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Abstract

Functional data arise frequently in numerous scientific fields with the development of

modern technology. Accordingly, functional data analysis to extract information on

curves or functions is an important area for investigation. In this thesis, we address

two key issues: measuring an effect size of variable of the interest in functional analysis

of variance (fANOVA) model and the development of robust probabilistic classifier

in functional response model. We especially consider irregular functional data in our

study, where curves are collected over varying or non-overlapping intervals.

First, we develop an approach to quantify the effect size on functional data, per-

form functional ANOVA hypothesis test, and conduct power analysis. We develop an

approach to quantify the effect size on functional data, perform functional ANOVA

hypothesis test, and conduct power analysis. We introduce the functional signal-to-

noise ratio (fSNR), visualize the magnitude of effects over the interval of interest,

and perform bootstrapped inferences. It can be applicable when the individual curves

are sampled at irregularly spaced points or collected over varying intervals. The pro-

posed methods are applied in the analysis of functional data from inter-laboratory

quantitative ultrasound measurements, and in a reanalysis of Canadian weather data.

Moreover, we represent the asymptotic power of functional ANOVA test as a function

of proposed measure. The agreement between the asymptotic and empirical results

is examined and found to be quite good even for small sample sizes. The asymptotic

lower bound of power can be reasonably used to determine sample size in planning
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experimental design.

Secondly, we build a robust probabilistic classifier for functional data, which pre-

dicts the membership for given input as well as provides informative posterior prob-

ability distribution over a set of classes. This method combines Bayes formula and

semiparametric mixed effects model with robust tuning parameter. We aim to make

the method robust to outlying curves especially in providing robust degree of certainty

in prediction, which is crucial in medical diagnosis. It can be applicable to various

practical structures, such as unequally and sparsely collected samples or repeatedly

measured curves retaining between-curve correlation, with very flexible spatial co-

variance function. As an illustration we conduct simulation studies to investigate

the sensitivity behaviors of probability estimates to outlying curves under Gaussian

assumption and compare our proposed classifier with other functional classification

approaches. The performance is evaluated by imposing more penalty for being con-

fident but false prediction. The value of the proposed approach hinges on its simple,

flexible, and computational efficiency. We illustrate the issues and methodology in

ultrasound quantitative ultrasound, backscatter coefficient vs. frequency functional

data, commonly obtained as irregular form and public dataset with artificial contam-

ination. We also show how to implement proposed classifier in R.
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Chapter 1

Introduction

With continual developments in instrumentation and advanced computing, there has

been an increasing need for modeling and analyzing functional data that are col-

lected nearly continuously over fine grids or regions of interest. In accordance with

this growth, there is an extensive literature on methods for functional data analysis

(Ramsay and Silverman, 2005). Less well developed, to our knowledge, are studies on

irregularly sampled curves which are collected on varying or non-overlapped intervals.

Our studies focus on the analysis of irregularly sampled functional data, especially

the estimation of effect size to quantify the magnitude of the relationship between

functional response and variable of interest in fANOVA and construction of robust

classifier providing degree of certainty for diagnosis purpose.

This research is motivated by quantitative ultrasound (QUS) data which aim to

extract diagnostically useful information from the ultrasound radio frequency sig-

nals, in particular the backscatter (BSC) and attenuation properties of the scanned

material along different scan lines (Wirtzfeld et al., 2013). Wirtzfeld et al. (2015)

presented data and results from diagnostic ultrasound studies using multiple trans-

ducers to scan mammary tumors and fibroadenomas (benign fibrous masses) in rats

and mice. The frequency dependent BSC curves derived from the power spectra of

these scans took the form of functional measurements spanning the frequency range

of the ultrasound transducer.

Due to the noninvasive nature of ultrasound imaging, diagnosis via ultrasound is
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widely used in medical applications. However, for BSC measurements to translate to

the clinic, the detection of differences in the features of the BSC curves for different

tumors needs to be statistically assessed. Beyond statistical inference, variation due

to tumor effect needs to be compared with variation due to background noise to study

the precision in diagnosis. In such settings it is worth examining tumor effect sizes

on BSC curves both locally and globally. For example, clinicians might be interested

in the overall effect size over the frequency range of interest to make sure about the

precision in diagnosis, otherwise, the pointwise effect size evaluated at each grid is

of interest for researchers to develop the measurement system achieving the most

effective separation. Furthermore, by examining confidence intervals of local effect

size, we can infer whether the change of effect size over frequencies is statistically

significant or not.

As a next stage, if statistically distinct behaviors in BSC functions over different

types of tumor are proved, then an immediate question we may have correspondingly

is, whether the functional data classification method can diagnose the future obser-

vations into the correct classes. Especially providing stable and informative posterior

probabilities to be assigned to each class is of interest in terms of diagnostic purpose.

However motivating data has a challenging structure as in Figure 1.1. It is irregu-

larly collected over frequencies, seemingly heavy-tail distributed with large noise and

has dependence structure between multiple curves. In experiment, functional BSC are

collected in several laboratories using different transducers covering different ranges

of frequency, scanning the target tumor in living animal multiple times. Thus curves

retaining between-curve correlation have varying grid points and intervals. In addi-

tion, noninvasive scan causes potential outlying behaviors suffered from unexpected

contamination by scanning neighboring other tissues or noise in environment.

In Chapter 2, we introduce functional Signal-to-Noise Ratio (fSNR) to measure
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Figure 1.1: Backscatter functions for one of the scanned tumors

local effect size along the entire functional domain. It provides not only graphical

visualization but also valuable information about which ranges have the largest effect

size. Secondly, we define a globalized effect size that summarizes effect size over region

of interest. Third, we represent the asymptotic power of fANOVA test as a function

of proposed global measure. The agreement between the asymptotic and empirical

results is examined via simulation studies under different scenarios and found to be

quite good even for small sample sizes. This agreement and asymptotic lower bound of

power enable to derive sample size estimation tool for planning experimental design.

In Chapter 3, we build a robust probabilistic classifier for functional grouped data,

which provides a predicted class label as well as a probability distribution over a set

of classes. It is based on spline based mixed-model with robust tuning parameter

and Bayes rule, and especially mixed effects model approach enables to approximate

covariance function in a flexible and efficient way. The key of our method is to

impose heavy-tail distribution assumption with robustness parameter ν on random

coefficients to yield robust result. We focus on the evaluation of functional data

classifier in terms of accuracy for predicted posterior probability to be assigned to the

3



correct class.

In Chapter 4, we sketch the foundation of asymptotic analysis for unbalanced

functional data, for large sample inference and theoretic basis for use of the bootstrap.
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Chapter 2

Effect Size and Power Analysis for
Functional ANOVA

2.1 Introduction

Functional data in which the response measurements consist of functions observed

continuously over a fine grid occur in many different fields more often in recent

years. In accordance with this growth, there is an extensive literature on methods

for functional data analysis. Ramsay and Silverman (2005) provide a comprehensive

treatment. Also a number of authors have developed global testing and inference

for k-group functional response data including the functional analysis of variance

(fANOVA) methods of Cuevas et al. (2004), Shen and Faraway (2004), and Zhang

and Liang (2014).

Less well developed, to our knowledge, are studies on the estimation of effect size

to quantify the magnitude of the relationship between functional response and vari-

able of interest. Indeed, characterizing an effect size is prominent in practical studies,

because research findings can be clearly presented by this measure. It also facilities

interpretation and performs a fair comparison among variables due to its robustness

in scale and measurement units. Additionally, effect size is closely related to statis-

tical power of a hypothesis test, which can be used for sample size determination in

experimental design or for interpretation of test result.

In related work Yao, Muller and Wang (2005a) proposed the coefficient of deter-

mination in functional linear regression to define a global measure of the association.
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They proposed two types of functional R2 by integrating the pointwise R2(s) over the

domain s and by integrating the numerator and the denominator separately. Those

measures estimate global effect size over s, however, further statistical inference based

on them was not concerned. Partial R2 proposed by Edwards et al. (2008) measures

such magnitude in mixed effect structure, especially for the longitudinal linear mixed

model. However, some restrictive parametric assumptions are required and the con-

nection between an effect size and statistical inference received less attention in the

study.

We propose a general approach to estimate the effect size of the variable of interest

and further analysis for the functional data. While many developed methodologies

are restricted to regular structure where curves are collected over common grids and

interval, our proposed analysis can be applicable to irregular structure where collec-

tions of curves are unequally and sparsely sampled over varying intervals. In this

paper, the measures quantifying local and global effects of the variable are developed.

A key idea is to extend the signal-to-noise ratio (SNR), a widely used measure in

engineering defined as the ratio of the variance of the target signal to the variance of

noise, to functional structure. Indeed, closely related concepts have developed in the

statistics literature as well, for example, noncentrality parameter of the F -statistic in

ANOVA. It is often used as a measure of effect size or as a planning tool in power

analysis. The extensions developed in the present paper are designed to provide anal-

ogous types of analysis for functional response data. Specifically, the use of estimated

global measure as an inferential statistic to detect significant effect over the domain

is studied. We discuss the use of the proposed local measure for visualization and

derivation of confidence intervals to find which parts of the function domain are most

informative.

Much functional data analysis research have been centered around data analysis,
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with little attention paid to power analysis under finite-sample. Although Zhang

(2011) and Zhang and Liang (2014) studied asymptotic powers of functional F-type

tests in fANOVA model, the main goal was to show root-n consistency of tests.

Shen and Faraway (2004) estimated power and size of test via simulation studies,

but the purpose was to compare existing test methods. In this paper, we represent

asymptotically approximated statistical power as a function of proposed effect size

and study the agreement between the asymptotic and empirical powers under finite

sample sizes. We also derive asymptotic lower bounds of the power of fANOVA tests

based on the proposed effect size. The accuracy of the asymptotic approximation

is found to be good for moderate sample sizes, which implies approximated lower

bounds can be used for sample size determination. It enables sample size estimation

in the design of experiment.

The rest of the paper is organized as follows. In Section 2, we introduce the

functional SNR to measure the local effect size and extend it to fANOVA model.

We define global measure over the interval of interest and present estimation of pro-

posed measures. Also statistical inferences based on local and global effect sizes are

introduced. In Section 3, the agreement between the asymptotic and empirical pow-

ers under finite sample size are investigated on various scenarios. Also it provides

asymptotic approximation of lower bounds of power as a tool for sample size deter-

mination and its numerical implementation. We return to quantitative ultrasound

data in Section 4 with an application to real data. The Canadian weather data ex-

ample illustrates the usefulness of the proposed methods and it is relegated to the

supplementary file. Discussions and concluding remarks are in Section 4.
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2.2 Functional Signal-to-Noise Ratio

Let y(s) denote functional response over a given interval of interest S. The individual

curve can be decomposed into the systematic signal and random noise components,

y(s) = µ(s) + ε(s), s ∈ S, (2.1)

where µ(s) is a functional mean and ε(s) is a stochastic process with mean zero

and covariance function γ(s, t), s, t ∈ S. If γ(s, t) is strictly positive definite and∫
s
γ(s, s)ds < ∞, the spectral decomposition of γ(s, t) leads to γ(s, t) =

∑∞
j=1

λjφj(s)φj(t), where λj ≥ 0 are the eigenvalues in descending order and φj(s) the

corresponding orthonormal eigenfunctions. Letting σ2(s) = γ(s, s), it will be as-

sumed that µ(·) and σ(·)−1 are continuous, Riemann square-integrable functions on

S so that integrals over the continuous domain can be approximated by summations

over a fine grid.

Within this framework we focus on measuring the deviation of µ(·) from a func-

tional null space, Θ0, of no effect, in comparison to the noise level. Thus we define

the functional signal-to-noise ratio (fSNR),

fSNR(s) =
√
{|µ(s)− µ0(s)|/σ(s)}2, s ∈ S, (2.2)

where

µ0(·) = arg min
η∈Θ0

‖η(·)− µ(·)‖, (2.3)

for an appropriate norm ‖ · ‖ such as a weighted L2 norm over S.

If the no-effect hypothesis implied by Θ0 imposes only point-wise constraints, for

example, Θ0 = {µ : µ(st) = µ0(st), for a known fixed function µ0, where {st; t =

1, ..., T} ∈ S}, then fSNR(s) is the function of pointwise signal-to-noise ratios. On
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the other hand, if Θ0 imposes constraints defined across s, then fSNR(s) is not

necessarily equal to the pointwise signal to noise ratio. Consider, for example, Θ0 =

{µ : µ(s) = c, s ∈ [a, b], c unspecified}, and suppose we measure the distance from

Θ0 using the norm ‖f‖σ = { 1
(b−a)

∫ b
a
f 2(s)/σ2(s)ds} 1

2 . The solution µ0(s) is a constant

function equal to the weighted mean of µ(s) over s ∈ [a, b], and is given by µ̄σ :=∫
{µ(s)/σ2(s)}ds/

∫
{1/σ2(s)}ds. Another example is a smoothing constraint, such as

Θ0 = {µ :
∫

(µ′′)2(s)ds < c, s ∈ [a, b]}. Each of these cases, µ0 is jointly specified over

s rather than pointwise.

In the remainder of this article, we focus on settings in which the no-effect hy-

pothesis can be specified pointwise, which is the case in our motivating application.

2.2.1 Missing data framework for irregular functional data

In this section, we construct a missing data interval sampling framework for irregularly

collected data motivated by our collaborative research (Wirtzfeld et al. 2015); cf.

Figure 1.1. We differentiate two stochastic processes; the complete random process

yc(s) on S, and the observed incomplete random process y(s) denoting yc(s) observed

only on a random sub-interval in S. The irregular functional data can be understood

to be a collection of realizations of y(s).

Let yci (s), i = 1, ..., n denote the complete-data random functions defined over the

full range S = [a, b], and let Ii, i = 1, ..., n denote random intervals in S. Let SP (µ, γ)

denote a stochastic process with mean function µ(s), s ∈ S and covariance function

γ(s, t), s, t ∈ S, and let [L,U ] represent random interval with random lower and upper
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bounds satisfying P (L < U) = 1. We consider the following model assumptions:


yc1(s), ..., ycn(s)

i.i.d.∼ SP (µ, γ),

Li
i.i.d.∼ FL, Ui

i.i.d.∼ FU with P ([Li, Ui] ⊂ S) = 1,

infs∈S P (s ∈ [Li, Ui]) > 0,

(2.4)

for i = 1, . . . , n. Then yi(s) = yci (s)1[Li,Ui](s) for s ∈ [Li, Ui] and is undefined else-

where. Let yi(s), i = 1, ..., n denote random functional samples under this framework.

Then for each s ∈ S, the weak law of large numbers and the continuous mapping the-

orem imply that

ȳ(s) =

∑n
i=1 y

c
i (s)1[Li,Ui](s)∑n

i=1 1[Li,Ui](s)

p→ µ(s),

σ̂2(s) =

∑n
i=1(yci (s)− ȳ(s))21[Li,Ui](s)∑n

i=1 1[Li,Ui](s)− 1

p→ σ2(s).

(2.5)

See supplementary materials for proof. For each s, sample mean and variance converge

to mean and variance of yc(s). This result can be used to estimate consistent pointwise

effect size for each s in section 2.3.

As an example, suppose L = min(V1, V2), U = max(V1, V2) with Vh
i.i.d.∼ FV , h =

1, 2. The coverage probability is positive and bounded away from zero with random

variable V defined on S satisfying infs∈S FV (s){1− FV (s)} > 0. By doing so, each s

has rich information as sample n increases and the unobserved parts of each individual

curve on S can be understood as Missing Completely at Random (MCAR).
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2.2.2 Application to functional ANOVA Model

We now consider a functional ANOVA model with the goal of measuring the effect

size of the grouping variable. Let yg(s), s ∈ S, denote the functional response data

and g = 1, ..., k, be a group factor. The individual curve can be decomposed into

overall mean, group mean and noise parts similar to ANOVA model as follows.

yg(s) = µ0(s) + βg(s) + ε(s), s ∈ S, (2.6)

where µ0(s) is a group-independent mean function, βg(s) represents the group de-

pendent effect with constraint
∑

g ngβg(s) = 0, and ε(s) denotes a stochastic process

in (2.1). Under the null hypothesis of no group-effect, βg(s) = 0, g = 1, ..., k. We

measure functional deviations from the null by extending fSNR to fANOVA model

as,

fSNR(s) =
√
WAV E{|βg(s)/σ(s)|2}, s ∈ S, (2.7)

where WAV E{xg} := N−1
∑

g ngxg denotes the weighted average. Here ng, g =

1, ..., k, denote the number of curves in each group and N =
∑

g ng.

In order to develop test statistic as well as global measure of effect size over the

interval of interest, we may summarize the effect size using various functions of fSNR.

Assuming that both µ and σ−1 are square-integrable functions on S, we define the

summary measure as,

GfSNR = ‖fSNR(·)‖, (2.8)

where ‖f(·)‖ := { 1
|S|

∫
S f

2(s) ds}1/2 and |S| is the length of an interval. We can

measure more refined effects by calculating values from subintervals of S. Another

way, not considered here, is to replace the L2 norm by a sup norm.

Alternatively, if homoscedasticity is assumed over S, we define the second type of
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global measure as,

G∗fSNR =
1

‖σ(·)‖

√
WAV E{‖βg(·)‖2}, (2.9)

It compares the norm of the functional deviation in mean curve with the norm of

the standard deviation curve.

2.2.3 Pointwise and smoothed estimates of fSNR

Let ygi(s) = ycgi1[Ugi,Lgi](s), g = 1, ..., k, i = 1, ..., ng be observed functional data

under irregular sampling framework. In order not to overload notation, through-

out this paper we will write ng(s) =
∑ng

i=1 1[Ugi,Lgi](s), g = 1, ..., k, and N(s) =∑k
g=1

∑ng

i=1 1[Ugi,Lgi](s). And we keep ng and N to denote the number of curves in

group g and total number of samples over G groups, respectively. Then the consis-

tent and unbiased estimator of fSNR can be derived via F-statistic function as,

ˆfSNR
2
(s) =

 (k − 1)(F (s)− 1)/N(s) if F (s) ≥ 1,

0 elsewhere
(2.10)

where F (s) = MSB(s)/MSW (s), with MSB(s) =
∑k

g=1 ng(s){ȳg·(s)− ȳ··(s)}2/(k−

1) and MSW (s) =
∑k

g=1

∑ng(s)
i=1 {ygi(s) − ȳg·(s)}2/(N(s) − k) denote the functions

of weighted mean square deviations between groups and the mean square deviations

within groups for each s. Here ȳg·(s) and ȳ··(s) are group mean and overall mean

curves averaged over ng(s) and N(s) for each s. It is derived analogous to group-effect

size estimation in Wirtzfeld et al. (2013) and indeed, if F (s) ≥ 1, it is a consistent

estimator of fSNR2(s) by (2.5) as bias correction term (k−1)/N(s)
p→ 0. If F (s) < 1,

we will replace ˆfSNR
2
(s) by 0. In practice, functional curves are recorded over finite

number of grid points rather than being observed continuously. Suppose that we

observe ygi(sgit), g = 1, ..., k, i = 1, ..., ng, t = 1, ..., Tgi, in a discretized fashion with
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∪g,i{sgi1, ..., sgiTgi} = {s1 < s2 < ... < sT} ∈ S. Then discretized fSNR is estimated

for each st, t = 1, ..., T.

This approach can track the data better in the pointwise aspect, however, it ignores

the within-curve dependence, such as temporal or spatial nature. Especially when

each functional sample is not smooth enough due to big noise or being collected over

irregular grids under moderate sample size, estimated fSNR might have unrealistic

jumps or rapid oscillation within a short interval that leads to hard interpretation.

It is therefore plausible to assume smoothness of fSNR and obtain it by estimating

mean and deterministic standard deviation functions via smoothing. For example,

a natural approach is to regress ygi(st) on st, t = 1, ..., T non-parametrically using

kernel or spline smoothing.

The nonparametric regression allows to estimate smooth fSNR through regular-

ization and replication by borrowing strength from nearby observations within as well

as between functions. Via one of the smoothing techniques, such as cubic B-splines,

smoothing splines (Wahba, 1990) and local polynomial smoothing (Wand and Jones,

1995), MSB(s) and MSW (s) can be replaced by MSBs(s) and MSW s(s), where

MSBs(s) =
∑k

g=1 ng{µ̂g·(s)− µ̂··(s)}2/(k − 1) and MSW s(s) is the smoothed mean

square deviation curve within groups. Here µ̂g·(s) and µ̂·· are smoothed group and

overall mean functions and MSW s(s) is a smoothed regression line fitted from square

of residuals r2
gi(st) = {ygi(st)− µ̂g·(st)}2, g = 1, .., k, i = 1, ..., ng, t = 1, ..., Tgi. Then

we choose an equally spaced grid of m points in S to calculate the ratio. The use

of absolute value of rgi(st) to fit the smoothed marginal error curve and replacing

denominator by square of it is another possible approach, but experimental studies

show that it underestimates the scale of deviation. Details about various nonpara-

metric smoothing techniques can be found in Zhang and Liang (2014, section 2.4).

Note that we use a unified modeling approach that estimates group effect and reflects
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inherent smooth structure simultaneously. It is different from two-step approach in

Shen and Faraway (2004) and Zhang and Liang (2014) where reconstructed individual

curves via smoothing are used to get the estimated mean functions. However, under

irregular data frame two-step approach may lead unreliable reconstruction especially

when fitting missing parts. Morris (2015) reviews cases with evidence of benefits of

unified modeling.

Among various smoothing methods, we employ the natural cubic splines with

equally spaced L interior knots in the rest of this paper. This method is not only

easy to be implemented but relieves edge effect by adding constraints beyond the

boundary knots (Hastie et al., section 5.2.1, 2009) so that result may stable even

when sample size is not large enough. The optimal number of knots is selected via

Bayesian information criterion (BIC) which is empirically proven to perform well

under irregularly sampled functional structure (Rice and Wu, 2001). Other model

selection techniques, Akaike information criterion (AIC) or cross-validation, can be

another possibility.

To estimate proposed global measures, two types of functional F -test statistics

can be extended and used. (Shen and Faraway, 2004, Cuevas et al., 2004, and Zhang

and Liang, 2014) Those statistics are originally proposed for regular structure and

developed according to how mean squared functions are integrated over under regular

structure. Firstly, we define F as the integration of F -statistic function over the

interval,

F =
1

|S|

∫
MSB(s)

MSW (s)
ds ≈ 1

T

T∑
t=1

F (st), (2.11)

where MSB(s) and MSW (s) in section 2.3. We can also define smoothed ver-

sion by using Fs(s) = MSBs(s)/MSW s(s), and approximate the integration as∑m
t=1 Fs(st)/m.
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The second type, say F∗, is defined as the ratio of two respectively integrated

mean sums-of-squares,

F∗ =
MSBfunc

MSWfunc

=

∫
MSB(s) ds/|S|∫
MSW (s) ds/|S|

≈
∑T

t=1MSB(st)/T∑T
t=1MSW (st)/T

, (2.12)

similarly we can define smoothed version and approximates it as
∑m

t=1 MSBs(st)/∑m
t=1 MSW s(st).

Then the global group-effect size can be estimated by extending Wirtzfeld et al.

(2013),

ĜfSNR =
√

(k − 1)(F − 1)/N. (2.13)

Let ĜfSNR be zero when F is less than one. If F ≥ 1, under regular structure,

ĜfSNR
p→ GfSNR via continuous mapping theorem and dominated convergence theo-

rem under certain conditions. The bias correction term (k − 1)/N goes to zero as N

increases.

Analogously the G∗fSNR can be estimated by replacing F with F∗. Under The

value of using functional F-statistics in estimating effect size hinges on its simple

computation. Analogously the GfSNR can be estimated by replacing F∗ with F . The

value of using functional F-statistics in estimating effect size hinges on its simple

computation.

2.2.4 Large sample approximation and bootstrap testing

Next we consider hypothesis testing based on fSNR statistics for global hypotheses

of the form:

H0 : GfSNR = 0 versus HA : GfSNR > 0
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or

H0 : G∗fSNR = 0 versus HA : G∗fSNR > 0.

For balanced functional sampling structures, the test via global measure GfSNR is

equivalent to the GPF test proposed by Zhang and Liang (2014). Specifically, un-

der condition A and null hypothesis, F d
= (k − 1)−1

∑m
r=1 λ

ω
rAr, Ar

i.i.d.∼ χ2
k−1, where

γw(s, t) = γ(s, t)/
√
γ(s, s)γ(t, t), and λwr are the decreasing-ordered eigenvalues of

γw(s, t), with associated eigenfunctions φwr (s) . All conditions are reported in the

online Appendix. Similarly test with G∗fSNR is corresponding to the F-type test de-

veloped by Shen and Faraway (2004) and Cuevas et al. (2004). Under condition B

and null hypothesis, F∗ d
= (k − 1)−1

∑m
r=1 λrAr, Ar

i.i.d.∼ χ2
k−1, where λr denoted in

Section 2.1. Hereinafter we will call hypothesis inference testing null effect of GfSNR

and G∗fSNR as F -test and F∗-test, respectively.

Under irregular structures or small sample sizes the aforementioned asymptotic

null distributions are not valid. In such cases we rely on bootstrap resampling meth-

ods both for global testing and for construction of pointwise confidence intervals of

fSNR(s). The latter application is useful for visualization and detecting subinter-

vals that achieve the most effective separation, as illustrated in Section 4 below.

For regular functional data in which all curves span the same domain, Cuevas et al.

(2006) considered both a generic nonparametric bootstrap and Gaussian parametric

bootstrap, finding no distinct advantage for the parametric bootstrap.

We extend the application of the nonparametric functional bootstrap under sam-

pling framework assumption described in section 2.1. The nonparametric bootstrap

method is able to yield consistent result under irregular structure with independence

assumption between stochastic process and random interval. In practice, medical or

biological data are often collected with repetition from distinct subjects or clusters
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which have different characteristics. Accordingly, functional data may have corre-

lation structure between observed curves from the same subject. In this case, all

multiple curves from the same subject should be resampled together when imple-

menting nonparametric bootstrap method, so that correlation between replicates is

preserved.

2.3 Power Analysis

In order to perform power analysis for the fANOVA tests via F and F∗, we obtain

approximate power functions under local alternatives along with a simplifying lower

bound. As will be demonstrated in a simulation study, these can be used for plan-

ning purposes with moderate to large samples. For smaller samples, we provide a

simulation-based power analysis to complement the large sample approximations.

We first show the functional dependence of the asymptotic power on the limiting

behavior of the effect size measures GfSNR and G∗fSNR of Section 2, and then derive

asymptotic lower bounds that simplify calculations. We also investigate the agreement

between approximation based and simulation based estimation of power for moderate

sample sizes, and demonstrate sample size analysis for target effect sizes.

2.3.1 Asymptotic power approximation

We first obtain the approximate power functions for local alternatives as the overall

sample size N increases. Thus we consider sequences of alternatives of the form,

H1N : µNg(s) = µ0(s) + βNg(s), g = 1, . . . , k, (2.14)
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where, as N increases,

βNg(s) = N−1/2ηg(s) ∼ agn
−1/2
g ηg(s), (2.15)

where limN→∞ ng/N = ag ∈ (0, 1), and the functions ηg(s) are non-zero and square-

integrable for g = 1, 2, . . . , k with
∑k

g=1 agηg(s) = 0. Under these conditions the effect

sizes decrease at the same N−1/2 rate:

GfSNR ∼ N−1/2G0 and G∗fSNR ∼ N−1/2G∗0 (2.16)

where

G2
0 =

k∑
g=1

ag

∫
S

η2
g(s)

σ2(s)
ds and (G∗0)2 =

∑k
g=1 ag

∫
S η

2
g(s)ds∫

S σ
2(s)ds

.

Under condition A, the power of F -test under regular design can be written as,

P (F0 + 2(k − 1)−1δλZ ≥ F0(α)− (k − 1)−1|S|G2
0) + o(1), (2.17)

where Z ∼ N(0, 1), F0 and F0(α) denote null distributions of F presented in Section

2.3 and its (1 − α) quantile, respectively. δ2
λ=

∑m
r=1 λrδ

2
r , where δ2

r= ||
∫
S(Ik−1,0),

UTh(s)φr(s)ds||2, h(s) = [
√
a1η1(s), ...,

√
akηk(s)]

T/σ(s) and the columns of U are

the eigenvectors of Ik − bbT with b = [
√
a1, ...,

√
ak].

Along similar lines, assuming Condition B of the appendix, Zhang (2011) derived

an asymptotic power approximation for F∗. Now for the data after subtracting grand

mean function, we improve the approximation slightly by modifying the proof to

obtain the local asymptotic power approximation:

P (F∗0 + 2(k − 1)−1δ∗λZ ≥ F∗0 (α)− (k − 1)−1(G∗0)2) + o(1), (2.18)
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where Z ∼ N(0, 1), F∗0 and F∗0 (α) denote null distribution of F∗ presented in Section

2.3 and its (1−α) quantile, respectively. δ∗2λ = {tr(γ)}−2
∑m

r=1 λ
∗
rδ
∗2
r , where δ∗2r = ||

∫
S

Ω1/2d(s) φ∗r(s)ds||2, with d(s) = [η1(s), ..., ηk(s)]
T and Ω = diag(a1, ..., ak). Further

details are in the appendix.

To further simplify the power analysis we obtain lower bounds for the local asymp-

totic power functions of (2.17) and (2.18). These lower bounds can be used to cal-

culate the minimum sample size to achieve a target level of statistical power as a

function of effect size based on the approximations:

Proposition 2.1. The asymptotic lower bounds of the power of F- and F∗- test can

be approximated under local alternative by,

Power(F|H1N) ≥ P (F0 +W ≥ F0(α)) + o(1), (2.19)

Power(F∗|H1N) ≥ P (F∗0 +W ∗ ≥ F∗0 (α)) + o(1), (2.20)

where Power(F|H1N) and Power(F∗|H1N) denote powers of F- and F∗- test, re-

spectively, under H1N , F0,F0(α),F∗0 and F∗0 (α) denoted in (2.17), (2.18). W ∼

N(ξ, 4(k − 1)−1|S| ξ) where ξ = (k − 1)−1|S| G2
0, and W ∗ ∼ N(ξ∗, 4(k − 1)−1ξ∗)

where ξ∗ = (k − 1)−1(G∗0)2.

Remark. The Welch-Satterthwaite χ2-approximation can be applied to approximate

null distributions, and it helps to conduct sample size estimation in a simpler way.

F0 can be approximated to R, where R ∼ θχ2
d, with θ = tr(γ⊗2

w )
(k−1)|S| and d = (k−1)|S|2

tr(γ⊗2
w )

,

where γ⊗2
w =

∫
S γw(s, u)γw(u, t)du. Similarly, F∗0 can be approximated to R∗, where

R∗ ∼ θ∗χ2
d∗ , with θ∗ = tr(γ⊗2)

(k−1)tr(γ)
and d = (k−1)tr(γ)2

tr(γ⊗2)
, where γ⊗2 =

∫
S γ(s, u)γ(u, t)du.

Zhang and Liang (2014) provide the formulas to determine corresponding parameters.
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2.3.2 Asymptotic versus simulated power on moderate

sample size

Before adopting approximated lower bounds of power in sample size determination,

we need examine the accuracy of power approximations under finite sample size. The

performance is investigated by comparing approximated and empirical powers via

simulation studies under three different scenarios; (i) the model with stationery pro-

cess, (ii) the model with cyclic marginal error having the minimum variance close

to zero, and (iii) the model with heteroscedastic error process, where σ(s) propor-

tional to exp(s). Throughout the examples, we fix k = 3 and specify three cases of

n = [n1, n2, n3] as ng = 20, 50, and 100, g = 1, 2, 3, representing small, moderate and

large sample size in balanced design. We simulated 1500 sets of discrete response

curves over equally spaced grid points st ∈ [0, 1], t = 1, ..., 80, to calculate empirical

sizes and p-values for F - and F∗-test, with type I error fixed at α = 0.05. Two more

scenarios and corresponding results are reported in online supplementary material.

Simulation 1 (stationary process)

We generate discrete functional samples from exponentially correlated process,

ygi(st) = µ0(st) + βg(st) + εgi(st), where εgi(j, k) = σ2
e · exp(−|j − k|/d),

β1(s) = −δ, β2(s) = 0, β3(s) = δ, with δ > 0, g = 1, 2, 3, i = 1, ..., n.

We specify µ0(s) using 3 degrees of freedom B-spline basis functions. Note that the

parameter d determines the dependency structure within a curve. Functional samples

with values of 0.1, 0.4 and 0.9 of d implying low, moderate, and high spatial correla-

tion within curve, respectively, are generated. Here δ controls the deviation between
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mean curves. We set σe = 1 and sequence of δ is applied to study the power under

different effect sizes.

Simulation 2 (non-stationary process: cyclic marginal deterministic variance)

Now we consider the model with fluctuating marginal variance function under parallel

mean functions as in simulation 1. The discretized response curves under exponen-

tially correlated process with d = 0.4 and the following marginal deterministic vari-

ance function is simulated; σe(s) = cos(8πs) + 1.005. The period and amplitude are

4 and 1. The minimum marginal variance at each cycle is 0.005, that is very close to 0.

Simulation 3 (non-stationary process: heteroscedastic model)

We consider the model in Simulation 1, but with exponentially extreme deterministic

marginal variance rather than constant σe over s. Specifically, we fix d = 0.4 and

σ2
e(s) is set to be proportional to exp(2.4s), s ∈ [0, 1]. It leads the heteroscedastic

error that has the range of variance as [1,11].

Simulation 4 (non-parallel mean functions)

The stationary functional data samples with group mean functions having one point

of intersection are generated,

β1(s) = −ϕ(s− 0.5), β2(s) = 0, β3(s) = ϕ(s− 0.5), for ϕ > 0.

The exponentially correlated functional process with d = 0.4 and constant σe over s

as in Simulation 1 is considered and simulated.

Simulation 5 (non-stationary process)
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The model simulated in Zhang and Liang (2014, section 3) will be used with little

modification to generate discretized functional curves:

ygi(st) = µ0(st) + βg(st) + εgi(st), εgi(s) = bTgiΨ(s), i = 1, ..., n, g = 1, 2, 3,

bgi = [bgi1, bgi2, ..., bgiq]
T , bgir

d
=

√
λrzgir, r = 1, ..., q,

where zgir are i.i.d. standard normal random variables. The common covariance

function is γ(j, k) =
∑q

r=1 λrψr(j)ψr(k) with the orthonormal basis vector Ψ(s) =

[ψ1(s), ..., ψq(s)]
T and the q decreasing-ordered variance components λr. In our ex-

ample, we set µ0(s) = 1 + 2.3s + 3.4s2 + 1.5s3, βg(s) = −δ, 0 and δ, with δ > 0,

λr = aηr, r = 1, ..., q, with η = 0.1, 0.5 or 0.9, representing high, moderate and

low within-curve correlation, and q = 7. For each value of η, we set a = 9.5, 1.02

or 0.21, respectively, to make the overall average of marginal variance to be equal

to 1. The orthonormal basis functions are set as ψ1(s) = 1, ψ2r(s) =
√

2sin(2πrs),

ψ2r+1(s) =
√

2cos(2πrs), s ∈ [0, 1], r = 1, ..., 3.

Figure 2.1 reports approximated and empirical sizes and powers of fANOVA tests

under various scenarios. For Simulation1 and 2, only F -test results are displayed on

(a), because both tests give similar results. The lower panels in (b) show the results

from two types of test on Simulation 3 to compare performance between them. We

present specific powers according to different scales of effect size for both types of test

in Table 2.1-2.5, but interpret them with Figure 2.1 for easier comparison.

First of all, we see that the agreement between approximation and empirical esti-

mation is quite good even under small sample size for all scenarios. Second, we find

the interesting fact that strong within-curve correlation leads less statistical power.
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Apparently, strong dependency structure, larger d in top panels of (a), shows smaller

power and it can be inferred that the amount of information at each grid decreases as

within-curve correlation becomes stronger. Indeed it results in lack of power. Thus

the data with strong within-curve correlation needs larger sample size to achieve the

same level of power as we will see in section 3.3. Third, the agreement is rather good

for the model with weak within-curve correlation, smaller d in top panels of (a). The

rich information at each grid leads less deviations in power estimation. Fourth, slight

difference between F∗ and F∗-test is found in Simulation 3. It demonstrate that

F -test is powerful over F∗-test under extreme marginal error behaviors. Although

difference is likely to be larger than discrepancies between two tests from other sim-

ulations, it is not a huge difference as seen in Table 2.3. Lastly, the comparison

between Simulation1 and 3 shows that the test under stable marginal error model

is more powerful compared to the test from unstable fluctuating σe(s). For last two

simulations, Table 2.4 shows that the shape of mean functions does not affect on the

accuracy of asymptotic power. Also we can infer from Table 2.5 that the agreement

is not affected by covariance function as well.

2.3.3 Sample size determination

The good accuracy of asymptotic power implies that lower bounds of power in (2.19)

and (2.20) can be reasonably used to estimate sample size in practice. Note that

two expressions are based on local alternative, thus we slightly modify formulas for

practical use under H1 : µg(s) = µ0(s) + βg(s), where βg(s), g = 1, ..., k, are non-zero

and square-integrable functions with
∑

g ngβg(s) = 0. Specifically ξ = (k−1)−1N ·G2
0

for (2.19), and ξ∗ = (k− 1)−1‖σ(·)‖2N · (G∗0)2 for (2.20). Now the power is a function

of sample size, effect size and significance level as a general case. Provided that
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working covariance function γ(s, t) is assumed and certain level of effect size, say it

G, is set, then a Monte Carlo procedure for F -test is implemented as follows: (i)

Consider a sequence of sample size {N1 < N2 < ... < Nm} and specify the sequence

of distributions of W for given G and Nj. Let denote it as WG,Nj
, j = 1, ...,m. (ii)

Generate a large sample of F0 and WG,Nj
, and compute the empirical lower bound of

power from empirical distributions. (iii) Obtain the sequence of lower bounds of power

as a function of N and choose the sample size that achieves the desired power. A

Monte Carlo procedure for F∗-test can be implemented in a similar way. As noted in

Zhang and Liang (2014), the Welch-Satterthwaite χ2-approximation can be applied

to approximate F0. However, we prefer not to use this approximated distribution

in this paper, because our experiment shows that this approach yields less accurate

result than generating Monte Carlo samples from original F0.

To illustrate the sample size approximation, we consider the models in Simulation

1 with d = 0.1, 0.4 and 0.9. We derive the power of F -test as a function of sample size

under global effect size GfSNR = 0.2, 0.4 and 0.8, representing small, medium and

large effect size, with type I error at α = 0.05. Here sample size means the number

of observations in each group for balanced experiment. The powers from F -test are

presented and F∗-test gives almost the same result.

Figure 2.2 displays the power curves from three global effect sizes under three

magnitudes of dependency. First of all, it can be seen that the power of F -test

achieves 0.8 or more even with moderate sample size, around 20, under medium

effect size. Secondly, we can see the effect of within-curve dependency in sample size

estimation. Obviously, the covariance structure with strong within-curve correlation

needs more sample to achieve the same level of power compared to others. It is

corresponding to what we found in Figure 2.1 (a).
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2.4 Real Data Analysis

2.4.1 Analysis of Mouse and Rat Mammary Tumor Data

We now return to the quantitative ultrasound study. The experiment was conducted

with two types of mammary tumors, 13 induced 4T1 tumors on mice and 8 induced

MAT tumors on rats. The features of tumor tissues, such as length, height and

volume vary across subjects. As mentioned in the introduction, the tumor in each

animal is invasively scanned by 5 different transducers from three systems (Siemens,

Ultrasonix and VisualSonics) which cover different range of frequency bandwidths.

Two transducers, 9L4 and 18L6, from Siemens, L14-5 from Ultrasonix, and MS200

from VisualSonics cover frequencies around 3-13.5 MHz, meanwhile MS400 from Vi-

sualSonics covers higher frequencies greater than 13.5 MHz. Different from Wirtzfeld

et al. (2015), we use the subset of data composed of subjects having large tumor

(greater than 70mm3) in the analysis. The data pertain to 5 4T1 and 6 MAT large

tumors. Large tumor enables transducer to scan the target without much being

affected by surrounding normal tissues, so that noise error has been substantially

reduced (Wirtzfeld et al., 2015). From here on, we distinguish 55 combinations of

animals and transducers by defining variable called as ‘setup’. For each setup, there

are 4 or 5 multiple functional records by shifting scan lines within each tumor. The

frequency dependent backscatter (BSC) functions were calculated in decibel scale

(dB) for each scan based on the collected ultrasound radio frequency signals using a

reference phantom technique. More details can be found in Wirtzfeld et al. (2015).

The aims of this experiment are as follows: Firstly we want to analyze how well

BSC records can separate two tumor types by measuring effect size beyond significance

test. Secondly, we are interested in finding the frequencies which achieve the most

sufficient precision to distinguish two tumors. Lastly, inter-transducer variation in
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BSC is of interest.

Prior to proceeding, note that the repeated measures for each ‘setup’ lead corre-

lation structure between multiple curves. The mixed ANOVA result with ‘setup’ as

random effect and tumor type as fixed effect is presented in Figure 2.3. They are

smoothed from pointwise result via natural cubic splines for comprehensible visual-

ization. The smoothed classic 1-way ANOVA result is shown as well for comparison.

We see that the magnitude of marginal error in 1-way ANOVA mostly includes both

subject and noise random errors.

The collected BSC curves from Ultrasonix L14-5 are summarize in Figure 2.4.

The mean values and standard errors at each grid are presented in (a). Both tumors

seem to have nearly constant standard deviation over frequencies. The pointwise and

smoothed fSNR are illustrated in (b). This indicates that higher frequencies seem

more effective in distinguishing tumors than lower frequencies do.

To make a formal inference, now we apply the fSNR analysis. As the transducers

all have different bandwidths, 3 frequency ranges are selected to carry out subsequent

analyses. The lower frequency range (3-8.5 MHz) includes data from Ultrasonix

and Siemens transducers, middle frequency (8.5-13.5 MHz) includes two VisualSonics

transducers, and the higher frequency range (13.5-21.9 MHz) includes one transducer

MS400, from VisualSonics. Table 2.6 displays estimated global measures and boot-

strapped p-values over each range. We use 1500 non-parametric bootstrapped samples

to perform fSNR analysis hereafter. As discussed in section 2.4, all scans for a given

animal and transducer combination were sampled together to preserve correlation

between replicates from the same ‘setup’

We see in Table 2.6 that two types of proposed global measures give almost the

same significant tumor effect size with small p-value. The estimated measures at each

range suggest that higher frequencies are more effective in separating two different tu-
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mors. Figure 2.5 presents the estimate of smoothed fSNR using natural cubic splines

with six interior knots selected from BIC, and its 90% pointwise confidence intervals

via bootstrapping.(Efron and Tibshirani, 1993). It can yield valuable information

about which interval can distinguish two tumors with the most sufficient precision.

It demonstrates a trend in increasing separation between MAT and 4T1, which is in

agreement with what we found in Table 2.6 and this trend can be explained by the

inverse relationship between frequency and wavelength. Higher frequency with short

wavelength might collect more information when penetrating a tissue rather than

lower frequency with long wavelength can do. Also higher frequencies have relatively

wide widths of confidence interval due to small number of curves collected over there.

As a next step, we can compare the efficacy of transducers by comparing estimates

of effect size. Table 2.7 presents that transducers covering frequencies less than 13.5

MHz have similar significant effect size around 0.8-0.9 with small p-values except

Siemens 9L4. The different behavior in Siemens 9L4 seems to be due to influential

observations from 4T1 tumor. For relatively higher frequency range, VisualSonics

MS400 apparently shows significantly greater separation with larger effect size, which

is corresponding to our finding through Table 2.6 and Figure 2.5.

The last goal is to examine consistency across systems. For this purpose, we

use lower and middle frequency ranges that include at least two transducers, and

calculate the global measures to investigate the existence of transducer effect for each

tumor type. Specifically, Ultrasonix and Siemens are compared over 3-8.5 MHz and

VisaulSonics are compared over 8.5-13.5 MHz. Table 2.8 shows that all estimated

measures are less than 0.3 with bootstrapped p-values greater than 0.2, thus the

claim of consistency across systems is statistically supported. A key observation is

that the magnitudes of transducer effect size are much less than those of tumor effect

size.
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2.4.2 Canadian Weather Data

We analyze the Canadian weather data to illustrate the usefulness of our methodology.

The data are the daily temperature and precipitation records of 35 weather stations

over a year, 365 days, among which 15 in Atlantic, 12 in Continental, 5 in Pacific and

3 in Arctic. The weather information from each station is collected every day with

no missing. The dataset is available through R-package ‘fda’. Various functional

data analysis methods were already applied by many authors, including statistical

inferences to test significant region effect on temperature. Ramsay and Silverman

(2005) characterized the typical temperature pattern and investigated when regional

temperature effect is substantial by examining F-ratio function. However, although

pointwise F-ratio can be used to infer an effect size, the sample size or the number of

groups should be known in order to be interpreted. Accordingly, it is hard to compare

two statistics in general if they are computed from different designs. Also they did

not discuss whether the change of regional effect over a year is statistically significant.

Zhang and Liang (2007) assessed the significant differences in temperature between

climate zones and investigated its pattern over seasons. However, the change in the

magnitude of region effect over seasons was just inferred by comparing the magnitude

of p-values, not from precise statistical inference. Here our goals are to quantify region

effect on temperature and precipitation by applying proposed fSNR analysis, and

see when substantial difference between regions is observed. We will also study if

the change of effect size over time is significant via bootstrapped confidence intervals

of fSNR. Additionally we will see which variable is more affected by geographical

factor, among temperature and precipitation.

Figure 2.6 presents the estimated fSNR and its bootstrapped 90% confidence

intervals over a year based on 1500 bootstrapped samples. Natural cubic splines with
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9 interior knot are used to smooth group mean and marginal error curves. It is seen

that the difference of temperature between regions is larger than the difference of

precipitation with larger estimated effect sizes over the whole year ([a, b] = [1, 365]).

Although fANOVA or other proposed test result can give the same conclusion of

rejection, fSNR enables to present distinct behaviors over time. Specifically, we

observe that magnitudes of region effect are different over seasons. In terms of tem-

perature, the difference between climate zones is less during the summer (June, July

and August or [a, b] = [152, 243]) than the difference during the spring (March, April

and May or [a, b] = [60, 151]) or the autumn (September, October and November or

[a, b] = [244, 334]), which is in agreement with what Ramsay and Silverman (2005) ob-

served from F-ratio function. However, we can make further conclusion that seasonal

change of region effect in temperature is not statistically significant. The straight

horizontal line can be drawn over a year within bootstrapped confidence intervals at

around between 1.5 and 2. From (b), it is seen that the region effect on precipitation

is large during the winter and early spring. Different from temperature data, we can

conclude that this seasonal change is statistically significant.

Table 2.6 shows the estimated global measures and bootstrapped p-values. Firstly,

we can see the consistency of two measures for each time period. Secondly, as ex-

pected, estimated regional effect sizes for temperature data are around twice larger

than those for precipitation data for the whole year as well as during each season.

Lastly, the magnitudes of the regional differences in temperature and precipitation

during the summer are less than the magnitudes during the spring and autumn.

Again, all associated p-values are very close to 0, but the proposed measure provides

additional information about an effects size and enables to compare to each other.
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2.5 Discussion

The advantages of fSNR analysis are as follows: The effect size of the variable of

interest is simply computed through F-ratio function or functional F-statistics. Via

visualization of local information and its corresponding confidence intervals, the most

informative domain of the function can be found. The asymptotic lower bound of

power can be used as an handy tool for sample size estimation in planning purpose.

In future works, we aim to provide asymptotic null distribution of functional F-

statistics under irregular sampling framework. To do this, central limit theorem in

Hilbert space for i.i.d. stochastic precess with random interval should be demon-

strated. Another goal is to extend fSNR analysis to 2-dimensional data to quantify

the effect size retaining inherent spatial smoothness, to visualize the local effect size

in 2-dimensional space and to derive confidence region. It will enable to implement

statistical inferences for ultrasound image data for tumor margin assessment as well

as spatial data.
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2.6 Figures and Tables

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
2

0.
4

0.
6

0.
8

1.
0

n=20 
simulation1

effect size

po
w
er

d=0.1, A
d=0.1, S
d=0.4, A
d=0.4, S
d=0.9, A
d=0.9, S

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.
2

0.
4

0.
6

0.
8

1.
0

n=50 
simulation1

effect size

po
w
er

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
2

0.
4

0.
6

0.
8

1.
0

n=100 
simulation1

effect size

po
w
er

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
2

0.
4

0.
6

0.
8

1.
0

n=20 
simulation2

effect size

po
w
er

d=0.4, A
d=0.4, S

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
2

0.
4

0.
6

0.
8

1.
0

n=50 
simulation2

effect size

po
w
er

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.
2

0.
4

0.
6

0.
8

1.
0

n=100 
simulation2

effect size

po
w
er

(a) Approximated and simulated power curves of F -test on Simulation 1 and 2
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(b) Approximated and simulated power curves of F and F∗-test on Simulation 3

Figure 2.1: Approximated (“A”) and simulated (“S”) power curves as a function of
effect size on each scenario.
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Figure 2.2: Power functions under d = 0.1, 0.4 and 0.9 for (a) GfSNR = 0.2, (b)
GfSNR = 0.4 and (c) GfSNR = 0.8
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Figure 2.3: (Top) Pointwise estimate of the difference in magnitude of the BSC esti-
mates between two tumors, noise error, and random effect for ‘setup’ from pointwise
mixed ANOVA. (Bottom) pointwise tumor effect and marginal error from pointwise
1-way ANOVA
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Figure 2.5: The smoothed fSNR and bootstrapped 90 % confidence intervals
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Figure 2.6: The smoothed fSNR and bootstrapped 90% confidence intervals of (a)
Temperature and (b) Precipitation
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Table 2.1: Simulation 1: approximated and empirical sizes and powers of the F - and
F∗-test under stationary process model (G = GfSNR, G∗ = G∗fSNR)

ng d Approximated power/ Empirical power

G = G∗ = 0 (δ = 0) G = G∗ = 0.11 (δ = 0.14)

GPF F GPF F

20

0.1 0.05/ 0.06 0.05/ 0.05 0.32/ 0.32 0.32/ 0.32

0.4 0.05/ 0.06 0.05/ 0.06 0.18/ 0.17 0.18/ 0.15

0.9 0.05/ 0.07 0.05/ 0.06 0.14/ 0.15 0.15/ 0.14

50

0.1 0.05/ 0.05 0.05/ 0.05 0.71/ 0.68 0.71/ 0.68

0.4 0.05/ 0.06 0.05/ 0.06 0.44/ 0.36 0.43/ 0.36

0.9 0.05/ 0.05 0.05/ 0.04 0.34/ 0.29 0.34/ 0.28

100

0.1 0.05/ 0.06 0.05/ 0.06 0.94/ 0.95 0.93/ 0.95

0.4 0.05/ 0.06 0.05/ 0.06 0.69/ 0.66 0.70/ 0.65

0.9 0.05/ 0.07 0.05/ 0.07 0.59/ 0.51 0.57/ 0.50

ng d Approximated power/ Empirical power

G = G∗ = 0.19 (δ = 0.23) G = G∗ = 0.26 (δ = 0.32)

GPF F GPF F

20

0.1 0.76/ 0.72 0.74/ 0.72 0.95/ 0.97 0.95/ 0.97

0.4 0.47/ 0.44 0.48/0.41 0.73/ 0.68 0.72/ 0.66

0.9 0.37/ 0.34 0.36/ 0.32 0.62/ 0.55 0.62/ 0.52

50

0.1 0.98/ 0.99 0.98/ 0.99 1.00/ 1.00 1.00/ 1.00

0.4 0.81/ 0.81 0.81/ 0.80 0.96/ 0.99 0.96/ 0.98

0.9 0.71/ 0.65 0.70/ 0.64 0.90/ 0.92 0.90/ 0.92

100

0.1 1.00/ 1.00 1.00/ 1.00 1.00/ 1.00 1.00/ 1.00

0.4 0.95/ 0.99 0.96/ 0.98 1.00/ 1.00 1.00/ 1.00

0.9 0.91/ 0.95 0.91/ 0.94 0.99/ 1.00 0.99/ 1.00
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Table 2.2: Simulation 2: approximated and empirical sizes and powers of F - and
F∗-test under the model with cyclic marginal error function

ni Approximated power/ Empirical power

G = G∗ = 0 (δ = 0) G = G∗ = .18 (δ = 13) G = G∗ = .28 (δ = 19) G = G∗ = .41 (δ = 29)

GPF F GPF F GPF F GPF F

20 0.05/ 0.05 0.05/ 0.05 0.25/ 0.24 0.26/ 0.22 0.54/ 0.48 0.53/ 0.46 0.82/ 0.83 0.83/ 0.81

50 0.05/ 0.04 0.05/ 0.04 0.57/ 0.50 0.59/ 0.49 086/ 0.87 0.86/ 0.87 0.98/ 1.00 0.98/ 1.00

100 0.05/ 0.04 0.05/ 0.04 0.82/ 0.82 0.82/ 0.82 0.97/ 1.00 0.97/ 1.00 1.00/ 1.00 1.00/ 1.00

Table 2.3: Simulation 3: approximated and empirical sizes and powers of F - and
F∗-test under heteroscedisticity model

ng Approximated power/ Empirical power

G = G∗ = 0 (δ = 0) G = .14, G∗ = .11 (δ = .27)

GPF F GPF F

20 0.05/ 0.05 0.05/ 0.05 0.26/ 0.24 0.14/ 0.14

50 0.05/ 0.07 0.05/ 0.06 0.59/ 0.53 0.37/ 0.31

100 0.05/ 0.05 0.05/ 0.05 0.85/ 0.84 0.66/ 0.60

ng Approximated power/ Empirical power

G = .21, G∗ = .16 (δ = .41) G = .25, G∗ = .20 (δ = .50)

GPF F GPF F

20 0.55/ 0.51 0.34/ 0.28 0.72/ 0.67 0.49/ 0.40

50 0.88/ 0.90 0.69/ 0.64 0.95/ 0.97 0.85/ 0.87

100 0.98/ 1.00 0.92/ 0.95 1.00/ 1.00 0.98/ 1.00
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Table 2.4: Simulation 4: approximated and empirical sizes and powers of F - and
F∗-test under the model with non-parallel mean functions

ni Approximated power/ Empirical power

G = G∗ = 0 (ϕ = 0) G = G∗ = .11 (ϕ = .45) G = G∗ = .24 (ϕ = 1) G = G∗ = .22 (ϕ = .91)

GPF F GPF F GPF F GPF F

20 0.05/ 0.07 0.05/ 0.06 0.13/ 0.15 0.13/ 0.14 0.38/ 0.38 0.39/ 0.36 0.73/0.74 0.74/ 0.71

50 0.05/ 0.05 0.05/ 0.05 0.38/ 0.36 0.38/ 0.34 0.85/ 0.87 0.86/ 0.86 0.99/ 1.00 0.99/ 0.99

100 0.05/ 0.06 0.05/ 0.06 0.75/ 0.74 0.75/ 0.73 0.99/ 1.00 0.99/ 1.00 1.00/ 1.00 1.00/ 1.00

Table 2.5: Simulation 5: approximated and empirical sizes and powers of F - and
F∗-test under non-stationary process model

ng η Approximated power/ Empirical power

G = G∗ = 0 (δ = 0) G = G∗ = 0.12 (δ = 0.15)

GPF F GPF F

20

0.1 0.05/ 0.06 0.05/ 0.05 0.13/ 0.11 0.12/ 0.10

0.5 0.05/ 0.07 0.05/ 0.05 0.20/ 0.20 0.20/ 0.18

0.9 0.05/ 0.06 0.05/ 0.04 0.29/ 0.28 0.28/ 0.26

50

0.1 0.05/ 0.05 0.05/ 0.05 0.31/ 0.27 0.31/ 0.26

0.5 0.05/ 0.06 0.05/ 0.06 0.48/ 0.42 0.49/ 0.41

0.9 0.05/ 0.05 0.05/ 0.04 0.68/ 0.62 0.66/ 0.62

100

0.1 0.05/ 0.05 0.05/ 0.05 0.53/ 0.50 0.55/ 0.49

0.5 0.05/ 0.05 0.05/ 0.04 0.73/ 0.70 0.74/ 0.69

0.9 0.05/ 0.05 0.05/ 0.05 0.92/ 0.95 0.93/ 0.95

ng η Approximated power/ Empirical power

G = G∗ = 0.18 (δ = 0.22) G = G∗ = 0.24 (δ = 0.29)

GPF F GPF F

20

0.1 0.27/ 0.26 0.28/ 0.24 0.47/ 0.38 0.47/ 0.35

0.5 0.44/ 0.38 0.43/ 0.35 0.64/ 0.60 0.63/ 0.57

0.9 0.63/ 0.58 0.63/ 0.57 0.87/ 0.87 0.86/ 0.86

50

0.1 0.61/ 0.55 0.60/ 0.53 0.79/ 0.79 0.80/ 0.79

0.5 0.77/ 0.78 0.78/ 0.78 0.93/ 0.96 0.93/ 0.95

0.9 0.94/ 0.97 0.95/ 0.97 1.00/ 1.00 1.00/ 1.00

100

0.1 0.83/ 0.86 0.84/ 0.85 0.95/ 0.98 0.95/ 0.98

0.5 0.95/ 0.97 0.94/ 0.96 0.99/ 1.00 0.99/ 1.00

0.9 1.00/ 1.00 1.00/ 1.00 1.00/ 1.00 1.00/ 1.00
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Table 2.6: Estimates of tumor effect size (bootstrapped p-values in parentheses)

Low (3-8.5 MHz) Middle (8.5-13.5 MHz) High (13.5-21.9 MHz)

ĜfSNR 0.56 (< .001) 0.99 (< .001) 1.06 (0.005)

Ĝ∗fSNR 0.55 (< .001) 0.99 (< .001) 1.06 (0.008)

Table 2.7: Tumor type effect size for each transducer

Transducer
ĜfSNR / Ĝ∗fSNR p-value

Bandwidth
Ultrasonix L14-5

0.78/ 0.73 0.005∗/0.008∗
(3-8.5 MHz)
Siemens 9L4

0.17/ 0.13 0.49/0.57
(3-10.8 MHz)
Siemens 18L6

0.99/ 0.91 0.004∗/0.007∗
(3-10.8 MHz)

VisualSonics MS200
0.87/ 0.84 0.02∗/0.02∗

( 8.5-13.5 MHz)
VisualSonics MS400

1.14/ 1.12 0.004∗/0.004∗
( 8.5-21.9 MHz)

Table 2.8: Transducer effect size for each tumor type and frequency range

Tumor type Frequency range ĜfSNR / Ĝ∗fSNR p-value

4T1
3 -8.5 MHz 0.31/ 0.31 0.34/0.34

8.5 -13.5 MHz 0.27/ 0.26 0.16/0.17

MAT
3 -8.5 MHz 0.28 /0.28 0.25/0.24

8.5-13.5 MHz 0.21/ 0.18 0.44/ 0.50
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Table 2.9: The regional effect size for the Canadian daily temperature and precipi-
tation data (with bootstrap p-values in parentheses)

[a, b]
Whole year Spring Summer Autumn Winter
[1, 365] [60, 151] [152, 243] [244, 334] [1, 59] ∪ [335, 365]

TMP.
GfSNR 1.36 (< .001 ) 1.47 ( < .001) 1.01 ( < .001) 1.48 ( < .001) 1.42 (< .001)
G∗

fSNR 1.41 (< .001) 1.5 (< .001) 0.99 (.001) 1.51 (< .001) 1.42 (< .001)

PRC.
GfSNR 0.76 (< .001) 0.81 (< .001 ) 0.56 (< .001) 0.7 (< .001) 0.92 (< .001)
G∗

fSNR 0.73 (< .001) 0.78 (< .001) 0.53 (< .001) 0.67 (< .001) 0.89 (< .001)
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2.7 Technical conditions, proof and numerical

algorithm

2.7.1 Condition A

(A.1) µ0(s) and βi(s), i = 1, ..., k ∈ L2(S) and tr(γ) <∞.

(A.2) The marginal error process εi(s), i = 1, ..., k are i.i.d.

(A.3) As n→∞, the k sample sizes satisfy ni/N → ai ∈ (0, 1), i = 1, ..., k.

(A.4) The marginal error process ε1(s) satisfies E‖ε1‖4 = E[
∫
S ε

2
1(s)ds]2 <∞.

(A.5) For any s ∈ S, γ(s, s) > 0. In addition, the maximum variance m = maxs∈S

γ(s, s) <∞

(A.6) The expectation E[ε21(s)ε21(t)] is uniformly bounded. That is, for any (s, t) ∈ S2,

we have E[ε21(s)ε21(t)] < C <∞, where C is some constant independent of (s, t).

2.7.2 Condition B

(B.1) δ2
r 6= 0 for at least one r ∈ {1, ...,m}

2.7.3 Missing data frame work for irregular functional data

(2.5)

Let ȳ(s) =
∑n

i=1 y
c
i (s)1[Li,Ui]

(s)/n∑n
i=1 1[Li,Ui]

(s)/n

4
= W1

W2
. For each s ∈ S,

W1
p→ E[(yci (s)1[Li,Ui](s)] = E[yci (s)]P (s ∈ [Li, Ui]),
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by law of large numbers and independence assumption of yc(s) and I. Similarly

W2
p→ P (s ∈ [Li, Ui]).

By continuous mapping theorem, W1/W2
p→ µ(s). Next, let

σ̂2(s) =

∑n
i=1(yci (s)− ȳ(s))21[Li,Ui](s)/n∑n

i=1 1[Li,Ui](s)/n− 1/n

4
=
W ′

1

W ′
2

.

For each s ∈ S,

W ′
1

p→ E[yci (s)− ȳ(s)]2P (s ∈ [Li, Ui])

= E[yci (s)− µ(s)]2P (s ∈ [Li, Ui]) + E[ȳ(s)− µ(s)]2P (s ∈ [Li, Ui])

= σ2(s)P (s ∈ [Li, Ui]) + σ2(s)P (s ∈ [Li, Ui])/n

= σ2(s)P (s ∈ [Li, Ui]) + o(1),

W ′
2

p→ P (s ∈ [Li, Ui])

by continuous mapping theorem, W ′
1/W

′
2

p→ σ2(s)

2.7.4 Power of F∗s - test (2.18)

We follow the method of proof given in Zhang (2011) and Zhang and Liang (2014) with

modification. While Zhang (2011) restricted 0 ≤ τ < 1 for further two steps of approx-

imation for the local alternative,Hc
1n : Cβ(s)− c(s) = n−τ/2d(s), we simplified proof

by just using two asymptotic distributions for MSW ∼ AN [tr(γ), 2tr(γ⊗2)/(N −

k− 1)] and MSB
d
=

∑m
r=1 λrAr/(k− 1) +

∑m
r=1 λ

1/2
r δrzqr/(k− 1) + δ2/(k− 1), where

Ar ∼ χ2
k−1. It improves the accuracy of the resulting approximation even for moderate

sample size. The accuracy is examined by empirical study.

41



2.7.5 Lower bounds of powers (2.19) and (2.20)

For (19), combine (17) and upper bound δ2
λ ≤ (|S|G0)2. For (20), combine (18) and

upper bound δ∗2λ ≤ (G∗0)2.

2.7.6 Algorithms for power estimation

In practice it is not possible to observe functional samples continuously. Rather, the

functional data will be collected at a finite number of points in S. Here are algorithms

to estimate the powers for discretized observed functions which have a common fine

grid st, t = 1, ..., T over S. We assume the same covariance structure over groups as

ANOVA assumption. Let Yg be the T × ng matrix with each sampled T × 1 vector

at each column. And let Y = [Y1,Y2, ...,Yk]T be the N × T pooled matrix.

• Estimation of power of F-test (2.17)

1. Find T × T pooled sample correlation matrix on the basis of data N × T data

matrix Y.

(a) Calculate T × T pooled sample covariance matrix using centered data

matrix Y∗ = [Y∗1, ...,Y
∗
k]
T , where Y∗i represents the data matrix of group

g subtracted by its sample row mean vector to make centered data matrix

from at each group level.

Γ̂ = (N − k)−1

k∑
g=1

ng∑
i=1

y∗giy
∗
gi
T ,

where y∗gi is ith column in Y∗g , that is T × 1 centered vector. Then
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(b) Estimate pooled sample correlation matrix,

Γ̂ω(st, sl) = Γ̂(st, sl)/
√

Γ(st, st)Γ(sl, sl), t, l = 1, ..., T.

2. Estimate positive eigen values λωr , orthonormal eigen functions φωr (s), r =

1, 2, ...,m of γw(s, t), U, and h(s).

(a) Find eigenvalues and eigenvectors of Γ̂ω(s, t) using singular value decom-

position (SVD). Let ρω1 ,...,ρωT be all the decreasing-ordered eigenvalues and

uω1 ,...,uωT be the corresponding normalized eignevectors. Define w = L/T

where L is the length of interval τ . Then eigenvalue λ̂ωr = wρr and the

discrete approximation of eigenfunction Φω
r = w−1/2uωr .

(b) Estimate m from scree plot by finding an elbow point close to zero.

(c) Find U from the following SVD,

Ik − bbT = U

Ik−1 0

0T 0

UT ,

where b defined in (2.17).

(d) Obtain k × T matrix H = [H1, ...,Hk]
T , where T × 1 vector Hi is the the

discrete approximation of the ith element of h(s), Hi(st) =
√
ni(ȳi·(st) −

ȳ··(st))/

√
N Γ̂(st, st)

3. Estimate δ2
r , δ̂2

r = ‖(Ik−1,0)UTHuωr /T‖2, r = 1, 2, ...,m, and compute δ̂2
λ =∑m̂

r=1 λ̂
ω δ̂2

r

4. Compute δ̂2 = ĜfSNR
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5. Generate a large sample of T̂ ∗0 = (k − 1)−1
∑m̂

r=1 λ̂rAr, Ar
i.i.d.∼ χ2

k−1 and Z from

N(0, 1), and find T̂ ∗0 (α). Compute the empirical power of a test.

• Estimation of power of F∗-test (2.18)

1. Obtain the centered data matrix Y∗ = [Y∗1, ...,Y
∗
k]
T

2. Find pooled pointwise sample standard deviation σ̂(st), t = 1, ..., T, by com-

puting sample standard deviation at each grid st.

3. Estimate positive eigenvalues λr, orthonormal eigenfunctions φr(s), r = 1, 2,

...,m, of γ(s, t), and d(s).

(a) Estimate eigenvalues and eigenfunctions of γ(s, t) using the SVD UDVT

of Y∗. Let ρ∗1,...,ρ∗T be all the decreasing-ordered eigenvalues and v1,...,vT

be the corresponding normalized eignevectors of Y∗. Then eigenvalue

λ̂r = (N − k)−1wρ2
r and the discrete approximation of eigenfunction Φr =

w−1/2vr.

(b) Estimate m from scree plot by finding an elbow point close to zero.

(c) Obtain (k − 1) × T matrix D̂ = [D1, ...,Dk−1]T , where T × 1 vector Di

is the the discrete approximation of the ith element of d(s), Di(st) =

(ȳi·(st)− ȳk·(st))

4. Estimate δ2
r , δ̂2

r = ‖(Ω1/2Dvr/T‖2, r = 1, 2, ...,m, where Ω1/2 =diag(
√
n1/N,

...,
√
nk/N)

5. Compute δ̂∗2 = Ĝ∗fSNR · ‖σ̂(·)‖2
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6. Generate a large sample of T̂ ∗ = (k− 1)−1
∑m̂

r=1 λ̂rAr, Ar
i.i.d.∼ χ2

k−1 and Zqr from

N(0, 1) and find T̂ ∗(α).

Remark. Our empirical finding is that the choice of m, the number of positive

eigenvalues in correlation or covariance matrix, does not make a critical impact on

power estimation. We suggest to find an elbow point via scree plots and choosing m

around them does not make a big difference.
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Chapter 3

Robust Probabilistic Classification
for Irregularly Sampled Functional
Data

3.1 Introduction

A typical diagnosis process in medical data analysis is the following: Collect the

measures relevant to particular medical condition as well as the outcome for each

patient as training data. Train the classification tool to predict the outcomes of

new inputs based on recorded information. The clinical expert makes a diagnosis

by combining prediction result with other clinical factors, such as medical history or

other related measures, of a patient. As another diagnosis problem, the classification

tool can be utilized during surgery to find an area with abnormal tissues or to access

tumor margin, for example with biomedical imaging techniques. The classifier can

provide a prior information before the image is examined by readers. It can play

a pre-screening role to help clinical readers to examine suspicious area in a careful

manner. For both examples, reporting a degree of certainty in prediction is more

informative than just reporting a single predicted outcome. The subject or area with

higher chance of being malignant apparently needs careful inspection compared to

one assigned to malignant group but with diagnostic probability close to 0.5. This

approach is called probabilistic classification that provides a degree of certainty for

the classification result. (Hastie et al., 2009)

In this paper, we build a probabilistic classifier for a functional data, which pro-

vides class prediction and probability distribution over a set of classes robust to
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outlying observations. This work is motivated by the experiment in quantitative

ultrasound which collects backscatter coefficients (BSC) curves from two groups of

animals with different types of mammary tumor, MAT and 4T1 tumors. The BSC is

one example of quantitative ultrasound measurement which offers potential for safe

noninvasive diagnosis and derived in the form of functions depending on the micro-

structural property of target region. Park and Simpson (2017+) studied statistically

distinct behaviors in BSC functions over different types of tumor, and an immediate

question we may have correspondingly is, whether the functional data classification

method can diagnose the future observations into the correct classes. Especially pro-

viding stable and informative posterior probabilities to be assigned to each class is

of interest in terms of diagnostic purpose. However motivating data has a challeng-

ing structure as introduced in Chapter 1, and this type of irregular data should be

considered to build classifier.

The extensive tools are developed for classification of functional data, where one

assigns a group membership to a new functional form input. Existing methods can be

categorized into three subgroups based on their underlying approaches; Regression-

based, Density-based, Algorithm-based. Regression approach employs generalized

linear models using functional curves as predictors with roughness penalties for reg-

ularization. (James, 2002; Muller, 2005; Muller and Stadtmuller, 2005; Goldsmith

et al., 2011) Other two approaches perform classification mostly based on dimension

reduction to low rank space or via functional principal component (FPC) analy-

sis exploiting a data-driven eigenbasis to represent high-dimensional data on finite

dimensional feature space. (Hall, Posit and Presell, 2001; James 2001). Despite dif-

ferent approaches with large number of methods, the robustness to outliers is not

seriously considered in our knowledge. Indeed FPC is not robust against outliers

because it involves second order moments. Although robust versions of FPCA are
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proposed (Bali et al., 2011; Boente and Barrera, 2014), they are developed on regular

structure. Also most articles assess the results in terms of label prediction accuracy

based on misclassification rate, whereby all misclassified observations receive equal

weights in evaluation. However, it is fair to impose more penalties in being very

confident but incorrect prediction. Furthermore classifiers are commonly built under

i.i.d. functions that can be restrictive in medical or biological application where each

subject is repeatedly measured in general.

To complement this weakness and to build robustness, Zhu et al. (2012) proposed

a robust classification method based on the functional mixed model framework in the

wavelet space by allowing potentially heavier tails for particular wavelet coefficients.

It thereby can handle multiple correlated functions with robust model to outlying

functions. However, it does not fit to our data because wavelet approach is more

suited for high-dimensional and regular functional samples under stationary periodic

characteristic.

The main contribution of this paper is to develop a robust probabilistic classi-

fier based on semiparametric mixed effects model with robust tuning parameter and

Bayes rule. Shi, Weiss & Taylor (1996) and Rice & Wu (2000) suggest to model indi-

vidual curves as spline functions with random coefficients so that covariance function

is estimated by approximating the random effects. The key of our method is to

impose heavy-tail distribution assumption with robustness parameter ν on random

coefficients. This approach enables to fit a robust model for unequally and sparsely

collected samples with very flexible spatial covariance structure. Then, given the den-

sity of each class, classify according to the largest conditional probability of the class

label following Bayes rule. We gain a degree of certainty statements from posterior

probabilities. It can be extended to multi-level data and used in cluster-level classi-

fication by adding cluster-specific random effect terms. Although it seemingly uses
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high-dimensional raw information, we indeed regularize the functional curves by the

truncation inherent in the knot selection on spline functions. The value of our method

hinges on its flexibility and computational efficiency. The spline based mixed-model

enables to fit the model under various covariance structures not necessarily stationary.

Another goal is to conduct comparative studies on functional classifiers by examin-

ing robustness in terms of label prediction as well as class probability aspect. We aim

to compare our proposed method with FPC based method, specifically spline based

FPC technique proposed by James, Hastie and Sugar (2000), generalized functional

linear model of Muller (2005) and functional linear discriminant tool by James and

Hastie (2001). Note that three methods are constructed in the L2 sense or Gaussian

assumption. We implement simulation studies and classify real data to evaluate their

performances. The finding is that our robust method is likely to be less certain on

false prediction with posterior probabilities close to .5 instead of extreme values.

The paper is organized as follows. We introduce robust semiparametrc mixed

effects model in Section 2 with model selection issue. In Section 3 we present (i)

simulation studies for comparative studies under different scenarios; (ii) real data

analysis returning to two ultrasound quantitative datasets and speech recognition

data with artificial contamination.The paper concludes with discussion in Section 4

and shows in detail how to build our proposed classifier in R
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3.2 Methodology

3.2.1 Robust Semiparametric Mixed Effects Model

A nonparametric linear mixed-effects model (Rice and Wu, 2001) takes the form

Yi(s) =

p∑
k=1

βkB̄ik(s) +

q∑
l=1

γilBil(s) + εi(s), s ∈ S

γi ∼ Nq(0,Γ), εi(s)
i.i.d.∼ N(0, λ),

(3.1)

where Yi(s) is the value for the ith curve at s, {B̄ik(·)} and {Bil(·)}, k = 1, ..., p, l =

1, ..., q, are basis spline functions on S, γi = (γi1, ..., γiq)
T is q-dimensional random

vector, εi(s) is noise random variable, both under normal assumption. The covariance

structure is nonparametrically modeled through random coefficient γil.

We propose the robust semiparametric mixed effects model (RSMM) by impos-

ing heavy-tailed distribution assumption on the errors and random effects, espe-

cially the t-distribution with the degrees of freedom (df) ν for both. Thus, γi ∼

tq(0,Γ, ν), εi(s)
i.i.d.∼ t(0, λ, ν) in (3.1). In practice functional curves are observed over

finite number of grid points and let Yi be the ni-dimensional vector of observed re-

sponse of ith curve collected over sit, i = 1, ..., N, t = 1, ..., ni. The responses are not

necessarily regularly sampled over S. The model then can be expressed as,

Yi = B̄iβ + Biγi + εi, i = 1, ..., N (3.2)

where B̄i and Bi are corresponding ni× p and ni× q spline basis matrix evaluated at

corresponding grid points and ε are independent with distribution tni
(0, λI, ν) where I

is an identity matrix. Following Pinheiro et al. (2001), the resulting marginal density

is multivariate t-distribution by using a gamma-normal hierarchical structure. That
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is,

tn(B̄β, BiΓBT
i + λI, ν), (3.3)

given γi | τ ∼ Nq(0,Γ/τ), εi | τ ∼ Nn(0, λI/τ) and τ ∼ Gamma(ν/2, ν/2), under

conditional independence of γi and εi given τ.

The model can be extend to multi-level data, where between curve correlation is

modeled through cluster-level random coefficients. Let Yij be the nij-dimensional

observed vector of the jth repetition for ith subject, i = 1, ..., N, j = 1, ...,mi, over

nij grid points on S. The multi-level RSMM can be written as follows,

Yij = B̄ijβ + B̃ijδi + Bijγij + εi, i = 1, ..., N, j = 1, ...,mi, (3.4)

where B̃i is ni × r spline basis matrix to approximate between curve structure with

other terms play the same role in (3.2). Similarly its marginal distribution is mul-

tivariate t distribution under conditional mutual independence among δi,γij and εi

given τ .

3.2.2 Classification Procedure

The model-based Bayes classification rule is to classify a new observation according

to the largest conditional probability of the class label by computing the likelihood.

Our method uses the density of each group derived from RSMM. We estimate the

robust class probability for a new data object Y,

P (class = g|Y) =
fg(Y)πg∑
j fj(Y)πj

, (3.5)

where the density of the gth class follows multivariate-t distribution in (3.3) and πg

denotes prior probability. We call ν the robustness tuning parameter and use the
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same level of fixed robustness over groups in this paper. Then θg = (βg,Γg, λg),

g = 1, ..., G, are estimated and used via MLE to compute the likelihood of new input.

However it can be generalized as νg, g = 1, ..., G. The effect on the function of

factors such as length and weight of tumors in motivating example can be considered

by adding terms to fixed mean function. For valid comparison of likelihoods, the

same basis functions are used over groups to approximate random trajectories.

This approach can be extended to classify clusters based on repeated measures.

Similarly the class probability for multiple correlated curves can be estimated via the

marginal distribution in cluster level.

3.2.3 Model Selection

For practical application; (i) the number of basis functions to fit RSMM, and (ii)

robustness tuning parameter ν should be determined. First, Rice and Wu (2001)

suggest cross-validated log likelihood, AIC and BIC for model selection and empir-

ically show that last two give similar results to those obtained by cross-validation

with faster compute. For classification problem, another way is via cross-validated

error. However, note that the unstructured Γ has q(q+1)/2 different parameters for q-

dimensional spline basis and large q may lead poor prediction error due to over-fitting

as well as unstable parameter estimates with local maxima. Thus we empirically sug-

gest to set 6 as the maximum number of basis functions, which is usually enough

to achieve good performance on examples. To handle this, James (2001) proposed

reduced rank mixed effects framework to stabilize the estimation especially under

very sparse curve data with individuals with few measurements. In our computation,

we use the B-spline basis and equally spaced knots. Also we recommend to use the

same basis functions for B̄(·) and B(·), which empirically leads better performance
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compared to using different splines for each.

Secondly, we suggest to fix ν a priori at some reasonable value to determine the

level of robustness instead of estimating from training set. The final classification

appears to be relatively robust to any reasonable choice of ν and our empirical studies

in Section 3 show that using ν = 3 even achieves good performance even under

Gaussian model. Not only to avoid computational burden in estimating ν but also

to maximize the power of robustness, we use fixed conservative ν throughout the

applications.

3.3 Numerical Studies

We evaluate the performance of our proposed robust classifier, and compare it with

other competitors via simulation study and real data analysis. The sensitivity analysis

on tuning parameter is implemented.

3.3.1 Simulation Studies

The simulation study is divided into two parts: in the first part, we examine the

robustness of functional classifiers by generating data with different types of outliers,

grid-level (local), curve-level (global) and in-between outliers. Our interest lies on

investigating the behaviors of posterior probabilities, and see if which approach is

likely to be less confident on false prediction. Furthermore Gaussian data is generated

in order to consider non-contaminated data; in the second part, we closely mimic the

motivating example by generating heavy-tailed and irregular but individually dense

data.

We consider two groups and let the population for each group consist of trajectories

of the process Yg(s) = µg(s) + e(s), g = 1, 2, where µg(s) are group mean curves, and
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e(s) is random process under heavy-tailed structure with mean 0. In our example, 50

curves for each group are discretized over 101 equally spaced grid points on [0, 1] by

adding exponentially correlated process, cov(Yg(sj),Yg(sk)) = σ2
e · exp(−|j − k|/d)

and independent noise at each grid, both under t distribution with 3 df. In our

examples, data are generated with parameters for covariance function as σ2
e = 1 and

d = 0.01, 0.2 or 1, representing low, moderate or high within-curve dependency under

mean-shift model, µ1 = 0, µ2 = δ, with δ = 0.5, 1.5 or 2.5, respectively. We vary δ

for each corresponding d, because the classifier trained by weak dependency samples

achieves better performance with rich information at each grid. Other types of group

means, such as smoothed functions via cubic B-splines or mean functions having

some points of intersection, give similar result and the shapes of mean functions do

not have significant effect on performance. The Figure 3.1 displays different types of

heavy-tail behaviors according to the degrees of magnitude of dependency. The weak

dependency leads local outlying behavior otherwise strong dependency apparently

shows global abnormality. The non-contaminated data is generated under the same

structure with d = 0.2 but with Gaussian assumption.

For the second part, we artificially make sparse data under weak dependency

structure. Specifically [0,1] is divided into three non-overlapped intervals and each

one-third of curves are randomly assigned to one of three intervals. Among complete

individual curves, only corresponding functional values on assigned interval are left

and the other two parts are missing. We generate the complete data with 150 equally

spaced grids, in other words 50 measurements remain in each curve.

Our simulation results are based on 100 replications. For each replication, the

number of basis functions are selected via BIC based on 100 training curves with

restriction in maximum number of basis functions as 7. We assume RSMM with the

same set of basis functions for fixed and random effect terms with ν = 3. The pa-
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rameters of the model are estimated for each group and the performance is evaluated

on an independent 100 curves of test set containing 50 from each group.

Competitors

We compare our method (RSMM) with four competitors denoted as GSMM, FPC,

GFLM and FLDA. All competitors are based on Bayes classification rule that can

provide conditional probability for each group, second order moments based classifier,

and applicable to irregularly and sparse data.

• GSMM represents the model-based Bayes classifier under Gaussian Semipara-

metric Mixed effects Model in (3.1).

• The Functional Principal Component analysis (FPC) is a key dimension reduc-

tion tool employing truncated Karhunen and (Loeve) basis expansions. Hall,

Poskitt and Presell (2001) performed classification based on resulting coeffi-

cient through either kernel density estimation or quadratic discriminant analy-

sis (QDA). In our study, we extend this approach by applying FPC technique

proposed by James, Hastie and Sugar (2000), which can be applicable to sparse

data, and perform QDA on obtained coefficients. Internally mixed effects model

with splines is assumed for dimension reduction like our underlying model, but

it uses reduced rank framework with normally distributed random coefficients.

We choose the same number of B-spline basis selected in RSMM model for fair

comparison.

• The Generalized Functional Linear Model (GFLM) of Muller (2005) uses regres-

sion model with univariate response variable and FPC scores estimated in the

sparse situation. It combines non-parametric local linear smoother to estimate
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mean and covariance surface and Gaussian distribution assumption in order to

estimate predicted FPC scores.

• Functional Linear Discriminant Analysis (FLDA) for irregularly sample curves

is introduced by James and Hastie (2001). It performs LDA by projecting

functional curves into subspace where the between-class covariance relative to

within-curve covariance is maximized. This rank reduce approach also assumes

normality to fit the model.

Evaluation

We evaluate the classification results based on two measures, test error and logarithm

loss (LogLoss). The test error is prediction error computed on test set, and LogLoss is

the negative log-likelihood of the Bernoulli model which provides punishments for be-

ing confident about false classification. This loss function often used as an evaluation

metric in kaggle competitions (https://www.kaggle.com/wiki/LogarithmicLoss),

LogLoss = − 1

N

N∑
i=1

G∑
g=1

yiglog(pig),

i indicates individual curves in the data, N =
∑G

g=1 ng, where ng denotes the number

of curves in group g, yig is 1 if observation i is the member of class g, and 0 otherwise.

pig denotes p(class = g|Y). The worst possible case is when a single observation is

predicted as definitely false with the estimated probability 0, but it is actually true.

It adds infinite to the error score and makes every other result pointless. LogLoss

quantifies the accuracy based on membership prediction as well as degree of certainty.

In practice, upper and lower bound of probabilities are used in calculation to avoid

infinity result under extreme probabilities. Specifically we set eps as 1-e15 and
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replace pig by min(max(pig,eps), 1-eps) as kaggle suggested.

Result

Table 3.1 reports the test error and LogLoss under the data inhering moderate within-

curve dependency (d = 0.2). Obviously GSMM shows bad performance, especially

very large LogLoss. To address the behavior of posterior probabilities for large

LogLoss, results of RSMM and GSMM from one sample set are illustrated in Figure

3.2. Gaussian assumed classifier provides unrealistically extreme individual probabil-

ities, most of them close to 0 and 1, while heavy-tailed distribution assumed method

appears to present more realistic diagnostic probabilities. The misclassified obser-

vations in RSMM have relative large posterior probabilities, which is informative to

clinician when making a diagnosis.

Figure 3.3 displays result from different types of functional outliers. The GSMM

fails in all situations with extreme probabilities, thus the result is not included for

visual comparison. The top panels show the results from local outlying data and

apparently GFLM falls behind other three. It can be inferred that grid-level outliers

make local smoother technique ineffective. The middle and bottom panels illustrate

results of moderate and strong dependency and GFLM and FLDA shows slightly

larger LogLoss in general compared to RSMM and FPC methods. In terms of test

error, all give comparable results, however FPC seems a bit unstable under heavy

tailed data with larger variations. For normally distributed data, we can see in Table

3.2 that all competitors and even our method with conservative ν yield very similar

result. To sum up, RSMM generally outperforms others under various types of outliers

and at the same time, shows good performance under non-contaminated situation.

As the second part, we examine classification performance on data generated

sparsely over intervals but densely over grids. Figure 3.4 illustrates the results ob-
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tained from weak dependency with δ = 1.5 and it can be seen that RSMM method

outperforms others on both measures. The FLDA that originally targets on discrim-

inant analysis for sparse data yields very similar test errors, but ours provide more

accurate and informative posterior probabilities with less LogLoss.

3.3.2 Sensitivity analysis on tuning parameters

Figure 3.5 shows the average test errors and LogLoss in the 50 replications on three

different scenarios using different robust tuning parameter; exponentially correlated

structure with Cauchy, t distribution with 5 df or Gaussian distribution assump-

tion, representing strong, weak or non-contamination, respectively. The results from

Cauchy (top panel) and t distribution (middle panel) display increasing trend but

comparable performances among small values of ν. For Gaussian data, there is no

significant trend or differences among ν. It implies that the use of fixed robust tuning

parameter as 3 works reasonably good regardless of the magnitude of contamination.

Indeed it makes the classifier efficient by saving computational cost on estimating

ν data as well as by fully exploiting the robustness of the model. It also enables

to classify the contaminated new input in a robust manner although training set is

non-contaminated.

3.4 Data Analysis

We apply our robust probabilistic classifier as well as competitors to two quantitative

ultrasound dataset. Both are irregularly collected but dense in each curve. The

performance is evaluated through cross validated errors and LogLoss.
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3.4.1 Phantom Data

We consider phantom data, namely A1A2. Specifically backscatter coefficient (BSC)

curves in A1A2 dataset are scanned from two types of phantom, A1 and A2, in 9

laboratories with respective transducers covering different frequency ranges. Two

phantoms are embedded in different size of glass beads, thus they are physically and

acoustically distinct. Figure 3.6 presents BSC curves and there is seemingly well-

separated pattern in A1A2. Each curve represents averaged BSC curves from each

laboratory so noise is considerably diminished. Also the data seemingly do not have

suspicious outlying behaviors due to its experimental design scanning target cell in

glass bead directly.

We fit RSMM for each group as training step using cubic B-splines with one

knot for fixed and random parts with ν = 3 via BIC criteria. Here we use modified

GFLM with spline based FPC approach, because original nonparametric modeling

turns out to yield unstable result when only one (or a few) curve is observed over

certain frequencies. We compute leave-one-out cross validated (l-o-o cv) error and

LogLoss.

Table 3.3 displays similar error rates for all classifiers on A1A2 data, but huge

differences are found in LogLoss. It is surprise, because we expect similar perfor-

mances over methods for this clean data. Our finding is that a certain curve in

A2 is closely placed near group A1 and all classifiers misclassify this specific one on

cross-validation step. It implies the situation when new observation has relatively

heavy-tailed noise compared to collected information on training step. Under this

plausible situation, our classifier misclassifies that curve but with weak confidence,

while others provide very strong degree of certainty for false prediction. The result

shows that our proposed classifier is even robust to outlying new observations.
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3.4.2 The Mouse and Rat Mammary Tumor Data

We now build a robust probabilistic classifier for the mouse and rat mammary tumor

data. As described in introduction, this experiment scans the target tumor in animal

invasively using different kinds of transducers and each transducer covers its own

frequency range. They scan the same tumor 4 or 5 times, thus multiple functional

curves are expected to be correlated. In detail, BSC curves are derived from 13 mice

with 4T1 tumor and 8 rats with MAT tumor by scanning them 5 different transducers.

From here on, we distinguish 105 different combinations of animals and transducers

with new label called as ‘setup’. Each setup forms hierarchical structure with 4 or 5

multiple observations being operated by shifting scan lines.

Under this irregular and hierarchical structure, two kinds of classifier can be con-

sidered; A single-curve based classification and a multiple-curve based classification

that combines information across correlated curves. To do this, we will consider

RSMM imposing random coefficients on ‘setup’ as follows,

Ygij = B̄gijβ + B̃gijδgi + εi, g = 1, 2 , i = 1, ..., ng, j = 1, ...,mgi, (3.6)

where Ygij denotes observed discretized functional sample for jth repetition of ith

setup in group g, and δgi is t distributed random coefficients that approximate both

between and within curve covariance structure. It is a simple version of (3.4). Then

we build a probabilistic classifier based on marginal likelihood of each ‘setup’.

We evaluate the classification results using 10-fold cross validated misclassification

error and LogLoss, and compare our single-curve based (RSMM) and multiple-curve

based (m-RSMM) classifiers with FPCA, GFLM and FLDA. Table 3.4 shows rela-

tively large error rates around 0.4 for all single-curve based classification due to large
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noise errors. However our multiple-curve based classifier shows improved result in

class prediction by making use of further information between curves. The LogLoss

are quite similar for all approaches, that means their degree of certainty on false

classification is not confident.

3.4.3 Phoneme Data

We illustrate our proposed method with example in speech recognition. The phoneme

data has five classes in 4509 speech frames, each of them corresponding to selected

five phonemes with “aa” (695), “ao” (1022),“dcl” (757),“iy” (1163)” and “sh” (872).

Originally log-periodograms are measured at 256 frequencies with no missing. The

dataset is available at http://statweb.stanford.edu/∼tibs/ElemStatLearn/ and

details are found in Hastie et al. (2015). In this paper, we artificially make data as

irregular form by discarding half of information for all curves. Specifically we consider

two balanced domains [1,128] and [129, 256], then randomly assign each curve to one

of two domains to leave only corresponding measures. Figure 3.7 shows a sample of 10

log-periodograms in each phoneme class from artificially contaminated data. Indeed

it forms irregular structure but has dense and rich information for each frequency s.

Overall curves seem to have heavy-tailed behavior at each s or in covariance function

with similar patterns in simulated t-distributed data in Figure 3.1. Also some groups,

for example “iy” or “ao”, show distinct trends on different domains, that implies the

potential role of basis functions to unify two trends from different frequency domains.

To evaluate the classification results, we select 1,000 training samples for learning step

and use remaining 3,509 samples to calculate test error and LogLoss. We compare

the performance of our methods with FPCA, modified FGLM as in phantom data

analysis and FLDA under both original and contaminated datasets.
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Table 3.5 displays the average test errors and LogLoss in 50 replications. For

each repetition, the number of basis functions for RSMM was selected via BIC un-

der randomly assigned training and the same number splines are used in FPCA and

FLDA for fair comparison. We firstly see that FLDA inhering reduced rank model

fails in this dense data set. Next our method and two FPC based methods give sim-

ilar performances for whole dataset, however, apparently RSMM outperforms under

contaminated data. Figure 3.8 reveals the robustness and stability of our method

with smaller test error and LogLoss as well as less variations under irregular struc-

ture. We see the bad performance of FLDA and instability of FPC based methods.

It demonstrates the use of RSMM on general irregular functional data.

3.5 Discussion

When each curve is collected over an extremely fine grid, every kth grid points from

original set can be used in analysis to relieve computational load. It does not mean the

significant loss of information due to autocorrelation within a curve. The mammary

tumor data set empirically give the similar result for the subset of data with k = 2

or 4. However, we should be cautious when local atypical behavior is detected over

specific area.

Our proposed method has the advantage in its flexibility by employing unstruc-

tured scale matrix of random coefficients. However, as discussed in Section 2.3, it

can be unstable when each curve is very sparse with just a few measurement. The

reduced rank mixed effect model approach (James et al., 2000) which has reduced

number of parameters for scale matrix can be an alternative.
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3.6 Implementation in R

Statistical package R has generic functions which fit the liner mixed effects model

using heavy-tailed distribution for robust estimation. The heavyLme() in package

‘heavy’ enables to fit RSMM under unstructured scale matrix of random coefficients

and fixed df for t-distribution. This function is based on description in Pinheiro et al.

(2001). Below we illustrate the implementation of RSMM using subset of mammary

tumor data. The m-RSMM can be simply extended as we will see below. The nested-

model is not considered in our examples. The other relevant predictors can be added

in fixed-effect term.

3.6.1 Training step

The data have functional response variable y, corresponding frequency x, group vari-

able ‘type’ indicating type of tumor, label ‘id’ with distinct name for each individual

curve, ‘setup’ representing each subject (cluster) repeatedly scanned multiple times.

Given degree and the number of knots K, B-spline basis functions are obtained based

on equally spaced knots.

library(splines); library(heavy)

tumor.gr1<-tumor[tumor$type="4T1", ]; tumor.gr2<-tumor[tumor$type="MAT",

];

knots<-quantile(range(x), seq(0,1,length=K+2))[-c(1,K+2)]

basis<-bs(tumor$x, degree =degree, knots=knots)

basis.gr1<-basis[tumor$type="4T1", ]; basis.gr2<-basis[tumor$type="MAT",

]
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The fit of model (3.2) with robust tuning parameter ν for each group is given in:

fit.gr1<-heavyLme(y∼basis.gr1, random= ∼basis.gr1, groups= ∼id,

family=Student(df=nu),control = heavy.control(fix.shape = TRUE),

data=tumor.gr1)

fit.gr2<-heavyLme(y∼basis.gr2, random= ∼basis.gr2, groups= ∼id,

family=Student(df=nu),control = heavy.control(fix.shape = TRUE),

data=tumor.gr2)

For m-RSMM (3.6), simply replace ‘id’ by ‘setup’. The number of basis functions can

be selected via BIC or cross-validated error.

3.6.2 Prediction step

We compute the likelihood of new input based on estimated scale matrix components

and estimates of fixed effects. The B-spline basis functions for new input can be

obtained from the same degree and K used above. The unstructured scale matrix of

random coefficients are estimated as:

Gamma.gr1<-cbind(1,new.basis)%*%fit.gr1$theta %*% t(cbind(1,new.basis))

Gamma.gr2<-cbind(1,new.basis)%*%fit.gr1$theta %*% t(cbind(1,new.basis))

The marginal scale is obtained by adding independent heavy-tailed grid level noise:

Psi.gr1 <-Gamma.gr1 + diag(fit.gr1$scale,nrow(new.basis))

Psi.gr2 <-Gamma.gr2 + diag(fit.gr2$scale,nrow(new.basis))

The posterior probability of a new input to be assigned to type ‘4T1’ is computed as:

library(mvtnorm)
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loglik.gr1<-dmvt(new, delta=cbind(1,new.basis) %*%

fit.gr1$coefficients, sigma=Psi.gr1, df=nu, log=TRUE,

type="shifted")

loglik.gr2<- dmvt(new, delta=cbind(1,new.basis) %*%

fit.gr2$coefficients, sigma=Psi.gr2, df=nu, log=TRUE,

type="shifted")

pprob.gr1<-1/(1+exp(loglik.gr1-loglik.gr2))

3.7 Figures and Tables
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Figure 3.1: Illustration of heavy-tailed sample curves under different magnitudes of
within-curve dependency. (a) weak (b) moderate (c) strong.
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Figure 3.3: Test error (left) and LogLoss (right) under weak (top), moderate (mid-
dle), strong (bottom) within-curve dependency structure
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Figure 3.4: Test error and LogLoss under sparse data
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Figure 3.5: Test error and LogLoss under Cauchy (top), t distribution with 5 df
(middle) and Gaussian simulated data with different robust tuning parameter ν
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Figure 3.7: A sample of 10 contaminated log-periodograms within each phoneme
class. 5 black curves on frequency [1 : 128] and 5 green curves on frequency [129 : 256]
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Figure 3.8: Test error and LogLoss in contaminated phoneme example from 50
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Table 3.1: Test error and LogLoss under moderate within-curve dependency

RSMM GSMM FPCA GFLM FLDA
error rate 0.33 0.48 0.39 0.23 0.25
LogLoss 0.60 7.81 0.66 0.59 0.60

Table 3.2: Test error and LogLoss under Gaussian data

RSMM FPCA GFLM FLDA
error rate 0.16 0.13 0.16 0.16
LogLoss 0.39 0.30 0.37 0.36

Table 3.3: leave-one-out cv error and LogLoss for phantom A1A2 data

RSMM GSMM FPCA GFLM FLDA
error rate 0.1 0.2 0.1 0.05 0.2
LogLoss 0.32 5.15 2.22 1.92 1.64

Table 3.4: 10-fold cross validated error and LogLoss for mammary data

RSMM m-RSMM FPCA GFLM FLDA
error rate 0.41 0.34 0.41 0.40 0.40
LogLoss 0.71 0.73 0.75 0.67 0.70

Table 3.5: Mean test errors and LogLoss for contaminated (original) phoneme exam-
ple

RSMM FPCA GFLM FLDA
error rate 0.27 (0.10) 0.41 (0.12) 0.43 (0.11) 0.57 (0.57)
LogLoss 0.72 (0.25) 0.94 (0.28) 1.00 (0.28) 5.47 (3.96)
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Chapter 4

Functional Central Limit Theorem
for Unbalanced Data

While much research on functional data has focused attention on the balanced case,

where all functions are observed over the same range, our collaborating research on

quantitative ultrasound data analysis across multiple imaging systems (Wirtzfeld et

al., 2015) needs to analyze the irregular functional data collected over varying fre-

quency intervals. In the balance case, Zhang and Liang (2014) proposed the GPF test

for one-way ANOVA problem for functional data via integrating the usual pointwise

F-test. In particular, let yg1(s), ..., ygng(s), g = 1, ..., k denote k groups of random

functions defined over S and assume that

yg1(s), ..., ygng(s)
i.i.d.∼ SP (µg, γ), g = 1, ..., k,

where SP (µ, γ) denotes a stochastic process with mean function µ(s) and covariance

function γ(s, t), s, t ∈ S. To test the equality of the k mean functions, Zhang and

Liang (2014) integrates pointwise F-test over the range of interest and use it as test

statistic,

Tn =

∫
S

SSRn(s)/(k − 1)

SSEn(s)/(N − k)
,

where N =
∑k

g=1 ng, SSRn(s) =
∑k

g=1 ng[ȳg·(s)− ȳ··(s)]2 and SSEn(s) =
∑k

g=1

∑ng

i=1

[ygi(s) − ȳg·(s)]
2 with ȳg· = n−1

∑ng

i=1 ygi and ȳ·· = n−1
∑k

g=1

∑ng

i=1 ygi representing

group and grand mean functions, respectively. They derived the asymptotic null
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distribution of proposed test statistic that enables to perform fANOVA test with

simple calculation without resampling methods. Under certain conditions and the

null hypothesis of no group-effect, they showed,

T0
d
= (k − 1)−1

∞∑
r=1

λrAr, Ar
i.i.d.∼ χ2

k−1,

where λr, r = 1, ...,∞ are the decreasing-ordered eigen values of scaled covariance

function γw(s, t) = γ(s, t)/
√
γ(s, s)γ(t, t). Also asymptotic power was presented to

show the root-n consistency of GPF test.

Here functional central limit theorem (CLT) plays an important role to develop

asymptotic behaviors of test statistic. However, note that they consider regular struc-

ture where each s ∈ S has the same amount of information. We will extend to ir-

regular functional data via missing data formulation. To this end, we will need the

following result which provides a CLT for i.i.d. stochastic processes in a separable

Hilbert space H for the complete data.

Theorem 4.1. Let X1, ..., Xn
i.i.d.∼ SP (µ, γ) with µ(s) ∈ L2(S) and tr(γ) <∞. Define

zn(s) = n−1/2
∑n

i=1{Xi(s)− µ(s)}, Then,

zn(s)
d→ GP (0, γ),

where GP (0, γ) denotes gaussian process with zero mean and covariance function γ.

The proof and conditions in a separable Hilbert space H can be found in Van der

Vaart and Wellner (1996) and Hsing and Eubank (2015).

In order to extend this result, we employ missing data framework first introduced

in Chapter 2 and sketch the theoretical foundation for irregularly sampled curves.
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Specifically we aim to extend functional CLT to unbalanced data under missing data

framework described in section 2.2.1,

Corollary 4.1. Let yci , ..., y
c
n
i.i.d.∼ SP (µ, γ) with µ(s) ∈ L2(S) and tr(γ) <∞. Define

zn(s) = n−1/2

n∑
i=1

{yci (s)1[Li,Ui](s)− b(s)µ(s)}. (4.1)

Under Li
i.i.d.∼ FL, Ui

i.i.d.∼ FU with P ([Li, Ui] ⊂ S) = 1, infs∈S P (s ∈ [Li, Ui]) > 0 and

yci (s) ⊥ [Li, Ui],

zn(s)
d→ GP (0, ξ), (4.2)

where b(s) := P (s ∈ [Li, Ui]), and ξ is defined below.

Here ξ is a covariance function of limiting distribution. Let define the expected

product function E(1[Li,Ui](s) ∗ 1[Li,Ui](t)) = c(s, t), for s < t,

c(s, t) := P (Li ≤ s ≤ Ui and Li ≤ t ≤ Ui) = P (Li ≤ s and t ≤ Ui).

Then the covariance function can be written as,

ξ(s, t) = c(s, t)γ(s, t) + µ(s)µ(t){c(s, t)− b(s)b(t)},

and the marginal variance if given by,

ξ(s, s) = b(s)σ2(s) + µ2(s){b(s)(1− b(s))}.

The proposed missing data device of section 2.2.1 reduces the summation of irreg-

ularly collected samples to a modified i.i.d. summation of random functions defined

over common S. This extension will enable to find explicit form of null distribution
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of fANOVA test-statistic under irregular structure, and to derive asymptotic power

function not limited to regular case. By doing so, we will be able to make large sample

inferences and also provide theoretical backing for bootstrap method that improves

accuracy in small sample sizes.

In future studies, we aim to extend the analysis for test statistics with asymptotic

random expressions for irregularly sampled functional data, and to derive asymptotic

power analogous to the fANOVA studies of Zhang and Liang (2014). Furthermore

the result provides a direction for asymptotic analysis of the robust functional classi-

fication method of Chapter 3.
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