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Abstract

In this thesis we mainly consider supermanifolds and super Hilbert schemes.

In the first part of this dissertation, we construct the Hilbert scheme of 0-dimensional subspaces on

dimension 1 | 1 supermanifolds. By using a flattening stratification, we compute the local defining equation

for the super Hilbert scheme. From local defining equations, we conclude that the Hilbert scheme of constant

Hilbert polynomials on dimension 1 | 1 supermanifolds is smooth.

The second part of this thesis concerns the smoothness and the non smoothness of 0-dimensional sub-

spaces on some supermanifolds of higher dimensions, which is related with the future study chapter.

The last part is devoted to the splitness of the Hilbert scheme. The non-splitness of supermanifolds

can be deduced from the non vanishing of some cohomology class, called the obstruction class. We find

examples of both split and non-split super Hilbert schemes. For the split case, we find a split model which

is isomorphic to Hilb1|1 (ΠOP1(k)) for any k. For the non-split case, we compute the obstruction class of the

super Hilbert scheme Hilb2|1 (ΠOP1(k)) and show that this class is not vanishing for k ̸= 0 and vanishing

for k = 0. Moreover, since the odd dimension of this Hilbert scheme is 2, we can see that Hilb2|1(ΠV ) is

projected for k = 0 and not projected for all k ̸= 0.
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Chapter 1

Introduction

Moduli spaces are geometric objects which parametrize geometric objects with certain properties. [Gr2, HM].

In other words, they can be viewed as solutions of classification problems. Moreover, the moduli space itself

has lots of interesting properties and rich structure as a geometric object. The Hilbert scheme is one of the

most important examples of moduli spaces. It classifies closed subschemes of a given space. The existence of

the Hilbert scheme of projective spaces has been shown[Gr]. It also has been shown that the Hilbert scheme

of projective spaces are also projective and closed subschemes of Grassmannians.

One of the main topics of this thesis is the Hilbert scheme Hilbn(X) of n points on X. It parametrizes

0-dimensional subschemes of X with length n. If we have distinct points in X, then the closed subspace of

X corresponding to those points has dimension 0 and length n. All the information that we have to know to

specify those n distinct points is encoded in the nth symmetric product Symn(X) of X minus the diagonal.

But when two (or more) points collide, we need more than that.

Suppose X is a smooth surface and we have two points that collide. Then we have the point where they

meet and a tangent vector at that point.

According to [Fo], there is a birational map ϕ : Hilbn(X) → Symn(X) such that ϕ is a resolution of

singularities along the diagonal of Symn(X). Therefore, Hilbn(X) is smooth and has dimension 2n.

Supergeometry is a Z2-graded extension of ordinary geometry. The idea of this extension comes from

supersymmetry in physics. Instead of a sheaf of commutative rings, we consider a sheaf of supercommutative

rings. In this regard, an ordinary manifold has a Z2-graded generalization called a supermanifold. As in the

ordinary case, a supermanifold has a local coordinate system. That is, for any complex supermanifold of

dimensionm |n, there is a local coordinate ring C[x1, · · · , xm | θ1, · · · , θn] where xi’s are commuting variables

1



and θj ’s are anti-commuting variables. Hence, the coordinate ring C[x1, · · · , xm | θ1, · · · , θn] has relations

xixj = xjxi

xiθj = θjxi

θiθj = −θjθi

for all i and j. Details about supergeometry can be found in [Ma, Be].

In Chapter 2, we review basic properties of superalgebras, superspaces and super Grassmannians. We

also explain that the obstruction to splitting can be characterized by cohomology classes which we call

obstruction classes.

In Chapter 4, we define a super version of the Hilbert scheme, which we call the super Hilbert scheme,

and construct the super Hilbert scheme of constant Hilbert polynomials over dimension 1|1 supermanifolds.

The main result in Chapter 4 is about the smoothness of the Hilbert scheme Hilbp|q(S).

Theorem 1.0.1. Let S be a supermanifold of dimension 1 | 1. Then the super Hilbert scheme Hilbp|q(S) is

smooth and has dimension p | p.

This theorem can be viewed as an analogue of the result for the ordinary Hilbert scheme.

Proposition 1.0.2. (Fogarty [Fo]) Let X be a projective space. Then the Hilbert scheme Hilbn(X) of n

points on X is connected. Moreover, if X is a smooth surface then Hilbn(X) is smooth and has dimension

2n.

In Chapter 5, conditions for Hilbp|q(C1|2) to be smooth are specified.

Theorem 1.0.3. Hilbp|q(C1|2) is smooth only when p+ q ≤ 3 or q ≤ 1.

Superstring perturbative theory in physics can be described as an integration over the moduli space Mg

of super Riemann surfaces. Consider a distribution D ⊂ TS generated by v. Then we say D is everywhere

non-integrable if v2 is everywhere independent of v.

Definition 1.0.4. A Super Riemann Surface is a pair (S,D) such that S = (C,OS) is a complex analytic

supermanifold of dimension 1 | 1 and D ⊂ TS is everywhere non-integrable.
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The moduli space of super Riemann surfaces of genus g is denoted by Mg. If Mg is projected, we have a

projection to the moduli space Mg of ordinary Riemann surfaces. Then we can integrate over Mg via the

pushforward of the map Mg → Mg. However, Mg is not projected in general. It has been proved recently

in [DW] that the supermoduli space Mg is not projected for g ≥ 5.

Splitness is another important property of superspaces. Let (S,OS) be a superspace and let E =
(
J /J 2

)∨
be the locally free sheaf where J ⊂ OS is the ideal generated by nilpotents. We say S is split if it can be

recovered from the bosonic part and a locally free sheaf E in a precise way, which we describe in Section2.2.

Note that every split superspace has a natural projection map to its bosonic space, so is projected.

Chapter 6 is devoted to the splitness of some super Hilbert schemes.

Theorem 1.0.5. Let V = OP1(k) be a line bundle on P1. Then the Hilbert scheme Hilb1|1(ΠV ) is split for

all k and Hilb2|1(ΠV ) is split for k = 0 and not split for all k ̸= 0.

Since every superspace is locally isomorphic to the split model, each of them can be described by specifying

transition maps. Those maps allow us to find an obstruction class. We show the non splitness of the Hilbert

scheme Hilb2|1(ΠV ) by showing that the second obstruction class is nonvanishing for k ̸= 0.
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Chapter 2

Supergeometry

2.1 Review of Superalgebra

Algebraic geometry relies on commutative ring theory. Likewise, supergeometry is based on superalgebra.

This section is devoted to reviewing some basic properties of superalgebras.([Ma],[La])

Let A = A0 ⊕A1 be a Z2-graded ring. Then it has the property AiAj ⊂ Ai+j where all subscripts are in

Z2. Elements of Ai are called even if i = 0 and called odd if i = 1. An element a ∈ A is called homogeneous

if a ∈ Ai for some i. Let’s denote |a| = i.

Definition 2.1.1. A supercommutative ring A = A0 ⊕ A1 is a Z2-graded ring with the property that

ab = (−1)|a||b|ba for all homogeneous elements a and b in A.

Example 2.1.1. Let R be a commutative ring and M be an R-module. The exterior algebra A =
∧•

M =⊕
i≥0

∧i
M over R is a supercommutative ring with even part A0 =

⊕
i≥0

∧2i
M and odd part A1 =

⊕i≥0

∧2i+1
M .

Example 2.1.2. Consider the k-algebra A = k[x1, · · · , xm | θ1, · · · , θn] with relations xixj = xjxi, xiθj = θjxi

and θiθj = −θjθi. Then A is a supercommutative ring.

2.1.1 Modules

Let A = A0⊕A1 be a supercommutative ring. A (left) A-moduleM is an abelian group with a decomposition

M = M0 ⊕M1 such that the (left) module structure A ×M → M preserves the Z2-grading AiMj ⊂ Mi+j

where all subscripts are in Z2. Every left module has a natural bimodule structure defined by m · a =

(−1)|m||a|a ·m for homogeneous elements a ∈ A and m ∈ M , i.e. for non-homogeneous m = m0 ⊕m1 and

a = a0 ⊕ a1,

a ·m =(a0 ⊕ a1) · (m0 ⊕m1)

=m0a0 +m0a1 +m1a0 −m1a1
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An A-module homomorphism f :M → N is an additive A-linear map. The additive group HomA(M,N)

of A-module homomorphisms from M to N has a natural A-module structure with the decomposition

HomA(M,N) = HomA(M,N)0 ⊕ HomA(M,N)1 where HomA(M,N)0 is the additive group of A-module

homomorphisms which preserve the Z2-grading and HomA(M,N)1 is the additive group of A-module ho-

momorphisms which reverse the Z2-grading.

The Jacobson radical of a ring A is defined to be the intersection of all maximal ideals of A.

Proposition 2.1.2. (Nakayama’s Lemma [La]) Let M be a module over a supercommutative ring A and let

J ⊂ A be the Jacobson radical. For any finitely generated A-module M , JM =M implies M = 0.

Corollary 2.1.3. Let M be a finitely generated A-module. Let x1, · · · , xn be elements in M such that the

images x1, · · · , xn in M/JM generate M/JM . Then x1, · · · , xn generate M.

The parity change functor Π is the functor between modules such that ΠM (a) is the same as M as an

additive group and (b) has the reverse parity (ΠM)0 = M1 and (ΠM)1 = M0 and (c) it has an A-module

structure given by a(Πm) = (−1)|a|Π(am). Practically we can think of the parity of the parity change

functor as odd.

A free A-module of rank (p | q) is an A-module isomorphic to Ap ⊕ (ΠA)q.

A derivation can be defined in an analogous way.

Definition 2.1.4. Let A be a supercommutative ring and let M be an A-module. A derivation of A into

M is an A-module homomorphism d : A→M satisfying the Leibniz rule

d(ab) = (da)b+ (−1)|a||d|a(db)

where |d| is the parity of d as a homomorphism of A-modules.

2.1.2 Matrices

Let R be an commutative ring. A m by p matrix with elements from R can be viewed as an R-module

homomorphism from Rp to Rm. However, when we consider a morphism between free modules over a

supercommutative ring, it is crucial to remember information about the parity.

Consider a supercommutative ring A. Consider two indexing sets with the decomposition I = I0∪I1 and
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J = J0∪J1 where each of them are defined as

I0 ={1, 2, · · · ,m}

I1 ={m+ 1,m+ 2, · · ·m+ n}

J0 ={1, 2, · · · p}

J1 ={p+ 1, p+ 2, · · · p+ q}

A matrix in the given format I × J with values in A is defined as a matrix with four blocks

M =

p q m M1 M2

n M3 M4

such that each Mi is a matrix with entries in A, M1 is m× p, M2 is m× q, M3 is n× p and M4 is n× q. We

say M is even if all the entries of M1 and M4 are even and entries of M2 and M3 are odd.

The set of all matrices with the format I and J over A is denoted by M(m |n; p | q;A). Observe that

M(m |n; p | q;A) can be identified with the set of A-module homomorphisms HomA(A
p | q, Am |n).

Lemma 2.1.5. Let X ∈M(m |n;m |n;A) be an invertible matrix and let Γ ∈M(m |n;m |n;A) be a matrix

such that all entries are odd. Then the matrix X + Γ is (left) invertible.

Proof. Claim that any odd matrix Γ ∈ M(m |n;m |n;A) is nilpotent. Set Γ = (γij). Then each entry of

Γ(m+n)2+1 = 0 has the form of
∑(∏(m+n)2+1

k=1 γikjk

)
, and

∏(m+n)2+1
k=1 γikjk = 0.

Since X + Γ = X(I +X−1Γ), it is enough to show that I +X−1Γ is invertible. Observe that

(X−1Γ)(m+n)2+1 = 0

Therefore, the inverse is given as

(
I +X−1Γ

)−1
= I −X−1Γ + (X−1Γ)2 + · · ·+ (−1)(m+n)2(X−1Γ)(m+n)2

6



2.2 Superspaces

Supergeometry is a Z2-graded generalization of ordinary geometry. It is motivated from the theory of

supersymmetry in theoretical physics. For simplicity, we will only consider analytic superspaces over the

complex numbers C hereafter. Details about superspaces and supermanifolds can be found in [Ma], [Be],

[DW].

We review major definitions in this section.

Definition 2.2.1. A superspace is a pair (S,OS) consisting of a topological space S and a sheaf of super-

commutative rings OS = O0
S ⊕O1

S such that for each s ∈ S the stalk OS,s is a local ring.

Each inclusion map V ↪→ U of open sets of S gives the restriction map OS(U) → OS(V ) which is a

supercommutative ring homomorphism.

Let J ⊂ OS be the ideal generated by the odd part O1
S . Define the bosonic space Sb of S as the closed

subspace Sb = (S,OS/J ) of S. Note that the bosonic space is an ordinary space (analytic, algebraic, etc).

As we defined a free module over a supercommutative ring, we can define a free sheaf of rank (p | q) on

a superspace S and denote it as O p
S ⊕Π(O q

S). A locally free sheaf of rank (p | q) on S is a sheaf on S which

is locally isomorphic to O p
S ⊕Π(O q

S).

Definition 2.2.2. A superspace (S,OS) is said to be split if there is a locally free sheaf E on Sb such that

(S,OS) is isomorphic to S(Sb, E) := (Sb,∧•E∨). The dimension of a split superspace S(Sb, E) := (Sb,∧•E∨)

is defined as (m |n) where m is the dimension of the ordinary scheme Sb and n is the rank of E .

The simplest example of a split superspace is analytic affine superspace Cm|n. Consider an ordinary

(analytic) affine space (Cm,OCm). We define Cm|n as a split superspace

Cm|n = (Cm,OCm|n) = S(Cm,O n
Cm)

Let θ1, · · · , θn be coordinates on fiber O n
Cm . Then the structure sheaf is given by

OCm|n(U) = OCm(U)[θ1, · · · , θn]

with relations θiθj = −θj θi for all i and j.

If a superspace (S,OS) is split then there is a natural projection map S → Sb. Let E be a locally free

sheaf on Sb such that (S,OS) ≃ S(Sb, E), then S is just the total space of a parity reversed vector bundle

on Sb and the projection map can be defined by forgetting all odd variables where odd variables are fiber

coordinates on E .
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We say S is projected if it has a projection map from S to its bosonic part Sb so that OS endowed with

a OSb
-module structure.

Definition 2.2.3. Consider an open subset U ⊂ Cm. Let I ⊂ OCm|n(U) be an ideal and let Z(I) ⊂ Cm

be the closed subset defined by the zero set Z(I ∩ OCm(U)). The analytic subspace defined by I on U is

the superspace (Z (I) ,OZ := OU/I). We say a superspace (S,OS) is an analytic superspace if it is locally

isomorphic to some analytic subspace of some open subset U ⊂ Cn.

An analytic superspace (S,OS) is called smooth if it is locally isomorphic to an open subspace Cm|n|U

of an affine space. We have a term to indicate a smooth superspace.

Definition 2.2.4. A supermanifold (S,OS) is a locally split analytic superspace such that the bosonic space

Sb is isomorphic to some ordinary manifold.

2.2.1 Supergrassmannians

In this section we review the definition of the supergrassmannian [Ma].

The supergrassmannian functor Gr(k|l;m|n) is the functor from the category of (analytic) superspaces

to the category of sets defined by

Gr(k|l;m|n)(S) =

 Om
S ⊕O n

S → Q→ 0
Q is locally free

of rank k | l


Let e1, · · · , em and ϵm+1, · · · , ϵm+n be the (even and odd) standard generators of O m

S ⊕ΠO n
S . Let

I = I0 × I1 = {i1, i2, · · · , ik} × {j1, j2, · · · , jl} ⊂ {1, · · · ,m} × {m+ 1, · · · ,m+ n}

be a subset of the indexing set. Define a natural inclusion map for each indexing set I as

iI : (⊕i∈I0 ei · OS)⊕ (⊕j∈I1 ϵj · OS) ↪→ O m
S ⊕ΠO n

S

ei 7→ ei

ϵj 7→ ϵj

Definition 2.2.5. The subfunctor Gr(k | l ; m |n)I of the supergrassmannian functor Gr(k)(k | l ; m |n) is

defined by the following property:

For any [ Om
S ⊕ ΠO n

S

µ−→ Q → 0 ] ∈ Gr(k | l ; m |n)I(S) ⊂ Gr(k)(k | l ; m |n)(S), Q is canonically

8



isomorphic to O k
S ⊕ΠO l

S via the map

O k
S ⊕ΠO l

S

iI
↪→ O m

S ⊕ΠO n
S

µ−→ Q

Let K be the kernel of the map µ. Then K is isomorphic to Om−k
S ⊕ ΠOn−l

S . Let ki’s and κj ’s be the

canonical even and odd generators of K ≃ Om−k
S ⊕ ΠOn−l

S . For each i /∈ I0, we can find unique even and

odd sections aij and αij of OS such that

ki := ei +

k∑
j=1

aijej +

l∑
j=1

αijϵj

Also, for each i /∈ I1, we can find unique even and odd sections bij and βij of OS such that

κi := ϵi +

k∑
j=1

βijej +

l∑
j=1

bijϵj

Therefore, for all analytic superspaces S and for all [ Om
S ⊕ΠO n

S → Q→ 0 ] ∈ Gr(k|l;m|n)I(S), we get

aij , bij , αij ’s and βij ’s. Identifying (aij , bij |αij , βij) with coordinates on Ck(m−k)+l(n−l) | l(m−k)+k(n−l), we

get the map

Gr(k|l;m|n)I(S) → Ck(m−k)+l(n−l) | l(m−k)+k(n−l)

In fact, Gr(k|l;m|n)I is representable by the affine space Ck(m−k)+l(n−l) | l(m−k)+k(n−l), and the universal

quotient is defined as

Om ⊕ΠOn → Q→ 0

where Q = Om ⊕ΠOn/K is the quotient of Om ⊕ΠOn by K where K is the free module generated by

ki := ei +

k∑
j=1

aijej +

l∑
j=1

αijϵj

and

κj := ϵj +

k∑
l=1

βjlel +

l∑
l=1

bjlϵl

for i /∈ I0 and J /∈ I1.

For each indexing subset

I = I0 × I1 = {i1, i2, · · · , ik} × {j1, j2, · · · , jl}

9



of the indexing set let UI = Ck(m−k)+l(n−l) | l(m−k)+k(n−l) denote the affine space defined as above. Then we

can glue all of such UI ’s as follows.

Define a matrix ZI ∈M(k|l;m|n) as follows:

i) The submatrix obtained by taking columns of ZI with indices in I is the identity matrix and

ii) all other columns are filled with even variables xpqI and odd variables θpqI as below

ZI =

m− k k l n− l



k xpqI

1

. . .

1

0 θpqI

l θpqI 0

1

. . .

1

xpqI

Think of (xpqI | θpqI ) as coordinates on Ck(m−k)+l(n−l) | l(m−k)+k(n−l). Label this affine (open) space UI =

Ck(m−k)+l(n−l) | l(m−k)+k(n−l).

Let BIJ be the submatrix of ZI formed by taking columns with indices in J . Let UIJ ⊂ UI be the

subspace where the matrix BIJ is invertible, then since it is an open condition we know that UIJ is open.

Then we glue UI and UJ along UIJ and UJI via ZJ = B−1
IJ ZI .

The supergrassmannian Gr(k | l ; m |n) is defined as
∪
I UI/ ∼ with the relations ∼ induced by coordinate

changes.

In conclusion, the supergrassmannian functor is representable by Gr(k | l ; m |n) :=
∪

I UI/ ∼.

Example 2.2.1. Projective superspace can be defined by using supergrassmannian

Pm|n = Gr(1 | 0 ; m + 1 |n)

For each indexing set I = i × ∅ ⊂ {1, · · · ,m + 1} × {m + 1 + 1, · · · ,m + 1 + n}, we have an open affine

subspace UI = Cm|n and a matrix ZI ∈M(k | l ; m |n).

ZI =

(
x1i · · · xi−1

i 1 xi+1
i · · · xm+1

i θ1i · · · θni

)

Let I = {i}×∅ and J = {j}×∅. Then BIJ =
(
xji

)
and UIJ is defined by xj ̸= 0. The gluing map on each

10



UIJ is given by

(
x1j · · · xj−1

j 1 xj+1
j · · · xm+1

j θ1j · · · θnj

)
= (xji )

−1

(
x1i · · · xi−1

i 1 xi+1
i · · · xm+1

i θ1i · · · θni

)

On the other hand, as in the ordinary case, we can use homogeneous coordinates [x0; · · · ;xm | θ1; · · · ; θn] on

Pm|n.

In fact, the projective space Pm|n is split.

Proposition 2.2.6. The projective space Pm|n is canonically isomorphic to its split model

S(Pm,O n
Pm ⊗OPm(1))

Proof. On each UI , we identify θki with a generator of (O n
Pm)

∨
and identify x li with a section in OPm(1).

Then the transition maps for Pm|n and S(Pm,O n
Pm ⊗OPm(1)) agree.

2.2.2 Obstruction Class and Splitting

Let (S,OS) be a supermanifold and let J ⊂ OS be the ideal generated by O1
S . We can recover the underlying

ordinary manifold OM := OS/J and define a locally free sheaf E on M where E is defined by E∨ = J/J2.

From these two ingredients, we can construct a split supermanifold S(M, E). Then we say (S,OS) is modeled

on M and E . Let GrJ(OS) be the sheaf on S defined as
⊕∞

i=0 J
i/J i+1.

For the rest of this section, we will see the how to classify all supermanifolds modeled on M and E and

define an obstruction class such that non-vanishing of this class guarantees non-splitness, mostly following

[DW].

Let Isom (S(M, E), S) be a sheaf of local isomorphisms on M defined by relating an open subset U ⊂M

to the isomorphisms from S(M, E)|U to S|U . Since (S,OS) has the reduced space M and has odd dimension

n, S and S(M, E) are locally isomorphic. Hence, Isom (S(M, E), S) is locally isomorphic to Aut (S(M, E))

as a sheaf. Therefore, if we are given a supermanifold S which is modeled on M and E , we get an element

in H1 (M,Aut(∧•E)) under the identification Aut (S(M, E)) = Aut (∧•E∨) ≃ Aut (∧•E).

Since S is modeled on M and E , it induces an automorphism on ∧•E which fixes E and M . Let G be the

11



set of all automorphisms on S(M, E) which preserve M and E . Then G is the kernel of the map

Aut(∧•E) → Aut(E)

f 7→ f |Aut(E)

and we have the short exact sequence

0 → G→ Aut(∧•E) → Aut(E) → 0

Define S(i) to be the superspace (M,OS/J
i+1). Then we have a filtration of S

S(0) ⊂ S(1) ⊂ · · · ⊂ S(n) = S

where n = rank(E).

Let Gi ⊂ G be the set of automorphisms on S(M, E) which preserve S(M, E)(i−1). Then we have a

filtration of G

G1 = G ⊃ G2 ⊃ · · · ⊃ Gn

Definition 2.2.7. Let S be an analytic superspace. The tangent sheaf TS is defined as the sheaf of deriva-

tions of OS . Then the restriction of the tangent sheaf TS |M to the reduced space M of S is split and

has even and odd subsheaf T+S := TM and T−S := V . Here V is the locally free sheaf on M such that

S(M,V ) = Gr(OS).

Remark 2.2.8. Gi/Gi+1 can be identified with T(−)iS ⊗ ∧iE∨. One way to see this isomorphism is to

identify G with its Lie algebra g. Since g is nilpotent, the exponential map from g to G is a bijection. Let

(x1, · · · , xm | θ1, · · · , θn) be local coordinates. Set set (x̄) = (x1, · · · , xm), α = (α1, · · · , αn), θα = θα1
1 · · · θαn

n

and αi ∈ {0, 1}. Note that every generator of g (locally) has the form

fa,α(x̄)θ
α ∂

∂xa
(2.1)

or

fb,β(x̄)θ
β ∂

∂θb
(2.2)

where
∑
i αi is even and

∑
j βj is odd. With this identification, we can check that all the elements in Gi

have the form of (2.1) or (2.2) where
∑
j αj and

∑
j βj are greater than or equal to i.

12



Let S be a superspace which is modeled on M and E . That is, S is locally isomorphic to S(M, E). Then

there is an open cover ∪i∈IUi of M such that for each i,

S|Ui
≃ S(M, E)|Ui

.

Therefore, the transition maps on each Ui ∩ Uj define a class ϕ ∈ H1(M,G) via the Čech cohomology

construction.

We define ϕ(i) in a similar manner. Suppose S(i) is isomorphic to S(M, E)(i). Then local isomorphisms

between S(i+1) and S(M, E)(i+1) define the cohomology class ϕ(i) ∈ H1(M,Gi+1).

From the identity Gi/Gi+1 ≃ T(−)iS ⊗∧iE∨, we can think of Gi as even derivations valued in ∧iE∨ and

have the short exact sequence

0 → Gi+1 ↪→ Gi → T(−)i ⊗ ∧iE∨ → 0

Consider the induced long exact sequence

· · · → H1(M,Gi+1) → H1(M,Gi)
ω−→ H1(M,T(−)iS ⊗ ∧iE∨) → · · ·

We call ωi := ω(ϕ(i−1)) the ith obstruction class. Note that if S is (globally) isomorphic to S(M, E),

then every ϕ(i−1) is the image of ϕ(i), and thus ωi is vanishing. In conclusion, a non-vanishing obstruction

class ω2 guarantees the non-splitness of a supermanifold S. We will use this fact to show the non splitness

of the Hilbert scheme in Chapter 6.

Corollary 2.2.9. A supermanifold of odd dimension 1 is always split.

Proof. Consider a supermanifold S modeled on M and E . Then J = O1
S and J i = 0 for all i ≥ 2. Therefore,

GrJ(OS) = OM ⊕ J and

S ≃ (M,GrJ(OS)) = OM ⊕ J ≃ S(M, E).

Remark 2.2.10. If all obstruction classes ωi for a supermanifold S are vanishing, then S is split.

Corollary 2.2.11. Any differentiable supermanifold is split.

This corollary can be shown by observing the property that for any locally free sheaf E on a differentiable

supermanifold S, Hp(S, E) = 0 for all p ≥ 1. Therefore, any supermanifold locally isomorphic to S has zero

obstruction classes.

13



Corollary 2.2.12. [DW] A supermanifold S with odd dimension 2 is split if and only if it is projected.

If S is a supermanifold of dimension (m|2), then the obstruction to splitting is the obstruction to projec-

tion. In fact, any supermanifold modeled onM and E with odd dimension 2 is determined up to isomorphism

by a cohomology class ω2 ∈ H1(M,TM ⊗ ∧2E∨). [Ma]
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Chapter 3

Review of the Hilbert scheme

This chapter is devoted to reviewing the ordinary Hilbert scheme and some results about the smoothness of

the Hilbert scheme of points in the plane.

3.1 Hilbert scheme

The Hilbert scheme is one of the most important examples of moduli spaces. The Hilbert scheme is the

parameter space of closed subschemes of a given scheme.

Definition 3.1.1. Let C be a category and let X be an object in C. The functor of points hX defined by

X is the contravariant functor from the category C to the category of sets defined as follows:

i) For an object B in C, hX(B) = HomC(B,X)

ii) For a morphism f : B → C of C, hX(f) : hX(C) → hX(B) is defined by ϕ 7→ ϕ ◦ f

Given a contravariant functor F from the category of schemes over k to the category of sets, a scheme

X over k is said to represent the functor F if there is a natural isomorphism between two functors F and

the functor of points hX .

Remark 3.1.2. If a functor F is representable by X, then there is a universal family U → X corresponding

to the identity element of Hom(X,X). The universal family has the property that for any scheme S and for

any family Y → S in F(S), there is a unique map f : S → X such that Y is the pullback of U via f .

Definition 3.1.3. Let X be a projective scheme over a field k and let p(n) be a polynomial. The Hilbert

functor HX,p(n) is the contravariant functor from the category of schemes over k to the category of sets

defined by:

i) HX,p(n)(B) =


Z � � //

π

��

X ×B

{{ww
ww
ww
ww
w

B

Z is a closed subscheme of X ×B,

for all b ∈ B the fiber Zb has the Hilbert

polynomial p (n) and π is flat


15



ii) morphisms are defined by the pullback

Proposition 3.1.4. ([Gr]) The Hilbert functor HX,p(n) is representable by a projective scheme Hilbp(n)(X).

We call Hilbp(n)(X) the Hilbert scheme.

3.2 Hilbert scheme of points on a plane

There is a well-known theorem about the smoothness of the Hilbert scheme of points in the plane.

Proposition 3.2.1. (Fogarty [Fo]) The Hilbert scheme of n points on a smooth surface is connected and

smooth of dimension 2n.

Let X be a smooth surface. Then, there is a natural map ϕ : Hilbn(X) → Symn(X). This map ϕ is an

isomorphism away from the diagonal. In fact, the Hilbert scheme Hilbn(X) is a resolution of the singularity

of Symn(X) along the diagonal.

However, we can find that Hilbert schemes are singular even for naive examples.

Example 3.2.1. The Hilbert scheme Hilb4(A3) of four points on A3
k is not smooth. Let (x, y, z) be coordinates

on A and letm = (x, y, z) be the maximal ideal at the origin. Identify points on the Hilbert scheme with ideals

in k[x, y, z] with length(I) = 4. Then the Hilbert scheme is not smooth at I := m2 ∈ Hilb4(A3). It can be

checked by observing that the dimension of the tangent space TI
(
Hilb4A3

)
at I is dimHom(I, k[x, y, z]/I) =

18 ̸= dimHilb4(A3) = 12. The dimension of the Hilbert scheme Hilb4(A3) can be computed from the fact

that the dimension of Hilb4(A3)−∆ ≃ Sym4(A3)−∆ is 3×4 and the Hilbert scheme Hilb4(A3) is irreducible.

We might expect that Hilbert schemes can have bad singularities. The following is a law that supports

this expectation.

Murphy’s law for Hilbert schemes [Va] There is no geometric possibility so horrible that it cannot

be found generically on some component of some Hilbert scheme.
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Chapter 4

The Super Hilbert Scheme

The definition of the super Hilbert scheme is analogous to the definition of the ordinary Hilbert scheme.

Definition 4.0.1.

I. Let S be an analytic superspace. The super Hilbert functor Hp|q
S is the contravariant functor from the

category S of analytic superspaces to the category of sets defined as below:

For X,Y ∈ S and a morphism f : Y → X

Hp|q
S (X) =


Z � � //

π

��

S ×X

{{xx
xx
xx
xx
x

X

Z is a closed subspace of S ×X such that

π∗OZ is a locally free OX -module of rank (p | q)

and Z is finite over X.


The morphism is defined by the pullback

Hp|q
S (f) = f∗ : Hp | q

S (X) → Hp | q
S (Y )

Note that the condition that π∗OZ is locally free guarantees the flatness of the map π.

II. If the super Hilbert functor Hp|q
S is representable by the analytic superspace Hilbp|q(S), We call this

the super Hilbert scheme.

Let’s look at the one of the simplest examples of super Hilbert schemes.

Example 4.0.1. Let U ⊂ C1|1
x|θ × C1|1

b|β be the closed subscheme defined by the ideal (x+ b+ βθ) where (x|θ)

are coordinates of the first component C1|1 and (b|β) are coordinates of the second component.

U � � //

π
##G

GG
GG

GG
GG

GG
C1|1
x|θ × C1|1

b|β

��
C1|1
b|β
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Then we claim that C1|1
b|β represents the functor H1|1

C1|1 and U is the universal family.

Consider any analytic superspace S and a family in H1|1
C1|1(S).

Y //

p
##H

HH
HH

HH
HH

H C1|1 × S

��
S

The pushforward p∗OY is a free OS-module of dimension (1|1). Since 1 and x are linearly dependent, there

are a, b ∈ Γ(S,OS) such that ax + b = 0. If a = 0 at any s ∈ S, then p∗OY has even dimension 0 at s.

Hence, a is invertible and we have x+a−1b · 1 = 0 and (p∗OY)
0
is generated by 1. Similarly, we can see that

(p∗OY)
1
is generated by θ. Then we can find a relation x+a+αθ = 0 for a ∈ Γ(S,OS)

0 and α ∈ Γ(S,OS)
1.

Define a map from S to C1|1
b|β via b 7→ a and β 7→ α. Then p is the pullback of the universal family.

4.1 Flattening Stratifications

Flattening stratifications provide a key step for proving the existence of the ordinary Hilbert scheme. We

demonstrate a super-version of the flattening stratification that is needed in our situation.

Proposition 4.1.1. (Flattening Stratification) Let X and Y be analytic superspaces. Let F be a coherent

sheaf of modules on Y × X such that the restriction of the support of F to each fiber of the projection

Y ×X → X is zero dimensional. Then for each (p, q) ∈ N×N we have a locally closed subspace X(p,q) ⊂ X

with the following properties:

i) X = ∪̇(p,q)X(p,q)

ii) π∗F|(X(p,q)) is locally free of rank (p | q)

iii) for any f : C → X, f∗F is flat if and only if f factors through C → X(p,q) ↪→ X for some (p, q) ∈ N×N

Proof. Pick x ∈ Xb. Then there are p, q ∈ N such that dimk(x) Fx ×OX,x
k(x) = (p | q). Using Corollary

2.1.3, find a neighborhood U of x such that generators of Fx also generate F on U . Then F|U has p even

and q odd generators as an OX |U -module and we have the surjection

O p
U ⊕ΠO q

U

ζ−→ F|U → 0

Since F is coherent, ker ζ is also coherent and hence it is finitely generated. By shrinking U , if necessary,
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we have an exact sequence

O s
U ⊕ΠO t

U
σ−→ O p

U ⊕ΠO q
U

ζ−→ F|U → 0

where the image of σ is the kernel of ζ.

Consider a map f : C → X|U and the induced exact sequence

O s
C ⊕ΠO t

C
f∗σ−−→ O p

C ⊕ΠO q
C

f∗ζ−−→ f∗(F|U ) → 0

Observe that

f∗F|U is free of rank (p | q) ⇔ f∗σ = 0 ⇔ f∗σij = 0 for all i, j ⇔ f factors through Xσ

with the matrix representation σ = (σij)ij ∈ M(s | t; p | q;OC) and Xσ ⊂ X closed subspace defined by the

ideal I = (σij)i,j .

Therefore, Xσ represents the functor GU defined by

GU (f : C → X|U ) = {f∗F → C is flat of rank (p | q)}

We can glue all Xσ’s with fixed (p | q) by the universality and X(p,q) := ∪σUσ satisfies the required properties

above.

A flattening stratification plays a pivotal role in constructing the super Hilbert scheme Hilbp|q(C1|1) in

the next section.

The structure of Hilbert schemes get complicated rapidly when the base space or the Hilbert polynomial

becomes complicated. In this section, we stick with the super Hilbert scheme of dimension 1 | 1 supermani-

folds with a constant Hilbert polynomial.

4.1.1 The super Hilbert scheme of C1|1

Let’s fix coordinates x | θ on C1|1.

To study the Hilbert scheme Hilbp | q(C1|1), we have to look at families in Hp|q
C1|1(X).

Z � � //

π
$$H

HH
HH

HH
HH

H C1|1 ×X

��
X
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The definition of the Hilbert functor gives us a condition that the pushforward π∗OZ is a locally free sheaf

of OX -modules. It turns out that this locally free sheaf π∗OZ is actually free.

Lemma 4.1.2. Let Y ⊂ C1|1 be a closed subspace with dimC Γ(C1|1,OY) = p | q. Then 1, x, · · · , xp−1 and

θ, xθ, · · · , xq−1θ form a basis of the vector space Γ(C1|1,OY).

Proof. Let I ⊂ C[x|θ] be the ideal defined by Y. Then C[x|θ]/I ≃ Γ(C1|1,OY). By the given condition, we

have p even generators and q odd generators for C[x|θ]/I as a C-vector space.

Observe that every element in the even part of C[x|θ]/I has the form
∑
i≥0 aix

i and an element of the

odd part of C[x|θ]/I has the form
∑
j≥0 bjx

jθ for ai, bj ∈ C.

Since dimC (C[x|θ]/I)0 = p, 1, x, · · · , xp ∈ (C[x|θ]/I)0 are linearly dependent. Therefore, we can find ci’s

in C not all zero such that
∑p
i=0 cix

i = 0. Let k be the largest number such that ck ̸= 0, k ≤ p. For any

f ∈ (C[x|θ]/I)0, by applying long division by
∑p
i=0 cix

i = 0 if needed, we can assume that degree of f is

less than k. Then f is a linear combination of 1, x, · · · , xk−1. Since the dimension of (C[x|θ]/I)0 must be

less than k, we have p = k. Therefore, 1, x, · · · , xp−1 generate (C[x|θ]/I)0.

Similarly, we can show that θ, xθ, . . . , xq−1θ form an odd basis and hence 1, x, . . . , xp−1, θ, xθ, . . . , xq−1θ

is a basis.

Proposition 4.1.3. Let Z π−→ Y be an element in Hp|q
C1|1(Y ). Then the sheaf π∗OZ is free.

Proof. Let R = C[x | θ] and let I ⊂ R be an ideal such that dimCR/I = p | q. Lemma 4.1.2 says that

1, x, · · · , xp−1, θ, xθ, · · · , xq−1θ generate R/I as a C-vector space.

Pick y ∈ Y and let I be the ideal sheaf of Z. Then I = Iy/myOY,y can be viewed as an ideal in R where

my is the maximal ideal of the local ring OY,y. Then
(π∗OZ)y

my(π∗OZ)y
is isomorphic to R/I and has rank p | q as

a C-vector space. Therefore,
(π∗OZ)y

my(π∗OZ)y
is generated by 1, x, · · · , xp−1, θ, xθ, · · · , xq−1θ. By corollary 2.1.3,

there is an open neighborhood U of y such that π∗OZ |U is generated by 1, x, · · · , xp−1, θ, xθ, · · · , xq−1θ as

an OY |U -module.

Hence, π∗OZ is a OY -module with free generators 1, x, · · · , xp−1, θ, xθ, · · · , xq−1θ.

Let Y ⊂ C1|1
x|θ × Cp+q|p+qa,b |α,β be the closed subspace defined by the ideal

Ĩ =

(
xp +

p−1∑
i=0

aix
i +

q−1∑
i=0

αix
iθ, xqθ +

q−1∑
i=0

bix
iθ +

p−1∑
i=0

βix
i

)
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Consider the diagram with the projection π

Y � � //

π

��

C1|1 × Cp+q|p+q

wwnnn
nnn

nnn
nnn

Cp+q|p+q

Lemma 4.1.4. C(p+q|p+q)
(p,q) is isomorphic to Cp|p.

Proof. Set

f := xp +

p−1∑
i=0

aix
i +

q−1∑
i=0

αix
iθ, g := xqθ +

q−1∑
i=0

bix
iθ +

p−1∑
i=0

βix
i

Apply long division by xq +
∑q−1
i=0 bix

i to f and g

f =(xq +

q−1∑
i=0

bix
i)(xp−q +

p−q−1∑
i=0

c′ix
i) +

q−1∑
i=0

d ′
ix
i +

q−1∑
i=0

γix
iθ

g =(xq +

q−1∑
i=0

bix
i)(θ +

p−q−1∑
i=0

δix
i) +

q−1∑
i=0

ϵix
i

Change coordinates on Cp+q|p+qa,b,c,|α,β,γ so that we have the following form

f =(xq +

q−1∑
i=0

bix
i)(xp−q +

p−q−1∑
i=0

aix
i) +

q−1∑
i=0

cix
i +

q−1∑
i=0

βix
i(θ +

p−q−1∑
i=0

αix
i)

g =(xq +

q−1∑
i=0

bix
i)(θ +

p−q−1∑
i=0

αix
i) +

q−1∑
i=0

γix
i

Denote
∑p−q−1
i=0 aix

i,
∑q−1
i=0 bix

i, · · · by a, b, · · · for simplicity.

According to the proof in Lemma 4.1.1, there is an open subset U ⊂ Cp+q|p+q and an exact sequence

O s
U ⊕ΠO t

U
σ−→ O p

U ⊕ΠO q
U

ϕ−→ π∗OY
∣∣
U
→ 0 (4.1)

such that Cp+q|p+q(p,q) is generated by I = (σij). Note that the map is defined as (Ai | Aj)i,j 7→
∑p
i=0Aix

i +∑q
j=0 Ajx

jθ.
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Let’s compute some elements in the kernel of ϕ.

f(θ + α)− g(xp−q + a) (4.2)

= c(θ + α)− γ(xp−q + a) (4.3)

= (

q−1∑
i=0

cix
i)θ + (

q−1∑
i=0

cix
i)(

p−q−1∑
i=0

αix
i)−

q−1∑
i=0

γix
i(xp−q +

p−q−1∑
i=0

aix
i) (4.4)

g(θ + α) (4.5)

= γ(θ + α) (4.6)

= (

q−1∑
i=0

γix
i)θ + (

q−1∑
i=0

γix
i)(

p−q−1∑
i=0

αix
i) (4.7)

Since Y is defined by the ideal generated by f and g, (4.4) and (4.7) give two elements in the kernel of ϕ.

h := ((c0α0 − a0γ0, · · · , γq−1,

p−q︷ ︸︸ ︷
0, · · · , 0 ), (c0, · · · , cq−1))

k := ((γ0α0, · · · , γq−1αp−q−1,

q︷ ︸︸ ︷
0, · · · , 0 ), (γ0, · · · , γq−1))

Therefore, Cp+q|p+q(p,q) is contained in the closed subspace H := Z
(
{ci, γi}q−1

i=0

)
∩ U ⊂ U . By restricting (4.1)

to H we get

O s′

H ⊕ΠO t′

H
σH−−→ O p

H ⊕ΠO q
H

ϕH−−→ π∗OY |H → 0

Claim: ϕH is an isomorphism.

Let (A1, · · · , Ap | A1, · · · ,Aq) be an element in a section of kerϕH. We can find Ci’s and Dj ’s in

Γ
(
C1|1 × U,OC1|1×Cp+q|p+q

)
such that

p−1∑
i=0

Aix
i + θ

q−1∑
i=0

Aix
i

= Cf +Dg

= C(xq + b)(xp−q + a) + Cβα+ Cβθ +Dθ(xq + b) +Dα(xq + b)
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I.e.,

p−1∑
i=0

Aix
i = C(xq +

q−1∑
i=0

bix
i)(xp−q +

p−q−1∑
i=0

aix
i) + C(

q−1∑
i=0

βix
i)(

p−q−1∑
i=0

αix
i)

+D(

p−q−1∑
i=0

αix
i)(xq +

q−1∑
i=0

bix
i)

(4.8)

and
q−1∑
i=0

Aix
i = C(

q−1∑
i=0

βix
i) +D(xq +

q−1∑
i=0

bix
i) (4.9)

Comparing the highest degree terms in (4.8), we see that C = 0. Similarly, from (4.9) we can figure out

that D = 0. Hence, Ai and Aj vanish for all i and j.

Therefore, ϕH is an isomorphism and thus Cp+q|p+q(p,q) = H where H is defined by the ideal

(c0, · · · , cq−1, γ0, · · · , γq−1)

Furthermore, Cp+q|p+q(p,q) is isomorphic to Cp|p.

Let Ỹ be the pullback of Y to Cp+q|p+q(p,q) . With Lemma 4.1.4 above, we can prove the following theorem.

Theorem 4.1.5. The super Hilbert scheme functor Hp|q
C1|1 is representable by Cp|p.

Proof. Consider a flat family

Z � � //

p
$$H

HH
HH

HH
HH

H C1|1 ×X

��
X

in Hp|q
C1|1(X).

By Proposition 4.1.3 there are ci, di ∈
(
H0(X,OX)

)0
, γi, δi ∈

(
H0(X,OX)

)1
such that Z is defined by

the ideal (
xp +

p−1∑
i=0

cix
i +

q−1∑
i=0

γix
iθ, xqθ +

q−1∑
i=0

dix
iθ +

p−1∑
i=0

δix
i

)

Then there is a unique map X
φ−→ Cp+q|p+q such that the pullback gives a flat family in Hp|q

C1|1

(
Cp+q|p+q

)
.

Since p is flat, φ factors through Cp+q|p+q(p,q) , i.e, there is a unique map from X to Cp+q|p+q(p,q) such that Z p−→ X

is the pullback of Ỹ π−→ Cp+q|p+q(p,q) .

For the rest section of the thesis, we fix coordinates

(a0, · · · , ap−q−1, b0, · · · , bq−1 |α0, · · · , αp−q−1, β0, · · · , βq−1) (4.10)
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on the super Hilbert scheme Hilbp|q(C1|1) ≃ Cp|p, so that the ideal of the universal family is

(
(xq +

q−1∑
i=0

bix
i)(xp−q +

p−q−1∑
i=0

aix
i) +

q−1∑
i=0

βix
i(θ +

p−q−1∑
i=0

αix
i) ,

(xq +

q−1∑
i=0

bix
i)(θ +

p−q−1∑
i=0

αix
i)

)

4.1.2 The super Hilbert scheme of a dimension 1|1 supermanifold

By applying Theorem 4.1.5 to appropriate open subfunctors of Hp|q
S which are representable, we conclude

that Hilbert functor of dimension 1|1 supermanifold is representable.

Theorem 4.1.6. Let S be a supermanifold of dimension 1 | 1. The super Hilbert functor Hp|q
S is representable

by a smooth superspace Hilbp|q(S) which has dimension p | p.

Proof. Let U =
∪̇
iUi ⊂ S be a finite disjoint union of open subspaces of S such that Ui is isomorphic to some

nonempty open subspace of C1|1. Let Hp|q
S,U be the open subfunctor of Hp|q

S defined as
⨿∑

pi=p∑
qi=q

∏
i Hpi|qi

Ui

Then the Hilbert functor Hp|q
S is the union of open subfunctors

∪
U Hp|q

S,U , and each Hp|q
S,U is representable

by a smooth superspace of dimension (p|p) as an application of theorem 4.1.5.

To be specific, let’s consider any family Z ⊂ S × X in Hp|q
S (X). For each x ∈ X, we can find a

neighborhood V of x such that the support of Z|π−1(V ) is contained in U ×X for some U = ∪̇iUi ⊂ S. By

the argument above, there is a map from V to Hilbp|q(U) such that Z|π−1(V ) is the pullback of the universal

family. Then the universality of the Hilbert scheme guarantees that we can glue them for all V .

Let X = ∪αVα be an open covering of X constructed as above. To check Hilbp|q(X) is Hausdorff, pick Z1,

Z2 ∈ Hilbp|q(X) such that Z1 ̸= Z2. Then there exists V1 and V2 such that Zi ∈ Hilbp|q(Vi). If Supp(Z1) =

Supp(Z2), then Z2 ∈ Hilbp|q(V1) which is Hausdorff by the construction. If Supp(Z1) ̸= Supp(Z2), then

shrink Vi’s enough so that Hilbp|q(V1) and Hilbp|q(V2) are disjoint.

Therefore, the Hilbert functor Hp|q
S is representable by a dimension (p|p) smooth superspace.

24



Chapter 5

(Non)Smoothness of the Hilbert

scheme Hilbp|q(C1|2)

Lemma 5.0.1. Let R = C[x1, · · · , xm | θ1, · · · , θn] be a polynomial ring. Let I ⊂ R be an ideal such that

dimCR/I = (p | q). Then R/I is generated by monomials as a Z2-graded C-vector space.

Proof. If p = 0, then R/I = C and nothing to prove.

Consider p ≥ 1. First observe that 1 ̸= 0 in R/I.

Let N = N0 ∪ N1 be a set of even and odd monomials of R such that 1) elements in N are linearly

independent in R/I and 2) N is maximal.

Pick any f =
∑
ij aijx

αiθβj ∈ R. Then by the maximality of N , for each term fij := aijx
αiθβj , the

image fij of fij in R/I must be a linear combination of elements in N . Hence, N generates R/I and

(|N0|
∣∣|N1|) = (p | q).

Then now we have a generalized version of Proposition 4.1.3.

Lemma 5.0.2. Let X be an analytic supermanifold. Consider a closed subspace Z ⊂ Cm|n
x1,··· ,xm | θ1,··· ,θn ×X

and a flat family

Z � � //

π

''OO
OOO

OOO
OOO

OOO
OO Cm|n

x1,··· ,xm | θ1,··· ,θn ×X

��
X

such that the pushforward π∗OZ is a locally free OB-module of rank (p | q). Then π∗OZ is locally freely

generated by some monomials in R = C[x1, · · · , xm | θ1, · · · , θn]

Proof. Pick a point x from the bosonic part of X. Then we can identify Ix/mxOX,x ⊂ OX,x/mxOX,x with

some ideal I ⊂ R where I ⊂ OCm|n×X is the sheaf of ideals defining Z and mx ⊂ OX,x is the maximal ideal

of the local ring. Then
(π∗OZ)x

mx(π∗OZ)x
is isomorphic to R/I. By Lemma 5.0.1, we can find monomials fi’s and

ηj ’s from R0 and R1, respectively, so that R/I is generated by {f1, · · · , fp | η1, · · · , ηq} as a C-vector space.

By Lemma 2.1.5, (π∗OZ)x is generated by fi’s and ηj ’s as a OX,x-module. Then by Nakayama’s lemma
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(Lemma 2.1.2), we can find some neighborhood U ⊂ X of x such that π∗OZ |U is generated by fi’s and ηj ’s

as an OX |U -module. Therefore, it is locally free.

5.1 Smoothness of Hilbp|0(C1|n)

Example 5.1.1. Let (a, b, c |α, β, γ, δ, ϵ, η) be coordinates of C3|6 and let (x | θ1, θ2) be coordinates on C1|2.

Define a closed subspace Z ⊂ C3|6 × C1|2 corresponding to the ideal

I = (x3 + ax2 + bx+ c, θ1 + αx2 + βx+ γ, θ2 + δx2 + ϵx+ η)

Consider the surjection

1 · OC3|6 ⊕ x · OC3|6 ⊕ x2 · OC3|6⊕ ϕ−→ π∗OZ → 0

1 7→ 1

x 7→ x

x2 7→ x2

For any local sections A,B,C of OC3|6 , Ax2 + Bx+ C = 0 in π∗OZ implies A = B = C = 0. According to

the flattening stratification, C3|6
(3,0) is defined by the zeros of the kernel and hence we get C3|6

(3,0) = C3|6. By

checking the universality, we conclude that Hilb3|0(C1|2) ≃ C3|6.

We can apply the same technique as above to find the Hilbert scheme Hilbp|0(C1|n)

Lemma 5.1.1. Hilbp|0(C1|n) ≃ Cp|np

Proof. Fix coordinates (a0, · · · , ap−1 |α10, α11, · · ·α1(p−1), α20, · · · , αn(p−1)) on Cp|np and (x | θ1, θ2) on C1|2.

Let Z ⊂ Cp |np × C1|2 be the closed subspace corresponding to the ideal

(
xp +

p−1∑
i=0

aix
i, θ1 +

p−1∑
i=0

α1ix
i, · · · , θn +

p−1∑
i=0

αnix
i

)

Then we have an isomorphism

⊕p−1
i=0 x

i · OCp|np → π∗OZ .

After checking the universality, we have

Hilbp|0(C1|n) = Cp|np(p,0) = Cp|np
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Therefore, the result follows.

As a corollary we show the smoothness of the Hilbert scheme Hilbp|0(C1|n).

5.2 Smoothness of Hilbp|1(C1|n)

Proposition 5.2.1. The Hilbert scheme Hilbp|1(C1|n) is smooth for all p and n.

Proof. Let (x|θ1, · · · , θn) be coordinates on C1|n. Consider a flat family

Z � � //

π
$$H

HH
HH

HH
HH

H C1|n ×X

��
X

such that π∗OZ is a locally free OX -module of rank (p | 1).

Let’s observe the following:

i) According to the proof of Lemma 5.0.2, π∗OZ is locally freely generated by some monomials.

ii) For any ideal I ⊂ C[x|θ1, · · · , θn], if the Z2-graded dimension of C[x|θ1, · · · , θn]/I as a C-vector space

is (p | 1) then C[x|θ1, · · · , θn]/I is generated by 1, x, · · · , xp−1 and θi for some i (i does not need to be

determined uniquely).

By combining these facts, we can find an open cover ∪iUi of X such that π∗OZ
∣∣
Ui

is freely generated by

1, x, · · · , xp−1 and θi (Ui possibly be empty).

Consider the natural surjection

1 · OX ⊕ x · OX ⊕ · · · ⊕ xp−1 · OX ⊕ θ1 · OX ⊕ · · · ⊕ θn · OX
ϕ−→ π∗OZ → 0 (5.1)

defined by xi 7→ xi and θj 7→ θj .

Then the quotient (5.1) can be viewed as an element in Gr(p | 1 ; p |n)(X). By the universality of the

Grassmannian functor, we get the maps

τ : Hp|1
C1|n(X) → Gr(p | 1; p |n)(X) (5.2)

which determine a map Hp|q
C1|n → Gr(p | 1; p |n).
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For each i, the image of the open subset Ui is τ(Ui) = UI ⊂ Gr(p | 1; p |n), where

UI = C(n−1)|p(n−1)
X ⊂ Gr(p | 1; p |n)(X)

is the open subset of the Grassmannian corresponding to the indexing set

I = I0 × I1 = {1, · · · , p} × {p+ i} ⊂ {1, · · · , p} × {p+ 1, · · · , p+ n}.

Since 1, x, · · · , xp−1 and θi are generators, we have a0, · · · , ap ∈ Γ(X,OX)0 and α0, · · · , αp ∈ Γ(X,OX)1

such that

xp +

p−1∑
i=0

aix
i + αpθi = 0

xθi + apθi +

p−1∑
i=0

αix
i = 0

Let (b0, · · · , bp |β0, · · · , βp) be coordinates on Cp+1|p+1. Define the map X
r−→ Cp+1|p+1 via bj 7→ aj and

βj 7→ αj . Since π is flat, the map r factors though Cp+1|p+1
(p|1) = Cp|p = Hilbp|1(C1|1).

By combining two maps τ and r, we get the map Ui
τ×r−−→ UI × Hilbp|1(C1|1) and Z is obtained by the

pullback of the universal family of the Grassmannian and the Hilbert scheme. Therefore, Hilbp|1(C1|n)|Ui
is

isomorphic to UI ×Hilbp|1(C1|1) and Hilbp|1(C1|m) is smooth.

Note that the dimension of Hilbp|1(C1|m) is (p | p) + (n− 1 | p(n− 1)) = (p+ n− 1 | p n).

5.3 Smoothness of Hilb1|2(C1|2)

Let (x | θ1, θ2) be coordinates on C1|2 and let R := C[x | θ1, θ2]. Consider a family

Z � � //

π
$$H

HH
HH

HH
HH

H C1|2 ×X

��
X

such that π∗OZ is locally free of rank 1|2.

Observe that, for any ideal I ⊂ R = C[x|θ1, θ2] such that dimCR/I = (1|2), R/I is generated by 1,θ1

and θ2. Therefore, π∗OZ is free OX -module generated by 1, θ1, θ2.
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We can embed Hilb1|2(C1|2) in C2|4 as

Y � � //

π
$$I

II
II

II
II

I C1|2 × C2|4

��
C2|4

where Y is defined by the ideal (x+ a+ αθ1 + βθ2, θ1θ2 + γθ1 + δθ2 + b).

Let’s denote f = x+ a+ αθ1 + βθ2 and g = θ1θ2 + γθ1 + δθ2 + b

gθ1 = δθ2θ1 + bθ1 (5.3)

(5.3) + δg = (−δθ1θ2 + bθ1) + (δθ1θ2 + δγθ1 + δb)

= (b+ δγ)θ1 + δb

(5.4)

Therefore, we have b = −δγ. Applying the same technique that we used in Lemma 4.1.4 and the flattening

stratification, we can check that Hilb1|2(C1|2) ≃ C1|4.

5.4 Nonsmoothness of Hilb2|2(C1|2)

For the ordinary Hilbert scheme, we saw that Hilb4(C3) is not smooth at I = m2 where m is the maximal

ideal at the origin.

We have the analogous result for the super Hilbert scheme that the Hilbert scheme Hilb2|2(C1|2) is not

smooth.

Proposition 5.4.1. The Hilbert scheme Hilb2|2(C1|2) is not smooth.

Proof. Let (x | θ1, θ2) be coordinates on C1|2 and let R := C[x | θ1, θ2].

Let ∆ ⊂ Hilb2|2(C1|2) be the diagonal. Consider
(
Hilb2|2(C1|2)−∆

)
. Observe that

1) Hilb0|2(C1|2) is empty.

2) Hilb1|1(C1|2)×Hilb1|1(C1|2)−∆ has dimension 2× (2|2) = (4|4)

3) Hilb1|0(C1|2)×Hilb1|2(C1|2)−∆ has dimension (1|2) + (1|2)

Since
(
Hilb2|2(C1|2)−∆

)
is the union of 2) and 3), the bosonic part of

(
Hilb2|2(C1|2)−∆

)
has dimension

≤ 4.
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Observe that ∆ is contained in the open subset U ⊂ Hilb2|2(C1|2) such that the pushforward of the

universal family is generated by 1, x, θ1 and θ2. Then U corresponds to the ideal generated by

x2 + ax+ b

xθ1 + αx+ β

xθ2 + γx+ δ

θ1θ2 + cx+ d

Therefore, the dimension of ∆b is less than or equal to 4.

In conclusion, the dimension of reduced part of the Hilbert scheme is less than or equal to 4.

dim (Hilb2|2C1|2)red ≤ 4

Let’s compute the dimension of the tangent space TI
(
Hilb2|2(C1|2)

)
at I.

dim TI
(
Hilb2|2(C1|2)

)
= dimHomR(I,R/I)

= dimHomR(m
2, R/m2)

Observe that HomR(m
2, R/m2) = HomR(m

2,m/m2).

Moreover, for any φ ∈ HomR(m
2,m/m2), the image of m3 must vanish.

φ(m3) ⊂ m · φ(m2) ⊂ m2/m2 = 0

Therefore, we have

dim TI
(
Hilb2|2(C1|2)

)
= dimHomR(m

2, R/m2)

= dimHomC(m
2/m3, R/m2)

As a C-vector space, m2/m3 is generated by x2, xθ1, xθ2, θ1θ2 and has dimension 2 | 2. Also, m/m2 has

generators x, θ1, θ2 and has dimension 1 | 2.
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Then the dimension of the tangent space TI
(
Hilb2|2(C1|2)

)
is given by

dimHomC(m
2/m3,m/m2) = dim

(
m2/m3

)∨ ⊗m/m2

= (2 · 1 + 2 · 2 | 2 · 2 + 2 · 1) = (6 | 6)

Therefore,

dim (Hilb2|2(C1|2)
∣∣
U
)red < dim

(
TI
(
Hilb2|2(C1|2)

))
red

and the Hilbert scheme Hilb2|2(C1|2) is not smooth at I.
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Chapter 6

(Non)splitness of the super Hilbert
scheme

In Chapter 4, we found local defining equations and gluing maps of the Hilbert scheme Hilbp|qC where C is

a supermanifold of dimension 1 | 1. We use these to construct a nonzero obstruction class and show (non)

splitness of the Hilbert scheme.

6.1 A split super Hilbert scheme

Let V = OP1(k) be a line bundle on P1. Then the parity reversed bundle ΠV is a supermanifold of dimension

1|1 and the Hilbert scheme Hilbp|q(ΠV ) is smooth and has dimension p | p.

Consider the case p = q = 1. Note that the bosonic part of the Hilbert scheme Hilb1|1(ΠV ) is P1.

This can be checked from the fact that two open subfunctors H1|1
ΠV |U0

and H1|1
ΠV |U1

cover Hilb1|1(ΠV ). Since

ΠV |Ui
≃ C1|1 for each i, we can use (4.10) to find local coordinates and glue. The bosonic space P1 is just

obtained from modding out the super Hilbert scheme by the odd parts. Let [z0, z1] be coordinates of P1 and

let Ui ⊂ P1 be the standard open set defined by zi ̸= 0. Assign affine coordinates on ΠV as

ΠV |U0
≃ C1|1

x,θ

ΠV |U1
≃ C1|1

y,ψ

Due to Theorem 4.1.5, we can assign coordinates on each Hilbert scheme restricted to an open set Ui

(
Hilb1|1(ΠV )

) ∣∣∣
U0

= Hilb1|1(ΠV |U0
) ≃ C1|1

a,α

(
Hilb1|1(ΠV )

) ∣∣∣
U1

= Hilb1|1(ΠV |U1
) ≃ C1|1

b,β

As we can see in Example 4.0.1, we have relations x = a + αθ, y = b + βψ and y = 1/x, ψ = θ/xk on the

intersection U0 ∩U1. Combining all of these relations on U0 ∩U1, we get b = 1
a and β = −ak−2α. Note that

the odd dimension of the Hilbert scheme Hilb1|1(ΠV ) is 1. Therefore, Hilb1|1(ΠV ) is split and there is a line
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bundle W on P1 such that ΠW = Hilb1|1(ΠV ). Then there is an integer d such that W ≃ OP1(d) and this

integer can be determined by the gluing map. Therefore, the Hilbert scheme Hilb1|1(ΠV ) is isomorphic to

the parity reversed bundle ΠW where W = O(−k + 2) = O(2)⊗ V ∨.

6.2 The super Hilbert scheme Hilb2|1 (ΠOP1(k))

Let V = OP1(k) be a line bundle on P1.

Consider Hilb2|1(ΠV ). Observe that the bosonic part of the Hilbert scheme
(
Hilb2|1(ΠV )

)
b
is P1 × P1.

Note that the Hilbert scheme of two points on P1 is Hilb2(P1) = Sym2(P1) and there is no distinction between

two points. However, for the super Hilbert scheme Hilb2|1(ΠV ), two points (corresponding to supports) are

distinguished by the odd part.

Let ∆ ⊂ P1 × P1 be the diagonal. Let Uij = Ui × Uj ⊂ P1
[z0;z1] × P1

[w0;w1] be the open subset where Ui

is defined by zi ̸= 0 and Uj is defined by wj ̸= 0.

Consider the open cover P1×P1 =
∪4
k=1 Vi where V1 := U00, V2 := U10−∆,V3 := U01−∆ and V4 := U11.

Since Hilb1|1(ΠV |Ui
) is affine, there is a projection map to its reduced part. Let p10 and p01 be the

projections from Hilb1|1(ΠV |U1)×Hilb1|0(ΠV |U0) and Hilb1|1(ΠV |U0)×Hilb1|0(ΠV |U1) to the reduced parts

p10 : Hilb1|1(ΠV |U1
)×Hilb1|0(ΠV |U0

) → U1 × U0 ⊂ P1 × P1

p01 : Hilb1|1(ΠV |U0
)×Hilb1|0(ΠV |U1

) → U0 × U1 ⊂ P1 × P1

Let ∆∗ := p∗∆ be the pullback of the diagonal for each p = p10, p01.

Note that we can naturally identify

Hilb1|1(ΠV |U1)×Hilb1|0(ΠV |U0)−∆∗ ∼→ Hilb2|1(ΠV )|V2

and

Hilb1|1(ΠV |U0
)×Hilb1|0(ΠV |U1

)−∆∗ ∼→ Hilb2|1(ΠV )|V3
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Assign coordinates as in (4.10)

Hilb2|1(ΠV )|V1 ≃ C2|2
a1,a2 |α1,α2

(6.1)

Hilb2|1(ΠV )
∣∣
V2

≃ Hilb1|1(ΠV |U1
)×Hilb1|0(ΠV |U0

)−∆∗ (6.2)

≃ C1|1
b1|β1

× C1|1
b2|β2

− ∆̃ (6.3)

Hilb2|1(ΠV )
∣∣∣
V3

≃ Hilb1|1(ΠV |U0
)×Hilb1|0(ΠV |U1

)−∆∗ (6.4)

≃ C1|1
c1 | γ1 × C1|1

c2 | γ2 − ∆̃ (6.5)

Hilb2|1(ΠV )|V4
≃ C2|2

d1,d2 | δ1,δ2 (6.6)

where ∆̃ is defined by c1c2 = 1 in (6.5) and b1b2 = 1 in (6.3).

Remark 6.2.1. The Hilbert scheme Hilb2|1(ΠV ) can be covered by four open subsets

Hilb2|1(ΠV )|V1 ∪Hilb2|1(ΠV )|V2 ∪Hilb2|1(ΠV )|V3 ∪Hilb2|1(ΠV )|V4

To check how to glue them, first consider V1 and V3 and let us compute the gluing map on the intersection.

Assign local coordinates on ΠV .

ΠV |U0
≃ C1|1

x,θ

ΠV |U1 ≃ C1|1
y,ψ

On V1 ∩ V3, we have c2 ̸= 0 and identities y = 1
x and ψ = θ

xk . Observe that the isomorphism (6.5) is

given by

C1|1
c1 | γ1 × C1|1

c2 | γ2 − ∆̃ → Hilb1|1(ΠV |U0
)×Hilb1|0(ΠV |U1

)−∆∗

((c1| γ1), (c2| γ2)) 7→ ⟨x+ c1 + γ1θ⟩ × ⟨y + c2, ψ + γ2⟩

→ Hilb2|1(ΠV )
∣∣∣
V3

7→ ⟨(x+ c1 + γ1θ)(y + c2), (x+ c1 + γ1θ)(ψ + γ2)⟩

On the intersection, we have identities
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⟨(x+ c1 + γ1θ)(y + c2), (x+ c1 + γ1θ)(ψ + γ2)⟩

=

⟨
(x+ c1 + γ1θ)(x+

1

c2
), (x+ c1 + γ1θ)(θ +

γ2
(−c2)k

)

⟩
=
⟨(
x+ c1 − γ1γ2(−c2)−k

)
(x+ c−1

2 ) + γ1(c
−1
2 − c1)(θ + γ2(−c2)−k),(

x+ c1 − γ1γ2(−c2)−k
)
(θ + γ2(−c2)−k)

⟩
(6.7)

Therefore, the gluing map on V1 ∩ V3 is given by

(a1, a2 |α1, α2) =

(
c1 − γ1γ2(−c2)−k,

1

c2

∣∣∣∣ γ1( 1

c2
− c1

)
, γ2(−c2)−k

)
(6.8)

To find the gluing map on V1 ∩ V2, consider the isomorphism (6.3)

C1|1
b1|β1

× C1|1
b2|β2

− ∆̃ → Hilb1|1(ΠV |U1
)×Hilb1|0(ΠV |U0

)−∆∗

((b1|β1), (b2|β2)) 7→ ⟨y + b1 + β1ψ⟩ × ⟨x+ b2, θ + β2⟩

→ Hilb2|1(ΠV )
∣∣∣
V2

7→ ⟨(y + b1 + β1ψ) (x+ b2) , (y + b1 + β1ψ) (θ + β2)⟩

By using identification ⟨y + b1 + β1ψ⟩ =
⟨
x+ b1

−1 − β1(−b1)k−2θ
⟩
, we get

⟨(y + b1 + β1ψ) (x+ b2) , (y + b1 + β1ψ) (θ + β2)⟩

=
⟨(
x+ b1

−1 − β1(−b1)k−2θ
)
(x+ b2) ,

(
x+ b1

−1 − β1(−b1)k−2θ
)
(θ + β2)

⟩
=

⟨
(x+

1

b1
+ β1(−b1)k−2β2)(x+ b2)− β1(−b1)k−2(b2 −

1

b1
)(θ + β2),

(x+
1

b1
+ β1(−b1)k−2β2)(θ + β2)

⟩

Therefore, we get the gluing map given by

(a1, a2 |α1, α2) =

(
1

b1
+ β1β2(−b1)k−2, b2

∣∣∣− β1(−b1)k−2(b2 −
1

b1
), β2

)
(6.9)

By using symmetry, we can compute the transition map on V2∩V4 by using the transition map on V1∩V3.
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Similarly, on V2 ∩ V4, with the identification ⟨x+ b2⟩ =
⟨
y + b−1

2

⟩
and ⟨θ + β2⟩ =

⟨
ψ + β2

(−b2)k

⟩
, we get

C1|1
b1|β1

× C1|1
b2|β2

− ∆̃ → Hilb1|1(ΠV |U1
)×Hilb1|0(ΠV |U0

)−∆∗

((b1|β1), (b2|β2)) 7→ ⟨y + b1 + β1ψ⟩ × ⟨x+ b2, θ + β2⟩

→ Hilb2|1(ΠV )
∣∣∣
V2

7→ ⟨(y + b1 + β1ψ) (x+ b2) , (y + b1 + β1ψ) (θ + β2)⟩

=

⟨
(y + b1 + β1ψ)

(
y + b−1

2

)
, (y + b1 + β1ψ) (ψ +

β2
(−b2)k

)

⟩
=

⟨(
y + b1 −

β1β2
(−b2)k

)(
y + b−1

2

)
+ β1(b

−1
2 − b1)

(
ψ +

β2
(−b2)k

)
,(

y + b1 −
β1β2
(−b2)k

)(
ψ +

β2
(−b2)k

)⟩

Therefore, the transition map is given by

(d1, d2|δ1, δ2) =
(
b1 −

β1β2
(−b2)k

, b−1
2

∣∣ β1(b−1
2 − b1),

β2
(−b2)k

)
(6.10)

One can similarly compute gluing maps on each intersection Vi ∩ Vj for all i and j, and the transitivity

can be checked.

6.2.1 (Non)splitness of the super Hilbert scheme Hilb2|1 (ΠO(k))

Let V be the line bundle O(k) on P1 and let W be the vector bundle defined by W∨ = J /J 2 where

J ⊂ OHilb2|1(ΠV ) is the ideal sheaf generated by all nilpotents. Then we have the following theorem.

Theorem 6.2.2. Let V be the line bundle O(k) on P1. The Hilbert scheme Hilb2|1(ΠV ) is not split for all

k ̸= 0 and it is split for k = 0.

Observe that ∧2W∨ is a line bundle on P1 × P1, and hence there are a and b such that

∧2W∨ ≃ O(a, b)

Lemma 6.2.3. a = k − 3 and b = −k − 1

Proof. First of all, to compute a, restrict ∧2W∨ to P1 × {0}.

∧2W∨∣∣
P1×{0} ≃ OP1(a)
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Then the transition map between V1 and V2 gives the transition map between U0 and U1, where U0 and U1

are standard open sets on P1 ≃ P1×{0}. Changing coordinates on V2 by β1(b1b2− 1) 7→ β1, then the gluing

map (6.9) gives us

α1α2 = β1β2(−b1)k−3 (6.11)

Note that the section α1α2 generates the line bundle ∧2W∨ on V1 and β1β2 generates the line bundle ∧2W∨

on V2. Therefore, (6.11) gives us a = k − 3.

To compute b, restrict the line bundle ∧2W∨ to {0} × P1. Then by plugging in b1 = 0 to the transition

map (6.10) on V2 ∩ V4, we get

δ1 7→ β1
b2

δ2 7→ (−b2)−kβ2

Therefore, δ1δ2 = −β1β2(−b2)−k−1 and b = −k − 1.

Remark 6.2.4. Note that the obstruction class for Hilb2|1(ΠV ) lives in H1(P1 × P1, TP1×P1 ⊗∧2W∨). From

Lemma 6.2.3, we have

H1
(
P1 × P1, TP1×P1 ⊗ ∧2W∨)

= H1
(
P1 × P1, (O(2, 0)⊕O(0, 2))⊗O(k − 3,−k − 1)

)
= H1

(
P1 × P1,O(k − 1,−k − 1)⊕O(k − 3,−k + 1)

)
= H1

(
P1 ⊗ P1,O(k − 1,−k − 1)

)
⊕H1

(
P1 ⊗ P1,O(k − 3,−k + 1)

)
Therefore, H1(P1 × P1, TP1×P1 ⊗ ∧2W∨) is nonzero if and only if H1(P1 ⊗ P1,O(k − 1,−k − 1)) ̸= 0 or

H1(P1 ⊗ P1,O(k − 3,−k + 1)) ̸= 0.

Observe the fact that

H1(P1 × P1,O(a, b))

=
(
H0
(
P1,O(a)

)
⊗H1

(
P1,O(b)

))
⊕
(
H1(P1,O(a))⊗H0(P1,O(b))

)
and hence if a ≤ −2 and b ≥ 0 (or a ≥ 0 and b ≤ −2 by the symmetry) then H1(P1 × P1,O(a, b)) is not

equal to zero.
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i) If k ≥ 1 then k − 1 ≥ 0 and −k − 1 ≤ −2.

H0
(
P1,O(k − 1)

)
⊗H1

(
P1,O(−k − 1)

)
̸= 0

⇒
(
H0
(
P1,O(k − 1)

)
⊗H1

(
P1,O(−k − 1)

))
⊕
(
H1(P1,O(k − 1))⊗H0(P1,O(−k − 1))

)
̸= 0

⇒ H1(P1 × P1,O(k − 1,−k − 1)) ̸= 0

ii) If k ≤ 1 then k − 3 ≤ −2 and −k + 1 ≥ 0.

H1
(
P1,O(k − 3)

)
⊗H0

(
P1,O(−k + 1)

)
̸= 0

⇒
(
H0
(
P1,O(k − 3)

)
⊗H1

(
P1,O(−k + 1)

))
⊕
(
H1(P1,O(k − 3))⊗H0(P1,O(−k + 1))

)
̸= 0

⇒ H1(P1 × P1,O(k − 3,−k + 1)) ̸= 0

In conclusion, H1(P1 ⊗ P1,O(k − 1,−k − 1))⊕H1(P1 ⊗ P1,O(k − 3,−k + 1)) is non zero for all k.

We are now ready to prove the main theorem.

Proof. of Theorem 6.2.2.

To show the (non) splitness of the Hilbert scheme, it is enough to check whether the obstruction class

ω2 ∈ H1(P1 × P1, TP1×P1 ⊗∧2W∨) defined by Hilb2|1(ΠV ) is vanishing or not. Note that TP1×P1 ⊗∧2W∨ is

the sheaf of ∧2W∨-valued even derivations on P1 × P1.

i) The transition map (6.9) on V12 := V1 ∩ V2

a1 7→ 1

b1
+ β1β2(−b1)k−2

a2 7→ b2

α1 7→ −β1(−b1)k−2(b2 −
1

b1
)

α2 7→ β2

defines a section ω12
2 ∈ Γ(V1 ∩ V2, TP1×P1 ⊗ ∧2W∨) as

ω12
2 = β1β2(−b1)k−2

∂

∂a1
= −

α1α2

a2 − a1

∂

∂a1
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Here the identification α1α2 = −(−b1)k−2(b2 −
1

b1
)β1β2 is used.

ii) On V13 := V1 ∩ V3

The transition map (6.8)

a1 7→ c1 − γ1γ2(−c2)−k

a2 7→ 1

c2

α1 7→ γ1

(
1

c2
− c1

)
α2 7→ γ2(−c2)−k

defines ω13
2 ∈ Γ(V1 ∩ V3, TP1×P1 ⊗ ∧2W∨)

ω13
2 = −(−c2)−kγ1γ2

∂

∂a1
= − α1α2

a2 − a1

∂

∂a1

iii) On V23 := V2 ∩ V3.

We have ω23
2 = 0 because V23 ⊂ V12 ∩ V13.

iv) The transition map (6.10) on V24 := V2 ∩ V4 gives

β1 = δ1(b
−1
2 − b1)

−1 = δ1(d2 − d1)
−1

β2 = δ2(−b2)k = δ2(−d2)−k

and β1β2 = δ1δ2
(d2−d1)(−d2) .

Hence, we have the transition map

b1 7→ d1 +
β1β2
(−b2)k

= d1 +
δ1δ2

(d2 − d1)

b2 7→ d−1
2

β1 7→ δ(d2 − d1)
−1

β2 7→ δ2(−d2)−k
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which defines a section ω24
2 ∈ Γ(V2 ∩ V4, TP1×P1 ⊗ ∧2W∨) as

ω24
2 =

β1β2
(−b2)k

∂

∂b1
=

δ1δ2
d2 − d1

∂

∂d1

Then non-vanishing of the obstruction class ω2 can be proven by showing that there is no element

σ = (σi)i ∈
∏
i Γ(Vi, T ⊗ ∧2W∨) such that the boundary map sends (σi)i to

(
ωij2

)
ij
.

Suppose not. Then there are σi ∈ Γ(Vi, T ⊗∧2W∨) such that ωij2 = σj−σi on each Vij . More specifically,

fix coordinates ([z0; z1], [w0;w1]) ∈ P1 × P1 and let f( z1z0 ,
w1

w0
), f̄( z1z0 ,

w1

w0
) ∈ C

[
z1
z0
, w1

w0

]
, g( z0z1 ,

w1

w0
), ḡ( z0z1 ,

w1

w0
) ∈

C
[
z0
z1
, w1

w0

]
, h( z1z0 ,

w0

w1
), h̄( z1z0 ,

w0

w1
) ∈ C

[
z1
z0
, w0

w1

]
and l( z0z1 ,

w0

w1
), l̄( z0z1 ,

w0

w1
) ∈ C

[
z0
z1
, w0

w1

]
be polynomials such that

σ1 = f

(
z1
z0
,
w1

w0

)
α1α2

∂

∂( z1z0 )
+ f̄

(
z1
z0
,
w1

w0

)
α1α2

∂

∂(w1

w0
)

σ2 = g

(
z0
z1
,
w1

w0

)
β1β2

∂

∂( z0z1 )
+ ḡ

(
z0
z1
,
w1

w0

)
β1β2

∂

∂(w1

w0
)

σ3 = h

(
z1
z0
,
w0

w1

)
γ1γ2

∂

∂( z1z0 )
+ h̄

(
z1
z0
,
w0

w1

)
γ1γ2

∂

∂(w0

w1
)

σ4 = l

(
z0
z1
,
w0

w1

)
δ1δ2

∂

∂( z0z1 )
+ l̄

(
z0
z1
,
w0

w1

)
δ1δ2

∂

∂(w0

w1
)

(6.12)

Observe that

ω12
2 = (−z0

z1
)k−2β1β2

∂

∂( z1z0 )

= σ2 − σ1

= − f

(
z1
z0
,
w1

w0

)
α1α2

∂

∂( z1z0 )
− f̄

(
z1
z0
,
w1

w0

)
α1α2

∂

∂(w1

w0
)

+ g

(
z0
z1
,
w1

w0

)
β1β2

∂

∂( z0z1 )
+ ḡ

(
z0
z1
,
w1

w0

)
β1β2

∂

∂(w1

w0
)

= f ·
(
b2 −

1

b1

)
(−b1)k−2β1β2

∂

∂( z1z0 )
− g ·

(
z1
z0

)2

β1β2
∂

∂( z1z0 )
+
(
−f̄α1α2 + ḡβ1β2

) ∂

∂(w1

w0
)

(6.13)

By comparing coefficients, we get

(
−z0
z1

)k
= −g

(
z0
z1
,
w1

w0

)
+ f

(
z1
z0
,
w1

w0

)(
w1

w0
− z1
z0

)(
−z0
z1

)k
(6.14)
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Similarly, on V13

ω13
2 = − α1α2

a2 − a1

∂

∂( z1z0 )
= −(−c2)−kγ1γ2

∂

∂( z1z0 )

= σ3 − σ1

= − f

(
z1
z0
,
w1

w0

)
α1α2

∂

∂( z1z0 )
+ h

(
z1
z0
,
w0

w1

)
γ1γ2

∂

∂( z1z0 )
− f̄α1α2

∂

∂(w1

w0
)
+ h̄γ1γ2

∂

∂(w0

w1
)

Hence, we have

−
(
−w1

w0

)k
= h

(
z1
z0
,
w0

w1

)
− f

(
z1
z0
,
w1

w0

)(
w1

w0
− z1
z0

)(
−w1

w0

)k
(6.15)

Finally, on V23, we have

ω23
2 = 0 = σ3 − σ2

= h · γ1γ2
∂

∂( z1z0 )
+ h̄ · γ1γ2

∂

∂(w0

w1
)
− g · β1β2

∂

∂( z0z1 )
− ḡ · β1β2

∂

∂(w1

w0
)

= h · γ1γ2
∂

∂( z1z0 )
+ g · (−c2)−k(−b1)−k+2γ1γ2

∂

∂( z0z1 )
+ h̄ · γ1γ2

∂

∂(w0

w1
)
− ḡ · β1β2

∂

∂(w1

w0
)

= h · γ1γ2
∂

∂( z1z0 )
− g ·

(
−w0

w1

)−k (
−z0
z1

)−k+2(
z1
z0

)2

γ1γ2
∂

∂( z1z0 )
+ h̄ · γ1γ2

∂

∂(w0

w1
)
− ḡ · β1β2

∂

∂(w1

w0
)

and thus

h

(
z1
z0
,
w0

w1

)
− g

(
z0
z1
,
w1

w0

)(
−w1

w0

)k (
−z1
z0

)k
= 0 (6.16)

Now we derive a contradiction for any k.

Case I k > 0

If k is positive, g
(
z0
z1
, w1

w0

)(
−w1

w0

)k (
− z1
z0

)k
has a term with w0 at the denominator for all nonzero

g. Since h
(
z1
z0
, w0

w1

)
can not have w0 at the denominator, to make the equality (6.16) true, g and

h must vanish. Then the equation (6.15) implies

(
−w1

w0

)k
= f

(
z1
z0
,
w1

w0

)(
w1

w0
− z1
z0

)(
−w1

w0

)k
⇒ 1 = f

(
z1
z0
,
w1

w0

)(
w1

w0
− z1
z0

)
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which is a contradiction.

Case II . k < 0

Observe that g
(
z0
z1
, w1

w0

)
·
(
−w1

w0

)k (
− z1
z0

)k
has z1 at the denominator for any nonzero g ̸= 0.

Hence, the equation (6.16) means that h = g = 0. Then, as in the case k > 0, the equation (6.15)

implies 1 = f
(
z1
z0
, w1

w0

)(
w1

w0
− z1

z0

)
which is a contradiction.

Case III . k = 0

If k = 0, the equation (6.16) becomes

h

(
z1
z0
,
w0

w1

)
= g

(
z0
z1
,
w1

w0

)
.

By comparing variables, we can conclude that

h

(
z1
z0
,
w0

w1

)
= g

(
z0
z1
,
w1

w0

)
= c (6.17)

for some constant c. Then the equation (6.14) implies that

1 = f

(
z1
z0
,
w1

w0

)(
w1

w0
− z1
z0

)
− g

(
z0
z1
,
w1

w0

)
⇒ 1 + c = f

(
z1
z0
,
w1

w0

)
·
(
w1

w0
− z1
z0

)

To make the right hand side a constant, f must vanish and thus c equals −1.

Observe (6.13)

ω12
2 = (−z0

z1
)−2β1β2

∂

∂( z1z0 )

= f ·
(
b2 −

1

b1

)
b−2
1 β1β2

∂

∂( z1z0 )
− g ·

(
z1
z0

)2

β1β2
∂

∂( z1z0 )
+
(
−f̄α1α2 + ḡβ1β2

) ∂

∂(w1

w0
)

=

(
z1
z0

)2

β1β2
∂

∂( z1z0 )
+
(
−f̄α1α2 + ḡβ1β2

) ∂

∂(w1

w0
)
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Taking coefficients of
∂

∂(w1

w0
)
, we have

0 =− f̄

(
z1
z0
,
w1

w0

)
α1α2 + ḡ

(
z0
z1
,
w1

w0

)
β1β2

=− f̄

(
z1
z0
,
w1

w0

)
b−2
1

(
b2 −

1

b1

)
β1β2 + ḡ

(
z0
z1
,
w1

w0

)
β1β2

However, there is no nonzero f̄ which satisfies

−f̄
(
z1
z0
,
w1

w0

)(
−z0
z1

)−2(
w1

w0
− z1
z0

)
+ ḡ

(
z0
z1
,
w1

w0

)
= 0

Therefore, we get f̄ = 0 and ḡ = 0.

By using symmetry, we can also show that h̄ = 0 and l̄ = 0.

On V1 ∩ V4, we have relations x = 1
y and θ = ϕ

y0 = ϕ. Then

= ⟨(y + d1)(y + d2) + δ1(ϕ+ δ2), (y + d1)(ϕ+ δ2)⟩

=

⟨(
1

x
+ d1

)(
1

x
+ d2

)
+ δ1(θ + δ2),

(
1

x
+ d1

)
(θ + δ2)

⟩
=
⟨
(d1x+ 1)(d2x+ 1) + δ1(θ + δ2)x

2, (d1x+ 1)(θ + δ2)
⟩

=
⟨
(x+ d−1

1 )(x+ d−1
2 ) + δ1d

−1
1 d−1

2 (θ + δ2)x
2, (x+ d−1

1 )(θ + δ2)
⟩

(6.18)

Note that x(θ + δ2) = −d−1
1 (θ + δ2) modulo the above ideal. Therefore, we have

δ1d
−1
1 d−1

2 x2(θ + δ2) = −δ1d−2
1 d−1

2 x(θ + δ2)

= δ1d
−3
1 d−1

2 (θ + δ2)

Then the ideal in (6.18) equals to

⟨(
x+ d−1

1

)
(x+ d−1

2 ) + δ1d
−3
1 d−1

2 (θ + δ2),
(
x+ d−1

1

)
(θ + δ2)

⟩

Hence, the transition map on V1 ∩ V4 is

(a1, a2 |α1, α2) 7→
(

1

d1
,
1

d2

∣∣∣ δ1d−3
1 d−1

2 , δ2

)
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By using symmetry, we can easily find the transition map on V34 from the transition map on V12.

(d1, d2 | δ1, δ2) 7→
(

1

c1
+ γ1γ2(−c1)−2, c2

∣∣∣ − γ1(−c1)−2

(
c2 −

1

c1

)
, γ2

)

On V2 ∩ V3, consider the following identities

(c1, c2|γ1, γ2) 7→ ⟨(x+ c1 + γ1θ)(y + c2), (x+ c1 + γ1θ)(ϕ+ γ2)⟩

=
⟨
(x+ c1 + γ1θ)(x+ c−1

2 ), (x+ c1 + γ1θ)(θ + γ2)
⟩

=
⟨
(x+ c1 − γ1γ2)(x+ c−1

2 ) + γ1(c
−1
2 − c1)(θ + γ2),

(x+ c1 − γ1γ2)(θ + γ2)⟩

on V3 and

(b1, b2|β1, β2) 7→ ⟨(y + b1 + β1ϕ)(x+ b2), (y + b1 + β1ϕ)(θ + β2)⟩

=

⟨
(
1

x
+ b1 + β1θ)(x+ b2), (

1

x
+ b1 + β1θ(θ + β2)

⟩
=
⟨
(x+ b−1

1 − b−2
1 β1θ)(x+ b2), (x+ b−1

1 − b−2
1 β1θ)(θ + β2)

⟩
=
⟨
(x+ b−1

1 + b−2
1 β1β2θ)(x+ b2)− b−2

1 β1(b2 − b−1
1 )(θ + β2),

(x+ b−1
1 + b−2

1 β1β2θ)(θ + β2)
⟩

on V2.

Therefore, we have

c1 − γ1γ2 = b−1
1 + b−2

1 β1β2

c−1
2 = b2

γ1(c
−1
2 − c1) = −β1b−2

1 (b2 − b−1
1 )

γ2 = β2

Using identities γ1γ2 = −β1β2b−2
1 and c1 = b−1

1 , the transition map on V2 ∩ V3 is given as

(c1, c2 | γ1, γ2) =
(
b−1
1 , b−1

2 | − β1b
−2
1 , β2

)
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Then we can see that the Hilbert scheme gives the sections

ω12
2 = β1β2(−b1)−2 ∂

∂a1

= −β1β2
∂

∂b1
∈ Γ(V1 ∩ V2, TP1×P1 ⊗ ∧2W∨)

ω13
2 = −γ1γ2

∂

∂c1
∈ Γ(V1 ∩ V3, TP1×P1 ⊗ ∧2W∨)

ω23
2 = 0

ω34
2 = −γ1γ2(−c1)−2 ∂

∂d1

= γ1γ2
∂

∂c1
∈ Γ(V3 ∩ V4, TP1×P1 ⊗ ∧2W∨)

ω24
2 = β1β2

∂

∂d1
∈ Γ(V2 ∩ V4, TP1×P1 ⊗ ∧2W∨)

ω14
2 = 0

(6.19)

From the assumption (6.12), we have the identity

0 = ω14
2

= σ4 − σ1

= l

(
z0
z1
,
w0

w1

)
δ1δ2

∂

∂( z0z1 )
− f

(
z1
z0
,
w1

w0

)
α1α2

∂

∂( z1z0 )

Since f = 0, we have l = 0 and σ4 = 0.

To sum up, we have

σ1 = 0

σ2 = −β1β2
∂

∂( z0z1 )

σ3 = −γ1γ2
∂

∂( z1z0 )

σ4 = 0

and ωij2 = σj − σi for all i and j.

Therefore, the obstruction class is vanishing.

According to [Ma], every supermanifold (S,OS) of odd dimension 2 is defined up to isomorphism
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by the pair (Sred,W ) and a cohomology class ω ∈ H1(Sred, TSred
⊗ ∧2W∨). Therefore, the

Hilbert scheme Hilb2|1(ΠOP1) is isomorphic to its split model ∧•W where W =
(
J /J 2

)∨
and

J ⊂ OHilb2|1(ΠOP1 )
is the ideal generated by nilpotents.
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Chapter 7

Future works

7.1 (Non)smoothness of Hilbp|q(C1|2)

It is natural to ask that when Hilbp|q(C1|2) is smooth. In Chapter 5, we already checked that the Hilbert

scheme Hilbp|q(C1|2) is smooth if p+ q ≤ 3 or q ≤ 1. It remains to be checked whether Hilbp|q is smooth or

not, for p+ q > 3 and q > 1 (i.e., p ≥ 2 and q ≥ 2).

Remark 7.1.1.

i) Hilb1|q(C1|2) is empty for q > 2 and Hilb0|q(C1|2) is empty for all q > 0.

ii) Hilbp|q(C1|2) is non empty if and only if p ̸= 0 and q ≤ 2p.

From already proved cases, we conjecture the following.

Conjecture 7.1.1. The Hilbert scheme Hilbp|q(C1|2) is smooth if i) p + q ≤ 3 or ii) q ≤ 1, and singular

otherwise.

For p = 2, (p|q) = (2|3) and (p|q) = (2|4) are the only nontrivial cases.

If q ≤ 2p−2 and p > 2, then the Hilbert scheme Hilbp|q(C1|2) contains an open subset which is isomorphic

to Hilb2|2(C1|2)×Hilbp−2|q−2(C1|2)−∆. Since Hilb2|2(C1|2) is not smooth, the result follows.

If q > 2p and p > 2 , Hilbp|q(C1|2) is empty.

Therefore, Conjecture 7.1.1 can be proved by showing the non-smoothness of Hilbp|q(C1|2) when (p|q) =

(2|3), (p|q) = (2|4), q = 2p− 1 and q = 2p. More details will appear in another paper.
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