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Abstract

In this thesis we mainly consider supermanifolds and super Hilbert schemes.

In the first part of this dissertation, we construct the Hilbert scheme of 0-dimensional subspaces on
dimension 1|1 supermanifolds. By using a flattening stratification, we compute the local defining equation
for the super Hilbert scheme. From local defining equations, we conclude that the Hilbert scheme of constant
Hilbert polynomials on dimension 1|1 supermanifolds is smooth.

The second part of this thesis concerns the smoothness and the non smoothness of O-dimensional sub-
spaces on some supermanifolds of higher dimensions, which is related with the future study chapter.

The last part is devoted to the splitness of the Hilbert scheme. The non-splitness of supermanifolds
can be deduced from the non vanishing of some cohomology class, called the obstruction class. We find
examples of both split and non-split super Hilbert schemes. For the split case, we find a split model which
is isomorphic to Hilb*!! (IIOp:1 (k)) for any k. For the non-split case, we compute the obstruction class of the
super Hilbert scheme Hilb?! (TIOp:1 (k)) and show that this class is not vanishing for k& # 0 and vanishing
for £ = 0. Moreover, since the odd dimension of this Hilbert scheme is 2, we can see that Hilbm(HV) is

projected for k = 0 and not projected for all k # 0.
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Chapter 1

Introduction

Moduli spaces are geometric objects which parametrize geometric objects with certain properties. [Gr2, HM].
In other words, they can be viewed as solutions of classification problems. Moreover, the moduli space itself
has lots of interesting properties and rich structure as a geometric object. The Hilbert scheme is one of the
most important examples of moduli spaces. It classifies closed subschemes of a given space. The existence of
the Hilbert scheme of projective spaces has been shown[Gr]. It also has been shown that the Hilbert scheme

of projective spaces are also projective and closed subschemes of Grassmannians.

One of the main topics of this thesis is the Hilbert scheme Hilb"™(X) of n points on X. It parametrizes
0-dimensional subschemes of X with length n. If we have distinct points in X, then the closed subspace of
X corresponding to those points has dimension 0 and length n. All the information that we have to know to
specify those n distinct points is encoded in the nth symmetric product Sym™(X) of X minus the diagonal.
But when two (or more) points collide, we need more than that.

Suppose X is a smooth surface and we have two points that collide. Then we have the point where they
meet and a tangent vector at that point.

According to [Fo], there is a birational map ¢ : Hilb"(X) — Sym™(X) such that ¢ is a resolution of

singularities along the diagonal of Sym™(X). Therefore, Hilb™(X) is smooth and has dimension 2n.

Supergeometry is a Zs-graded extension of ordinary geometry. The idea of this extension comes from
supersymmetry in physics. Instead of a sheaf of commutative rings, we consider a sheaf of supercommutative
rings. In this regard, an ordinary manifold has a Z,-graded generalization called a supermanifold. As in the
ordinary case, a supermanifold has a local coordinate system. That is, for any complex supermanifold of

dimension m | n, there is a local coordinate ring Clz1,- -+ , & |01, - ,0,] where x;’s are commuting variables



and 0;’s are anti-commuting variables. Hence, the coordinate ring Clz1,--- , @y |61, - - , 0] has relations

xixj = l’jl’i
.Ifiej = iji

0,0, = —0,0;

for all 7 and j. Details about supergeometry can be found in [Ma, Be].

In Chapter 2, we review basic properties of superalgebras, superspaces and super Grassmannians. We
also explain that the obstruction to splitting can be characterized by cohomology classes which we call

obstruction classes.

In Chapter 4, we define a super version of the Hilbert scheme, which we call the super Hilbert scheme,
and construct the super Hilbert scheme of constant Hilbert polynomials over dimension 1|1 supermanifolds.

The main result in Chapter 4 is about the smoothness of the Hilbert scheme Hilb? |q(S ).

Theorem 1.0.1. Let S be a supermanifold of dimension 1|1. Then the super Hilbert scheme Hilb?19(S) is

smooth and has dimension p|p.
This theorem can be viewed as an analogue of the result for the ordinary Hilbert scheme.

Proposition 1.0.2. (Fogarty [Fo]) Let X be a projective space. Then the Hilbert scheme Hilb"(X) of n
points on X is connected. Moreover, if X is a smooth surface then Hilb"(X) is smooth and has dimension

2n.

In Chapter 5, conditions for Hilbplq(C”Z) to be smooth are specified.

Theorem 1.0.3. Hilb?!9(C12) is smooth only when p+q <3 or q < 1.

Superstring perturbative theory in physics can be described as an integration over the moduli space 9,
of super Riemann surfaces. Consider a distribution D C T'S generated by v. Then we say D is everywhere

non-integrable if v? is everywhere independent of v.

Definition 1.0.4. A Super Riemann Surface is a pair (S, D) such that S = (C,Og) is a complex analytic

supermanifold of dimension 1|1 and D C T'S is everywhere non-integrable.



The moduli space of super Riemann surfaces of genus g is denoted by 9,. If 9, is projected, we have a
projection to the moduli space M, of ordinary Riemann surfaces. Then we can integrate over 9, via the
pushforward of the map M, — M,. However, 9, is not projected in general. It has been proved recently
in [DW] that the supermoduli space 9, is not projected for g > 5.

Splitness is another important property of superspaces. Let (S, Og) be a superspace and let £ = (J /T 2) v
be the locally free sheaf where J C Og is the ideal generated by nilpotents. We say S is split if it can be
recovered from the bosonic part and a locally free sheaf £ in a precise way, which we describe in Section2.2.
Note that every split superspace has a natural projection map to its bosonic space, so is projected.

Chapter 6 is devoted to the splitness of some super Hilbert schemes.

Theorem 1.0.5. Let V = Opi (k) be a line bundle on PL. Then the Hilbert scheme Hilb!!* (I1V) is split for
all k and Hilb?N (ITV') is split for k = 0 and not split for all k # 0.

Since every superspace is locally isomorphic to the split model, each of them can be described by specifying
transition maps. Those maps allow us to find an obstruction class. We show the non splitness of the Hilbert

scheme Hilb2|1(HV) by showing that the second obstruction class is nonvanishing for k # 0.



Chapter 2

Supergeometry

2.1 Review of Superalgebra

Algebraic geometry relies on commutative ring theory. Likewise, supergeometry is based on superalgebra.
This section is devoted to reviewing some basic properties of superalgebras.([Ma],[La])

Let A= Ao @ A; be a Zj-graded ring. Then it has the property 4;A; C A;4; where all subscripts are in
Zs. Elements of A; are called even if i = 0 and called odd if i = 1. An element a € A is called homogeneous

if a € A; for some i. Let’s denote |a| = i.

Definition 2.1.1. A supercommutative ring A = Ag @ Ay is a Zs-graded ring with the property that

ab = (—=1)!4llpg, for all homogeneous elements a and b in A.

Ezample 2.1.1. Let R be a commutative ring and M be an R-module. The exterior algebra A = A\* M =
Do /\iM over R is a supercommutative ring with even part A9 = P, /\2iM and odd part A; =
@iso N7 M.

Ezample 2.1.2. Consider the k-algebra A = k[z1,- -+ , 2 |61, - - , 0] with relations x;z; = z,x;, ©,0; = 0;x;

and 0;0; = —0;0;. Then A is a supercommutative ring.

2.1.1 Modules

Let A = Ag® A; be a supercommutative ring. A (left) A-module M is an abelian group with a decomposition
M = My & M, such that the (left) module structure A x M — M preserves the Zo-grading A;M; C M, ;
where all subscripts are in Zy. Every left module has a natural bimodule structure defined by m - a =
(—1)Imllalg . m for homogeneous elements a € A and m € M, i.e. for non-homogeneous m = mg & m; and

a=agDay,

a-m=(agPay)- (modm)

=mgag + Moa1 + miag — Mi1a1



An A-module homomorphism f : M — N is an additive A-linear map. The additive group Hom 4 (M, N)
of A-module homomorphisms from M to N has a natural A-module structure with the decomposition
Hom (M, N) = Homa(M,N)o @ Hom4 (M, N); where Hom4 (M, N)g is the additive group of A-module
homomorphisms which preserve the Zs-grading and Hom 4 (M, N); is the additive group of A-module ho-
momorphisms which reverse the Zs-grading.

The Jacobson radical of a ring A is defined to be the intersection of all maximal ideals of A.

Proposition 2.1.2. (Nakayama’s Lemma [La]) Let M be a module over a supercommutative ring A and let

J C A be the Jacobson radical. For any finitely generated A-module M, JM = M implies M = 0.

Corollary 2.1.3. Let M be a finitely generated A-module. Let x1,--- ,x, be elements in M such that the

images T1,- -+ ,Tn in M/JM generate M/JM. Then x1,--- ,x, generate M.

The parity change functor II is the functor between modules such that TIM (a) is the same as M as an
additive group and (b) has the reverse parity (IIAM), = M; and (IIM), = My and (c) it has an A-module
structure given by a(Ilm) = (—1)*/TI(am). Practically we can think of the parity of the parity change
functor as odd.

A free A-module of rank (p|q) is an A-module isomorphic to AP @ (ILA)4.

A derivation can be defined in an analogous way.
Definition 2.1.4. Let A be a supercommutative ring and let M be an A-module. A derivation of A into
M is an A-module homomorphism d : A — M satisfying the Leibniz rule
d(ab) = (da)b + (=1)lll g (db)

where |d| is the parity of d as a homomorphism of A-modules.

2.1.2 Matrices

Let R be an commutative ring. A m by p matrix with elements from R can be viewed as an R-module
homomorphism from RP to R™. However, when we consider a morphism between free modules over a
supercommutative ring, it is crucial to remember information about the parity.

Consider a supercommutative ring A. Consider two indexing sets with the decomposition I = IjUI; and



J = JoUJ; where each of them are defined as

IO :{1a2a am}
L={m+1m+2,---m+n}
JO :{1a2ap}

A matrix in the given format I x J with values in A is defined as a matrix with four blocks

p q
M= m [M; M
n M3 M4

such that each M; is a matrix with entries in A, My is m X p, Ms is m x q, M3 is n X p and My is n x q. We
say M is even if all the entries of M, and M, are even and entries of My and M3 are odd.
The set of all matrices with the format I and J over A is denoted by M(m|n;p|q; A). Observe that

M(m|n;p|q; A) can be identified with the set of A-module homomorphisms Hom 4 (AP !9, A™ ™).

Lemma 2.1.5. Let X € M(m/|n;m|n; A) be an invertible matriz and let T' € M(m|n;m|n; A) be a matrix

such that all entries are odd. Then the matriz X + T is (left) invertible.

Proof. Claim that any odd matrix I' € M(m|n;m|n;A) is nilpotent. Set I = (7;5). Then each entry of
2 2
[(m+m)*+1 — 0 has the form of > ( ](::Tn) 1 'Yikjk)a and HI(CZT”) + Yirie = 0.

Since X +T'= X (I + X '), it is enough to show that I + X T is invertible. Observe that
(XIp)me

Therefore, the inverse is given as

1

(I + Xﬁlr)_ =TI -X'T4+ X'+ + (_1)(m+n)2 (Xflp)(m+n)2



2.2 Superspaces

Supergeometry is a Zo-graded generalization of ordinary geometry. It is motivated from the theory of
supersymmetry in theoretical physics. For simplicity, we will only consider analytic superspaces over the
complex numbers C hereafter. Details about superspaces and supermanifolds can be found in [Ma], [Be],
[DW].

We review major definitions in this section.
Definition 2.2.1. A superspace is a pair (S, Og) consisting of a topological space S and a sheaf of super-

commutative rings Og = 0% & O such that for each s € S the stalk Og ; is a local ring.

Each inclusion map V < U of open sets of S gives the restriction map Og(U) — Og(V) which is a
supercommutative ring homomorphism.

Let J C Og be the ideal generated by the odd part OF. Define the bosonic space Sy of S as the closed
subspace S, = (S,0g/J) of S. Note that the bosonic space is an ordinary space (analytic, algebraic, etc).

As we defined a free module over a supercommutative ring, we can define a free sheaf of rank (p|gq) on
a superspace S and denote it as Of @ II(O&). A locally free sheaf of rank (p|¢) on S is a sheaf on S which
is locally isomorphic to Of & I1(O).
Definition 2.2.2. A superspace (S, Og) is said to be split if there is a locally free sheaf £ on S, such that
(S, Og) is isomorphic to S(Sp, &) := (Sp, A*EY). The dimension of a split superspace S(Sy, &) := (Sp, A®EY)

is defined as (m|n) where m is the dimension of the ordinary scheme S; and n is the rank of .

The simplest example of a split superspace is analytic affine superspace C™". Consider an ordinary

(analytic) affine space (C™, Ocm). We define C™" as a split superspace
C™I" = (€™, Ocmin) = S(C™, Ofn)
Let 61,--- ,0, be coordinates on fiber Of,.. Then the structure sheaf is given by
Ocmin(U) = Ocm (U)[61, - -+, 0]

with relations 0;0; = —0, 0; for all i and j.

If a superspace (S, Og) is split then there is a natural projection map S — Sp. Let € be a locally free
sheaf on S}, such that (S, Og) ~ S(Sp, &), then S is just the total space of a parity reversed vector bundle
on S, and the projection map can be defined by forgetting all odd variables where odd variables are fiber

coordinates on £.



We say S is projected if it has a projection map from S to its bosonic part S so that Og endowed with

a Og,-module structure.

Definition 2.2.3. Consider an open subset U C C™. Let I C Ogmi»(U) be an ideal and let Z(I) C C™
be the closed subset defined by the zero set Z(I N Ocm(U)). The analytic subspace defined by I on U is
the superspace (Z (I),0z := Oy /I). We say a superspace (S, Og) is an analytic superspace if it is locally

isomorphic to some analytic subspace of some open subset U C C”.

An analytic superspace (S, 0g) is called smooth if it is locally isomorphic to an open subspace C™" |,

of an affine space. We have a term to indicate a smooth superspace.

Definition 2.2.4. A supermanifold (S, Og) is a locally split analytic superspace such that the bosonic space

Sp is isomorphic to some ordinary manifold.

2.2.1 Supergrassmannians

In this section we review the definition of the supergrassmannian [Ma].
The supergrassmannian functor Gr(k|l; m|n) is the functor from the category of (analytic) superspaces

to the category of sets defined by

Q is locally free
gr(kll;mn)(S) =< O0re 02 - Q —0
of rank k|

Let €1, ,em and €m41,- - , €myn be the (even and odd) standard generators of OJ" @ IIOZ. Let
I:IO X Il = {ilai27”' aZk‘} X {jlan?"' ajl} C {1’ 7m} X {m+17 7m+’n’}
be a subset of the indexing set. Define a natural inclusion map for each indexing set I as

i1 : (Dicr, €i - O5) ® (Bjer, €5 - Os) = Og" ©LOZ
e; — e;

€5 €

Definition 2.2.5. The subfunctor Gr(k|l; m|n); of the supergrassmannian functor Gr(k)(k|l; m|n) is
defined by the following property:
For any [ O @ TI0Z % Q — 0] € Gr(k|l; m|n)(S) C Gr(k)(k|l; m|n)(S), Q is canonically



isomorphic to O é“ e 110 fg via the map

okonold orenor o

Let I be the kernel of the map pu. Then K is isomorphic to O?_k &) HOg_l. Let k;’s and ;’s be the
canonical even and odd generators of K ~ Ogn_k @ HOg_l . For each i ¢ I, we can find unique even and

odd sections a;; and «a;; of Og such that

k l
k; == e; + E a;je; + E Qi €5
j=1 j=1

Also, for each i ¢ I, we can find unique even and odd sections b;; and f;; of Og such that

k l
Ki = € + E ﬂijej + E bijej
j=1 j=1

Therefore, for all analytic superspaces S and for all [ OF & IIOZ — Q — 0] € Gr(k|l; m|n)1(S), we get
aij, bij, cqj’s and Bi;’s. Identifying (aij, bij | aij, Bij) with coordinates on CHm=R)H(n=U)[lm=k)+k(n=1) " e
get the map

Gr (K[l m|n) 1 (S) = CHm—k)F—0) [1m—k)th(n—)

In fact, Gr(k|l;m|n); is representable by the affine space CF(m—k)+in=0 [lim=k)+k(n=1) "and the universal
quotient is defined as

O"aIllO" - Q — 0

where Q@ = O™ @ 110" /K is the quotient of O™ @ IIO™ by K where K is the free module generated by

k l
ki :=e; + E a;j€; + E Qi€
j=1 j=1

and
k l
Kj =€+ Zﬂjlel + Z bjlel
=1 =1

fori ¢ Iy and J ¢ I.

For each indexing subset

I=1yx I ={i1,i9, - ik} X {j1,J2, - i}



of the indexing set let U; = Ckm—k)+ln=1) | lim=k)+k(n=1) denote the affine space defined as above. Then we
can glue all of such U;’s as follows.

Define a matrix Zr € M(k|l; m|n) as follows:

1) The submatrix obtained by taking columns of Z; with indices in [ is the identity matrix and

it) all other columns are filled with even variables z}? and odd variables 877 as below

m—k k l n—I
1
k| b 0 0y
Zr = 1
1
! 07 0 &
1

Think of (2%7]6%7) as coordinates on CF(m—k)H (=D lm=k)+k(n=1) Tahel this affine (open) space U; =
CRm=k)+I(n=1) | Lim—k)+k(n—1)_

Let Bjj be the submatrix of Z; formed by taking columns with indices in J. Let Uy C U; be the
subspace where the matrix By is invertible, then since it is an open condition we know that U;; is open.
Then we glue Uy and U along Uyy and Uy via Z; = B;}ZI.

The supergrassmannian Gr(k|1; m|n) is defined as | J; U/ ~ with the relations ~ induced by coordinate
changes.

In conclusion, the supergrassmannian functor is representable by Gr(k|1; m|n) := |J; U/ ~.

Example 2.2.1. Projective superspace can be defined by using supergrassmannian
P™"™ = Gr(1]0; m+1/|n)

For each indexing set [ =ix @ C {1,--- ,m+ 1} x {m+1+1,--- ,m+ 1+ n}, we have an open affine

subspace Uy = C™" and a matrix Z; € M(k|1; m|n).

Z[ = < x% x::_l ]_ xl:_‘_l xm+1 97,1 9:" )

K2 K2

3

Let I ={i} x@ and J = {j} x@. Then By; = <x3> and Uy is defined by x; # 0. The gluing map on each

10



Ury is given by

1 -1 j+1 m+l [ g1 pn
( T; T; 1 oz T 0; 0; )
= (£ 1 i—1 i1 m+l | g1 n
(x]) ( gl o ol 1 ool oy ... o
On the other hand, as in the ordinary case, we can use homogeneous coordinates [Zo; -+ ; Zm |61;- - ;6,] on

pmin,

In fact, the projective space P™" is split.

Proposition 2.2.6. The projective space P™" is canonically isomorphic to its split model
S(P™, Ogm ® Opm (1))

Proof. On each Uy, we identify 0¥ with a generator of (OP%)V and identify ! with a section in Opm(1).

Then the transition maps for P™" and S(P™, Ogk, @ Opn (1)) agree. O

2.2.2 Obstruction Class and Splitting

Let (9, Og) be a supermanifold and let J C Og be the ideal generated by OF. We can recover the underlying
ordinary manifold Oy := Og/J and define a locally free sheaf & on M where £ is defined by &Y = J/J2.
From these two ingredients, we can construct a split supermanifold S(M, £). Then we say (5, Og) is modeled
on M and €. Let Gr;(Og) be the sheaf on S defined as @;-, J*/J .

For the rest of this section, we will see the how to classify all supermanifolds modeled on M and £ and
define an obstruction class such that non-vanishing of this class guarantees non-splitness, mostly following
[DW].

Let Isom (S(M, &), S) be a sheaf of local isomorphisms on M defined by relating an open subset U C M
to the isomorphisms from S(M, E)|u to S|y. Since (S, Og) has the reduced space M and has odd dimension
n, S and S(M,E) are locally isomorphic. Hence, Isom (S(M,E),S) is locally isomorphic to Aut (S(M,E))
as a sheaf. Therefore, if we are given a supermanifold S which is modeled on M and &, we get an element
in H! (M, Aut(A®€)) under the identification Aut (S(M,€)) = Aut (A*EY) ~ Aut (A*E).

Since S is modeled on M and &, it induces an automorphism on A®*E which fixes £ and M. Let G be the

11



set of all automorphisms on S(M, £) which preserve M and €. Then G is the kernel of the map

Aut(A®E) — Aut(€)

= flawe)

and we have the short exact sequence

0 — G — Aut(A*E) — Aut(€) — 0

Define S to be the superspace (M, Og/Jt1). Then we have a filtration of S

SO g ... g =g

where n = rank(€).
Let G C G be the set of automorphisms on S(M,E) which preserve S(M,£)#~Y. Then we have a
filtration of G
G'=G>G*>--->G"

Definition 2.2.7. Let S be an analytic superspace. The tangent sheaf Tg is defined as the sheaf of deriva-
tions of Og. Then the restriction of the tangent sheaf Tg|ps to the reduced space M of S is split and
has even and odd subsheaf 71 S := Ty, and 7_S := V. Here V is the locally free sheaf on M such that
S(M,V) = Gr(Og).

Remark 2.2.8. G'/G**! can be identified with TS ® A'EY. One way to see this isomorphism is to
identify G with its Lie algebra g. Since g is nilpotent, the exponential map from g to G is a bijection. Let
(1, ,Zm |01, ,0,) be local coordinates. Set set (T) = (1, ,Tm), @ = (a1, ,0p), 0 =07 - - %n

and «; € {0,1}. Note that every generator of g (locally) has the form

0
fa,a(2)0” o (2.1)
or
0
fb,ﬁ(i’)eﬁafeb (2.2)

where ), a; is even and Zj B; is odd. With this identification, we can check that all the elements in G*

have the form of (2.1) or (2.2) where }_; o; and }_, 3; are greater than or equal to i.

12



Let S be a superspace which is modeled on M and €. That is, S is locally isomorphic to S(M,E). Then

there is an open cover U;cU; of M such that for each 4,

S

U; ’:S(M75)

Ui

Therefore, the transition maps on each U; N U; define a class ¢ € H'(M,G) via the Cech cohomology
construction.

We define ¢(? in a similar manner. Suppose S is isomorphic to S(M,E)®. Then local isomorphisms
between SUHY) and S(M, E)(+Y define the cohomology class ¢(?) € H' (M, Gi+1).

From the identity G*/G**! ~ T(_):§ ® A’€Y, we can think of G* as even derivations valued in A’€Y and
have the short exact sequence

0G5 G 5T @ANE =0

Consider the induced long exact sequence
= HY(M,G™Y) = HY (M, G") % H (M, T_):S @ N'EV) — -

We call w; := w(¢~Y) the ith obstruction class. Note that if S is (globally) isomorphic to S(M, &),
then every ¢! is the image of ¢(?), and thus w; is vanishing. In conclusion, a non-vanishing obstruction
class w9 guarantees the non-splitness of a supermanifold S. We will use this fact to show the non splitness

of the Hilbert scheme in Chapter 6.
Corollary 2.2.9. A supermanifold of odd dimension 1 is always split.

Proof. Consider a supermanifold S modeled on M and €. Then J = O and J* = 0 for all i > 2. Therefore,
Grj(Og) =Opn @ J and
S~ (M,Gr;(0g)) =0y ®J~SME).

Remark 2.2.10. If all obstruction classes w; for a supermanifold S are vanishing, then S is split.
Corollary 2.2.11. Any differentiable supermanifold is split.

This corollary can be shown by observing the property that for any locally free sheaf £ on a differentiable
supermanifold S, H?(S,&) = 0 for all p > 1. Therefore, any supermanifold locally isomorphic to S has zero

obstruction classes.
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Corollary 2.2.12. [DW] A supermanifold S with odd dimension 2 is split if and only if it is projected.

If S is a supermanifold of dimension (m|2), then the obstruction to splitting is the obstruction to projec-
tion. In fact, any supermanifold modeled on M and £ with odd dimension 2 is determined up to isomorphism

by a cohomology class wy € HY (M, Ty @ A2EV). [Ma]
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Chapter 3

Review of the Hilbert scheme

This chapter is devoted to reviewing the ordinary Hilbert scheme and some results about the smoothness of

the Hilbert scheme of points in the plane.

3.1 Hilbert scheme

The Hilbert scheme is one of the most important examples of moduli spaces. The Hilbert scheme is the

parameter space of closed subschemes of a given scheme.

Definition 3.1.1. Let C be a category and let X be an object in C. The functor of points hx defined by

X is the contravariant functor from the category C to the category of sets defined as follows:
i) For an object B in C, hx(B) = Hom¢(B, X)
ii) For a morphism f: B — C of C, hx(f) : hx(C) — hx(B) is defined by ¢ — ¢o f

Given a contravariant functor F from the category of schemes over k to the category of sets, a scheme
X over k is said to represent the functor F if there is a natural isomorphism between two functors F and

the functor of points hx.

Remark 3.1.2. If a functor F is representable by X, then there is a universal family &/ — X corresponding
to the identity element of Hom (X, X). The universal family has the property that for any scheme S and for

any family Y — S in F(S5), there is a unique map f : S — X such that Y is the pullback of U via f.

Definition 3.1.3. Let X be a projective scheme over a field k and let p(n) be a polynomial. The Hilbert
functor Hx ,(n) is the contravariant functor from the category of schemes over k to the category of sets

defined by:

zC X x B Z is a closed subscheme of X x B,
1) Hx pm)(B) = lﬂ / for all b € B the fiber Z has the Hilbert

B polynomial p (n) and 7 is flat
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ii) morphisms are defined by the pullback
Proposition 3.1.4. (/Gr]) The Hilbert functor Hx ,) is representable by a projective scheme Hilbp(")(X).

We call Hilb?™ (X)) the Hilbert scheme.

3.2 Hilbert scheme of points on a plane

There is a well-known theorem about the smoothness of the Hilbert scheme of points in the plane.

Proposition 3.2.1. (Fogarty [Fo]) The Hilbert scheme of n points on a smooth surface is connected and

smooth of dimension 2n.

Let X be a smooth surface. Then, there is a natural map ¢ : Hilb"(X) — Sym™(X). This map ¢ is an
isomorphism away from the diagonal. In fact, the Hilbert scheme Hilb™(X) is a resolution of the singularity
of Sym™(X) along the diagonal.

However, we can find that Hilbert schemes are singular even for naive examples.

Ezample 3.2.1. The Hilbert scheme Hilb*(A?) of four points on A} is not smooth. Let (x,y, 2) be coordinates
on A and let m = (z,y, z) be the maximal ideal at the origin. Identify points on the Hilbert scheme with ideals
in k[z,y, 2] with length(I) = 4. Then the Hilbert scheme is not smooth at I := m? € Hilb*(A®). It can be
checked by observing that the dimension of the tangent space 7T (Hilb4A3)at I is dimHom(I, k[z,y, 2]/I) =
18 # dim Hilb*(A®) = 12. The dimension of the Hilbert scheme Hilb*(A?%) can be computed from the fact
that the dimension of Hilb*(A%)— A ~ Sym*(A3)— A is 3 x4 and the Hilbert scheme Hilb*(A?) is irreducible.

We might expect that Hilbert schemes can have bad singularities. The following is a law that supports

this expectation.

Murphy’s law for Hilbert schemes [Va] There is no geometric possibility so horrible that it cannot

be found generically on some component of some Hilbert scheme.
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Chapter 4

The Super Hilbert Scheme

The definition of the super Hilbert scheme is analogous to the definition of the ordinary Hilbert scheme.
Definition 4.0.1.

I. Let S be an analytic superspace. The super Hilbert functor Hg‘q is the contravariant functor from the

category G of analytic superspaces to the category of sets defined as below:

For X,Y € G and a morphism f:Y — X

zC S x X | Zisa closed subspace of S x X such that

H’;‘q(X) = lﬂ/ 7Oz is a locally free Ox-module of rank (p|q)
X and Z is finite over X.

The morphism is defined by the pullback
HE'(f) = £ HE () = HE(Y)

Note that the condition that 7,0z is locally free guarantees the flatness of the map .

II. If the super Hilbert functor Hg'q is representable by the analytic superspace Hilb? Iq(S ), We call this

the super Hilbert scheme.

Let’s look at the one of the simplest examples of super Hilbert schemes.

Ezample 4.0.1. Let U C (Cillle X (C;“é be the closed subscheme defined by the ideal (x + b+ 36) where (z|0)

are coordinates of the first component C!I' and (b|3) are coordinates of the second component.

11 1)1
Uce—- (Cx|9 X (Cb‘ﬁ
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Then we claim that (C”lb‘ s represents the functor H(lclllll and U is the universal family.

Consider any analytic superspace S and a family in ’Htlc‘ll‘l (9).

Yy —s>Cllxg
\i
S

The pushforward p.Oy is a free Og-module of dimension (1]1). Since 1 and « are linearly dependent, there
are a,b € T'(S,0g) such that axz +b = 0. If a = 0 at any s € S, then p,Oy has even dimension 0 at s.
Hence, a is invertible and we have 2 +a~'b-1 = 0 and (p. (93;)0 is generated by 1. Similarly, we can see that
(p«Oy)" is generated by 6. Then we can find a relation 2+ a+af = 0 for a € I'(S, 0g)° and o € T'(S, Og)*.

Define a map from S to (Cll)“; via b a and 8 — «. Then p is the pullback of the universal family.

4.1 Flattening Stratifications

Flattening stratifications provide a key step for proving the existence of the ordinary Hilbert scheme. We

demonstrate a super-version of the flattening stratification that is needed in our situation.

Proposition 4.1.1. (Flattening Stratification) Let X and Y be analytic superspaces. Let F be a coherent
sheaf of modules on' Y x X such that the restriction of the support of F to each fiber of the projection
Y x X — X is zero dimensional. Then for each (p,q) € N x N we have a locally closed subspace X, 4 C X

with the following properties:
i) X = Up.gX(pg)
i) TuF|(x(,.q) @ locally free of rank (p|q)
i) for any f:C — X, f*F is flat if and only if f factors through C' — X, oy — X for some (p,q) € NxN

Proof. Pick x € X;. Then there are p,q € N such that dimy,) Fo X0y, k(z) = (p|q). Using Corollary
2.1.3, find a neighborhood U of z such that generators of F, also generate F on U. Then F|y has p even

and ¢ odd generators as an Ox|y-module and we have the surjection
OF & TOZ % Fly — 0

Since F is coherent, ker ¢ is also coherent and hence it is finitely generated. By shrinking U, if necessary,
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we have an exact sequence

Of &0 L 0L 11O % Fly — 0
where the image of o is the kernel of (.
Consider a map f: C — X|y and the induced exact sequence
0 o0k L% 08 & T0g L5 £*(Fly) = 0
Observe that

f*Flu is free of rank (p|¢) & ffo =0« f*0;; =0 for all ¢, j < f factors through X,

with the matrix representation o = (0y;)i; € M(s|t;p|q; Oc) and X, C X closed subspace defined by the
ideal I = (O-ij)ij'

Therefore, X, represents the functor Gy defined by
Gu(f:C— Xl|y)={f"F — C is flat of rank (p|q)}

We can glue all X,’s with fixed (p|q) by the universality and X, 4) := UsU, satisfies the required properties

above. O

A flattening stratification plays a pivotal role in constructing the super Hilbert scheme Hilb?!?(C!1) in
the next section.

The structure of Hilbert schemes get complicated rapidly when the base space or the Hilbert polynomial
becomes complicated. In this section, we stick with the super Hilbert scheme of dimension 1|1 supermani-

folds with a constant Hilbert polynomial.

4.1.1 The super Hilbert scheme of C'!

Let’s fix coordinates z | on C'I'.

To study the Hilbert scheme Hilb?9(C'), we have to look at families in ’Hglqu (X).

Z > Cllx X

N
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The definition of the Hilbert functor gives us a condition that the pushforward 7,0z is a locally free sheaf

of Ox-modules. It turns out that this locally free sheaf 1,0z is actually free.

Lemma 4.1.2. Let Y € C'' be a closed subspace with dime T'(CU',0y) = p|q. Then 1,z,--- ,2P~! and

6,20,--- , 2920 form a basis of the vector space T'(CH', Oy).

Proof. Let I C C[x|0] be the ideal defined by Y. Then C[z|6]/I ~ T'(C'I', Oy). By the given condition, we
have p even generators and ¢ odd generators for C[x|0]/I as a C-vector space.

Observe that every element in the even part of C[z|f]/T has the form ) ., a;z’ and an element of the
odd part of C[x|6]/T has the form 3., b;z’6 for a;, b; € C.

Since dimc (C[z]0]/I)° = p, 1,z,--- ,2P € (C[z]0]/I)° are linearly dependent. Therefore, we can find ¢;’s
in C not all zero such that Y% _jc;z* = 0. Let k be the largest number such that ¢ # 0, & < p. For any
f € (C[z]0)/1)°, by applying long division by Y7 _, c;z* = 0 if needed, we can assume that degree of f is
less than k. Then f is a linear combination of 1,z,--- ,2*~1. Since the dimension of (C[z|#]/I)° must be
less than k, we have p = k. Therefore, 1,x,--- , 2P~ generate (C[x|6]/I)°.

Similarly, we can show that 6,26, ..., 29710 form an odd basis and hence 1,z,...,2P~1, 0,20,..., 279714

is a basis. O

Proposition 4.1.3. Let Z 5 Y be an element in 7—[?{1‘1(}/). Then the sheaf 1.0z is free.

Proof. Let R = C[z|0] and let I C R be an ideal such that dim¢ R/I = p|q. Lemma 4.1.2 says that
Lz, 2P~ 10,20, - 29710 generate R/I as a C-vector space.

Pick y € Y and let Z be the ideal sheaf of Z. Then I = Z,,/m,Oy,, can be viewed as an ideal in R where

(m.Oz)
m,, is the maximal ideal of the local ring Oy,,,. Then ' s isomorphic to R/I and has rank p|q as
( ' my(m.0z)y
(mOz)y
a C-vector space. Therefore, is generated by 1,z,--- ,2P~1,0,20,--- ,29710. By corollary 2.1.3,
my(m.O0z),

there is an open neighborhood U of y such that 7,0z|y is generated by 1,z,--- ,2P~1, 0,20, - 29710 as
an Oy |p-module.

Hence, 7,0z is a Oy-module with free generators 1,x,--- ,2P~1 0,20, ---  z9710. O

Let Y c C'1', 0 x CPHIPT b the closed subspace defined by the ideal
| ab|o,B

p—1 q—1 q—1 p—1
I= (:Ep + Z a;x" + Z a;z'0, 210 + Z bz 0 + Z ﬂixi>
i=0

=0 1=0 =0
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Consider the diagram with the projection 7

Yy o Cl x cpraleta

|

Crtalpta

Lemma 4.1.4. ngzglzﬁq) is isomorphic to CPIP.

Proof. Set

p—1 q—1 q—1 p—1
f=aP+ Z a;xt + Z a;z'0), g :=z0 + Z b;z'0 + Zﬁixi
i=0 i=0 i=0 i=0

Apply long division by x? + Zg;ol bz’ to f and ¢

q—1 p—g—1 q—1 g—1
f=(x?+ Zbixi)(xp_q + Z chrt) + Zd;xl + Z%xie
=0 i=0 i=0 i=0
q—1 ‘ p—gq—1 ‘ q—1 ‘
g =(z?+ Z bix")(0 + Z d;x') + Z €’
i=0 i=0 i=0

(Cp+q|p+q

o,y SO that we have the following form
boesa. By

Change coordinates on

g—1 p—q—1 g—1 g—1 p—g—1
f=(z?+ Z biz') (P9 4 a;x') + Z cix' + Zﬂixi(ﬂ + Z ;)
i=0 i=0 i=0 i=0 i=0
q—1 p—g—1 g—1
g =(z9 + Z bix') (0 + Z ) + Z’yzx’
i=0 i=0 i=0

Denote Zf;gil a;x’, Zg;& bixt,--- by a,b,--- for simplicity.

According to the proof in Lemma 4.1.1, there is an open subset U C CP+4lP+4 and an exact sequence
O @ TI0f % OF & TIOE % 7,0y, — 0 (4.1)

such that (CI();FZ)lpJFq is generated by I = (0;;). Note that the map is defined as (A; | A;);; — > 0_, Az’ +

Zg‘:o .Ajl‘je.

21



Let’s compute some elements in the kernel of ¢.

f@+a)—g(@"""+a) (4.2)
=c(@+a)— (@ 14a) (4.3)
q—1 4 q—1 - Pl ' q—1 . p—g—1 .
= (Z c;iz')o + (Z ciz')( Z a;z') — Z iz (P79 + Z a;z’) (4.4)
i=0 i=0 i=0 i=0 i=0
9(0 + o) (4.5)
=7(0+ ) (4.6)
g—1 _ g—1 ' p—q—1 '
=70+ O v (> ') (4.7)
i=0 i=0 i=0
Since Y is defined by the ideal generated by f and g, (4.4) and (4.7) give two elements in the kernel of ¢.
p—q
——

h = ((COOéO —apYo," 5, Yq—1, 07 aO )7(00"" acqfl))

——
k = ((70050’ e 77q—1ap—q—la 07 e 70 )a (FYOa e 77q—1))

Therefore, (C’():g)‘pﬂ is contained in the closed subspace H := Z ({cl-, 'yi}f;ol) NU C U. By restricting (4.1)
to H we get

03 ©TIOL T 07 & TOL 2% 1,0y]3 — 0

Claim: ¢ is an isomorphism.
Let (A1, ---,A4,|Ai,---,Ay) be an element in a section of ker¢y. We can find C;’s and D;’s in

I ((Cl‘l x U, Ocl\l X(Cp+qlp+q) such that

p—1 q—1

Z Azt + 6 Z Azt

i=0 i=0
=Cf+7Dyg

=C(x?74+b) (2?79 4+ a) + CPa+ CBO + DO(z9 + b) + Da(z? + b)
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ILe.,

p—1 q—1 p—g—1 q—1 p—q—1
D Aw' = O+ bia)@" ™+ Y aw) + O Bia)( Y aia')
=0 =0 =0 =0 =0 (48)
p—q—1 ' q—1 _
+D( Y ai) (@ + ) bia')
i=0 i=0
and
q—1 q—1 q—1
Z Airt = C(Z Bix®) + D(z? + Z biz') (4.9)
i=0 i=0 i=0

Comparing the highest degree terms in (4.8), we see that C' = 0. Similarly, from (4.9) we can figure out
that D = 0. Hence, A; and A; vanish for all ¢ and j.

p+qlp+q

Therefore, ¢4 is an isomorphism and thus (C(p ?) = H where H is defined by the ideal
(COv 5, Cg—1,70, a’qul)
Furthermore, CP 4P i5 isomorphic to CPIP. O

(»,9)

Let )7 be the pullback of Y to C?;Z)‘p 1 With Lemma 4.1.4 above, we can prove the following theorem.
Theorem 4.1.5. The super Hilbert scheme functor ’Hfé‘lqll is representable by CPIP,

Proof. Consider a flat family
2e——Ccih x x

S

X

in HA, (X).
By Proposition 4.1.3 there are ¢;,d; € (HO(X, (’)X))O ,Yiy 0i € (HO(X7 (’)X))l such that Z is defined by

the ideal

p—1 qg—1 qg—1 p—1
(xp + Z Tt + Z vx'0, £10 + Z d;x'0 + Z (5¢xi>
i=0 i=0 i=0 i=0

Then there is a unique map X ~» CPT4P+4 guch that the pullback gives a flat family in 'Hf:llqu (Cptalp+a),

Since p is flat, ¢ factors through ((:’)'~_(m)'~_‘17 i.e, there is a unique map from X to (Cp+q)|p+q such that 2 & X

(p,q) (p,q

is the pullback of Y = (CE’;‘;J)‘FW . -

For the rest section of the thesis, we fix coordinates

(aOa oty Op—g—1, bOa e 7bq—1 |O[0, e aap—q—lvﬂ(% U aﬁq—l) (410)
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on the super Hilbert scheme Hilb? |q((C1‘1) ~ CPIP| 5o that the ideal of the universal family is

q—1 _ p—q—1 _ q—1 ' p—q—1 _
<(zq + Z bix")(xP~ 7 + Z a;x') + Z,Bi:r’(ﬂ + Z a;x')
i=0

=0 7 =0 =0

q—1 ' p—q—1 4
(7 + Z biz')(0 + aixz)>
=0 3
4.1.2 The super Hilbert scheme of a dimension 1|1 supermanifold

By applying Theorem 4.1.5 to appropriate open subfunctors of Hglq which are representable, we conclude

that Hilbert functor of dimension 1|1 supermanifold is representable.

Theorem 4.1.6. Let S be a supermanifold of dimension 1|1. The super Hilbert functor ’Hg‘q is representable

by a smooth superspace Hﬂbp‘q(S) which has dimension p|p.

Proof. Let U = UiUi C S be a finite disjoint union of open subspaces of .S such that U; is isomorphic to some

nonempty open subspace of C'I'. Let "Hg‘({] be the open subfunctor of Hg‘q defined as [[s~p,—p [ I; 'Hg’;‘qi
> ai=q /
Then the Hilbert functor ’Hg‘q is the union of open subfunctors | J;, ”Hgli,, and each Hg{% is representable

by a smooth superspace of dimension (p|p) as an application of theorem 4.1.5.

To be specific, let’s consider any family Z C S x X in ’Hg‘q(X). For each x € X, we can find a
neighborhood V' of x such that the support of Z|.-1(y/ is contained in U x X for some U = U;U; € S. By
the argument above, there is a map from V to Hilb? |q(U ) such that Z| -1(yy is the pullback of the universal
family. Then the universality of the Hilbert scheme guarantees that we can glue them for all V.

Let X = U,V, be an open covering of X constructed as above. To check Hilbp‘q(X) is Hausdorff, pick Z7,
Zy € HilbP!?(X) such that Z; # Zo. Then there exists V; and V such that Z; € Hilb?1?(V;). If Supp(Z;) =
Supp(Zs), then Z, € Hilb?!%(V;) which is Hausdorff by the construction. If Supp(Z;) # Supp(Zs), then
shrink V;’s enough so that Hilb??(V;) and Hilb”1?(V3) are disjoint.

Therefore, the Hilbert functor 'Hg‘q is representable by a dimension (p|p) smooth superspace.
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Chapter 5

(Non)Smoothness of the Hilbert
scheme Hilb?l?(C112)

Lemma 5.0.1. Let R = Clxy, -+ , & |01, -+ ,0,] be a polynomial ring. Let I C R be an ideal such that

dimec R/I = (p|q). Then R/I is generated by monomials as a Zs-graded C-vector space.

Proof. It p =0, then R/I = C and nothing to prove.

Consider p > 1. First observe that 1 # 0 in R/I.

Let N = Ng U N; be a set of even and odd monomials of R such that 1) elements in N are linearly
independent in R/I and 2) N is maximal.

Pick any f = Zij aijxo"iGﬂf € R. Then by the maximality of N, for each term f;; := aijaro”eﬁf, the
image ij of fi; in R/I must be a linear combination of elements in N. Hence, N generates R/I and

(INol[IN1]) = (p| @)

Then now we have a generalized version of Proposition 4.1.3.

Lemma 5.0.2. Let X be an analytic supermanifold. Consider a closed subspace Z C (CZZ‘T e 01100 0 % X

and a flat family

X1, Tm ‘ 017"' 7071
\ i

X

x X

such that the pushforward m.Oz is a locally free Op-module of rank (p|q). Then 7.0z is locally freely

generated by some monomials in R = Clxy,- -+ , 2y |61, , 0n]

Proof. Pick a point = from the bosonic part of X. Then we can identify Z,/m,;Ox , C Ox »/m.Ox 5 with

some ideal I C R where Z C Ogminy x is the sheaf of ideals defining Z and m, C Ox , is the maximal ideal

(TF*OZ)I

my (W*OZ)z
n;’s from R® and R!, respectively, so that R/I is generated by {f1, -, fp|m, -+ ,n4} as a C-vector space.

of the local ring. Then is isomorphic to R/I. By Lemma 5.0.1, we can find monomials f;’s and

By Lemma 2.1.5, (1,0z), is generated by f;’s and 7;’s as a Ox z-module. Then by Nakayama’s lemma

25



(Lemma 2.1.2), we can find some neighborhood U C X of x such that 7,0z|y is generated by f;’s and n;’s

as an Ox|y-module. Therefore, it is locally free. O

5.1 Smoothness of Hilbp|O(C1|”)

Ezample 5.1.1. Let (a,b,c|a, B,7,6,€,n) be coordinates of C3% and let (z|6y,62) be coordinates on C2,

Define a closed subspace Z C C31% x C'2 corresponding to the ideal
I=(2®+ax®+bx+c0) +ax®+ Bx+7,0z+ 02 +ex+1n)
Consider the surjection

1- Ocz\ﬁ Dx- OCS\G D !,CQ . OCS\G@ £> 71'*02 —0

1—1

For any local sections A, B, C' of O¢si6, Az?> + Bx + C =0 in 7,0z implies A = B = C = 0. According to

the flattening stratification, (C?zlfo) is defined by the zeros of the kernel and hence we get C:()):Lfo) = C316, By
checking the universality, we conclude that Hilb®/°(C!I2) ~ C3I6.
We can apply the same technique as above to find the Hilbert scheme Hilb? ‘O(C”")
Lemma 5.1.1. Hilb?!°(CI") ~ Crlne
Proof. Fix coordinates (ao, - -+ ,ap_1| @10, @11, - Q1(p—1), ®20, "+ , Ap(p—1)) ON CPI"? and (x]6;,6-) on C'I2.

Let Z C CPI™P x C!2 be the closed subspace corresponding to the ideal

p—1 p—1 p—1
P + E a;x’, 01 + E a0+ g i’
i=0 i=0 i=0

Then we have an isomorphism

1 4
@5:0 zt- OCp|np — m.O0z.

After checking the universality, we have

Hilb!0(C!I) = CP" = crine
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Therefore, the result follows. O

As a corollary we show the smoothness of the Hilbert scheme Hilb?!?(C!I™).

5.2 Smoothness of Hilbp“((C””)

Proposition 5.2.1. The Hilbert scheme Hilb?''(C™) is smooth for all p and n.

Proof. Let (|61, ,60,) be coordinates on C'I". Consider a flat family

ZC s Clnx x

N

X

such that m,Oz is a locally free Ox-module of rank (p|1).

Let’s observe the following:
i) According to the proof of Lemma 5.0.2, 7.0z is locally freely generated by some monomials.

ii) For any ideal I C Clx|6y,--- ,0,], if the Zs-graded dimension of C[xz|6y,- - ,0,]/I as a C-vector space
is (p|1) then C[z|0y,-- ,0,]/I is generated by 1,z,---,2P~! and 6; for some i (i does not need to be

determined uniquely).

By combining these facts, we can find an open cover U;U; of X such that F*Oz‘U_ is freely generated by
L,x, -+ ,2P~1 and 6; (U; possibly be empty).

Consider the natural surjection
1~Ox@1'~OX@"'EBCCp_1~Ox@91-Ox@"-@en'(?xg)ﬂ}@z—)() (5.1)

defined by z* — z% and 6; — 6;.
Then the quotient (5.1) can be viewed as an element in Gr(p|1; p|n)(X). By the universality of the

Grassmannian functor, we get the maps

7 HEL (X)) = Gr(p| 1ip | m) (X) (52)

which determine a map Hglq‘n — Ggr(p|1;p|n).
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For each 7, the image of the open subset U; is 7(U;) = Uy C Gr(p|1;p|n), where
Ur=C{ "0 € Gr(p | Lip| n) (X)
is the open subset of the Grassmannian corresponding to the indexing set

I=IyxI={1,---,p} x{p+i} Cc{l,--- ,p} x{p+1,--- ,p+n}.

Since 1,x,- -+, 2P~ and 6; are generators, we have ag, -+ ,a, € I'(X,0x)? and g, - - , o, € ['(X, Ox)?
such that
p—1
P + Zaixz +apl; =0
i=0
p—1
x0; + apf; + Z a;x' =0
i=0
Let (bo,- -+ ,by | Bo,- -, Bp) be coordinates on CPH1P+1. Define the map X = CPTUPH! via b; s a; and

Bj > ;. Since  is flat, the map r factors though C?Jll)‘pﬂ = crlp = Hilb? (C).

By combining two maps 7 and 7, we get the map U; s Uy x Hilb?!*(C'') and Z is obtained by the
pullback of the universal family of the Grassmannian and the Hilbert scheme. Therefore, Hilb?!* (C1I™)|y, is

isomorphic to Uy x Hilb?''(C') and Hilb?!* (C1I™) is smooth.

Note that the dimension of Hilb?!'(CU™) is (p|p) + (n — 1|p(n — 1)) = (p+n — 1| pn).

5.3 Smoothness of Hilb'?(C?)

Let (2]61,602) be coordinates on C!/? and let R := C[z|6;,62]. Consider a family

2> ClI2x X
X

such that 7,0z is locally free of rank 1|2.
Observe that, for any ideal I C R = Cl[z|01,62] such that dimc R/I = (1]|2), R/I is generated by 1,0,

and 0. Therefore, 7,0z is free Ox-module generated by 1,61, 605.
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We can embed Hilb'?(C!12) in C2/4 as

y(ﬁ (CI\Q % (C2|4

S

(C2|4

where ) is defined by the ideal (z + a + a1 + 802,010 + v01 + 505 + b).
Let’s denote f =z 4+ a4+ afy + 80 and g = 01605 + v01 + 002 + b

991 = 06201 + b0, (53)

(5.3) + 09 = (—06016 + bb1) + (60165 + 6+61 + (5()) (5.4)
5.4

= (b+67)01 + 6b

Therefore, we have b = —d~. Applying the same technique that we used in Lemma 4.1.4 and the flattening

stratification, we can check that Hilb'?(C112) ~ C1H4,

5.4 Nonsmoothness of Hilb2?(C?)

For the ordinary Hilbert scheme, we saw that Hilb4((C3) is not smooth at I = m? where m is the maximal
ideal at the origin.
We have the analogous result for the super Hilbert scheme that the Hilbert scheme Hile‘Q((C”z) is not

smooth.
Proposition 5.4.1. The Hilbert scheme Hilb2‘2((C1‘2) s not smooth.

Proof. Let (z|61,65) be coordinates on C'? and let R := C[x | 8y, 65).
Let A C Hilb??(C'2) be the diagonal. Consider (Hilb2|2(C1|2) - A). Observe that

1) Hilb%?(C12) is empty.
2) Hilb*'(C!2) x Hilb*'(C!12) — A has dimension 2 x (2|2) = (4]4)
3) Hilb'l?(C2) x Hilb*?(C!2) — A has dimension (1]2) + (1]2)

Since (Hilb2|2((C1|2) - A) is the union of 2) and 3), the bosonic part of (Hilb2|2(C1|2) - A) has dimension

<4
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Observe that A is contained in the open subset U C Hilb2|2((C1|2) such that the pushforward of the

universal family is generated by 1,x,6; and 3. Then U corresponds to the ideal generated by

> +azr+b
01 +axr + S
0y +yx + 6

0102+ cx +d

Therefore, the dimension of A, is less than or equal to 4.

In conclusion, the dimension of reduced part of the Hilbert scheme is less than or equal to 4.
dim (Hilb?*C?),.4 < 4
Let’s compute the dimension of the tangent space T; (Hilbm(Cm)) at I.

dim 77 (HﬂbQ‘?(cW)) = dim Homp(I, R/

= dim Hompg(m?, R/m?)

Observe that Hompg(m?, R/m?) = Homg(m?, m/m?).

Moreover, for any ¢ € Hompg(m?,m/m?), the image of m3 must vanish.
o(m?®) Cm-p(m?) Ccm?/m*=0
Therefore, we have

dim T; (Hilb2‘2(<cll2)) — dim Homg (m?2, R/m?)

= dim Homg (m?/m?, R/m?)

As a C-vector space, m?/m? is generated by x2, z61, 205, 0,05 and has dimension 2|2. Also, m/m? has

generators z, 01, 05 and has dimension 1|2.
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Then the dimension of the tangent space 7 (Hilelz(C1‘2)> is given by

dim Home(m?/m?, m/m?) = dim (mQ/mS)v ® m/m?

=(2-142-2]|2-2+2-1)=(6]6)

Therefore,

dim (Hilb?(C'R)] ,)eq < dim (77 (HiD?(C'12)))

red

and the Hilbert scheme Hilb??(C12) is not smooth at I.
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Chapter 6

(Non)splitness of the super Hilbert
scheme

In Chapter 4, we found local defining equations and gluing maps of the Hilbert scheme Hilb?/?C' where C is
a supermanifold of dimension 1|1. We use these to construct a nonzero obstruction class and show (non)

splitness of the Hilbert scheme.

6.1 A split super Hilbert scheme

Let V = Op1(k) be a line bundle on P!. Then the parity reversed bundle ITV is a supermanifold of dimension
1|1 and the Hilbert scheme Hilb?!9(I1V') is smooth and has dimension p | p.

Consider the case p = ¢ = 1. Note that the bosonic part of the Hilbert scheme Hilbm(HV) is P,
This can be checked from the fact that two open subfunctors H%[“lf‘uo and Hllil‘l/wl cover Hilblll(HV). Since
IV |y, =~ CH for each i, we can use (4.10) to find local coordinates and glue. The bosonic space P! is just
obtained from modding out the super Hilbert scheme by the odd parts. Let [z, z1] be coordinates of P* and

let U; C P! be the standard open set defined by z; # 0. Assign affine coordinates on IIV as
11
HV|U0 = Cl‘,@

S
WVip, =C,,

Due to Theorem 4.1.5, we can assign coordinates on each Hilbert scheme restricted to an open set U;

(Hilb”l(HV)) = Hilb"" (1IV|y,) ~ C3},

Uo

(Hﬂblll (HV)) = Hﬂbll1 (HV|U1) = (Cllhlé

Uy

As we can see in Example 4.0.1, we have relations 2 = a + af, y = b+ S and y = 1/z, v = 6/2"* on the
intersection Uy N U;. Combining all of these relations on Uy N Uy, we get b = % and = —a*~2a. Note that

the odd dimension of the Hilbert scheme Hilb!* (ITV) is 1. Therefore, Hilb!* (ITV') is split and there is a line
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bundle W on P! such that TIW = Hilbm(HV). Then there is an integer d such that W ~ Op:(d) and this
integer can be determined by the gluing map. Therefore, the Hilbert scheme Hilbm(HV) is isomorphic to
the parity reversed bundle IIIW where W = O(—=k +2) = O(2) @ VV.

6.2 The super Hilbert scheme Hilb! (IIOp: (k))

Let V = Op1 (k) be a line bundle on P!

Consider Hilb?*(ITV). Observe that the bosonic part of the Hilbert scheme (Hile‘l(HV))b is P1 x PL.
Note that the Hilbert scheme of two points on P! is Hilb?(P') = Sym?(P') and there is no distinction between
two points. However, for the super Hilbert scheme Hile‘l(HV), two points (corresponding to supports) are
distinguished by the odd part.

Let A C P! x P! be the diagonal. Let U;; = U; x U; C P[] X P[0, De the open subset where U;
is defined by z; # 0 and Uj; is defined by w; # 0.

Consider the open cover P! x P! = U2:1 V; where V1= Upg, Vo := Ujg— A, V3 := Uy — A and Vy := Uy;.

Since Hilbl‘l(HV|Ui) is affine, there is a projection map to its reduced part. Let p1gp and pg; be the
projections from Hilb'! (ITV|y;, ) x Hilb'°(I1V|y;, ) and Hilb** (IIV |, ) x Hilb*°(IIV |7, ) to the reduced parts

p1o : Hilb!N(IIV|y,) x Hilb(1IV |y, ) — Uy x Uy € P' x P!

po1 : Hilb (ITV|,) x Hilb!° 11V |y,) = Uy x Uy C P* x P!

Let A* := p*A be the pullback of the diagonal for each p = p1g, po1-

Note that we can naturally identify
Hilb!M(ITV|y,) x Hilb @IV |y, ) — A* 5 Hilb? 1 (1IV)]y,

and

~

Hilb ' (11V |y,) x Hilb!O(IIV |y, ) — A* 5 Hilb? 1 (I1V) |y,
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Assign coordinates as in (4.10)

11.2]1 ~ 212
Hilb* (V) v, = Co ) (6.1)
Hilb?!' (V)| |, ~ Hilb' (TTV |7, ) x Hilb'*(TV |y7,) — A* (6.2)
i 1)1 X
- (Cb1|51 X (Cb2\52 -A (63)
Hilb2!* (11V) X Hilb'M (ITV|,) x Hilb O (IIV |y, ) — A* (6.4)
3
ol 1y x
~C, I X C., 2 A (6.5)
1201 ~ 22
Hilb* (1TV) v, =~ €12, 15, (6.6)

where A is defined by ¢y¢; = 1 in (6.5) and byby = 1 in (6.3).

Remark 6.2.1. The Hilbert scheme Hilbz‘l(HV) can be covered by four open subsets
Hilb2 (11V)]y, U Hilb2 (I1V)]y, U Hilb2 (TTV) |y, U Hilb2 (TIV) |y,

To check how to glue them, first consider V; and V3 and let us compute the gluing map on the intersection.

Assign local coordinates on ITIV.

V|y, ~CLl}

i
MVje, =,

On Vi N V3, we have co # 0 and identities y = % and ¢ = xik. Observe that the isomorphism (6.5) is
given by

clit it

e lm c2 [ 2

((ex[71)s (e2l72)) = (x4 e+ 1) x (y+ co, 1 4 72)

— A — Hilb! (ITV|y,) x Hilb! @IV |y, ) — A*

— Hilb2 (11V)
V3

= (241 +m0)(y + c2), ( + e1 +710) (Y + 72))

On the intersection, we have identities
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((x+e1+mO)(y +c2), (@ +e1 +70) (P +72))

= <((E +c +719)(x—|— é)’ ($+Cl _,_719)(0_'_ (_’Zz)k)>

(6.7)
= ((z e —mya(—c2) ") (@ + ") +mleg — )@ +72(—c2) "),
(24 c1 —nr2(—c2) %) (0 + 12 (—c2) %))
Therefore, the gluing map on Vi N V3 is given by
k1 1 —k
(a1,a2|ar,a2) = (1 —y1y2(—c2) ™, — [m | — —c1 ), 72(—c2) (6.8)
C2o C2
To find the gluing map on V; N V3, consider the isomorphism (6.3)
Cyls, X Chls, — A = HilbN(ITV [g,) x Hilb!(TV |g,) — A
((b1] B1), (b2 B2)) = (Y + b1+ B1v)) x (x + b2, 0 + B2)
— Hilb2 11Vv) y
= (Y + b1+ Bry) (x+b2), (y + b + B19) (0 + B2))
By using identification (y + by + B1¢) = (z + byt — B1(—b1)"720), we get
((y+b1+ B1v) (x +b2), (y + b1 + B1y) (0 + B2))
={(z+b17" = Bi(=b)"20) (z+ b2), (x+ b1~ — Bi(=b1)"720) (6 + B2))
1 1
= (ot 4o+ B0 )+ ) = Brl=0)* 02— )0+ o)
1 k—2
(x + b + B1(=b1)"""B2)(0 + B2)
Therefore, we get the gluing map given by
1 k—2 k—2 1
(a1,az | ar, az) = o + B1Ba(=b1) ", ba | — B1(=b1)" (b2 — a), B2 (6.9)

By using symmetry, we can compute the transition map on VoNV, by using the transition map on V1 NVs.
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Similarly, on V5 N Vy, with the identification (z + by) = <y + b51> and (0 + B2) = <@/} + (fziiz)k» we get

clit clit

o X Cotig, — A = HIb TV, x Hilb'O(ITV]7,) — A*

((b1] B1), (b2] B2)) = (y+ b1 + f19) x (x + b2, 0 + B2)

— Hilb211v)

Va

= ((y + 01+ B1v) (o +b2) , (y + b1 + B1v) (0 + B2))

—1 B2
<(y+b1 +610) (y+b3") , (y+ b +51¢)(¢+Hb2)k)>

(o= i) sty ot o (04 ).

(ven=Ge) (v )

Therefore, the transition map is given by

(d1,d2|61,02) = <b1 - (ébf;’“’bgl | Byt —by), (—ii)k) (6.10)

One can similarly compute gluing maps on each intersection V; N V; for all ¢ and j, and the transitivity

can be checked.

6.2.1 (Non)splitness of the super Hilbert scheme Hilb?" (IIO(k))

Let V be the line bundle O(k) on P! and let W be the vector bundle defined by WY = J/J?% where

J C Owip2i vy Is the ideal sheaf generated by all nilpotents. Then we have the following theorem.

Theorem 6.2.2. Let V be the line bundle O(k) on P*. The Hilbert scheme Hilb*'(ITV') is not split for all
k # 0 and it is split for k= 0.

Observe that A2WV is a line bundle on P! x P!, and hence there are a and b such that
ANWY ~ O(a,b)

Lemma 6.2.3. a=k—-3 andb=—-k—1

Proof. First of all, to compute a, restrict AWV to P! x {0}.
A2WV’]P>1x{o} ~ Op1(a)
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Then the transition map between V; and V5 gives the transition map between Uy and Uy, where Uy and Uy
are standard open sets on P! ~ P! x {0}. Changing coordinates on Vs by 31 (b1by — 1) — S1, then the gluing

map (6.9) gives us

aray = B1fa(—b1)F? (6.11)

Note that the section o generates the line bundle A2WY on Vi and 3132 generates the line bundle A2WY
on Va. Therefore, (6.11) gives us a = k — 3.
To compute b, restrict the line bundle A2WVY to {0} x P. Then by plugging in b; = 0 to the transition

map (6.10) on Vo NV, we get

Therefore, §109 = — 1 82(—ba)* "t and b= —k — 1.
O

Remark 6.2.4. Note that the obstruction class for Hilb?*(ITV) lives in H' (P! x P, Tp1xp1 @ A2WY). From

Lemma 6.2.3, we have

H' (P! x P!, Tpiupr @ A°WY)
=H' (P' xP',(0(2,0) 8 0(0,2)) ® O(k — 3, —k — 1))
=H'(P'xP,O(k-1,-k-1)®O0(k—3,—k+1))

=H' (PP, Ok-1,-k-1) @ H" (P'®P', Ok —3,-k+1))

Therefore, H*(P! x P, Tp1p1 @ A2WV) is nonzero if and only if H*(P! @ P, O(k —1,—k — 1)) # 0 or
HY(P'@ POk —3,—k+1)) #0.

Observe the fact that

H' (P! x P*, O(a,b))

= (H° (P*,0(a)) @ H" (P*,0(b))) ® (H'(P*,0(a)) ® H*(P*,0(b)))

and hence if < —2 and b > 0 (or @ > 0 and b < —2 by the symmetry) then H!(P! x P!, O(a,b)) is not

equal to zero.
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i) f k>1thenk—1>0and -k —1< 2.

H° (P, O(k-1)) @ H' (P',O(-k—1)) #0
= (H° (P, 0(k-1)) @ H" (P',0(-k - 1))) @ (H'(P",0(k — 1)) ® H(P*,O0(—k — 1))) # 0

= H' P xPLO(k—1,—k—1)) #0

ii) If k<1thenk—-3<-2and —k+12>0.

H' (P',0(k-3)) @ H° (P',0(-k+1)) #0
= (H° (P', 0k -3)) @ H' (P',O(-k +1))) ® (H'(P',O(k — 3)) ® H'(P',O(~k +1))) #0

= H'P' xPL,O(k—3,~k+1)) #0
In conclusion, H'(P! @ P}, O(k — 1,—k — 1)) ® H (P! @ P, O(k — 3, —k + 1)) is non zero for all k.

We are now ready to prove the main theorem.

Proof. of Theorem 6.2.2.

To show the (non) splitness of the Hilbert scheme, it is enough to check whether the obstruction class
wa € HY(PL X PL, Tp1 yp1r ® A2WY) defined by Hilb?!(IIV) is vanishing or not. Note that Tpiyp1 @ AZWY is

the sheaf of A2WV-valued even derivations on P! x PL.

i) The transition map (6.9) on Viy:= Vi N V5

1
ap — b + B1Ba(—b1)" 2

as +—r b2
1
ap = —=B1(=b1)" (b — )
1
Qg > Po
defines a section wi? € T'(Vy N Va, Tpiypr @ A2WVY) as
19 b2 0 1 Qg 0
= —b T = — _
Wg ﬁlBQ( 1) 8a1 as — aq 8&1
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1
Here the identification ajag = —(—by)*~2(by — b—)ﬁlﬁg is used.
1

11) On Vi3 =VinV;

The transition map (6.8)

ay — ¢ — 7172(—02)716

1
ag — —
C2
1
ar—=mnl——a
C2
—k
Qa9 ’YQ(—CQ)
defines wi? € T(V4 N V3, Tpixpr @ A2WVY)
13 _ —k 0 _ Q1 9
wy” = —(—c2) "2 day —a2 a4, Oay

iii) On Vaz := Vo N Vs.

We have w§3 = 0 because Vo3 C Vio N Vis.

iv) The transition map (6.10) on Vay := Vo NV} gives

Bir=081(byt — b))t =8i(dg —dy)7?

B2 = 82(—bo)* = ba(—da) "

516
and 6162 - (dz—dll)%—dz) .

Hence, we have the transition map

B152 6102

b d =d —_—
1 1+(—b2)k 1+(d2—d1)

by > dy!
ﬁl — 5(d2 — dl)il

B > 8o(—dz) 7"
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which defines a section w3* € T'(Vo N Vy, Tp1ypr @ A2WV) as

o BB 9 5, O

Y27 (Co)k 0b  dy—dy 0dy

Then non-vanishing of the obstruction class wo can be proven by showing that there is no element

o= (0:); € [I,T(Vi, T @ A’WV) such that the boundary map sends (o;), to (w;j) .
ij

Suppose not. Then there are o; € T'(V;, T@A2WV) such that wy’ = o;—0; on each V;;. More specifically,

fix coordinates ([20; 21], [wo; w1]) € P! x P! and let f(ZL, 21), f(2, 1) € C [%, %ﬂv g(2,wh), g(2, 5t €

C [Z—O ﬂ}, h(Z, %) p(ZL %oy ¢ C [z—l m} and [(2,®0) [(20 20) ¢ C [Z—O ﬂ} be polynomials such that

217’w0 Zo"wl Z(J’U}1 Z(J’U}l 217’11)1 21711}1 21711}1

0 (6.12)

Observe that

N
wy® = (—Z)k 2818y =

o(2)
= 09 — 01
_ 21 wip 0 L 0
- () ey Y (25 e o) (0:49)
B 0
Z0 wq _ (20 w1

+g <Z1’ wo) B182 8(?—‘;) +9g <Z1’wo> B1582 8(%)
- b ! by k=2 o a)’ 78 f g i
=f- ( 2 — bl) (=b1) 51ﬁ28(%) -g- (Zo> 51523(%)-*- (= foraz + gBi52) o)

By comparing coefficients, we get

() ERaERE2 ) e
21 Z1 Wo Zo Wo wo 20 z1
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Similarly, on Vi3

0 0

13 . — _(_p\k
B R B AL T

= 03 — 01

0 0
Z1 Wi Z1 Wo 0 = - 0
— (22 =2 —_p(tx2 —— — 4 h ——
f(zo’wo)alaz 8(%)+ (zo’uq)%% =) faiaz 8(5—;)+ Y172 o)

Hence, we have

(B EREDEDE e
wo Z0 Wi Zp0 Wo wWo 20 wo
Finally, on V53, we have

23

Wo =0= g3 — 02

o 0 o 0

= h- 77 r%)-l-h"h’h @—9'3152 @—g'ﬁl,@z e
0 —k k42 0 7 0 _ 0

= h- 717 r%)-i-g'(—@) (—b1) 71’72@4'}1'%72 @—9'&52 o(m)
9 w\E N2 N2 9 ) 9 9

b . 0) (0) <1> By

172 (=) 9 ( o - . 71728(%) 717Y2 a(m) g- P12 o)
and thus

k k
() (3 (B (2 610
Zo w1 21w Wo 20

Now we derive a contradiction for any k.

Casel £>0
k E
If k is positive, g (j—“, ﬂ) (fﬂ> <fz—1) has a term with wg at the denominator for all nonzero
1’ Wo wo zo
g. Since h (j—;, Z—‘;) can not have wg at the denominator, to make the equality (6.16) true, g and

h must vanish. Then the equation (6.15) implies

k k
SW) L (A ) (o E) (e
(i) =G (-2 )
o) (2)
Zp0 Wo wo 20
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Case IT .

Case III .

which is a contradiction.

k<0

k k
Observe that g <Z° ﬂ) . (—ﬂ) (—Z—l) has z; at the denominator for any nonzero g # O.

z1 7 wo wo 20

Hence, the equation (6.16) means that h = g = 0. Then, as in the case k > 0, the equation (6.15)

implies 1 = f (i—;, 5—;) (%(1] —

21

ZO) which is a contradiction.

E=0

If k = 0, the equation (6.16) becomes

Z1 Wo Zp wq
hl—= —)=9|——)-
Z0 w1 Z1 Wo

By comparing variables, we can conclude that

Z1 Wo 20 w1
Al 22 = = =)= 6.17
(ZO’UH) g<21’w0> ‘ (617
for some constant ¢. Then the equation (6.14) implies that
(A ) (e a2
20 Wo wo %o g 21 wo
- Tge=f(200) (1 _=
2’07 wo wWo 20
To make the right hand side a constant, f must vanish and thus ¢ equals —1.
Observe (6.13)
0
12 _ (_"0\—2
wy” = ( 21) 51528(%)
1\, 9 2\ 2 9 o ) )
Zf'(bz—) by 31322—9'<) BiBesm~+ (—farae + §B152) =
b )t T a(E 20 () ' (%)
2\ 2 0 _ 0
=(Z2) Bibomre+ (—faraz +gB1B2) o
w) ") o)
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0

Taking coefficients of T%) , we have

f_<20 Zj;) 010424'9(2] w )ﬁlﬁz

f(“f“)b @2>mm+g( 1“)&@
Zo Wo wo

However, there is no nonzero f which satisfies
z1 w 20\ (w z Zo w
72 wr 0 1 1 _ (20 wr
PRI (-2) (- ag (22 ) =0
Zo Wo Al wWo Z0 zZ1 Wo

Therefore, we get f =0 and g = 0.

By using symmetry, we can also show that A = 0 and [ = 0.

On Vi N V4, we have relations x = % and 0 = y% = ¢. Then

(y +d1)(y + d2) + 61(¢ + b2), (y + d1)(¢ + 62))
( +d1>( +d2>+51(9+5g),<;+d1> (9+52)> .

=
((diz + 1) (doz + 1) + 61(0 + 62)22, (drz + 1) (0 + J2))
((

w4+ di ) (@ 4 dy )+ Sidytdy N0+ 80)x?, (x + dy ) (0 + 6))

Note that (6 + d2) = —d; *(f + d2) modulo the above ideal. Therefore, we have

S1dytdy (0 + o) = —61dy 2dy (0 4 69)
= 61d;%dy (0 + 62)
Then the ideal in (6.18) equals to

{(z+d) (z+dyh) +01d3dy (0 4 62), (z 4+ dit) (0 +62))

Hence, the transition map on V; NV} is

1 1
((11,(12 ‘ Oél,ag) — (dl, de ‘ (51d13d21,(52)
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By using symmetry, we can easily find the transition map on V34 from the transition map on Vis.

1 1
(d1,d2|61,02) — (61 +my2(=c1) " ea | —yi(—c1) 72 (02 - > ,’Y2>

C1

On V5 N V3, consider the following identities

(c15c2l71,72) = (@ + 1 +10)(y + c2), ( + e1 +710) () + 72))
=((x+c1 +mb)(z+ ey V), (@ +er +710)(0 + Y2))
=((@+ea—me)@+eat) +rleg! —a)l+2),

(x +c1—172)(0 +2))

on V3 and

(b1, 02|81, B2) = ((y + b1 + B1¢) (@ + ba), (y + b1 + 1) (0 + B2))

- <(; bt )+ ba), (5 by B10(0 + Bz>>
(o4 b7t = 672810 (0 + ba), (2 + by — b2 B10)(0 + o))
(x+ by "+ b7 B1B20) (4 b2) — by 2Bi (b2 — by 1 )(0 + Ba),

(x4 by' + 072 B1B20)(0 + B2))

on V5.

Therefore, we have

c1— Y12 = byt 40721 Ba
62_1 = b2
Tley 't —er) = —Buby 2(ba — by )

Y2 = o
Using identities y1y2 = —Bl,ngl_Z and ¢; = bl_l, the transition map on Vo N V3 is given as

(c1,c2|71.72) = (b7 51 | — Baby?, Ba)
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Then we can see that the Hilbert scheme gives the sections

0
wy® = ﬂlﬂ?(_b1)7287m

0
= —515267)1

; 0
wy’ = *’71’728701

wg?’ =0
. 5, 0

wit = —y172(—c1) 287(11

i 2

= 7172 9y

0
W§4 = 615287%

wit =0
From the assumption (6.12), we have the identity

_ 14
0=uw;

=04 — 01

0
N ) _ _¢(rwm
n (21711)1)51526(2’) f(Zo’wo

Since f =0, we have [ =0 and o4 = 0.

To sum up, we have

and wy = 0; —o; for all ¢ and j.

Therefore, the obstruction class is vanishing.

e T(ViNVa, Tpiypr @ A2WVY)

€ F(Vl N Vg,’ﬁnxpl X /\QW\/)

(6.19)

e T(Va N Vy, Tprupr @ A2WY)

S F(VQ N V4, Tpixpr @ /\2WV)

0
)“1“28<z;>

According to [Ma], every supermanifold (S, Og) of odd dimension 2 is defined up to isomorphism
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by the pair (Syeq, W) and a cohomology class w € H'(Syed, Ts,., ® A2°WY). Therefore, the
Hilbert scheme Hilbm(HOpl) is isomorphic to its split model A*W where W = (j/J2)v and

J C OHilb2|1(HOP1) is the ideal generated by nilpotents.
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Chapter 7

Future works

7.1 (Non)smoothness of Hilb”!4(C'?)

It is natural to ask that when Hilb” |q((C1|2) is smooth. In Chapter 5, we already checked that the Hilbert

scheme Hilb?19(C112) is smooth if p+ ¢ < 3 or ¢ < 1. It remains to be checked whether Hilb?! is smooth or

not, for p+¢ >3 and ¢ > 1 (i.e.,, p > 2 and g > 2).
Remark 7.1.1.
i) Hilb!7(C2) is empty for ¢ > 2 and Hilb%19(C'2) is empty for all ¢ > 0.

ii) Hilb”!?(C?) is non empty if and only if p # 0 and ¢ < 2p.

From already proved cases, we conjecture the following.

Conjecture 7.1.1. The Hilbert scheme Hilb?!%(C!2) is smooth if i) p+ ¢ < 3 or i) ¢ < 1, and singular
otherwise.

For p =2, (p|¢) = (2]3) and (p|g) = (2|4) are the only nontrivial cases.

If ¢ < 2p—2and p > 2, then the Hilbert scheme Hilb? ‘q((Cl‘Q) contains an open subset which is isomorphic
to Hilb??(C!2) x Hilb?~219=2(C!2) — A. Since Hilb??(C2) is not smooth, the result follows.

If g>2pandp>2, Hilbp|q((C1‘2) is empty.

Therefore, Conjecture 7.1.1 can be proved by showing the non-smoothness of Hilb” |q((C1|2) when (p|q) =

(213), (plg) = (2]4), ¢ = 2p — 1 and g = 2p. More details will appear in another paper.
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