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Abstract 

A long standing question in cognitive science has been: is visual processing completely 

encapsulated and separate from semantics or can visual processing be influenced by semantics? 

We address this question in two ways: 1) Do pictures and words share similar representations and 

2) Does semantics modulate visual processing.  Using multi-voxel pattern analysis (MVPA) and 

fMRI decoding we examined the similarity of neural activity across pictures and words that 

describe natural scenes. A whole brain MVPA searchlight revealed multiple brain regions in the 

occipitotemporal, posterior parietal and frontal cortices that showed transfer from pictures to words 

and from words to pictures. In addition to sharing similar representations across pictures and 

words, can words dynamically influence the processing of visual stimuli? Using Event Related 

Potentials (ERPs) and good and bad exemplars of natural scenes, we show that top-down 

expectation, initiated via a category cue (e.g. the word ‘Beach’), dynamically influences the 

processing of natural scenes. Good and bad exemplars first evoked differential ERPs in the time-

window 250-350 ms from stimulus onset, with the bad exemplars showing greater negativity over 

frontal electrode sites, when the cue matched the image. Interestingly, this good/bad effect 

disappeared when the images were mismatched to the cue. Overall, these studies taken together, 

provide evidence for the influence of semantics on the visual processing of natural scenes. 
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Chapter 1 

Introduction 
	
When you view a picture of a beach, you evoke some concept of a beach in your mind. You also 

evoke a concept of a beach when you read the phrase "Beautiful Beach". These concepts evoked 

by viewing pictures or reading words, share some similarities, even though they are elicited by 

completely different inputs —one is a pictorial input and the other a verbal input. Moreover, 

these input modalities not only evoke similar concepts, but can also dynamically influence each 

other. If I gave you the verbal cue of “umbrella” prior to showing you a picture of an umbrella, 

you would expect to see an umbrella held open vertically (as it is typically used).  It is unlikely 

you would expect to be shown an umbrella held open horizontally or to see someone standing 

under an umbrella while deep inside a swimming pool.  You also might expect to see an 

umbrella that is black in color, and not aquamarine. You have thus used the semantics of an 

umbrella, accessed via the verbal cue, to set up expectations of what you are likely to see -- for 

example it's shape, size, color, orientation and probable location. Do these expectations, set up 

via semantics, influence visual perception? If they do influence visual perception, how do they 

do so? These are the central questions of this dissertation. 

 

The question of whether, when, and how semantics affects vision is a long-standing one. One 

definition of the semantics of an item, is all knowledge that constitutes our concept of that item 

(Cree & McRae, 2003; McRae, Cree, Seidenberg, & Mcnorgan, 2005). It encompasses 

information about the item across multiple modalities (visual, auditory, touch, taste and smell) 

and can include abstract information about the item e.g. “beautiful” or even encyclopedic 

information (“zebras are found in Africa”). It is well established that visual processing can lead 

to semantic processing; for example, after viewing a picture of a beach, we evoke a concept of a 

beach in our minds. What is under debate is whether semantics or prior knowledge can feedback 

and modulate visual processing and perception (Pylyshyn, 1999; Firestone and Scholl, 2014). In 

this thesis, I am going to address this question in two ways. First, I will use functional magnetic 

resonance imaging (fMRI) along with multivoxel pattern analysis (MVPA) (Norman, Polyn, 

Detre, & Haxby, 2006) techniques to examine whether there are similar patterns of brain 

activation for semantic category information that is accessed through pictures and through verbal 

stimuli. If we do find evidence for a similar representation across pictures and verbal stimuli in 
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local brain regions, and we already have some evidence (discussed below in Section 1.1) albeit 

not at a fine local scale, this would imply that the neural code is evoked similarly, in localized 

regions, for pictures and verbal stimuli and that semantic access is independent of the modality 

of the stimulus in these regions. Thus, these regions could serve as potential sites where we may 

see interaction in processing across modalities. So my second method to determine the influence 

of semantics on visual processing is: given that semantic information, across modalities (pictures 

and words), accesses the same network of brain regions, can semantic information, activated via 

words, impact  pictorial processing. I will use time sensitive measures – event-related potentials 

(ERPs) to test whether semantics, accessed via a verbal cue, can quickly modulate aspects of 

visual processing, and, if so, hone in on when in the course of processing such effects arise.  

 

Our understanding, thus far, of how semantic information is stored and processed in the brain, 

across modalities, has been developed from a wide variety of studies spanning lesion studies, 

behavioral measures, electrophysiological measurements and neuroimaging. To gain a better 

understanding of the underlying semantic representations in the brain, I review the literature on 

semantics across modalities in Section 1.1. The neural mechanisms of feedback processing in the 

visual system, that can serve as pathways for semantics to interact with visual processing are 

discussed in Section 1.2. 

 

 

1.1. Processing pictures and words in the brain. 

 

We do evoke similar concepts when viewing a picture (eg. picture of a beach), or reading the 

word (eg. beach). It is natural to ask if these two different input types, pictures and written words 

(or even words listened to), are processed similarly to give rise to a common concept. Research 

on processing these input types has led to two dominant views in the literature: the multi-code 

view (Paivio, 1974; Warrington and Shalice, 1984), wherein pictures and words are processed in 

completely different ways with different memory stores and different representational codes; and 

the common code view, which suggests that pictures and words have common memory stores 

and have shared representational codes (Pylyshyn, 1973; Caramazza, Hillis, Rapp, & Romani, 

1990). Recent work (discussed below), from measures of brain activity, is converging on the 
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common code view. This provides a framework to examine the interaction of semantics on visual 

processing, as the multi-code processing mechanism, wherein processing meaning from words 

and pictures constitute two completely separate systems, would allow minimal interactions 

between the two processing systems (Paivio, 1974). Thus, the possibility of a common code 

framework, indicating similar patterns of activity across pictures and words, will also allow for 

interaction between these two systems. The current research points to similar patterns of neural 

activity between pictures and words and we now examine the evidence, from Event Related 

Potentials (ERPs) and functional Magnetic Resonance Imaging (fMRI), that supports this 

viewpoint. 

 

ERPs provide a continuous and instantaneous measure of electrical activity in the brain (Münte, 

Urbach, Düzel, & Kutas, 2000) and have helped us better understand cognitive processing in the 

brain. The N400 ERP component (Kutas and Hillyard, 1980), is known to index semantic access 

across a variety of modalities (words, sentences, pictures, sounds, gestures, cartoons), with 

stimuli congruent (“sugar”) with the semantic context being facilitated (“I take my coffee with 

cream and sugar”) and stimuli that are incongruent (“dog”) to the semantic context are not 

facilitated (“I take my coffee with cream and dog”), resulting in greater negativities, in the N400 

amplitude, for incongruent stimuli in (see review Kutas and Federmeier, 2011). The time-

window when the semantics or meaning is extracted from a stimulus is processed has been 

determined to be in the time-window of 350-500 ms (Kutas and Hillyard, 1980; also see review 

Kutas and Federmeier, 2011). The N400 is thus well suited to study the time-course of semantic 

processing in different modalities and determine if similar patterns of responses occur when 

semantics is accessed by different stimulus modalities or input types (e.g. pictures and words). If 

a common-code exists, the pattern of N400 should have similarities across modalities or input 

types. Indeed, a variety of studies show a similarity in the pattern of the N400 amplitude: for 

sentences (Kutas and Hillyard, 1980); written words (Kutas, 1993); for written sentences with 

the last words sometimes replaced with a  picture (Federmeier and Kutas, 2001; Nigam et al., 

1992); spoken sentences with pictures (congruent or incongruent) simultaneously displayed 

when the critical noun (congruent or incongruent) is manipulated (Willems, Özyürek, & 

Hagoort, 2008); static images (Holcomb & Mcpherson, 1994); and video clips (Sitnikova, 

Holcomb, Kiyonaga, & Kuperberg, 2008). Given the same pattern of N400 amplitude responses 
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to semantic processing under these different modalities, ERPs provide strong evidence that a 

common code exists across modalities. There are some scalp distributional differences between 

modalities, for example the N400 for words is distributed centro-parietally (Kutas, 1993), while 

for pictures it is fronto-central (Holcomb & Mcpherson, 1994; Federmeier and Kutas, 2001). 

Also, for pictures studies often show an earlier component, the N300, under certain conditions, 

that is related more to the form of the stimulus (see for example Holcomb & Mcpherson, 1994; 

Schendan and Kutas, 2002). Nevertheless, the common pattern of the N400 amplitude and it’s 

sensitivity to meaning, does provide evidence for a common code across modalities and input 

type. 

 

Neuroimaging, with its capability to localize brain regions, has provided some insights into the 

common code. A few studies have used paradigms with both picture and word stimuli, in the 

same experiment, to find brain areas that respond in common to pictures and words when these 

are processed for semantics (Kherif, Josse, & Price, 2010; Price, 2000; Vandenberghe, Price, 

Wise, Josephs, & Frackowiak, 1996). Regions of the left inferior frontal gyrus, the left fusiform 

gyrus and the angular gyrus have been shown to co-activate for pictures and words. In an 

experiment in which participants either viewed pictures of tools and animals or read words or 

text about tools and animals (Chao et al., 1999), the brain regions not only overlapped across 

pictures and words, but they also showed a more fine-grained similarity in terms of which 

categories activated which part of the brain. The ventral fusiform region showed activity for 

animals (pictures or words) and the posterior lateral temporal region showed activity for tools 

(pictures or words). Thus, these studies provide evidence that some brain regions show a 

common activation across pictures and words.  

 

Common activity in a brain region, however, does not imply common representation, as the 

underlying neurons in these areas could process information differently for the different 

modalities. A better technique to find common code is to examine the patterns of neural activity 

for the two modalities. Two approaches have been used to perform MVPA (Norman, Polyn, 

Detre, & Haxby, 2006): cross-decoding (Kaplan et al., 2015) and representational similarity 

analysis (RSA) (Nili et al., 2014). In cross-decoding, a classifier is trained on the BOLD signal 

from one input type (eg. pictures) and then predicts the category of the stimulus from the BOLD 
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signal in another input type (eg. words). If cross-decoding is successful, the representations 

across the input types share a common hyperplane separating categories, and thus are similar. 

We can consider this to be a first order isomorphism (Kriegeskorte, Mur, & Bandettini, 2008) 

between the different input types. An alternative technique, RSA, uses the BOLD signal and 

computes distances between categories by computing a distance metric between signals. This 

distance is then compared to a similar distance metric computed from the signal in the other 

input type. If the metrics computed across input types are highly correlated, then the underlying 

neural representations across input type must be similar. This comparison provides a second 

order isomorphism between input types as not only are distances for a category across input 

types are computed, but also the distances between categories across input types. These two 

MVPA techniques thus can provide a more accurate inference on the existence of a common 

code as compared to univariate analysis. 

 

Using cross-decoding, studies have shown common patterns of activity in the categorization of 

pictures of objects and nouns describing them (Fairhall and Caramazza, 2013; Shinkareva et al., 

2011). This common pattern of activity is seen in frontal regions, regions associated with higher 

order visual processing and the angular gyrus. Using RSA (Devereux et al., 2003; Liuzzi et al., 

2015; Bruffaerts et al., 2013) on object stimuli, representational similarity has been found in 

multiple brain regions across a variety of input types (written words, auditory words and 

pictures) thus providing a second order isomorphism between pictures and other input types for 

object categories. As compared to univariate analysis, these results provide stronger evidence for 

the existence of a common code for pictures and words in some brain regions. 

 

Despite the use of MVPA techniques, there are some limitations in the existing literature in 

showing similar patterns of activity across input types (eg. pictures and written words). The 

stimuli chosen, for example animals versus tools, have preferential activity in separate brain 

regions (see Chao et al., 1999). Thus, decoding these categories in a region could be 

accomplished by a classifier even if the underlying neural code was dissimilar across input types, 

the mean signal for each category would be sufficient for the decoder to perform the task. What 

is lacking is showing similarity at a high local resolution, where different categories co-activate a 

local region. In this case, the existence of similar patterns of activation across input types must 
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necessarily be resolved in a higher dimensional space and thus provide a stronger measure of a 

common code across input types. Furthermore, little is known about the semantics of natural 

scenes as most studies have focused on objects (Devereux et al., 2013; Liuzzi et al., 2015; 

Bruffaerts et al., 2013; Fairhall and Caramazza, 2013; Shinkareva et al., 2011). Natural scenes 

are not only processed differently than objects (Oliva and Torralba, 2001; Greene and Oliva, 

2009), they also co-activate local regions such as the parahippocampal place area (PPA) and 

retrosplenial cortex (RSC) across categories (Epstein and Kanwisher, 1998). Thus, they can 

prove to be good a stimulus set to check for the existence of a common code at better spatial 

resolution as compared to object categories.     

 

In addition to knowing that a common-code across input types exists in a brain region, a related 

question is what is the nature of representation in regions where we do find a common code 

(Martin, 2007; Patterson et al., 2007). Understanding the underlying representation will give us 

better insights into which regions can contribute to the interaction of semantics and visual 

processing ongoing. One view is that semantic information is represented in a completely amodal 

format, abstracted from the input type (Lambon Ralph & Patterson, 2008; Patterson et al., 2007). 

Another view is that semantic information is stored as a combination of sensory and functional 

attributes in sensory motor systems that preferentially represent each sensory feature (Chao et al., 

1999; Martin, 2007; Pulvermüller & Fadiga, 2010). The MVPA studies have found common 

code regions in sensory motor systems, as well as in areas not traditionally attributed to sensory 

motor systems, such as the angular gyrus (Devereux et al., 2013; Liuzzi et al., 2015; Bruffaerts et 

al., 2013; Fairhall and Caramazza, 2013; Shinkareva et al., 2011). Thus, the data suggests that 

common-code regions can span sensory-motor regions as well as regions where information can 

be abstracted away from the stimulus input type. The question does remain, what is the nature of 

the representation in sensory-motor systems, that do represent a common-code, is it abstract or 

sensory-motor specific? 

 

In this section, I have reviewed the evidence for the existence of a common-code for pictures and 

words. MVPA studies (Devereux et al., 2013; Liuzzi et al., 2015; Bruffaerts et al., 2013; Fairhall 

and Caramazza, 2013; Shinkareva et al., 2011) have gone beyond showing just overlapping brain 

regions and have provide a better measure of the common-code. These studies have used simple 
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objects as their stimuli. In my thesis, I extend this work using natural scenes (Chapter 2). Also, 

these studies show multiple brain regions that represent information as common codes. These 

regions could potentially serve as sites for the interaction of semantics with visual processing. 

We next review the possible dynamics of the interaction of semantics with visual processing. 

 

1.2 The Dynamics of Semantic Processing  

 

To better understand the dynamics of the influence of semantics on visual processing, in this 

section we review the current state of what we know about the time-scale of semantic processing 

and the possible neural pathways that could enable its interaction with visual processing. 

Semantic processing in the brain is dynamic and is modulated by the context we are in, for 

example in the frame of reference of humans being attacked, we may put a snake and a bear in 

the same group, but if we are making size judgements, we will put the snake and bear in separate 

groups. Thus our context influences what features of the stimulus we make relevant under a 

particular context, and this choice can be influenced dynamically. The question remains, does 

this semantic information interact with visual processing? If so, at what time scale? These 

aspects of semantic processing are less understood and we examine what we currently know 

about the timescales of semantic processing and the dynamic neural pathways that could enable 

semantics to interact with visual processing. 

 

At what timescales can semantics and visual processing interact? Using ERPs, particularly the 

N400 component, we have reliable and precise estimates of the time-course of semantic 

processing. The time-window when the semantics or meaning is extracted from a stimulus 

(words, sentences, pictures, sounds, gestures, cartoons) is processed has been determined to be 

no later than the time-window of 350-500 ms (Kutas and Hillyard, 1980; also see review Kutas 

and Federmeier, 2011). The time-scales at which visual processing takes place is approximately 

0-300 ms from stimulus onset (Luck and Kappenman, 2011), starting with visual evoked 

potentials, that are sensitive to low level visual properties such as contrast, luminance and spatial 

frequency, in the following time-windows: the C1 50-70 ms, the P1 ~100 ms and the N1 ~130 

ms (Schechter et al., 2005). Attentional mechanisms can modulate some of these visual 

processes, with the P1 and N1 components showing modulation in the time-window 100-250 ms 
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(Gonzalez, Clark, Fan, Luck, & Hillyard, 1994). Visual object processing is reflected in the 

N170 component for faces (Carmel and Bentin, 2002) and in the N250 component that indexes 

the identification of familiar objects (Scott, Tanaka, Sheinberg, & Curran, 2006). The larger 

scale structure of pictorial stimuli is indexed by the N300 component in the time-window 200-

350 ms (Schendan and Kutas, 2002). Given these time-windows, 0-350 ms for visual processing 

and 350-500 ms for semantic processing, there are a few time points at which semantic 

processing and visual processing could interact. The first possibility is that semantic and visual 

processing occur in parallel and their interactions would occur during the course of their mutual 

processing; this type of interaction could occur anywhere in the time-window from 100-500 ms. 

The second possibility is that semantic cues, based on the context of the experimental situation, 

could pre-activate expected visual properties and modulate the processing of the incoming 

stimulus. It is this latter case that is of special interest as semantic evaluation of the incoming 

stimulus has not started, but expected semantic features, spanning modalities and input types, 

have been pre-activated by semantic context, initiated by words that do not bear any perceptual 

resemblance to the pictures, and the question remains can these pre-activated features modulate 

visual processing of the incoming stimulus, across the input type. This modulation of visual 

processing would need to occur in the first 350 ms, as visual processing has not been completed 

by then. There is already some evidence that this early modulation of visual processing occurs: 

semantic information can set up an upstream expectancy for perceptual features as early as 200 

ms into processing (Federmeier and Kutas, 2001). In this thesis, I will use this paradigm (with no 

precuing in Chapter 3 and with precuing a scene category in Chapter 4) to answer the question: 

Can semantics modulate visual processing? 

 

For semantics to modulate visual processing, there must exist pathways from semantic 

processing regions to visual regions or mechanisms for visual regions to be pre-activated by 

semantics. We discussed the existence of semantic regions, that process information independent 

of modality (Section 1.1). Current neuroimaging studies implicate several brain regions in the 

processing of semantic information. The angular gyrus, regions of the left lateral and ventral 

temporal cortex anterior to visual associative regions, left dorso-medial prefrontal cortex, left 

inferior frontal gyrus, left ventro-medial prefrontal cortex, and the posterior cingulate gyrus have 

been found to process semantic information for verbal stimuli ((Fairhall and Caramazza, 2013; 
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Binder et al., 2009). How are these semantic regions connected to modality specific regions? We 

do not yet have all the details of how information flows between a subset of these regions, or the 

nature of any recurrent interactions within each region. In the case of pre-activating semantics 

via a verbal cue, the cue can pre-activate expected features higher visual areas as these regions 

have shown to be multi-modal in nature. Thus, feedback between semantics and visual 

processing can occur at localized regions in the visual processing stream. An alternate 

mechanism for semantic preactivation to modulate visual processing, is through the tuning of a 

population of neurons to a particular category, for example if we attend to animals then multiple 

brain regions tune themselves to select features from animal categories as opposed to anything 

else (Çukur, Nishimoto, Huth, & Gallant, 2013). This mechanism ensures that multiple brain 

regions are ready to process information that has been pre-activated and could also cause extra 

processing to occur, if a stimulus other than the expected is shown. We study these effects in 

Chapter 4, where we use a paradigm wherein we match or mismatch the stimulus to the precue 

and observe the differences in the ERP waveforms to these conditions.  

 

In addition to feedback pathways for pre-activated semantics, there are some plausible pathways 

for real time information transfer between semantic regions and visual areas. We do know that 

some semantic selection happens in the pre-frontal cortex (Martin, 2007; Binder, Desai, Graves, 

& Conant, 2009). The pre-frontal cortex could receive information very rapidly after stimulus 

onset via magnocellular pathways (Kveraga et al., 2007) and provide feedback through direct 

and cascading connections from the pre-frontal cortex to the left temporal lobe and to extra-

striate and striate cortex (Gilbert and Li, 2013). In addition, one source of the neural generator of 

the N400, which reflects semantic access, has been shown to be in the temporal sulcus and the 

anterior temporal lobe (Halgren et al., 2002). These regions can easily feedback into nearby areas 

such as the parahippocampal gyrus and aid in visual processing. Thus, although the pathways  

for feedback from semantics into visual processing exist, we do not yet have all the details of 

how information flows between a subset of these regions, or the nature of any recurrent 

interactions within each region at these time scales.  

 

A majority of the research in relation to semantics and visual processing has been done with 

isolated objects. In this work, I extend this knowledge into understanding the semantic 
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representations of natural scenes and their dynamic interaction with visual perception. Natural 

scenes are defined as photographs one would take of our surrounding environment without any 

alterations, for example a picture of a beach or a city street. They have high ecological validity as 

we live for the most part in these environments, yet they have not been as extensively studied as 

isolated objects. What we do know is that different natural scene categories co-activate visual 

regions, PPA and RSC (Epstein and Kanwisher, 1998), thus providing a more local specificity to 

the representations than studies using disparate objects (e.g. animals vs tools) that are known to 

activate disparate regions. In addition, we are well versed with what a typical natural scene for a 

category looks like (for example a beach). I will use both these aspects, the overlapping local co-

activations of natural scenes in the brain and how well versed we are with natural scenes, to 

study the influence of semantics on the visual processing of natural scenes. In Chapter 2, I 

provide evidence that a common code exists for pictures and words describing natural scene 

images. This common representation is found not only in semantic processing regions but also in 

higher visual areas. Do these shared representations influence each other dynamically? In 

Chapter 3, to make contact with semantic representations, or prior knowledge, I use 

representativeness of natural scenes as an attribute to understand how and when does prior 

knowledge modulate visual processing. In Chapter 4, I use written words to precue categories 

and try and understand the dynamic interaction of semantics and the visual processing of natural 

scenes.  
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Chapter 2 
 

Evidence For Similar Patterns of Neural Activity Elicited by Picture- and Word-based 
Representations of Natural Scenes1 

	
 
2.1. Introduction 

Seeing a furry, four legged animal with a wagging tail, hearing the sound of barking, and reading 

the word “dog” all evoke a (subjectively) common concept in our minds. What neural processes 

allow this common concept to emerge from processing that is initially modality and stimulus 

specific? A long-standing question is whether a common concept arises because these different 

stimuli all ultimately access the same representation – that is, elicit the same pattern of neural 

activity.  In other words, is there a “common code” for semantic information in the brain that can 

be accessed from multiple modalities and stimulus types? 

 

 Before addressing the possibility of a common code, researchers needed to identify areas 

involved in representing conceptual information. Initially, univariate fMRI methods were used to 

find candidate brain regions important for conceptual/semantic processing. For example, 

researchers contrasted activity evoked by real words and pseudowords (which are perceptually 

like real words but lack learned semantics) or strings of consonants. This literature uncovered a 

distributed network of brain regions involved in semantic processing, including regions of lateral 

and ventral temporal cortex anterior to visual associative regions, the angular gyrus, the left 

inferior frontal gyrus, left dorso-medial prefrontal cortex, left ventro-medial prefrontal cortex, 

																																																													
1	This	chapter	has	been	accepted	for	publication:	Kumar	et	al.,	(in	press),	NeuroImage.	
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and the posterior cingulate gyrus (see review by Binder et al., 2009). Other studies have used 

pictorial stimuli (Chao et al., 1999; see review by Martin, 2007) and found a similarly distributed 

network of brain regions.  A few studies have used paradigms with both types of stimuli to find 

brain areas that respond to both pictures and words when these are processed for semantics, 

getting slightly closer to the search for a common semantic code. Repetition suppression has 

been shown in the left fusiform region for both pictures and words (Kherif et al., 2010), and 

regions similar to the semantic network discussed above are activated by both pictures and words 

(Vandenberghe et al., 1996). Collectively, this work has revealed that there are a number of brain 

regions that are activated during the semantic analysis of words and pictures, and, based on these 

studies, some have proposed a model of semantic representation for concrete objects that is 

distributed across multiple regions, including sensory and motor systems (Martin, 2007; 

Pulvermuller and Fadiga, 2010). 

 

Although these studies point to a distributed “common store” for semantic information, they are 

not sufficient to demonstrate the existence of a common semantic code. It is possible that the 

same brain areas become active when meaning is extracted from multiple input modalities and/or 

types, but that these brain regions nonetheless process each differently -- for example, using 

different subpopulations of neurons for each stimulus type. Thus, evidence for a common code in 

a particular region requires not only finding areas of common activation but also showing that 

different input modalities evoke similar representations, or shared patterns of activity, within 

those areas.  To obtain this kind of evidence, the literature has turned to multi-voxel pattern 

analysis (MVPA; see review by Kaplan et al., 2015).  
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MVPA affords the ability to move beyond the extant univariate-based evidence supporting a 

common store by asking whether words and pictures evoke similar patterns of activation. For 

example, one can train a classifier on the pattern of activity from one type of stimulus (e.g., 

pictures) and attempt to then classify the pattern of activity elicited by a different stimulus type 

(e.g., words). We refer to this cross-modal training and testing of a classifier as “cross-

decoding”. Such studies have been performed using a variety of modalities (words and pictures: 

Fairhall & Caramazza, 2013; Shinkareva et al., 2011; pictures, written words, spoken words and 

natural sounds: Simanova et al., 2014). A few other studies have used Representational 

Similarity Analysis (RSA; Nili et al., 2014), a technique that uses distances between vectors 

(built from semantic feature lists or from the BOLD signal) to determine similarities between 

categories, in order to assess similarity in semantic representations across modalities (auditory 

words and pictures: Devereux et al., 2003; Liuzzi et al., 2015; written words and pictures: 

Bruffaerts et al., 2013). From these studies, cross-modal effects have been primarily detected in 

the left hemisphere: in the precuneus (lPrecu), posterior middle temporal gyrus (pMTG), inferior 

parietal sulcus (lIPS), precentral gyrus (lPCG), fusiform gyrus (lFG) and the inferior temporal 

gyrus (lITG).  

 

The use of MVPA and RSA methods, then, have provided evidence that within the distributed 

semantic network, there are commonalities in the patterns of activation that are elicited by 

similar concepts across different forms of representation. There are two limitations of the extant 

literature on cross-modal representations utilizing MVPA methods. First, in comparison to 

MVPA studies in a single modality that explore fine-grained object categories (e.g. Kreigeskorte 

et al., 2007; Eger, Ashburner, Haynes, Dolan, & Rees, 2008; Borghesani et al., 2016), studies on 
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cross-modal representations have tended to use stimulus sets that varied across important 

semantic dimensions, such as animacy, size, and function (although see Bruffaerts et al., 2013 

for a notable exception). Because of the substantive differences in their functional and motor 

affordances, some of these categories (e.g., tools and dwellings) activate clearly separate brain 

structures: e.g., dorsal motor regions in the case of tools versus ventral medial areas, such as the 

parahippocampal cortex, in the case of dwellings. In these cases, then, successful cross-decoding 

may reflect representational similarity at a fairly coarse level; that is, successful cross-decoding 

can reflect the fact that the objects activate very different regions of cortex. A more stringent 

measure of a common code in the brain would be to show representational similarity across 

categories that activate common brain. The few studies that have included fine-grained category 

distinctions (Fairhall and Caramzza, 2013; Bruffaerts et al., 2013) have been limited to 

individual objects as opposed to large-scale navigable natural scenes, which brings us to the 

second limitation of this literature. If we are interested in identifying cross-modal 

representations, such representations should extend beyond the object domain. Here, therefore, 

we sought to extend the cross-modal literature to natural scene categories, using four outdoor 

scene categories (beaches, cities, highways and mountains) known to activate very similar 

regions of cortex (Walther et al., 2009), making cross-decoding in those regions non trivial. 

Here, cross-decoding of category membership across representation type (pictures and words) 

must occur in a higher dimensional space (i.e. at a higher resolution) than for stimulus sets 

containing categories that show markedly different levels of activation across different brain 

regions. In other words, successful cross-decoding -- training classifiers on one modality and 

testing on another -- among these categories would necessarily imply locally similar neural 

patterns (i.e. within a restricted region of interest) between pictures and words. 



	 15	

 

Thus, in the present experiment, participants were scanned while they viewed full color 

photographs of real world scenes and, extending prior work that has mostly used single words 

(nouns), read two word phrases that described those categories of natural scenes (e.g. 'beautiful 

seashore'). By varying the specific noun that was used (e.g., seashore, beach, seaside) and pairing 

these with a range of adjectives (e.g., beautiful, humid, sandy), we provided a richer semantic 

stimulus while minimizing adaptation effects that might arise through simple repetition of just 

the category word (e.g. 'beach'). To test for evidence of a common semantic code (here, across 

pictures and words) and, more generally, to elucidate the semantic network involved in 

understanding natural scenes, we performed a cross-decoding analysis through the entire brain 

using a whole brain searchlight (Kriegeskorte et al., 2006). If we can successfully cross-decode 

from pictures to words and words to pictures, this would show that the category representations 

accessed from the two modalities is locally similar -- thus better supporting the existence of a 

common code. 

 

2.2 Experimental Methods 

2.2.1 Participants 

Nine subjects (5 females and 4 males; two of the subjects were authors on the paper) participated 

in the study, which was approved by the Institutional Review Board of the University of Illinois. 

A tenth subject was dropped prior to analysis because his vision in the scanner had been 

uncorrected. All participants were in good health, with no past history of psychiatric or 

neurological diseases, and all gave their written, informed consent. The nine included subjects 

had normal or corrected-to-normal vision.  
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2.2.2 Visual stimuli and experimental design 

Scene stimuli consisted of 64 distinct color images from each of four categories: beaches, cities, 

highways, and mountains, using images drawn from a similar set as Walther et al. (2009), which 

were downloaded from the Internet. Photographs were chosen to capture the high variability 

within each scene category. 

 

Word stimuli consisted of 64 two-word phrases in each of the four categories. The first word in 

each phrase was an adjective and the second word was a noun (see Appendix A). Adjectives 

appropriate to each category were chosen. The adjectives were matched for word length and 

word log-frequency across all the categories using the celex database (Baayen et al., 1993). We 

chose three synonyms for the nouns in each category to make the phrases different and more 

engaging across the trials (beach category: beach, seaside and seashore; city category: city, town 

and downtown; highway category: highway, freeway and interstate; mountain category: 

mountain, peak and summit). The two-word phrases were unique within a category. Words were 

presented in a white font on a black background. Stimulus presentation and experimental design 

was controlled using the Psychophysical Toolbox (Brainard, 1997; Kleiner et al., 2007; Pelli, 

1998;) in MATLAB (Mathworks, Natick, Massachusetts). 

 

Scene stimuli  (800 x 600 pixels; subtending 14.3° x 10.4° of visual angle) or word stimuli (each 

letter was 1.04° in height and the word width ranged from 2.4° to 11.2°; presented using Arial 

font at 60 point size), were back projected on a screen viewed through a mirror from the bore of 

the scanner, using a projector operating at a refresh rate of 60 Hz. The experiment consisted of 
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16 runs alternating between the two conditions: the word condition consisting of the phrases and 

the picture condition consisting of images of scenes. Each run was comprised of eight blocks 

interleaved with 12 s fixation periods to allow the hemodynamic response to return to baseline 

levels. The first fixation period of each run was 20 seconds. Each category was presented twice 

in a run (4 categories x 2) and the order of categories was randomized across blocks, with the 

same order being preserved across pairs of word and picture runs. The starting run was 

counterbalanced between the two conditions, words and pictures, across subjects. Each block 

consisted of four presentations of pictures or word phrases from the same category.   

 

In the picture condition, each scene image was displayed for 1 second with an inter-stimulus 

interval (ISI) of 1 second, for a total block length of 8 seconds (Figure 2.1A). In the word 

condition, each phrase was presented one word at a time (Note that, as this was a block design, 

subjects also knew the category of the noun when the adjectives were being presented). Each 

word was presented for a duration of 400 ms followed by a fixation period of 200 ms (Figure 

2.1B). The total time for each phrase was 1000 ms, matching the time that the picture stimulus 

was displayed. An inter-stimulus interval of 1 second was maintained in the word runs, again 

matching that in the picture runs. The list of phrases for each category were grouped into sets of 

four (see Appendix A), and displayed for each block. Subjects always saw these sets of phrases 

as a block, with the sequence of phrases within a block being randomized across subjects. The 

presentation of these sets was randomized for each participant. A fixation cross was presented 

throughout each block, and subjects were instructed to maintain fixation. Subjects were 

instructed to view the pictures and read and think about the phrases silently. For one subject, the 

experiment was repeated at a later date due to a scanner error in the original session. Only data 
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from the second session was analyzed. 

 

2.2.3 MRI acquisition and preprocessing 

Imaging data were acquired with a 3 tesla Siemens Trio Scanner equipped for echo planar 

imaging. A gradient echo, echoplanar sequence was used to obtain functional images (volume 

repetition time (TR), 2 s; echo time (TE), 30 ms; flip angle, 90°; matrix, 64 x 64 voxels; FOV, 

190 mm; 29 axial 3 mm slices with a gap of 1 mm; inplane resolution, 2.97 x 2.97 mm). We 

collected a high resolution (1x1x1.2 mm voxels) structural scan (MPRAGE; TR, 1.9 s; TE, 2.25 

ms, flip angle, 9°) in each scanning session to assist in registering our echo planar imaging 

images with localizer masks and a brain atlas.  

 

2.2.4 Preprocessing of Imaging Data 

We used the AFNI software suite (Cox, 1996) to pre-process our data. Motion correction was 

performed using the AFNI function 3dVolreg with options for zero padding (-zpad 4) and all 

volumes were registered to a volume in the 8th run. Our criteria were to reject any movement 

greater than 3mm and our subjects’ head movements were under that threshold. The data were 

then normalized by subtracting the temporal mean of each run from the signal, dividing the result 

by the mean and multiplying the result by 100.  This normalized signal was used for MVPA. No 

smoothing or any other pre-processing was done. 

 

2.2.5 MVPA Searchlight Analysis 

We performed a whole brain searchlight analysis (Kriegeskorte et al., 2006), using MVPA to 

build a classifier to discriminate stimuli category (beaches, cities, highways and mountains) 
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within a modality (words or pictures). In keeping with previous searchlight analyses of the scene 

network (Baldassano, Fei-Fei, & Beck, 2016), we defined a spherical template (radius of 7 mm), 

which contained 57 voxels (of size 2.97mm x 2.97mm x 3mm). These spherical voxel sets were 

built through the entire brain, with an 8mm center to center spacing. Voxels that fell outside the 

brain were omitted from the analysis. The fMRI data for these voxels, four data points per 

stimulus block, were extracted from the time series with a time lag of four seconds to 

approximate the lag in the hemodynamic response. In total we had acquired 256 brain volumes 

while viewing the pictures and word stimuli (1 session x 8 runs x 8 blocks x 4 images x 2 

seconds presentation time/2 seconds TR). This extracted signal for each voxel set was fed as an 

input for pattern analysis.  

 

A first step in the pattern analysis was to split the data into training and test sets. We followed 

leave-one-run-out cross validation (LORO) with 7 of the 8 runs being used as the training set and 

the left out run being used as the test set. We next scaled the data, which helps improve support 

vector machine (SVM) classifier performance (Chang and Lin, 2011), by normalizing the 

training data (7 runs) with respect to the mean and standard deviation of these seven runs. These 

same normalization parameters were used to normalize the data from the left out (8th) run. A 

SVM classifier was built (LIBSVM v3.11, linear kernel, C=0.01) using the training data set and 

trained to assign the correct scene category labels to the voxel activation patterns. The data from 

the test data set (8th run) was then presented to the trained classifier, which generated predictions 

of the class labels. In 8 repetitions of this procedure, for each condition (Words and Pictures), 

each of the 8 runs was left out once. For each repetition, the accuracy was calculated by counting 

the number of correctly classified stimuli for a category and dividing it by the total number of 
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actual stimuli for that category. Then, the mean of the accuracy across all the 8 repetitions was 

taken as the decoding accuracy for that voxel set for a condition (Word or Picture). The decoding 

accuracy for each template location was stored at the center voxel. By repeating this process for 

every voxel set, we obtained a brain mask of decoding accuracies for each subject.  

 

To look for similarities across the group of subjects, we subjected the individual decoding maps 

to a group analysis.  For the group analysis, we registered the decoding accuracy maps, 

converting them into 2mm x 2mm x 2mm maps for each subject into the Montreal Neurological 

Institute (MNI) space using the AFNI toolbox (Cox, 1996) @adwarp function. The @adwarp 

function transforms volumes from the subject space to the MNI space. We calculated the group 

mean using the AFNI 3dMean function across all subjects. 

 

The pattern analysis procedure was slightly modified for cross-decoding. In this case we trained 

on one condition (e.g. Words) but tested on the other condition (e.g. Pictures). LORO cross-

validation was again used, with training on 7 runs for one condition and testing on the 

corresponding 8th run for the other condition, and the decoding accuracy was determined as 

above. 

 

2.2.6 Permutation Test 

To determine an appropriate significance level for our classification results, we computed an 

expected distribution of classification errors by performing a permutation test (Mukherjee et al., 

2003) with one thousand iterations, in which we randomized our category labels for the stimulus 

set and performed classification with these random labels. We executed this permutation test 
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separately for straight-decoding (pictures, words) and cross-decoding (words to pictures and 

pictures to words) for each subject.  For each iteration of the permutation test, we calculated a 

group mean by transforming each subject's data into MNI space (see Group Analysis). Because 

the labels are randomly permuted, the 1000 resulting decoding scores per voxel provide a good 

estimate of the expected distribution of results under the null hypothesis for that voxel.  To 

correct for multiple comparisons, from each of these 1000 group maps, we identified an accuracy 

threshold that resulted in clusters of voxels, for a given cluster size, in less than 5% of the maps. 

In this manner, we determined the minimum decoding accuracy associated with a p<.05 for each 

of the straight-decoding and cross-decoding analyses, for a total of four values. From these four 

values, to be conservative, we chose the highest cutoff value (i.e. 27.75% from the straight-

decoding for words) that was considered significant at p<0.05, for a cluster size of 100 voxels. 

Our decoding and cross-decoding accuracy maps hence show decoding accuracies with a 

minimum threshold at 27.75%. We also performed a permutation test for a larger cluster size of 

400 voxels: there, the cutoff accuracy for a p<.05 threshold was 27.0%. Similar results were 

obtained for a larger cluster size of 400 voxels, but we do see a few more areas in ventral 

temporal cortex at a threshold of 27% (see Appendix B). To adopt a more conservative approach, 

we report all results with the higher threshold -- a cluster size of 100 voxels and a minimum 

threshold of 27.75%, with the results for a cluster size of 400 voxels reported in Appendix A2. 

 

2.2.7 Cross-decoding intersection maps 

We created intersection maps of the two cross-decoding conditions (train on pictures, test on 

words; train on words, test on pictures) by intersecting the resulting maps from the group 

analysis. Our logic was that with respect to the idea that words and pictures produce a common 
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code, both of these directions of cross-decoding are equally valid.  Regions that show above 

chance cross-decoding for both analyses thus represent stronger candidates for containing a 

common code. 

  

2.2.8 Calculating Signal-to-Noise Ratio 

As a preliminary analysis to assess our ability to detect an effect in the left Anterior Temporal 

Lobe (lATL), we computed the temporal signal to noise ratio (tSNR) in this region. In a region 

implicated in cross-modal representations (Binney et al., 2010) we created a 7mm sphere of 

voxels centered at coordinates (MNI: -39, -9, -36). This was transformed into each subject’s 

space, and the tSNR (Friedman et al., 2006) was computed by calculating the temporal mean in 

each voxel and diving it by the standard deviation of the signal. The tSNR was also computed for 

other clusters that showed cross-decoding to serve as a comparison with the lATL, which is 

known to suffer from distortion and signal loss. We found, as expected, that the left ATL (MNI: -

39, -9, -36) had the lowest tSNR (mean tSNR for picture runs = 42.92 and mean tSNR for phrase 

runs = 43.02) of all our cross-decoding regions (mean tSNR for picture runs range from 92.97 to 

111.87; mean tSNR for phrase runs range from 96.93 to 114.24). 

 

2.3. Results 

Our goal was to assess whether there is representational similarity in the concepts evoked by 

pictures and words for natural scenes. To determine if pictures of natural scenes and phrases that 

evoke those scene categories share common representations, we used SVM to distinguish 

between four categories (beaches, cities, highways and mountains) under two conditions: 

straight-decoding or cross-decoding. Straight decoding, in which the classifier is trained and 
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tested on stimuli from one modality (e.g. pictures) will highlight regions that contain category 

information for a given modality. Cross-decoding, in which the classifier is trained on stimuli 

from one modality (e.g. pictures) but makes category predictions on a stimulus set from another 

modality (e.g. words), will then allow us to ask whether there are shared patterns of activation 

across the two modalities. If the different modalities share a common representation, cross-

decoding should lead to above chance category prediction accuracies; that is, the pattern of 

activity evoked by pictures and words should be similar.  

 

2.3.1 Representational Similarity: Cross-decoding  

We used cross-decoding from pictures to words and words to pictures to test for representational 

similarity between pictures and words describing natural scenes across the entire brain.  Because 

a priori we have no reason to value one direction of cross-decoding (e.g. train on pictures, test on 

words) over the other (e.g. train on words, test on pictures), we produced a combined map 

(Figure 2.2; Table 2.1) of both directions (an approach recommended by Kaplan et al., (2015)) 

by intersecting the individual maps (see Appendix D for cross-decoding maps in each direction). 

The resulting maps show regions with above chance cross-decoding both from pictures to words 

and words to pictures, ignoring regions that do not cross-decode in both directions (Figure 2.2). 

We see successful cross-decoding in a variety of regions, including putative visual areas -- the 

parahippocampal region, the retrosplenial complex (RSC) and the precuneus -- as well as regions 

attributed to semantic processing -- the angular gyrus, inferior frontal gyrus and the middle 

frontal gyrus. We note that successful decoding was not driven by any particular category; ROI 

analyses showed no significant differences across categories (see Appendix C for confusion 

matrices and BOLD signal data for regions with more than 100 voxels). A similar set of 
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distributed brain regions has also been seen in studies using pictures of objects and related nouns 

(Devereux et al., 2013; Simanova et al., 2014). Importantly, the successful cross-decoding in 

these regions implies that they contain a common code for semantic category across pictures and 

words. 

 

Although we see above chance cross-decoding in large portions of the brain, we do not see 

significant cross-decoding in early visual cortex (Figure 2.2). Such a result, however, is to be 

expected given the visual features the stimuli (words vs pictures) share no commonalities. 

Interestingly, though, we do see cross decoding in later putative visual areas, the PPA and the 

RSC.  Such data are consistent with recent findings indicating that semantic knowledge impacts 

visual detection (Caddigan et al., 2010; Greene et al., 2015). We also see cross-decoding in the 

caudal inferior parietal lobule (cIPL), a region we have recently argued might be part of a two-

network model of scene perception (Baldassano, Esteva, Fei-Fei, & Beck, 2016). Not only is the 

cIPL functionally connected to scene processing regions (Baldassano, Beck, & Fei-Fei, 2013), 

but it, has been implicated in straight-decoding for natural scenes (Walther et al., 2009), 

processing familiar scenes (Montaldi, D., Spencer, T. J., Roberts, N., & Mayes, A. R., 2006) and 

in tasks involving spatial learning and landmark navigation (Bray, Arnold, Levy, & Iaria, 2015). 

It has also been implicated in semantic representations (Devereux et al., 2013; Binder et al., 

2009) and has been argued to be a cross-modal hub (see review (Kravitz, Saleem, Baker, & 

Mishkin, 2011).  

 

2.3.2 Decoding of Pictures Only 

We also replicated previous results on decoding natural scene categories (Walther et al., 2009). 
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When training on picture stimuli and testing on untrained picture stimuli we saw above chance 

decoding of category (Figure 2.3A) bilaterally in: early visual cortex; higher visual regions in the 

medial temporal cortex including the parahippocampal place area (PPA) and the RSC; the lateral 

inferior temporal cortex; the inferior parietal lobule encompassing the precuneus, the posterior 

cingulate and the angular gyrus; the middle frontal gyrus; and the inferior frontal gyrus (p < 0.05, 

corrected). We also successfully decoded pictures in the perirhinal cortex, at the tip of the left 

anterior temporal lobe (ATL).  

 

2.3.3 Decoding of Words Only  

Two brain regions showed above chance decoding of category for words (p < 0.05, corrected): 

the left inferior frontal gyrus encompassing the pars Orbitalis, the pars Triangularis and pars 

Opercularis; and the left superior and inferior parietal lobule encompassing the precuneus 

(Figure 2.3B).  These brain regions have also been reported as part of the semantic network from 

univariate studies using verbal stimuli (Binder et al., 2009). We successfully decoded in only a 

subset of the regions previously implicated in semantic processing, and the reduction in number 

of areas relative to pictures is notable. A similar reduction in decoding areas for words, as 

compared to pictures, has been observed in other MVPA studies for objects (Fairhall & 

Caramazza, 2013; Simanova et al., 2014). These studies show widespread straight-decoding for 

pictures in extrastriate visual areas, but word decoding only in the left pMTG/ITG. This is 

perhaps not surprising given that pictures are a much richer visual stimulus than words. One 

notable difference from univariate studies of words referring to objects (Kherif, Josse, & Price, 

2010) is our failure to decode in the left lateral temporal cortex. We note, however, that natural 

scene categories are known to be represented in parahippocampal regions and not the lateral 
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temporal cortex (Epstein & Kanwisher, 1998), and thus we might not expect to see the same 

areas as those implicated in object semantics. But even if we instead consider only our scene-

related areas, which do replicate prior work for natural scenes (Walther et al., 2009), we still do 

not see successful decoding of scene-related words in these areas. Of course, one cannot make 

too much of a failure to reject the null.  Indeed, successful cross-decoding between words and 

pictures was observed in these regions, suggesting that the regions do differentiate concepts 

evoked by words.   

 

Finally, it is interesting to note that the cross-decoding map is considerably more extensive than 

that produced by straight-decoding of words.  This difference between cross-decoding and 

straight-decoding is also seen in other MVPA studies with words and pictures of objects (Fairhall 

& Caramazza, 2013; Simanova et al., 2014). At first glance this result may seem surprising; 

decoding is better between modalities than within a modality.  However, such a result is possible 

in MVPA when the signal from one modality (i.e. words) is more vulnerable to noise, resulting 

in poorer decision boundaries during training and patterns that can on occasion erroneously cross 

decision boundaries during test. The addition of a stronger signal (i.e. pictures) not only allows 

the SVM to construct better (i.e. more generalizable) decision boundaries during training but it 

also provides a clearer signal with respect to those boundaries during test.  Put succinctly, 

although the category signal is present for the words it does not always rise above the noise, but 

the presence of a stronger category signal from the pictures allows that relevant pattern to 

emerge more clearly. 

 

2.4. Discussion 



	 27	

We successfully cross-decoded between pictures of natural scenes and phrases that describe them 

in a distributed set of temporal, parietal, and frontal brain regions.  This cross-decoding implies a 

first-order similarity of neural representation across two different input types: The same patterns 

of activity that distinguish among visual scene categories distinguish among phrases describing 

the scene categories. Importantly, this cross-decoding was possible in small spatial windows, 

suggesting that the signals are locally similar across the pictures and words. Thus, our results go 

beyond showing simple overlap of processing in brain regions, and instead suggest the existence 

of a fine-grained common code in these regions. These multi-modal regions showing cross-

decoding include higher visual areas such as parahippocampal gyrus and the reterosplenial 

cortex, regions in the parietal cortex, including the precuneus, the angular gyrus and the inferior 

parietal lobule, and the middle frontal and inferior frontal gyrus. Notably, all these regions have 

been implicated in semantic processing in other studies using a single input type -- for example 

words (see review Binder et al., 2009) or pictures (see review Martin, 2007). Our results suggest 

that words and pictures not only co-activate these regions, but actually activate them in a similar 

way. 

 

We chose natural scene categories as our stimuli because they share many visual and semantic 

features and, not surprisingly, activate overlapping brain regions.  Successful cross-decoding 

among these categories, then, must not only rely on more subtle differences among categories 

but it also must occur in higher dimensional space (i.e., at higher spatial resolution) than 

categorizations across stimuli that have less overlap in their activations.  For example, dwellings 

and tools differentially activate large regions within the ventral visual cortex and premotor cortex 

(Chao et al., 1999; Martin & Chao, 2001).  Such large differences in mean activation allow a 
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classifier to differentiate these categories in low dimensional space -- that is, on the basis of 

which area is more activated. The same is true for other objects classes that show other large-

scale differences in activation, such as animate and non-animate object categories (Connolly et 

al., 2012). Thus, cross-decoding across words and pictures that include such object classes 

(Shinkareva et al., 2011; Simanova et al., 2014), does not imply a similarity of representation at 

as a high a spatial resolution as our natural scenes do. Successful cross-decoding of natural 

scenes in local regions thus brings us closer to a true measure of a common code.  

 

2.4.1 Cross-decoding of natural scenes vs. objects   

How do our cross-decoding results for scenes compare with those of prior studies using objects 

and nouns (Devereux et al., 2013; Fairhall & Caramazza, 2013; Simanova et al., 2014)? In the 

left hemisphere our cross-decoding regions were broadly similar to results for studies using 

objects (Devereux et al., 2013; Fairhall & Caramazza, 2013; Simanova et al., 2014). However, 

the cross-decoding regions in our study were more extensive in the right hemisphere than in 

previous work that used isolated objects (Devereux et al., 2013; Fairhall & Caramazza, 2013; 

Simanova et al., 2014). In particular, we found evidence for common semantic representations in 

the right angular gyrus and the right precuneus. Interestingly, these same regions are also seen in 

straight-decoding for pictures. Indeed, in our current study and in previous studies involving of 

natural scenes (Walther et al., 2009) we see more bilateral decoding of category for pictorial 

stimuli. Further work will be needed to examine the detailed properties that lead to differential 

engagement of the right hemisphere for isolated objects and natural scenes. 

 

Although the anterior temporal lobes (ATL) have been shown with MVPA techniques (Clarke & 
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Tyler, 2014) to process semantic information, we failed to find cross-decoding there. This 

previous study used only picture stimuli, however, raising the possibility that this region has a 

unimodal visual representation. Some have argued that representations in the anterior temporal 

lobe are not domain-general, with the left temporal pole processing verbal semantics but the right 

temporal pole processing non-verbal semantics (Mesulam et al., 2013), and, indeed, other studies 

using words and pictures of objects also failed to find a common representation across modalities 

in the anterior temporal lobe (Bruffaerts et al., 2013; Fairhall & Caramazza, 2013; Liuzzi et al., 

2015). However, on this account, we might still have expected to see bi-lateral straight-decoding 

in these areas, in the left for words and the right for pictures.  Instead, we found significant 

straight-decoding of pictures in just a small region in the left ATL. One study, using only picture 

stimuli, has shown that this region, and more specifically the perirhinal cortex, is preferentially 

engaged when there is a need to process fine semantic distinctions (i.e. highly confusable 

objects:  Clarke & Tyler, 2014). Although our scene categories overlap considerably in visual 

feature space, they are not highly confusable, and the perirhinal cortex therefore may have been 

less engaged in our experiment. A final consideration is that the poles of the ATL are particularly 

prone to fMRI susceptibility artifacts (Visser et al., 2010), and thus our failure to find significant 

decoding in those areas may simply be due to noise; we did not optimize our scanning protocol 

for the temporal poles. Indeed, tSNR in the ATL was the lowest of all the regions tested (see 

Experiment Methods, Section 2.8). In general, it is hard to draw conclusions about failures to 

find decoding. Thus, our main focus in this paper is to show that there are, indeed, some brain 

regions that do show cross-decoding at a high spatial resolution and therefore provide stronger 

evidence for a common semantic code. 
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2.4.2 Implications for models of semantic processing 

A number of different accounts of semantic processing have been proffered in the literature (for 

review, see Glaser, 1992; Lambon Ralph & Patterson, 2008; Thompson-Schill, 2003). Multi-

code models (reviewed in Barsalou et al., 2003; Thomspon-Schill, 2003) postulate that semantic 

information is represented as separate codes for each modality. For example, picture stimuli are 

represented by a completely different pattern of brain activity in a given brain region than are 

word stimuli that evoke the same concept.  In conjunction with other recent work that has found 

evidence for shared representations of semantics from verbal and nonverbal material (Fairhall & 

Caramazza, 2013; Shinkareva et al., 2011; Simanova et al., 2014) -- i.e., evidence for a common 

code – our results argue against purely multi-code accounts, although they are not incompatible 

with the view that some aspects of semantic processing are modality-specific, as we find some 

brain regions that only exhibit straight decoding. Our results further provide evidence that there 

exists a common code at a higher spatial resolution than has typically been shown.  

 

Common code models of semantic representation postulate that semantic information is 

represented in a form that is shared across modality and input type (Lambon Ralph & Patterson, 

2008).  Models of this type vary in whether they view the semantic system as consisting of a 

single amodal hub, for example the bilateral poles of the ATL, connected to a fronto-parietal 

semantic control system and also to modality specific sensory systems (Lambon Ralph & 

Patterson, 2008; Patterson et al., 2007), or distributed across brain regions (Martin, 2007) and in 

whether the shared code is taken to be fully abstract in nature (Lambon Ralph & Patterson, 2008; 

Patterson et al., 2007) or, at least in part, built from sensory/motor features that are nevertheless 

accessible from different types of inputs (Martin, 2007). Given that we find a distributed network 
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of brain regions in which cross-decoding is successful, our results are more consistent with 

models that posit that semantic representations arise from activity in a network of brain areas, as 

opposed to within a single (localized) hub. Moreover, given that some of the areas that show 

cross-decoding (such as the parahippocampal gyrus) are also generally taken to be part of 

sensory/motor processing networks, our results are consistent with accounts wherein perceptual 

representations form part of the semantic representation of concepts and are represented in the 

relevant perceptual system, using a common code in each.  

 

Overall, then, the pattern of decoding results suggests that the processing of meaningful stimuli 

unfolds across a large-scale, distributed brain network, encompassing both sensory as well as 

cognitive processing regions (Figure 2.2).  Parts of this network share a common code, while 

other regions perform analyses that provide high-level (i.e., categorical) information about 

specific input types.  Moreover, it seems likely that the temporally-summed activity we measure 

here in fMRI reflects dynamic processing patterns that transition over time and brain area from 

modality- and input- specific processing to processing that is shared across input types (e.g., for a 

review see Federmeier et al., (2015)). 

 

2.4.3 What is the nature of the representation in regions of cross-decoding? 

Although our results show representational similarity across pictures and words for natural scene 

categories in multiple regions, we do not know the exact the nature of this representation. What 

is being decoded in these regions? Is it visual information, semantic information, or both? One 

possible view is that, as scenes and the words that describe them bear no visual resemblance to 

one another, any similarity of representation cannot be visual in nature and hence must be an 
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abstract, semantic representation evoked from a common concept (Fairhall & Caramazza, 2013). 

However, such a view overlooks the possibility that the semantics evoked by a word may 

integrally include visual perceptual representations that are stored in a visual feature space (Kan 

et al., 2003; Martin, 2007; Binder et al., 2005). 

 

Considerations of visual imagery are particularly pertinent in visual processing regions. Indeed, 

visual imagery is known to evoke activity in the precuneus, the left angular gyrus, the 

supramarginal gyrus and the inferior parietal lobule (Ganis et al., 2004) – regions that show not 

only cross-decoding, but also straight-decoding for pictures and words in our study -- as well as 

posterior ventral visual cortex (e.g. O'Craven & Kanwisher, 2000), which also shows cross-

decoding in our study. However, this imagery explanation does not need to be seen as an 

alternative to a semantic representation. An embodied view of cognition holds that the semantics 

of a concrete concept is distributed across both sensory and motor systems, which are then 

essential for the processing of semantic information (Martin, 2007; Pulvermüller & Fadiga, 

2010). If every time someone reads the word “beach,” for instance, his/her parahippocampal 

gyrus represents a beach or beach-like stimulus, then it is difficult to argue that this activity is not 

part of his/her concept of a beach.  In other words, the activation of a visual representation, either 

through explicit imagery (D'Esposito et al., 1997) or while performing a semantic task (Kan et 

al., 2003), may be an essential part of semantics, at least for concrete (imageable) concepts. In 

the future, more work will be needed to understand how each of the regions in our cross-

decoding network contributes to both our visual and semantic representations. It may be that the 

dichotomy that is sometimes assumed between semantic and visual information is at least partly 

artificial. 
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In summary, we have shown cross-decoding across picture and word input types for the natural 

scene categories of beaches, cities, highways and mountains. These stimuli, all constituting 

outdoor scene categories, evoke activity in similar brain regions.  Thus, successful cross-

decoding here implies a common representation at a high spatial resolution (i.e. the pattern is 

similar even within circumscribed brain regions). Although questions remain about the exact 

nature of the representation in each area, this commonality thus provides the strongest evidence 

to date of a common code. 
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2.6 Table 

Table 2.1. Location of various clusters from the cross-decoding map. The decoding accuracy at 

the peak location along with the co-ordinates are listed. We have added a suffix to distinguish 

two nearby clusters in the r-Middle Frontal Gyrus, the l-Middle Frontal Gyrus, and the l-Inferior 

Frontal Gyrus. 

Clusters 

Number 
of 

Voxels 
Accurac

y Peak x Peak y Peak z 

Precuneus, Angular Gyrus, 
RSC, IPL and SPL 11363 30.22 -28 -70 46 

r-Middle Frontal Gyrus 1 458 29.97 26 6 64 

r-Middle Frontal Gyrus 2 172 28.53 24 32 44 

l-Middle Frontal Gyrus 1 124 28.53 -34 54 14 

l-Inferior Frontal Gyrus 1 124 28.36 -36 34 12 

l-Inferior Frontal Gyrus 2 73 28.32 -50 10 22 

l-Middle Frontal Gyrus 2 56 28.62 -30 2 64 

l-Paracentral Lobule 22 28.53 -8 -42 68 
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2.6 Figures 

 

 

Figure 2.1. Stimuli were presented in separate picture (A) and word (B) runs. Presentations were 

blocked by category for both the picture and word runs. We used sixty-four unique stimuli in 

each of the four categories: beaches, mountains, cities and highways. Each image was presented 

for one second with an inter-stimulus interval (ISI) of one second. For the words, each stimulus 

consisted of two word  phrases with each word being presented for 400 ms, with a fixation 

screen shown between words for 200 ms. Thus the total time for the word trial was also one 

second, equal to the time the pictures were shown. A one second fixation screen was shown at 

the end of the second word. Each block consisted of four trials for the picture and word runs. 
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Figure 2.2 Maps showing the mean percentage of cross-decoding accuracy from pictures to 

words (train on picture runs and test on a word run) and from words to pictures (train on word 

runs and test on a picture run). The threshold for the maps have been set to an accuracy 27.75% 

(p < 0.05). The top row shows views from the left hemisphere and the bottom row shows views 

from the right hemisphere. 
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Figure 2.3. A: Straight decoding accuracy of pictures (train on picture runs and test on a left out 

picture run). The top row shows views from the left hemisphere and the bottom row shows views 

from the right hemisphere. B: Straight decoding accuracy of words (train on word runs and test 

on a left out word run). We see above chance straight-decoding for words only in the left 

hemisphere. 

 

 

LH	

RH	

LH	



	 38	

 

 

Chapter 3 

The Good Bad Effect: How Does Representativeness Inform Vision?  
 

3.1. Introduction 

As a first step in understanding the nature of interactions between semantics and vision, we 

showed that there are similar representations across pictures and words pertaining to natural 

scenes, distributed across multiple brain regions, including higher visual areas and putative 

semantic brain regions (Chapter 2; Kumar et al., (in press)). Certainly, the early sensory areas, 

where we observed straight-decoding but not cross-decoding, seem to strongly represent 

modality specific information. Our cross-decoding results indicate that the higher associative 

areas, for example the PPA (an area known to process scene layout) and the RSC can activate 

representations across modalities. How do these modality specific features in early sensory areas 

and representations activated semantically in higher cortical regions interact when humans 

process natural scene images? When in the processing of natural scenes do we see an influence 

of prior knowledge or semantics?  

 

One way to answer these questions is to compare scenes that make better contact with our prior 

knowledge, and hence have rich semantic associations, versus those that are less representative 

of their category. Representativeness of a scene image encompasses a wide array of visual 

properties that humans have learned about that category of scenes. By studying the processing of 

representative scenes (herein called good) as compared to non-representative scenes (herein 
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called bad), we can gain insights into when in the processing stream our prior knowledge about 

representativeness impacts visual processing  

 

Good and bad exemplars of natural scenes have been studied using behavioral measures and 

fMRI (Caddigan et al., 2010; 2017; Torralbo et al., 2013). In a recent behavioral study (Caddigan 

et al., 2010; 2017), it was shown that subjects detect briefly presented good exemplars of natural 

scenes better than bad exemplars; that is, they can more quickly state that an image as opposed to 

noise was present when that image was a good exemplar of the category. Given that humans are 

good at extracting the gist of a scene, even at very fast presentation rates (Walther et al., 2009) 

and there is no gist in an image created with noise, we would not expect that detecting an intact 

scene from noise would depend on how representative the image is. Surprisingly, the 

representativeness of the scene matters. This result is a novel finding as prior work on 

categorization and detection does not inform us about the dependency of detection on 

categorization. We know that people are more accurate in categorizing good exemplars as 

compared to bad exemplars of objects (Rosch, Simpson, Miller, 1976). A study on detection and 

categorization of objects (Grill-Spector & Kanwisher, 2005) showed similar reaction times for 

categorization and detection, leading to the inference that categorization and detection occur in 

parallel. The better detection of good exemplars of natural scenes (Caddigan et al., 2010; 2017), 

thus extends the earlier work on categorization and detection, showing that even in a pure 

detection task, representativeness to a known category matters. We can think of good exemplars 

of a scene as being at the center of a multi-dimensional space that specifies the category, and 

hence evoke strong representations of the category. In the intact image versus noise detection 
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task (Caddigan et al., 2010; 2017), explicit categorization is not necessary and yet the degree to 

which the scene represents its category impacts perception.  

 

Since our concept of a good beach, for example, must be learned, such an effect suggests that 

experience informs our vision. How is it that experience can have an effect on processing stimuli 

that are presented for just 10s of milliseconds and backward masked? Backward masking 

reduces the visibility of the target stimulus (Breitmeyer & Ogmen, 2000) by disrupting the  

ongoing processing of the stimulus with a mask that closely follows it in time. Nonetheless, 

subjects not only are able to perceive natural scenes even with very brief presentations (Walther 

et al., 2009; Li et al., 2002; Rousselet et al. 2002; Thorpe et al., 1996), they can perceive them 

with even less viewing time if they are good (as opposed to bad) exemplars of their category 

(Caddigan et al., 2010; 2017). There are both feedforward and feedback explanations of how 

representativeness impacts rapid perception. For example, exposure to natural scenes over one’s 

lifetime may change visual cortex to enable quick feedforward processing of scenes and objects 

(Rousselet et al, 2005; Thorpe et al., 1996 ); that is, the superior performance on good exemplars 

does not initially rely on any semantic processing but arises through more efficient bottom-up 

processing of the visual features present. The other possibility is that even with incomplete 

perceptual processing, semantics/knowledge about scenes becomes active and feeds back into 

visual processing (Malcolm et al., 2014; Koivisto et al., 2011; Bar et al., 2007; Kveraga et al., 

2007), making it easier/more robust. Our prior work (Kumar et al., in press; Chapter 2) is 

consistent with this possibility, given that we have shown that shared representations between 

verbal semantics and visual features exist in higher visual areas (albeit at much slower time-

scales).  
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Prior work using fMRI (Torralbo et al., 2013) shows a range of possibilities at which good and 

bad exemplars can start to differ in their processing: they may differ in low level visual features, 

larger scale spatial layouts, or even at the semantic level. MVPA on data collected when 

participants viewed good and bad exemplars showed differences in decoding scene category 

between good and bad exemplars in brain regions spanning many different levels of analysis. For 

good exemplars, scene category could be decoded above chance in V1 as well as the PPA and 

RSC (Torralbo et al., 2013). Importantly, the decoding accuracy for good exemplars of the scene 

category was always higher than for bad exemplars of the scene category in all these regions. 

The decoding differences between good and bad exemplars in V1 imply that there could be 

differences at small spatial scales between good and bad exemplars. The decoding differences in 

the PPA and RSC imply that there could be differences between good and bad exemplars at 

larger spatials scales, as the PPA is known to process large spatial layouts (Epstein and 

Kanwisher, 1998). fMRI, lacking temporally specificity, also does not inform us about the time 

course of processing differences between good and bad exemplars. Thus, the fMRI results 

provide us a framework of possibilities that could contribute to the onset of differences between 

processing good versus bad exemplars, but the details pertaining to cognitive mechanisms and 

the time course of processing are lacking. Thus, we turn to ERPs to determine what cognitive 

mechanisms are responsible for differences in processing good and bad exemplars, and at what 

timescales do these processes differ. 

 

Using ERPs we can distinguish between these possibilities based on the time-window in which 

differences in processing between good and bad exemplars are first observed. ERPs are a direct 
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and instantaneous measure of the continuous electrical activity in the brain (Münte, Urbach, 

Düzel, & Kutas, 2000; Luck and Kappenman, 2011) and can provide insights into the timeline 

and cognitive mechanisms underlying good and bad scene processing. Importantly, ERP signals 

are linked to cognitive processes spanning attention, perception, semantics, long-term memory 

and decision making (see overview Münte, Urbach, Düzel, & Kutas, 2000).  

 

For example, if good and bad exemplar processing differed due to low level visual features, we 

would predict effects on sensory components such as the P1 and N1 in the time-window 100-150 

ms (Schechter et al., 2005). If the differences between processing good and bad exemplars were 

due to differences in the semantics evoked, we would see differences on the N400 component in 

the timeframe of 350-600 ms (Federmeier and Kutas, 2001). If differences between good and bad 

exemplars are due to a judgment and decision making stage we would see differences in the late 

positive complex (LPC) component after about 500 ms (Finnigan, Humphreys, Dennis, & 

Geffen, 2002). If differences between good and bad exemplars arise due to the interaction of 

prior knowledge and visual processing (Caddigan et al., 2010; 2017), it is plausible that we will 

see those differences in the N300 component (Schendan and Kutas, 2002) which indexes higher 

level perceptual processing in time-window 200-350 ms, since this is a time-frame in which both 

semantics (350-600ms) and high level perceptual processing could be active (200-350).  

 

We used good and bad exemplars from six natural scene categories: beaches, forests, mountains, 

city streets, highways, and offices to examine the cognitive and perceptual processes underlying 

differences between good and bad exemplars. We measured ERPs to understand the mechanisms 
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that lead to differences between processing good versus bad exemplars and the time when these 

differences occur. 

   

3.2 Methods 

 
3.2.1 Participants 

Twenty right-handed neuro-typical college-age subjects (mean age = 23.9 years, range = 18 to 33 

years) participated in the study. Participants signed an informed consent and were compensated 

for their participation in the study, through course credit or monetary compensation. The study 

was approved by the Institutional Review Board of the University of Illinois at Urbana-

Champaign. All participants were right-handed, as assessed by the Edinburgh Inventory 

(Oldfield, 1971). Participants also had no history of neurological disease, psychiatric disorders, 

or brain damage. 

 

3.2.2 Visual Stimuli 

We choose pictures of natural scenes in six categories: beaches, forests, mountains, city streets, 

highways and offices. These images were collected from the internet and rated for 

representativeness to category on Amazon Mechanical Turk, and the top rated 60 images were 

marked as good exemplars for each category, and the lowest rated 60 images were marked as bad 

exemplars for each category (for details on the choice of good and bad exemplars see Methods in 

(Torralbo et al., 2013). Using an image processing software (Imagemagic, 

http://imagemagick.org/script/index.php), these images were resized to 340 x 255 pixels and 

placed on a black background with a fixation cross placed at the center. The images were 

randomly presented, for each trial, at one of three locations: the center, placed 2 degrees to the 
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left of fixation, or 2 degrees to right of fixation, with a total of 120 good images and 120 bad 

images presented at each location. In total 360 good images and 360 bad images were presented 

across the three locations. In this work, we only report results from the images that were 

centrally placed. The results for the lateralized images will be reported as a part of a study on 

hemispheric differences in the future. 

 

3.2.3 Presentation 

Subjects were instructed at the beginning of the study that they would be seeing good and bad 

exemplars of six scene categories and that their task at the end of each trial was to indicate via 

button press whether the image was a good or a bad exemplar its category. They were given a 

few practice trials to get them accustomed to the task. They were seated at a distance of 100 cm 

from the screen, and the images subtended a visual angle of 7.65° x 5.73° (width x height). 

Subjects were instructed to fixate on a central cross. They were told to remain relaxed throughout 

the experiment and that they could blink their eyes once the trial was complete, before they hit 

the response button. Responding would start the next trial. Each trial began with a fixation cross 

presented on a blank screen for a duration jittered (to prevent any expectancy effects) between 

1000-2000 seconds (Figure 3.1). This was followed by the presentation of an image, either a 

good exemplar or a bad exemplar from one of the six categories, for a duration of 200 ms.  This 

was followed by a fixation cross on a blank screen for 500 ms. At the end of the trial a prompt 

with "Good or Bad?" was displayed on the screen and subjects used a button press to indicate 

their judgment. The experiment lasted for approximately one hour and fifteen minutes. Subjects 

were given two five minute breaks at roughly 25 minutes and 60 minutes from the start of the 

experiment. 
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3.2.4 ERP Setup and Analysis 

We used 26 channels of passive electrodes that were equidistantly arranged on the scalp using an 

electrode cap. In addition, we used 3 electrodes on the face to measure eye movements and 

blinks. Impedances were kept below 5 KΩ for scalp channels and 10 KΩ for eye channels. 

Horizontal eye movements were tracked by computing the difference between signals extracted 

from electrodes placed on the outer canthus of the left and right eye. Eye blinks were tracked by 

placing one electrode below the left eye. The signal was bandpass filtered online (0.02 Hz - 100 

Hz) and sampled at the rate of 250 Hz. The EEG signals were converted into voltage from their 

analog to digital (A/D) values by independently calibrating the A/D units of the amplifier with 

preset voltages. Artifact rejection was performed before averaging the signal to remove 

excessive eye movements, drift, and blinks, using thresholds calibrated for individual subjects A 

blink correction algorithm (Dale, 1994) was used on all subjects to recover signals due to blink 

correction.  The EEG signals were re-referenced offline to the mean of the left and right 

mastoids. ERPs were calculated for a time period spanning 100 ms before stimulus onset to 920 

ms after stimulus onset, with the 100 ms prestimulus interval used as the baseline.  This 

processed signal was then averaged for each condition across all subjects. A digital bandpass 

filter (0.2 Hz - 30 Hz) was applied before measurements were taken from the ERPs.  

 

We computed the grand average ERP waveforms for good and bad conditions across all subjects. 

For the two conditions, the mean amplitude was computed at frontal electrode sites and t-tests 

and bayes factors were computed. We also computed the grand average ERP waveforms for 

natural (beaches, forests, and mountains) and man-made (city streets, highways, and offices) 
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categories. We computed statistics using R (R Core Team, 2014). Specifically, we used the 

functions t.test, to compute t-tests, and ttestbf (from the package: BayesFactor) to compute Bayes 

Factors. For within-subject calculations of confidence intervals, we used the function 

summarySEwithin() that is based on Morey (2008). 

3.3 Results 

 

The grand-averaged mean ERP signal for each condition is shown at 8 electrode sites in Figure 

3.2A. This figure shows that the good and bad exemplars appear to be differentiated beginning 

around 250 ms from stimulus onset, with greater negativity for bad exemplars than for good 

exemplars.  The timing, polarity, and scalp distribution is consistent with the N300 (McPherson 

& Holcomb, 1999; Schendan and Kutas, 2002; 2003; 2007). To measure this N300 response, 

which is known from prior literature to be frontally distributed (REFs), we computed mean 

amplitudes for good and bad exemplars from the 11 frontal electrode sites.  As shown in Table 

3.1 and Figure 3.2B, this analysis revealed that bad exemplars elicit significantly larger (more 

negative) N300 responses than do good exemplars.  

 

We also see differences between good and bad exemplars in a 500-800ms time window at 

parietal sites, with greater positivity for good exemplars than bad exemplars F(1,19) =12.61, 

p=0.0021, epsilon = 0.0845 (Greenhouse-Geiser). The ERP waveforms in this window show the 

form typically described for the Late Positive Component (LPC), which has been associated with 

confidence in decision making (Finnigan, Humphreys, Dennis, & Geffen, 2002).  This effect 

suggests that subjects had greater confidence in judging the good exemplars as good, as opposed 

to the bad exemplars as bad. Indeed, subjects were better at identifying good exemplars 
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(accuracy: Mean =85.83%, std. dev = 14.17%) as compared to bad exemplars (accuracy: Mean 

=55.83%, std. dev =15.83%). 

 

As a point of reference to prior work, we also examined the differences in ERP waveforms 

between natural and man-made scene categories. In categorization studies, the natural vs man-

made is an easy distinction to be made on the basis of features (Oliva & Torralba, 2001), and is 

made before basic-level categorization (Loschky & Larso, 2010) and thus is a good candidate for 

differing in low-level processing. Indeed, we do find that the ERP waveforms begin to differ for 

natural scene categories as compared to man-made scene categories approximately 150 ms from 

stimulus onset (Figure 3.3). This is interesting because it suggests the good/bad distinction is 

more complex than the natural/man-made distinction since good/bad distinction comes 

considerably later. 

 

Table 3.1. The grand average mean values, in the N300 time-window (250-350 ms), shown for 

11 frontal electrode sites (see Figure 3.2B) along with t-test and Bayes factor values. The N300 

for bad exemplars have a greater mean negative amplitude than for the good exemplars. The t-

test and Bayes factor calculations compared the Good/Bad difference to 0.   

       
Condition N Mean  

(micro 
Volts) 

Standard 
Deviation 

(micro 
Volts) 

t(19) p Bayes 
Factor  

 

Bad 20 -6.4 0.7 -5.35 3.64E-05 686.7 Good 20 -5.3 0.7 
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3.4 Discussion 
We set out to answer one question: What are the mechanisms that the human brain uses to 

differentiate between good and bad exemplars of natural scene images.  Thus, we used ERPs, 

from which we can not only get timing information but also gain insights into the perceptual and 

cognitive processes that help distinguish good and bad exemplars. We found that the ERP 

waveforms for good and bad exemplars differ in processing in the time-window of 250-350 ms. 

These waveforms show a greater negativity for bad exemplars than for good exemplars and this 

effect is distributed across frontal electrode sites. Given the time window of the difference 

between the ERPs for good and bad exemplars in our experiment, and their frontal distribution, 

we characterize these waveforms as reflecting the N300 component, which has been 

characterized in other work using images of objects (Schendan and Kutas, 2002; 2003; 2007) and 

scenes (Pietrowsky et al., 1996; Vo and Wolfe, 2013).  

 

The N300 has been shown to index the degree of structure and regularity in pictorial stimuli. In a 

study with pictures of objects at different levels of fragmentation (ranging from a fuzzy 

collection of line segments to an arrangement of line segments where the object outline is very 

clear), the ERPs in the time window of 200-350 ms showed greater negativity, over frontal sites, 

when subjects were unable to identify the object segments as compared to when they did 

recognize the object (Schendan and Kutas, 2002). The N300 is not sensitive to local differences 

in contours: when low level properties (e.g. color of the line segments) are changed, there is no 

difference in the N300 time window for the original and changed versions of the stimuli 

(Schendan and Kutas, 2007). The N300 is also sensitive to well learned viewpoints of objects. 

Non-canonical views (e.g. An umbrella held horizontally) elicit a greater frontal negativity as 

compared to a canonical view (e.g. An umbrella held vertically) (Schendan and Kutas, 2003). 
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Similarly, in a study using natural scenes, the ERPs were more negative in the N300 time 

window when the scene was scrambled (created by recombining parts of the scene image into a 

random jigsaw) as compared to when the landscape scene was intact and identified (Pietrowsky 

et al., 1996). This negativity in the N300 time-window was also seen in a study with natural 

scene images that contained elements not in their probable locations (e.g. A cup placed on top of 

a microwave door) as compared to a picture of scene where all elements were in predictable 

places (e.g. A cup placed inside a microwave) (Vo and Wolfe, 2013).  Thus, the N300 

component helps distinguish across a variety of perceptual contexts that do not just differ in low 

level attributes but encompass global structure, canonical viewpoints, probable views of scenes, 

and in our own experiment, the representativeness of the stimuli. 

 

We would like to collectively refer to these properties -- canonical viewpoints, probable views 

and representativeness – as learned statistical regularities of the stimuli. It is this collection of 

statistical regularities, which we can also call a template, that can help us in rapid categorization 

and identification of stimuli.  Thus, we can think of the differences in N300 component as an 

indicator of the degree to which the exemplars match a template, with greater negativity for a 

stimulus when it doesn't match a template as compared to when it does match a template. 

 

These templates play an important role in object and scene recognition. An object recognition 

model has been proposed, based on a series of experiments characterizing the N300, to occur in 

multiple stages for familiar and unfamiliar items (Schendan and Kutas, 2002; 2003; 2007). In the 

first stage, indexed by the P150-N170 components, perceptual grouping processes are at work. 

This stage constructs the whole from parts and helps identify easily separable objects (faces vs. 



	 50	

non-faces) or even indicates an early match to a canonical viewpont. In the next stage, called the 

object selection stage, indexed by the N300, objects are matched to items in memory with similar 

perceptual structures. This stage is viewpoint centric, as indexed by the N300, and reflects the 

processing of the global structure of the object. Thus, at this stage, canonical views and 

previously seen objects are identified (lower N300 amplitude). If sufficient information is 

available to identify non-canonical items, they can be identified at this stage too, indexed by a 

larger N300 amplitude, as compared to the canonical views. This stage involves recurrent and 

feedback processing (David, Harrison, & Friston, 2005; Schendan and Kutas, 2007) and results 

in object selection for canonical and identifiable objects. The N300 stage of processing has also 

been proposed as a pruning stage, where representations matched to perceptual structure in 

memory are kept and all other representatons pruned out from selection (Pietrowsky et al., 1996). 

For stimuli that have no identifiable information (non-recoverable), object selection is not made 

at this stage, and no modulations are seen in the N300 amplitude. For these non-recoverable  

stimuli, a later stage identification process manifests after 500 ms, indexed by the LPC. At this 

stage, identified objects, and hence matched to long-term memory, show a greater positivity as 

compared to unidentifiable objects. This LPC stage is also where fine distinctions, at local scales 

(e.g. positions of small edge segments), are made between objects (Schendan and Kutas, 2007). 

 

Our work extends this understanding of the N300 and the cognitive and physiological processes 

that it indexes, as there are some notable differences between our bad exemplars and the stimuli 

used in all the previous work characterizing the N300 component. Our bad exemplars are not 

impoverished images of isolated objects, unlike the fragmented stimuli used in prior studies, nor 

do they have any artificially displaced elements in them. Rather, they are full color photographs 
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of natural scenes that don’t match our expectations about representative views of the category. In 

the object model (Schendan and Kutas, 2002; 2003; 2007), objects were matched to known or 

canonical viewpoints and showed a lower N300 as compared to objects that had non-canonical 

viewpoints. The mismatch to regularities, or templates, is the key insight that we can transfer to 

the interpretation of our study from prior studies on N300 differences. Good exemplars match a 

learned template better, and hence show a lower N300 amplitude, as compared to bad exemplars.   

 

We can also draw parallels between the object identification models (Schendan and Kutas, 2002; 

2003; 2007). and scene categorization models (Oliva and Torralba, 2001). Natural scene 

categorization can be achieved at low spatial resolution, that is without any identifying 

information about objects in the scene (Oliva & Schyns, 1995). One model, the Spatial Envelope 

model, posits the use of these spectral signatures in extracting the gist of a scene (Oliva and 

Torralba, 2001). Gist extraction is from the global image (Greene & Oliva, 2009) and hence fits 

the time-window of the N300, based on the object studies (Schendan and Kutas, 2002; 2003; 

2007). The templates we propose, constituting learned statistical regularities, can serve to select 

and match gist in a perceptual structure system, with images that find a template match are 

facilitated and identified in the N300 time-window. In our case, all our images are complete, as 

in not fragmented or non-recoverable. Hence, most of the processing and identification can 

happen at the N300 stage, similar to the object model (Schendan and Kutas, 2002; 2003; 2007). 

Scene processing is known to occur in extrastriate visual areas in the PPA and RSC (Epstein and 

Kanwisher, 1998) corresponding well with the N300 localization in higher visual areas 

(Schendan and Kutas, 2002). Similarly, recurrent and feedback processing, as in the object 
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model (David, Harrison, & Friston, 2005; Schendan and Kutas, 2007), do play a role in scene 

processing (Malcolm et al., 2014; Serre et al., 2007).  

 

We have thus gained new insights into how our prior knowledge, stored as templates, of natural 

scenes, is used in scene processing. In the next chapter, we focus on examining the dynamics of 

processing good and bad exemplars of natural scenes under conditions in which participants are 

precued, and hence can pre-activate features relevant to the incoming stimuli category template. 

This will help address the question: Is a good exemplar always facilitated in processing or does 

what we expect modulate the processing of good exemplars. 
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3.5 Figures 

 
Figure 3.1. Schematic of one trial in the experiment. A screen with a fixation cross is shown for 

time-period randomized between 1000-2000 ms. A good or bad exemplar image from one of the 

six categories is presented at one of the following locations: the center, the right visual field or 

the left visual field, followed by a fixation cross. The subjects then make a delayed response to 

the question "Good or Bad?" and the next trial begins. 
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Figure 3.2A 
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Figure 3.2 A (contd.): The grand average ERP waveforms for good (blue) and bad (maroon) 

exemplars shown at 8 electrode sites. Negative voltage is plotted upwards. The channel locations 

are marked in yellow on the schematic of the scalp. The waveforms differ in the N300 time-

window (250-350 ms), with greater negativity for bad exemplars as compared to good 

exemplars, over frontal sites. B: The mean of the ERP amplitude over 11 frontal electrode sites 

(N = 20). The error bars plotted are within-subject confidence intervals.  
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Figure 3.3. The grand average ERP waveforms plotted for natural and man-made scenes for 

good and bad exemplars. The natural vs. man-made distinction is seen separating in an earlier 

time-window, approximately 150-200 ms after stimulus onset in all fronto-central channels, as 

compared to the separation for good versus bad exemplars. The grey box indicates the time-

window of the separation between the natural and man-made categories, for both good and bad 

exemplars, showing that is earlier than the time-point for the good versus bad distinction. 
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Chapter 4 

Expectancy Modulates the Good-Bad Effect 
 

4.1. Introduction 

 

I have showed, so far (Chapter 3), that the difference in processing between good and bad 

exemplars occurs in a time-window of 250-350 ms, with the bad exemplars showing a greater 

negativity in the ERP waveform over frontal electrode sites. I linked this processing to the ERP 

N300 component that indexes global structure, canonical viewpoints, and – now – 

representativeness to category. I collectively refer to these properties as learned statistical 

regularities, or “templates” for short. I hypothesized that good exemplars are facilitated in their 

processing because they better match a template for the category as compared to bad exemplars. 

In this chapter, then, I focus on the dynamics with which those templates are called to mind and 

used. Specifically, I ask what happens to the visual processing of incoming good and bad 

exemplars of a category if people dynamically modulate their expectations about stimulus 

category through the use of a prior, verbal cue. Does this dynamic activation of semantics, via 

reading a word cue, influence picture processing in the N300 time-window (or earlier) and thus 

modulate how statistical regularities are accessed and used during visual processing. The answer 

to this question will give us insights into the dynamics of the interaction between semantic and 

visual processing.  

 

Building on the design from Chapter 3, in this experiment we set up an expectation for a 

particular scene category and then present either a good or bad exemplar of the cued scene 
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category or a good or bad exemplar of a mismatching scene category.  A number of prior studies 

have examined basic semantic match/mismatch effects ; (see review Kutas and Federmeier, 

2011), including from verbal cues to images, allowing clear predictions about the type of effects 

that should be seen in later processing windows.  In particular, semantic mismatch effects (e.g. 

reading the word “Forest” followed by a picture of a beach) would be expected to modulate the 

amplitude of the N400 component. The timing of the N400 for a stimulus (words, sentences, 

pictures, sounds, gestures) is stable, seen between about 300 and 500 ms, peaking at around 400 

ms (Kutas and Hillyard, 1980; see review Kutas and Federmeier, 2011). The N400 component is 

distributed over central-parietal sites for words and fronto-central sites for colored pictures. This 

is true not only for written sentences but also for prime-target word pairs (e.g. congruent: farm-

ranch; incongruent: hook-table), with the largest N400 amplitude seen for target words that are 

outside of the category of the first word (Kutas, 1993). This prime-target paradigm is what we 

are using in our current study, except the target is a picture of a natural scene. Given prior work, 

we expect the N400 pattern to be similar for pictures. A similar pattern of N400 results was 

obtained for written sentences with the last words sometimes replaced with a picture (Federmeier 

and Kutas, 2001; Nigam et al., 1992);  for spoken sentences with pictures (congruent or 

incongruent) simultaneously displayed when the critical noun (congruent or incongruent) 

(Willems, Özyürek, & Hagoort, 2008); for line drawings (Holcomb & Mcpherson, 1994); for 

colored pictures (Mcpherson & Holcomb, 1999); and for video clips (Sitnikova, Holcomb, 

Kiyonaga, & Kuperberg, 2008). Thus, in our experiment, if the scene stimulus (e.g. picture of a 

beach) matches the verbal cue category (e.g. Beach) we expect to see reductions in the N400 

amplitude to the match as opposed to when the stimulus (e.g. picture of a forest) does not match 
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the verbal cue (e.g. Mountain) and hence are not in the semantic neighborhood of the cue, 

leading to large N400 amplitudes.  

 

What is less clear from the extant literature is what the impact of good versus bad might be on 

the N400 pattern.  If what makes a scene good (e.g. a good beach) is that it is better at evoking 

stored semantic associations for the category (e.g. beach), we expect to see the strongest N400 

effects for good exemplars, with robust reductions in N400 amplitude to good exemplars that 

match the cue (e.g. Beach) versus good exemplars that do not match the cue (e.g. Mountain) and 

hence are not in the semantic neighborhood of the cue.  On this view, we might expect an 

intermediate response to matching bad exemplars, which share some of the category’s features 

but not as many as the matching good exemplars.  Mismatching bad exemplars are an interesting 

case.  If they share no features with the cue, then N400 amplitudes to mismatching items should 

be insensitive to the good/bad dimension – that is, both conditions should be at the baseline 

(large N400), unprimed level.  However, if part of what make bad exemplars bad is that they 

share some semantic features with other scene categories, then N400 responses to this condition 

might be facilitated relative to the good mismatches. 

 

Of greatest interest for the present study, however, is the effect on the N300.  If the N300 reflects 

a point in processing in which knowledge-based information interacts with vision, it should be 

possible to dynamically influence the process by setting up knowledge-based expectations? By 

setting up an expectation, we are plausibly activating a template of statistical regularities of the 

category that is expected. That, in turn, may modulate the good/bad effect since, e.g., an 

incoming stimulus that is a good exemplar of beaches would still be a poor match for an 
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activated template for forests. Prior work and our own results indicated that the N300 time-

window is when object selection and matching (Schendan and Kutas, 2002; 2003; 2007), pruning 

(Pietrowsky et al., 1996), or matching to templates occurs (Chapter 3). Thus, we are asking 

whether the matching process is sensitive to an active template, initiated from a different input 

type (written word). If the N300 component is sensitive to the active template, set up before the 

stimulus, then the arriving beach stimulus is not a match and we should see a larger N300 for the 

good exemplar of a beach as compared to when the cue (e.g. beach) and the incoming stimulus 

match (e.g. picture of a good beach) -- that is an unexpected good exemplar is processed 

similarly to a bad exemplar (i.e. a less good match to the active template) in the N300 time 

window. If the N300 component is indexing templates activated only by the incoming stimulus 

and cannot be modulated by any preexisting activations, we should see similar facilitation for 

good exemplars regardless of whether it is preceded by a matched or mismatched cue.  

 

In this work I use a precue to assess the dynamics of top-down semantic influences on the visual 

processing of natural scenes. Similar to the previous experiment (Chapter 3), I presented images 

of good and bad exemplars from the same six categories, but with one change:  I cued 

participants with a noun describing the category before the start of the trial, thus setting up their 

expectation of what they would see. For seventy five percent of the trials, the cue matched the 

stimulus, constituting either a good or a bad exemplar from the cued category, but for twenty five 

percent of the trials, there was a mismatch between the cue and the image (Figure 4.1) (See 

Methods 4.2 for more details). 
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4.2 Methods 
The methods were almost identical to those in the previous chapter (see Methods Section 3.2), 

with the following differences: 

 

4.2.1 Participants 

A different set of twenty-four subjects participated in this experiment. We had to drop four 

subjects in total due to excessive eye-movements and noise (3 subjects), and problems with data 

recording for one subject. (mean age = 23.9 years, range = 18 to 33 years). Participants signed an 

informed consent and were compensated for their participation in the study, through monetary 

compensation. The study was approved by the Institutional Review Board of the University of 

Illinois at Urbana-Champaign. All participants were right-handed, as assessed by the Edinburgh 

Inventory (Oldfield, 1971). Participants also had no history of neurological disease, psychiatric 

disorders, or brain damage. 

 

4.2.2 Presentation 

The trials began with a word cue, presented for 500 ms (Figure 4.1). The cue consisted of a 

category cue from one of the following words: Beach, City Street, Forest, Highway, Mountain, 

and Office. For each category, we ensured that five trials were mismatched, for good and bad 

exemplars. We thus had 75% matched trials and 25% mismatched trials. At the end of each trial, 

participants were shown a question,“Yes or No?” Participants had to make a delayed button 

response and indicate if the picture matched the cue or not. The responses for “Yes” and “No” 

were counterbalanced to the left and right hand across subjects. 

 

4.2.3 ERP Setup and Analysis 
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All processing of the waveforms was identical to the processing in Chapter 3 (Methods Section 

3.4). We computed the grand averaged signal across all subjects for the following conditions: 

Good Match, Good Mismatch, Bad Match and Bad Mismatch. Again, we only present data for 

the central presentation trials in this chapter. We also chose appropriate time-windows for 

analysis based on the mix of components observed in our study. The N400 analysis (350-500 ms) 

was added to the results of this study.  

4.3 Results 

The timing, polarity and scalp distributions of the effects in our experiment are consistent with 

N300 component (McPherson & Holcomb, 1999; Schendan and Kutas, 2002; 2003; 2007). We 

report the ERP amplitude in the N300 and N400 time-windows for good and bad exemplars 

under the two cueing conditions: Match and Mismatch.  

 

N300: A sample set of ERP waveforms at eight channel locations are plotted in Figure 4.2.A. 

We replicate the N300 effect of the previous experiment for the good and bad exemplars, with a 

frontally distributed negativity for the bad exemplars that is greater than that for good exemplars. 

Because the N300 effect is frontal, we compute the mean for the four conditions, taking the 

average across 11 frontal channels (Figure 4.2.B, Table 4.1). This again shows that we replicate 

the difference between good and bad exemplars in the N300 amplitude for the match condition 

over frontal sites. In the mismatch condition, we see a greater negativity for the good exemplars, 

as compared to the good exemplars in the match condition, consistent with the idea that the N300 

is indexing a match of the incoming stimulus to the template activated by the context. Moreover, 

there was no significant difference between the good and bad exemplars when a mismatch 
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occurs. This is seen in the individual waveforms across frontal electrode sites (Figure 4.2A) as 

well as in the mean amplitude across all frontal sites (Figure 4.2B, Table 4.1). 

 

Are the stimuli under conditions of representativeness and cueing processed by two separate 

neural sources and hence indexed by two separate ERP components or by common neural 

sources and indexed by a single component? There is a clear interaction of representativeness 

and cueing in the 11 frontal electrodes tests but this does not lead to an inference of separate 

neural generators. If there are any differences in scalp distribution of the ERP waveforms for 

these two conditions (representativeness and cueing) we can infer that the neural generators 

could be potentially different. To compare the scalp distribution of the main effects of 

representativeness and cueing, we computed source voltage distributions of difference waves for 

the two main effects: representativeness (Bad – Good) and cueing (Mismatch – Match) (Figure 

4.4). In the N300 time-window, the two main effects are qualitatively similar, with both effects 

frontally distributed. From this we infer that the representativeness of stimuli and their 

match/mismatch to verbal cues are being processed by common neural sources in the N300 time-

window. Quantitatively, the main effect of representativeness is larger as compared to the cueing 

effect in the N300 time-window.  

  

Table 4.1. The grand average mean values, in the N300 time-window (250-350 ms), shown for 

11 frontal electrode sites (see Figure 4.2B), along with t-test and Bayes factor values. There is 

strong evidence (large Bayes factor) for greater negativity of the N300 for bad exemplars as 

compared to good exemplars when the cue matches the stimulus. When there is a mismatch 

between the cue and the stimulus there is no evidence (small Bayes factor) for the difference 
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Table 4.1 (contd.). between good and exemplars in the N300 time-window. The t-test and Bayes 

factor calculations were performed as  𝑚𝑒𝑎𝑛 𝐵𝑎𝑑 − 𝐺𝑜𝑜𝑑 	≠ 	0. 

Condition Cue N Mean  
(micro 
Volts) 

Standard 
Deviation 

(micro 
Volts) 

t(19) p Bayes 
Factor 

 

        
Bad Match 20 -7.1 0.9 

-7.04 1.07E-06 16914.8 Good Match 20 -5.1 1.1 
        
Bad Mismatch 20 -6.4 1.6 

-0.85 0.406 0.32 Good Mismatch 20 -6.0 1.4 
 

 

N400: The greater negativity in the waveform for the mismatched good exemplar as compared to 

the matched good exemplar continues beyond the N300 time-window into the N400 time-

window (Figure 4.2 A). In line with the interpretation of the N400 as indexing meaning and 

semantic expectancy, the good exemplars, when mismatched to the cue, show a greater 

negativity in the N400 time-window (350-500 ms) at frontal electrode sites, as compared to good 

exemplars that match the cue (Figure 4.3 and Table 4.2). The bad exemplars, in the match and 

mismatched condition, also show a greater negativity as compared to the good exemplars in the 

match condition in the N400 time-window. As the N400 distribution is fronto-central for colored 

pictures, we tested the frontal sites for an interaction of Good/Bad x Match/Mismatch using an 

ANOVA. The main effect (see Table 4.2 for mean values) of Good versus Bad is not significant: 

F(1,19) = 1.05, p = 0.32, epsilon (Greenhouse-Geisser) = 1). The main effect of cueing (Match 

versus Mismatch) is significant: F(1,19) = 6.09, p = 0.023, epsilon (Greenhouse-Geisser) = 1). 

The interaction of Good/Bad x Match/Mismatch is also significant and survives correction for 
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multiple comparisions: F(1,19) = 14.5, p = 0.0012, epsilon (Greenhouse-Geisser) = 1). We also 

performed pair-wise comparisons for different conditions (see Table 4.2.B). The conditions 

(Good Match – Good Mismatch), (Good Match – Bad Match) and (Good Match - Bad 

Mismatch) were significant. 

 

Similar to the computations of voltage scalp distributions for the N300 (Figure 4.4), we 

computed the scalp distributions of the effect of representativeness (Bad – Good) and cueing 

(Mismatch – Match) in the N400 time-window. In this time-window both effects are centro-

parietally distributed with a slight left laterality. This suggest that these factors are contributing 

to a common ERP component, the N400.  

 

Table 4.2.A. The grand average mean values, in the N400 time-window (350-500 ms), shown 

for 11 frontal electrode sites (see Figure 4.3). B. Pair-wise comparisons for different conditions 

in the N400 time-window. 

A 

Condition Cue N Mean  
(micro 
Volts) 

Standard 
Deviation 

(micro 
Volts) 

     
Good Match 20 -3.5 5.3 
Bad Match 20 -5.2 5.7 
Bad Mismatch 20 -4.7 6.7 
Good Mismatch 20 -5.7 6.7 

 

 

 



	 66	

Table 4.2 B (contd.). 

Test N t(19) p Bayes Factor 
     

Good Match – Good Mismatch 20 3.82 0.001162 32.1 
Good Match – Bad Match 20 5.06 6.966e-05 384.2 
Good Match - Bad Mismatch 20 1.81 0.01916 2.995 
Bad Match – Bad Mismatch 20 1.45 0.1647 0.57 
Bad Mismatch-Good Mismatch 
 

20 1.81 0.08692 0.91 
 

 

4.4 Discussion 

 
Our goal in this study was to determine if semantics, via a verbal cue, can dynamically modulate 

visual processing. In our previous experiment (Chapter 3), participants only knew that one of six 

categories of good and bad exemplars of images will be viewed at each trial. We postulated that 

a template (a term we use to describe learned statistical regularities for a category) matching 

process is at work and that good exemplars were facilitated because they better matched a 

template.  In the current work, we set up expectations for a particular category on a particular 

trial using a verbal cue, with the aim of  pre-activating a particular template, and asked if this can 

modulate the good versus bad effect. The word cues have no perceptual similarity to the pictures, 

and, hence, any template that is pre-activated by the word cue must be via the semantics of the 

word. 

 

Our results provide evidence that semantics, via precuing, does indeed modulate visual 

processing. When the stimuli, both good and bad exemplars, match the expected template we see 

a difference between the good and bad exemplars in the N300 time-window, replicating the 

results from the previous experiment (Chapter 3) and prior work (Pietrowsky et al., 1996; 

Schendan and Kutas, 2002; Vo and Wolfe, 2013). When the stimuli do not match the expected 
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template, even when the exemplars are good exemplars (e.g. cue the word "Forest" and present 

an image of a good exemplar beach), we see a greater negativity for the good exemplars in the 

N300 time-window as compared to good exemplars in the match condition. That is, good 

exemplars are processed similar to bad exemplars, when they are unexpected, due to mismatch 

between the expected template and the incoming stimulus. Our results show that the good versus 

bad N300 difference is eliminated when there is a mismatch between the semantic cue and the 

image seen. Thus, the good versus bad effect is not driven by static templates activated only by 

the incoming stimulus, but by templates activated in the context of the experiment, in this case 

via a semantic cue.  In other words, the. good versus bad effect can be modulated with 

expectation -- an expectation initiated dynamically via a semantic cue describing the expected 

category. We note that the word cues have no perceptual similarity to the stimulus and hence the 

template must be semantically activated. Therefore, we can initiate category templates, via cues 

in a different modality (language), before viewing a stimulus and this template interacts with the 

incoming stimulus and change our processing of the stimulus within a time-window of 250-350 

ms after the stimulus onset. This provides strong evidence for the interaction of semantics and 

visual processing. 

 

This also aligns well with proposed models of the N300 being a time-window for higher-order 

visual processing with object selection and template matching (Schendan and Kutas, 2002; 2003; 

2007). With semantic precuing, subjects had sufficient time to process the cue and instantiate a 

template for the expected category. This can possibly be initiated by tuning of multiple brain 

regions to the expected stimulus (Çukur, Nishimoto, Huth, & Gallant, 2013). All these results 



	 68	

taken together provide strong evidence for the interaction of semantics with the visual processing 

of natural scenes. 

 

The pattern of results for good and bad exemplars in the N400 time window is similar to what is 

seen in the N400 language literature (see review Kutas and Federmeier, 2011) for within- and 

outside of- category exemplars and we draw an analogy to this literature for our good and bad 

exemplars. The N400 indexes the structure of semantic memory (Federmeier and Kutas, 1999) 

with words that exactly match the expected word (e.g. in the context of sweeteners the word 

“sugar”) showing the lowest N400 amplitude, while words belonging to a category outside of the 

expected category (e.g. “dog”) showing the largest N400 amplitude. Words that are not the 

expected word but related to the expected word (e.g. “honey”) show an intermediate N400 

amplitude. Our results show that the good exemplars that match the cue show the lowest N400 

amplitude, indicating a match to the expected context. The other the conditions (good mismatch, 

bad mismatch and bad match) have larger N400 amplitudes, significantly different from the 

N400 amplitude for the good match exemplars. This indicates that the bad exemplars in the  

match condition and good and bad exemplars in the  mismatch  condition may be considered as 

out of category to the cue. Numerically, the Bad Match exemplars elicit N400 amplitudes that 

are in between those of Good Match and Good Mismatch, reminiscent of the pattern of effects 

for related but less expected words like “honey.”  However, the differences between Bad Match, 

Bad Mismatch and Good Mismatch are not significant and hence it is unclear whether the 

intermediate N400 amplitudes for exemplars related to the cue but not an exact match replicate 

across words and pictures.  We also note that data on semantic attributes of natural scenes is 

currently lacking and so it is unclear how related the Bad scenes are to the Good scenes. Data  
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will need to be collected in the future to make a more robust model of semantic neighborhoods 

for multiple categories of natural scenes that will help probe the gradient of the N400 amplitude 

as related to expected and unexpected natural scenes.  

 

Given the above interpretations of the N300 and the N400, one additional inference that we can 

make from our data and prior work is that the N300 and N400 index different things. Previous 

work on the N300, suggests it indexes perceptual regularities in the stimulus (Vo and Wolfe, 

2013; Schendan and Kutas, 2002; 2003; 2007; McPherson & Holcomb, 1999; Pietrowsky et al., 

1996), whereas the N400 indexes meaning in the stimulus (Sitnikova, Holcomb, Kiyonaga, & 

Kuperberg, 2008). Here, in the N300 time-window, the N300 amplitudes for bad exemplars, 

either in the matched or mismatched condition, are overall more negative than those for the good 

exemplars (Figure 4.2 and difference waves in Figure 4.3). This pattern implies that N300 

amplitude, despite miscuing, trends towards indexing perceptual regularities (see also Mcpherson 

& Holcomb, 1999); that is, the N300 shows a facilitation to good exemplars (lower N300 

amplitude) even in the mismatch condition, indicating that it indexes representativeness to a well 

learned category, even when the stimulus does not fit the current semantic context. If the N300 

amplitude indexed meaning, the amplitude would have been much larger for the good 

mismatched exemplars as they do not fit the semantic context of the cue. In contrast, in the 

N400, the good exemplars in the match condition, have the least negative amplitude and the 

remaining conditions (good mismatch, bad mismatch and bad match) have larger N400 

amplitudes. This pattern indicates that the N400 clearly indexes the processing of the meaning of 

the stimulus in the context of the verbal cue, rather than the perceptual form. The good 

exemplars in the match and mismatch case are equally representative of their category in the two 
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cases. If the N400 indexed representativeness, the amplitude of the N400 would have been 

similar in the match and mismatch conditions. The difference in the match and mismatch 

conditions is the meaning of the good exemplar with respect to the semantic context provided by 

the cue. In the mismatch condition, the meaning of the good exemplar is completely out of 

context to wth respect to the semantics of the verbal cue while in the match condition it fits the 

semantic context. The differences between the N300 and N400 are also seen in the scalp 

distributions of the effects, with the N300 being frontal and the N400 for natural scenes being 

centro-parietal with a slight left laterality. 

 

In conclusion, we have shown that semantics, via a verbal precue, can modulate the processing 

of good and bad exemplars of natural scenes in the later stages of perceptual processing, in a 

250-350 ms time-window. This modulation occurs despite the written word having no perceptual 

resemblance to the stimulus. It is the meaning, or semantics, of the word that is modulating 

visual processing as the N300 time-window is considered a perceptual selection, matching or 

pruning stage. This, we believe, is strong evidence for the influence of semantics on visual 

processing on natural scenes. 
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4.5 Figures  
 
 

 
Figure 4.1. Schematic of one trial in the experiment. At the start of each trial a word cue (e.g. 

"Beach") from one of six categories (beaches, city streets, forests, highways, mountains, and 

offices) is shown. This is followed by a screen with a fixation cross is shown for time-period 

randomized between 1000-2000 ms. A good or bad exemplar image from one of the six 

categories is presented at one of the following locations: the center, the right visual field or the 

left visual field, followed by a fixation cross. The subjects then make a delayed response, with a 

button press, to the question "Yes or No?" (“Yes” if the image matches the cue and “No” 

otherwise) and the next trial begins. On 25% of the trials, there is a mismatch between the word 

cue and the image category. 
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Figure 4.2 
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Figure 4.2 A (contd.): The grand average ERP waveforms for the good-match (solid-blue), bad-

match (solid-maroon), good-mismatch (dotted-blue), bad-mismatch (dotted-maroon) conditions 

shown at 8 electrode sites. The channel locations are marked in yellow on the schematic of the 

scalp. The good/bad waveforms for the match conditions differ in the N300 time-window (250-

350 ms), with greater negativity for bad exemplars as compared to good exemplars, over frontal 

sites. In the mismatch condition, the differences between good and bad exemplars in the N300 

time-window are reduced. We also see a distinct pattern in the N400 time-window with the 

matched good exemplars facilitated in processing while the matched bad exemplars and the 

mismatched good and bad exemplars showing greater negativity than the matched good 

exemplar. B: The mean of the ERP amplitude over 11 frontal electrode sites (N = 20). The 

plotted error bars are within-subject confidence intervals. This shows that the difference between 

good and bad exemplars in the N300 time-window replicates results from the previous 

experiment (Figure 3.2) in the match condition. There is no evidence for differences between 

good and bad exemplars in the mismatch case (Bayes factor = 0.32). 
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Figure 4.3: The mean of the N400 ERP amplitude over 11 frontal electrode sites (N = 20). The 

plotted error bars are within-subject confidence intervals. There is a significant difference 

between good exemplars in the match and mismatch condition, with the greatest negativity for 

the good mismatched exemplars. The bad exemplars show an intermediate N400 amplitude, 

between the good match and the good mismatch amplitudes. 
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Figure 4.4: Topographic plots of the difference waves for the two main effects of 

representativeness (Bad – Good ) and cueing (Mismatch –Match). In the N300 time-window the 

two main effects are qualitatively similar, with both main effects showing a frontal distribution. 

The N300 time-window also shows a quantitatively larger effect for the representativeness (Bad 

– Good) than for the cueing (Mismatch – Match). In the N400 time-window, both effects are 

centro-parietally distributed with a  slight left laterality. 
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Chapter 5 

Conclusion 
 

One of the long-standing questions in cognitive science is: Does the semantics of a stimulus in 

one modality (vision, hearing, taste, touch and smell) influence the perception of the stimulus in 

another modality? In my thesis, I specifically focused on semantics as instantiated by language 

(written words) and sought to determine if this influenced the visual processing of natural scenes. 

There is no perceptual similarity between written words and pictures of natural scenes. Thus, any 

influence of reading the word on visual processing of images must necessarily be mediated by 

the meaning, or semantics, of the word and scene. I have thus used words to instantiate semantics 

and have shown that this instantiation is cross-modal and does influence visual processing. I 

summarize the results of this dissertation below. 

 

As a first step in showing that semantics may influence visual processing, I showed that there are 

multiple brain regions that show similar patterns of activity between pictures and words. This 

extends prior work that examined brain regions that showed an overlap of areas that are activated 

by pictures and words. Overlap only implies common brain regions across pictures and words, 

but indicates nothing about the underlying patterns of activity for each modality. Our results 

showing similar activity patterns across modalities imply that the underlying neural code is 

similar for pictures and words describing natural scenes. This is stronger evidence for the 

existence of a common representation across pictures and words. These regions that show similar 

representations across modalities have also been implicated in studies using words and objects, 

with some commonalities and differences. There are many common regions that we see in our 

studies and those in the other studies using simple objects. The angular gyrus, IPL, Precuneus 
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and lateral posterior temporal regions are common across studies, indicating a core semantic 

network. The differences that we see with our study as compared to other studies are in higher 

visual areas: we see many brain regions that are specific to scene processing such as the anterior 

PPA and the RSC, while other studies (Fairhall and Caramazza, 2013) using objects do not show 

these regions as sharing similar representations.  This implies that these regions show similar 

patterns of activation, across pictures and words, based on the type of stimulus (scenes as 

opposed to objects). We can thus speculate that these regions preferentially process stimuli (e.g. 

PPA for natural scenes) and hence are perceptual regions that are activated by words that trigger 

the semantics relevant to these regions (e.g. words evoking scenes for the anterior PPA). So, in 

addition to a core semantic network, we have a distributed set of regions in higher visual areas 

that show similar patterns of activity across pictures and words and also show preference to the 

type of stimulus. It is these brain regions that plausibly could act as processing sites where 

semantics and visual processing interact. 

 

To examine if there could be a dynamic interaction between semantics and visual processing, we 

used representativeness of a scene as a proxy for prior knowledge. The properties that make a 

scene representative (good) for a category have been well learnt over time. Although prior work 

showed that representativeness mattered in categorization and detection tasks (Caddigan et al., 

2010; 2017), the information was lacking on whether this was due to low-level visual features 

(e.g. color, contrast, luminance), high-level visual features (e.g. spatial structure) or due to the 

semantic information pertaining to the representativeness of the scene. Using ERPs we 

determined that the brain is sensitive to representativeness of scenes in a time-window (250-350 

ms) indexed by the N300 component. This time-window is later than the time scale for low-level 
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visual processing and consistent with higher level visual processing, at the perceptual selection 

and matching stage for global visual properties (Schendan and Kutas, 2002; 2003; 2007). Good 

scenes are facilitated in processing as compared to bad scenes (Chapter 3). In comparison to 

prior work with objects, we can infer that a match to a template has been made at this stage for 

good and bad exemplars in the N300 time-window. Based on our own results and prior work on 

the N300 (Schendan and Kutas, 2002), we linked the N300 to a stage of processing that is 

sensitive to learned statistical regularities, encompassing global structure (Schendan and Kutas, 

2002), canonical viewpoints (Schendan and Kutas, 2003), probableness (Vo and Wolfe, 2013), 

and representativeness of scenes (in this work, Chapters 3 and 4). We argue that good exemplars 

are facilitated because they match statistical regularities (or templates) that we have learned over 

time. This result still does not tell us if these templates, that come from our prior knowledge, can 

interact with visual processing. Also, we do not know if these templates are instantiated only by 

perceptual stimuli or if can they be activated cross-modally, for example by words. 

 

To better understand the dynamics with which semantic information might influence visual 

processing, we used words to try to pre-activate  templates. The words provided cues to the 

category of the incoming stimulus. When the incoming stimuli matched expectations, there were 

differences in the ERP waveform between good and bad exemplars in the N300 time-window 

(250-350 ms). When there was a mismatch between expectation and the incoming stimuli, there 

was no significant difference in the ERP waveform between the good and bad exemplars in the 

N300 time-window. From these results, we inferred that the word cues help instantiate category 

templates and that good exemplars were facilitated in processing because they better matched the 

templates for their categories. Under conditions of mismatch, when good  scenes, which are 
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representative of a different category than the cue, are processed, they do not match the active 

templates instantiated by the cue. This results in even these good scenes being processed as bad 

scenes due to the mismatch with the current template.  The mechanism of instantiating category 

templates via written words is necessarily mediated through semantics, as the written words have 

no perceptual similarity to the images. Thus, semantic information via words has dynamically 

influenced visual processing of natural scene images. 

 

The dynamics of the interaction of semantics with visual processing, differ is some aspects 

between when there is a word pre-cue as compared to when there is no pre-cue during trials. 

Although in both cases the stimulus is matched to learned regularities, there are differences in the 

activation of these regularities. When each trial begins with a verbal cue, participants can pre-

activate templates, before the stimulus is shown. The visual processing that follows interacts 

with this pre-activated template. When there is no verbal cue at the beginning of the trial, the 

stimulus is still matched to known learned regularities, but how are these regularities activated? 

One possible mechanism is via the extraction of scene gist. Humans are very efficient at 

extracting the gist of scenes (Walther et al., 2009), even in low resolution conditions when 

individual objects in the scene cannot be identified (Oliva and Schyns, 1995). This gist extraction 

occurs in a time-window after about 150 ms (Thorpe et al., 1996). Once the gist is extracted, a 

template corresponding to the gist can be activated and the incoming stimulus can be matched to 

this template, which we argue occurs in the N300 time-window. Thus, in the two experiments, 

one with a pre-cue and one without a pre-cue, the incoming stimulus can be matched to activated 

templates and dynamically processed. 
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One additional factor that we must consider from these experiments is the differing 

methodologies used: fMRI and ERP. While fMRI has high spatial resolution and low temporal 

resolution, ERPs have high temporal resolution and low spatial resolution. The results from the 

fMRI thus show us information at long time scales. Hence, the spatial regions that we see in our  

fMRI study include processing at long time-scales, i.e. both feedback and recurrent processing. 

The ERP results give us information at fast time-scales of processing. Given that we see the 

interaction of semantics and visual processing from the ERP waveforms in the N300 time-

window, and the fMRI results indicated cross-decoding in higher visual areas, we believe that the 

higher visual areas are a plausible site for the interaction of semantics and visual processing. 

Other studies (Hasson et al., 2015) have implicated high-level visual processing regions as 

processing information at longer time-scales and have also implicated them in cross-modal 

processing (Chen et al., 2016). 

 

We have thus provided evidence for the dynamic influence of semantics on visual processing of 

natural scenes and also showed brain regions that represent information similarly across pictures 

and words. Semantic cueing, via words, can set up expectancy and modulate the processing of 

incoming pictures. This interactive processing can occur in brain regions processing semantics 

linked to different visual processing regions or it can occur in local regions, where we showed 

that words and pictures had similar patterns of representation. Indeed, the distinction between 

semantic information and visual information may well be artificial in some brain regions, as their 

representations can be interchanged. More work would be needed to delineate the nature of 

processing in regions that show similar patterns of activity across pictures and words. There is no 

doubt though, that in some situations, semantics does influence visual processing.	  
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Appendix A 

 List of Phrases Describing Natural Scenes 

List of phrases used as word stimuli. Each box contains the 4-phrase sets that appeared in a 

block. The sequence of phrases within a block and the block order were randomized across 

subjects. 

 

Beaches 

Beaches (contd.) 
    

1 APPEALING BEACH 33 PEACEFUL BEACH 

2 BEAUTIFUL SEASIDE 34 LOVELY SEASHORE 

3 WINDY SEASHORE 35 SERENE BEACH 

4 QUIET BEACH 36 PICTURESQUE SEASIDE 

5 BEAUTIFUL SEASHORE 37 SUNNY SEASHORE 

6 SUNNY SEASIDE 38 PLEASANT BEACH 

7 BREEZY BEACH 39 RADIANT SEASIDE 

8 GOLDEN SEASHORE 40 PLEASING SEASIDE 

9 BREATHTAKING SEASIDE 41 TROPICAL SEASHORE 

10 VAST SEASIDE 42 RESPLENDENT SEASIDE 

11 BRIGHT SEASHORE 43 SANDY BEACH 
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Beaches (contd.) 
    

12 SUNNY BEACH 44 REFRESHING SEASHORE 

13 CLOUDY SEASIDE 45 TROPICAL SEASIDE 

14 SCENIC BEACH 46 RELAXING BEACH 

15 BREEZY SEASHORE 47 PRETTY SEASHORE 

16 DELIGHTFUL SEASIDE 48 ROMANTIC BEACH 

17 DESOLATE BEACH 49 SANDY SEASIDE 

18 ENTICING SEASHORE 50 SCENIC SEASHORE 

19 WINDY BEACH 51 SERENE SEASHORE 

20 GRAND SEASIDE 52 SOOTHING BEACH 

21 HEAVENLY SEASHORE 53 SUBLIME SEASHORE 

22 HOT BEACH 54 BLISSFUL SEASHORE 

23 ENTICING BEACH 55 TRANQUIL SEASIDE 

24 HUMID SEASIDE 56 VAST BEACH 

25 PICTURESQUE SEASHORE 57 PICTURESQUE BEACH 

26 BREEZY SEASIDE 58 LOVELY SEASIDE 

27 LOVELY BEACH 59 WINDY SEASIDE 

28 WARM SEASIDE 60 WONDERFUL SEASHORE 
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Beaches (contd.) 
    

29 LUSH BEACH 61 SERENE SEASIDE 

30 TROPICAL BEACH 62 ENTICING SEASIDE 

31 SCENIC SEASIDE 62 BEAUTIFUL BEACH 

32 VAST SEASHORE 64 SANDY SEASHORE 

 

 

Cities 

Cities (contd.)     

1 GREEN CITY 33 HARMONIOUS DOWNTOWN 

2 HISTORIC CITY 34 EXPENSIVE TOWN 

3 BIG DOWNTOWN 35 HUGE TOWN 

4 UNIFORM TOWN 36 INDUSTRIOUS CITY 

5 BRIGHT DOWNTOWN 37 HARMONIOUS TOWN 

6 BUSY TOWN 38 LIVELY TOWN 

7 CENTRAL CITY 39 HECTIC CITY 

8 PROSPEROUS DOWNTOWN 40 GLAMOROUS DOWNTOWN 

9 CHAOTIC DOWNTOWN 41 EXPENSIVE CITY 

10 CHARMING TOWN 42 LIVELY DOWNTOWN 
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Cities (contd.)     

11 CLEAN CITY 43 LOUD TOWN 

12 PACKED TOWN 44 MODERN DOWNTOWN 

13 WEALTHY CITY 45 NOISY CITY 

14 CROWDED CITY 46 ORGANIZED DOWNTOWN 

15 VIBRANT TOWN 47 GLAMOROUS TOWN 

16 ELECTRIC DOWNTOWN 48 PACKED CITY 

17 DYNAMIC TOWN 49 EXCITING TOWN 

18 POPULOUS CITY 50 QUAINT TOWN 

19 EXCITING DOWNTOWN 51 RESTLESS DOWNTOWN 

20 WEALTHY TOWN 52 TALL CITY 

21 ENCHANTING DOWNTOWN 53 ENCHANTING TOWN 

22 CROWDED DOWNTOWN 54 PROSPEROUS CITY 

23 ENERGETIC CITY 55 CHARMING CITY 

24 ENTICING TOWN 56 WEALTHY DOWNTOWN 

25 PACKED DOWNTOWN 57 LIVELY CITY 

26 ENCHANTING CITY 58 PROSPEROUS TOWN 

27 EXCITING CITY 59 SPARKLING DOWNTOWN 

28 FANCY TOWN 60 CROWDED TOWN 
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Cities (contd.)     

29 EXPENSIVE DOWNTOWN 61 HARMONIOUS CITY 

30 GLAMOROUS CITY 62 VIBRANT CITY 

31 VIBRANT DOWNTOWN 62 CHARMING DOWNTOWN 

32 GRAND TOWN 64 CONCRETE TOWN 

 

 

Highways 

Highways (contd.)     

1 ARTERIAL HIGHWAY 33 MONOTONOUS FREEWAY 

2 BEAUTIFUL FREEWAY 34 CONCRETE INTERSTATE 

3 BORING HIGHWAY 35 MUNDANE INTERSTATE 

4 FAST INTERSTATE 36 NECESSARY HIGHWAY 

5 BROAD HIGHWAY 37 WIDE INTERSTATE 

6 MONOTONOUS INTERSTATE 38 NOISY FREEWAY 

7 COMPLEX FREEWAY 39 CONGESTED INTERSTATE 

8 CONCRETE HIGHWAY 40 MODERN HIGHWAY 

9 WINDING FREEWAY 41 OPEN INTERSTATE 

10 CONGESTED FREEWAY 42 ORGANIZED HIGHWAY 
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Highways (contd.)     

11 SMOOTH HIGHWAY 43 PACKED FREEWAY 

12 CROWDED INTERSTATE 44 CONCRETE FREEWAY 

13 NOISY INTERSTATE 45 SMOOTH INTERSTATE 

14 DIRTY HIGHWAY 46 WINDING HIGHWAY 

15 DRAB FREEWAY 47 EMPTY FREEWAY 

16 DREARY INTERSTATE 48 PACKED HIGHWAY 

17 EFFICIENT HIGHWAY 49 PERVASIVE FREEWAY 

18 EMPTY INTERSTATE 50 PLEASURABLE HIGHWAY 

19 PANORAMIC INTERSTATE 51 ROUGH INTERSTATE 

20 BROAD FREEWAY 52 SLEEK FREEWAY 

21 CONGESTED HIGHWAY 53 BROAD INTERSTATE 

22 FAST HIGHWAY 54 SMOOTH FREEWAY 

23 FLOWING FREEWAY 55 MONOTONOUS HIGHWAY 

24 ARTERIAL INTERSTATE 56 SPEEDY HIGHWAY 

25 EMPTY HIGHWAY 57 STANDARD FREEWAY 

26 FUNCTIONAL FREEWAY 58 FAST FREEWAY 

27 PACKED INTERSTATE 59 TEDIOUS INTERSTATE 

28 INTRUSIVE FREEWAY 60 NOISY HIGHWAY 
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Highways (contd.)     

29 LINEAR HIGHWAY 61 URBAN HIGHWAY 

30 LONELY INTERSTATE 62 WIDE FREEWAY 

31 CLEAN FREEWAY 62 ARTERIAL FREEWAY 

32 WIDE HIGHWAY 64 WINDING INTERSTATE 

 

Mountains 

Mountains (contd.)     

1 ALPINE PEAK 33 TOWERING PEAK 

2 BREATHTAKING PEAK 34 ICY MOUNTAIN 

3 CHALLENGING SUMMIT 35 LUSH SUMMIT 

4 CHILLY MOUNTAIN 36 MAJESTIC PEAK 

5 WONDROUS MOUNTAIN 37 LARGE MOUNTAIN 

6 MAJESTIC SUMMIT 38 PHENOMENAL PEAK 

7 CLOUDY PEAK 39 GLORIOUS SUMMIT 

8 COLD SUMMIT 40 RELAXING MOUNTAIN 

9 COLOSSAL PEAK 41 REFRESHING MOUNTAIN 

10 DANGEROUS PEAK 42 SCENIC MOUNTAIN 

11 WILD SUMMIT 43 ROCKY SUMMIT 
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Mountains (contd.)     

12 FROSTY MOUNTAIN 44 STAGGERING PEAK 

13 LUSH PEAK 45 ROLLING MOUNTAIN 

14 DANGEROUS SUMMIT 46 ROUGH PEAK 

15 GIGANTIC MOUNTAIN 47 PICTURESQUE SUMMIT 

16 ENORMOUS MOUNTAIN 48 SENSATIONAL PEAK 

17 GIGANTIC SUMMIT 49 SERENE SUMMIT 

18 TOWERING SUMMIT 50 LUSH MOUNTAIN 

19 STEEP PEAK 51 MONUMENTAL PEAK 

20 HUGE MOUNTAIN 52 HUGE SUMMIT 

21 GIGANTIC PEAK 53 STAGGERING SUMMIT 

22 HIGH SUMMIT 54 TREMENDOUS MOUNTAIN 

23 STAGGERING MOUNTAIN 55 STEEP MOUNTAIN 

24 ICY PEAK 56 IMMENSE PEAK 

25 STEEP SUMMIT 57 STUPENDOUS PEAK 

26 MAJESTIC MOUNTAIN 58 DANGEROUS MOUNTAIN 

27 GLORIOUS PEAK 59 TRANQUIL SUMMIT 

28 IMMENSE SUMMIT 60 TOWERING MOUNTAIN 

29 GLORIOUS MOUNTAIN 61 HUGE PEAK 
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Mountains (contd.)     

30 SNOWY PEAK 62 ICY SUMMIT 

31 IMMENSE MOUNTAIN 62 VAST MOUNTAIN 

32 CHILLY SUMMIT 64 CHILLY PEAK 
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Appendix B 

Cross-Decoding Map: 400 Voxel Cluster 

 

Figure B.1. Cross-decoding intersection maps created based on the permutation test cluster size 

of 400 clusters. A minimum threshold of 27% was determined to be significant (p< 0.05) for a 

400 voxel cluster. We see a few more regions in the ventral-temporal areas as compared to using 

a cluster size of 100 voxels and a minimum threshold of 27.75% (Figure 2). 
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Appendix C 

 Confusion Matrices and BOLD measurements for ROIs 

For the following analyses we limit our selves to clusters of 100 voxels or more in order to 

ensure reliable MVPA. Specifically, to ascertain whether results were being driven by a single 

category, we created ROIs from our cross-decoding maps (Table 2.1), with the largest cluster 

(Precuneus, Angular Gyrus and RSC) being split into 3 subclusters (see below), bringing us to a 

total of 7 clusters. We computed confusion matrices for the each of these clusters for each of the 

two cross-decoding conditions (train on pictures, test on words; train on words, test on pictures). 

This was done for each subject and the mean of these confusion matrices, averaged across the 

two decoding conditions, are displayed in Appendix C. The column values are ground truth 

labels and the row values are predictions of the classifier. We used the Kruskal-Wallis test to 

look for accuracy differences in cross-decoding across our four categories (diagonal elements of 

the matrix).  

 

We also calculated the mean and standard deviation of the normalized signal (i.e. percent signal 

change) for each scene category and each of the ROIs that we created to compute the confusion 

matrix (Appendix C). We note that these values are smaller than the beta weights used in 

univariate analyses because the normalized data are centered around zero.  We include them only 

as an indication that there is no consistent mean differences among categories, underscoring the 

need for MVPA.  

 

As noted above, our largest cluster encompasses a broad set of regions covering the Precuneus, 

the Angular gyrus, and the RSC. Because these presumably reflect different functional areas. in 

computing the confusion matrices we split this ROI into a smaller subset of regions. We 
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accomplished this by raising the statistical threshold (28.98%) on the cross-decoding accuracy 

map until three separate clusters emerged for the Precuneus, the Angular Gyrus and the RSC. We 

report the confusion matrices and the mean of the BOLD signal values for the subclusters below. 

 

Confusion Matrix: Subcluster l-Precuneus (526 voxels; MNI :-28, -70, 46) 

 
Beaches Cities Highways Mountains 

Beaches 27.43 23.87 22.05 26.65 
Cities 25.18 30.04 17.97 26.82 
Highways 27.44 19.80 28.56 24.22 
Mountains 24.22 21.27 19.44 35.07 

 

Kruskal-Wallis chi-squared = 3.15, df = 3, p = 0.3686. 

Confusion Matrix: Subcluster r-Angular Gyrus (239 voxels; MNI: 38, -72, 40) 

 
Beaches Cities Highways Mountains 

Beaches 29.26 20.31 22.92 27.52 
Cities 25.26 27.00 23.35 24.40 
Highways 24.83 17.97 33.08 24.13 
Mountains 25.61 17.71 20.49 36.20 

 

Kruskal-Wallis chi-squared = 3.11, df = 3, p = 0.3746. 

 

Confusion Matrix: Subcluster r-RSC (102 voxels; MNI: 14, -56, 18) 

 
Beaches Cities Highways Mountains 

Beaches 29.34 19.88 21.97 28.82 
Cities 25.43 26.22 21.44 26.91 
Highways 24.57 24.14 24.48 26.83 
Mountains 24.57 18.40 20.31 36.72 

 

Kruskal-Wallis chi-squared = 6, df = 3, p = 0.1116. 
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Confusion Matrix: r-Middle Frontal Gyrus Cluster 1 (458 voxels) 

 
Beaches Cities Highways Mountains 

Beaches 28.30 24.91 21.18 25.61 
Cities 24.14 28.21 22.22 25.44 
Highways 25.09 19.71 30.73 24.48 
Mountains 24.22 21.10 18.84 35.85 

 

Kruskal-Wallis chi-squared = 4.61, df = 3, p = 0.2029. 

 

Confusion Matrix: r-Middle Frontal Gyrus Cluster 2 (172 voxels). 

 
Beaches Cities Highways Mountains 

Beaches 28.74 21.62 25.26 24.39 
Cities 24.40 26.56 25.96 23.09 
Highways 21.35 22.83 30.64 25.17 
Mountains 25.26 22.40 22.57 29.78 

 

Kruskal-Wallis chi-squared = 1.34, df = 3, p = 0.7186. 

 

Confusion Matrix: l-Middle Frontal Gyrus Cluster 1 (124 voxels) 

 
Beaches Cities Highways Mountains 

Beaches 24.83 25.87 28.13 21.18 
Cities 22.66 25.79 29.34 22.23 
Highways 23.44 24.83 32.81 18.93 
Mountains 24.13 23.79 25.61 26.48 

 

Kruskal-Wallis chi-squared = 6.16, df = 3, p = 0.1043. 
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Confusion Matrix. l-Inferior Frontal Gyrus Cluster 1  

 
Beaches Cities Highways Mountains 

Beaches 25.35 26.31 27.61 20.75 
Cities 23.18 27.87 30.38 18.58 
Highways 22.49 26.83 31.16 19.53 
Mountains 22.23 23.70 27.87 26.22 

 

Kruskal-Wallis chi-squared = 2.95, df = 3, p = 0.3995. 

 

The mean values of the BOLD signal for words and pictures, along with the standard deviation 

(stdev) for the Subcluster l-Precuneus. 

 Words Pictures 
 Beaches Cities Highways Mountains Beaches Cities Highways Mountains 

Mean 1.02E-01 7.90E-02 6.10E-02 7.94E-02 1.09E-01 1.09E-01 1.52E-01 1.04E-01 

stdev 1.19E-01 8.49E-02 1.38E-01 1.12E-01 1.39E-01 9.61E-02 1.63E-01 1.12E-01 
 

The mean values of the BOLD signal for words and pictures, along with the standard deviation 

(stdev) for the Subcluster r-Angular Gyrus. 

 Words Pictures 
 Beaches Cities Highways Mountains Beaches Cities Highways Mountains 

Mean 1.52E-02 3.70E-05 -3.01E-02 -5.39E-02 2.68E-02 5.51E-02 7.24E-02 -6.09E-02 

stdev 7.53E-02 1.17E-01 8.31E-02 1.20E-01 1.02E-01 1.22E-01 2.01E-01 1.04E-01 
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The mean values of the BOLD signal for words and pictures, along with the standard deviation 

(stdev) for the Subcluster r-RSC. 

 Words Pictures 
 Beaches Cities Highways Mountains Beaches Cities Highways Mountains 

Mean 1.52E-02 3.70E-05 -3.01E-02 -5.39E-02 2.68E-02 5.51E-02 7.24E-02 -6.09E-02 

stdev 7.53E-02 1.17E-01 8.31E-02 1.20E-01 1.02E-01 1.22E-01 2.01E-01 1.04E-01 
 

 

The mean values of the BOLD signal for words and pictures, along with the standard deviation 

(stdev) for r-Middle Frontal Gyrus Cluster 1. 

 
Words 

Pictures 

 Beaches Cities Highways Mountains Beaches Cities Highways Mountains 
Mean 1.39E-02 -2.08E-02 -1.59E-02 -1.07E-02 3.04E-02 4.18E-02 6.12E-02 -4.05E-02 

stdev  8.97E-02 7.57E-02 1.02E-01 7.66E-02 8.12E-02 1.10E-01 1.83E-01 7.31E-02 
 

 

The mean values of the BOLD signal for words and pictures, along with the standard deviation 

(stdev) r-Middle Frontal Gyrus Cluster 2. 

 Words Pictures 
 Beaches Cities Highways Mountains Beaches Cities Highways Mountains 

Mean -6.23E-02 -3.88E-02 -9.77E-02 -8.54E-02 -2.92E-02 -3.23E-02 -1.06E-01 -7.01E-02 

stdev  6.91E-02 7.34E-02 1.08E-01 1.03E-01 7.91E-02 1.21E-01 9.46E-02 7.64E-02 
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The mean values of the BOLD signal for words and pictures, along with the standard deviation 

(stdev) for  l-Middle Frontal Gyrus Cluster 1. 

 Words Pictures 
 Beaches Cities Highways Mountains Beaches Cities Highways Mountains 

Mean 1.34E-02 4.04E-02 2.92E-02 -3.38E-02 -3.52E-02 3.42E-02 -1.14E-01 -5.66E-02 

stdev  1.41E-01 9.01E-02 1.39E-01 6.99E-02 1.05E-01 1.35E-01 1.74E-01 1.56E-01 
 

 

The mean values of the BOLD signal for words and pictures, along with the standard deviation 

(stdev) for l-Middle Frontal Gyrus Cluster 2. 

 Words Pictures 
 Beaches Cities Highways Mountains Beaches Cities Highways Mountains 

Mean 1.13E-01 7.80E-02 1.32E-01 1.39E-01 3.46E-02 1.13E-01 1.83E-02 7.73E-02 

stdev  1.73E-01 1.81E-01 2.35E-01 1.60E-01 7.90E-02 1.20E-01 1.94E-01 1.37E-01 
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Appendix D 

Cross-Decoding Maps In Each Direction 

 

The cross-decoding maps showing both directions of cross-decoding (train on pictures, test on 

words and train on words, test on pictures) are presented below. 

 

Figure D.1 A: Cross-decoding accuracy from pictures to words (train on picture runs and test on 

a word run). B: Cross-decoding accuracy from words to pictures (train on word runs and test on a 

picture run). C: A map of the intersection of the two cross-decoding results: only pictures to 

words (blue), only words to pictures (orange) and regions common to both sets (red). 
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Figure D.1. (contd.) 
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Figure D.1 (contd.) 

 

 

 

 

 

 

 


