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Abstract

Cyber-physical systems (CPS) are systems that are tight integration of com-
puter programs as controllers or cyber parts, and physical environments. The
interaction is carried out by obtaining information about the physical envi-
ronment through reading sensors and responding to the current knowledge
through actuators. Examples of such systems are autonomous automobile
systems, avionic systems, robotic systems, and medical devices. Perhaps the
most common feature of all these systems is that they are all safety criti-
cal systems and failure most likely causes catastrophic consequences. This
means that while testing continues to increase confidence in cyber-physical
systems, formal or mathematical proofs are needed at the very least for the
safety requirements of these systems.
Hybrid automata is the main modeling language for cyber-physical sys-

tems. However, verifying safety properties is undecidable for all but very
restricted known classes of these automata. Our first result introduces a new
subclass of hybrid automata for which bounded time safety model checking
problem is decidable. We also prove that unbounded time model checking for
this subclass is undecidable which suggests this is the best one can hope for
the new class. Our second result in this thesis is a counter-example guided
abstraction refinement algorithm for unbounded time model checking of non-
linear hybrid automata. Clearly, this is an undecidable problem and that is
the main reason for using abstraction refinement techniques. Our CEGAR
framework for this class is sound but not complete, meaning the algorithm
never incorrectly says a system is safe, but may output unsafe incorrectly.
We have also implemented our algorithm and compared it with seven other
tools.
There are multiple inherent problems with traditional model checking ap-

proaches. First, it is well-known that most models do not depict physical
environments precisely. Second, the model checking problem is undecidable
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for most classes of hybrid automata. And third, even when model checking
is decidable, controller part in most models cannot be implemented. These
problems suggest that current methods of modeling cyber-physical systems
and problems might not be the right ones. Our last result focuses on robust
model checking of cyber-physical systems. In this part of the thesis, we focus
on the implementability issue and show how to solve four different robust
model checking problem for timed automata. We also introduce an opti-
mal algorithm for robust time bounded safety model checking of monotonic
rectangular automata.
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Chapter 1

Introduction

Cyber-Physical Systems are systems in which computer programs control
physical environments through their sensors and actuators. They have appli-
cations in aerospace, self-driving cars, medical devices, smart grids, robotics,
and more. Cyber-physical systems are becoming an indispensable part of our
lives, and failures in these systems are often catastrophic financially and/or
in terms of human life. Automakers recalled a record of 51.2 million vehicles
over 868 separate recalls in 2015 for safety defects which cost them billions.
Two million medical devices were recalled in the past decade out of which
24% were because of design bugs. In 2005, an overflow resulted in the flight
computer crash, and in May 2016, a self-driving car that was equipped by
sophisticated computer software, sensors, cameras, and radar, did not acti-
vate its brakes and caused the first fatal accident involving self-driving cars.
Companies no longer have the luxury of time to spend decades on testing
these systems manually. Therefore, it is more crucially important than ever
to be able to formally verify these systems automatically and efficiently.
Whenever we want to rigorously prove that a cyber-physical system satis-

fies its required properties (i.e., we want to formally verify), we first model
it in some mathematical language. Hybrid automata [1] is a popular for-
mal model for cyber-physical systems, in which continuous dynamics of the
physical environment as well as discrete behavior of the controller are mod-
eled and interact with each other. In addition to having a formal model of a
cyber-physical system, one also needs to formally specify required properties.
The most important property of a cyber-physical system is its safety, which
as its name suggests, means we want our cyber-physical system to never be
in an unsafe state (e.g., room temperature should not become too high or too
low, cars should not get too close to each other in the road, . . . ). A hybrid
automaton models a state of a cyber-physical system as a tuple of discrete
and continuous variables. A safety property first specifies an unsafe set of
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states as a predicate on hybrid automata variables and then asks whether it
is possible for the hybrid automaton in question to ever reach to this unsafe
set. If the answer is yes then the system is unsafe, and if the answer is no
then the system is safe. That is why safety and reachability are considered
dual of each other. This reachability/safety problem has been carefully stud-
ied in the past couple of decades and boundaries of decidability have been
extensively explored. The problem is stubbornly undecidable as shown by
the many undecidability results in the area [2–6]. Results identifying decid-
able subclasses are few and rare. Apart from some low dimensional hybrid
systems [4,7–10], the main classes of decidable hybrid systems are timed au-
tomata [11], initialized rectangular automata [2], semi-algebraic o-minimal
systems [12], and semi-algebraic STORMED systems [6].
There are couple of reasons for intrinsic computational complexity of model

checking cyber physical systems. First, a cyber-physical system involves an
interaction between a physical environment and computer software as con-
troller. Even when a software has no interaction with a physical environ-
ment, its verification is in general undecidable. Consequently, model check-
ing cyber-physical systems, even when the physical environment has a very
simple dynamic, is undecidable. Second reason for the surprisingly high com-
putational complexity of cyber-physical systems is the dynamics of entities
in the physical environment. Often, ordinary differential equations (ODEs)
are used to model these dynamics. However, decidability results are known
only for very restrictive class of ODEs. The third reason is that in model
checking cyber-physical systems, one usually assumes more than one initial
state, and whenever this is the case, since entities in the physical environ-
ment mostly take continuous values, set of initial states will most likely be
an uncountable set. Therefore, to verify a cyber-physical system, even if dy-
namics of the system was very simple and even if we were only interested in
runs of bounded length/duration, one cannot test all the possible executions
one by one. Note that this problem can never happen if we only consider
bounded length possible executions of software in isolation. Finally, models
of cyber-physical systems, most often, include non-deterministic behaviors.
The non-determinism is added to models for two reasons. The first reason
is that we may not know exactly what physical environment will do under
certain condition. In this situation, we usually consider all the possibilities;
the model specifies a set of possible behaviors and the cyber-physical system
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may behave according to any of them. Therefore, if we can prove that the
model is safe, since all the possible behaviors are considered, we conclude the
cyber-physical system is safe as well. Note that even if we start from a single
initial state, the non-determinism often introduces uncountable number of
possible behaviors. Another reason for injecting non-determinism into the
models, is to simplify the dynamics of deterministic models! Although, this
simplification/non-determinism simplifies the dynamics and hence simplifies
model checking the new models, the problem of having uncountable number
of executions is there and, even in theory, prevents considering every possible
behavior separately.
Given the computational difficulty of analyzing most hybrid systems, there

are three approaches different researchers take to reduce the complexity of
model checking. This thesis makes contributions in these three directions.
The first approach is considering time bounded variation of the reachabil-

ity/safety problem (as opposed to the unbounded time). In this variation,
in addition to a hybrid automaton and an unsafe set of states, there will
be a time bound T as an input. Time-bounded reachability/safety problem
asks whether it is possible to reach to an unsafe state within time T . Time-
bounded variation has received much attention. It has been shown that time
bounded problems in many cases are computationally easier than the cor-
responding problems without time bounds [13, 14]. For example, the time
bounded reachability problem has been shown to be NEXPTIME-complete for
monotonic rectangular automata, even though the same problem for non-
monotonic rectangular hybrid automata is undecidable [15,16].
The second approach to make model checking cyber-physical systems fea-

sible, especially when there is no time bound, is to abstract continuous dy-
namics of the model. In this approach, continuous dynamics are abstracted
into simpler dynamics that are amenable to automated analysis. This is be-
cause the general problem of safety verification is undecidable even for very
simple class of continuous dynamics [2–6]. The success of the abstraction
based method depends on finding the right abstraction, which can be diffi-
cult. One approach that tries to address this issue is the Counter Example
Guided Abstraction Refinement (CEGAR) framework [17] that tries to au-
tomatically discover the right abstraction through a process of progressive
refinement based on analyzing spurious counter examples in abstract models.
CEGAR has been found to be useful in several contexts [18–21], including
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hybrid systems [22–29]. Finally, whenever the goal is to prove safety, the
abstraction (whether it is CEGAR-based or not) must over approximate all
the possible behaviors in the system, and similarly whenever the goal is to
disprove it, the abstraction must under approximate possible behaviors of
them system. Therefore, if we manage to prove the abstract system is safe
(unsafe) then we know the actual cyber-physical system is safe (unsafe) as
well.
The third approach to make model checking cyber-physical systems fea-

sible, looks deeper into undecidability results and other problems with the
traditional modeling, verification, and implementation steps. Many undecid-
ability proofs are carried out through the ability to efficiently encode/decode
all natural numbers within the interval of real numbers from 0 to 1 (or any
other pair of integers). This means there is no lower bound on the distance of
real numbers with a corresponding natural number. Therefore, to correctly
decode a real number into the corresponding natural number, its exact value,
and not any approximation of it, is required. Proofs usually obtain this by
assigning exactly one dynamic to each continuous variable within a mode of
hybrid automaton, and use equalities in their hybrid automaton model spec-
ification. However, hybrid automata are supposed to model cyber-physical
systems, and in a typical cyber-physical system, there is always some noise
in the physical environment, which means we can never know the exact dy-
namics of the continuous variables. Furthermore, constraints in a hybrid
automaton that do not specify continuous dynamics, usually model sensors
in the cyber-physical system. Using equality in models means we assume sen-
sors are infinitely precise, which is another false assumption. These two false
assumptions (i.e. not having noise in the physical environment and having
infinitely precise sensors) have at least one more negative consequence; they
almost always make the implementation impossible. Suppose, we managed
to prove that a hybrid automaton satisfies all its required properties. The
next step in building a cyber-physical system is to implement the controller
part of the hybrid automaton model. However, having exactly one contin-
uous dynamics cannot be implemented, because time in a controller’s CPU
is a discrete entity as opposed to time in the physical environment which is
continuous. Furthermore, even if sensors are infinitely precise, the precision
of data that is received by the controller is always finite. Note that these
problems arise even for implementing timed automata, which perhaps con-
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stitute the simplest class of hybrid automata. These difficulties may lead
one to question the modeling language used for specifying different classes
of hybrid automata and their problems. Robust model checking is solution
to these problems that is suggested by researchers in [30–41]. In this ap-
proach, existence of noise in the environment and finite precision sensors are
always assumed. However, the formal definitions of noise, environment, and
precision, are different across different works.

1.1 Structure of the Dissertation

Chapter 2 is dedicated to preliminary concepts and definitions. In Chapter 3,
we introduce a new class of hybrid automata called Initialized linear inclu-
sion automata. In this class, invariants, guards, resets, and initial values are
given by rectangular constraints, the flows are described by linear differential
inclusions of the form ax + b C1 ẋ C2 cx + d (with C1,C2 : {<,≤}), and a
variable x is reset on mode change whenever the differential inclusion describ-
ing the dynamics for x changes. Such automata strictly subsume initialized
rectangular automata, which is known as a border of decidability results for
hybrid automata [2]. For this class, we prove 1. unbounded time reachability
is undecidable, 2. bounded time reachability is decidable. Note that bound-
ing time does not necessarily bound number of discrete transitions that one
can take within the given time.
Although, our algorithm for bounded time reachability in Chapter 3 is

an interesting theoretical result, its application in practice is rather limited.
Because, most cyber-physical systems in industry are not modeled using ini-
tialized linear inclusion automata. To deal with this problem, in Chapter 4,
at the expense of losing decidability, we extend the class of hybrid automata
and consider the problem of safety verification for non-linear polyhedral au-
tomata. In this class of hybrid automata, dynamics are given in the form
of ẋi:=fi(x1, . . . , xn) separately for every variable, where fi is a non-linear
function, and initial states, invariants, and reset relations are all given using
polyhedral constraints. We present a Counter-Example Guided Abstraction
Refinement Framework (CEGAR), which abstract these hybrid automata
into polyhedral automata (i.e. initial states, invariants, flows, and reset rela-
tions are all given using polyhedral constraints). We show that the CEGAR
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framework forming the theoretical basis of HARE, makes provable progress
in each iteration of the abstraction-refinement loop. We analyze the perfor-
mance of our tool against standard benchmark examples, and show that its
performance is promising when compared to state-of-the-art safety verifica-
tion tools, SpaceEx [42], PHAVer [43], SpaceEx AGAR [44], for affine dynamics
and HSolver [45], C2E2 [46], and FLOW* [47], for non-linear dynamics.
As we mentioned in the previous section, many undecidability results, in-

cluding ours in Chapter 3, use some properties of modeling languages that
have no correspondence in the real world. For example, our undecidabil-
ity proof in Chapter 3, assumes there is absolutely no noise in the physical
environment and sensors that obtain information from the physical environ-
ment have infinite precision. We also mentioned, many modeling languages
designed for specification of cyber-physical systems, including the ones we
use in Chapter 3 and Chapter 4, have the implementability issue. Knowing
about these unrealistic properties of modeling languages and their negative
consequences, Chapter 5 focuses on robust model checking. In this chapter,
we consider the problem of robust model checking for monotonic rectangu-
lar automata (when time is bounded) and timed automata (when time is
unbounded). These classes have an idealized semantics where clocks are as-
sumed to be perfectly continuous and synchronized, and guards have infinite
precision. These assumptions cannot be realized physically. To ensure that
correct timed automata designs can be implemented on real-time platforms,
several authors have suggested that timed automata be studied under ro-
bust semantics. A timed automaton H is said to robustly satisfy a property
if there is a positive ε and/or a positive δ such that the automaton sat-
isfies the property even when the clocks can drift by ε and/or guards are
enlarged by δ. In this chapter we show that, 1. checking ω-regular prop-
erties when only clocks are perturbed or when both clocks and guards are
perturbed, is PSPACE-complete; and 2. one can compute the exact reachable
set of a bounded timed automaton when clocks are drifted by infinitesimally
small amount, using polynomial space. In particular, we remove the restric-
tive assumption on the timed automaton that its region graph only contains
progress cycles, under which the second result above has been previously
established. Finally, in Chapter 6, we discuss conclusions and future work.
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Chapter 2

Preliminaries

This chapter introduces notations and mathematical definitions that have
been used in the rest of the thesis. In Section 2.1 we introduce notions that
are used for sets and functions. In Section 2.2 we introduce formal notions
of transition systems, hybrid automata and its subclasses, and perturbation
of hybrid automata.

2.1 Sets and Functions

The sets of natural, positive natural, rational, positive rational, real, positive
real, and non-negative real numbers are represented by N, N+, Q, Q+, R, R+,
and R≥0, respectively. For an element x and a set A, we use x :A to denote
that x is of type A (x :A is not a predicate). Equalities written using symbol
:= are definitions. For r :R, we define brc to be the largest integer not larger
than r, and dre to be the smallest integer not smaller than r. When r ≥ 0,
we also define 〈r〉 to be r − brc.
Let A and B be two arbitrary sets. Size of A is denoted by |A|. The

power set of A is represented by 2A. The Cartesian product of A and B is
represented by A×B. For a tuple t:=(a, b), elements a and b are represented
by fst(t) and snd(t), respectively. If A,B ⊆ R then A+B:={a + b | a :A ∧
b :B}. The set of functions from A to B is represented by BA or A→ B.
For a function f :A→ B, dom(f) denotes A, domain of f . For any two
functions f, g :A→ R, the function f−g :A→ R :x 7→ f(x) − g(x) is the
pointwise subtraction of g from f . For any C ⊆ A, f [C ← 0] :A→ R maps
x to 0 if x ∈ C and maps x to f(x) if x /∈ C. Consider D ⊆ 2B. If D
is closed under intersection and f, g :A→ D, f ·∩g :A→ D is the function
(f ·∩g)(x):=f(x) ∩ g(x). For functions f :A→ D and g :A→ B, we say g∈̇f
iff ∀x :A • g(x) ∈ f(x). For every function x : [R≥0 → R] that maps an input
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t to x(t), the first derivative with respect to t will be denoted by either dx
dt or

ẋ. If ẋ = ax+ b for some a, b :R, then the solution is given by:

x(t) =

 x(0)eat + beat − b
a

if a 6= 0
x(0) + bt otherwise

(2.1)

For any set A, and n :N, A{0,...,n−1} is the set of finite sequences on A of
length n. For any such sequence τ and index i : {0, . . . , n− 1}, we may write
τi instead of τ(i) to make the notation simpler. Knowing τ , we use |τ | to
denote n. Infinite sequences on A is defined to be the set AN. If τ is an
infinite sequence, |τ | is defined to be∞, and for any i :N, we use τi to denote
τ(i). For any set A, we use A∞ to denote the set of finite sequences on A,
and use Aω to denote the set of infinite sequences on A.
For any a :R ∪ {−∞} and b :R ∪ {∞}, (a, b):={x :R | a < x < b} is

the interval of real numbers between a and b. (a, b], [a, b), and [a, b] are
defined in a similar way (i.e. using bracket instead of parentheses means
the corresponding end-point is closed). An interval is closed (open) if it can
be written in the form of [a, b] ((a, b)). It is bounded if both of its end-
points belong to R. We denote the set of intervals by I. Also, the set
of bounded intervals and bounded closed intervals are denoted by I◦ and I•,
respectively. Note that I, I◦, and I• are closed under finite intersection, and
intersection is easily computable (i.e. if end-points are given in binary formats
and closeness/boundedness are specified using boolean flags, intersection of
every two interval can be computed in constant amount of time).
A polyhedron (plural: polyhedra) is a finite intersection of constraints of the

form ∑
x :X cxx ./ b, where X is an arbitrary set of variables, cx :R and b :R

are arbitrary constants, and ./ : {<,≤,=,≥, >} is the comparison type. We
show the set of polyhedra defined on X by P(X). A rectangle is a polyhedron
in which all constraints are of the form x ./ b.

2.2 Transition Systems and Hybrid Automata

In theoretical computer science, transition system is a concept usually used
in the study of computation. It is basically a labeled directed graph in which
number of nodes, labels, and edges could be even uncountable. It is quite
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possible that using a single label one can go to multiple destinations from a
single node. Therefore, transitions systems are often non-deterministic. In
this thesis, we use transition systems to define the formal semantics of hybrid
automata.

Definition 1 (Transition Systems). A transition system T is a tuple (S, Σ,
−→, Sinit) in which

• S is a (possibly infinite) set of states,

• Σ is a (possibly infinite) set of labels,

• −→ ⊆ S×Σ×S is a transition relation, and

• Sinit ⊆ S is a set of initial states.

We denote different elements of T by adding a subscript to their names.
For example, we use ST to denote the set of states of T . We may omit the
subscript whenever it is clear from the context. We write s σ−→s′ instead of
(s, σ, s′) ∈ −→, and s−→s′ to denote ∃σ : Σ • s σ−→s′.

A hybrid automaton (plural: hybrid automata) is a mathematical model
we use throughout this thesis to formally model a cyber-physical system. It
has a finite number of locations and a finite number real variables. In each
location, values of variables continuously change according to some given dy-
namics. Starting from some initial location, one can go to different locations
if there is an edge between source and destination locations. Furthermore,
in order to take an edge, values of variables must satisfy a transition relation
associated to each edge. Definition 2 formally specifies syntax of a hybrid
automaton.

Definition 2 (Hybrid Automata). A hybrid automaton H is a tuple (Q, X, I,
F, E, Xinit) in which

• Q is a non-empty finite set of locations.

• X is a non-empty finite set of variables. We let V:=RX be the set of all
possible valuations of variables in X.

• I : Q→ 2V maps each location to the set of possible valuations in that
location as invariant of the location.
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• F : Q→ 2V×V maps each location q to the set of possible flows of that
location. Each element in this set is a pair (ν, ν̇). Intuitively it means,
if the current continuous state is ν then ν̇ is a possible direction field.

• E is a set of edges of the form e = (s, d, l, r) where

– s : Q is the source of e,

– d : Q is the destination of e,

– l : 2E is the label of e 1, and

– r : 2V×V is the reset relation of e.

We let G(e):={ν : V | ∃ν ′ : V • (ν, ν ′) ∈ r} to be guard of e, as the set of
valuations for which the reset relation is non-empty. We use S(e), D(e),
L(e), R(e), and G(e), to denote different elements of edge e.

• Xinit : Q→ 2V maps each location to the set of possible initial valuations
in that location. We let Qinit:={q : Q | ∃ν : V • (q, ν) ∈ Xinit} to be the set
of initial locations, i.e. those locations for which there is at least one
initial valuation.

We denote different elements of H by adding a subscript to their names. For
example, we use XH to denote the set of variables of H. We may omit the
subscript whenever it is clear from the context.

Definition 3 (Semantics of Hybrid Automata). The semantics of a hybrid
automaton H is defined using the transition system [[H]] = (S, Σ,−→, Sinit) in
which

• S:=Q×V,

• Σ:=E ∪ R≥0
2,

• Sinit:={(q, ν) | ν ∈ Xinit(q) ∩ I(q)}, and

• −→:=−→1 ∪ −→2 where
1in this thesis we do not compose different hybrid automata. Edges having labels

as subset of edges are used in some of the proofs when we want to merge edges while
remembering original edges that are merged. Also, implicit recursive definition is not
a problem, instead of l being a subset of E, one can order E and let l be a subset of
{0, . . . , |E| − 1}.

2Wlog. we assume E and R are disjoint.
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– →1 is the set of continuous transitions and for all t :R≥0 we have
(q, ν) t−→1(q′, ν ′) iff q = q′ and there is a function f : [0, t]→ V with a
free variable u such that 1. f(0) = ν, 2. f(t) = ν ′, 3. ∀u : [0, t] • f(u)
∈ I(q), and 4. ∀u : [0, t] •

(
f(u), df

dt (u)
)
∈ F(q). When the free

variable of the function f is known, we use ḟ to refer to the first
derivative of f with respect to its free variable 3.

– →2 is the set of discrete transitions and for any e : E we have
(q, ν) e−→2(q′, ν ′) iff 1. q = S(e), 2. q′ = D(e), 3. v ∈ I(q), 4. v′ ∈
I(q′), and 5. (v, v′) ∈ R(e).

Every state in the semantics is a pair of discrete and continuous states. If
we spend time in a location, it means the discrete component of the transition
won’t change. The continuous part, however, will change according to some
possible dynamics for the current location. There is no bound on how long
one can stay in a location, but as long as location is fixed, its invariant must
be satisfied. Taking a discrete edge could change both components of the
current state. Discrete part changes from source to destination location, and
continuous part will non-deterministically change to any value that satisfies
the transition relation.

2.2.1 Subclasses of Hybrid Automata

We consider different sub-classes of hybrid automata.

• Polyhedral automata are hybrid automata, in which for any location q : Q
values of I(q), F(q), and Xinit(q) are specified using polyhedra in P(X).
Also, for any edge e : E, R(e) is specified using polyhedra in P(X ∪ X′),
where X′ is the prime version of X (i.e. for any x1, x2 : X we assume
x1 6= x2 ⇔ x′1 6= x′2, x′1 ∈ X′, and |X| = |X′|). A polyhedron P :P(X)
defines {(ν, ν ′) | ν ′ ∈ P} as the flow. Therefore, F(q) is independent
of the current valuation. We abuse the notation and write F(q) = P

when it causes no confusion. The same is true for I(q), Xinit(q), and
R(e). Finally, we require that only non-empty polyhedra be used in the
specification of hybrid automata.

3We only consider left/right derivatives of f at the right/left end points of [0, t].
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• Non-linear polyhedral automata are same as polyhedral automata ex-
cept that for any location q : Q value of F(q) is specified by a function f
of type I(q)→ V. Therefore, for any valuation in the invariant of that
location, F(q) defines exactly one execution. We abuse the notation
and write F(q) = f when it causes no confusion. In this thesis, we
always assume function f is Lipschitz continuous.

• Rectangular automata are polyhedral automata in which for any loca-
tion q : Q values of I(q), F(q), and Xinit(q) are specified using by rect-
angles in IX. Also, for any edge e : E value of R(e) is specified using
three elements: 1. g : IX as the guard of e, 2. j : 2X as the jump set of
e, and 3. r : Ij as the reset of e. Polyhedron R(e) is defined using the
union of three constraints: 1. ∧x : X x ∈ g(x), and 2. ∧x : j x′ ∈ r(x),
and 3. ∧x : X\j x

′ = x. Intuitively, constraint g must be satisfied in
order to take edge e. After taking e, values of variables in j are non-
deterministically reset to some value in r(x) and values of other vari-
ables don’t change. We denote j and r by respectively J(e) and R�(e).
Note that G(e) in Definition 2, is exactly g. A rectangular automaton is
called initialized iff for any edge e : E and x : X if F(S(e))(x) 6= F(D(e))(x)
then x ∈ J(e). A rectangular automaton is called closed iff all intervals
in its specification are closed. A rectangular automaton is called mono-
tonic iff for any variable x, possible flows of x is either non-negative in
all locations or non-positive in all locations. Finally, in order to make
the notation simpler, we may write I(q, x) instead of I(q)(x). The same
is true for F(q, x), Xinit(q, x), G(e, x), and R�(e, x).

• Stopwatch automata are restricted class of rectangular automata where
F(q, x) could be either [0, 0] and [1, 1]. Furthermore, Xinit(q, x) and
R�(e, x) must be intervals of the form [r, r], for some r :R.

• Linear inclusion automata are same as rectangular automata except for
any location q : Q value of F(q) is specified using ∧x : X axx+bxCx,lxCx,u
cxx+dx, where ax, cx :R, bx :R∪{−∞}, dx :R∪{∞}, and Cx,l,Cx,u : {<
,≤}. The set {(ν, ν ′) |∀x : X • axνx+bxCx,l ν ′xCx,u cxνx+dx} defines flow
of q. Note that linear inclusion automata are not a sub-class polyhedral
automata because flows are dependent on current valuations. Nor are
they a sub-class of non-linear polyhedral automata because flows are

12



given in the form of inclusions not equations. Initialized linear inclusion
automata are defined in the same manner as rectangular automata (i.e.
if source and destination locations of edge e have different flow for a
variable x than x must be in J(e)).

• Timed automata are a sub-class of initialized rectangular automata,
where for any location q : Q, edge e : E, and variable x : J(e), the fol-
lowing three conditions hold: 1. F(q, x):=[1, 1], 2. R�(e, x):=[0, 0], and
3. Xinit(q, x) is either ∅ or [0, 0]. We call variables of a timed automa-
ton clocks. A timed automaton is called closed iff all intervals in its
specification (i.e. guards and initial values) are closed.

2.2.2 Trajectories and Executions

In this section, we define trajectories, executions, and different operations on
them. We use these to finally define reachable sets as well as the two main
problems that are the focus of this thesis: 1. safety verification problem, and
2. ω-regular model checking problem.
For any hybrid automaton H with the semantics [[H]] = (S, Σ,−→, Sinit), an

element τ from the set S×(Σ×S)∞, and an index n :N, we let τn denote fst(τ)
if n = 0 and snd(snd(τ)n−1) if n > 0. Also Ln(τ) will denote fst(snd(τ)n).
Furthermore, if snd(τ) ∈ (Σ× S)ω, we define |τ | to be ∞. Otherwise, we
define |τ | to be |snd(τ)| (i.e. length of the sequence snd(τ)). Note that τn
is defined only if n ≤ |τ | and Ln(τ) is defined only if n < |τ |. Finally, we
define dom(τ) to be {0, 1, . . . , |τ |−1}. Note that τ is completely known if we
specify |τ |, τn, and Ln(τ), for all defined indices (recall that defined indices
for τn are {0, 1, . . . , |τ |} and for Ln(τ) are {0, 1, . . . , |τ | − 1}).
τ is said to be a trajectory iff for any n : dom(τ) we have 1. τn

Ln(τ)−−−→τn+1,
and 2. if n > 0 then Ln(τ) ∈ R≥0 iff Ln−1(τ) /∈ R≥0 (i.e. τ has alternating
sequence of discrete and continuous transitions). The set of trajectories, finite
trajectories, and infinite trajectories of H is denoted by [[H]]∞, [[H]]∗, and
[[H]]ω, respectively. We use first(τ) to refer to τ0. Also, if |τ | is finite, last(τ)
refers to τ|τ |. For any trajectory u : [[H]]∗ and v : [[H]]∞, such that 1. last(u) =
first(v), and 2. |u|, |v| > 0 or L|u|−1(u) ∈ R≥0 ⇔ L0(v) /∈ R≥0 (i.e. u ends in a
time transition iff v starts with discrete one), the concatenation of u and v is
a trajectory τ : [[H]]∞, denoted by u_v, specified as follows: 1. |τ | = |u|+|v| (τ
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is an infinite trajectory iff v is), 2. τn:=un if n ≤ |u| and τn:=vn−|u| otherwise,
and 3. Ln(τ):=Ln(u) if n < |u| and Ln(τ):=Ln−|u|(v) otherwise. A trajectory τ
is said to be an execution iff first(τ) ∈ Sinit, i.e., it starts from an initial state.
We denote the set of executions, finite executions, and infinite executions
of H by [[H]]0

∞, [[H]]0
∗, and [[H]]0

ω, respectively. We define reach(H) to be
{last(τ)|τ : [[H]]0

∗}, it simply is the set of states in [[H]] that one can reach from
an initial state of [[H]] in finite amount of time. Similarly, for any time bound
T :R≥0, we define reach(H, T ) to be {last(τ) | τ : [[H]]0

∗ ∧ duration(τ) ≤ T}, it
simply is the set of states in [[H]] that one can reach from an initial state of
[[H]] within time T . Finally, for any trajectory τ , we let inf(τ) ⊆ EH be the
set of edges that are visited infinitely often by τ .

Problem 4 (Safety/Reachability). For a hybrid automaton H, let ϕ ⊆ SH,
be a set of unsafe states in H. The (unbounded-time) safety problem asks
whether or not the unsafe set ϕ has a non-empty intersection with reach(H).
In this thesis, we answer this question by computing reach(H) and checking
the emptiness of the intersection, hence we may refer to the same problem
as the reachability problem. We also consider the bounded-time variation
of this problem. The bounded-time safety problem asks whether or not the
unsafe set ϕ has a non-empty intersection with reach(H, T ), where T :R≥0 is
another input to the problem.

Problem 5 (ω-Regular Model Checking). For a hybrid automaton H, let
ϕ ⊆ EH, be a subset of edges in H. The ω-regular model checking problem
asks whether or not all infinite executions of H visit some edge in ϕ infinitely
often. More precisely, it asks if ∀τ : [[H]]0

ω • inf(τ) ∩ ϕ 6= ∅ is true.

Taking ϕ to be both subset of states and edges of H will not cause any
confusion. In case ϕ is a subset of states, we write H|=ϕ to denote that the
system is safe. And, in case ϕ is a subset of edges, we write H|=ϕ to denote
that any execution of H visits some edge in ϕ infinitely often.

2.2.3 Perturbation of Hybrid Automata

In order to robustly model check a hybrid automaton we need to define two
types of perturbation. Perturbation and robust model checking are only used
in Chapter 5 and that chapter only deals with rectangular automata with
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closed intervals and its subclasses. Therefore, in this section we only consider
rectangular automata with closed intervals.
For any ε, δ :R≥0 and closed rectangular automaton H, we consider two

types of perturbations. We use Hε
δ to denote another rectangular automa-

ton where guards and flows are enlarged by δ and ε, respectively. On the
other hand, H+δ refers to another rectangular automaton where flows are not
changed, but positive guards are perturbed by δ. Before formally defining
these perturbations, we introduce some notation. For an interval J = [a, b]
and δ :R≥0, Jδ:=[a− δ, b+ δ]. On the other hand, J+δ:=[c, d], where

c =

 a− δ if a > 0
a otherwise

d =

 b+ δ if b > 0
b otherwise

Hε
δ is rectangular automaton (Q, X, I′, F′, E′, Xinit) where for any q : Q, x : X, and

(s, d, l, g, j, r) : E, the following are all true: 1. (s, d, l, gδ, j, r) ∈ E′, 2. I′(q, x):=
(I(q, x))δ, and 3. F′(q):=(F(q))ε. Rectangular automaton H+δ is same as H0

δ

except that in H+δ we enlarge intervals using J+δ instead of Jδ. We write Hε,
Hδ, and H instead of Hε

0, H0
δ , and H0

0. Finally, we define the following sets
of states representing reachable sets after different yet infinitesimal amount
of perturbations.

limreachε(H):=
⋂

ε : R+

reach(Hε) (2.2)

limreachδ(H):=
⋂

δ : R+

reach(Hδ) (2.3)

limreachεδ(H):=
⋂

ε : R+

⋂
δ : R+

reach(Hε
δ) (2.4)

Problem 6 (Robust Safety/Reachability Problem). For a hybrid automaton
H, let ϕ ⊆ SH, be a set of unsafe states in H. There are four versions of
robust safety problem defined as follow:

1. ∃ε :R+ •Hε|=ϕ, robust safety when only flows are perturbed,

2. ∃δ :R+ •Hδ|=ϕ, robust safety when only guards are enlarged,

3. ∃δ :R+ •H+δ|=ϕ, robust safety when only positive guards are enlarged,
and
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4. ∃ε, δ :R+ •Hε
δ|=ϕ, robust safety when both guards and clocks are per-

turbed.

Intuitively, these conditions look for robustness under different kinds of per-
turbation. Similar to non-robust version, we may refer to this problem as the
reachability problem as well. Time-bounded variation is defined similarly.

Problem 7 (Robust ω-Regular Model Checking). For a hybrid automaton
H, the robust ω-regular model checking problem asks to identify which of the
properties in Problem 6 are true when ϕ is a subset of edges.
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Chapter 3

Exact Model Checking

The reachability problem for hybrid automata [1] is very important from
the standpoint of safety verification of cyber-physical systems. This problem
has been carefully studied in the past couple of decades and boundaries
of decidability have been extensively explored. The problem is stubbornly
undecidable as shown by the many undecidability results in the area [2–6].
Results identifying decidable subclasses are few and rare. Apart from some
low dimensional hybrid systems [4,7–10], the main classes of decidable hybrid
systems are timed automata [11], initialized rectangular automata [2], semi-
algebraic o-minimal systems [12], and semi-algebraic STORMED systems [6].
Given the computational difficulty of analyzing most hybrid systems, time

bounded versions of classical decision problems have received much attention.
It has been shown that time bounded problems in many cases are compu-
tationally easier than the corresponding problems without time bounds [13,
14]. One particular problem that has been investigated recently is the time
bounded reachability problem, which asks if a certain state of a hybrid au-
tomaton can be reached within a given time bound T . The time bounded
reachability problem has been shown to be NEXPTIME-complete for monotonic
rectangular automata, even though the same problem for non-monotonic
rectangular automata is undecidable [15,16].
In this chapter, we consider a rather new class of hybrid automata called

initialized linear inclusion automata. Like initialized rectangular automata,
the invariants, guards, resets, and initial values in such automata are de-
scribed by rectangular constraints, and variables are initialized, i.e., when-
ever the continuous dynamics of a variable changes due to a mode switch, its
value is required to be reset to a value in an interval range. However, unlike
rectangular automata, the continuous dynamics is given by linear differential
inclusions of the form ax+bC1 ẋC2 cx+d (where C1,C2 : {<,≤}) 1. In other

1Linear inclusions for each variable are scalar.
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words, the evolution of a continuous variable x is any trajectory x :R≥0 → R
such that at any time t, ax(t) + bC1 ẋ(t)C2 cx(t) + d. Thus, such automata
strictly subsume the class of initialized rectangular automata. We anticipate
such automata to be useful in abstracting hybrid automata more precisely
than initialized rectangular automata. Evidence of such an application can
be seen in the use of eigenforms for abstracting linear systems [48].
We show that the reachability problem for initialized linear inclusion au-

tomata is undecidable by reducing the halting problem of 2-counter ma-
chines. In addition, the time bounded reachability for (uninitialized) linear
inclusion automata is undecidable. This follows from the undecidability of
the time bounded reachability problem for (non-monotonic) rectangular au-
tomata [15, 16]. In contrast, we show that the time bounded reachability
problem is decidable. Our decidability result is proved based on the follow-
ing observations. Like to the translation of initialized rectangular automata
timed automata [2,49], we first reduce the reachability problem of initialized
linear inclusion automata to the reachability of problem in an automaton all
of whose continuous variables are clocks. Thus, we generalize an observation
about rectangular flows to linear inclusion flows. The resulting automaton
though is not a timed automaton because the constants used in the con-
straints could be of the form r ln r′, where r, r′ are rational numbers. We call
such automata irrational timed automata. This difference is significant be-
cause reachability for such automata is undecidable; this is a consequence of
our undecidability result for initialized linear inclusion automata. However,
we show that the time bounded reachability for such automata is decidable.
Note, that our decidability result does not follow from the result in [16] —
while clocks are special monotonic rectangular variables, the presence of ir-
rational constants in our automata complicates matters. Our decidability
proof relies on observing that if a state ν is reachable within time T , it is
reachable by an execution with at most exponentially many discrete transi-
tions. The algorithm deciding time bounded reachability then guesses such
an execution, and checks if the execution is valid. To check validity of an
execution, we reduce the problem of checking negative cost cycles in an expo-
nentially sized graph. The presence of irrational constants in irrational timed
automata ensures that checking for negative cost cycles involves comparing
linear combinations of natural logarithms of rational numbers with integers.
All steps of our algorithm, except the step of comparing logs with integers,
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can be bounded by PSPACE. Even though natural logs can be approximated
very efficiently (both in terms of space and running time) with arbitrary
precision [50–52], we are unaware of any complexity bounds for computing a
particular bit (say k) of the natural logarithm of a rational number. This pre-
vents us from proving hard upper bounds. We conjecture that the problem
is in fact PSPACE-complete.

3.1 Unbounded Time Reachability

In this section, we consider the problem of (unbounded time) reachability in
initialized linear inclusion automata and prove that it is in fact undecidable.
Our proof is based on reducing the halting problem of 2-counter machine to
the reachability problem for initialized linear inclusion automata. It is an
adaptation of Miller’s proof [53] showing that the reachability problem for
timed automata with irrational constants is undecidable. The reason why
the construction needs to be changed is because Miller’s automata compare
variables with both rational and irrational constants without resetting them
between the two comparisons. However, the initialization requirement of
initialized linear inclusion automaton forces one to reset variables when it is
compared to different constants. We begin by defining the model of 2-counter
machines.

Definition 8 (2-Counter Machine). A 2-counter machine is a program with
counters that can be either incremented or decremented; the control flow
in the program can be changed by testing if one of the counters is zero.
Formally, we assume a countable set L of labels and give a program with
counters c1, c2 by the following BNF grammar:

S ::= ` : inc(c) (increment counter c)
| ` : dec(c) (decrement counter c if c > 0)
| ` : jz(c, `′) (jump to statement `′ if c = 0)
| ` : halt (halt)
| S;S (sequence)

where `, `′ :L, all `s must be unique, and c is either c1 or c2.

The formal semantics of 2-counter machines is skipped since it is standard.
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To simplify the proof, we assume that all programs we consider have the
property that no statement of the form dec(c) (for c : {c1, c2}) can be reached
in a context where c = 0. Note that it is easy to transform any program to one
that meets this restriction, by including a zero test before every decrement;
this causes the size of the program to only blow-up by a constant factor.
Before describing how a 2-counter machine will be simulated by an initial-

ized linear inclusion automaton, we define an encoding of natural numbers
that we will use in our reduction. Let 〈|·|〉 :N→ [0, 1) :n 7→ r

2blg rc − 1, where
r:=3n and lg is logarithm with base 2. Thus, 〈|n|〉 maps n to the number
3n
2i −1, where i is the largest natural number such that 2i ≤ 3n. Observe that
for any n,m :N, 〈|n|〉 = 〈|m|〉 iff n = m, and 〈|n|〉 = 0 iff n = 0.
Given a 2-counter machine M (with counters c1 and c2) our reduction

will construct an initialized linear inclusion automaton A with 3 variables
x, y, and c. The variables x, y will be used to keep track of the values of
the counters c1 and c2, respectively, while c is an auxiliary variable used by
A. The intuition behind the construction is as follows. Each step ofM will
be simulated in w:= ln 16 time units. Moreover, if after ith step the values
of counters c1 and c2 are m and n, respectively, then the valuation ν of A
at time i×w will be ν(x) = 〈|m|〉, ν(y) = 〈|n|〉, and ν(c) = 0; the label of
the statement to be executed next, will be stored in the location of A. For
any variable v : {x, y, x}, the dynamics in any control location is given by
v̇ = v + 1. Thus, the automaton A is trivially initialized, as all the variables
have the same dynamics in all control states.
The crux of the construction can be understood by two gadgets shown in

Figure 3.1. Recall that the value of a variable z, evolving with dynamics
ż = z + 1, at time t is given by (z0 + 1)et − 1, where z0 is the value of z at
time 0. In the gadgets shown in Figure 3.1, z denotes either variable x or y
of A. The gadget in Figure 3.1a ensures that if you enter the control state
with z having value z0, and c being 0 then you leave the control state at time
ln (τ + 1) with z and c having the same value as at the beginning, for any
τ > z0. This can be understood as follows. Since c is initially 0, and we exit
the location when c = τ , the total time spent is ln (τ + 1). Now, the variable
z is reset at time t when z(t) = (z0 + 1)et − 1 = τ , which means z is reset
at time t = ln τ+1

z0+1 . In the remaining time (ln(τ + 1)− ln τ+1
z0+1 = ln(z0 + 1)),

the value of z will return back to z0. The gadget in Figure 3.1b ensures
that if z = 〈|n|〉 and c = 0 initially, then on leaving z = 〈|n+ 1|〉 if τ = 2 or

20



z = z0 <

c = 0

z <

c =

{c}

z = z0

c = 0

z ≤ 

c ≤ 

z =

{z}

1

z ≤ 1

c ≤ 

z = n

c = 0

c =

{c}

z = 1

{z}

z = n±1

c = 0
1

(a) Waiting for ln(τ + 1) units of time without changing the value of c or z,
where z0 < τ .

z = z0 <

c = 0

z <

c =

{c}

z = z0

c = 0

z ≤ 

c ≤ 

z =

{z}

1

z ≤ 1

c ≤ 

z = n

c = 0

c =

{c}

z = 1

{z}

z = n±1

c = 0
1

(b) inc (and dec): Incrementing the counter z when τ = 2 and decrementing
it when τ = 13

3 .

Figure 3.1: Basic gadgets for simulating 2-counter machines. Dynamics of
all variables v : {z, c} is defined to be v̇ = v + 1.

z = 〈|n− 1|〉 (with n > 0) if τ = 13
3 . We describe the intuition behind the

increment; the decrement case is similar and skipped. We have τ = 2. Since
c is initially 0, and is 2 at exit, the total time spent in this control location
is ln 3 time units. Let us assume that z is initially 3n

2i − 1. After ln 2i+1

3n units
of time, the value of z will be 1, and so the self loop transition will be taken
and z will be reset to 0. It takes another ln 2 units of time before z reaches
1 again. If ln 3− ln 2i+1

3n = ln 3n+1

2i+1 is greater than ln 2 then z will be reset one
more time. Assuming z is reset k times (where k = 1 or 2), the value of z at
the time of leaving will be 3n+1

2i+k − 1, which is 〈|n+ 1|〉.
We can combine and modify the above gadgets in different ways to obtain

the gadgets that simulate each statement of a 2-counter machine. These
simulation gadgets are shown in Figure 3.2. Thus, the 2-counter machine
M reaches the halt statement iff the initialized linear inclusion automaton A
constructed based on the above intuition reaches the location corresponding
to the halt statement ofM. This proves that the control state reachability
problem is undecidable for initialized linear inclusion automata.

Theorem 9. Unbounded time reachability for initialized linear inclusion au-
tomata is undecidable.
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(a) inc (and dec): Incrementing the counter x (final value of x would be
〈|m+ 1|〉). If we switch τ and τ ′ the result gadget decrements m (final value
of x would be 〈|m− 1|〉).
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(b) jz: Comparing the counter x with 0. We know that m = 0 iff x = 0.
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(c) halt: A halt location acts as a sink. No discrete transitions are enabled
from the sink location.

Figure 3.2: Gadgets that simulate 2-counter machines. Parameters τ and
τ ′ are 2 and 13

3 , respectively. Counters are x and y that are simulated respec-
tively by variables x and y. Dynamics of all variables z : {x, y, c} is defined to
be ż = z + 1. Each state in the machine is replaced by one of these gadgets,
based on the command in that state.

3.2 Translating Initialized Linear Inclusion Automata
to Irrational Timed Automata

Although the reachability problem is undecidable for initialized linear in-
clusion automata (Theorem 9), in this section we show that time bounded
reachability is decidable. We begin by observing that the reachability prob-
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Figure 3.3: Example Initialized Linear Inclusion Automaton A

lem (bounded and unbounded) for initialized linear inclusion automata can
be reduced to the reachability problem (bounded and unbounded) for irra-
tional timed automata. Thus, our algorithm for time bounded reachability
will be presented for irrational timed automata.
For any initialized linear inclusion automaton A with size n, the first step

of our algorithm is to transform A into a irrational timed automaton D
with size at most 2O(n lgn) such that D has the same (bounded as well as
unbounded time) reachability information. The translation from an initial-
ized linear inclusion automaton A to a irrational timed automaton D is done
in three steps. First an initialized linear equation automaton B is created,
wherein possible flows of variables are always deterministic. We then con-
struct a stopwatch automaton C from B by replacing each variable x in XB
by a clock tx in XC and updating constraints appropriately. Constructing a
timed automaton D from C wherein all the reachability information of C is
preserved, is the same as the classical algorithm described in [2]; therefore,
this last step is not described here 2.
To illustrate our construction, we use as a running example throughout

this section, the initialized linear inclusion automaton of a thermostat shown
in Figure 3.3. The automaton has two locations (1 and 2) and one variable
x. Location 1 is the initial location (denoted by an incoming arrow with
no source). Invariant and flows of x in each location are written inside that
location. There are two edges between these two locations that are taken
when x = 3 and when x = 4, respectively. Whenever a transition is taken,
the variable x is reset to ensure that the automaton is initialized.
We call a linear inclusion automaton A normal if it has the following

properties:
2Recall that being a stopwatch automaton allows variables of C to have the 0 flow in

some locations, whereas variables in the timed automaton D must always have 1 as their
flows. Also in stopwatch automaton we can initialize and reset variables to some values
other than zero, whereas in timed automaton we should always initialize and reset to zero.
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• ∀e : E, x : X • G(e, x) ⊆ I(Se, x)

• ∀e : E, x : Je • R(e, x) ⊆ I(De, x)

• ∀e : E, x : (X \ Je) • G(e, x) ⊆ I(De, x)

It is easy to see that for every linear inclusion automaton A we can construct
another linear inclusion automaton B such that B is normal, has the same
size as A, and preserves all the reachability information in A. Therefore, in
the rest of this section all automata are assumed to be normal (note that
initialized linear inclusion automaton in Figure 3.3 is already normal).

3.2.1 From Linear Inclusion to Linear Equation

Given an initialized linear inclusion automaton A, we want to construct an
initialized linear equation automaton B in which all the reachability infor-
mation is preserved. We use the same translation that is used for initialized
rectangular automata in which each variable x is replaced by two variables ux
and lx to track its extremal values. The translation for initialized rectangular
automata relies on two important properties that we need to ensure hold in
the more general case of initialized linear inclusion automaton. First, for
every location q : QA, variable x : XA, and r : IA(q, x), we need FA(q, x)(r) 6= ∅.
This ensures that all reachable states have at least one valid flow which holds
trivially in [2]. Next, lx and ux are initially set to be lower and upper bounds
of the initial values of x. We need to prove that the reachable values of x
after any time t :R≥0 is exactly the interval given by the value reached by lx
and ux after time t.
In order to guarantee the first property, we first transform A to an initial-

ized linear inclusion automaton A′ such that A′ preserves all the reachability
information in A and for all locations q : QA′ , variables x : XA′ , and r : IA′(q, x)
we have either FA′(q, x)(r) 6= ∅ or no matter what FA′(q, x) is, no time can
be spent in q (therefore possible flows are not important anymore). The
construction is as follows: For every location q : QA we have two locations
q, q′ : QA′ . Also q ∈ Qinit

A iff q ∈ Qinit
A′ ∧ q′ ∈ Qinit

A′ . Automaton A′ has an addi-
tional fresh variable z (XA′ = XA ∪ {z}) such that the following conditions
are true for it:

• ∀q : QA′ • FA′(q, z) = 1 ≤ ẋ ≤ 1, meaning z is a clock in A′.
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• ∀q : Qinit
A′ • Xinit

A′ (q, z) = [0, 0], meaning the initial value of z is always 0.

• ∀e : EA′ • GA′(e, z) = (−∞,∞) ∧ z ∈ JA′e ∧ RA′(e, z) = [0, 0], meaning
satisfaction of guard does not depend on the value of z and is always
reset to 0 on edges.

• ∀q : QA • IA′(q, z) = [0, 0] ∧ IA′(q′, z) = (−∞,∞), meaning in the new
locations, satisfaction of invariant does not depend on value of z, but in
the original locations it prevents any time transition from happening.

Flows of variables other than z in A′ are the same as their flows in the orig-
inal locations in A. For each edge e : EA from location q1 : QA to location
q2 : QA, we have four edges in EA′ from locations q1, q1, q′1 and q′1, to loca-
tions q2, q′2, q2 and q′2 respectively (other elements of e are just updated to
consider z as already specified). Finally, for each location q : QA and vari-
able x : QA, we have IA′(q′, x) = IA(q, x) ∩ {r :R ∪ (−∞,∞) | F(q, x)(r) 6= ∅}
and IA′(q, x) = IA(q, x) \ IA′(q′, x). Intuitively this means that invariants of
variables in q′ are restricted such that for all variable values that are allowed
by the invariants we have at least one valid flow. Conversely, invariants of
variables in q are restricted such that for all variable values that are allowed
by invariants we have no valid flow (note that IA′(q′, x) and IA′(q, x) are still
intervals).
It is not hard to see that all the reachability information of A is preserved

by A′. Furthermore, A′ by construction guarantees the first property. Note
that A′ may not be normal anymore, so one may need to do an additional
transformation to obtain a normal automaton A′′. Figure 3.4 shows the
initialized linear inclusion automaton A′ obtained from automaton A in Fig-
ure 3.3. Location 1 in QA is divided into locations 1 and 4 in QA′ . Similarly
location 2 in QA is divided into locations 2 and 3 in QA′ . A fresh variable z is
added into the set of variables (XA′ = {x, z}) which is initially 0, is reset on
all edges, puts no constraint on guards, and its flow is always 1. Locations
1, 4 : QA′ are initial locations and x is set to 3 in both. For each edge in EA
we have 4 edges in EA′ in which only source and destination locations are
changed. The invariant z = 0 does not allow any time transition in locations
2 and 4. Furthermore, invariant 1 ≤ x ≤ 4 in 2 : QA is changed to 1 ≤ x ≤ 2
in location 2 : QA′ and 2 ≤ x ≤ 4 in location 3 : QA′ . That is because when
x is between 1 and 2, the lower bound of ẋ is larger than its upper bound
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Figure 3.4: Example Initialized Linear Inclusion Automaton A′

(−2x+ 2 > −x). Note that at x = 2 we have −2x+ 2 = −x, so based on the
construction method of A′ we should set invariant of x in 2 : QB to 1 ≤ x < 2.
We use non-strict inequality in order to have the same number of locations
in the next step (the construction method multiplies the number of locations
by 4|X| if we have strict as well as non-strict constraints). It is easy to see
that considering this special case does not change the reachability informa-
tion. Also we know that −x + 4 is always smaller than −x + 5. Therefore
the invariant of x in location 4 : QA′ is not satisfiable and we can remove this
location from the automaton A′ (by normalizing it).
Recall that the second property says the reachable values of x after any

time t :R≥0 is exactly the interval given by the value reached by variables
lx and ux after time t. We prove this in Lemma 10. This generalizes the
previous result for initialized rectangular automata.

Lemma 10. Let A be an initialized linear inclusion automaton, q be any
location of A, and t :R≥0. Let s : X→ I be a set of valuations satisfying
the invariant for q, i.e., for all x, s(x) ⊆ I(q, x). Let reachq(s, t) be the
set of valuations reachable from s at time t. In other words, reachq(s, t) =
{ν2 | ∃ν1∀x : X • ν1(x) ∈ s(x) ∧ (q, ν1) t−→(q, ν2)}. For a variable x if F(q, x) =
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(ax+ b ≤ ẋ ≤ cx+ d) define lxs (t) and uxs(t) to be

lxs (t) =

 ls(x)e
at + b(eat − 1)

a
if a 6= 0

ls(x) + bt otherwise

uxs(t)=

 us(x)e
ct + d(ect − 1)

c
if c 6= 0

us(x) + dt otherwise

lxs (t) (uxs(t)) is the lower bound (upper bound) on x at time t provided the
automaton starts from s. Then reachq(s, t) = {ν | ∀x • ν(x) ∈ [lxs (t), uxs(t)] ∩
I(q, x)} 3.

Proof. We first prove that no point ≤ lxs (t) is reachable (similar argument
proves that no point ≥ uxs(t) is reachable). Because (q, ν1) t−→(q, ν2), for
each variable x : X there is a differentiable function fx : [0, t]→ R such that
∀r : [0, t] • ḟx(r) ∈ F(q, x)(r). Since f is differentiable it is continuous too,
and since ν1(x) ≥ lxs (0) = ls(x) if ν2(x) < lxs (t) then ∃tc : [0, t) • fx(tc) =
lxs (tc) ∧ fx(t+c ) < lxt (t+c ). But this means ḟx(tc) < lF(q,x)(tc) which is a contra-
diction. Therefore no point outside [lxs (t), uxs(t)] ∩ I(q, x) is reachable.
To prove that for all variable x : X, all points p in [lxs (t), uxs(t)] ∩ I(q, x)

are reachable, first consider the case I(q, x) = (−∞,∞). In this case we
know that both lxs (t) and uxs(t) are reachable and prove that their convex
combinations are reachable too. If we take fx to be λlxs + (1−λ)uxs then it is
easy to see that for all r : [0, t], fx(r) : F(q, x)(r). To consider the case when
I(q, x) 6= (−∞,∞) we first prove that min{uI(q,x), u

x
s(t)} is reachable (similar

argument proves that max{lI(q,x), l
x
s (t)}). Then using the previous argument

it is easy to see that all points between this minimum and maximum are
reachable. If uI(q,x) > uxs(t) then the proof is obvious. Otherwise we need to
note that if the invariant was (−∞,∞), uI(q,x) was a reachable point. And
because fx is a monotonic function, we know that fx is always inside I(q, x).
This proves that uI(q,x) is reachable even if I(q, x) 6= (−∞,∞).

Figure 3.5 displays the initialized linear equation automaton B obtained
from the initialized linear inclusion automatonA′ in Figure 3.4 after removing
location 4 : QA′ (remember that invariant of that location was not satisfiable).
It has the same set of locations. We replace x : XA′ by two variables xl, xu : XB

3open and unbounded regions are handled by additional bookkeeping exactly as it is
done in [2].
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Figure 3.5: Example Initialized Linear Equation Automaton B

that respectively track lower and upper bounds of x : XA′ 4. Note that we
do not replace z : XA′ by two variables, because possible flows of z, its initial
values, and its reset values are always singletons. In addition to the new
variables, two other changes occur in B. First, the guard x = a (for a = 3
or a = 4) on edges of EA′ is replaced by xl ≤ a and xu ≥ a on edges of EB.
Intuitively this checks that the reachable region has an intersection with the
guard. Second, invariant of xl, xu : XB is (−∞,∞) in locations of B. This is
because we want to let xl and xu to reach everywhere possible. Otherwise,
it is possible for example that after 1 unit of time, xl hits the lower bound
but xu does not hit the upper bound. But since xl would not longer satisfy
the invariant, no more time transition can occur. On the other hand, it is
possible to assign ẋ the upper bound of possible flows and reach the upper
bound of invariant. The invariants of A′ are considered in a function that
maps each reachable state in S[[B]] to a set of states in S[[A′]]. Note that
we assume that guards are always subset of invariants. Therefore when the
reachable region has an intersection with a guard, we know that the result
of the intersection is always subset of invariants.

3.2.2 From Linear Equation to Stopwatch

For an initialized linear inclusion automatonA, the initialized linear equation
automaton B obtained in Section 3.2.1, is initialized and has the following

4If there was any non-compact constraint in A′ then XB would have one more variable
than XA′ .
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features:

• ∀q : Qinit, x : X • |Xinit(q, x)| ≤ 1,

• ∀e : E, x : Je • |R(q, x)| ≤ 1, and

• ∀q : Q, x : X • lF(q,x) = uF(q,x), where lF(q,x) and uF(q,x) are, respectively,
lower and upper bounds of F(q, x).

Such an automaton is called solvable in [49]. Given a solvable hybrid automa-
ton B, we can use the clock translation method to construct an initialized
stopwatch automaton C that preserves all the reachability information in B.
In this method every variable x : XB is replaced by a clock that tracks the time
elapsed since the last time x was reset. Using this time the value of x can be
computed using the Equation 2.1 and this is used to change the constants on
x. The reader is referred to [49] for an explanation of this method. Finally,
the stopwatch automaton C is translated to a timed automaton D, in the
standard way [49].

Remark 11. Constants in the final timed automaton are of the form r or
r ln r′ in which r :Q and r′ :Q+. Note that in the case of r ln r′, r is always
1
a
for some ẋ = ax + b. The important point is that since A is initialized,

variables whose flow changes in a discrete step are reset. Therefore, in au-
tomaton D, a variable cannot be compared with both r and r ln r′ unless the
variable is reset in between. Similarly a variable cannot be compared with
both r1 ln r′1 and r2 ln r′2 such that r1 6= r2 unless the variable is also reset in
between.

Note that for every location q in QD (same as QC) there exists one and only
one corresponding location in QB. In other words, transformations from B to
D may split locations, but they never merge them. Figure 3.6 displays the
stopwatch automaton C obtained from initialized linear equation automaton
B in Figure 3.5. Because in the initialized linear equation automaton no
variable has a zero flow, C is also a timed automaton. It has the same set
of locations. Initial values of variables are always zero, and variables are
always reset to zero on edges. We use the clock translation only for the
variable xl, xu : XB because z is already a clock. Note that we end up with
some logarithmic constants. Lemma 12 formalizes the results in this section
so far, and proves a bound on the size of the irrational timed automaton D.

29



{ }
ln2

, ,
u

ul

x
x x z

≥

{ }
ln2

, ,
u

ul

x
x x z

≥{ }
3

1

4

2
2

3
ln ,

ln

, ,
u

l u
l

x
x

x x z≥
≤

{ }
31

4
2 2

3

ln , ln, ,
u

l

ul

x
x

x x z

≥
≤

0, 1

1, 1
l

u

z x

x z

= =
= =
ɺ

ɺ ɺ

1

1

1

l

u

x

x

z

=
=
=

ɺ

ɺ

ɺ

1

1

1

l

u

x

x

z

=
=
=

ɺ

ɺ

ɺ

0

2 2

1

l l

u u

z

x x

x x

z

=
= − +

= −
=

ɺ

ɺ

ɺ

2 2

1

l l

u u

x x

x x

z

= − +
= −
=

ɺ

ɺ

ɺ

4

5

1

l l

u u

x x

x x

z

= − +
= − +

=

ɺ

ɺ

ɺ

{ 3,
3
0}

l

u

x
x
z

֏

֏

֏{ }
4, 4

, 4, 0
l u

l u

x x
x x z

≤ ≥
֏ ֏

{ }
4, 4

, 4, 0
l u

l u

x x
x x z

≤ ≥
֏ ֏

{

}3,
3

,
3,

0
l

u

l
u

x
x

x x
z≤
≥

֏

֏

{
}

3,
3,

3,
0

l
ul

u

x
xx x
z

≤
≥

֏

֏

{ 3
0}

x
z
֏

֏

{ 3
0}

x
z
֏

֏

x 4
{ 4}x

=
֏

x 4
{ 4}x

=
֏

x 4
{ 4}x

=
֏

x 4
{ 4}x

=
֏

x
3

{
3}

x
=
֏

x
3

{
3}

x
=
֏

x
3{
3}

x =
֏

x
3{

3}
x =
֏

1 4

2 2

x

x x x

≤ ≤
− + ≤ ≤ −ɺ

1 4

4 5

x

x x x

≤ ≤
− + ≤ ≤ − +ɺ

{ 3}x֏
x 4

{ 4}x
=
֏

x 3
{ 3}x

=
֏

1 2

0

2 2

1

x

z

x x x

z

≤ ≤
=

− + ≤ ≤ −
=
ɺ

ɺ{}

0

4 5

1

x

z

x x x

z

∈
=

− + ≤ ≤ − +
=
ɺ

ɺ

2 4

2 2

1

x

x x x

z

≤ ≤
− + ≤ ≤ −

=
ɺ

ɺ

1 4

4 5

1

x

x x x

z

≤ ≤
− + ≤ ≤ − +

=
ɺ

ɺ

1 2

4

2

3
1

1

2

3

2

3
1

Figure 3.6: Example Stopwatch Automaton C

Lemma 12. For any initialized linear inclusion automaton A with size n,
there is a irrational timed automatonD with size at most 2O(n lgn) such thatD
has the same (bounded as well as unbounded time) reachability information.
More precisely, there is a function f that maps a subset of S[[D]] to a subset
of S[[A]] such that if D is the set of reachable states in D after bounded or
unbounded amount of time, f(D) is the set of reachable states in A after the
same amount of time.

Proof. Existence of D and f are clear from construction. We only prove the
statement about size of D. Assume we denote the number of constants in an
initialized linear inclusion automaton H by KH. With regards to the number
of variables, we have |XD| = |XC| = |XB| ≤ 2|XA| + 3. Number of constants
in automaton B is equal to their number in automaton A′ and is at most
|QA| × |XA| × KA, because for each variable and each location in A, only one
invariant may change. Number of constants in automata C and D are equal
and is at most |XB|×|QA|×KB. |XB|×|QA| is the maximum number of different
flows in B and solving B using Equation 2.1 may replace each constant by
at most |XB| × |QA| number of them. Number of locations in automaton B
is at most |QA| × 2|XA| × 24|XA|+3 = |QA| × 25|XA|+3 in which |QA| × 2|XA| is the
maximum number of locations in A′. Number of locations in automaton C
is at most |QB| × K|XB|B . And number of locations in automaton D is at most
|QC|×(KC+1)|XC |. Therefore assuming A has at most n variables, n locations,
and n different constants, |XD| ≤ 2n+ 3, KD ≤ (2n+ 3)× n4 = 2n5 + 3, and
|QD| ≤ F ′(A) = n× 25n+3 × n6n+9 × (n3 + 1)2n+3 ∈ 2O(n lgn). Note that KD is
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at most polynomially larger than KA and QD is at most single exponentially
larger than |QA|. Finally, assuming each constant in A is represented as a
pair of n-bit integers, each constant in A′ can be represented by a pair of at
most 4n + 1 bits. Size of constants in automata A′ and B and in automata
C and D are equal. Constants in C are in the form of r1 or r2 ln r3 wherein
using Equation 2.1 we know

1. each element of r1 has at most 5n+ 1 bits,

2. each element of r2 has at most n bits, and

3. each element of r3 has at most 10n+ 3 bits.

3.3 Bounding the Execution Length in Irrational
Timed Automata

The constants in the irrational timed automaton D constructed by Lemma 12
are not rational. Thus, we cannot use the well known techniques for ana-
lyzing rational timed automata [11]. Our decidability proof relies on first
observing that if a configuration (q, ν) is reachable in D within bounded
time T , it is reachable by an execution of bounded length. Our algorithm
therefore guesses an execution of this length and, by solving some constraints
(Section 3.3.3), the algorithm checks if it is a valid execution that starts from
some initial state and ends in some unsafe state. Finally, we show that the
problem is PSPACE-hard in Section 3.3.4.
In this section we bound length of the execution that we need to guess.

Our proof closely follows the proof outlined in [16] for monotonic rectangular
automata. Notice that a irrational timed automaton is a special monotonic
rectangular automaton with the difference that it may have irrational con-
stants in its constraints. The presence of irrational constants introduces
challenges that we address in this section. We begin by giving a short out-
line of the proof in [16] to highlight the key challenges that will need to be
addressed when considering irrational timed automata. We then present our
proof.
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3.3.1 Brihaye et al.’s Algorithm for Monotonic Rectangular
Automata

The main observation in [16] is that if there is a run ρ of monotonic rectan-
gular automaton D from state (q1, ν1) to (q2, ν2) such that duration(ρ) ≤ T

then there is a run ρ′ from (q1, ν1) to (q2, ν2) of the same duration, whose
length is exponential in the size of D and linear in T . The construction of ρ′

from ρ relies on a contraction operator. The contraction operator identifies
positions i < j in ρ that have the same location such that all the locations
between i and j are also visited before i in ρ. The operator then deletes
all the locations i+ 1, . . . , j and adds their time to the previous occurrences
before i. Brihaye et al. apply this operator as many times as required until
a fix-point is reached. They show that the resulting run (after contraction)
has at most |QD|2 + 1 edges. The problem of course is that the run after
contraction may no longer be a valid run. The contracted run would be valid
only if the run to which we apply contraction has some special properties.
Brihaye et al., therefore, first partition the run ρ carefully into exponentially
many fragments such that the contraction operator can be reliably applied
to these fragments, and the resulting run is a genuine run.
We now describe how they partition the run into fragments to which the

contraction operator can be applied. Observe that since the contraction
operator removes certain locations from the run by adding the time spent
in these locations to the time spent in the same locations earlier in the run,
such an operation can be sound only if the valuations in the merged locations
satisfy the same set of constraints. If valuations in the merged locations don’t
satisfy the same set of constraints then the invariants of locations and guards
of transitions may be violated by the merging process. Thus, Brihaye et al.
first transform the automaton D into an automaton E that keeps track of the
“region” of the valuation in its control state. Let D be an automaton with
positive rates such that all constants appearing in the constraints are natural
numbers 5 and cmax is the maximum constant in D. A region r (according
to [16]) is a set of valuations that satisfy the same set of constraints of the
form xC c, where x is a variable of D, C : {<,≤} and c is a natural number
≤ cmax; thus a region r is similar to region of a timed automaton, except
that the order of the fractional values is not maintained. The automaton E

5Any automaton with rational constants can be transformed into such a machine
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has locations of the form (q, r) where q is a location of D and r is a region,
such that all its runs are region consistent. A run ρ = ((q0, r0), ν0), (t1, e1),
((q1, r1), ν1), . . . , (tn, en), ((qn, rn), νn) is region consistent if νi ∈ ri for all i.
In addition, for variables x that enter a location with value 0, E keeps track
of whether the value x becomes > 0 before the next transition, or it never
changes from 0 before the next transition. This is required to bound the
number of sub-runs that are constructed later, and prevents the contraction
operator from merging states where x stays 0 with those where x becomes
> 0. The construction ensures that D admits a run between two states of
duration T iff E admits a run between the same states and for the same
duration T and length.
Let us consider an arbitrary T -bounded run ρ of E . Assuming that each

location in E has a self loop that can be taken at anytime, one can construct
an “equivalent” run ρ0 that is the concatenation of at most T×rmax + 1
shorter runs, each of duration at most 1

rmax ; these shorter runs are called
type-1 runs. If rmax is taken to be the maximum rate of flow of any variable
in E , then a type-1 run has the property that any variable changes its non-
zero region at most 3 times within that run, because within 1

rmax time, no
variable can change its value by more than 1. Splitting each type-1 run at the
points when a variable changes its non-zero region, results in 3× |XE | type-2
runs, where variables with value ≥ 1 never change their region. The only
change in regions involves variables whose value changes from 0 to a value in
(0, 1), and there could be unbounded number of region changes of this form.
The contraction operator when applied to a type-2 results in a valid run,
but the problem is that the valuation in the last state can be different after
contraction. Changing the last state of run does not allow one to concatenate
all the contracted type-2 runs to get a valid run of E . To address this problem
each type-2 run is subdivided into type-3 runs based on when a variable was
first and last reset within a type-2 run. Applying the contraction operator to
type-3 runs, and then concatenating them back, results in a valid contracted
type-2 run of the same duration, with the same starting and ending states.
These contracted type-2 runs are then concatenated back to get a run ρ′ that
is bounded length, has the same duration as ρ, and has the same start and end
states. Having established that E has T -bounded runs iff E has T -bounded
runs of length at most F (D, T ) = 24× (T × rmax + 1)× |XD|2× |QD|2× (2×
cmax + 3)2|XD|, to solve time bounded reachability, the NEXPTIMEalgorithm
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non-deterministically guesses a run of length at most F (D, T ) and solves a
linear program to check if there are time points and valuations for each step
that make the run feasible.

3.3.2 Time-Bounded Reachability for Irrational Timed
Automata

The algorithm described in [16] (and outlined in above) cannot be directly
applied to irrational timed automata due to the presence of irrational con-
stants. There are 2 main challenges we need to address.

1. For the contraction operator to be correctly applied, we need a way
to partition valuations into finitely many regions that ensures that all
valuations in a region satisfy the same constraints. When irrational
constants appear in constraints, we can no longer define regions based
on how the values of variables compare to a finite set of natural num-
bers. Instead we need a new definition of regions.

2. Type-1 runs are runs of short duration, where there are only a bounded
number of certain types of region changes. The duration for such a
type-1 has to be such that any run can be divided into at most expo-
nentially many type-1 runs. We will need to identify what the right
duration of a type-1 run should be given the changed definition of re-
gions.

We solve each of these challenges in order. We begin by describing a new
definition of regions. For any variable x, let cnst(x) ⊂ R be the set of real
constants used as an interval end-point for constraints over x (this includes
initial values, invariants, guards, and resets). Let cnst+(x) be the set of
positive values in cnst(x), and cnstmax(x) be the maximum element in the
non-empty set cnst(x).

Definition 13. Given a irrational timed automaton D, for each variable
x : X we define reg(x) as the set of intervals created by the constants used in
constraints of x.

reg(x) ={0=, 0+, (cnstmax(x),∞)} ∪
{[c, c]|c : cnst+(x)} ∪
{(a, b)|a, b : cnst(x) ∧ ∀c : cnst(x) • c /∈ (a, b)}
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Region(D) is the set of all functions that map each variable x : X to an element
of reg(x). A region r : Region(D) can be thought of as the set of valuations ν
such that for every variable x, ν(x) ∈ r(x) (where ν(x) ∈ 0= and ν(x) ∈ 0+

iff ν(x) = 0). We will interchangeably think of regions in this way.

Just like [16], in the definition of regions, we distinguish between the case
when a variable is 0 and no time will be spent before the next transition
(0=), and when a variable is 0 but some non-zero time is promised to be
spent before the next transition (0+). The region definition above is different
from [16] in that we only compare the value of variable to the constants that
appear in the constraints, as opposed to all numbers upto some maximum
bound. Using this new definition of regions, given a irrational timed automa-
ton D, we construct automaton E that remembers the region of the valuation
when a run enters a location.
The second challenge pertains to determining the duration of type-1 runs

(and hence type-2 runs). In [16] the duration is picked to ensure two prop-
erties:

1. any run can be divided into an exponential number of type-2 runs,
where the regions of variables don’t change;

2. in a type-2 run, since the region of a variable does not change, all
valuations in a type-2 run satisfy the same set of constraints, and so
contracting the run results in valid run of E 6. Now, we could pick the
duration of a type-1 run such that in any such run there are at most
3 changes to the region of any variable, by estimating the distance be-
tween any two constants that define regions. However, any estimation
of the closest distance between two constants (of the form r1 ln r2 and
r3 ln r4) appearing in a irrational timed automaton yields a doubly-
exponential bound. This prevents us from exponentially bounding the
number of type-2 runs.

Instead, we relax condition 2 when picking our duration to ensure that
there are only exponentially many type-2 runs. Observe that in irrational
timed automata, by definition, a variable cannot be compared with constants

6In addition we would like the contracted run to start and end in the same state. But
this is easily accomplished by splitting type-2 runs into type-3 runs, and applying the
contraction to type-3 runs.
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of different types (q1 and q2 ln q3, or q1 ln q2 and q3 ln q4 for q1 6= q3) without
being reset in between. Therefore, instead of requiring that type-2 runs
consist of valuations belonging to the same region, we define type-2 runs
to be ones where the flows of the variables (in the original initialized linear
inclusion automaton A) remain the same, and all valuations satisfy the same
set of relevant constraints. Thus, even though two valuations in a type-2
run may satisfy different set of constraints (and therefore belong to different
regions), since they satisfy the same constraints that would pertain to them
(without a reset), applying the contraction operation will yield a valid run.
We, therefore, pick the duration of a type-1 run to be determined by the
minimum distance between constants of the form r1 and r2, where r1 and r2

are rationals, or between constants of the form r ln r1 and r ln r2, where r, r1,
and r2 are rational numbers. Considering constant sizes given at the end of
proof of Lemma 12, we have three cases:

• Both constants are rationals. In this case, the difference between two
distinct constants cannot be smaller than 1

210n+2 .

• Both constants are logarithmic. In this case, if constants are in the form
of r ln r1 and r ln r2 then ln r1

r2
cannot be smaller than 1

220n+7 . When this
number is multiplied by r it cannot be smaller than 1

221n+7 . Note that
as a special case, r ln r2 = 0, the distance between r ln r1 and 0 cannot
be smaller than 1

211n+4 .

• One constant is rational and the other one is logarithmic. We only need
to consider the case when the rational number is 0, which is special case
of the previous bullet.

Taking the duration of a type-1 run to be at most 1
221n+7 = min{ 1

210n+2 ,
1

221n+7},
the set of relevant and satisfied constraints is changed at most 3 times for any
variable x. Now, any T -bounded run can be divided into at most T×221n+7+1
type-1 runs. This concludes that F ′′(D, T ) the bound on length of the run
that is needed to be guessed is 24× (T × 221n+7 + 1)× |XD|2× |QD|2× (2KD +
3)2|XD|. Therefore F ′′(D, T ) ≤ 24 × (T × 221n+7 + 1) × (2n + 3)2 × 210n+6 ×
n12n+20 × (n3 + 1)4n+6 × (2n5 + 3)2n+6 ∈ 2O(n lnn).
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3.3.3 Algorithm for Time-Bounded Reachability

Since a reachable configuration is reachable by bounded length execution,
the algorithm for time bounded reachability will guess an execution of ap-
propriate length (using polynomial space), and check if the guessed execu-
tion is valid. Note that checking the validity of a guessed execution involves
constraints with transcendental numbers, and hence cannot be solved using
linear programming. We outline how this can be carried out.
Our path validity constraints are difference constraints of a special form.

As has been observed in Theorem 3 in [54], checking feasibility of these
constraints can be reduced to checking for the existence of negative cost cycles
in a weighted directed graph; this graph has as many vertices as the length
of run whose feasibility we are checking, and the weights are the constants
appearing in the timed automaton. Alur et al., in [54], presented a modified
shortest path algorithm that checks the feasibility of these constraints and
runs in time O (|X|2|π|), where π is the guessed run, and uses space only
O (|X|). Thus, the space requirements are only polynomial in the size of the
automaton and is independent of the length of the execution π. However,
since this algorithm computes costs of paths, it involves adding weights and
comparing them. To complete the description, we need to show how one can
compare the costs arising during such a computation. The challenge involves
comparing numbers involving natural logarithms. The algorithm in [54] only
looks for simple cycles, and thus never adds the weight of an edge more than
once in any of the values it computes. Thus, in the worst case, the algorithm
requires comparing 0 with the sum of exponentially many constants. Observe
that we have at most O (n) distinct constants (n is bound on the size of the
input automaton). Thus, the comparisons the algorithm needs to perform
will be of the form ∑

0≤i<n ai ln bi
ci
<
∑

0≤i<n di where ai, bi, ci, di are integers
of O (n) bits. There are many algorithms that efficiently compute natural
logarithms with arbitrary precision; one can compute k bits of a number
that approximates ln b

c
(where b and c are n-bit integers) with error at most

2−k using space that is polynomial in n and logarithmic in k by combining
ideas in [50, 51, 55]. However, we are unaware of any complexity bounds on
computing the kth bit of ln b

c
, except in special cases like ln 2 [56]. If the kth

bit of a linear combination logarithms of n-bit rationals can be computed
in PSPACE, then we can bound the complexity of our algorithm to PSPACE,
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because we only need to compute O (n) bits of the left-hand side, since the
right hand side is an integer with O (n) bits.
In the absence of an algorithm to compute bits of natural log, we observe

that the left hand side can never be equal to the right hand side, since
the left hand side is an irrational number while the right hand side is an
integer. Thus, our algorithm will compute the left hand side with increasing
precision using either ideas from [50, 51, 55] or [52]. If the precision of our
approximation is 2−k and the difference between our approximation of the
left hand side and right hand side is > 2−k, then we can be sure of whether
the inequality holds or not. Since the left hand side is not equal to the right
hand side, we are guaranteed that eventually this will happen, giving us our
decidability result.
We can prove the time bounded reachability problem is PSPACE-hard (see

Section 3.3.4). The NEXPTIME-hardness lower bound from [15, 16] does not
seem to extend to this case. Intuitively, the main reason that in the simu-
lation of a 2-counter machine, monotonic rectangular hybrid automata can
multiply a counter by a constant in a constant amount of time. On the
other hand, because our machines are initialized, this does not seem possible
for initialized linear inclusion automata. Though we cannot give complexity
bounds on our algorithm because of difficulties in bounding the complexity of
computing natural logs, we conjecture that this problem is PSPACE-complete.

3.3.4 Time-Bounded Reachability is PSPACE-hard in
Initialized Linear Inclusion Automata

Recall that the reachability problem (without time bound) is PSPACE-hard [11]
for rational timed automata. The reduction described in [11] reduces the
halting problem of a linear bounded automaton to the reachability problem
of timed automata, where each step of the linear bounded automaton is sim-
ulated in fixed time τ by the timed automaton. Now, recall that a linear
bounded automaton halts iff it halts in N = |Q|× (n+ 1)×|L|n steps, where
|Q| is the number of states of the linear bounded automaton, |L| is the size
of its tape alphabet, and n is the size of the input to the linear bounded
automaton. Thus, the linear bounded automaton halts iff the constructed
timed automaton reaches the desired control location within T = N×τ time.
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Since N × τ = O (2n), we can write T in polynomial time.

3.4 Related Work

The decidability/undecidability boundary for the reachability problem in hy-
brid automata has been delineated through a collection of results; the main
results are included in the following references [2–12, 57]. Given that the
reachability problem is in general undecidable, approximations to the reach-
ability problem (and the reachable set of states) have been introduced [58–60].
The time bounded reachability problem has been shown to be decidable for
monotonic rectangular automata in [15,16] and for semi-algebraic o-minimal
systems [61]. However, these classes of automata are incomparable to the
class considered in this chapter. Semi-algebraic o-minimal systems [61] re-
quire the continuous variables to be reset on every discrete transition (or
on every “cycle” of transitions), thus decoupling the discrete and continuous
dynamics. Such a requirement is not imposed on our automata. Detailed
comparison between monotonic rectangular automata and the automata con-
sidered here, is presented in the introduction and Section 3.3.2.

3.5 Conclusions

In this chapter, we considered initialized hybrid automata whose flows are
described by linear differential inclusions, and whose invariants, guards, and
resets are rectangular constraints. These results are published in [62, 63].
Such automata generalize both initialized rectangular automata and timed
automata. We proved that the reachability problem (when time is not
bounded) is undecidable, while the time bounded reachability problem is
decidable. The only reason why we cannot obtain a complexity bound on
our algorithm is because we are unaware of any complexity bounds on com-
puting the ith bit a natural logarithm of a rational number (except in special
cases). There are few open problems left by our investigations. The most
interesting is obtaining complexity bounds on computing natural logarithms
of rational numbers. Another question is whether the results in [16] can be
extended to monotonic linear inclusion automata.
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Chapter 4

Approximate Model Checking

The main drawback of our decidability result in Chapter 3, is that the class of
automata it applies to, is rather restrictive. In other words, for most systems
one cannot use the decision procedure we gave in Chapter 3. Knowing that
safety model checking is undecidable for general systems, means that one
cannot hope to solve this problem for complex automata. A remedy to
this problem involves crafting an abstract model with simpler dynamics that
is amenable to automated analysis. The success of the abstraction based
method depends on finding the right abstraction, which can be difficult.
One approach that tries to address this issue is the Counter-Example Guided
Abstraction Refinement (CEGAR) technique [17] that tries to automatically
discover the right abstraction through a process of progressive refinement
based on analyzing spurious counter-examples in abstract models. CEGAR
has been found to be useful in several contexts [18–21], including hybrid
systems [22–29].
There are two principal CEGAR approaches in the context of verifying hy-

brid automata that differ primarily on the space abstract models considered.
The first approach [22–25, 28, 45] tries to abstract hybrid models into finite
state, discrete transition systems that have no continuous dynamics. The
second approach [27,29,64] abstracts a hybrid automaton by another hybrid
automaton with simpler dynamics. Using hybrid automata as abstractions
has the advantage that constructing abstract models is computationally eas-
ier.
In this chapter, we present a CEGAR framework for verifying cyber-

physical systems, where the concrete and abstract models are both hybrid
automata. We consider both non-linear polyhedral automata and affine hy-
brid automata here. In both classes, initial states, invariants, and reset
relations are specified using polyhedral constraints. The difference is in the
specification of their dynamics. While in affine hybrid automata, flows are
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specified using only affine combinations of variables, in non-linear polyhedral
automata flows could also be non-linear functions 1 of variables (see Sec-
tion 2.2.1 for precise definitions). The safety verification problem for such
hybrid automata is challenging — not only is the problem undecidable, but
even for the case of affine dynamics, it is unknown whether the problem of
checking if the states reachable within a time bound T (without taking any
discrete transitions) intersects a polyhedral unsafe region is decidable. We
abstract both affine hybrid automata and non-linear automata by polyhedral
automata. Polyhedral automata are same as affine hybrid automata and non-
linear automata, except that flows in polyhedral automata are also specified
using polyhedral constraints. Our results extend earlier hybrid automata
based CEGAR algorithms [27, 29, 64, 65] to a richer class of hybrid models
(from concrete automata that have rectangular dynamics to automata that
have affine dynamics or even non-linear dynamics).
We establish a few basic results about our CEGAR framework. First, we

show that any spurious counter-example can be detected during the counter-
example validation step. This result is not obvious because, as we mentioned,
it is unknown whether the bounded time reachability problem is decidable
even for affine hybrid automata. Hence validation cannot be carried out “ex-
actly”. Our proof relies on the observation that the sets computed during
counter-example validation are bounded, and uses the fact that continuous
time bounded posts of affine hybrid automata can be approximated with
arbitrary precision. Arbitrary approximation of non-linear dynamics in non-
linear polyhedral automata is a non-trivial result and we dedicate Section 4.2
to it. Next, we show that our refinement algorithm makes progress. More
precisely, we prove that any abstract counter-example, if it appears suffi-
ciently many times, is eventually eliminated. Progress for the case of affine
dynamics is proved by observing that, for a bounded time, linear dynamics
can be approximated with arbitrary precision by rectangular dynamics [66].
Progress in the case of non-linear dynamics is because of arbitrary approxi-
mation of non-linear dynamics that we prove in Section 4.2.
We have extended our CEGAR-based tool HARE (Hybrid Abstraction Re-

finement Engine) once to verify affine hybrid automata, and another time to
verify non-linear polyhedral automata; the first version of HARE only handled

1We support arithmetic, trigonometric, and exponential functions.

41



rectangular automata. Furthermore, we found existing tools for model check-
ing even rectangular automata (HyTech [67], PHAVer [43], SpaceEx [42], and
FLOW* [68]) inadequate for our purposes (see Section 4.4 for explanations). So
we implemented a new model checker for polyhedral automata that uses the
Parma Polyhedral Library (PPL) [69] and Z3 [70]. Refinement uses IAL [71]
and PPL libraries, and counter-example validation is carried out using PPL
and by making calls to dReach [40].
For the case of affine dynamics, we have compared the performance of

the new version of HARE against SpaceEx and PHAVer (more precisely with
SpaceEx with the Supp and PHAVer scenarios), and with SpaceEx AGAR [44] 2.
SpaceEx is a state-of-the-art symbolic state space explorer for affine hybrid
automata that over-approximates the reachable set, and may occasionally
converge to a fixed-point in the process. SpaceEx AGAR is a CEGAR-based
tool that merges different locations and over-approximates their dynamics.
The running time of HARE was almost always better than SpaceEx, PHAVer,
and SpaceEx AGAR (details in Section 4.4). We also found that HARE was
more accurate. On quite a few examples, SpaceEx and SpaceEx AGAR fail to
prove safety either because they do not converge to a fixed-point or because
their over-approximate the reach set too much. For the case of non-linear
dynamics, we have compared the performance of HARE against HSolver [45],
C2E2 [46], and FLOW* [47]. A virtual machine for the new HARE, along with
examples and scripts for running them can be downloaded from https://
uofi.box.com/v/HARE.
Our CEGAR framework, algorithms for abstraction, counter-example vali-

dation, and refinement, that form the theoretical basis for HARE, are described
in Section 4.1. Arbitrary approximation of reachable sets for non-linear dy-
namics is explained in Section 4.2, and the requirement for doing both back-
ward and forward reachability is explained in Section 4.1.7. Finally, the tool
architecture and its internals are presented in Section 4.3, and Section 4.4
reports our experimental results.

2We stopped comparing HARE with HSolver on affine hybrid automata, since our ex-
periments in [65] showed that HSolver can only handle one example out of more than 60
examples we had.
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Figure 4.1: High Level CEGAR Loop

4.1 Computing Reachable Sets

Every CEGAR-based algorithm has four main parts [17]: 1. abstracting the
concrete system, 2. model checking the abstract system, 3. validating the
abstract counter-example, and 4. refining the abstract system. We explain
parts of our algorithm regarding each of these parts in this section. Before
that, Figure 4.1 shows these steps, and Algorithm 1 shows at a very high
level what the steps of our algorithm are.

4.1.1 Time-Bounded Transitions

One step of every CEGAR algorithm is to validate a counter-example of
an abstract system that is returned by the abstract model checker (Sec-
tion 4.1.4). We do validation by running the counter-example of the abstract
model checker against the concrete hybrid automaton. In our discussion,
we will assume that for affine hybrid automata and non-linear polyhedral
automata one can compute the continuous post of a set of states for an ar-
bitrary amount of time. But this is not completely true. What we can do
is to only compute approximations of the continuous post of a set of states.
In addition, bounded error approximations can be computed only for a fi-
nite amount of time. Hence, we convert a hybrid automaton H to another
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Algorithm 1 High level steps of our CEGAR algorithm
Input: non-linear polyhedral automaton C . C is concrete automaton. Def 2
Input: an unsafe set UC
Output: reach(C) ∩ UC ?= ∅ . See Safety Prob 4
1. C ← Add a self-loop to every location of C . Sec 4.1.2
2. P ← the initial partition of invariants in C . Sec 4.1.2
3. A ← α(C, P ) . A is abstract automaton. Def 16
4. UA ← α(UC, P ) . UA is called abstract unsafe set
5. τ = OPoly(A, UA) . OPoly model checks polyhedral automata. Sec 4.1.3
6. . τ is an annotated counter-example. Sec 4.1.3
7. while τ 6= ∅ do . while abstract system is unsafe
8. if τ is valid in C then return ‘unsafe’ . Sec 4.1.4
9. (q, p)← abstract location that should be split . Sec 4.1.4
10. p1, p2 ← sets that should be separated in (q, p) . Sec 4.1.4
11. refine P (q) such that p1 and p2 gets separated . Sec 4.1.4
12. A ← α(C, P ) . Sec 4.1.2
13. UA ← α(UC, P ) . Sec 4.1.2
14. τ = OPoly(A) . Sec 4.1.3
15. end while
16. return ‘safe’

hybrid automaton H′ with the same reachability information and with the
additional property that in H′, there is no time transition with a label larger
than t, for some parameter t ∈ R+. With this transformation, we can com-
pute bounded error approximations of the unbounded time post, since it is
actually a continuous post over a bounded time t.
To construct H′, we add a new variable z to H. Variable z is a clock,

initially 0, and on every edge, the guard imposes no constraints on z, while
it is always reset to 0 after taking the edge. H′ also has a trivial self-loop on
every location. Furthermore, invariant of H′ puts an upper bound on possi-
ble values of z which makes duration of any continuous trajectory bounded
by t. Therefore, we know that unbounded time continuous post becomes
equivalent to continuous post for at most t units of time. Finally, trivial self-
loops guarantee that restricting continuous time transitions does not change
reachable set of H. Definition 14 shows how the new hybrid automaton is
formally constructed.

Definition 14 (Bounding Time). For any non-linear polyhedral automaton
H and time bound t :R+, we construct a non-linear polyhedral automaton
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H′ as follows:

• XH′ :=XH ∪ {z}, assuming z /∈ XH,

• QH′ :=QH,

• ∀q • Xinit
H′ (q):=Xinit

H (q) ∧ (z = 0),

• ∀q • IH′(q):=IH(q) ∧ (z ≤ t),

• ∀q, x • FH′(q, x):=FH(q, x) if x 6= z and 1 otherwise, and

• EH′ :={(s, d, l, r′)|∃r • (s, d, l, r) ∈ E′′ ∧ r′ = r ∧ (z′ = 0)}, where set E′′ is
the union of EH and the set

{
(q, q, ∅,∧x : XH x = x′) | q : QH

}
.

4.1.2 Abstraction

Input to our algorithm is an non-linear polyhedral automaton C which we
call the concrete hybrid automaton. The first step is to construct an abstract
hybrid automaton A which is a polyhedral automaton. The abstract hybrid
automaton A is obtained from the concrete hybrid automaton C, by splitting
the invariant of any location q ∈ QC into a finite number of cells of type
P(X) and defining an abstract location for each of these cells which over-
approximates the non-linear or affine dynamics in the cell by a polyhedral
dynamics. Note, only flow of C is abstracted in each of these cells to construct
A. This helps us simplify the abstraction. Definition 15 and Definition 16
formalize the way an abstract polyhedral automaton A is constructed from
C.

Definition 15 (Invariant Partitions). For any hybrid automaton C and func-
tion P : Q→ 2P(X) we say P partitions invariants of C iff the following condi-
tions hold for any location q : Q:

• ⋃P (q) = I(q), meaning the union of cells in P (q) covers the invariant
of q.

• ∀p1, p2 :P (q), p1 and p2 are either disjoint, or identical, or only share a
common facet.
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Definition 16 (Abstraction using Invariant Partitioning). For any non-linear
polyhedral automaton C and invariant partition P : Q→ 2P(X), α(C, P ) returns
polyhedral automaton A which is defined below:

• QA = {(q, p) | q ∈ QC ∧ p ∈ P (q)},

• Qinit
A = {(q, p) ∈ QA | q ∈ Qinit

C },

• Qbad
A =

{
(q, p) ∈ QA | q ∈ Qbad

C

}
,

• XA = XC,

• IA((q, p)) = p,

• EA = {((s, p1), (d, p2), g, j, r) | (s, d, g, j, r) ∈ EC ∧ (s, p1), (d, p2) ∈ QA},
and

• FA((q, p), ν) = polyhull(⋃ν∈p FC(q, ν)), where for any bounded set S ⊂
X→ R, polyhull(S) is a polytope W such that ∀ν ∈ S • ν ∈ W and for
any sequence of bounded sets S1, S2, . . ., if the maximum distance of
any two points in Sn converges to 0 then the maximum distance of any
two points in the image of this sequence under polyhull converges to 0
as well.

In addition, we define function γA to map 1. every state in [[A]] to a state
in [[C]], and 2. every edge in EA to an edge in EC. Formally, for any s =
((q, p), ν) ∈ S[[A]] and e = ((q1, p1), (q2, p2), r) ∈ EA, we define γA(s) to be
(q, ν) and γA(e) to be (q1, q2, r).

For each concrete location we will have one or more abstract locations.
By making invariants of abstract locations small (and thus increasing the
number of abstract locations) we want to be able to make behavior of A as
close as required to the behavior of C. This requires trajectories to be always
able to jump between two abstract locations when they correspond to a single
concrete location. But we did not add any such edge to A in Definition 16.
Although defining the abstract system in this way just imposes an additional
initial step to our algorithm, we find it very convenient not to introduce any
edge in the abstract hybrid automata that corresponds to no edge in the
concrete hybrid automata. Nonetheless, it is easy to see that if for every
location q ∈ QC, EC contains a trivial edge (i.e. an edge with no guard and
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no reset) from q to itself, abstracting C using Definition 16 will produce a
trivial edge between all abstract locations corresponding to a single concrete
location. One can easily add these edges to C in an initial step, so in the rest
of this chapter, Wlog. we assume every location of C has a trivial self loop.
Finally, it is easy to see that these trivial self loops along with Definition 15
and Definition 16 introduce Zeno behavior in the abstract system (i.e. the
abstract system can make an infinite number of discrete transitions in a finite
amount of time), but our model checker can easily handle it. In fact since
we check for a fixed-point, we believe our tool is not considerably affected by
this type of behavior.

Proposition 17 (Over-Approximation). For any affine hybrid automaton C
and invariant partition P , A = α(C, P ) is a polyhedral automaton which
over-approximates C, that is, reach(C) ⊆ γA(reach(A)).

It is clear that if A is safe then C is also safe. Also, one can easily see
that if P is defined as P (q) = {IC(q)} (for all q ∈ QC), it is a valid invariant
partition of C. It is actually what our algorithm always uses as the initial
invariant partitioning, i.e., initially we do not partition any invariant.

4.1.3 Counter-example and Model Checking Rectangular
Automata

After an abstract hybrid automaton is constructed (initially and after any
refinement), we have to model check it. In this section we define the notion
of a counter-example and annotation of a counter-example, which we assume
is returned by the abstract model checker OPoly when it finds that the input
hybrid automaton is unsafe.

Definition 18. For any hybrid automaton H, a counter-example is a path
e1, . . . , en such that Se1 ∈ Qinit and Den ∈ Qbad.

Definition 19. A counter-example π is called valid in H iff H has a run ρ
and ρ has the same path as π. A counter-example that is not valid is called
spurious.

Definition 20. An annotation for a counter-example π = e1, . . . , en of hybrid
automaton H is a sequence ρ = S0−→S ′0

e1−→S1−→S ′1
e2−→· · · en−→Sn−→S ′n such that

the following conditions hold:
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1. ∀0 ≤ i ≤ n • ∅ 6= Si, S
′
i ⊆ S[[H]],

2. ∀0 ≤ i ≤ n • Si = cpreH(S ′i),

3. ∀0 ≤ i < n • S ′i = dpreei+1
H (Si+1),

4. S ′n = Sbad
[[H]] ∩ ({Den} × VH).

Condition 1 means that each Si and S ′i in ρ are a non-empty set of states.
Conditions 2 and 3 mean that sets of states in ρ are computed using backward
reachability. Finally, condition 4 means that S ′n is the set of unsafe states in
destination of en. Note that these conditions completely specify S0, . . . , Sn
and S ′0, . . . , S ′n from e1, . . . , en and H. Also, every Si and S ′i is a subset of
states corresponding to exactly one location.
In this chapter, we assume to have access to an oracle OPoly that can cor-

rectly answer reachability problems when the hybrid automata are restricted
to be polyhedral automata. If no unsafe location of A is reachable from
an initial location of it, OPoly(A) returns ‘safe’. Otherwise, it returns an
annotated counter-example of A.

4.1.4 Validating Abstract Counter-examples

For any invariant partition P and non-linear polyhedral automaton C, if
OPoly(A) (forA = α(C, P )) returns ‘safe’, we know C is safe. So the algorithm
returns C is ‘safe’ and terminates. On the other hand, if OPoly finds A to
be unsafe it returns an annotated counter-example ρ of A. Since A is an
over-approximation of C, we cannot be certain at this point that C is also
unsafe. More precisely, if π is the path in ρ, we do not know whether γA(π) is
a valid counter-example in C or it is spurious. Therefore, we need to validate
ρ in order to determine if it corresponds to any actual run from an initial
location to an unsafe location in C.
To validate ρ, an annotated counter-example of A = α(C, P ), we run ρ on
C. More precisely, we create a sequence ρ′ = R0−→R′0

e′1−→R1−→· · ·
e′n−→Rn−→R′n

where

1. e′i = γA(ei),

2. R0 = γA(S0),
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3. R′i = cpostC(Ri) ∩ γA(S ′i),

4. Ri = dposte
′
i
C (R′i−1) ∩ γA(Si).

Condition 1 states that edges in ρ′ correspond to the edges in ρ as defined by
the function γA in Definition 16. Condition 2 states that R0 is just concrete
states corresponding to S0. Note that R0 is never empty. Condition 3 states
that each R′i is the intersection of two sets: 1. concrete states corresponding
to abstract states in S ′i, and 2. continuous post of Ri. Condition 4 states
that each Ri is the intersection of two sets: 1. concrete states corresponding
to abstract states in Si, and 2. discrete post of R′i−1 using e′i. It is easy to see
that for any i if Ri or R′i becomes empty then for all j > i both Rj and R′j
will be empty. Also, if Ri is empty then R′i is empty too. Figure 4.2 depicts
the situation when the counter-example is spurious and R′i is the first empty
set we reach during our validation. Proposition 21 proves that the first empty
set (if any) is always R′i for some i and not Ri.

Proposition 21. R′n = ∅ in ρ′ implies there exists i such that 1. R′i = ∅,
2. Ri 6= ∅, 3. ∀j < i •Rj, R

′
j 6= ∅, and 4. cpostC(Ri) and γA(S ′i) are nonempty

disjoint sets.

Proof. We know that for all i neither Si nor S ′i is empty. We prove that
if R′i−1 6= ∅ then Ri 6= ∅. By definition we have 1. R′i−1 ⊆ γA(S ′i−1), and
2. ∀ν1 ∈ S ′i−1 • ∃ν2 ∈ Si • ν1

ei−→ν2. Note that we do not change guards and
resets in abstraction. Therefore, R′i−1 is a subset of states that can take
edge e′i and after transition they go to γA(Si), which means Ri 6= ∅. This
proves the first three parts. Let i be such that those parts hold. Note that
γA(S ′i) 6= ∅, and if Ri 6= ∅ then cpostC(Ri) 6= ∅. Furthermore, γA(S ′i) and
cpostC(Ri) are disjoint, since, otherwise R′i would be non-empty.

Lemma 22. The counter-example π′ = e′1, . . . , e
′
n of C is valid iff R′n 6= ∅.

Proposition 21 tells us that two sets cpostC(Ri) and γA(S ′i) are disjoint.
Lemma 23 states a stronger result that there is a minimum distance ε > 0
between those two sets, by exploiting the compactness of the two sets.

Lemma 23. There exists ε ∈ R+ such that distH(cpostC(Ri), γA(S ′i)) > ε.

Proof. Invariants, guards, and resets of the affine hybrid automaton C are all
closed and bounded (by definition). Hence, the invariants, guards, resets, and
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Figure 4.2: Validation and Refinement. Si and S ′i are elements of annotated
counter-example ρ. Ri and cpostC(Ri) are computed when ρ is validated. i
is the smallest index for which cpostC(Ri) and γA(S ′i) are separated. Hence
we need to refine A in location i. Refinement should be done in such a way
that for the result of refinement A′ we have cpostA′(γ−1

A′ (Ri)) ∩ γA′(S ′i) = ∅.
flow of the abstract rectangular automaton A = α(C,P ) are also closed and
bounded. Therefore, each of the sets Si, S ′i and Ri, R

′
i are compact (closed

and bounded). Since, cpostC(Ri) and γA(S ′i) are compact sets, there exists
a minimum distance between them.

4.1.5 Refinement

Let us fix a concrete automaton C, an invariant partition P , and an abstract
automaton A = α(C, P ). Suppose model checking A reveals a counter-
example π and its annotation ρ. If ρ is found to be spurious by the validation
algorithm (in Section 4.1.4), then we need to refine the model A by refining
the invariant partition P . We will do this by refining the invariant of only a
single location of A. In this section we describe how to do this.
Since ρ is spurious, there is a smallest index i such that R′i = ∅ (where

the sets Ri, R
′
i are as defined in Section 4.1.4); we will call this the point of

refinement and denote it as porC,A(ρ). We will refine the location (q, p) = Dei
of A by refining its invariant p. We know from Proposition 21, cpostC(Ri)∩
γA(S ′i) = ∅. However, the coresponding sets in the abstract system A are not
disjoint, that is, cpostA(γ−1

A (Ri))∩S ′i 6= ∅. Our refinement strategy is to find
a partition for the location (q, p) such that in the refined model R = α(C, P ′)
(for some P ′), S ′i is not reachable from Ri. In order to define the actual
refinement, and to make this condition precise, we need to introduce some
definitions.
Let C, A, Ri, S ′i, and (q, p) be as above. Let us denote by Cq,p the restriction

of C to the single location q with invariant p, i.e., Cq,p has only one location
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q whose flow and invariant is the same as that of (q, p) in A, and only
transitions whose source and destination is q. We will say that an invariant
partition Pr of Cq,p separates Ri from S ′i iff in the automatonA1 = α(Cq,p, Pr),
reachA1(γ−1

A1 (Ri))∩γ−1
A1 (γA(S ′i)) = ∅. In other words, the states corresponding

to S ′i in A1 are not reachable from γ−1
A1 (Ri) in A1.

Refinement Strategy

Let Pr be an invariant partition of Cq,p that separates Ri from S ′i. Define the
invariant partition P ′ of C as follows: P ′(q′) = P (q′) if q′ 6= q, and P ′(q) =
(P (q) \ {p}) ∪ Pr(q). The new abstract automaton will be R = α(C, P ′).
Observe that R is a refinement of A (since the invariant partition is refined),
and the relationship between the locations and edges of the two automata
is characterized by a function αR,A(·) defined as follows. For a location
(q′, p′), αR,A(q′, p′) = (q′, p′) if either q′ 6= q, or p′ 6⊆ p, and αR,A(q′, p′) =
(q, p) otherwise. Having defined the mapping between locations, the mapping
between edges is its natural extension:

αR,A((q1, p1), (q2, p2), g, j, r) = (αR,A(q1, p1), αR,A(q2, p2), g, j, r)

The goal of the refinement strategy outlined above is to ensure that a given
counter-example π is eventually eliminated, if the abstract model checker
generates it sufficiently many times. To make this statement precise and to
articulate the nature of progress we need to first identify when a counter-
example of R corresponds to a counter-example of A. Observe that a path
π of A can “correspond” to a longer path π′ in R, where previous sojourn
in location (q, p) in π, now corresponds to a path in π′ that traverses the
newly created locations by partitioning p. Recall that we are assuming that
porC,A(ρ) = i, where ρ is the annotation corresponding to π. We will say
that a counter-example π′ = e′1, e

′
2, . . . e

′
m corresponds to counter-example

π = e1, e2, . . . en, if there exists k, 0 ≤ k ≤ m − i, such that 1. for all j ≤ i,
αR,A(e′j) = ej, 2. for all j > i+k, αR,A(e′j) = ej−k, and 3. for all i < j ≤ i+k,
source and destination of αR,A(e′j) is (q, p). If π′ corresponds to π, we will
call k its witness. Using this notion of correspondence, we are ready to state
what our refinement achieves.

Proposition 24. Let π be a counter-example of A and ρ its annotation.

51



Let R be the refinement constructed by our strategy after ρ is found to be
spurious. Let π′ be a counter-example of R that corresponds to π, and let ρ′

be its annotation. Then, porC,R(ρ′) < porC,A(ρ).

Proof. Let i = porC,A(ρ), and letRi and S ′i be sets as defined in the validation
algorithm. Let k be the witness for the correspondence between π′ and
π. Observe that our refinement strategy ensures that the set of states that
can reach S ′i through the path π′[i, i + k] is disjoint from γ−1

A (Ri). Hence
if the sequence U0, U

′
0, U1, . . . Um is computed by the validation algorithm

for ρ′, we know that Ui = ∅. Using Proposition 21, we can conclude that
porC,R(ρ′) < i.

The above proposition implies that a counter-example π can appear only
finitely many times in the CEGAR loop. This is because the point of refine-
ment of any π′ in R corresponding to π in A is strictly smaller.
Next, we claim that a partition satisfying the refinement strategy always

exists. It relies on the following observation from [72] which states that the
reach set of a non-linear dynamical system can be approximated to within
any ε by a rectangular hybridization over a bounded time interval.

Theorem 25 ( [72]). Let H be a non-linear hybrid automaton with a single
location such that there is a bound T on the time for which the system can
evolve in the location. Then, for any ε > 0, there exists an invariant partition
P of H such that distH(reach(H), reach(α(H, P ))) < ε.

Corollary 26 (Existence of Refinement). There always exists a partition P ′

that separates Ri and S ′i.

Proof. The result follows from Theorem 25 and Lemma 23.

4.1.6 Validation Approximation

In order to validate a counter-example, we assumed that the continuous post
for bounded time of a set of states in an non-linear hybrid automaton can be
computed exactly.
we assumed to be able to exactly compute continuous post of a set of states

in the affine hybrid automaton for a finite amount of time. But the best one
can actually hope for is computing over and under approximation of this
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set. In this section we show that being able to approximate the continuous
post is enough for our algorithm. For any hybrid automaton H, set of states
S ⊆ S[[H]], edge e ∈ EH, and parameter ε ∈ R+ we define the following
functions:

• cpostεover(S) is an over-approximation of cpost(S). If cpostεover(S) re-
turns S ′ then we know cpost(S) ⊆ S ′ and distH(S ′, cpost(S)) < ε.

• cpostεunder(S) is an under-approximation of cpost(S). If cpostεunder(S)
returns S ′ then we know cpost(S) ⊇ S ′ and distH(S ′, cpost(S)) < ε.

During the validation procedure, instead of computing ρ′ we compute ρo
and ρu. They are computed exactly as ρ′, except that in ρo and ρu, instead
of cpost, we respectively use cpostεover and cpostεunder. Let us denote the last
elements of ρo and ρu respectively by R′n and U ′n. If U ′n is non-empty, we know
ρ represents at least one valid counter-example. Therefore, the algorithm
outputs ‘unsafe’ and terminates. If U ′n is empty but R′n is non-empty, it
means ε is too big. Therefore, the algorithm repeats itself using ε

2 . If R′n
is empty, it means all counter-examples in ρ are spurious. Therefore, too
much over-approximation is deployed in A and the abstraction A is refined
as outlined in Section 4.1.5.

Lemma 27. Given a counter-example π of A, if γA(π) is spurious, then there
exists an ε > 0 for which R′n is empty.

The above lemma states that if the abstract counter-example is spurious,
then the same will be detected by our algorithm. This is a direct consequence
of Lemma 23. In Section 4.2, we show that arbitrarily over-approximation
of the reachable set is possible for non-linear polyhedral automata.

4.1.7 Need for Forward and Backward Reachability

In a CEGAR framework, validating a counter-example typically involves just
performing a forward search (with respect to the transitions in the counter-
example) in the concrete system; henceforth called the standard validation
algorithm. However, in the validation algorithm outlined in Section 4.1.4 is
different. The forward search in the concrete system uses a sequence of sets
of abstract states computed using backward reachability in abstract model
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(i.e., the annotated counter-example). Thus, validation for us involves doing
a backward search in the abstract model, and a forward search in the concrete
model. The reason for doing this is because the standard validation algorithm
fails to identify the correct refinement step in our case, where the counter-
example corresponds to infinitely many executions.
We illustrate this through an example affine hybrid automaton C shown in

Figure 4.3a. The automaton has 3 states {1, 2, 3}, with 1 as the only initial
location, and 3 as the only unsafe location. The automaton has two variables
x and z. z is a clock that is used to ensure that a discrete transition is taken
every 1 unit of time; invariants of z in each location, and its guards and resets
on every transition are set to ensure this. The dynamics of variable x in 1 are
given by the equation ẋ = x, while that in location 2 are given by ẋ = 0.5x;
the dynamics in 3 is not important as that is the unsafe location. The
invariant in all locations is x ∈ [0, 1] and z ∈ [0, 1]. There are 5 transitions:
self loop on every location, transition e1 from 1 to 2 and the transition e2 from
2 to 3. All transitions reset z to 0, and leave x unchanged. All transitions
except transition e2 are always enabled; the transition e2 is enabled when
x ∈ [0.75, 1]. Assuming that the initial value of x is 0 in location 1 3, the
automaton is safe. This is because no matter how many discrete transitions
are taken, the value of x remains 0 in both locations 1 and 2, and so the
transition from 2 to 3 is never taken.
Consider the trivial invariant partition P for this automaton that leaves the

invariant for each location intact. The rectangular automaton A = α(C,P )
is shown in Figure 4.3b. The only difference between A and C is in the
dynamics for variables x in locations 1 and 2 — the dynamics in 1 is given
by ẋ ∈ [0, 1] and in 2 by ẋ ∈ [0, 1

2 ]. Observe that A is unsafe because of the
execution

(1, x = 0) 0.5−→(1, x = 0.5) e1−→(2, x = 0.5) 0.5−→(2, x = 0.75) e2−→(3, x = 0.75)

In the above execution, we have skipped the value of variable z, since it does
not play an important role. Thus, the abstract counter-example is π = e1, e2.

3Our model does not have initial values for continuous variables. But having initial
values can easily be ensured by adding a new initial location, where the invariant for the
variables is constrained to be the initial value. We did not do this here to keep the number
of locations small.
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(a) Affine hybrid automatonC
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(b) Rectangular automatonA = α(C,P )

Figure 4.3: Need for annotated counter-examples in refinement. ż = 1 in
all locations.

The annotated counter-example ρ corresponding to π is

(1, x ∈ [0, 0]) ≤1−→(1, x ∈ [0.25, 1]) e1−→(2, x ∈ [0.25, 1])
≤1−→(2, x ∈ [0.75, 1]) e2−→(3, x ∈ [0.75, 1])

Now doing the standard validation algorithm for the counter-example π using
forward search in C results in the following sequence.

(1, x ∈ [0, 0]) ≤1−→(1, x ∈ [0, 0]) e1−→(2, x ∈ [0, 0]) ≤1−→(2, x ∈ [0, 0]) e2−→(3, x ∈ ∅)

The counter-example π is spurious because the set (2, x ∈ [0, 0]) does not
intersect the guard of e2 suggesting that the dynamics in location 2 needs to
be refined. How do we refine? We need to ensure that in the new abstract
model (after refinement), there is no way to reach the guard of e2 from the
state (2, x = 0), which is the entry state for location 2. But notice that the
set of states reachable in A from (2, x = 0) is (2, x ∈ [0, 0.5]) which is already
disjoint from guard of e2. So no matter how we refine A will not make any
progress from the standpoint of eliminating the counter-example π.
On the other hand, our validation algorithm will correctly identify that

what needs to be refined is the dynamics in location 1 (and not 2). Recall
that our validation algorithm does a forward search in C, and each post com-
putation is intersected with the corresponding set in the annotated counter-
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example ρ. This will result in the following sequence.

(1, x ∈ [0, 0]) ≤1−→(1, x ∈ ∅) e1−→(2, x ∈ ∅) ≤1−→(2, x ∈ ∅) e2−→(3, x ∈ ∅)

Thus, the reason π is spurious is because the set of states reachable in C
from (1, x = 0) (without any discrete transitions) is (1, x = 0) which is
disjoint from the set of all abstract states (1, x ∈ [0.25, 1]) that can exhibit
the transitions e1, e2. Thus, we need to refine the dynamics in location 1 in
such a way that the set of states reachable from (1, x = 0) (initial state) is
disjoint from the set (1, x ∈ [0.25, 1]). This is easily achieved by splitting the
invariant of location 1 into [0, 0.2] and [0.2, 1].

4.2 Arbitrary Approximation of Reachable Set for
Non-linear Dynamics

In Section 4.1 we took an annotated abstract counter-example τ = S0−→S ′0
e1−→

S1−→S ′1
e2−→· · · en−→Sn−→S ′n and constructed τ ′ = R0−→R′0

e′1−→R1−→R′1
e′2−→· · · e

′
n−→

Rn−→R′n. There are no known algorithms for constructing Ri and R′i for
non-linear dynamics. In [65] we proved that being able to arbitrarily over-
approximate the setsRi andR′i is enough to detect spurious counter-examples.

Proposition 28. For any i : {0, . . . , n}, sets Si, S ′i, Ri, and R′i are all com-
pact.

Proof. Si and S ′i are both subsets of the invariant of some location in A
and hence they are bounded. Also, initial and unsafe states, invariants,
and transition relations are all closed sets. Furthermore, since discrete and
continuous abstract posts of a polyhedron can be computed using Fourier-
Motzkin variable elimination method, and when all input inequalities are of
the same type, this method does not produce any inequality of the opposite
type, we conclude Si and S ′i are both closed sets as well.
Note that R0 = γA(S0) and γA of a compact set is compact. Therefore,

R0 is compact. Also the intersection of any two compact sets is compact.
For any two sets A,B ⊆ RX, concatenation of A with B is denoted by A_B

and is subset of RX∪X′ . A point ν is in A_B iff there are points νA :A and
νB :B such that ∀x : X • ν(x) = νA(x) ∧ ν(x′) = νB(x). It is easy to see that

56



the concatenation of any two compact sets is also compact. Furthermore, for
any set of variable Y and set of points A ⊆ RX, if A is compact then ∃Y •A

is also compact.
For concrete discrete post, we know R′i−1_I(De′i) and Re′i are compact.

Therefore, Ri =
(
∃X •

(
R′i−1_I(De′i)

)
∩ Re′i

)
∩γA(Si) is compact. For concrete

continuous post, we know continuous image of a compact set is compact. We
know that the flows are continuous, which means that the trajectories are
also continuous functions. Therefore, reach tube set of Ri, which is defined as
{(ν, t) : (RX,R) | ∃ν ′ :Ri • ν

′ t−→ν}, is compact. Since existential quantification
of a compact set is compact, the reachable set is compact as well.

dReach [40] is a tool that takes as input a non-linear hybrid automaton
H, an unsafe set of states U , a bound N on number of discrete transitions,
and a time-bound T . The tool checks whether U can be reached in H using
at most N number of discrete transitions and within time bound T . To do
this, dReach reduces this problem into the satisfiability of a first order logic
(FOL) formula with atoms of the form f(X) ≤ 0, where the left-hand-side is
either 1. finite addition or subtraction of functions used in H to specify initial
states, invariants, and transition relations, 2. finite addition or subtraction of
functions used in the specification of U , or 3. it is of the form x1−x2−

∫ t
0 g(X)dX

or its negation, where g(X) is a flow function 4. Since all inequalities in
formulas defining Ri and R′i are non-strict, there will be no atom of the form
f(X) < 0. Quantification is of the form ∃X1, . . . , Xn, t1, . . . , tn • ∀t′1, . . . , t′n • φ,
where φ is a quantifier free formula. The answer to the question “whether
U can be reached in H” is yes iff the formula constructed by dReach is
satisfiable. This is where dReach uses another tool called dReal [73], which
takes a first order formula φ and parameter δ :R+ as inputs and returns
either unsat or δ-sat. If dReal returns unsat, we know the exact formula
is unsatisfiable and hence U is not reachable in H after at most T units
of times and at most N number of discrete transitions. However, if dReal
returns δ-sat, we only know if every atomic formula f(x) ≤ 0 is replaced
by f(x) ≤ δ, the result formula will be satisfiable. Recall that δ :R+ is
a parameter to dReal that can be made arbitrary small. Finally, dReal
assumes all variables are bounded and dReach provides all these bounds as
input to the tool.

4It is also possible that the tool applies some simplifications, but it has no consequence
in our discussion and we ignore it to make the discussion simpler.
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We convert counter-example validation problem into reachability problem
of a hybrid automaton such that the counter-example is valid iff U is reach-
able in H after at most T units of times and at most N number of discrete
transitions.
For any formula φ and parameter δ :R, we use φδ to refer to the formula

in which every atomic formula f(x) ≤ 0 is replaced by f(x) ≤ δ. Also,
we use [[φ]] to refer to the set of points that satisfy φ. Note that for any
δ :R≥0 we have [[φ]] ⊆ [[φδ]]. For any set S and parameter ε :R+, we say S ′

ε-over-approximates S iff S ⊆ S ′ ⊆ Bε
∞(S). For any formula φ, we say [[φ]]

can be arbitrarily over-approximated iff for any ε :R+ there is δ :R+ such
that [[φδ]] ε-over-approximates [[φ]]. Unfortunately, dReal and hence dReach
do not directly support arbitrarily over-approximation of a reachable set.
Meaning, none of these tools tries to find a δ :R+ such that every point in
[[φδ]] becomes ε-close to a point in [[φ]]. However, in this section, we prove
arbitrarily over-approximation is possible in our case.

Lemma 29. For any two compact sets [[A]] and [[B]], if [[A]] and [[B]] can
both be arbitrary approximated then [[A]] ∩ [[B]] = [[A ∧B]] can be arbitrary
approximated as well.

Proof. For the purpose of contradiction, suppose ∃ε :R+ • ∀δ :R+ • [[Aδ ∧Bδ]]
6⊆ Bε

∞([[A ∧B]]). For any n :N, let εn:= ε
2n and let δn :R+ be such that [[Aδn ]] ⊆

Bεn
∞([[A]]) and [[Bδn ]] ⊆ Bεn

∞([[B]]). Also, let xn be an arbitrary element of the
non-empty set [[Aδn ∧Bδn ]] \ Bε

∞([[A ∧B]]). Since [[A]] is bounded, there is a
sequence m0 < m1 < m2 < · · · such that xm1 , xm2 , xm3 , . . . converges to x∗.
Since for any n :N, [[Aδn ∧Bδn ]] = [[Aδn ]] ∩ [[Bδn ]], and since [[A]] and [[B]]

are both closed sets, x∗ ∈ [[A]] ∩ [[B]] = [[A ∧B]]. There are infinitely many n
such that d∞(xmn , x∗) ≤ ε and any one of them is a contradiction to the fact
that xmn /∈ Bε

∞([[A ∧B]]).

Lemma 30. For any non-empty polytope P over an arbitrary set of variables
X, [[P ]] can be arbitrarily over-approximated.

Proof. Obviously, ∀δ :R≥0 • [[P ]] ⊆ [[P δ]]. Using contradiction, we first prove

∀ε, δ :R+ •
(
[[P δ]] \Bε

∞(P ) 6= ∅
)
⇒
((

[[P δ]] \Bε
∞(P )

)
∩B2ε

∞(P ) 6= ∅
)

Suppose ∃x : [[P δ]] • x /∈ Bε
∞(P ) ∧ x /∈ B2ε

∞(P ). We know ∃x′ : [[P ]] ⊆ [[P δ]].
Since [[P δ]] is a convex set, ∀λ : [0, 1] • λx+(1−λ)x′ = x′+λ(x−x′) ∈ [[P δ]]. We
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know d∞(x′, x′ + λ(x− x′)) = λd∞(x, x′) > λ2ε. Let λ:= 1.5ε
d∞(x,x′) . Therefore,

x′′:=x′ + λ(x − x′) ∈ [[P δ]] and has distance at most 1.5ε to [[P ]] which is a
contradiction.
We finish the prove of this case by another proof by contradiction. Suppose
∃ε :R+ • ∀δ :R+ • ∃x : [[P δ]] • x /∈ Bε

∞([[P ]]). Fix ε and for any n :N+ let δn be
1
n
and x′n : [[P δn ]] \ Bε

∞([[P ]]) be an arbitrary element. Using what we just
proved, let xn : ([[P δn ]]\Bε

∞([[P ]]))∩B2ε
∞([[P ]]) be an arbitrary element as well.

Since B2ε
∞([[P ]]) is bounded, there is a sequence m1 < m2 < · · · such that

xm1 , xm2 , . . . converges to x∗. We know x∗ ∈ [[P ]]. Also, there are infinitely
many indices n such that d∞(xmn , x∗) ≤ ε and any one of them contradicts
the fact xmn /∈ Bε

∞([[P ]]).

Proposition 31. For any FOL formula φ and set of variables Y , if [[φ]]
can be arbitrarily over-approximated then [[∃Y • φ]] can be arbitrarily over-
approximated as well.

Recall that for any two sets A,B ⊆ RX, concatenation of A with B is
denoted by A_B and is subset of RX∪X′ . A point ν is in A_B iff there are
points νA :A and νB :B such that ∀x : X • ν(x) = νA(x) ∧ ν(x′) = νB(x).

Proposition 32. For any two FOL formulas φ and ψ, if both [[φ]] and [[ψ]]
can be arbitrarily over-approximated then [[φ]]_[[ψ]] can be arbitrarily over-
approximated as well.

Theorem 33. For any index i : {0, . . . , n}, sets [[Ri]] and [[R′i]] can be arbi-
trarily over-approximated.

Proof. Inclusions [[Ri]] ⊆ [[Rδ
i ]] and [[R′i]] ⊆ [[R′δi ]] are trivially true for any

δ :R≥0. Therefore, we only focus on the other inclusions. Proof is by induc-
tion on i.

1. Base of Induction: R0 = γA(S0) and γA(S0) is a polytope. Lemma 30
completes the proof. Next we consider different cases for the inductive
step.

2. Intersection: This case has already been proved in Lemma 29.

3. Discrete Post: Using Lemma 30 we know I(De′i) can be arbitrarily
over-approximated. Using the inductive hypothesis, we know R′i−1 can
be arbitrarily over-approximated. Using Proposition 32 we know the
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concatenation of these two sets can be arbitrarily over-approximated.
Using Lemma 30 we know R(e′i) can be arbitrarily over-approximated.
Using the previous case, we know Ri which is intersection of the last
two sets can be arbitrarily over-approximated as well.

4. Continuous Post: Suppose we are in location q with invariant I, flow
ḟ : V−→V, and closed set [[R]] which is either the initial set or it is reached
after the last discrete transition. Using induction hypothesis, we as-
sume [[R]] can be arbitrary over-approximated. We want to prove the
set of points that can be reached from [[R]] using trajectories defined
by ḟ can be arbitrary over-approximated as well. Suppose durations of
continuous transitions cannot be larger than T :R+. Since [[I]] is com-
pact and ḟ is a continuous function, ḟ is bounded as well 5. This means
f(x0, t):=x0 +

∫ t
0 ḟ(X)dt, i.e. trajectories, are λ-Lipchitz continuous for

some λ :R+ (wlog., assume λ ≥ 1).

We first prove

∀ε :R+ • ∀t : [0, T ] • ∃ε′ : (0, ε) • ∀x :Bε′
∞([[R]]) \ [[R]] •

(∀t′ : [0, t] • f(x, t′) ∈ [[I]])⇒
∃x′ : [[R]] ∩Bε

∞(x) • ∀t′ : [0, t] • f(x′, t′) ∈ [[I]]

For the purpose of contradiction, suppose

∃ε :R+ • ∃t : [0, T ] • ∀ε′ : (0, ε) • ∃x :Bε′
∞([[R]]) \ [[R]] •

(∀t′ : [0, t] • f(x, t′) ∈ [[I]])∧
∀x′ : [[R]] ∩Bε

∞(x) • ∃t′ : [0, t] • f(x′, t′) /∈ [[I]]

Fix ε and t. For any n :N+ define ε′n:= ε
2n and let xn :Bε′n∞([[R]]) \ [[R]]

be a witness for the previous formula. Since Bε
∞([[R]]) is bounded and

xn ∈ Bε
∞([[R]]), there is a sequence m1 < m2 < m3 < · · · such that

xm1 , xm2 , xm3 , . . . converges to x∗. We know x∗ ∈ [[R]] and since [[I]] is
closed and f is Lipchitz continuous, we also know ∀t′ : [0, t] • f(x∗, t′) ∈
[[I]]. There are infinitely many n such that d∞(x∗, xmn) ≤ ε and any
one of them can witness the contradictory fact ∃n :N+ • x

∗ ∈ Bε
∞(xmn).

Suppose we want to ε-over-approximate the reachable set after con-
5We need ḟ to be continuous not only in [[I]], but also in an arbitrary small neighborhood

of it.
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tinuous transition. Let ε′:= ε
4λ and divide the set Bε′

∞([[R]]) into finite
number of closed sets such that all points in a set are ε′-close to each
other. We call each one of these sets a box. Finally, divide [0, T ] at
times 0 = t0 < t1 < t2 < · · · < tm = T such that ∀i < m • ti+1− ti ≤ ε′.
We construct a finite sequence ε′ = ε′′1 > ε′′2 > · · · > ε′′r > 0 such
that [[cpostε

′′
r+1
Cq,I (Bε′′r∞(R))]] ⊆ Bε

∞

(
[[cpostCq,I(R)]]

)
, where ε′′r+1 is what

Lemma 30 returns for the inputs I and ε′′r .

For any box B, since ∀x :B • d∞(x, [[R]]) ≤ ε′ ≤ ε
4 and [[R]] is a subset of

exact reachable set after continue transition, at time t0 = 0, all points
in B and therefore the whole Bε′′r∞([[R]]) can be recognized as reachable
states in the ε-over-approximation. Next for any box B, we inductively
consider ti for 0 < i ≤ m. There are three cases:

• ∃η :R+ • ∀x :B • ∃t : [0, ti] • d∞(f(x, t), [[I]]) > η. Using Lemma 30,
we find a smaller value for the next ε′′j such that any trajectory
in B that leaves Bη

∞([[I]]) will be rejected (i.e. all trajectories in
B). This means no trajectory in B can have duration ti or larger.
Note that during [ti−1, ti] each trajectory can move at most ε

4 . By
inductive hypothesis, we know all points reachable from B at time
ti−1 are ε

2 -close to the exact reachable set. Therefore, all points
reachable from B during [ti−1, ti] are ε-close to the exact reachable
set.

• ∃x :B∩ [[R]] • ∀t : [0, ti] • f(x, t) ∈ [[I]]. Since ∀x′ :B • d∞(x, x′) ≤ ε′,
we conclude ∀x′ :B, t : [0, ti] • d∞(f(x, t), f(x′, t)) ≤ ε

4 . This means
any point in B that can be reached by a trajectory of duration at
most ti is ε

4 -close to a reachable point using an exact trajectory
from [[R]].

• ∃x :B \ [[R]] • ∀t : [0, ti] • f(x, t) ∈ [[I]]. Use the current ε′′j and ti in
the formula we proved earlier and let ε′′j+1 to be what returned by
that formula. If x /∈ B

ε′′j+1
∞ ([[R]]) we don’t need to care about it.

Otherwise, there are two cases:

–
(
x ∈ Bε′′j+1

∞ ([[R]]) \ [[R]]
)
. We know ∃x′ : [[R]]∩Bε′′j

∞(x) • ∀t′ : [0, ti]
• f(x′, t′) ∈ [[I]]. x′ is ε′′j -close to x. Therefore, the distance
of x′ and any point in B is bounded by 2ε′. This means any
point that can be reached from B within ti is ε

2 -close to an
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Figure 4.4: Flow Chart of HARE’s CEGAR Loop

exact reachable point.
–
(
x /∈ Bε′′j+1

∞ ([[R]]) \ [[R]]
)
. This means x ∈ [[R]] which is a con-

tradiction.

It remains to prove that these three cases are in fact complementary.
Formula ∀η :R+ • ∃x :B • ∀t : [0, ti] • d∞(f(x, t), I) ≤ η is the negation
of the first condition. For any n :N+, let ηn:= 1

n
. We have an infinite

sequence of points xn such that ∀t : [0, ti] • d∞(f(xn, t), I) ≤ 1
n
. Since

B is bounded, it means there is a sequence m1 < m2 < · · · such
that xm1 , xm2 , . . . converges to a point x∗ and for any n :N+ we have
∀t : [0, ti] • d∞(f(xmn , t), I) ≤ 1

mn
. Since B is closed, we know x∗ ∈ B

and ∀t : [0, ti] • d∞(f(x∗, t), I) = 0. Since [[I]] is closed this is equivalent
to ∀t : [0, ti] • f(x∗, t) ∈ [[I]], which means the disjunction of the last two
cases is true.
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4.3 Architecture of HARE

Figure 4.4 shows the flow and architecture of HARE. It also identifies 3rd

party libraries/tools that are internally used by HARE at different steps. We
use Z3 [70] to check if a fix-point is reached in the abstract system model-
checking, and also to check whether an unsafe state is reached. We use Boost
Interval Arithmetic Library (IAL) [71] to abstract non-linear dynamics. We
use dReach to validate a counter-example (the validation a counter-example
of length n involves at most n invocations of dReach). Note that dReach
calls dReal, internally. Also, dReach/dReal are not available in the form
of libraries. Therefore, HARE executes dReach as a separate process and
communicates with it through files. Finally, we use Parma Polyhedra Li-
brary (PPL) [69] to manipulate symbolic abstract states. This includes, com-
puting discrete/continuous abstract posts, constructing annotated counter
examples, finding rectangular hull of a polytope, abstracting affine flows,
and checking if a parallelly composed location/edge has non-empty invari-
ant/transition relation. Compared to the old version of HARE in [65], we have
replaced SpaceEx with dReach, since SpaceEx does not support non-linear
dynamics. Also, we have implemented everything in C++ instead of Scala to
improve performance.
The abstract model checker in HARE has a parameter direction with pos-

sible values forward and backward. It specifies whether the tool should
perform forward or backward reachability. But PPL can only compute cpost
and not cpre. This is the reason for the step “Reverse Time If Necessary”.
There is an optional integer parameter max-iter for each of the abstract and
concrete model checkers. If the maximum number of iterations is reached
in the abstract model checker, it returns bounded-safe as an answer. If
abstract model checker returns this answer to the concrete model checker,
abstract bounded safe will be returned as a result. If the maximum num-
ber of iterations is reached in the concrete model checker, it returns unknown
as the answer. In addition to Safe or Unsafe, the user can also ask HARE
to produce a counter-example, an annotated-counter-example, or the
reachable-set. Clearly, the first two will only be produced if the system is
found to be unsafe and the last one will only output the abstract reachable
states. Note that abstract model checker can be directly called by user.
The model to be checked along with all the options for the model checker
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are specified in a single human readable text file according to INFO Parser
from Boost Property Tree Library [74]. Every model, contains one or more
hybrid automata and the safety problem is considered for their parallel com-
position which is constructed on the fly. Continuous variables can be read by
all hybrid automata. If the file specifies polyhedral automata, each hybrid
automaton can write to all variables through transition relations and flow.
On the other hand, if the file specifies a non-linear polyhedral automaton,
different hybrid automata can still write to a common variable through tran-
sition relations, but flow of a variable should be defined in exactly one hybrid
automaton. Initial and unsafe states are specified after all hybrid automata
using zero or more polyhedra for each composed location. Each edge has an
optional label. If it is specified, it means that edge must be synced with an
edge from other hybrid automata in the file. Otherwise, it will be interleaved.
If a specified label does not end with ‘?’, ‘!’, or ‘!!’, synchronization will be
among all hybrid automata in the file (i.e. each hybrid automaton must take
an edge with the exact same label). Characters ‘?’, ‘!’, and ‘!!’are used to
specify input/output hybrid automata, where ‘?’ is for an input edge, ‘!’ is
for an output edge, and ‘!!’ is for a broadcast edge. Character ‘*’ at the
beginning of a location name means that location is transient and time can-
not pass inside that location. Allowing transient locations in the model has
three benefits 1. neither abstract nor concrete model checker will waste time
by computing continuous post in transient locations, 2. the result automata
will have one less variable, and 3. the model will be easier to understand.
Finally, the current interface to the tool is only through the command line.

4.4 Experimental Results

The tool described in this chapter also appeared in [75], is a significant
improvement over the version reported in [65]. First, the old version only
verified affine hybrid automata. The new version also considers non-linear
dynamics. Second, the old version used rectangular automata to abstract
concrete models. The new version uses polyhedral hybrid automata. We
have observed a marked improvement in running time due to the change in
abstract models — there are fewer refinement iterations on many examples
because of the use of polyhedral hybrid automata. Third, the tool has been
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made robust. The implementation has migrated to C++ from Scala to im-
prove its running time. We have changed some of the 3rd party tools that
HARE uses internally. All these changes have enabled HARE to handle a larger
class of examples (including more affine hybrid automata), with a faster run-
ning time We also compare against the old version of HARE [65]. We show
that the new tool successfully proves safety when the others fail.
The new version of HARE is available from https://uofi.box.com/v/HARE;

the old version of the tool can be downloaded from https://uofi.box.com/
cegar-hare-tacas-2016. Examples and scripts for running the examples
can also be found on the links. Both these links contain a virtual machine
to make repeatability straightforward.
We have run HARE with different set of examples with both affine and non-

linear dynamics. Brief explanations of the affine benchmarks can be found
in [65]. Table 4.1 contains the results for the affine examples. We compare
the performance of HARE, its old version in [65], SpaceEx [42], PHAVer [43],
and SpaceEx AGAR [44] 6. The first two tools are affine hybrid automata
model checkers that are not CEGAR based, while the last is a CEGAR
based tool for concurrent hybrid automata 7. In the past [65], we also re-
ported the performance of HSolver [45] on affine examples. However, since it
performed poorly on affine examples, we have not included it for comparison
in Table 4.1.
Tank Benchmark [76]. Each problem in this benchmark consists of some

N ∈ N tanks. Each tank i ∈ {1, . . . , N} loses volume xi at some constant
flow rate vi. Hence, dynamics of tank i is ẋi = −vi for a rational constant
vi ≥ 0. Furthermore, one of the tanks is filled from an external inlet at some
constant flow rate w which makes its dynamics ẋi = w − vi, for a rational
constant w ≥ 0. The volume lost by each tank simply vanishes and does not
move from one tank to another.
Satellite Benchmark [76]. These examples model two satellites orbiting

the earth with nonlinear dynamics described by Kepler’s laws (see [77] for
details). The nonlinear dynamics were hybridized in [76] to generate an
affine hybrid automaton. The size of the problems varies from 36 to 1296
locations and so this benchmark can test the scalability of the tool. The

6By SpaceEx we mean SpaceEx with Supp as its scenario and by PHAVer we mean
SpaceEx with PHAVer as its scenario.

7It is called “Assume Guarantee Abstraction Refinement” in [44].
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old new old new old new
Tank 16 3 3 / 6 < 1 < 1 1 1 ✓ ✓ 3 ✘ ✘ 1414 ✘ ✓ 2 1133 ✘ ✓
Tank 17 3 3 / 6 < 1 < 1 1 1 ✓ ✓ 5 ✘ ✓ 1309 ✘ ✓ 2 1041 ✘ ✓
Satellite 03 4 64 / 198 91 < 1 1 1 ✘ ✓ < 1 ✘ ✘ 1804 ✘ ✘ 28 > 600 --- ---
Satellite 04 4 100 / 307 < 1 < 1 1 1 ✓ ✓ < 1 ✘ ✓ < 1 ✓ ✓ 91 49 ✓ ✓
Satellite 11 4 576 / 1735 1 < 1 1 1 ✓ ✓ < 1 ✘ ✓ < 1 ✓ ✓ 449 > 600 --- ---
Satellite 15 4 1296 / 3895 2 < 1 1 1 ✓ ✓ < 1 ✘ ✓ < 1 ✓ ✓ 264 > 600 --- ---
Heater 03 3 4 / 6 > 600 54 --- 1 --- ✓ 84 ✘ ✓ < 1 ✓ ✘ --- --- --- ---
Heater 05 3 4 / 6 < 1 58 1 38 ✘ ✓ 61 ✘ ✓ < 1 ✓ ✘ --- --- --- ---
Heater 09 3 4 / 6 < 1 80 1 15 ✘ ✓ 42 ✘ ✘ < 1 ✓ ✘ --- --- --- ---
Nav 01 4 25 / 80 9 18 11 11 ✓ ✓ < 1 ✓ ✓ < 1 ✓ ✓ 21 5 ✓ ✓
Nav 08 4 16 / 48 7 < 1 13 1 ✓ ✓ 685 ✘ ✓ < 1 ✓ ✓ 10 < 1 ✓ ✓
Nav 09 4 16 / 48 7 < 1 10 1 ✓ ✓ < 1 ✘ ✘ < 1 ✓ ✘ 4 < 1 ✓ ✘
Nav 13 4 9 / 18 8 < 1 15 1 ✓ ✓ < 1 ✘ ✓ < 1 ✓ ✓ 4 < 1 ✓ ✓
Nav 19 4 33 / 97 29 < 1 17 1 ✓ ✓ 2 ✘ ✓ < 1 ✓ ✓ 11 < 1 ✓ ✓

SpaceEx PHAVer SpaceEx AGAR
Time Iters. SafeFP. Time FP. Safe Merged 

Locs. Time FP. Safe

HARE

Model Dim. Size Safe Time

Table 4.1: Comparing HARE with its old version in [65] and other tools
for affine dynamics. Dim. is the number of continuous variables. Size is the
number of locations/edges in the input (concrete) model. Iters. is the number
of iterations in our CEGAR loop before proving safety. FP. tells whether or
not a tool reached a fixed-point. If a tool does not reach a fixed-point then
even if it says the system is safe, the answer may not be true. As explained
in [65], sometimes SpaceEx tells it reached a fixed-point, but before that it
generates a warning that its result may not be complete. We continue to
consider those cases as SpaceEx has not reached a fixed-point. Merged Locs.
is the number of locations we initially merged for SpaceEx AGAR. Columns
old and new for HARE contain results from the previous and current version
of this tool. All times are in seconds and all examples were run on a laptop
with Intel i5 2.50GHz CPU and 6GB of RAM.

safety property being checked is collision avoidance, i.e., whether there is a
trajectory in which satellites come too much close to each other.
Heater Benchmark [76]. There are three rooms with three heaters. For

each room, we have one automaton with two states modeling heater being
on and off in that room. Composition of these three room automata gives us
a heater system.
Navigation Benchmark [22, 78]. This benchmark considers a robot

moving in the R2 plane. There is a desired velocity vd that is determined by
the current location of the object in an n×m grid. Each grid has one of the
8 possible desired velocities pointing to the usual 8 possible directions in the
plane. Dynamics of object’s velocity is determined by v̇ = A(v − vd) where
A ∈ Q2. There are two special type of cells. Those that are unsafe and
those that are blocked. Some of the problems in this class use the following
variation: For an small value ε ∈ Q+, neighbor cells overlap with each other.
This introduces non-nondeterminism into the model.
The new version of HARE proved all examples are safe, while the old version
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could not do this for four examples. Also the new version is faster on all
examples, except one. SpaceEx almost never reached a fixed-point. PHAVer
could prove safety for only half of the examples, and it did it faster than new
version of HARE in only one case. Abstraction in SpaceEx AGAR appears to be
a very expensive operation — in four examples, the initial abstraction was
not constructed even after 600 seconds (10 minutes) and we terminated the
execution. Also, in three examples we could not find any set of locations that
does not cause the tool to crash right at the beginning. Among 8 examples
that worked for SpaceEx AGAR, it could prove safety for 5 of them and it was
always slower than new version of HARE.
Table 4.2 contains results of comparing HARE with C2E2 [46], HSolver [45],

and FLOW* [47] on nonlinear examples. Note that HARE and HSolver sup-
port proving safety for unbounded time and unbounded number of discrete
transitions. But both C2E2 and FLOW* require bounded time and bounded
number of discrete transitions. Also none of these two tools check whether
the computed (unbounded) reachable set so far is a fixed-point. Therefore,
no matter how big the time-bound is set, proving safety for this time bound
in these tools does not guarantee unbounded time safety. In our experience,
we set the bound for discrete number of transitions large enough so none
of the tools terminated because of this bound being reached. For the first 5
examples, we set the time bound equal to 1000 in C2E2 and HSolver. For the
last example, the time bound is 10 in all tools. HARE always finished faster
than C2E2. On three examples HARE is faster than FLOW* and only in one ex-
ample is slower. On 3 examples HARE proved safety faster than HSolver, and
in 2 examples HSolver was faster. HSolver comes with an example named
circuit (not reported in Table 4.2). The size of hybrid automaton in this
example is small, but it has constants of the order 1012, which turns out to
be too big for C2E2 and dReach and trigger a bug in these two tools (and
hence HARE). Only HSolver proves safety of this example. Finally, in our ex-
periments, dReach performs much faster for the affine dynamics. Non-linear
examples are also available at link for the new version of HARE we mentioned
earlier.

67



C2E2 HSolver FLOW*

Model Dim. Size Reached 
Abst. Size

Time 
Bound Time Time Time Time

Van der Pol 2 1 / 0 26 / 194 ∞ < 1 56 3* > 600
Jet Engine 2 1 / 0 189 / 1330 ∞ 55 56 2* > 600
Cardiac Cell 2 2 / 2 249 / 1783 ∞ 16 50 < 1* 25
Cardiac Control 3 2 / 2 270 / 3974 ∞ 153 > 600 > 600* 41
Clock 3 1 / 0 9 / 56 ∞ < 1 --- < 1 < 1
Sinusoid 2 1 / 0 32 / 62 10 < 1 1 7 ---

HARE

Table 4.2: Comparing running time of HARE with other tools for non-linear
dynamics. Dim. is the number of continuous variables. Size is the number
of locations/edges in the input (concrete) model. Reached Abst. Size is the
number of locations/edges in the final abstract model that are reached in
HARE right before safety is proved. Time Bound is 10 for the “Sinusoid”
model in all four tools. For all the other examples, there is no time bound in
both HARE and HSolver. In other word, HARE and HSolver prove unbounded
time safety for all but the last example. C2E2 and FLOW* on the other hand,
require finite time bound, and we set it to be 1000 (except for the “Sinusoid”
model which is 10). We have terminated all the runs that took more than 600
seconds (10 minutes). HSolver requires bounded invariants. So in the first
four examples, we put 100 as an upper bound and −100 for as a lower bound
of unbounded variables. FLOW* does not support trigonometric functions and
C2E2 encounters an internal error on one of the examples. All times are in
seconds and all examples were run on a laptop with Intel i5 2.50GHz CPU
and 6GB of RAM.

4.4.1 Unbounded Invariants

The first 4 examples in Table 4.2 are taken from C2E2. Tools like C2E2 and
FLOW* that try to compute the reachable set as precisely as possible, tend not
to specify invariants. On the other hand, tools like HARE and HSolver that
perform refinement by partitioning the state space tend to require bounded
invariants. Another reason for HARE to prefer bounded invariants is that
dReach, which HARE uses internally, only works for bounded variables. We
had a few options to bound the invariants in those examples. The first option
is to bound the invariants using large enough numbers (just like what we did
for HSolver). This means we are guessing the invariant. If the guessed
invariants are all closed sets, one can verify the guess by setting closure of
complement of it as the unsafe states. If the unsafe states are not reachable
then the guess is valid. Note that since HARE computes an over-approximation
of unsafe states, it is possible that HARE incorrectly says a guessed invariant
is invalid. The second option is to first use tools like C2E2 or FLOW* and find
a coarse invariant for all locations. Note that since these tools have bounded
number of discrete transitions and they do not check for fixed-point, one
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might still need to verify that invariants obtained using C2E2 or FLOW* are
valid. The third option, which we have used for the current implementation,
is noticing that the only part of the implementation that requires invariant to
be bounded is where dReach is called. If this tool is called with an unbounded
variable, then it will quickly raise an exception and terminate. In other
words, it will terminate without saying that the counter-example is valid.
We take not saying valid as saying invalid. This approach makes it possible
to use dReach even when invariants are not bounded. Note that during
validation of a counter-example of length larger than one, it is possible that
only invariants after some step k are unbounded. Our current approach
guarantees all variables are bounded when dReach is called for indices k
or smaller. An example of such a system, Automatic lane change system
(driver assist) that comes with C2E2. It is a system with affine dynamics
and 10 unsafe sets. HARE proved unbounded safety for all these sets in about
190 seconds. During this time, dReach encountered exception in almost every
iteration. But eventually, the abstract model checker reached a fixed-point
and found the system to be safe, so dReach was not called again. C2E2 needs
to prove safety for each of these sets separately and it took this tool about
1163 seconds to prove them all when the time bound is set to 1000. HSolver
and FLOW* could not prove safety for any of these sets within 600 seconds (10
minutes) 8. A fourth option is one where we initially partition the state space
blindly for a small number of times first, and then start the actual CEGAR
loop. We used this option in all four examples in Table 4.2 from C2E2.

4.5 Related Work

Doyen et al. considered rectangular abstractions for safety verification of
affine hybrid systems in [79]. However, their refinement is not guided by
counter-example analysis. Instead, a reachable unsafe location in the ab-
stract system is determined, and the invariant of the corresponding concrete
location is split to ensure certain optimality criteria on the resulting rectan-
gular dynamics. This, in general, may not lead to abstract counter-example
elimination, as in our CEGAR algorithm. We believe that the refinement

8Time bound for HSolver and HARE are set to be the same. Similarly, time bound for
FLOW* and C2E2 are set to be the same.
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algorithms [79] and the on in this chapter are incomparable — one may per-
form better than the other on certain examples. Empirical evaluations could
provide some insights into the merits of the approaches, however, the imple-
mentation of the algorithm in [79] was not available for comparison at the
time of writing this thesis.
Bogomolov et al. consider polyhedral inclusion dynamics as abstract mod-

els of affine hybrid systems for CEGAR in [44]. Their abstraction merges
the locations, and refinement corresponds to splitting the locations. Hence,
the CEGAR loop ends with the original automaton in a finite number of
steps, if safety is not proved by then. Our algorithm in this chapter, splits
the invariants of the locations, and hence, explores finer abstractions. Our
method is orthogonal to that of [44], and can be used in conjunction with [44]
to further refine the abstractions.
Nellen et al. use CEGAR in [80] to model check chemical plants controlled

by programmable logic controllers. They assume that the dynamics of the
system in each location is given by conditional ODEs, and their abstraction
consists of choosing a subset of these conditional ODEs. The refinement
consists of adding some of these conditional ODEs based on an unsafe lo-
cation in a counter-example. The method does not ensure counter-example
elimination in successive iterations. Their prototype tool does not automate
the refinement step, in that the inputs to the refinements need to be given
manually. Hence, we did not experimentally compare with this tool.
Zutshi et al. propose a CEGAR-based search in [81] to find violations

of safety properties. Here they consider the problem of finding a concrete
counter-example and use CEGAR to guide the search of the same. We in-
stead use CEGAR to prove safety — the absence of such concrete counter-
examples.

4.6 Conclusions

We presented a new algorithm for model checking safety problems of affine
hybrid automata in a counter-example guided abstraction refinement frame-
work. We show that our algorithm is sound and have implemented it in a
tool named HARE. We also compared the performance of our tool with a few
state-of-the-art tools. Results show that performance of our tool is promising
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compared to the other tools (SpaceEx, PHAVer, and HSolver).
In the future, we intend to incorporate certain improvements to our imple-

mentation. In particular, we would like to integrate an algorithm for com-
puting an under-approximation of the continuous post. The will allow us to
definitively validate abstract counter-examples. Theoretically, we would like
to explore the completeness of our algorithm, in terms of finding a concrete
counter-example when the concrete system is unsafe. This may require a
novel notion of counter-example in the abstract system, which is shortest in
terms of the number of edges in the concrete system which do not correspond
to self-loops.
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Chapter 5

Robust Model Checking

A closer look at our undecidability result in Chapter 3, reveals that it is
relying on possibility of storing unbounded amount of information in real
values between any two consecutive natural numbers. In other words, it uses
an encoding/decoding of all natural numbers into a non-empty interval (a, b).
As a result, if we perturb the dynamics of the automaton we constructed in
Section 3.1, the result automaton might not be able to simulate 2-counter
machine anymore. Our results in Chapter 4 gives us another motivation for
robust verification. We proved there that if unsafe and reachable sets of states
are separated, our algorithm can always prove the safety of the automaton.
In other words, if the automaton is safe, but the unsafe and reachable sets
are too close, our algorithm might not terminate or it might even say the
system is unsafe.
Looking at the process of model checking cyber-physical systems “in gen-

eral” reveals the same problem. A lot of undecidability proofs in the literature
rely on the non-existence of noise, meaning that they assume that the sensors
are perfect and there is no noise in the physical environment. Furthermore, a
lot of designs satisfy the required properties by assuming the absence of noise
in the environment. Existence of this unrealizable assumption in design and
verification, leads one to question the modeling language used to specify dif-
ferent classes of hybrid automata and their problems. Robust model checking
aims to address these problems that is suggested by researchers in [30–41].
In this chapter, we consider robust model checking of timed automata.

Timed automata [11] are the standard formal model for real-time systems
because they are an elegant and expressive formalism, and, yet are amenable
to algorithmic analysis [82, 83]. However, timed automata, as many other
classes of hybrid automata, have an idealistic semantics that makes assump-
tions that are physically unrealizable. To be more concrete, in timed au-
tomata, time is measured by perfectly continuous and synchronous clocks
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that have infinite precision as opposed to finite precision, almost synchro-
nized, digital clocks that are accessed by implementations. Timed automata
can also respond instantaneously to events while physical realizations of the
real-time systems react with some non-zero delay. Finally, timed automata
allow modelling control algorithms that exhibit Zeno behaviors, have unreal-
istic convergence properties [31], or isolated behaviors [30]. These deficiencies
have been observed by a number of researchers [30–35]. To ensure that correct
timed automata yield correct, implementable designs, the remedy suggested
by these papers is to consider a robust semantics for timed automata.
Starting from the seminal work of [30] where a topological notion of ro-

bustness was proposed, different notions of robustness have been consid-
ered [33,35,84]. One notion of robustness that has been studied extensively,
is the one that is formally defined in Section 2.2.3. This notion of robustness
has been shown to imply implementability in real-time platforms [33,85].
The algorithmic complexity of checking the robustness of timed automata

designs has received much attention. For a timed automaton H, remember
that by Hε, we denote the semantics where clocks can drift by ε (but guards
remain unperturbed), and by Hδ, we denote the one where guards are en-
larged by δ (but clocks do not drift). Robust safety/reachability problem
is defined in Problem 6 and robust ω-regular model checking is defined in
Problem 7. The robust safety problem was first considered in [84]. It is
shown that robustness with only clocks drifts with respect to safety proper-
ties can be decided in PSPACE. These results were generalized in [85] where
safety verification under both clock drifts and enlarged guards is solved in
PSPACE. The approach in both [84] and [85] is based on computing the reach-
able states under infinitesimal guard and clock perturbations (or only guard
or only clock perturbations), referred to as limreachεδ(H) (or limreachδ(H) or
limreachε(H)). It is shown that H is robustly safe (under just clock drifts,
or guard perturbations, or both) iff the corresponding limreach set is disjoint
from the unsafe states. Moreover, it is observed in [85] that the three limreach
sets coincide, that is,

limreachεδ(H) = limreachε(H) = limreachδ(H) (5.1)

Except the results about disjointness of unsafe and limreach sets, all the above
results on safety verification (including the fact that limreach sets coincide)
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in [84, 85] are established for timed automata that satisfy the progress cycle
assumption (PCA) which requires that every cycle in the region graph of H
reset every clock of timed automaton at least once.
The progress cycle assumption can be restrictive when modeling real-time

systems because it does not allow the design to measure time spent in cy-
cles. Therefore, the decidability of robust verification without the progress
cycle assumption was investigated in [86]. The results from [84,85] were gen-
eralized in a couple of directions. First the progress cycle assumption was
removed. Second, general ω-regular properties were considered as opposed
to just safety. In addition, the restriction to bounded timed automata was
also removed; this restriction to bounded automata is, however, not limit-
ing because every timed automaton is weakly bisimilar to a bounded timed
automaton [87, 88]. However, in some respects, the results in [86] are also
less general than those in [85]; the paper [86] only considers robustness with
respect to perturbation of guards alone.
In this chapter, we continue this line of investigation. We first consider the

problem of robust safety model checking of monotonic rectangular automata
when only clocks are drifted and show that it is NEXPTIME-complete. This
will be used in many of our results on timed automata. In the absence of the
progress cycle assumption, we then ask what is the complexity of robustly
verifying a property when guards are enlarged, as well. Our first observation
is that an automaton H robustly satisfies a property B when both clocks
and guards are perturbed iff H robustly satisfies the same property when
only guards are enlarged. In addition, limreachεδ(H) = limreachδ(H). Thus,
using the algorithm in [86], one can verify designs under both clock drifts and
guard perturbation. On the other hand, we show that robustness when only
clocks are drifted is not equivalent with the stronger notion of robustness
when both guards and clocks are perturbed. More precisely, we show that
there are timed automata that are robust when only clocks are drifted, but
not when both guards and clocks are perturbed (see Example 47). This
contrasts with Equation (5.1) that holds under the progress cycle assumption.
We then present an algorithm to check ω-regular properties when only clocks
are drifted. We show that a timed automaton H robustly satisfies a property
B when only clocks are drifted iff there is a constant δ1 (depending only on
the size of H) such that the automaton in which only the guard constraints
involving positive constants are perturbed by δ1, satisfies B. This observation
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Problem / Assumption With PCA Without PCA
limreachεδ computation X [85]
limreachδ computation X [85]
limreachε computation X [84, 85] (X)
Robust ω-regular (X) (X)
Robust ω-regular

X [89] X [86]with only Enlarged Guards
Robust ω-regular (X) (X)with only Drifted Clocks

Table 5.1: Summary of Robust Model Checking Problem Results: Check
marks indicate that the corresponding problem is solvable in polynomial
space; check marks within parenthesis are established in this chapter and
those without the parenthesis were established in the reference cited along-
side. Recall that PCA refers to the Progress Cycle Assumption.

can be exploited to give a PSPACE algorithm. We also show that this problem
is PSPACE-hard, thus establishing the optimality of our algorithm.
Next, we consider the problem of computing limreachε for bounded timed

automata in the absence of the progress cycle assumption. While the algo-
rithm to verify ω-regular properties discussed in the previous paragraph also
applies to robust safety verification, computing limreachε is of independent
interest just like computing reachable sets is an important task independent
of safety verification. Puri’s algorithm [84] (generalized in [85]) works by
iteratively adding the (topological) closure of regions on progress cycles that
have a non-empty intersection with the current limreach set. We show that
the (almost) same algorithm correctly computes limreachε even when the
progress cycle assumption does not hold. This algorithm can be shown to
use polynomial space. Our contributions, in the context of earlier results, is
summarized in Table 5.1. As can be seen from the table, the results in this
chapter cannot be used to compute limreachεδ nor limreachδ, in the absence of
the progress cycle assumption.

5.1 Bounded Time Robust Reachability

In this section, we prove that bounded time robust reachability of monotonic
rectangular automata is NEXPTIME-complete. Problem 34 formalizes what we
are considering in this section. In Section 5.1.1 we briefly review the proof for
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the non-robust version of the problem (i.e. ε = 0 in Problem 34) and formally
extend it to the robust version. In Section 5.1.2 we present our algorithm
for solving this problem in NEXPTIME. Finally, in Section 5.1.3 we prove the
problem is NEXPTIME-hard, which implies that our algorithm is optimal.
In this section, for a timed automaton H, a general zone is a finite disjunc-

tion of finite conjunction of constraints of the form x−y ./ c or x ./ c, where
x, y are variables of H, c is an integer, and ./ is among {<,≤,=,≥, >}.

Problem 34. Given a monotonic rectangular automaton H, a time bound
T :N, and an unsafe general zone Z in H, is it true that for all ε :R+, Z
can be reached in Hε within T units of times? That is whether or not the
following property holds?

∀ε :R+ • ∃τ : [[Hε]]∗ • first(τ) ∈ Sinit
[[H]] ∧ last(τ) ∈ Z ∧ duration(τ) ≤ T

5.1.1 From Bounded Time to Bounded Length

Brihaye et al. solved the non-robust version of Problem 34 in [16] (i.e. ε = 0).
The main observation in [16] is that if there is a trajectory τ : [[H]]∗ from state
(q1, ν1) to (q2, ν2) such that duration(τ) ≤ T then there is a trajectory τ ′ from
(q1, ν1) to (q2, ν2) whose length is at most exponential in the size of H and
linear in T . Furthermore, τ ′ has the same duration and visits the exact
same set of locations as τ . Theorem 35 formalizes their result. Note that
properties 3 and 4 in this theorem are not explicitly mentioned in the body
of Theorem 2 in [16], but they are obvious from the proof.

Theorem 35 (Theorem 2 in [16]). Let H be a monotonic rectangular au-
tomaton in which all constants are integers and T :R≥0 be a time bound. For
any τ : [[Hε]]∗ there is τ ′ : [[Hε]]∗ with the following properties:

1. first(τ ′) = first(τ),

2. last(τ ′) = last(τ),

3. edges(τ ′) = edges(τ),

4. duration(τ ′) = duration(τ), and

5. |τ ′| ≤ F (H, T ) = 24(T × rmax + 1)× |X|2 × |Q|2 × (2cmax + 3)2|X|.
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Where rmax is the maximum possible rate (in absolute value) of a variable in
H, and cmax is the maximum constant (also in absolute value) in specification
of H.

Function F (H, T ) in Theorem 35 assumes constants in guards are integers.
So the minimum distance between distinct constants is at least 1. But if we
allow rational constants in guards, the minimum distant is at least 1

2n where
n is the size of H, assuming constants are given in binary format. This
increases value F (H, T ) but it will remain exponential in n and linear in T .
Finally, as far as Theorem 35 and its proof are concerned, flows of variables
could be rational as well. All we need from the flows is that they should be
monotone and bounded by rmax, two properties that are true by definition.

Theorem 36. Let H be a monotonic rectangular automaton, ε : [0, rmax]∩Q
be a perturbation, and T :R≥0 be a time bound. Then for any τ : [[Hε]]∗ there
is τ ′ : [[Hε]]∗ with the following properties:

1. first(τ ′) = first(τ),

2. last(τ ′) = last(τ),

3. edges(τ ′) = edges(τ),

4. duration(τ ′) = duration(τ), and

5. |τ ′| ≤ F (H, 2T ) (F is defined in Theorem 35).

Proof. For any given ε : [0, rmax] ∩ Q, Hε is also a monotonic rectangular
automaton. Furthermore, rmaxHε ≤ 2rmaxH. Also, H and Hε have the
exact same components except their flows. Using Theorem 35, the proof is
complete once we notice F (Hε, T ) ≤ F (H, 2T ).

5.1.2 NEXPTIME Algorithm

Knowing that F (H, T ) is a bound on the maximum length of a set of tra-
jectories that witness the set of states reachable within T units of time, the
algorithm in [16] and its correctness are quite straightforward. It first guesses
a path π of length at most F (H, T ) and then constructs conjunction of the
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set of linear formulas ϕ that are satisfiable iff π is an induced path of a wit-
ness trajectory. The algorithm then uses linear programming to check, in
exponential time, whether or not ϕ is satisfiable.
For us the length of path π is bounded by n:=F (H, 2T ). The generated

formula ϕ is of the form ∀ε :R+ • ∃t0, . . . , tn′ :R+ • ∃ν1, . . . , νn : V • ∃ν ′0, . . . , ν ′n :
V • ψ in which n′ ≤ n is the number of non-zero continuous transitions, ti’s
are non-zero durations of continuous transitions, νi’s are states reached after
continuous transitions, and ν ′0 is an initial state, and ν ′i’s (for i > 0) are
states reached after discrete transitions 1 (see Section 2.2.2 for the formal
definition of trajectories and executions). In general, one can consider one
variable ti for the ith continuous transition, but then we should say these
variables are non-negative numbers as opposed to positive numbers. The
assumption that time variables are all positive, will be used in our proof.
Note that the form we chose, requires the algorithm to non-deterministically
select non-zero variables.
Using Definition 3, ψ is a conjunction of a set of formulas of the following

forms (u : X→ Q is a vector, u · ν is the dot/inner product of u and ν, c :Q is
an arbitrary rational number, C : {<,≤} is the comparison type, and absolute
value of all constants is bounded by cmax or rmax):

1. 0 < ti,

2. t0 + t1 + · · ·+ tn C T ,

3. u · νi C c or u · ν ′i C c,

4. νxi+1 − ν ′xi C cti + εti or ν ′xi − νxi+1 C cti + εti

Formulas of type 1 enforce that values of selected non-zero durations are
indeed positive. Formula of type 2 enforces the time bound. Formulas of
type 3 enforce invariants and transition relations. Formulas of type 4 enforce
relation between old and new values of variables after continuous transitions.
We cannot take the same approach as in [16] for three reasons: 1. Although

the quantifier free first order theory of rationals with addition (which is used
in [16]), is known to be decidable in polynomial time [90], the full theory is
known to be between single and double exponential in time [91]. If we want

1Each νi’s and ν′i are actually |X| independent variables of type R. Therefore, ϕ is a
quantified first order formula.
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Algorithm 2 Robust Reachability Analysis of Monotonic Rectangular Au-
tomata
Input: Monotonic rectangular automaton H
Input: General unsafe zone Z
Input: Time bound T
Output: Answer to Problem 34
1. Guess a path π of length at most F (H, 2T ).
2. Guess variables ti that are not 0
3. ψ ← the set of constraints representing reachable set after π
4. ψ1 ← the set of type 4 formulas in ψ with non-zero ti
5. ψ2 ← ψ \ ψ1
6. ψ1 ← closure of ψ1
7. return ψ1 ∩ ψ2 6= ∅

to use the full theory (since we have both quantifiers), the result would be an
algorithm with a complexity between double and triple exponential time (ψ
is exponentially big). 2. Formulas of type 4 are not even linear. Therefore,
we need to use the full first order theory of rationals with addition and
multiplication which is known to be undecidable [92]. 3. Of course we can
use the decidable full theory of reals with addition and multiplication. But
since the this class of formula has EXPSPACE complexity [93] and or formula
is of exponential size, this approach results in a double-EXPSPACE algorithm.
Algorithm 2 shows our approach to decide Problem 34 in NEXPTIME. At

line 1 we guess a path π of the bounded length exactly like [16]. At line 2 we
guess the set of variables ti whose their values must be positive. At line 3 we
construct the quantifier free formula ψ similar to [16]. The difference is that
ψ contains only those time variables that are guessed to be positive. Note
that ψ is created using H and not Hε. So it has no ε in it. At line 4 we let ψ1

to be the set of constraints of type 4 with non-zero time variables. At line 5
we let ψ2 to be the set of constraints that are in ψ but not ψ1. Line 6 defines
closure of ψ1

2. Finally, at line 7 we return yes iff the given condition is
true. Note that, ψ2, and ψ1 each define a convex polyhedron. Therefore they
are closed under intersection and we can check, in exponential time (because
they are defined by exponentially many constraints), whether or not their
intersection is empty.

2Closure is constructed by replacing all strict inequalities with non-strict inequalities.
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Theorem 37. Algorithm 2 always returns the right answer.

Proof. Let k be the number of variables in ψ and ε :R+ be an arbitrary
number. Also, let ψε1 be same as ψ1 except it has εti factors back in it (recall
that ψ1 is the set of formulas of type 4). There are two cases:

• ψ1 ∩ ψ2 6= ∅: Pick any point p in this set and let t:= min{p(t0), . . . ,
p(tn′)} 3, m:=kmax{rmax, cmax}, and α:= εt

2m . Note that t is positive.
Value mα is an upper bound on the change in a linear term u · ν, when
value of every variable in ν is perturbed by at most α. B∞(p, α) ⊆ ψε1,
and since d∞(p, ψ2) = 0 we know B∞(p, α)∩ψ2 6= ∅. Therefore, ψε1∩ψ2 6=
∅ which implies yes is the correct answer to the input problem.

• ψ1 ∩ ψ2 = ∅: For any p :Rk there are two sub-cases:

– p /∈ ψ2: Since ψ2 represents the set of constraints in ψ that per-
turbation won’t affect them, using the guessed path and positive
times, p cannot be reached in Hε within T units of time (for any
ε :R≥0).

– p ∈ ψ2 and p /∈ ψ1: Since ψ1 is a closed set, d∞
(
p, ψ1

)
> 0.

Therefore, we know for some δ :R+ and a type 4 formula x −
y C ct + εt we have p(x) − p(y) > cp(t) + δ (otherwise p ∈ ψ1).
Let ε be any value in

[
0, δ

2 maxi p(ti)

]
. Clearly, p does not satisfy

x − y ≤ ct + εt. Thus, p /∈ ψε1. Therefore, the correct answer to
the problem is no.

Corollary 38. Time bounded robust reachability problem for monotonic
rectangular automata with only perturbed flows is in NEXPTIME.

5.1.3 NEXPTIME-hardness

In this section, we follow the footsteps of Brihaye et al.’s paper and reduce
the membership problem of non-deterministic exponential time Turing ma-
chines to the robust time bounded reachability for monotonic rectangular

3For any variable x and point p, p(x) is the value of x at p
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automata. Brihaye et al. proved that the non-robust version of the Prob-
lem 34 is NEXPTIME-hard (i.e. when ε is set to 0). But since their gadgets
for simulation are not robust to any perturbation, they cannot be directly
applied here. For example, in their construction, in order to check a bit is
zero y ≤ 1

2 ∧ x <
1
2 is used (for some well-defined variables x and y), and

in order to check a bit is one y ≤ 1
2 ∧ x ≥

1
2 is used. This means, if x = 1

2

then we conclude the bit is 1, but but any smaller value gives us different
conclusion.
Each state of the input Turing machine A is encoded as (q, w0, w1) where q

is a location of A and wi, for i : {0, 1}, are two stacks of 0’s and 1’s, represent-
ing the only tape of A. The following operations are sufficient to simulate
A:

• emptiness check of a stack,

• read top of a non-empty stack,

• push 0 or 1 into a stack, and

• pop 0 or 1 from a non-empty stack.

Note that each step of A can be modeled using some tests plus at most one
push and one pop. A stack w = w0w1 . . . w|w|, with w0 being the top, is
represented by a pair of numbers l and c. Value of l:= 1

4|w| represents size of
w, and value of c:=∑

0≤n<|w|
wn

4n+1 represents elements of w. Note that since
the hybrid automaton will be perturbed, we cannot expect l and c to have
their exact values. We will prove that if the perturbation is small enough,
using our operations, one can still use l and c to precisely construct w.
Emptiness and top of a stack are checked using the following guards on

discrete edges:

• |w| = 0 iff l ≥ 5
8 (note that 5

8 is strictly larger than 1
4),

• |w| > 0 iff l ≤ 5
8 (note that 5

8 is strictly smaller than 1),

• w0 = 0 iff l ≤ 5
8 ∧ c ≤

1
6 (note that 5

8 is strictly smaller than 1 and 1
6 is

strictly smaller than 1
4),

• w0 = 1 iff l ≤ 5
8 ∧ c ≥

1
6 (note that 5

8 is strictly smaller than 1 and 1
6 is

strictly larger than 1
12 = ∑

n : N 1
4n+2 ).
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push and pop operations are defined using the following expressions on l and
c:

•push(w, 0):= l← l
4 and c← c

4 ,

•push(w, 1):= l← l
4 and c← c

4 + 1
4 ,

• pop(w, 0) := l← 4l and c← 4c,

• pop(w, 1) := l← 4l and c← 4(c− 1
4).

Figure 5.1 show different gadgets for multiplication and division by 4, and
addition and subtraction by 1

4 . z is a helper variable and x is a member of
{l1, l2, c1, c2}. Variables {li, ci}, for i : {1, 2}, are used to simulate the stack
wi. When any of the variables in {l1, l2, c1, c2} is updated, all other variables
are constant (after perturbation their dynamics will be [0, ε]). In case of no
perturbation, x is at most 1. Assume that for a small enough ε, absolute value
of x is bounded by 2. Figure 5.1 shows that after execution of each gadget
the absolute error will be increased by at most 20ε 4. Since each instruction
of A requires at most 3 different gadgets, after each instruction the absolute
error is increased by at most 4(4(4x+ 20ε) + 20ε) + 20ε− 64x = 420ε, which
can only happen if we have 3 multiplications. Assume A stops within N

number of steps (we know N is exponential in size of A, but our robustness
argument does not depend on that). We know the absolute error after N
instructions converges to 0 when ε goes to 0. This means, there is ε :R+ for
which the absolute error after executing N instructions is bounded by 1

20 .
It is enough to show that four tests used in simulating A are robust to 1

20

absolute error. This is true since 3
8 = 1− 5

8 = 5
8 −

1
4 and 1

12 = 1
6 −

1
12 = 1

4 −
1
6

are both strictly larger than 1
20 , and these are the error margins that each

test allows before it fails to correctly simulate A. Note that 1
20 < 1 therefore,

x in Figure 5.1 is always in [−2, 2]. Finally, since we know the execution has
at most N steps, and each step takes at most 1

1−ε units of time, we set T
to be 2N ≥ N

1−ε . Note that after A halts, it won’t executes any more steps.
This corresponds to a location in monotonic rectangular automaton with no
outgoing transition. Therefore, although 2N is enough time to simulate more
than N steps of A, after the N th step, A is guaranteed to halt. So the extra
time won’t result in simulating more than N steps.

4Wlog., we use 20ε instead of 17ε, to make the arithmetic simpler.
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(d) Division by 4

Figure 5.1: Gadgets for simulating Turing machine. In each gadget, initial
value of x is x0 and initial value of z is 0. After each discrete step, we
show an over-approximation of possible values of the unknown variables. For
example, in Figure 5.1b, after leaving location 0, value of x is in [x0, x0 + ε]
(value if z is guaranteed to be exactly 1 because of the guard). The total
time each gadget takes to execute is at most 1

1−ε . Also, since value of x is
always less than 2, the absolute error of the actual result is within [−16ε, 17ε]
neighborhood of the expected result.
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Theorem 39. Time bounded robust reachability problem for monotonic
rectangular automata with only perturbed flows is in NEXPTIME-hard.

The next corollary follows immediately from Corollary 38 and Theorem 39.

Corollary 40. Time bounded robust reachability problem for monotonic
rectangular automata with only perturbed flows is in NEXPTIME-complete.

5.2 Robust ω-Regular Model Checking

In this section, we present our results for the robust ω-regular model checking
problem when both clocks and guards are perturbed and the robust ω-regular
model checking problem when only clocks are perturbed. Recall that the
robust ω-regular model checking problem when only guards are enlarged was
solved in [86].

5.2.1 Robust ω-Regular Model Checking When Both Guards
and Clocks are Perturbed

Our main result in this section is that robust ω-regular model checking prob-
lem when both guards and clocks are perturbed is equivalent to the robust
ω-regular model checking problem when only guards are perturbed. This is
formalized in the following theorem.

Theorem 41. For any timed automaton H and B a subset of EH,

(∃ε, δ :R+ •Hε
δ|=B)⇔ (∃δ′ :R+ •Hδ′ |=B)

Note that the implication from left to right is trivial, since if Hε
δ|=B then

by assigning δ to δ′, we obtain Hδ′|=B as well. The non-trivial part of the
proof lies in showing the other direction. It requires the robustness under
perturbed guards to be transferred to that under clock drifts and perturbed
guards, which is facilitated by the following lemma.

Lemma 42. For any timed automatonH, ε :
(
0, 1

4

)
, γ :

(
0, M

2

)
, and τ : [[Hε

γ]]
0
∞,

there is τ ′ : [[H2Mε+γ]]0
∞, such that τ and τ ′ have the exact same sequence of

discrete and continuous transitions. Here, M is the largest constant appearing
in the constraints of H.
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Proof. Fix ε :
(
0, 1

4

)
, γ :

(
0, M

2

)
, and τ : [[Hε

γ]]
0
∞. Let δ:=2εM + γ. Obviously,

the set of edges that are enabled initially in Hε
γ corresponds to a subset of

the edges that are initially enabled in Hδ. We show the same is true at any
step in τ . For any variable x : X if valuation νx satisfies guard g at the time
of taking edge e in Hε

γ, there are two cases:

1. g:=xB c for some integer c : {0, . . . ,M} and B : {>,≥}. Time taken by
x to reach its current value since its last reset (or since the beginning
of time if x has never been reset) is at least c−γ

1+ε . We show that this
time is big enough for the enlarged guard xB c− δ to be satisfied when
x evolves without clock drifts.

(MB c) ⇒
(2M + γ + 2εMB c) ⇒
(0B−2εM + cε− γε− 2ε2M) ⇒
(c− γ B c− γ − 2εM + cε− γε− 2ε2M) ⇒
(c− γ B (1 + ε)(c− γ − 2εM)) ⇒(
c− γ
1 + ε

B c− γ − 2εM = c− δ
)

2. g:=xC c for some integer c : {0, . . . ,M} and C : {<,≤}. Time taken by
x to reach its current value, since its last reset (or since the beginning
of time if x has never been reset) is at most c+γ

1−ε . We show that this
time is small enough for the enlarged guard x C c + δ to be satisfied
when there are no clock drifts. Again,

(c ≤ M) ⇒(
c+ M

2 + M
2 ≤ 2M

)
⇒

(c+ 2εM + γ C 2M) ⇒
(0C 2εM− cε− 2ε2M− εγ) ⇒
(c+ γ C c+ γ + 2εM− cε− 2ε2M− εγ) ⇒
(c+ γ C (1− ε)(c+ 2εM + γ)) ⇒(
c+ γ

1− ε C c+ 2εM + γ = c+ δ
)

Note that variables are reset at the exact same times in τ : [[Hε
γ]]

0
∞ and

τ : [[Hδ]]0
∞. So whenever a variable is reset in τ : [[Hε

γ]]
0
∞ at time t, the same

variable is reset in τ : [[Hδ]]0
∞ at time t. This makes the values of x in two
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executions 0 at time t.

The right to left implication of Theorem 41 follows directly from Lemma 42.
If Hδ′ |=B, then by choosing any ε :

(
0, 1

4

)
and δ :

(
0, M

2

)
such that 2Mε +

δ < δ′, we know any execution in [[Hε
δ]]

0
ω has a corresponding execution in

[[Hδ′ ]]0
ω with the same sequence of discrete transitions. Lemma 42 also implies

limreachεδ(H) is subset of limreachδ(H) and therefore they are equal even
when the progress cycle assumption does not hold. This is formalized in the
Corollary 43.

Corollary 43. For any bounded timed automaton H, we have

limreachεδ(H) ⊆ limreachδ(H)

Proof. limreachδ(H) is taken to be the intersection of the reach set of Hδ for
all δ. Since the guards are perturbed inHδ, we can (without loss of generality)
assume that the intervals are closed in Hδ when defining limreachδ(H) [85].
Thus, reach(Hδ) is a closed set, for any δ :R+. Let s : limreachεδ(H) be an
arbitrary state. For any δ :R+, we will show s ∈ reach(Hδ), thus establish-
ing the claim. Since reach(Hδ) is closed, we can establish this by showing
that d∞(s, reach(Hδ)) is arbitrarily small, or more precisely, for any κ :R+,
d∞(s, reach(Hδ)) < κ.
Let us fix κ :R+. Pick ε :

(
0, 1

4

)
and γ :

(
0, M

2

)
such that 2Mε + γ < δ and

2Mε < κ. Since s ∈ reach
(
Hε
γ

)
we know there is an execution τ : [[Hε

γ]]
0
∗ such

that last(τ) = s. By Lemma 42 we know there is an execution τ ′ : [[H2Mε+γ]]0
∗ ⊆

[[Hδ]]0
∗ with the same sequence of discrete and continuous transitions as τ .

Since H is bounded and ε < 1
2 , every variable is reset at least once every 2M

units of time. Since the clocks are drifted by at most ε in Hε
γ and variables

are reset at the exact same times in τ and τ ′, d∞(s, last(τ ′)) ≤ 2Mε < κ.
Therefore, d∞(s, reach(Hδ)) < κ.

To obtain an algorithm for robust ω-regular model checking problem when
both guards and clocks are perturbed, we resort to the results in [86] for
robust ω-regular model checking problem when only guards are perturbed.
The algorithm in [86] provides a computable value δ0, such that the Hδ0 |=B
iff there is δ :R+ such that Hδ|=B. We recall this result from [86].
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Theorem 44 (Based on Lemma 11 and Theorem 3 in [86]). Let H be a
timed automaton, W be its number of regions, and B be a subset of EH.
Then

1. ∀δ :R+, τ : [[Hδ0 ]]0
ω • ∃τ ′ : [[Hδ]]0

ω • inf(τ) = inf(τ ′)

2. ∃δ :R+ •Hδ|=B ⇔ Hδ0|=B

where δ0:=1
2(8|X|2(W + 1))−1 if H satisfies the progress cycle assumption,

otherwise δ0:=1
2(5(W + 1)|X|3(2|Q|(|X|!)4|X| + 4)2)−1.

Proof. The second result follows immediately from the first one. As far as the
first result is concerned, the only difference when compared to the observa-
tions in [86], is that here inf(·) returns the set of edges, as opposed to the set
of locations, that are visited infinitely often. This is not a problem since the
proof in [86] essentially obtains τ ′ from τ by 1. repeating some subexecutions
of τ a finite number of times (duration of continuous transitions may change
during this step), and 2. repeating the previous step for a finite number of
times.

In order to solve robust ω-regular model checking when both guards and
clocks are perturbed, our algorithm first checksHδ0 |=B where δ0 is introduced
in Theorem 44. If Hδ0 6|=B then clearly H does not robustly satisfy B when
both guards and clocks are perturbed. On the other hand, if Hδ0|=B then
using Lemma 42 we know Hε1

δ1|=B for any δ1, ε1 :R+ that satisfy 2Mε1 + δ1 <

δ0.

Theorem 45. Let H be a timed automaton and B be a subset of EH. Let δ0

be as defined in Theorem 44. Then, for any, ε1, δ1 such that 2Mε1 + δ1 ≤ δ0,
the following holds:

(∃ε, δ :R+ •Hε
δ|=B)⇔(Hδ0|=B)⇔

(
Hε1
δ1 |=B

)
Since the robust ω-regular model checking problem when only guards are

perturbed is PSPACE-complete, from Theorem 45, we obtain the following:

Corollary 46. The robust ω-regular model checking problem when both
guards and clocks are perturbed is PSPACE-complete.
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Figure 5.2: ∃ε :R+ •Hε|=B does not imply ∃δ :R+ •Hδ|=B

While robust ω-regular model checking problem when both guards and
clocks are perturbed and when only guards are perturbed are equivalent
(Theorem 41), the same is surprisingly not true for the case when only clocks
drift. This is demonstrated by our next example.

Example 47. In this example, we show that

(∃ε :R+ •Hε|=B) 6⇒ (∃δ :R+ •Hδ|=B)

Consider the timed automaton H in Figure 5.2. It starts at location 0 with
x = y = 0 and both the variables evolve at rate 1. Note that e1, the self loop
on location 0, can only be taken when x = 0, that is, it is feasible only at
time 0. Hence, the edge e2 from location 0 to location 1 can never be taken,
since once time passes both x and y will have non-zero values and the value
of x can never be reset.
Taking B:={e1}, consider the ω-regular property B. Note that the only

infinite execution τ of the timed automaton is the one which traverses e1

repeatedly without time elapsing. This satisfies the condition B. Moreover,
even if we allow clock drifts, we will still have only one infinite execution,
namely, τ . Hence, Hε|=B (for any ε : [0, 1)).
However, we argue that for any δ, Hδ 6|=B, since, there will be infinite

trajectories that visit location 1 and execute e3, the self loop on location 1,
repeatedly. To see this, note that a δ enlargement of the guard x ≤ 0 will
lead to x ≤ δ. Hence, by repeatedly taking e1 every δ units of time, the value
x = 0 and y ∈ [1 − δ, 1 + δ] can be reached. Hence, the edge to location 1
can be taken.

Observe that the same example works if we bound guards and invariants.
Furthermore, this example also shows that limreachε(H) 6= limreachδ(H), a
fact we mentioned in the introduction.
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5.2.2 Robust ω-Regular Model Checking When Only Clocks
are Perturbed

In Example 47, we showed that even if there exists an ε :R+ such thatHε|=B,
there may not exist a δ :R+ such that Hδ|=B. However, we show that the
implication holds when we consider a weaker notion of guard perturbations.

Theorem 48. For any timed automaton H and B a subset of E,

(∃ε :R+ •Hε|=B)⇔ (∃δ :R+ •H+δ|=B)

The crux of the proof of Theorem 48 lies in the following lemma which
establishes the connection between the trace language of automata under
clock drifts and the trace language of automata when positive guard constants
are perturbed.

Lemma 49. For a timed automaton H with maximum constant M and
ε :
(
0, 1

2

)
the following holds:

trace
(
[[H+ ε

2
]]0
∞

)
⊆ trace

(
[[Hε]]0

∞

)
⊆ trace

(
[[H+2Mε]]0

∞

)
Proof. Hε is an initialized rectangular automaton. In [2], Henzinger et al. de-
scribe a transformation from 1. an initialized rectangular automaton Hε into
an initialzied monotonic rectangular automaton H′ that is trace equivalent
with Hε, and 2. H′ to a timed automaton H′′ which is bisimilar to H′.
Initialzied monotonic rectangular automaton H′ is obtained from H by re-

placing every variable x : XH by two variables xl and xu. Initially all variables
in H′ are zero. H and H′ have the same set of (initial) locations and the
invariant in every location in H′ is the set of all valuations. For any location
q : QH and variable x : XH, FH′(q, xl) = 1− ε and FH′(q, xu) = 1+ ε (recall that
F(q, x) is rate at which variable x changes in location q). There is a bijection
between edges of H and H′. For any edge e : EH there is an edge e′ ∈ EH′
such that 1. e′ has the same source and destination as e, 2. For any x : XH we
have x ∈ RHe ⇔ xl, xu ∈ RH′e′, 3. For any x : XH and constant c :R we have
(x ≤ c) ∈ GHe⇔ (xl ≤ c) ∈ GH′e′ and (x ≥ c) ∈ GHe⇔ (xu ≥ c) ∈ GH′e′.
Timed automaton H′′ is obtained from H′ by 1. setting FH′′(q, xl) =

FH′′(q, xu) = 1 for all q : QH and x : XH. 2. every guard xl ≤ c is replaced by
xl ≤ c

1−ε , and 3. every guard xu ≥ c is replaced by xu ≥ c
1+ε . Note that xl and
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xu are both reset to zero at the exact same times, and they are both initially
zero. Therefore, one can merge these two variables into one and combine
their guards together. This is possible since H is a timed automaton.
If c = 0 then c

1−ε = c
1+ε = 0. This corresponds to not changing zero guards.

Next we show for c ≥ 1 the following are true: 1. c+ ε ≤ c
1−ε ≤ c+ 2Mε, and

2. c−Mε ≤ c
1+ε ≤ c− ε

2 .

(
c

1− ε ≤ c+ 2Mε
)
⇔

(
c ≤ c− cε+ 2Mε− 2Mε2

)
⇔ (c+ 2Mε ≤ 2M)(

c+ ε ≤ c

1− ε

)
⇔

(
c− cε+ ε− ε2 ≤ c

)
⇔ (1− ε ≤ c)(

c

1 + ε
≤ c− ε

2

)
⇔

(
c ≤ c+ cε− ε

2 −
ε2

2

)
⇔

(1
2 + ε

2 ≤ c
)

(
c−Mε ≤ c

1 + ε

)
⇔

(
c+ cε−Mε−Mε2 ≤ c

)
⇔ (c−Mε ≤ M)

This means that if we enlarge guards by 2Mε, any time a guard is enabled in
H′′ the same guard is enabled in H+2Mε. Similarly, if we enlarge guards by ε

2 ,
any time a guard is enabled in H+ ε

2
the same guard is enabled in H′′. The

proof is complete once we remember thatHε andH′′ are trace equivalent.

Next, we present an algorithm for robust ω-regular model checking prob-
lem when only positive guards are perturbed. The main technical observation
is that there exists a computable δ1 such that for all positive guard pertur-
bations δ ∈ (0, δ1), the set of edges that are visited infinitely often along the
executions of H+δ1 are contained in that of H+δ. Therefore, if H+δ|=B for
some δ, then H+δ1|=B (the other implication is trivial). These observations
are captured in Lemma 50 and Theorem 51. We first need a few definitions.
For any timed automatonH and any two edges e1, e2 : E, let succ(e1, e2) be a

predicate that returns true iff 1. De1 = Se2, and 2. ∀x : Re1 • (x = 0)∧Ge2 6⇒ ⊥.
The second condition means that if x is reset by e1 then predicate x = 0 is
consistent with the guard of e2. Intuitively, succ(e1, e2) is true iff e1 and e2

can be merged. When this is the case, we define e:=merge(e1, e2) to be the
edge (Se1, De2, Ge1 ∧ g, Re1 ∪ Re2, Le1 ∪ Le2 ∪ {e1, e2}) where for any guard
(x ./ c) : Ge2 if x /∈ Re1 then (x ./ c) ∈ g, otherwise, g does not constrain
x. It is easy to see that if s1

e1−→s2
0−→s3

e2−→s4, for some s1, s2, s3, s4 : S[[H]] then
s1

e−→s4. Let Es be the smallest set that contains E and for any two edges
e1, e2 : Es if succ(e1, e2) then merge(e1, e2) ∈ Es. Let Hs be same as H except
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its set of edges is replaced by Es and q is an initial location in Hs iff q ∈ Qinit
H

or (q′, 0X) e−→(q, 0X) for some q′ : Qinit
H and e : s→ E, where 0X is a function

that maps every variable in X to 0. Intuitively, q is an initial location in
Hs iff q is an initial location of H or it can be reached using an execution
of duration 0. Note that |Es| < ∞ therefore Hs is a well defined timed
automaton. Finally, by construction, for any two states s, s′ : S[[H]] = S[[Hs]]
and e : Es if s e−→s′ and e is a merge of e1, . . . , en : EH in the given order (we
don’t need merge to be associative) then s0

e1−→s′1
0−→s1

e2−→· · · 0−→s′n
en−→sn for some

s0, . . . , sn, s
′
1, . . . , s

′
n : S[[H]] such that s0 = s and sn = s′. Furthermore, Le =

{e1, . . . , en}.

Lemma 50. Let H be a timed automaton and δ1:= δ0
24 , where δ0 is defined

as in Theorem 44. For any δ : (0, δ1) and execution τ : [[H+δ1 ]]0
ω there is an

execution τ ′ : [[H+δ]]0
ω such that inf(τ) = inf(τ ′).

Proof. If duration(τ) = 0 the theorem is trivially true. Therefore, for the rest
of the proof assume duration(τ) > 0.

1. Suppose τ has infinitely many non-zero time transitions. We prove this
part for δ1:=δ0 (which is stronger than δ1:= δ0

24). After any non-zero time
transition, value of no variable is zero. Therefore, none of the guards of
the form x ≤ 0 are satisfied. Construct an execution u : [[Hs

+δ1 ]]0
ω from τ

by removing all zero time transitions and merging edges that their in-
between-time-transitions have been removed. Also, if u does not start
with non-zero time transition, remove e0 the first discrete transition of
it. After this we know that u starts with a non-zero time transition and
x ≤ 0 is never used in its guards. Theorem 44 only uses edges of u (i.e.
existence of other edges is neither assumed nor proved) and guards of
u are the same in Hs

+δ1 and Hs
δ1 . Therefore, by Theorem 44 there is an

execution u′ : [[Hs
+δ]]

0
ω such that inf(u′) = inf(u). If we replace any edge

e in u that belongs to Es \ E with some sequence of edges from Le and
do the same for e0 (if it was initially removed), we get an execution
τ ′′ : [[H+δ1 ]]0

ω. If we do the same to u′, we get an execution τ ′ : [[H+δ]]0
ω.

Furthermore, we know inf(τ ′) = inf(τ ′′). This part is complete once we
notice inf(τ) = inf(τ ′′) since edges in Es keep track of the set of edges
that they visit internally.
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2. Next suppose τ :=τ 1
_τ 2 for some τ 1 : [[H+δ1 ]]0

∗ and τ 2 : [[H+δ1 ]]ω such that
duration(τ 2) = 0. Let Y ⊆ X be the possibly empty set of vari-
ables such that for any x :Y the guard x ≤ 0 occurs infinitely of-
ten in τ . Let τ :=τ 3

_τ 4 for some τ 3 : [[H+δ1 ]]0
∗ and τ 4 : [[H+δ1 ]]ω such

that duration(τ 4) = 0, all variables in Y are always zero in τ 4, and
x ≤ 0 appears in guards of τ 4 only for x :Y . For any variable x : X,
let τ 4

x : [[H+δ1 ]]∞ be the longest prefix of τ 4 that either never resets x
or resets x only in its last step. Also, let gx be the conjunction of all
guards on x in τ 4

x that are not x ≤ 0. Furthermore, let g:=∧
x : X gx, and

let gδ be g enlarged by δ. Note that gδ1 is satisfied by last(τ 3). Let q
be the last location visited in τ 3. Add a new location q′ to QH and two
new edges e and e′ to EH. e is from q to q′ with guard g ∧ ∧x : Y x ≤ 0
that resets no variable, and e′ is a self-loop on q′ with guard g that also
resets no variable. Call the new timed automaton H′.

Let u:=u1
_u2 for some u1 : [[H′+2δ1 ]]0

∗. Also let u2 : [[H′+2δ1 ]]ω such that
u1:=first(τ 3) τ

3
−→last(τ 3) e−→s and u2:=sn tn−→s′n

e′−→sn+1 for some s, s0, s
′
0, s1,

s′1, s2, s
′
2, . . . : S[[H′]] where s0 = s and tn:= δ1

2n+1 for all n :N. Since
duration(u2) = δ1 we know g2δ1 is always satisfied in u2 and therefore u
is a valid execution.

Let δ′0 be the maximum enlargement Theorem 44 specifies for H′. Since
H′ has only one location more than H and number of edges is not used
in Theorem 44, we know 2δ1 ≤ δ′0. So we can use the previous case
and find u′ : [[H′+δ]]

0
ω such that inf(u) = inf(u′) = {e′}. By construction

of H′, we know u′ can be written as u′1_u′2 for some u′1 : [[H′+δ]]
0
∗ and

u′2 : [[H′+δ]]ω such that the last edge in u′1 is e, e is used only once in
u′1, and the only edge in u′2 is e′.

Inside u′, right before and after taking e, gδ is satisfied and all variables
in Y are zero. Let τ ′:=τ ′1_τ ′2, where τ ′1 is obtained from u′1 by remov-
ing e and the time transition after that, and τ ′2 is obtained from τ 4 by
using the same trace and setting all time transitions equal to zero. We
show that τ ′ ∈ [[H+δ]]0

ω.

We know at the end of τ ′1 and everywhere in τ ′2 all variables in Y are
zero which is the same in τ 4. For any variable x /∈ Y we know the value
of x satisfies gδ at the end of τ ′1 and this value does not change in τ ′2

until x gets reset to 0. During this time x always satisfies gδ and after
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it gets reset to 0 it remains 0 both in τ ′2 and τ 4.

Theorem 51. For any timed automaton H and B a subset of E,

(∃δ :R+ •H+δ|=B)⇔ (H+δ1 |=B)

where δ1 is as defined in Lemma 50.

The above observations together give us the following result.

Theorem 52. Let H be a timed automaton with maximum constant M and
let B be a subset of E. Let δ1 be as defined in Lemma 50, and let ε1:= δ1

2M .
Then:

(∃ε :R+ •Hε|=B)⇔(H+δ1|=B)⇔(Hε1|=B)

Proof. Using Theorem 48 and Lemma 50 we only need to show Hε1 |=B is
implied by ∃ε :R+ •Hε|=B. If ε ≥ ε1 then we are done. Otherwise, wlog., we
can assume ε < 1

2 and using Lemma 49 we know for any τ : [[Hε1 ]]0
ω if τ visits

any element of B infinitely often then there is τ ′ : [[H+2Mε1 ]]0
ω that visits the

same set infinitely often. Next, using 2Mε1 ≤ δ1 and Theorem 48, there is
τ ′′ : [[H+ ε

2
]]0
ω that visits the same set of edges infinitely often. Finally, using

Lemma 49 we know there is τ ′′′ : [[Hε]]0
ω that visits the same element in B

infinitely often.

Theorem 52 gives a simple algorithm to solve robust ω-regular model check-
ing problem when only clocks drift — compute δ1 and check that H+δ1|=B.
Since H+δ1 is a timed automaton, δ1 is only exponentially small, and ω-
regular model checking problem for timed automaton can be solved in PSPACE,
we have a simple upper bound on the complexity. We show that in fact this
complexity bound is tight.

Corollary 53. The robust ω-regular model checking problem when only
clocks drift is PSPACE-complete.

Proof. PSPACE-completeness when guards are enlarged by δ0 has been es-
tablished in [86]. Bouyer et al. proved for any poly-space bounded Turing
machine A there is a timed automaton H and property B such that A ac-
cepts the zero input iff Hδ0 |=B and iff H|=B. With the help of Lemma 42
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∃ε, δ :R+ •Hε
δ|=B

∃δ :R+ •Hδ|=B

∃ε :R+ •Hε|=B

∃δ :R+ •H+δ|=B

Hε0
γ0|=B

2Mε0 + γ0 < δ0

Hε1 |=B

Hδ0 |=B

H+δ1|=B

Theorem 41

Example 47

Theorem 48 Theorem 48

Theorem 45

Theorem 44 (from [86])

Theorem 52

Theorem 51

×

Figure 5.3: Overview of the results in Section 5.2. δ0 is defined in The-
orem 44, δ1:= δ0

24 , ε1:= δ1
2M , and M is the maximum constant appeared in H.

Arrows are implications. Implications of dashed arrows are obvious. All
problems are in PSPACE-complete.

and using ε0:= δ0
2M we have (H|=B) ⇒ (Hδ0|=B) ⇒ (Hε0|=B) ⇒ (H|=B).

Therefore, A accepts the zero input iff Hε0|=B.

5.3 Computing Limit Reachable Sets under Clock
Drifts

In this section, we will prove that limreachε(H) is computable in polynomial
space for a bounded timed automaton H. Recall that, a timed automaton H
is bounded if the invariants of H are bounded by M, the maximum constant
appearing in the constraints of H. Restricting our attention to bounded
timed automata is not limiting. It is well known [87,88], that for any timed
automaton H, one can construct a bounded timed automaton H′ that is
weakly bisimilar to H. In fact, the construction also works when H is per-
turbed (See Section 5.3.1 for formal proof). Thus, given that we show how
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Algorithm 3 Computing the limit reachable set of a bounded timed au-
tomaton
Input: Bounded timed automaton H
Output: limreachε(H)
1. G ← the region graph of H
2. W ← number of nodes in G
3. C ← the set of progress cycles in G of length ≤ W + 2W |X|
4. J∗ ← ⋃

s : Sinit reach(G, [s])
5. while ∃p : C • [p0] 6⊆ J∗ ∧ J∗ ∩ [p0] 6= ∅ do
6. J∗ ← J∗ ∪ [p0]
7. J∗ ← reach(G, J∗)
8. end while
9. return J∗

to compute limreachε(H) for a bounded automaton H, we can compute the
set of regions containing states that belong to limreachε(H′) for any (not
necessarily bounded) timed automaton H′.
The algorithm to compute limreachε(H) is very similar to the one for timed

automata under the progress cycle assumption, and is shown as Algorithm 3.
Lines 1 to 3 compute the set C of all progress cycles whose length are bounded
by W + 2W |X|, where W is the number of regions of H. The rest of the
algorithm is similar to the approach in [84,85]; the algorithm first computes
the reachable regions assuming there is no perturbation (Line 4). It then
iteratively adds closure of initial regions of progress cycles that are not in
the current set of reachable regions but have non-empty intersection with it,
and recomputes the reachable regions, until a fixpoint is reached. At that
point the set J∗ is the set of limit reachable states of H (Line 9).
The main observation in this section is that J∗ is indeed limreachε(H),

which is stated next. Later in the section we argue that Algorithm 3 can in
fact, be implemented in such a way that it uses only polynomial space.

Theorem 54. For a timed automatonH, let J∗ be the set returned on Line 9
in Algorithm 3. We have:

limreachε(H) = J∗
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The proof of J∗ ⊆ limreachε(H) follows from the observations in [85]5. To
show that limreachε(H) ⊆ J∗, from Algorithm 3, we observe that J∗ is a
(topologically) closed set. If we show that d∞(limreachε(H), J∗) = 0, then
the result follows immediately. This is the crux of the proof. We state this
observation in a slightly stronger form below as Lemma 58. Before presenting
this lemma and its proof, we recall 2 observations from [85] that we will use.
The first observation is that if the distance between the closure of two regions
is small, then they have a non-empty intersection.

Lemma 55 (Lemma 16 in [85]). For any timed automaton H and for any
two regions r1 and r2, if d∞([r1], [r2]) < 1

|X| then [r1] ∩ [r2] 6= ∅.

Next, we recall a result from [85] that shows that for any distance bound α
and number of steps k, all trajectories of certain perturbed timed automata
Hε
δ are close to some trajectory of H.

Theorem 56 (Theorem 44 in [85]). Let H be a bounded timed automaton.
For any distance α : (0, 1) and number of steps k :N, there are two numbers
D(α, k), E(α, k) :R+ such that for any ε : [0, E(α, k)], δ : [0, D(α, k)], and a
trajectory τ ′ : [[Hε

δ]]∗ such that |τ ′| ≤ k there is a trajectory τ : [[H]]∗ with the
following properties:

1. first(τ) ∈ [first(τ ′)]

2. trace(τ) = trace(τ ′),

3. τ is close to τ ′ in the following sense: ∀i : {0, . . . , |τ |} • d∞(τ2i, τ
′
2i) < α.

Finally, we recall a result about monotonic rectangular automata from
Section 5.1 that we apply to clock drifted timed automata. The result states
that corresponding to any trajectory of duration T between two states in
SHε , there is a trajectory of the same duration between the same states such
that number of steps is bounded by a function of T and H. We state this
observation for Hε.

5The algorithm in [85] only considers simple cycles, i.e., cycles whose length is bounded
by W . However, the proof of J∗ ⊆ limreachε(H) in [85] does not rely on the assumption,
and so eventhough our algorithm may consider non-simple cycles in its analysis, this is
does not result in any additional reachable states.
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Corollary 57 (Based on Theorem 36). Let H be a timed automaton with M
as the maximum constant appearing in its constraints, ε : [0, 1] be a pertur-
bation, and T :R≥0 be a time bound. Then for any τ : [[Hε]]∗ there is τ ′ : [[Hε]]∗
with the following properties:

1. first(τ ′) = first(τ),

2. last(τ ′) = last(τ),

3. locs(τ ′) = locs(τ),

4. duration(τ ′) = duration(τ), and

5. |τ ′| ≤ F (H, T ) = 24(2dT e + 1) × |X|2 × |Q|2 × (2cmax + 3)2|X|, where
cmax:= max{2,M}.

Proof. The result follows from the observation in Section 5.1 about mono-
tonic rectangular automata; Hε is such an automaton, where the maximum
rate of any clock (called rmax in Section 5.1) is bounded by 2.

We have now all the results from previous papers that we need to establish
the proof of Lemma 58. It is useful to contrast the statements of Lemma 58
and Theorem 56. First, Lemma 58 applies to all trajectories and not just
those with a bounded number of steps. Second, in Lemma 58 closeness is
measured with respect to J∗ (as opposed to trajectories of H).

Lemma 58. Let H be a bounded timed automaton with clocks X. For any
distance α :

(
0, 1

2|X|

)
there is E :R+ such that for any ε : [0, E] and for any

τ ′ : [[Hε]]∗ such that first(τ ′) ∈ J∗ we have d∞(last(τ ′), J∗) < α; here J∗ refers
to the set returned on Line 9 in Algorithm 3.

Proof. The proof of this lemma is similar to the proof of Theorem 45 in [85]
with significant departures. Let M be the maximum constant appearing on
constraints of H. We know M is a bound on clock values in H. Let W
be the number of regions in the region graph of H (as in line 2). Take k =
F (H, 6MW+2M), where is F is the function from Theorem 36. We will prove
that the desired E = min{1

3 , E(α, k)}, where E(α, k) is from Theorem 56.
Fix E to be this value. Notice that for this choice of E, the rate of every
variable in Hε is ≥ 1− ε > 1

2 . This is the reason we choose E to be at most
1
3 .
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The proof is by induction on |τ ′|. For the base case, consider τ ′ such
that |τ ′| ≤ k. From Theorem 56 and the definition of E, there is a trajectory
τ : [[H]]∗ that is α-close to τ ′. Since J∗ is a closed set, first(τ) ∈ [first(τ ′)] ⊆ J∗.
Finally, observe that reach(G, J∗) ⊆ J∗ (G is the region graph of H) and so
last(τ) ∈ J∗. From Theorem 56, we have d∞(last(τ), last(τ ′)) < α and so
d∞(last(τ ′), J∗) < α.
For the inductive step, if |τ ′| > F (H, duration(τ ′)) then Theorem 36 ensures

that there is a trajectory τ ′′ ∈ [[Hε]]∗ that starts and ends in the same state
and has fewer steps. The lemma then follows by the induction hypothesis
applied to τ ′′.
Let us, therefore, assume that |τ ′| ≤ F (H, duration(τ ′)) and duration(τ ′) >

6MW +2M. Observe that all clocks in Hε are bounded by M, and the rate of
every clock is ≥ 1− ε > 1

2 . So no time transition has duration 2M or longer.
Thus, without loss of generality, we can write τ ′ as τ ′ = τfirst_τlast, where
duration(τlast) is between 6MW and 6MW + 2M. From Theorem 36, there
is τ ′′ : [[Hε]]∗ such that 1. |τ ′′| ≤ k = F (H′, 6MW + 2M), 2. duration(τ ′′) =
duration(τlast), 3. first(τ ′′) = first(τlast), and 4. last(τ ′′) = last(τlast) = last(τ ′).
By Theorem 56 we know there is τ : [[H]]∗ that stays α-close to τ ′′ every step of
the way. Let νi and ν ′′i be respectively states of τ and τ ′′ at step i. Applying
the induction hypothesis to τ ′′, for any i < |τ ′′|, we have d∞(ν ′′i , J∗) ≤ α.
Thus, by triangle inequality, for any i < |τ ′′|,

d∞(νi, J∗) ≤ d∞(νi, ν ′′i ) + d∞(ν ′′i , J∗) ≤ 2α < 1
|X|

Thus, using Lemma 55, we have [νi] ∩ J∗ 6= ∅ for any i < |τ ′′|.
The previous paragraph establishes the closeness of every state ν ′′i , except

possible the last; we need to show that last(τlast) = last(τ ′′) is close. By
construction, we know that d∞(last(τ ′′), last(τ)) ≤ α. Thus, proving last(τ) ∈
J∗ will complete the induction step.
Next, because Hε is bounded and the rate of every variable is > 1

2 , every
variable is reset within 2M time since its last reset. Thus, in any trajectory of
duration ≥ 2M, every variable is reset. Based on these observations, we can
partition τ ′′ as τ ′′ = τ ′′1 _τ ′′2 _ · · ·_τ ′′m, where for every i, 1. duration(τ ′′i ) ≤ 2M,
2. every variable is reset in subtrajectory τ ′′i , and 3. m ≥ 6MW/2M = 3W ≥
W + 2. Since trace(τ) = trace(τ ′′), we can partition τ similarly into τ =
τ1_ · · ·_τm, where every variable is reset in each subtrajectory τi. The proof
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can now be completed using two technical lemmas that are proved next. We
will show

• There is a j < |τ | such that there is a subtrajectory of τ starting from
νj that is a progress cycle (Lemma 59).

• [νj] is, in fact, part of a progress cycle of length≤ W+2W |X| (Lemma 60).

Assuming the above hold, we can conclude that νj ∈ J∗ because of line 6 of
Algorithm 3. Also, since τ is a trajectory of H, we can conclude that νi ∈ J∗

for all i ≥ j (Line 7 of Algorithm 3), completing the proof of the induction
step.

Lemma 59. LetH be a timed automaton withW regions in its region graph.
Let τ be any trajectory of H such that

τ = τ1_τ2_ · · ·_τm

where m ≥ W + 2 and every variable of H is reset in each τi (for every i).
Then there is a subtrajectory of τ that is a progress cycle.

Proof. As m ≥ W + 2 and the number of regions is bounded by W , by
pigeon-hole principle, there must be s, t and region r such that 1. t ≥ s+ 2,
and 2. r is visited in both τs and τt. These observations ensure that there is
a subtrajectory of τs_ · · ·_τt that forms a cycle, and since there is an index
u between s and t, it is also a progress cycle since all the variables will be
reset in τu.

Lemma 60. Let H be any timed automaton with G as its region graph and
W as the number of nodes in G. For any cycle π in G there is a cycle π′ in
G such that

1. |π′| ≤ W + 2W |X|,

2. π0 = π′0 (they start from the same node), and

3. π and π′ reset the same set of clocks.

Proof. For any path u and set of paths C, let R(u) be the set of variables reset
along u and R(C):=⋃

u : C R(u). If R(π) = ∅ then π′ can be any simple cycle
that starts from π0 and resets no variable (because of π we know such cycle
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exists). Otherwise, let {π1, . . . , πm}, for some m :N+, be the set of simple
cycles π is composed of. Start from C0 = ∅ and for any i > 0 let

Ci:=

 Ci−1 ∪ {πi} if R(πi) 6⊆ R(Ci−1)
Ci−1 otherwise

Clearly 0 < |Cm| ≤ |X| and R(Cm) = R(π). We know any two cycles in Cm
can be connected in G using a path of length at most W . Furthermore, any
cycle in Cm can be connected from/to π0 using a path of length at most W .
Therefore, we can start from π0, visit all cycles in Cm, and come back to π0

using a cycle of length at most W +W |X|. Adding the total length of simple
cycles in Cm to this number gives us a cycle of length at mostW +2W |X|.

We conclude this section by observing that limreachε(H) can be computed
in polynomial space.

Theorem 61. For any bounded timed automaton H, limreachε(H) can be
computed by an algorithm that uses space that is bounded by a polynomial
function of |H|.

Proof. From Theorem 54, we know that J∗ = limreachε(H). If we show that
Algorithm 3 uses only polynomial space, then we are done. Unfortunately,
as presented, Algorithm 3 uses exponential space and runs in exponential
time. But small changes to the presentation of Algorithm 3 establish the
complexity bounds stated in the theorem.
First observe that J∗ is a union of regions of H. Therefore, if we show

that, given a region r of H, the problem of determining if r ∈ J∗ can be
solved in polynomial space then we will establish the complexity bounds.
Based on lines 3 through 7, we conclude that r ∈ J∗ iff there is a path
π:=π0π1π2 . . . π2m, for some m ≤ W such that

1. π0 is an initial region of H′,

2. π2i+1 is reachable from π2i, for 0 ≤ i ≤ m,

3. [π2i] ∩ π2i−1 6= ∅, for 1 ≤ i ≤ m, and

4. for 1 ≤ i ≤ m, π2i is on a progress cycle.

By progressively guessing regions on a path/cycle, each of the above condi-
tions can be checked in (nondeterministic) polynomial space, giving us the
necessary bounds.
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5.3.1 Extension to Unbounded Time Automata

Our results for computing limreachε(·) apply to bounded timed automata.
However, this is not a restriction as observed by the following proposition.

Proposition 62. Let H be any timed automaton with locations Q, variables
X and maximum constant M. There is a bounded timed automaton H′ over
the same set of variables X, locations Q′ with |Q′| ≤ 2|X| × |Q|, and maximum
constant M + 1, such that for all ε, δ : [0, 1), Hε

δ and H′εδ are weakly bisimilar.

Proof. Let H = (Q, X, Qinit, I, E). Observe that clock decreases its value only
when it is reset. Thus, if a clock of H has a value larger than M + 1, its
actual value is not important since it will always be larger than M + 1, until
it is reset. This intuition is exploited in constructing the bounded timed
automaton H′, which remembers in its location if a clock is larger than M+1
(and hence its exact value is not important). The formal construction is as
follows. H′:=(Q′, X, Qinit

H′ , I′, E′) where

• Q′:=Q × 2X. Intuitively, in any location (q, S) : QH′ , we have x ∈ S iff
value of x in the corresponding region of H is ≥ M + 1. Therefore, a
location (q, S) where x ∈ S implies that none of the guards of the form
x ≤ c are satisfied in Hε

δ and all of the guards of the form x ≥ c are
satisfied in Hε

δ.

• Qinit
H′ :={(q, ∅) | q ∈ Qinit}

• I′((q, S), x):=I(q, x) ∩ [0,M + 1]

• E′:=E1 ∪ E2, where

– E1 is the set of edges of the form ((q1, S), (q2, S \ r), l, g′, r) such
that (q1, q2, l, g, r) ∈ E and g′ is constructed from g using the
following rules: 1. if x /∈ S then g′(x):=g(x). 2. if x ∈ S and
g(x) ⊆ (−∞, c) for some c :R then g′(x):=∅, otherwise 3. g′(x):=R.

– E2 is the set of edges of the form ((q, S), (q, S ∪{x}), ∅, x ≥ M + 1,
{x}).

If the edges of E2 are silent/invisible then it is easy to see that H and H′ are
weakly bisimilar.
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Proposition 62 allows one to compute for any timed automatonH the set
of all regions that contain states of H that belong to limreachε(H). The
algorithm is as follows: Construct H′, compute limreachε(H′) using Algo-
rithm 3, and then find all the regions that are bisimilar to J∗ computed by
Algorithm 3. Note that this algorithm will still run in PSPACE because even
though H′ has exponentially many locations, the number of regions of H′ is
still exponential in |H|.

5.4 Experimental Results

We applied the above algorithmic ideas to verify the robustness of two pro-
tocols. Models of both protocols are available in UPPAAL. The first one we
considered is Fischer’s mutual exclusion protocol for n processes. Any mutual
exclusion protocol must satisfy at least three properties: 1. no two processes
enter a critical section at the same time, 2. there are no deadlocks in the sys-
tem, and 3. any request to access a critical section will eventually be granted.
The first property is a safety property and the next two are liveness prop-
erties. Each of these properties can be verified to hold for the unperturbed
protocol using UPPAAL for n ≤ 6 in less 2 seconds. Using UPPAAL, we could
also show that the system satisfies each of these properties when there are 6
processes and guards are enlarged by δ:=0.01 6; the verification time for this
was also less than 2 seconds. Therefore, using Lemma 42 and knowing the
maximum constant in this model is 3, the model is also robust with ε:=0.01

12

and δ:=0.01
2 .

The next example we verified, is 2Doors. It involves two doors and two
users that interact using the following rules: 1. a room has two doors which
cannot be opened at the same time, 2. a door starts to open if its button
is pushed, 3. it takes six seconds for a door to open, and thereafter it says
open for at least four seconds, but no more than eight seconds, 4. it takes six
seconds for a door to close and it stays closed for at least five seconds. We
checked the following properties: 1. Mutex: The two doors are never open
at the same time. 2. Either of doors can be opened. 3. Liveness: Whenever
a button is pushed, the corresponding door will eventually open. 4. The

6 The model has a strict inequality x > k. We first replace that with x ≥ k + 1 and
positively verified that all properties are still satisfied.
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system is deadlock-free. Using UPPAAL, in less than 2 seconds we could show
that the system satisfies each of these properties when guards are enlarged by
δ:=0.0001. Therefore, using Lemma 42 and knowing the maximum constant
in this model is 8, the model is also robust with ε:=0.0001

32 and δ:=0.0001
2 .

Note that properties we checked in these two examples are not necessar-
ily expressible using the special type of (robust) ω-regular model checking
problems we have considered in this chapter. However, Lemma 42 estab-
lishes language inclusion between executions of H under different types of
perturbation, regardless of the property one might want to check.

5.5 Related Work

Robust model checking was first considered in [36, 37]. The authors first
defined a distance function on executions of a hybrid automaton H. Then for
robust safety analysis they added one restriction: an execution τ is robustly
inside the reachable set of states in H iff for some ε :R+, all executions in the
ε-neighborhood of τ are in the reachable set of states in H. They proved that
under this constraint, the safety problem for timed automata stays PSPACE-
complete, and safety problem for rectangular automata stays undecidable.
In [38], the author has another definition for robustness. He considers

noise as an inevitable part of every physical environment. Therefore, if A
is an exact reachable set after a continuous transition, he considers an ε-
ball around it to be reachable. The author proves that under this notion of
robustness, if the reachable set is bounded then iterative computation of the
reach set (as we did in Chapter 4) always reaches a fixed-point. Otherwise,
if the reachable set is unbounded but the unsafe set is bounded then we can
always terminate the search if we found no unsafe state to be reachable after
a predetermined finite number of steps, and announce the input system safe.
Finally, to obtain a decision procedure, he specifies continuous dynamics
using first order formulas on reals with addition and multiplications. He
does not use ODEs to specify continuous dynamics of the system.
In [39] authors consider a similar perturbation for the class of piecewise

constant derivative hybrid automata. In this class of hybrid automata, there
are finitely many polyhedra as invariants and dynamics of every variable is
defined using a constant ODE that only depends on the polyhedra the current
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state is inside it. Like [38], here authors also prove that although the exact
safety problems are undecidable for this class of hybrid automata, the robust
safety problem is in fact decidable.
In [40] authors use ideas in [73, 94, 95] and show that if the actual answer

to the safety problem does not depend on a small numerical perturbation
then not only the bounded time reachability problem for a large class of non-
linear hybrid automata becomes decidable, under very mild assumptions, the
complexity of this problem will be PSPACE-complete.
All the research on robust model checking mentioned so far, only considers

the complexity of robust safety model checking and completely ignore the
implementability of designs for which the safety and in general any required
property ϕ is proved. To overcome the implementability issue for timed
automata, [41] first proposes a program semantics. In this semantics, it is
assumed that the hardware executes the following procedure in an infinite
loop: 1. it first reads value of the only global clock and evaluate all the guards
in the current location, and 2. if there was any enabled transition then one of
them will be taken non-deterministically. It is assumed that this procedure
takes at most ∆L units of time. It is also assumed that the clock is updated
at least every ∆P units of time. Furthermore, the clock may drift by ε :R≥0

which means after delay d : [0,∆P ], value of the global clock will be increased
by a value in [d(1− ε), d(1 + ε)]. The input timed automaton H is called
implementable with respect to property ϕ iff, for some ∆L,∆P , ε :R+, all
executions of the implementation that satisfies the new parametric semantics
satisfy ϕ. For the purpose of verification, [41] introduces another semantics
for timed automata called Almost-ASAP semantics which is obtained by
first dividing the system into two hybrid automata: a controller and a plant.
Then guards of the controller are enlarged by ∆. It was then proved that
if ε = 0 and ∆ > 3∆L + 4∆P then for any ω-regular property ϕ, Hε

∆|=ϕ
implies Prg∆L,∆P ,ε

(H)|=ϕ, which simply implies implementability. Note that
in Hε

δ, we do not divide the system into two hybrid automata. Therefore, Hε
δ

simulates the semantics defined in [41].
Finally, the implementability issue is being looked at differently in [96].

In most models, non-integer variables are all of type reals (R). But in the
implementation, they could be encoded as finite-precision floating point vari-
ables. In [96], authors consider an implementation of a model and bound the
distance between reachable states that is caused by finite-precision floating
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point variables in the implementation. The model is considered robust iff
this difference is small enough.

5.6 Conclusions

In this chapter, we investigated the robust model checking problem for mono-
tonic rectangular automata. We also considered timed automata without the
progress cycle assumption, when only clocks can drift and when both guards
and clocks are perturbed. We proved time bounded robust reachability anal-
ysis of monotonic rectangular automata, when only flows are perturbed, is
NEXPTIME-complete. We used this to prove our next two results. All the
other results focus on timed automata where guards are expressed using
non-strict inequalities. These automata neither satisfy the progress cycle as-
sumption, nor are assumed to have bounded variables. We then proved that
the exact reachable set of timed automata with infinitesimally perturbed
clocks can be computed (optimally) in polynomial space. We also proved
the following two problems are PSPACE-complete: Model checking ω-regular
properties of timed automata with only drifted clocks (note that this does not
subsumes our previous result), and Model checking ω-regular properties of
timed automata with both drifted clocks and enlarged guards. Furthermore,
we proved robust satisfaction of an ω-regular property of timed automata
with only enlarged guards implies robust satisfaction of the same property
when only clocks drift, and is equivalent to robust satisfaction of the property
when clocks and guards are perturbed. Finally, we show that safety under
clock drifts does not imply safety under enlarged guards. An application of
our results is robust model checking of partially synchronized protocols. Our
results do not yield an algorithm to compute limreachεδ(H) (= limreachδ(H)),
which is a possible direction for future exploration. Furthermore, robust
model checking of subclasses of metric temporal logics is another direction
of future exploration.
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Chapter 6

Conclusions

In Chapter 3 we considered initialized linear inclusion automata and proved
that while unbound time reachability problem is undecidable for this class
of hybrid automata, the time bounded reachability problem is decidable and
is PSPACE-hard. In Chapter 4 we considered unbounded time safety model
checking of non-linear polyhedral automata, which is a much larger class
of hybrid automata, at the expense of losing decidability. We introduced
a sound but incomplete abstraction refinement algorithm for this problem
and proved its progress. We also implemented this algorithm in a tool called
HARE and compared it with seven other tools on many examples. Our re-
sults show that HARE’s performance is better than state-of-the-art tools for
safety model checking affine hybrid automata and comparable with state-of-
the-art tools for safety model checking non-linear polyhedral automata. In
Chapter 5 we considered robust model checking for monotonic rectangular
automata when flows are perturbed and for timed automata when guards
and/or flows are perturbed. We established the following results in this con-
text. Time bounded robust reachability analysis of monotonic rectangular
automata, when only flows are perturbed, is NEXPTIME-complete. We proved
the exact reachable set of timed automata under infinitesimal perturbation
to clocks and without the progress cycle assumption can be computed (op-
timally) in polynomial space. We also proved the following problems are
PSPACE-complete — Model checking ω-regular properties of timed automata
when only clocks drift (note that this does not subsume our previous re-
sult), and model checking ω-regular properties of timed automata when both
guards and clocks are perturbed. Furthermore, we proved that the robust
satisfaction of an ω-regular property of timed automata with only enlarged
guards implies the robust satisfaction of the same property with only clock
drifts, and is equivalent to the robust satisfaction of the property when clocks
and guards are perturbed. Finally, we showed that the safety under clock
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drifts does not imply the safety under enlarged guards.

6.1 Future Directions

There are several directions for possible improvements and future work. In
this section, we present each of these directions.

6.1.1 Improvements

For finding the exact reachable set in Chapter 3, the most important open
question is to find a bound on verifying a ln b

c
< d, for integers a, b, c, d.

This would be a significant result with consequences beyond what we have in
Chapter 3. For example, while satisfiability check for polynomial exponential
problems is known to be decidable [97], to the best of our knowledge, there is
still no complexity known for this problem due to the unknown complexity of
deciding a ln b

c
< d. The exact same problem exists for model checking con-

tinuous time Markov chains [98] and reachability analysis in linear dynamical
systems [99].
For model checking using abstraction refinement in Chapter 4, there are

two improvements one can consider. The first one is to use some optimization
techniques to find a better abstraction for non-linear dynamics. Currently,
HARE uses interval analysis for abstracting non-linear dynamics and this could
give very conservative results. We believe nonlinear convex optimization can
be helpful in this case. The second improvement is to replace dReach with
some other tools like C2E2 or FLOW*. In our experiment, dReach performance
decreases dramatically when we move to non-linear dynamics. We hope
using tools written specifically for computing reachable sets for non-linear
dynamics can help improve performance.
For robust model checking in Chapter 5, there are at least two directions

of future exploration one can consider. The first one is to solve the robust
model checking problem (even safety model checking) for timed automata
when only clocks drift and constraints can be strict. To the best of our
knowledge there is only one paper that deals with the restricted version of
this problem [100] and almost no result in this paper has a precise proof.
The second one is to give a more efficient algorithm to compute reachable set
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of timed automata when clocks drift by infinitesimally small amount. Note
that as far as the theory is concerned, Algorithm 3 in Chapter 5 is optimal.
But this is not necessarily an efficient algorithm as already observed for its
predecessor in [85].

6.1.2 New Avenues

Abstraction Refinement Engine. A very interesting and surprisingly
challenging research idea could be extending HARE to support full linear-time
temporal logic (LTL) model checking. The problem is extremely undecidable
and one needs to be very careful about the right abstraction refinement. That
being said, the necessity of checking progress conditions, e.g. something good
eventually happen to the system is undeniable (consider medical devices for
example).

Robust Model Checking. A promising approach to deal with the cur-
rent difficulties in model checking cyber-physical systems is robust model
checking. This is where we address issues like uncertainty in design param-
eters, validity of synthesis after small changes in parameters, small noise in
physical environment, impreciseness in sensors, distributed controllers, im-
plementability of verified designs, and complexity of model checking. We
have already considered the implementability issue for a simple class of mod-
els in [101] and extended the current results in multiple directions. But there
are a lot more one can do. For example, one can consider 1. robust model
checking of timed automata where only dynamics and guards related to a
subset of variables are perturbed, 2. robust model checking of a composition
of multiple timed automata, 3. robust model checking of metric temporal
logic (MTL), using robust model checking of timed automata, and 4. robust
model checking of more expressive classes of hybrid automata. But the more
basic and still more vital and interesting question is what is the right defini-
tion for robust model checking. For example, to the best of our knowledge,
there is no accepted definition for robust model checking of MTL. Also, what
will happen if adapt the robustness definition that is used in δ-complete de-
cision procedures [94,95] (i.e. write the semantics of a formula as a first order
logic formula, and then perturbed it as in δ-complete decision procedures).
Does this help to lower complexity? Does the resulting definition still gives
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interesting/useful problems? We would like to explore robustness in more
detail. Even though, Robust Control is an active field of research in Control
Theory, surprisingly, not much has been done in robust verification of cyber-
physical systems. We would like to understand the underlying properties
of cyber-physical systems in connection with different notions of robustness.
Why some robustness definitions make the corresponding model checking
problem a lot easier, some make them harder, and yet some do not change
the complexity.

Statistical Model Checking and its Relation to Robust Model Check-
ing. Probabilistic hybrid automata are widely used in modeling cyber-
physical systems. What makes them more interesting is the mesmerizing and
still very little known relation between robust and statistical model checking
of hybrid automata. Statistical model checking has proven itself to be very
useful and scalable in model checking cyber-physical systems. In [102] we
transformed a deterministic system into a stochastic one in order to make
model checking even possible. In [103] we did even more. We transformed
a stochastic problem into a deterministic one first, and then used stochastic
techniques to solve the deterministic problem. In these and some of our other
papers like [104, 105], our results heavily rely on some notion of robustness.
We would like to explore the relation between robustness and the ability to
go back and forth between deterministic and stochastic problems/algorithms.
Were our experiences in [102–105] just two lucky accidents or, for example,
whenever a problem is robust, under some right notion of robustness, can we
always transform a deterministic robust problem into a stochastic one and
solve it more efficiently?
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