presented in the next section.   

 

 

 

Figure 5.15  Estimation error of the 9-state reduced order RC model using the trace of 

observability Gramian to place 5 temperature sensors at the optimal locations. 
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Figure 5.16  Estimation error of the 9-state reduced order RC model using the 

condition number of observability Gramian to place 5 temperature sensors at the 

optimal locations. 

 

 

 

Figure 5.17  Sum of the absolute value of the state estimation error of the reduced order 

thermal model vs the number of temperature sensors used.  
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Table 5.6 Optimal sensor locations for the full order RC thermal model using the trace 

of the observability Gramian matrix as trade-off. 

 

Number of sensors Sensor Locations 

1 3 

2 5,38 

3 5,20,22 

4 3,4,20,22 

5 4,5,20,37,38 

6 3,5,22,36,37,38 

7 3,4,5,16,20,22,36 

8 2,7,13,20,22,29,36,37 

9 1,4,13,16,22,29,35-37 

10 1,3-5,13,20,22,26,36,37 

11 2-5,16,20,22,29,36-38 

12 2,5,13,16,19,20,22,26,35-39 

13 3-6,13,16,20,22,26,36-39 

14 2-5,7,13,20,22,26,29,35-38 

15 1-6,13,16,20,22,26,35-38 

16 1-6,8,13,19,20,22,35-39 

17 1-7,13,16,20,22,26,29,36-39 

18 1-5,8,11,13,16,20,22,26,29,35-39 

19 1-6,13,16,19,20,22,26,29,31,35-39 

20 1-5,7,8,12,16,20,22,23,25,26,29,35-39 

21 1-8,12,13,16,20,22-24,26,29,35,37-39 

22 1-7,11,13,16,19,20,22,23,26,29,34-39 

23 1-8,13,16,19,20,22,23,26,29,31,32,35-39 

24 1-8,11-13,16,17,19,20,22,26,29,32,35-39 

25 1-7,11,13,16,20-23,25,26,29-32,35-39 

26 1-8,11-14,16,19,20,22,23,25,26,2932,35-39 

27 1-8,11-13,16,19,20,22-26,29,31,32,35-39 
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Table 5.6 (cont.) 

28 1-9,12,13,16,17,19,20,22-26,29,32,34-39 

29 1-8,11-13,15,16,19,20,22,23,25,26,29,30,32-

39 

30 1-8,11-13,16,19-23,25,26,29-39 

31 1-8,11-14,16,19,20,22-26,29-39 

32 1-8,11-13,15,16,19-32,35-39 

33 1-8,11-13,16,18-32,34-39 

34 1-9,11-13,15-17,19,20,22-27,29-39 

35 1-39 (except 10,15,17,33) 

36 1-39 (except 10,15,18) 

37 1-39 (except 14 & 17) 

38 1-39 (except 10) 

39 1-39 
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Figure 5.18  Theoretical (RC model) vs estimated (Kalman filter) values of the first and 

second states of the reduced order model. 

 

Figure 5.19  Theoretical (RC model) vs estimated (Kalman filter) values of the third 

and fourth states of the reduced order model. 
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Figure 5.20  Theoretical (RC model) vs estimated (Kalman filter) values of the fifth and 

sixth states of the reduced order model. 

 

 

Figure 5.21  Theoretical (RC model) vs estimated (Kalman filter) values of the seventh 

and eighth states of the reduced order model. 
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Figure 5.22  Theoretical (RC model) vs estimated (Kalman filter) values of the ninth 

state of the reduced order model. 

 

Figure 5.23  Estimated values of the first and second states of the reduced order model 

(Kalman filter) vs their corresponding theoretical equivalent states in the full order 

model (RC model). 
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Figure 5.24  Estimated values of the third and fourth states of the reduced order model 

(Kalman filter) vs their corresponding theoretical equivalent states in the full order 

model (RC model). 

 

Figure 5.25  Estimated values of the fifth and sixth states of the reduced order model 

(Kalman filter) vs their corresponding theoretical equivalent states in the full order 

model (RC model). 
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Figure 5.26  Estimated values of the seventh and eighth states of the reduced order 

model (Kalman filter) vs their corresponding theoretical equivalent states in the full 

order model (RC model). 

 

Figure 5.27  Estimated values of the ninth state of the reduced order model (Kalman 

filter) vs its corresponding theoretical equivalent states in the full order model (RC 

model). 

5.6 Experimental validation 

 The dynamic thermal behavior of the 2-dimensional RC thermal model was validated 

experimentally using an IR thermal video of the multilevel inverter. The thermal video was 
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taken using a FLIR T420 IR camera. Figure 5.28 represents a snapshot from the thermal video 

at 2 minutes and 58 seconds after a voltage of 200 V was applied to the inverter. The 

temperature scale in Figure 5.28 is in oC. The ambient temperature was 23oC. Figures 5.29-

5.33 show the theoretical results versus the experimental results of the 9 states of the reduced 

order RC thermal model. Experimental results are within an error of +/- 5oC. It can be seen 

that theoretical results match with the experimental results. Hence, the proposed dynamic 

thermal estimation technique can be used to estimate the dynamic temperature profile of the 

power electronics system using a small number of temperature sensors placed at some specific 

locations in the system.   

 

 

Figure 5.28  Snapshot from IR measurement of operating multilevel inverter. 

 

Figure 5.29  Theoretical results (RC model) vs experimental results (IR thermal video) 

of the first and second states of the reduced order thermal model. 
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Figure 5.30  Theoretical results (RC model) vs experimental results (IR thermal video) 

of the third and fourth states of the reduced order thermal model. 

 

Figure 5.31  Theoretical results (RC model) vs experimental results (IR thermal video) 

of the fifth and sixth states of the reduced order thermal model. 
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Figure 5.32  Theoretical results (RC model) vs experimental results (IR thermal video) 

of the seventh and eighth states of the reduced order thermal model. 

 

Figure 5.33  Theoretical results (RC model) vs experimental results (IR thermal video) 

of the ninth state of the reduced order thermal model. 
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Chapter 6     

Dynamic Thermal Estimation of a 3-D Power 

Electronics System 

6.1 System description 

 In the previous chapter, the dynamic thermal estimation technique was applied on a 

2kW, dc-ac, single phase, 7-Level flying capacitor multilevel inverter. The multilevel inverter 

was open to the environment. Heat was transferred from the components of the inverter to the 

environment through convective heat transfer. However, this setting does not allow enough 

heat loss from the inverter to the environment. Hence, the power levels reached in the power 

electronics system are constrained by thermal limitations of the system.  

 Increasing the power density of power electronics systems is a desirable objective. One 

strategy that can help achieve this goal is increasing the heat lost from the power electronics 

systems to the environment. Enhancing heat transfer from the inverter allows the user to reach 

higher power levels without reaching crtitical temperatures that can cause the failure of its 

components. 

 Convective heat transfer is given by  

 ( ),conv s s aQ hA T T    (6.1) 

where h  is the convective heat transfer coefficient, sA  is the surface area from which heat is 

transferred, sT  is the surface area temperature, and aT  is the ambient temperature. Hence, to 

increase the convective heat transfer, the user can either increase the surface area from which 
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heat is transferred or increase the heat transfer coefficient. The latter can be increased by 

including a fan into the system for example. On the other hand, increasing the surface area 

from which heat is transferred by convection to the environment can be achieved by attaching 

to that surface an extended surface made of a highly conductive material. This extended surface 

is known as a heat sink. Heat sinks usually contain fins.   

 When the power electronics system is enclosed by a heat sink, there will be no 

convective heat transfer from its components to the environment. Instead, there will be 

conductive heat transfer from the components of the system to the extended surface. 

Convective heat transfer will happen between the heat sink and the environement. 

Conductive heat transfer between the components of the power electronics system and 

the extended surface happens in the z-direction. Furthermore, similar to the 2-dimensional 

case, there is conductive heat transfer between the components of the power electronics system 

along the x and y directions. Hence, in the case of enclosed power electronics systems, there 

is conductive heat transfer along 3 directions. In this case, the dynamic thermal estimation 

problem should be solved as a 3-dimensional system. 

 In this chapter, the previous 2 KW multilevel inverter will be enclosed by a heat sink. 

The proposed dynamic thermal estimation technique will be used to estimate the dynamic 

thermal behavior of the inverter using a small number of sensors. Figure 6.1 shows the 2 Kw 

inverter with the extended surface, i.e. the heat sink, attached to it. The heat sink is made of 

Aluminium which is a highly conductive material (Kal 205 W/mK).  A 0.02’’ fiberglass-

reinforced filler and polymer thermal gap pad (Gap Pad 5000S35) is placed on top of the active 

components of the inverter. The thermal gap pad has a relatively high thermal conductivity. It 

is useful in filling the air gaps between the active components of the inverter and the base of 

the Aluminum heat sink. Hence, it enhances the conductive heat transfer in the z direction from 

the components of the inverter to the heat sink. Consequently, it enhances the overall thermal 

performance of the enclosed inverter. From an electrical perspective, the thermal gap pad is 

useful in adding an electrical insulation between the active components of the inverter and the 

base of the heat sink.   

 The dynamic thermal behavior of the enclosed inverter will be presented in the next 

section using a 3-dimensional full order RC thermal model of the system. It will be shown that 
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including the heat sink increases significantly the complexity of the thermal model, i.e. the 

number of states of the linear state space thermal model of the system. Hence, it is essential to 

apply an appropriate model order reduction technique that reduces the complexity of the 

thermal model while preserving its structure as a RC model. 

 

 

  Figure 6.1 Multilevel dc-ac converter enclosed with a heat sink. The heat sink is made 

of Aluminum. A thermal gap pad (Gap Pad 5000S35) is placed on top of the active 

components between the inverter and the base of the heat sink.   

6.2 3-D full order RC thermal model 

 In the enclosed multilevel inverter shown in Figure 6.1, there is conductive heat transfer 

in 3 directions in the system. In this section, a 3-dimensional RC thermal model that accounts 

for conductive heat transfer along the x, y, and z directions in the power electronics system 

will be modeled. Furthermore, the RC thermal model will account for convective heat transfer 

from the heat sink to the environment.  

 Similar to the 2-D RC thermal model, the first step in designing a 3-D RC thermal 

model is to discretize the system into voxels and assign a capacitance value to every voxel. 

However, in the 2-D RC thermal model, the power electronics system included the inverter 

only. Hence, the discretization process was applied to the inverter only. In the 3-D RC thermal 
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model, the power electronics system includes a heat sink in addition to the inverter. Therefore, 

the discretization process should be applied on the inverter and the heat sink. 

 The discretization of the inverter for the 3-D full order RC thermal model was made at 

the level of the functional elements. Each active component in the inverter was assigned a 

single capacitor. Therefore, the discretization of the inverter in the enclosed system resulted in 

the same 39 capacitors that were obtained in the 2-D full order RC thermal model of the 

inverter. It should be noted that the thermal capacitance of the thermal gap pads was neglected. 

Furthermore, the heat sink was discretized into 39 pixels that have the same geometric 

properties as the pixels of the inverter. Therefore, the full order RC thermal model of the 

enclosed inverter has 78 capacitors: 39 capacitors for the inverter and 39 capacitors for the heat 

sink.  

 Since the 3-D RC thermal model accounts for conduction in the x and y directions along 

the plane of the inverter, the 39 capacitors that represent the thermal capacitance of the inverter 

will be connected through resistances that represent conduction resistances along the x and y 

directions. Similarly, there is conductive heat transfer in the x and y directions along the base 

of the heat sink. Therefore, the 39 capacitors that represent the thermal capacitance of the heat 

sink will be connected through resistances that represent conduction resistances along the x 

and y directions. The capacitors of the inverter thermal model and the capacitors of the heat 

sink thermal model will be connected through resistances that represent conduction resistance 

along the z direction from the inverter to heat sink. These resistances account for the additional 

conduction resistance in the z direction created by the thermal gap pads. Furthermore, there 

will convection resistances from every voxel of the heat sink to a voltage source that represents 

the ambient temperature. The main heat sources in the enclosed inverter are still the 12 GaN 

transistors. Therefore, the 3-D RC thermal model has 12 current sources connected to the 

capacitors that represent the thermal capacitances of the GaN transistors. The 3-D graph-based 

thermal model of the system will be shown in the next subsection.  

 The thermal capacitances, conduction resistances, and convection resistances are 

calculated according to the formulas presented in chapter 2. Also, similar to the 2-D RC 

thermal model, the dynamic thermal behavior of the enclosed inverter can be obtained by 

modeling a circuit of resistors and capacitors in Simscape in SIMULINK, or by applying the 
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conservation of energy principle on a 3-D graph-based thermal model of the system that results 

in a linear state space model. However, since the 3-D RC thermal model has 78 capacitors and 

accounts for conduction in 3 directions in the system, modeling a RC circuit in SIMULINK is 

a very complicated task. Hence, the dynamic temperature profile of the enclosed inverter will 

be obtained through a linear state space model. This strategy will be presented in the next 

subsection. 

6.2.1 3-D full order RC thermal model results 

 In this section, the dynamic thermal behavior of the enclosed inverter will be obtained 

by applying the conservation of energy principle on the 3-dimensional graph-based thermal 

model of the system. The full order graph-based thermal model of the enclosed inverter is 

composed of 3 layers. The first layer represents the thermal model of the inverter only. Hence, 

it is composed of 39 vertices connected in the x and y directions through edges that represent 

the conduction resistances in these directions. The second layer represents the thermal model 

of the heat sink. Hence, it is also composed of 39 vertices connected in the x and y directions 

through edges that represent conduction resistances in these directions. The third layer 

represents the ambient temperature and is composed of a single vertex with an infinite 

capacitance. The inverter layer and the heat sink layer are connected in the z direction through 

edges that represents the conduction resistance between the inverter and the heat sink. The heat 

sink layer and the third layer (the ambient temperature) are connected through edges that 

represent the convection resistances between the fins and the environment. Figures 6.2 and 6.3 

show the first layer and the second layer of the 3-D graph-based thermal model of the enclosed 

inverter. The edges that represent the resistances in the z direction are not shown in the figures 

for simplicity. Furthermore, similar to the 2-D RC thermal model, the 12 GaN transistors are 

the main heat sources in the 3-D RC thermal model. Hence, they will be modeled as current 

sources connected to the vertices that represent the thermal capacitance of the GaN transistors. 

The power cycle tested in each current source is shown in Figure 6.4. The linear state space 

model for this graph-based thermal model is obtained by applying the conservation of energy 

principle on every vertex of the 78 vertices. Equation (6.2) shows the first order differential 

equation for state 2. 
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The last term in the equation represent the conduction resistance in the z direction between 

vertex 2 of the inverter and vertex 41 of the heat sink. Also, it should be noted that the equation 

does not include a convective heat transfer term since the inverter is not open to the 

environment. By applying the conservation of energy principle on the 78 vertices, a system of 

coupled first order differential equations can be obtained. By rearranging the terms in these 

equations, a linear state space model of 78 states can be obtained. The 78 states of the full order 

3-D RC thermal model are shown in Figure 6.5. The hottest spot in the system experienced an 

increase of 5oC above the ambient temperature. Furthermore, it can be seen the temperature 

gradient in the heat sink is negligible. 

 The dynamic thermal behavior of the enclosed inverter shown in this section is 

theoretical, i.e. obtained from the full order 3-D RC thermal model. Before proceeding with 

the next steps of the proposed dynamic thermal estimation technique, the dynamic thermal 

behavior of the enclosed inverter will be tested experimentally using the same power cycles 

used in the 3-D RC thermal model. It will be shown that, besides providing an accurate 

dynamic thermal estimation of power electronics systems, the proposed method can be used 

for fault detection in power electronics systems. The experimental validation of the enclosed 

inverter was performed by placing thermocouples at various locations in the system. 
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  Figure 6.2 First layer of the 3-D graph-based thermal model, i.e. thermal model of the 

inverter only. The edges that connect the inverter to the heat sink are not shown in the 

figure for simplicity.  
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 Figure 6.3 Second layer of the 3-dimensional graph-based thermal model of the 

enclosed inverter, i.e. thermal model of the heat sink. The heat sink was discretized into 

39 voxels (with the same geometric properties as the voxels of the inverter) represented 

by 39 vertices. The edges that connect the inverter to the heat sink are not shown in the 

figure for simplicity.  
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Figure 6.4 Power cycle for each of the 12 current sources of the 3-D RC thermal model. 

 

 

 

Figure 6.5 The 78 states of the full order 3-D RC thermal model (39 states for the 

inverter and 39 states for the heat sink). 

 

6.2.2 Experimental validation of the 3-D RC thermal model 

 Since the inverter is enclosed, IR thermal imaging is not a candidate measuring tool for 

the dynamic thermal behavior of the system. To measure the dynamic thermal behavior of the 

3-D power electronics system, 13 thermocouples were placed at various locations on the 

inverter. The thermocouples were fixed using Kapton tape. The locations of the 13 
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thermocouples are shown in Figure 6.6. Thermal gap pads were placed on top of the active 

components in the system as shown in Figure 6.7. Finally, the heat sink was fixed on top of 

the thermal gap pads. The enclosed inverter is shown in Figure 6.8.  

The readings of the 13 thermocouples are shown in Figure 6.9. The sensor readings 

implied the existence of an additional heat source other than the anticipated heat sources for 

the inverter, i.e. the GaN transistors. Furthermore, the drift in the sensor readings shown in 

Figure 6.9 implies the existence of a faulty component that is heating up continuously 

throughout the cycle and is causing additional heating to the components in its neighborhood. 

Using an IR camera on the open inverter, it was found that the component marked with the red 

circle in Figure 6.6 is the faulty component generating additional heat in the circuit.  

In the next subsection, the previous 3-D RC thermal model will be modified in order 

to include the additional heating from the faulty component. The dynamic thermal behavior of 

the full order 3-D RC thermal model that includes the heat generated from the faulty 

component will be compared to the experimental results. 

 

  

Figure 6.6 The locations of the 13 thermocouples placed on the inverter. The encircled 

component is the faulty component causing additional heating in the circuit. 
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Figure 6.7 Placing thermal gap pads on top of the active components in the circuit. 

 

 

Figure 6.8 Placing the Aluminum heat sink on top of the thermal gap pads.  
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Figure 6.9 The measurements of the 13 sensors. 

6.2.3 3-D RC thermal model for the enclosed inverter with faulty 

component 

To account for the additional heat generated in the circuit, an additional current source 

was added to the full order 3-D RC thermal model of the enclosed inverter. The additional 

current source is connected to node 6. The input to the current source is a continuously 

increasing signal.  

 The 78 states of the full order 3-D RC thermal model that account for the heat generated 

from the faulty component are shown in Figure 6.10. It can be seen that by adding the 

additional heat source in the 3-D RC thermal model, the theoretical dynamic thermal behavior 

of the system matched with the sensor readings shown in Figure 6.9. The circles shown in 

Figure 6.10 represent the measurement of sensor 5 which is reading state 16 of the 3-D full 

order RC thermal model.  Therefore, by comparing the sensor readings to the expected 

dynamic thermal behavior of the power electronics system obtained from the RC model of the 

system, the user can identify the existence of faulty components in the system since such 

components become additional heat sources. 
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 In the next section, the complexity of the 3-D RC thermal model, i.e. the number of 

states of the linear state space, will be reduce by applying the aggregation-based model order 

reduction technique presented in chapter 3.  

 

Figure 6.10 The 78 states of the full order 3-D RC thermal model that accounts for the 

faulty component in the enclosed inverter. The circles represent the measurement of 

sensor 5 reading state 16. 

6.3 3-D reduced order RC thermal model 

 The full order 3-D RC thermal model of the enclosed inverter is composed of 78 

capacitors: 39 capacitors representing the thermal capacitance of the inverter and 39 capacitors 

representing the thermal capacitance of the heat sink. Therefore, the linear state space thermal 

model has 78 states which is a large number of states if that system is used for estimation 

purposes. Therefore, the aggregation-based structure-preserving model order reduction 

technique will be used to reduce the complexity of the 3-D RC thermal model.  

 It was mentioned in the previous section that the discretization of the inverter in the 2-

D and 3-D RC thermal models is exactly the same. Therefore, the first layer of the 3-D graph-

based thermal model of the enclosed inverter is similar to the 2-D graph-based thermal model 

of the inverter, i.e. the resistance and capacitance values are the same. Hence, applying the 

model order reduction technique on the first layer of the 3-D graph-based thermal model results 
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in the same sign structure for the second eigenvector the P̂  matrix obtained in the previous 

chapter. This implies that the inverter in the 3-D system can be aggregated into the same 9 

super-nodes that were obtained in the 2-D reduced order RC thermal model. Furthermore, the 

homogeneity of the material of the heat sink allowed an even distribution of heat along the 

base of the heat sink. The conduction resistances in the x and y directions in the heat sink layer 

of the 3-D graph-based thermal model were negligible compared with the z direction. Hence, 

the 39 nodes of the heat sink can be aggregated into a single super-node.  

 The overall 3-D reduced order RC thermal model resulted in 10 super-nodes: 9 super-

nodes for the inverter and 1 super-node for the heat sink. The 10 super-nodes of the 3-D 

reduced order RC thermal model are shown in Figure 6.11. It can be seen that the 3-D reduced 

order RC thermal model can simulate accurately the dynamic thermal behavior of the enclosed 

inverter using only 10 super-nodes with an error of less than 3oC between the 78 states of the 

3-D full order RC thermal model and their corresponding super-nodes in the 3-D reduced order 

RC thermal model.   

The 3-D reduced order RC thermal model will be used in a continuous-discrete Kalman 

filter to estimate the dynamic thermal behavior of the enclosed inverter using a small number 

of sensors. Therefore, the next step is to find the optimal number and optimal locations of the 

temperature sensors that should be used in the system. 
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Figure 6.11 The 10 super-nodes of the reduced order 3-D RC thermal model.  

6.4 Sensor placement optimization 

 In the 2-dimensional system, the state estimation errors obtained by placing the 

temperature sensors according to the condition number of observability Gramian and according 

to the trace of observability Gramian were compared. It was found that for a specific number 

of temperature sensors, using the trace of observability Gramian as a performance metric for 

optimal sensor locations results in smaller state estimation errors compared to when the 

condition number of observability Gramian is used as a performance metric. Therefore, for the 

3-dimensional system, the temperature sensors will be placed by maximizing the trace of 

observability Gramian.  

 Table 6.1 shows the optimal sensor locations in the 3-D reduced order RC thermal 

model. Also, since the super-nodes of the reduced order thermal model represent large areas 

of the physical system, the optimization of the locations of the temperature sensors was also 

performed for the 3-D full order RC thermal model. Table 6.2 shows optimal sensor locations 

in the 3-D full order RC thermal model.  
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Table 6.1 Optimal sensor locations for the 3-D reduced order RC thermal model using 

the trace of observability Gramian matrix as trade-off. 

Number of sensors Sensor location (State number) Trace of Obs. Grammian Matrix 

1 2 8.6627 

2 1,2 17.3255 

3 1,2,6 25.9836 

4 1,2,4,6 34.6370 

5 1,2,4,6,10 43.2900 

6 1,2,4,6,8,10 51.9420 

7 1,2,4,5,6,8,10 60.5934 

8 1,2,4,5,6,7,8,10 69.2448 

9 1,2,4,5,6,7,8,9,10 77.8963 

10 1,2,3,45,6,7,8,9,10 86.5477 

  

 

Table 6.2 Optimal sensor locations for the 3-D full order RC thermal model using the 

trace of observability Gramian matrix as trade-off. 

# sensors Sensor locations (State number) Trace of obs. Gramiann 

1 75 0.6733 

2 42,75 1.3466 

3 44,75,77 2.0198 

4 42,44,75,77 2.6931 

5 3,40,42,46,75 3.3469 

6 40,42,44,46,75,77 4.0275 

7 36,40,42,44,46,75,77 4.6935 

8 3,5,36,42, 44,46,75,77 5.3583 

9 5,38,40-42, 44,46,75,77 6.0219 

10 1,3,36,38,40,42,44,46,75,77 6.6892 
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Table 6.2 (cont.) 

11 1,3,5,36,38,40,42,44,46,75,77 7.3552 

12 1,3,5,36,40,41,42,44,46,74,75,77 8.0139 

13 1,3,5,7,36,38,40-42,44,46,75,77 8.6813 

14 1,3,5,7,36,38,40-42,44,46,74,75,77 9.3437 

15 1,3,5,7,36,38-42,44,46,74,75,77 9.9953 

16 1,3,5,7,35,36,38-42,44,74,75,77,78 10.6422 

17 1-3,5,7,35,36,38,40-42,44-46,74,77,78 11.2985 

18 1-3,5,7,35,36,38,40-42,44-46,74,75,77,78 11.9718 

19 1-3,5-7,35,36,38,40-42,44-46,74,75,77,78 12.6128 

20 2,3,5-7,35,36,38-46,74,75,77,78 13.2456 

21 1-3,5-7,35,36,38-46, 74,75,77,78 13.9093 

22 1-3,5-7,35,36,38-46, 74-78 14.5434 

23 1-7,35,36,38-46, 74-78 15.1671 

24 2-7,20,35-46, 74-78 15.6918 

25 1-5,7,20, 35-46, 52,74-78 16.2391 

26 1-7,20,22, 35-46,74-78 16.9201 

27 1-7,20,22, 35-46,71,74-78 17.4693 

28 1-7,20,22, 35-46,49,71,74-78 18.0185 

29 1-7,20,22, 35-46,49,71,73-78 18.5677 

30 1-7,20,22, 35-46,49,52,65,71,73-78 19.1031 

31 1-7,20,22, 35-47,49,52,71,73-78 19.6523 

32 1-7,20,22, 35-47,49,52,65,71,73-78 20.1876 

33 1-7,13,20,35-47,49,52,65,68,71,73-78 20.6895 

34 1-7,16,20,22,35-47,49,55,65,68,71,73-78 21.2542 

35 1-7,13,20,22,35-47,49,52,55,65,68,71,73-78 21.7895 

36 1-7,13,16,20,22,26,35-47,49,52,55,68,71,73-78 22.3167 

37 1-7,13,16,22,26,29,35-47,49,52,55,65,68,71,73-78 22.8186 

38 1-8.16,20,22,26,29,35-47,49,52,55,65,68,71,73-78 23.3644 

39 1-7,13,16,19,20,22,26,29,35-47,49,52,55,63,65,71,73-78 23.9012 
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Table 6.2 (cont.) 

40 1-7,13,16,20,22,26,29,35-47,49,50,55,57,5863,70,71,73-78 24.4135 

41 1-7,13,16,19,20,22,23,29,35-47,49,50,52,55,57,68,70,71,73-78 24.9520 

42 1-7,13,19,20,22,26,29,35-47,49,50,52,55,57,63,65,68,70,71,73-78 25.4917 

43 1-7,13,20,22,23,25,29,35-47,49,52,55,57,58,62,63,65,68,70,71,73-78 26.0049 

44 1-7,13,16,19,20,22,26,29,35-47,49,50,52,55,57,59,63,65,68,70,71,73-78 26.5415 

45 1-7,13,16,19,20,22,23,26,29,35-47,49,50,52,55,57,62,63,65,68,70,71,73-78 27.0684 

46 1-7,13,16,19,20,22,23,26,29,35-47,49,50,52,55,57,58,62,63,65,68,70,71,73-

78 

27.5894 

47 1-7,13,16,19,20,22-24,26,29,35-

47,49,50,52,55,57,58,62,63,65,68,70,71,73-78 

28.1018 

48 1-7,13,18-20,22,23,26,29,35-47,49-52,55,57,58,1-,63,65,68,70,71,73-78 28.6129 

49 1-78, except 9-12,14,15,17,18,21,24,25,27,28,30-

33,48,51,53,54,56,60,64,66,67,69,72 

29.1313 

50 1-78, except 9-12,14,15,17,18,21,24,25,27,28,30-

34,48,53,54,60,64,66,67,69,72 

29.6515 

51 1-78, except 8,9,12,14,15,17,18,21,24,25,27,28,30,31,33,34,48,53,54,60-

62,66,67,69,72 

30.1660 

52 1-78, except 8,9,12,14,15,17,18,21,24,25,27,28,30,31,33,34,48,53,54,60-

62,66,67,69,72 

30.6647 

53 1-78, except 

9,11,12,14,15,17,18,21,24,25,27,28,30,31,33,34,48,53,54,56,60,66,67,69,72 

31.1909 

54 1-78, except 8-

11,14,15,17,18,21,24,25,27,28,30,31,33,34,48,53,54,60,66,67,69 

31.6724 

55 1-78, except 8,9,11,14,15,17,18,21,24,25,27,28,30-33,48,53,54,60,66,67,72 32.2176 

56 1-78, except 

9,11,14,15,17,18,21,24,27,28,30,31,33,34,48,51,53,54,60,66,67,72 

32.7289 

57 1-78, except 

9,11,14,15,17,21,24,25,27,28,30,31,33,34,48,53,54,60,66,67,72 

33.2425 

58 1-78, except 9,12,14,15,17,18,21,25,27,28,30,31,33,48,53,54,60,66,67,72 33.7549 

59 1-78, except 9,12,14,15,17,21,25,27,28,30,31,33,48,53,54,60,66,67,72 34.2675 

60 1-78, except 9,12,14,15,17,21,25,27,28,31,33,48,53,54,60,66,67,72 34.7797 

61 1-78, except 9,12,14,15,21,25,27,28,30,33,48,53,54,60,66,67,72 35.2921 
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Table 6.2 (cont.) 

62 1-78, except 9,14,15,17,21,27,28,30,33,48,53,54,60,66,67,72 35.8044 

63 1-78, except 9,14,15,21,27,28,30,33,48,53,54,60,66,67,72 36.3166 

64 1-78, except 14,15,21,25,27,28,33,48,53,54,60,66,67,72 36.7524 

65 1-78, except 9,14,15,21,27,28,33,53,54,60,66,67,72 37.3096 

66 1-78, except 9,15,21,27,28,33,53,54,60,66,67,72 37.7452 

67 1-78, except 9,14,15,21,27,28,33,53,54,60,67 38.2310 

68 1-78, except 9,14,15,21,27,28,33,60,66,67 38.6717 

69 1-78, except 9,14,15,21,27,28,33,60,67 39.1125 

70 1-78, except 9,14,15,21,27,33,60,67 39.5841 

71 1-78, except 9,14,15,27,28,33,60 39.9924 

72 1-78, except 9,15,27,28,33,60 40.4280 

73 1-78, except 9,15,27,28,33 40.8642 

74 1-78, except 14,15,27,28 41.3001 

75 1-78, except 14,15,28 41.7357 

76 1-78, except 14,15 42.1713 

77 1-78, except 15 42.6069 

78 1-78 43.0425 

 

 As it can be seen in Tables 6.1 and 6.2, maximizing the trace of observability Gramian 

results in optimal sensor placement for a specific number of sensors. In the next section, the 

optimal number of temperature sensors will be found based on the state estimation error 

obtained from the continuous-discrete Kalman filter. Also, the estimated dynamic thermal 

behavior of the 3-D RC thermal model will be presented.  

6.5 Continuous-discrete Kalman filter 

 It was shown that applying the conservation of energy principle on the 3-D graph-based 

thermal model results in a linear state space model. Hence, the optimal filter for this system, 

assuming the system has Gaussian noise, is the Kalman filter. In this section, a continuous-
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discrete Kalman filter will be used, along with an optimal number and optimal placement of 

temperature sensors, to reconstruct the dynamic thermal behavior of the enclosed inverter. 

 First, the continuous-discrete Kalman filter was used to find the optimal number of 

temperature sensors that should be placed at optimal locations in the enclosed inverter. Figure 

6.12 shows the sum of the absolute value of the state estimation error of the reduced order 

thermal model vs the number of temperature sensors used. It can be seen that adding more than 

6 temperature sensors in the system does not reduce the state estimation error significantly and 

only increases the cost and complexity of the system. Hence, according to Figure 6.12 it can 

be deduced that 6 is the optimal number of temperature sensors for this system. Based on Table 

6.1, the 6 sensors should be placed on super-nodes 1, 2, 4, 6, 8, and 10.  

 Figures 6.13-6.17 show the theoretical (obtained from RC model) versus the estimated 

(obtained from Kalman filter) values of the 10 super-nodes of the reduced order thermal model. 

It can be seen that the dynamic thermal behavior of the 3-D reduced order thermal model was 

accurately estimated using only 6 sensors in the enclosed inverter. However, similar to the 2-

D dynamic thermal estimation problem, the ultimate goal for the 3-D dynamic thermal 

estimation problem is to estimate the thermal behavior of the full order RC thermal model 

using a small number of temperature sensors. Therefore, the 3-D full order RC thermal model 

was used in a reduced order continuous-discrete Kalman filter. This will allow the user to 

recreate the dynamic thermal behavior of the full order thermal model using the reduced order 

RC thermal model. Figures 6.18-6.22 show the estimated states of the reduced order model 

obtained from the Kalman filter versus their corresponding theoretical equivalent states in the 

full order model obtained from the full order RC thermal model. It should be noted that, in 

Figure 6.22 the tenth estimated state of the reduced order model is compared to states 40-78 

that represent the heat sink in the full order RC thermal model.    

 Therefore, it was shown that the proposed dynamic thermal estimation technique can 

accurately reconstruct the 3-D dynamic thermal behavior of power electronics systems using 

a small number of temperature sensors placed at optimal locations in the system.  
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Figure 6.12 Sum of the absolute value of the state estimation error of the reduced order 

thermal model vs the number of temperature sensors used. 

 

Figure 6.13 Theoretical (RC model) vs estimated (Kalman filter) values of the first and 

second states of the 3-D reduced order thermal model. 
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Figure 6.14 Theoretical (RC model) vs estimated (Kalman filter) values of the third and 

fourth states of the 3-D reduced order thermal model. 

 

Figure 6.15 Theoretical (RC model) vs estimated (Kalman filter) values of the fifth and 

sixth states of the 3-D reduced order thermal model. 
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Figure 6.16 Theoretical (RC model) vs estimated (Kalman filter) values of the seventh 

and eighth states of the 3-D reduced order thermal model. 

 

Figure 6.17 Theoretical (RC model) vs estimated (Kalman filter) values of the ninth and 

tenth states of the 3-D reduced order thermal model. 
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Figure 6.18 Estimated first and second states of the reduced order model (Kalman 

filter) vs their corresponding theoretical equivalent states in the full order model (RC 

model). 
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Figure 6.19 Estimated third and fourth states of the reduced order model (Kalman 

filter) vs their corresponding theoretical equivalent states in the full order model (RC 

model). 

 

Figure 6.20 Estimated fifth and sixth states of the reduced order model (Kalman filter) 

vs their corresponding theoretical equivalent states in the full order model (RC model). 
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Figure 6.21 Estimated seventh and eighth states of the reduced order model (Kalman 

filter) vs their corresponding theoretical equivalent states in the full order model (RC 

model). 

 

Figure 6.22 Estimated ninth and tenth states of the reduced order model (Kalman filter) 

vs their corresponding theoretical equivalent states in the full order model (RC model). 
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Chapter 7     

Conclusion 

7.1 Summary of research contributions 

This thesis proposes a method for accurate dynamic thermal estimation of power 

electronics systems. Accurate state estimates are essential for dynamic thermal management 

techniques and high-power density systems. The availability of accurate dynamic temperature 

estimates play a key role in increasing the power density of power electronics systems by 

allowing the components of the system to be pushed closer to their failure. When there is 

confidence in the estimates, the safety factor can be decreased.  

A set of tools that can be used for temperature estimation and fault detection in highly 

complex and interconnected thermal systems was provided. The proposed dynamic thermal 

estimation scheme is composed of dynamic thermal modeling, model order reduction, 

optimization of the number and locations of the temperature sensors, and filtering.  

The dynamic thermal modeling technique used is based on the analogy between 

electrical systems and thermal systems. A RC thermal model was used to simulate the spatially 

and temporally dependent temperature profile of the power electronics systems. It was shown 

that this technique can simulate the dynamic thermal behavior of power electronics with good 

accuracy and reasonable complexity which is desired if the thermal model is used for control 

or estimation purposes.  

A structure-preserving aggregation-based model order reduction technique based on 

Markov chain aggregation was used to further reduce the complexity of the RC thermal models 

while preserving their accuracy. The reduced order models obtained were RC models also but 
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with a fewer number of capacitors. Therefore, there was a physical correspondence between 

the reduced order model and the physical system. Preserving the physical meaning of the states 

of the reduced order model is important for sensor placement.  

Sensors were placed based on state observability. Optimal sensor placement was 

obtained by using the trace of observability Gramian as an information-based performance 

metric. Maximizing the trace of observability Gramian leads to improved observability. 

However, this optimization problem does not provide information about the optimal number 

of temperature sensors that should be used. The optimal number of temperature sensors was 

found based on the state estimation error obtained from the Kalman filter. It was found that 

after using a certain number of sensors in the system, adding additional sensors does not 

significantly improve the accuracy of the estimates. It only adds cost and complexity in the 

system. 

 It was shown that by applying the conservation of energy principle on the thermal 

model of the system, a linear state space model can be derived. Assuming Gaussian noise, it is 

well-known that the Kalman filter is an optimal estimator in this case. Using an optimal number 

and optimal placement of temperature sensors, it was shown that the dynamic thermal profile 

of the power electronics system can be accurately reconstructed using a continuously-discrete 

Kalman filter.  

The proposed method was applied on a 2-D system in which an inverter was open to 

the ambient atmosphere. The full order thermal model was reduced from 39 states to 9 states 

using the structure preserving model order reduction technique. Also, it was shown that the 

dynamic thermal behavior of the inverter can be accurately estimated using only 5 sensors 

placed at specific locations in the system. An IR thermal camera was used to experimentally 

validate theoretical results. 

Furthermore, the proposed method was applied on a 3-D system in which the inverter 

was enclosed with a heat sink in order to increase the heat transfer from the system to the 

ambient atmosphere. The dynamic thermal model of the system was reduced from 78 states in 

the full order model to 10 states in the reduced order model. Also, it was shown that the 

dynamic thermal behavior of the enclosed inverter can be accurately reconstructed using only 

6 sensors placed at specific locations in the system. Theoretical results were validated 
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experimentally by placing 13 thermocouples in the system since thermal imaging is not a valid 

measuring technique in the case of enclosed inverters. 

7.2 Future work 

The method proposed in this thesis is related to thermal modeling and estimation of 

power electronics. The amount of electric power loss or the amount of heat dissipation in the 

power electronics system was obtained from an independent electric model of the system. 

Therefore, the power loss calculation did not include the thermal effect on the electric behavior 

of the system. 

Future work will be based on the electro-thermal modeling and control of power 

electronics. The electric and thermal models of power electronics systems will be coupled and 

controlled to manage electric and thermal objectives.  

Coupling between the thermal model and the electric model will be achieved through 

electro-thermal models of the semiconductor devices and parasitics modeling of the power 

electronics systems. Using this approach, the interdependency between the thermal behavior 

and the electric behavior of the power electronics systems will be modeled. The parameters of 

the electric model will be temperature dependent. Hence, the temperature which is an output 

of the dynamic thermal model will be an input to the temperature dependent electric model. 

Currents and voltages values in the electric model will be based on the temperature calculated 

in the thermal model. On the other hand, the temperature obtained in the thermal model will 

be based on the electric behavior or the amount of power dissipated in the form of heat in the 

electric model.  

Controllers will be used to maintain the temperature of the system below a certain 

critical temperature and to regulate the electric behavior of the system, i.e. specific output 

voltage, by controlling the switching frequency or the voltage input to the system. This 

investigation provides a foundation and framework for dynamic fault detection and diagnosis.   
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Appendix     

State space model of the 2-D dynamic thermal model 
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         

 (7.7) 

 1 8 2 8 8 3 8 11 8 12 8
8 8

1,8 2,8 3,8 8,11 8,12 8

a

c

T T T T T T T T T T T T
C T

R R R R R R

     
        (7.8) 
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 3 9 4 9 9 5 9 14 9 15 9
9 9

3,9 4,9 9,5 9,14 9,15 9

a

c

T T T T T T T T T T T T
C T

R R R R R R

     
        (7.9) 

 
5 10 6 10 10 7 10 17 10 18 10

10 10
5,10 6,10 7,10 10,17 10,18 10

a

c

T T T T T T T T T T T T
C T

R R R R R R

     
        (7.10) 

 
8 11 11 19 111 11 11 12

11 11 1
1,11 8,11 11,12 11,19 11

a
s

c

T T T T T TT T T T
C T Q

R R R R R

   
        (7.11) 

 
8 12 12 13 12 19 1211 12

12 12 2
11,12 8,12 12,13 12,19 12

a
s

c

T T T T T T T TT T
C T Q

R R R R R

   
        (7.12) 

 
12 13 3 13 13 14 13 20 13

13 13
12,13 3,13 13,14 13,20 ,13

a

c

T T T T T T T T T T
C T

R R R R R

    
       (7.13) 

 
13 14 9 14 14 15 1414 21

14 14 3
13,14 9,14 14,15 14,21 ,14

a
s

c

T T T T T T T TT T
C T Q

R R R R R

   
        (7.14) 

 
14 15 9 15 15 16 15 21 15

15 15 4
14,15 9,15 15,16 15,21 15

a
s

c

T T T T T T T T T T
C T Q

R R R R R

    
        (7.15) 

 5 16 15 16 16 17 16 22 16
16 16

5,16 15,16 16,17 16,22 16

a

c

T T T T T T T T T T
C T

R R R R R

    
       (7.16) 

 10 17 16 17 17 18 17 23 17
17 17 5

10,17 16,17 17,18 17,23 ,17

a
s

c

T T T T T T T T T T
C T Q

R R R R R

    
        (7.17) 

 10 18 17 18 18 7 18 23 18
18 18 6

10,18 17,18 7,18 18,23 18

a
s

c

T T T T T T T T T T
C T Q

R R R R R

    
        (7.18) 

 11 19 12 19 1 19 19 20 19 24 19 25 19
19 19

11,19 12,19 1,19 19,20 19,24 19,25 19

a

c

T T T T T T T T T T T T T T
C T

R R R R R R R

      
        

 (7.19) 

 13 20 19 20 20 21 20 26 20
20 20

13,20 19,20 20,21 20,26 20

a

c

T T T T T T T T T T
C T

R R R R R

    
       (7.20) 
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 15 21 20 21 21 27 21 28 2114 21 21 22
21 21

14,21 15,21 20,21 21,22 21,27 21,28 21

a

c

T T T T T T T T T TT T T T
C T

R R R R R R R

     
        

 (7.21) 

 16 22 22 23 22 29 2221 22
22 22

16,22 21,22 22,23 22,29 22

a

c

T T T T T T T TT T
C T

R R R R R

   
       (7.22) 

 17 23 18 23 22 23 23 7 23 30 23 31 23
23 23

17,23 18,23 22,23 7,23 23,30 23,31 23

a

c

T T T T T T T T T T T T T T
C T

R R R R R R R

      
        

 (7.23) 

 19 24 24 25 24 32 241 24
24 24 7

1,24 19,24 24,25 24,32 24

a
s

c

T T T T T T T TT T
C T Q

R R R R R

   
        (7.24) 

 24 25 19 25 25 26 25 32 25
25 25 8

24,25 19,25 25,26 25,32 25

a
s

c

T T T T T T T T T T
C T Q

R R R R R

    
        (7.25) 

 25 26 20 26 26 27 26 36 26
26 26

25,26 20,26 26,27 26,36 26

a

c

T T T T T T T T T T
C T

R R R R R

    
       (7.26) 

 26 27 21 27 27 28 27 33 27
27 27 9

26,27 21,27 27,28 27,33 27

a
s

c

T T T T T T T T T T
C T Q

R R R R R

    
        (7.27) 

 27 28 21 28 28 29 28 33 28
28 28 10

27,28 21,28 28,29 28,33 28

a
s

c

T T T T T T T T T T
C T Q

R R R R R

    
        (7.28) 

 22 29 28 29 29 30 29 38 29
29 29

22,29 28,29 29,30 29,38 29

a

c

T T T T T T T T T T
C T

R R R R R

    
       (7.29) 

 29 30 23 30 30 31 30 34 30
30 30 11

29,30 23,30 30,31 30,34 30

a
s

c

T T T T T T T T T T
C T Q

R R R R R

    
        (7.30) 

 30 31 23 31 31 7 31 34 31
31 31 12

30,31 23,31 7,31 31,34 31

a
s

c

T T T T T T T T T T
C T Q

R R R R R

    
        (7.31) 

 24 32 25 32 1 32 32 36 32 35 32
32 32

24,32 25,32 1,32 32,36 32,35 32

a

c

T T T T T T T T T T T T
C T

R R R R R R

     
        (7.32) 
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 27 33 28 33 36 33 33 38 33 37 33
33 33

27,33 28,33 33,36 33,38 33,37 33

a

c

T T T T T T T T T T T T
C T

R R R R R R

     
        (7.33) 

 30 34 31 34 38 34 34 7 34 39 34
34 34

30,34 31,34 38,34 7,34 34,39 34

a

c

T T T T T T T T T T T T
C T

R R R R R R

     
        (7.34) 

 32 35 1 35 35 36 35
35 35

32,35 1,35 35,36 35

a

c

T T T T T T T T
C T

R R R R

   
      (7.35) 

 32 36 35 36 26 36 36 33 36 37 36
36 36

32,36 35,36 26,36 33,36 36,37 36

a

c

T T T T T T T T T T T T
C T

R R R R R R

     
        (7.36) 

 33 37 36 37 37 38 37
37 37

33,37 36,37 37,38 37

a

c

T T T T T T T T
C T

R R R R

   
      (7.37) 

 33 38 37 38 29 38 38 34 38 39 38
38 38

33,38 37,38 29,38 34,38 38,39 38

a

c

T T T T T T T T T T T T
C T

R R R R R R

     
        (7.38) 

 34 39 38 39 39 7 39
39 39

34,39 38,39 7,39 39

a

c

T T T T T T T T
C T

R R R R

   
      (7.39) 

 


