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ABSTRACT 

Water shortages and flooding have caused large property losses and endangered human 

lives in many areas. Rapid and informed response is needed to ensure effective water 

management, including reliable and immediate data synthesis, near-real-time forecasting, and 

model-based decision support for water operations. A structure to rapidly process heterogeneous 

information and models needed for near-real-time water management is critical for decision 

makers. This dissertation develops a service-driven approach to decision support in water 

management, focusing on case studies related to drought and flooding.  

For flood management, real-time reservoir management is a critical component of 

decision support. Estimating and predicting reservoir inflows is particularly essential for water 

managers, given that flood conditions change rapidly. We propose a data-driven framework for 

real-time reservoir inflow prediction, using a service-oriented approach, that enables ease of 

access through a Web browser. We have tested the services using a case study of the Texas 

flooding events in the Lower Colorado River Basin in November 2014 and May 2015, which 

involved a sudden switch from drought to flooding. We have constructed two prediction models: 

a statistical model for flow prediction and a hybrid statistical and physics-based model that 

estimates errors in the flow predictions from a physics-based model. The performances of these 

two models are compared for short-term prediction. In addition, both the statistical and hybrid 

models have been published as Web services through Microsoft’s Azure Machine Learning 

(AzureML) service, and are accessible through a browser-based Web application. The study 

demonstrates that the statistical flow prediction model can be automated and provides acceptably 

accurate short-term forecasts. However, for longer-term prediction (2 hours or more), the hybrid 

model fits the observations more closely than the purely statistical or physics-based prediction 

models alone. 

The second case study focuses on droughts, developing methods to better manage 

significant imbalances between water supply and demand. A service-driven approach is used to 

couple river modeling services with optimization services for determining optimal water 

allocation strategies under daily drought scenarios in a permit system. An accurate and 

computationally efficient meta-model approach is then developed to relieve the computational 

burden of the simulation-optimization model. This work uses a drought event in the Upper 

Guadalupe River Basin, Texas, in April 2015 as a case study to illustrate the benefits of the 
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approach. Weather and water demand uncertainty are considered through scenario-based 

optimization. The results have demonstrated that the simulation-optimization model services can 

easily be coupled using DataWolf workflow tool and AzureML service, providing improved 

water allocation strategies relative to the current approach. The scenario analysis shows that the 

permit grouping system, which organizes water right permit holders into groups rather than 

considers each water user individually, is an easy and manageable approach for water allocation.  

In addition, the adaptive meta-model approach is efficient to relieve the computational burden in 

simulation-optimization model, thereby enabling large-scale real-time Web services for decision 

support.  
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Chapter 1 

Introduction and Thesis Summary 

Water shortages and flooding have caused large property losses and endanger human 

lives in many areas. Rapid and informed response is needed to assist in water management. 

Effective water management involves reliable and immediate data collection, model-based water 

operations, and other information. Take Texas’ drought and flooding events as an example. 

Texas experienced a severe drought in 2011 and the drought lasted four years. Then the same 

area underwent a sudden switch from drought to flooding in November 2014 and May 2015.  

When flooding happens, reservoir operations play an important role in flooding control. 

During management of a flood event, reservoir inflow information serves as a base for reservoir 

operations. Previous studies have focused on predicting reservoir inflows from rainfall and 

historical reservoir inflows using physics-based models. They have not incorporated soil 

moisture as an input feature. Toukourou et al. [2010] showed that rainfall and soil moisture data 

are the major relevant variables for reservoir inflow. Therefore, this work explores which type of 

data-driven approach can be applied to improve real-time reservoir forecasting and investigates 

the role of soil moisture in predicting reservoir inflows.  

Droughts have highlighted the fact that water users are facing significant imbalances 

between water supply and demand. Additionally, water allocation strategies are constrained by 

the uncertain future conditions of climate and water demand. The simulation-optimization 

approach has been used to account for complex water allocation problems, but coupling disparate 

models in a framework has been an obstacle for effective water management. This work 

demonstrates the promise of coupling simulation-optimization model services to improve real-

time water management and implementing a service-driven framework to identify the best water 

allocation strategies for different drought scenarios in a priority permit system. 

The computational burden of the simulation-optimization model, which stems from the 

complex constraint evaluation, becomes a major challenge for large-scale real-time water 

management. An accurate and computationally efficient approach for conducting complex 

constraint evaluation is explored and different handling approaches are compared in terms of 

optimization performance and accuracy. 
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The service-driven approach for each model is deployed in a loose-coupling environment 

to view each model service as an individual component and exchange information among each 

component over the whole network. The modeling component that requires complex 

configuration and specific data standards can be integrated into a large decision support system 

with each model located in its own running environment and easily accessed through Web 

services.  

This chapter summarizes the service-driven approaches developed in this thesis to predict 

reservoir inflows during floods (Section 1.1) and to improve drought management using 

simulation-optimization models (Section 1.2). Meta-Model methods for constrained non-linear 

optimization are also developed and tested to improve the computational efficiency of 

simulation-optimization methods (Section 1.3).   

1.1 A service-driven approach to predict reservoir inflows during floods 

Reservoir management is a critical component of flood management, and information on 

reservoir inflows is particularly essential for reservoir managers to make real-time decisions 

given that flood conditions change rapidly. In this work, we demonstrate a new framework for 

real-time flood management through data-driven services to rapidly estimate reservoir inflows 

from available data and models.  

Traditional hydrologic models have evolved from lumped conceptual models to physics-

based distributed models where approximations of the partial differential equation or empirical 

equations are applied [Abbott et al., 1986b]. Models of the physical processes employ 

mathematical functions that simulate hydrologic processes and usually involve complex 

nonlinear processes with high spatial variability at the basin scale [Islam, 2011]. Physics-based 

models are widely used in reservoir management. For example, the National Weather Service 

(NWS) river forecast centers use physics-based models for daily forecasts. These models often 

require extensive manual effort for calibration that can make real-time updates difficult. Data 

sources for physically-based models can be complex and limited, and calibration can be difficult 

and time-consuming. Data-driven modelling is an alternative approach that allows rapid 

construction of complex models to estimate outcomes based on past experiences and historical 

events. 
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Data-driven models, such as statistical or machine learning models, use historical data to 

rapidly learn a functional map between concurrent input and output variables. Large and growing 

volumes and varieties of data can be retrieved to derive these types of models using data services 

from sensors, satellites, and other data sources. Data-driven models can be coupled with physics-

based models by fitting a data-driven model to the residual error from the physics-based model, 

thereby reducing any persistent bias in the physics-based model [Singh & Woolhiser, 2002]. 

Previous studies have focused on non-linear regression models, which have good 

predictive performance in comparison with other statistical models. Although previous studies 

have focused on predicting reservoir inflow from rainfall and historical reservoir inflow data, 

they have not incorporated soil moisture as an input feature. Toukourou et al. [2010] showed that 

rainfall and soil moisture data are the major relevant variables for reservoir inflow.  

In this work, we propose a data-driven framework for real-time reservoir inflow 

prediction using a service-oriented approach that enables ease of access through a Web browser. 

Statistical and hybrid models are developed to predict flow and residual errors from a physics-

based model, respectively. We use boosted regression trees (BRT) as function approximators to 

predict reservoir inflows from real-time and historical precipitation and soil moisture data. Our 

early tests showed that, for this application, BRT has the advantages of faster training and higher 

accuracy than ANN. Some literatures have recently shown that BRT is effective as an ensemble 

machine learning approach for hydrology. The data-driven models are developed using Azure 

Machine Learning (AzureML) Studio, a Cloud-hosted predictive analytics software toolkit that 

allows for the graphical construction of data pipelines in a user-friendly Web browser interface 

for data requests, fitting predictive analytics models, and data visualization [AzureML team 

Microsoft, 2015]. The models built in AzureML Studio are then published as Web services in the 

Azure Cloud, providing scalability and high software availability and reliability, as well as easy 

integration into modern software systems. 

The results of this work demonstrate that the statistical flow prediction model can be 

automated and provides acceptably accurate short-term forecasts. However, for longer-term 

prediction (two hours or more), the hybrid model fits the observations more closely than the 

purely statistical or physics-based prediction models alone. Both the flow and hybrid prediction 

models have been published as Web services through Microsoft’s Azure Machine Learning 
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(AzureML) service and are accessible through a browser-based Web application, enabling ease 

of use by both technical and non-technical personnel.  

1.2 A service-driven approach to manage water allocation during droughts 

In recent years, water shortages have been frequent occurrences in the United States. 

Texas experienced its most serious drought during the summer of 2011. The devastating drought 

caused a $5.2 million loss in Texas agriculture [Susan Combos, 2012] and endangered human 

life. California is also facing one of its most severe droughts since 2013. The decline of river 

basin aquifers and groundwater levels, along with population increases, has raised water 

allocation issues. The imbalance between water supply and water demand poses a crucial 

question for water management. Effective water management requires inputs from multiple 

climate, river, and optimization models. The inability of these models to communicate with one 

another is an obstacle for operations because the model languages and input-output data formats 

are different for each model. This study proposes a service-driven approach to couple river 

modeling services with optimization services to provide water managers with effective decision 

support processes. 

Since the simulation-optimization model is a complex nonlinear formulation that cannot 

be solved by traditional mathematical optimization methods, metaheuristic approaches are 

popular tools in water management to help decision makers with new water management 

strategies [Maier et al., 2014]. Genetic Algorithm (GA), a type of metaheuristic evolutionary 

algorithm, is implemented to solve simulation-optimization problems in water management.  

This study’s purpose is to develop a coupled simulation-optimization service for water 

allocation during droughts. The simulation-optimization model has been used widely in water 

resource management, but this would be the first service-driven approach for simulation-

optimization models in which the optimization service can communicate with the simulation 

service. The built Web services are published as a Web application that enables near real-time 

water decision support. The study uses the drought event in the upper Guadalupe river basin in 

April 2015 as a case study. The Texas Commission on Environmental Quality (TCEQ) is 

responsible for water allocation management in the river basin. Currently, they allocate water 

based on subjective judgment without a rigorous science-based approach. Coupled simulation-

optimization services can assist TCEQ water managers with an effective decision-making 
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process based on the best available forecasts of river streamflow.  

This work presents a service-driven framework using coupled simulation-optimization 

models and demonstrates its application for identifying optimal water allocation strategies under 

each drought scenario in a permit system. Scenario analysis results show how the curtailment 

hours for each group of water right holders in the TCEQ permit system respond to the 

uncertainty of climate and water demand. The uncertainty has different impacts on each group of 

water right holders and the results can assist decision makers in adopting more effective water 

allocation management strategies. An alternative TCEQ Priority Doctrine that extends the water 

users to more groups is proposed and proved to be beneficial to junior water users. In addition, 

non-compliance in optimal water allocation by junior water right holders has a greater effect on 

the river system than non-compliance by senior water right holders. In addition, robust scenario 

analysis is explored and the results suggest that the most senior water right holders can make full 

use of water, more junior groups are more susceptible to varying levels of water usage depending 

on current conditions, and the most junior groups are completely cut off from water use under all 

scenarios. Overall, the application of the built simulation-optimization service provides a simple 

and practical approach for water managers to obtain a more robust water allocation strategy 

under a number of different scenarios.  

1.3 Meta-Model methods for constrained complex optimization during 
droughts 

More frequent droughts resulting from climate change are increasing imbalances between 

water supply and water demand [Wilhite & Glantz, 1985]. A Web service-driven framework for 

water management during droughts has been built to couple simulation and optimization 

services. However, the computational effort in handling the constraints, which involves running 

computationally-intensive models repetitively, is a major obstacle to developing an effective 

real-time Web application for decision support. 

The objective of this work is to relieve the computational burden in constrained non-

linear optimization problems by applying meta-model approaches, thus enabling large-scale real-

time Web services for decision support during droughts. If the constraint in non-linear 

optimization problems consists of complex mathematical equations or contains parameters 
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calculated from complex simulation models, the computational burden of evaluating the 

constraint becomes a major challenge. 

This work compares offline meta-model and online meta-model training approaches 

using different machine learning classifiers to rapidly judge whether a constraint is satisfied. 

Conservative meta-models that weigh feasibility more than accuracy are developed to guide 

optimization exploration in the feasible region. Different classifiers (support vector machine, 

neural network, logistic regression, and an ensemble of these classifiers) are tested in this work. 

The performance of the online meta-model approach does not depend on the choice of classifier. 

The results have shown that the offline training approach converges to a near-optimal solution 

while surpassing the online training approach in computational efficiency. The best-performing 

online meta-model, whose performance is independent of the choice of machine learning model, 

converges to the optimal solution and saves approximately 60% of the computation time.  

Finally, the meta-model service is built and coupled with the new optimization service for 

a real-time Web application. Previous meta-model approaches mainly focused on replacing the 

simulation models without considering the model’s role in the optimization process. The 

proposed meta-models, which are specifically designed to efficiently evaluate the constraint of 

an optimization model, are a novel development of this project that will support real-time large-

scale Web applications of non-linear optimization services. The real-time Web application is the 

first to assist water managers with real-time information retrieval and a scientifically-valid 

modeling approach to improve water allocation strategies. 
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Chapter 2 

Literature Review 

This chapter provides a review of the background literature for the research presented in 

subsequent chapters. It covers the data-driven model application in water management, the 

simulation-based optimization model, the meta-model-based Genetic Algorithm, and the service-

driven approach in model application.  

2.1 Service-driven Approach 

Decision support in water management involves different types of models, such as data-

driven prediction models, simulation models, optimization models, etc. Existing disciplinary 

models can be written with different configurations and in different programming languages that 

may have difficulty in communicating. A structure for organizing heterogeneous information and 

applying it to different models to rapidly solve water management problems is critical for 

decision makers [Laniak et al., 2013]. Model as a service (MaaS) has recently emerged as an 

efficient tool to solve the above challenges.   

Model as a Service (MaaS) originates as a merging of Software as a Service (SaaS) and 

the Model Web [Roman et al., 2009]. SaaS involves creating services that deliver a software 

application through Web browsers, allowing users to easily access the software, share data, and 

improve interoperability [Roman et al., 2009]. Each model is still run in its own configuration 

environment and the functionality of each model is published on the Web [Goodall et al., 2011]. 

Model Web is an open-ended system for interoperating models and data with access to machines 

and the Internet through Web services [Geller & Turner, 2007]. MaaS merges the two 

approaches to create an automated modeling system for data access, model execution, and output 

visulization through the Web, using standard data formats for data interoperability [Roman et al., 

2009]. The model execution does not require specific skills and the output can be viewed directly 

on the Web through visualizaton tools.  

The service-driven approach has been implemented for decision support in water 

management. Goodall et al. [2008] proposed a Web services approach in the water resources 

management area for the National Water Information System, using Web services to easily 

access hydrologic data through a standard protocol as well as to interoperate among disparate 
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data sources. Fang et al. [2013] presented a water information system prototype that includes 

geoinformatics, enterprise information systems, and cloud services and integrates data 

management, simulation modeling, and knowledge management into the information warehouse. 

Such an approach is significant to effective water resource management. Almoradie et al. [2013] 

adopted Open Geospatial Consortium (OGC) WaterML 2.0 standard to deliver water-related data 

through the Web, resulting in a Web-based flooding information system. Sun [2013] proposed 

service-oriented computing to reduce the computation burden of decision support systems in 

watershed management. Ames et al. [2012] presented Web services-based software incorporating 

hydrological data access, data visualization, and data analysis. Jones et al. [2015] developed a 

cloud-based MODFLOW groundwater modeling service for aquifer management decision 

support. The MODFLOW simulation model service is an automated system that imports user 

input, executes the model, and visualizes results as maps for groundwater management. These 

studies have each focused on a single data, model or computing service; however, these model 

services have not yet been coupled. Therefore, this work extends the service-driven approach to 

the coupling of disparate model services.  

2.2 Data-driven Model in Water Management 

Advances in information technologies allow for the automation of data acquisition, 

analysis, and visualization. Data-driven modelling, especially machine learning, allows for the 

construction of complex models for estimating outcomes based on experience and historical 

events. Rather than deriving mathematical equations from physical processes, data-driven 

models analyze concurrent input and output time series [Solomatine and Ostfeld, 2008]. The 

popular data-driven methods used in river systems include artificial neural networks (ANN), 

fuzzy rule-based systems, and support vector machines (SVM), among others.  

Many applications of ANN focus on rainfall-runoff models [e.g., Abrahart et al., 2007, 

de Vos and Rientjes, 2007, Nourani et al., 2009]. Rainfall is a common input feature for data-

driven models of river systems. Many reservoir inflow prediction studies also rely mainly on 

ANN and rainfall data. Coulibaly et al. [2000] first used an ANN to forecast daily reservoir 

inflow and a multi-layer feed-forward neural network (FNN) with an early stopped training 

approach (STA) to improve prediction accuracy. EI-Shafie et al. [2007] used historical reservoir 

inflow and ANN to predict monthly reservoir inflow. Bae et al. [2007] implemented an Adaptive 
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Neuro-Fuzzy Inference System (ANFIS) to predict monthly dam inflow using previously 

observed data and future weather forecasting information. Jothiprakash and Magar [2012] 

predicted daily and hourly intermittent rainfall and reservoir inflow using ANN, ANFIS, and 

linear genetic programming (GLP). Valipour [2013] compared autoregressive moving average 

(ARMA) and autoregressive integrated moving average (ARIMA) using increasing numbers of 

parameters with static and dynamic artificial neural networks. With historical time series data as 

input, they demonstrated that static and dynamic autoregressive ANNs perform best in 

forecasting monthly reservoir inflow. Kumar et al. [2015] developed an ensemble model based 

on neural networks, wavelet analysis, and bootstrap data sampling to generate a range of 

forecasts instead of point predictions for reservoir inflow.  

As described above, ANN is a common hydrological approach (see also Bowden et al., 

2012, Abrahart et al., 2012, Maier et al., 2010), but its convergence speed is low, and training 

can require significant time, which may prove a barrier when near-real-time model updating is 

required [e.g., Jain et al., 1999, Maier & Dandy, 2000]. Others have recently shown that BRT is 

effective as an ensemble machine learning approach for hydrology. Erdal and Karakurt [2013] 

have applied BRT as an ensemble learning method that performed well in predicting a monthly 

streamflow forecast. Snelder et al. [2009] have used BRT to map the flow regime class by 

predicting the likelihood of the class of gauge stations based on watershed characteristics.  BRT 

has the advantages of regression trees (which are based on decision trees and built on a process 

of recursive partition) and boosting methods (which create ensembles of multiple models that 

combine fast but weak learners to create a strong learner). The approach combines multiple 

simple trees into an additive regression model to improve predictive performance [Elith et al. 

2008]. Therefore, this study uses BRT as function approximators.   

2.3 Simulation-based Optimization Model 

Simulation–optimization models have been used widely to solve real-world water 

management problems. Optimization models demonstrate good results when used with 

simulation models [Singh, 2014]. The simulation models are used to simulate different scenarios, 

while the optimization model is essential for identifying the optimal solution under different 

scenarios [Singh, 2014]. Gaur et al. [2011] developed a simulation-optimization model for 

groundwater management problems. The particle swarm optimization (PSO) algorithm was used 
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for a multi-objective optimization model. Nazari et al. [2014] presented a simulation-

optimization approach to optimize the water supply for an urban water system under an extreme 

scenario. They used a multi-objective genetic algorithm as the optimization module. Ebrahim et 

al. [2015] used successive linear programming and the nondominated sorting genetic algorithm 

(NSGA-II) with a simulation model to maximize the recharge and extraction rates of managed 

aquifer recharge (MAR) in a catchment. The study shows that the approach is efficient in 

evaluating MAR in a coastal aquifer. Rasekh and Brumbelow [2015] studied a dynamic 

simulation–optimization model to manage contamination problems in urban water distribution 

systems. The study couples a dynamic evolutionary optimization approach with a simulation 

model.  

Genetic algorithms (GA), a type of population-based metaheuristic evolutionary 

algorithm, has been commonly applied in water planning and management [Maier et al., 2014, 

Nicklow et al, 2009]. GA, developed by Holland [1975], originates from mimicking natural 

selection through generations of stochastic searching for a better solution. Starting from a 

population of individual solutions, GA conducts a guided search for an optimal solution 

[Goldberg & Holland, 1988].   

Compared with other traditional optimization methods, GA can be used to solve any type 

of problem without mathematical derivation. Kaini et al. [2012] coupled a GA with a soil and 

water assessment tool (SWAT) to optimize construction costs while satisfying water quality 

treatment levels at a watershed scale. Tabari and Soltani [2012] developed a multi-objective 

model to maximize system reliability and minimize water supply costs in a water distribution 

system; their study compares the non-dominated sorting genetic algorithm (NSGA-II) and 

sequential genetic algorithms (SGAs). Chang et al. [2010] adopted a constrained genetic 

algorithm (CGA) to optimize reservoir storage while considering ecological base flow as 

constraints in multi-use reservoir operation management. Andrea et al. [2010] implemented a GA 

algorithm to minimize combined sewer overflows (CSOs) for real-time decision support. The 

memory approach in the GA algorithm was applied to speed convergence to the optimal solution. 

These previous studies demonstrated that GA is a powerful tool for solving complex water 

management problems [Nicklow et al., 2010].  Therefore, the GA algorithm is applied in this 

work to solve the simulation-optimization problems. 
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The studies described above have executed simulation-optimization models offline and 

have not yet explored a service-driven approach. In this work, the coupling of the optimization 

service with other simulation services is developed. A user-friendly Web application based on 

the model services allows TCEQ decision makers to allocate water through a more scientific 

approach.   

2.4 Meta-Model-based Genetic Algorithm 

The simulation models simulate the physically-based process using mathematical 

equations and the intensive computational budget due to the detailed representation of the real-

world systems. Multiple runs of the simulation models in real-world application have become an 

obstacle in water resource simulation-optimization problems [Razavi et al., 2012a]. The meta-

model approach, which replaces the simulation model with an approximating surrogate function, 

has been applied in simulation-optimization models to improve computational efficiency [Yan & 

Minsker, 2011, Pasha & Lansey, 2010, Gu et al., 2011]. The meta-model is built using the input-

output dataset of the simulation models. There are two methods for the meta-model approach 

that are commonly used in the water resources field [Razavi et al., 2012b]: 1) a meta-model is 

built using a large training dataset before the start of the optimization [Johnson & Rogers, 2000, 

Cai et al., 2015]; 2) an adaptive meta-model is initialized using a small training dataset and is 

iteratively updated during the optimization process [Yan & Minsker, 2011, Wu et al., 2015]. Cai 

et al. [2015] implemented the support vector machine (SVM) as the statistical surrogate model to 

replace the complex simulation model SWAT (Soil and Water Assessment Tool). They built a 

surrogate model under each climate scenario using the training dataset from SWAT. Yan & 

Minsker [2011] applied a dynamic meta-model to replace Monte Carlo simulations within a 

noisy genetic algorithm in groundwater remediation problems. Wu et al. [2015] developed an 

adaptive surrogate model to replace integrated surface water (SW) and groundwater (GW) 

models in water management optimization. The computational cost efficiency of the surrogate 

models assisted in finding the solution to comprehensive basin-scale optimization and water 

management problems, which fills the gap between complex environmental models and real-

world water management.  

Previous meta-model approaches mainly focus on replacing the simulation models 

without consideration of the model’s role in the optimization process. This work is the first to 
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construct a classification model to evaluate constraint in meta-model application. It compares the 

performance of offline training and online training approaches. Viana and Haftka [2012] and 

Razavi et al. [2012b] have suggested the ensemble model to average the performance of different 

regression models in previous meta-model approaches. The ensemble classification model using 

majority voting in meta-models is proposed. The conservative meta-model in offline training 

approach, which increases the threshold of probability to determine the class label, is firstly 

applied to assist in exploring feasible solutions.          

The service-driven approach described in section 2.1 has been applied in each of the 

model implementations above. Chapter 3 develops data-driven model services that integrate data 

services with the data-driven model service. Chapter 4 focuses on the coupling of simulation 

model services and optimization model services. The meta-model service in Chapter 5 is 

developed to replace the simulation model service in Chapter 4 to support real-time large-scale 

water management.  
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Chapter 3 

A Service-driven Approach to Predicting Reservoir Inflows During Flood 
Events 

Chapter 1 and Chapter 2 has introduced the background of the data-driven model services 

in flooding management. This chapter presents the data-driven framework for reservoir inflow 

prediction using a service-driven approach (Section 3.2), which includes data preprocessing, 

model construction, and Web application. Implementation of the framework is demonstrated 

with a case study in the Lower Colorado River Basin (Section 3.3). Results and discussions are 

presented in Sections 3.4 and 3.5.  

3.1 Introduction  

This study’s purpose is to investigate the feasibility and accuracy of real-time data-driven 

services to estimate reservoir inflows from available data. The Texas flooding events in the 

Lower Colorado River Basin in November 2014 and May 2015, which involved a sudden switch 

from drought to flooding, are used as a case study. The Lower Colorado River Authority 

(LCRA), which is responsible for reservoir management in this basin, uses the physics-based 

Hydrologic Engineering Center’s Hydrologic Modeling System (HEC-HMS) in the Corps Water 

Management System (CWMS). HEC-HMS predicts reservoir inflows from real-time data, 

including precipitation, reservoir information, and other hydro-meteorological data.  

Currently LCRA uses a HEC-HMS rainfall-runoff model to predict reservoir inflows that 

does not consider soil moisture as an input dataset. The observed streamflow and soil moisture 

data are used only to calibrate reservoir inflows manually. Soil moisture may be an important 

factor for predicting reservoir inflows [Kang et al., 2015] and a data-driven approach would 

allow LCRA reservoir managers to automatically update the reservoir inflows as these conditions 

change. In this study, we explore a workflow approach that allows the model set-up process to be 

completed only once by a technical analyst and then executed by technical or non-technical users 

through a Web browser. A workflow is a collection of tasks that build an automated pathway for 

heterogeneous modeling steps.  

The performance of data-driven modeling approaches, including both statistical and 

hybrid (coupling statistical and physics-based) models is also assessed using boosted regression 

tree modules from AzureML to predict reservoir inflows from real-time and historical 



14 
 

precipitation and soil moisture data. The models can be easily connected with other data services 

to obtain the input data. The system is implemented as Web services on AzureML, which do not 

require any software installation and can be rapidly updated as new data are obtained. The data-

driven services allow users and water managers to automatically fit model parameters, compute 

data-driven models, and retrieve reservoir inflow information through a Web browser. 

3.2 Methodology 

 Figure 3.1 shows the general data-driven framework developed in this study to support 

reservoir management. The framework consists of two main components: 1) algorithms and tools 

from Azure Predictive Analytics toolkit; and 2) Web application. Azure Predictive Analytics 

(predictive analytics is a commercial term for machine learning) is a machine learning platform 

that allows rapid training of statistical models to describe the relationships between inputs 

(“features”) and outputs (“targets”), with execution on remote servers (in the “Cloud”). This first 

component comprises data preparation, data preprocessing, and model development. The input 

datasets, which include feature datasets and target values, are first uploaded into AzureML 

Studio.  

 For this study, a wavelet analysis filter method is applied for data preprocessing to reduce 

data noise, since noise or errors in the measured datasets may mask important features in the 

data. Boosted Regression Tree modules in AzureML are then employed to statistically model the 

reservoir inflows using data-driven models. These model execution steps have been constructed 

as workflows in AzureML, and flow prediction models and hybrid prediction models have been 

implemented as modules in a workflow to predict reservoir inflow. AzureML has significant 

advantages in publishing the constructed workflows as Web services. A Web application, which 

is Web browser-based software for executing the built models, has been built that enables users 

to easily execute the data-driven model using Web services to predict reservoir inflow (named 

flowin in this study).  

 Data-driven models use historical data to learn a functional map between input and 

output variables that can be used to predict future output variables. Given input datasets that 

include input features and output target values from historical data, a mapping can be built to 

predict future outputs from known future input features [Mitchell, 1997]. For instance, y=f(x) is a 

mapping (training model) between input variables x and output variable y. Once the future input 
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variables  are available, the future outputs  can be predicted using the training model. In this 

study, we develop two types of data-driven models. The first type is a purely data-driven 

statistical prediction model that is used to directly predict reservoir inflows from soil moisture, 

precipitation, upstream reservoir outflow, and historical reservoir inflow. The second type of 

model is a hybrid prediction model, which corrects the results of physics-based models that 

predict reservoir inflows from weather, runoff, and streamflow predictions. The hybrid 

prediction model applies the available input features to predict differences between the physics-

based model-predicted results and the observed data. 

 

Figure 3.1. Framework of the Predictive Analytic Services 

 

3.2.1 Data Preprocessing Using Wavelet Analysis  

Wavelet analysis filters the reservoir inflow data into trend and noise parts, a necessary 

step because either wave action from high storm winds or sensor measurement errors can cause 

fluctuations that affect measured reservoir inflow data. We use wavelet functions to decompose 

the original data into high-pass filter (details) and low-pass filter (trend) components [Valens, 

1999, Polikar, 2001, Okkan, 2012].  
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Maximal Overlap Discrete Wavelet Transform (MODWT) is a linear filtering operation 

that produces time-dependent wavelets and scaling coefficients [Cornish & Percival, 2005]. It 

performs better than other methods, such as discrete wavelet transform (DWT), in fitting all 

sample sizes because DWT requires sample size to be a multiple of 2J where J is the 

decomposition level [Cornish & Percival, 2005]. In addition, MODWT is independent of the 

starting point of the time series, which means that MODWT is not affected by circular shifting of 

the input time series [Percival and Walden, 2000].  

The high-pass-filter-generated wavelet coefficient is defined as 

                                                          , = ∑ ,                                                    (3.1) 

and the low-pass-filter-generated wavelet coefficient is defined as 

                                                           , = ∑ ,                                                    (3.2) 

where j is the level of decomposition, L is the width of the j=1 base filter, and { , } and 

{ , }are wavelet and scaling filters respectively.  

The decomposition process is shown in Figure 3.2. Take the decomposition level = 3 as 

an example.   In each level, the original dataset X is decomposed as trend V and residual error 

W. In the first level, X is decomposed as V1 and W1. The level 2 decomposition is based on V1, 

which is the trend component from the last level. W1 is discarded. The decomposition continues 

until the defined decomposition level is reached. The level of filtering selected for the particular 

case study (in this case, level 2) is then selected based on best professional judgment of the 

reservoir operators. 

 

Figure 3.2. Decomposition based on Wavelet Analysis 
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3.2.2 Prediction Modeling using Boosted Regression Tree (BRT) 

Data-driven prediction models are computed using a boosted regression tree model, 

which is an ensemble model that integrates multiple single regression trees. Regression tree 

models use recursive binary splits to predict the target variable [Elith et al., 2008].  Figure 3.3 

demonstrates a simple regression tree example. A tree model is built by splitting the input 

datasets into subsets based on each selected input feature (such as , , , , ). The best 

partition (e.g., <  and ≥ ) is computed from each derived subset (called recursive 

partitioning) to maximize improvement in the model prediction. This process continues until no 

further splitting improves the predictions. Boosting is an adaptive method of combining simple 

models into a single strong learner to improve model performance. Pseudo code for BRT has 

been included in the appendix of the dissertation. Key features are the ability to fit complex 

nonlinear models and high accuracy [Elith et al., 2008, Caruana & Niculescu-Mizil, 2006].    

 

Figure 3.3. Example of a Regression Tree 

3.2.3 Performance Metrics 

We use five performance metrics to evaluate the developed models for predicting current 

and future reservoir inflows.  

a. Mean Absolute Error (MAE) 

                                         =  ∑ | − |                                                   (3.3) 

where  is the prediction and is the true value. MAE averages all of the errors in the 

model. When MAE is closer to zero, the model fits better. 

b. Root Mean Squared Error (RMSE) 

                                     =  ∑ ( − )                                                   (3.4) 
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where  is the prediction and is the true value. RMSE is a measurement of the average 

of the squares of the errors. RMSE=0 means a perfect fit of the model. 

c. Relative Absolute Error (RAE) 

                                                         =
∑ | |

∑ | |
                                                  (3.5) 

where  is the prediction, is the true value and = ∑ . RAE measures the 

percentage of error over the true value. RAE = 0 if there is a perfect fit.  

d. Relative Squared Error (RSE) 

                                                         =
∑ ( )

∑ ( )
                                                 (3.6) 

where  is the prediction, is the true value, and = ∑  is the mean true value. 

e. Coefficient of Determination (R2) 

                                    = (
∑ ( )( )

∑ ( ) ∑ ( )
)                                                   (3.7) 

where  is the prediction, is the true value,  = ∑  and = ∑ . R2 

measures how close the data are to the fitted regression line. An R2 of 1 indicates a 

perfect fit of the regression line, and an R2 of 0 indicates that the line does not fit the data 

at all.  

  3.2.4 Web Application 

AzureML is a Cloud service for machine learning experiments. The workflows are 

constructed as directed acyclic graphs (DAGs) in a Web-based graphical user interface that 

enables module operations on datasets [AzureML team Microsoft, 2015]. AzureML includes 

machine learning libraries from open source languages such as R and Python, in addition to 

libraries of statistical methods and other data processing operations. In addition, Azure ML 

allows connections to other infrastructure such as database servers to handle large amounts of 

data.  

Machine learning models can be manipulated as data workflows by joining modules in 

AzureML Studio as shown in Figure 3.4. Such data workflows, including data preprocessing, 

model building, and results visualization, are more natural and intuitive than scripts. Non-

technical users can easily implement and update the data-driven approach without requiring 

machine learning skills or computing expertise [AzureML team Microsoft, 2015]. After the 
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complete workflow is built in AzureML Studio, it can be published as a Web service and shared 

with other users as a Web application.  

A Web application builds the connection between client and server to enable Cloud-based 

Web services to execute through a simple Web interface. For instance, a modeling Web 

application can be built as an automated modeling system (workflow) that includes data access, 

model execution and output visualization. Such a system can be published as Web services. A 

custom Web User Interface (UI) is then built to allow non-technical users to access the Web 

services and view the output directly through the Web browser.  

In AzureML, a python Application Programming Interface (API) is provided to easily 

access AzureML Web services. A custom UI allows users to download input data and execute 

the prediction models, with the results made available through the UI. Reservoir managers who 

are not familiar with machine learning and data-driven approaches and are interested in machine 

learning approaches can easily use the Web application to predict reservoir inflow and compare 

or incorporate results from physics-based models. The Web services provide a rapid approach for 

reservoir managers to understand near-term impacts of current conditions on reservoir inflow and 

provides a proof of concept for a real-time Cloud-based system for reservoir management.   

 

Figure 3.4. Example of AzureML Graphical Workflow 
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3.3 Case Study 

 Lake Travis is in Travis County, located in the upper stream of Lake Austin. Mansfield 

Dam, operated by LCRA, created Lake Travis, which serves to contain floodwaters and helps to 

manage flooding downstream. Lake Travis stores a maximum of 256 billion gallons of 

floodwaters. The floodgate release is operated by LCRA under the direction of the U.S. Army 

Corps of Engineers. The amount of release depends on weather and flood conditions, such as the 

water level of the reservoir and downstream flow. Understanding the predicted reservoir inflow 

during flooding events helps reservoir managers operate the dam more effectively based on such 

information and their operating experience [Mateo et al., 2014].  

Figure 3.5.a Map of Lake Travis Basin 
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Figure 3.5.b Grid Points in Lake Travis Basin 

Figure 3.5. Case Study Location and Data Points 

 3.3.1 Datasets 

The case study focuses on Texas flooding events in the Lower Colorado River Basin in 

November 2014 and May 2015, using the input and output data given in Figure 3.6. Precipitation 

and soil moisture input data were collected from 31 grid points in Lake Travis Basin in the upper 

stream of Mansfield Dam, as shown in Figure 3.5.b. The precipitation becomes direct runoff and 

the soil moisture affects surface runoff by reducing infiltration, which physically affects 

reservoir inflow. Other input features are the flow out of the upstream reservoir Starcke Dam 

(flowout) and the previous flowin to Mansfield Dam, as shown in Figure 3.5.a.  

 

 

Figure 3.6. Inputs to and Outputs from the Data-driven Models 
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The precipitation data (in kg/m2) were downloaded from Phase 2 of the North American 

Land Data Assimilation System (NLDAS-2). NLDAS-2 forcing data are derived from: (1) 

Doppler radar data, which are used in national weather forecasts (http://radar.weather.gov/ ), 

(2) CPC MORPHing (CMORPH) Technique, which produces global precipitation data at a high 

spatial and temporal resolution 

http://www.cpc.ncep.noaa.gov/products/janowiak/cmorph_description.html ), and (3) HPD 

(Hourly Precipitation Datasets) data (http://www.srh.noaa.gov/ridge2/RFC_Precip/). The data 

are in 1/8th degree grid spacing [Rui & Mocko, 2013]. The soil moisture data, in units of kg/m2, 

relied on the Noah land surface model (Noah soil moisture 0-100 cm). Data from both models 

can be easily downloaded via Web application by providing spatial coordinates and specific time 

periods.  

The reservoir hourly data were collected by LCRA from November 1, 2014, 00:00, to 

December 3, 2014, 23:00, and from May 1, 2015, 00:00, to June 4, 2015, 23:00, which were the 

recent time periods with severe flooding in the Lower Colorado River Basin. These data were 

retrieved from the LCRA database for this study. The two flooding datasets were concatenated 

together. From the available datasets, the first 85% (from Nov 1, 2014 00:00 to May 26, 2015 

15:00) were considered as the training dataset to train the model. The remaining 15% (from May 

26th 2015 16:00 to June 4th 2015 23:00) were used for testing to evaluate the model predictions. 

To ensure that the validation and training datasets were interchangeable, 80% of the training 

dataset was designated as training and 20% as validation. The purpose of such splits is to keep 

the model fitting completely separate from the validation so that the model is not overfit to this 

particular dataset.  

3.3.2 Model Implementation 

Wavelet Analysis to Filter Data Noise 

Wavelet analysis is intended to smooth the fluctuations in the reservoir inflow data and 

maintain the trend. The decomposition level (Figure 3.2) is a key element to choose in wavelet 

analysis. Nourani et al. [2008] estimated the optimum decomposition level for DWT using the 

following equation: 

                                                = [  ( )]                                                                    (3.8) 

 

where L is the decomposition level and N is the number of time series data.  
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In this study, the number of time series data is 1656. Based on Equation (3.8), the 

decomposition level L = int[log(1656)] = 3. To select the best decomposition level, Figure 3.7 

shows flowin after each level. At level 1, the dataset still has significant fluctuations and the 

noise removal is insufficient. At level 3, the dataset is smooth but the peak flow is significantly 

truncated. LCRA staff advised that Figure 3.7.b, with level 2 noise removal, represents the best 

data filtering: the dataset is smooth and the peak is not excessively truncated. Figure 3.8 shows 

the original reservoir inflow versus the filtered reservoir inflow.  

 

Figure 3.7.a. Reservoir Inflow at Level 1 

 
  Figure 3.7.b. Reservoir Inflow at Level 2 
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Figure 3.7.c. Reservoir Inflow at Level 3 

Figure 3.7. Reservoir Inflow Graph after Each Decomposition Level 
  

 

Figure 3.8. Original Observed Flowin vs Filtered Observed Flowin During 2014-2015 Flooding 
Events 
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Correlation 

To assess appropriate time lags for inclusion in the model, cross correlation was 

performed and the results are shown in Figure 3.9. The figure presents the respective correlations 

between soil moisture and reservoir inflow, precipitation and reservoir inflow, and flowout from 

the upstream reservoir and the downstream reservoir inflow.  

   

Figure 3.9.a. Correlation between Soil 
Moisture and Flowin 

Figure 3.9.b. Correlation between 
Precipitation and Flowin 

Figure 3.9.c. Correlation between 
Flowout of Upstream Reservoir and 
Flowin 

Figure 3.9. Correlation Plot between Input Features and Output Label 

Figure 3.9.a shows that the correlation between soil moisture and reservoir inflow reaches the 

highest point at lag=0, indicating that the soil moisture at time t is correlated most strongly with 

the reservoir inflow at time t. Figure 3.9.b demonstrates that the precipitation at time t-1 hour 

affects the reservoir inflow most, as the precipitation in the past hour usually has the largest 

influence on the reservoir inflow. The flowout of the upstream reservoir (Lake Marble Falls at 

Starcke Dam) at time t-2 hours is correlated most strongly with the reservoir inflow, consistent 

with LCRA’s assessment that flow typically requires two hours to travel from the upstream 

reservoir to the downstream reservoir inflow at Mansfield Dam.  

A flow prediction model to predict reservoir inflow 

To develop the BRT model, different combinations of feature inputs were tested. Although 

the cross-correlation results identified the lags corresponding to the strongest correlation, 

experimentation with different combinations of time lags is still needed to assure the best 

performance. Seven experiments were conducted:  

1) soil moisture at time t and precipitation at time t-1 at all 31 grid points, flowout from 

upstream reservoir at time t-2, and reservoir inflow at time t-1;  
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2) soil moisture at time t and precipitation at time t-1 at the grid point closest to the 

reservoir, flowout from upstream reservoir at time t-2, and reservoir inflow at time t-1;  

3) soil moisture at time t-1 and precipitation at time t-1 at the grid point closest to the 

reservoir, flowout from upstream reservoir at time t-2, and reservoir inflow at time t-1;  

4) soil moisture at time t-2 and precipitation at time t-1 at the grid point closest to the 

reservoir, flowout from upstream reservoir at time t-2, and reservoir inflow at time t-1;  

5) soil moisture at time t-3 and precipitation at time t-1 at the grid point closest to the 

reservoir, flowout from upstream reservoir at time t-2, and reservoir inflow at time t-1;  

6) soil moisture at time t, t-1, and t-2 and precipitation at time t-1 at the grid point closest to 

the reservoir, flowout from upstream reservoir at time t-2, and reservoir inflow at time t-

1; and  

7) soil moisture at time t, t-1, and t-2 and precipitation at time t, t-1, and t-2 at the grid point 

closest to the reservoir, flowout from upstream reservoir at time t-2, and reservoir inflow 

at time t-1 and t-2. 

Since early tests indicated that the precipitation and soil moisture at the closest point to the 

reservoir were more predictive of the reservoir inflow, most experiments were conducted using 

data from the closest point to the reservoir. 

AzureML facilitates ease of implementation of these alternative models using graphical 

workflows, shown in Figure 3.10, for data manipulation, regression models, training models, 

score models and other machine learning-related modules. The boosted regression tree module in 

AzureML was used with the following settings: maximum number of leaves per trees = 10, 

minimum number of samples per leaf node = 10, and learning rate = 0.1. The sweep parameter 

module in AzureML was used to select the number of trees constructed. Users provided a range 

of values for the number of trees ([5, 10, 15, 20, 30, 40, 50, 60, 70, 80] in this case) and the 

module builds training models for each value and selects the best (20 in this case). The criteria to 

choose the best number of trees was based on the MAE of the validation dataset.  
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Figure 3.10. AzureML workflow for data-driven flow prediction model 

A residual prediction model to predict residual between observed reservoir inflow and the 
predicted inflow from the physics-based model. 

Figure 3.11 shows the plot of the residual errors, which were calculated as the filtered 

observed reservoir inflow minus the predicted reservoir inflow from the HEC-HMS model. 

HEC-HMS is a lumped parameter watershed model that simulates watershed response to 

precipitation and predicts flows throughout the watershed, including reservoir inflows 

[Hydrologic Engineering Center, 2011]. Based on the flow information, LCRA staff simulate 

reservoir operation using the HEC Reservoir System Simulation (HEC-ResSim) in CWMS, 

assess the impacts of the operations using HEC Flood Impact Analysis (HEC-FIA), and make 

decisions for reservoir management (e.g., determine reservoir releases to meet reservoir and 

downstream operational goals). The same input features as the above flow prediction model were 

applied here. The seven experiments described above were repeated for the hybrid model, with 
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the best-performing experiment selected.  

 

Figure 3.11. Residuals between filtered observed flowin and flowin from physics-based models 
during 2014–2015 flooding events 

3.4 Results 

3.4.1 Physics-based Model Performance  

Figure 3.12 shows the predicted reservoir inflow from the physics-based model HEC-

HMS in CWMS and Table 3.1 shows the performance metrics for the physics-based model. The 

results show that the physics-based model fits the general trend of the reservoir inflows but a 

residual error remains that can be fit with the hybrid model. 



29 
 

 

Figure 3.12. Filtered Observed Flowin vs Physics-based Flowin during 2014-2015 

Flooding Events 

 

Table 3.1. Performance Metrics of Physics-based Model  

Mean 

Absolute 

Error (m3/s)  

Root Mean 

Squared Error 

(m3/s)  

Relative 

Absolute 

Error  

Relative 

Squared Error  

Coefficient of 

Determination 

67.677 130.541 0.381 0.282 0.718 

 

 3.4.2 Data-driven Flow Prediction Model 

Table 3.2 shows the performance of the data-driven flow prediction model for the seven 

experiments. Experiment #4 (soil moisture at time t-2 at the reservoir-located grid point, 

precipitation at time t-1 at the reservoir-located grid point, flowout at time t-2, and flowin at time 

t-1) demonstrates the best performance metrics. We can see that the flow prediction, shown in 

Figure 3.13, is close to the real reservoir inflow, with the prediction capturing both the general 

trend of the reservoir inflow and closely matching the peak values.  

A comparison of experiment #1 and experiment #2 shows that the closest soil moisture 

estimate (experiment #2) is more effective than all 31 available estimates in the area (experiment 

#1), indicating that some input features are not improving predictions of reservoir inflow. 
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Experiments #2 through #5 demonstrate that a time lag of 2 hours for soil moisture input 

(experiment #4) is the best option, despite the correlation results showing a time lag of zero 

having maximum correlation. Experiment #7 has similar performance to that of experiment #6, 

possibly because the additional input variables in experiment #7 (precipitation at time t-2 and 

reservoir inflow at time t-2) provide trivial information to improve the prediction performance.   

We also conduct experiments to predict reservoir inflow 1 to 9 hours ahead using the 

same input variables in Tables 3.2 and 3.3. Figure 3.14 shows the RMSE of future predictions 

from the data-driven flow prediction model. After 1 hour, the RMSE increases sharply, then 

fluctuates, indicating that while the flow prediction model can be used to predict reservoir inflow 

one hour ahead, later performance drops off significantly.  

Table 3.2. Performance Metrics for Flow Predicted Model  

  Input Variables 
Output 

Variable 

Performance 

Mean 
Absolute 

Error(m3/s) 

Root Mean 
Squared 

Error(m3/s) 

Relative 
Absolute 

Error 

Relative 
Squared 

Error 

Coefficient of 
Determination 

1 
SM(t)31, Precip(t-1)31, 

flowout(t-2), flowin_lag(t-1) 
flowin(t) 28.883 60.032 0.167 0.061 0.939 

2 
SM(t)closest, Precip(t-1)closest,  
flowout(t-2), flowin_lag(t-1) 

flowin(t) 28.600 66.545 0.165 0.075 0.925 

3 
SM(t-1)closest, Precip(t-1)closest,  
flowout(t-2), flowin_lag(t-1) 

flowin(t) 26.873 48.705 0.155 0.040 0.960 

4 
SM(t-2)closest, Precip(t-1)closest,  
flowout(t-2), flowin_lag(t-1) 

flowin(t) 23.984 46.723 0.139 0.037 0.963 

5 
SM(t-3)closest, Precip(t-1)closest,  
flowout(t-2), flowin_lag(t-1) 

flowin(t) 27.269 50.404 0.157 0.043 0.957 

6 
SM(t)closest, SM(t-1)closest, 

SM(t-2)closest, Precip(t-1)closest,  
flowout(t-2), flowin_lag(t-1) 

flowin(t) 24.607 50.121 0.142 0.042 0.958 

7 

SM(t)closest,SM(t-1)closest,SM(t-
2)closest,Precip(t)closest,Precip(t-

1)closest, Precip(t-2)closest,  
flowout(t-2), flowin_lag(t-1), 

flowin_lag(t-2) 

flowin(t) 27.666 52.953 0.160 0.048 0.953 
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Figure 3.13. Filtered Observed Flowin vs Predicted Flowin from May 26, 2015 to Jun 5, 2015 

 

Figure 3.14. Flow Prediction Model Performance for Future Prediction 

3.4.3 Residual Prediction Model  

The hybrid prediction model is used to predict the residual error [residual(t)] between 

observed flowin and predicted reservoir inflow from the physics-based model, shown in Figure 

3.11. The predicted reservoir inflow is then calculated using the predicted residual error plus the 

predicted reservoir inflow from the physics-based model. Table 3.3 summarizes the performance 
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of the hybrid model for each of the seven experiments, using the same input variables as for the 

flow prediction model. The best performance comes from experiment #2, followed by that of 

experiment #6. Since the hybrid model is intended to rapidly enhance the physics-based model’s 

performance, it makes sense that the model including soil moisture has the best performance 

since CWMS does not consider soil moisture as an input [Hydrologic Engineering Center, 

2011]. Figure 3.15 shows the performance of the physics-based model, the hybrid prediction 

model, and the observed flowin for Experiment #2. The hybrid prediction model improves upon 

the performance of the physics-based model in terms of the peak value prediction, but does not 

perform as well as the data-driven model in the short term (Figure 3.13).  

Figure 3.16 shows the future prediction performance of the hybrid model. Within four 

hours, the RMSE curve fluctuates under 170 m3/s. However, after four hours, the model’s 

performance begins to drop off.  

Table 3.3. Performance Metrics for Hybrid Prediction Model 

  Input Variables 
Output 

Variable 

Performance 

Mean 
Absolute 

Error 
(m3/s) 

Root 
Mean 

Squared 
Error 
(m3/s) 

Relative 
Absolute 

Error 

Relative 
Squared 

Error 

Coefficient of 
Determination 

1 
SM(t)31, Precip(t-1)31, flowout(t-

2), flowin_lag(t-1) 
residual(t) 81.836 167.636 0.472 0.475 0.525 

2 
SM(t)closest, Precip(t-1)closest,  
flowout(t-2), flowin_lag(t-1) 

residual(t) 57.200 97.976 0.331 0.163 0.838 

3 
SM(t-1)closest, Precip(t-1)closest,  
flowout(t-2), flowin_lag(t-1) 

residual(t) 71.925 121.196 0.415 0.249 0.751 

4 
SM(t-2)closest, Precip(t-1)closest,  
flowout(t-2), flowin_lag(t-1) 

residual(t) 80.986 146.398 0.467 0.362 0.638 

5 
SM(t-3)closest, Precip(t-1)closest,  
flowout(t-2), flowin_lag(t-1) 

residual(t) 69.943 138.186 0.404 0.322 0.678 

6 
SM(t)closest, SM(t-1)closest, SM(t-

2)closest, Precip(t-1)closest,  
flowout(t-2), flowin_lag(t-1) 

residual(t) 69.659 108.170 0.403 0.197 0.803 

7 

SM(t)closest, SM(t-1)closest, SM(t-
2)closest,Precip(t)closest,Precip(t-

1)closest, Precip(t-2)closest,  
flowout(t-2), flowin_lag(t-1), 

flowin_lag(t-2) 

residual(t) 68.527 112.984 0.396 0.216 0.784 
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Figure 3.15. Filtered Observed Flowin vs Predicted Flowin from Hybrid Prediction Model vs 
Physics-based Model Flowin from May 26, 2015 to June 5, 2015 

 

Figure 3.16. Hybrid Predicted Model Performance for Future Prediction 

3.4.4 Web Interface 

In AzureML, the built workflows were published as Web services using “Set Up Web 

Service” function. The Uniform Resource Locator (URL) and Application Programming 

Interface (API) Web Service keys were generated. The resulting data-driven services allow users 

and water managers to automatically fit model parameters, compute data-driven models, and 

retrieve reservoir inflow information through a Web browser. A Web application was built that 

enables users to give input parameters and retrieve output (Figure 3.17). Figure 3.17.a shows the 

user interface. The models can be executed in AzureML by filling the input parameter boxes and 
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selecting the “Compute” button; the result (the value of the predicted reservoir inflow) is 

retrieved and shown in the Web interface. The input parameters include the “StartTime” and 

“EndTime,” which will automatically download precipitation and soil moisture from NLDAS2, 

as well as flowout (which is the flow exiting the upstream reservoir) and flowin_lag (which is the 

reservoir inflow in the previous time step). 

Figure 3.17.b shows a prototype Web application that allows users to see the reservoir 

inflow prediction based on the prediction models. Users can provide a prediction starting time 

and a future prediction steps to examine how predictions compare with the measured data in the 

recent past, which will provide a sense for potential errors in the predicted reservoir inflows. In 

the future, when predicted soil moisture, precipitation and upstream reservoir flowout are 

available, such data can be incorporated into the prediction model to improve performance.  

Furthermore, the Web application can easily be extended to other river basins.  For 

instance, for any ungauged basin, users only need to upload the longitude and latitude of grid 

points affecting reservoir inflow to Azure ML. These points are then used to automatically 

download corresponding precipitation and soil moisture data from NLDAS2 using our workflow 

in AzureML. Then users can predict reservoir inflows based on the start time, end time, 

flowin_lag, and flow_out, as shown in Figure 3.17.a. Using this interface, the Web application 

provides an easy way for reservoir operators to forecast reservoir inflows and explore multiple 

scenarios without modeling or computational expertise. 

 

Figure 3.17.a. Flow Prediction Model to 
Calculate Reservoir Inflow 

Figure 3.17.b. Reservoir Inflow Prediction 

 
Figure 3.17. Screenshot of Web Interface for the Data-driven Model Services 
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3.5 Discussions  

In this study, we propose a data-driven framework for real-time reservoir inflow 

prediction using a service-oriented approach that enables ease of access through a Web browser. 

Statistical and hybrid models are developed to predict flow and residual errors from a physics-

based model, respectively. We created a workflow in Microsoft AzureML, a machine learning 

studio, for end-to-end downloading of the data, executing the models, and visualizing the results. 

Azure ML provides fast and easy implementation of the whole workflow as well as publishing of 

the workflow as Web services. In addition, the input datasets and workflow can easily be 

updated when new data are available. One of the workflows that predicts reservoir inflow has 

been published at https://gallery.cortanaintelligence.com/Experiment/Predict-Reservoir-Inflow-

1. Users who wants to use AzureML to predict reservoir inflow can update the input data and the 

model will be automatically updated without manual calibration or tuning of model parameters. 

The framework was implemented and tested in the Lower Colorado River Basin. The 

results show that the statistical flow prediction model is more accurate for short-term forecasts 

than the hybrid prediction model, while the hybrid model performs better for longer-term 

prediction (2 hours or more), as it considers forecasts from a physics-based model.   

The flow prediction model has a peak prediction value close to the actual value. Of the 

set of experiments shown in Table 3.2, experiment #4 has the best performance. Using soil 

moisture at time t-2 at the reservoir-located grid point, precipitation at time t-1 at the reservoir-

located grid point, flowout at time t-2, and flowin at time t-1 will lead to the best prediction of 

flowin at time t.   

From a physical process perspective, soil moisture affects surface runoff by reducing 

infiltration. When flooding happens, infiltration has reached a saturated level. Therefore, high 

soil moisture conditions are indicative of wet conditions that are well correlated with high 

reservoir inflows and are thus useful for prediction.   

The hybrid prediction model improves upon the performance of the physics-based model. 

Based on the set of experiments shown in Table 3.3, experiment 2 gives the best performance. 

Using soil moisture at time t at the reservoir-located grid point, precipitation at time t-1 at the 

reservoir-located grid point, flowout at time t-2, and flowin at time t-1 will lead to the best 

prediction in flowin at time t. The hybrid model’s short-term performance is worse than that of 

the flowin prediction model. The hybrid model is affected by complex processes, as shown by 
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the high fluctuations in Figure 3.11, and available data to build the model are limited to just two 

flooding events. With more flooding events available in the future, the incorporation of more 

data will likely improve the model’s performance.   

In considering longer-term predictions, the hybrid prediction model is better than the 

data-driven flow prediction model in terms of RMSE (Figure 3.18). The flow prediction model’s 

RMSE is lower than that of the hybrid prediction model one hour ahead. Later, the flow 

prediction model’s RMSE is higher than that of the hybrid prediction model, indicating that the 

flow prediction model’s performance declines after two hours. Because the hybrid prediction 

model’s performance remains reasonably high within the following five hours, in the future the 

Web application could allow the user to create a combined prediction model that uses the data-

driven model for the first two hours and the hybrid prediction model for time steps further in the 

future.  

Further research is needed to explore how these findings generalize to other locations and 

storms. The models and tools developed in this work can easily be generalized to other reservoirs 

by updating the input data in the workflow. The workflow can also be combined with other 

modeling services requesting the Web service using URL and API keys, as mentioned 

previously.  

 

Figure 3.18. Prediction Performance of Flow Prediction Model and Hybrid Prediction Model 
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In the future, the hybrid prediction model for long-term prediction will need to be 

improved. Currently the only available CWMS forecasts from the LCRA database were 

nowcasts (forecasts for the current time period only). If longer-term CWMS predictions could be 

obtained, then the hybrid model might perform better for longer-term forecasts.  

In addition, the current Web application is a prototype and further user-centered design 

and development is necessary before the system should be adopted for operational reservoir 

management. Feedback from LCRA’s testing and evaluation of the Web application can be used 

to improve the interface and add more features as needed to support effective decision making.   

Moreover, when more flooding data are available, the data-driven and hybrid models can readily 

be updated and improved using the AzureML framework. Replacing historical data for soil 

moisture, precipitation, and upstream reservoir flowout with model predictions might improve 

reservoir inflow prediction in later time periods. For instance, the precipitation might be replaced 

by the Quantitate Precipitation Forecast (QPF) or local LCRA rain gauge data.  In the future, 

other data preprocessing approaches such as partial information approach [Sharma & Mehroma, 

2014, Sharama, et al., 2016] could also be implemented to automatically choose the best input 

parameters for data-driven models to improve reservoir inflow forecast.  

The findings clearly indicate promise for this type of approach and potential value in 

making datasets and model forecasts more readily available in real time to support such analyses. 

In addition to reservoir inflow forecasting, the framework can be extended to other water 

resources applications with rich data sets using the AzureML framework. 
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Chapter 4 

A Service-driven Approach to Managing Water Allocation in Priority 
Doctrine Regions 

Chapter 3 has demonstrated the application of a service-driven approach to predicting 

reservoir inflows during flood events.  This chapter will explore a general framework of a 

service-driven approach to managing water allocation in Priority Doctrine Regions (Section 4.2) 

and its application to a drought event in the Upper Guadalupe River Basin (Section 4.3). Results 

and discussion are presented in Sections 4.4 and 4.5. 

4.1 Introduction  

As discussed in Chapter 1, water shortages originating from the imblance of water supply 

and water demand have had various social and economic impacts and raised water allocation 

issues for decision makers. As the limitations of water resources become more severe with 

growing populations and changing climate, it is challenging to make water allocations in a fair 

manner that improve sustainability of ecosystems. Decision makers commonly rely on water 

rights to determine the allocation of water to each stakeholder. There are two types of water 

rights in the US: riparian rights, which are based on land ownership, and prior appropriation 

rights, which are based on the rule of priority: “first in time, first in right.” 

Riparian water rights are common in the east. Most western states, which are naturally 

drier, follow the prior appropriation doctrine. The Guadalupe River Basin in Texas adopts the 

prior appropriation doctrine (called Priority Doctrine in this work), where water usage priority is 

based on the date of first diversion. During water shortages, longest-term appropriators (senior 

water users) have priority over shortest-term appropriators (junior water users) to receive water 

[Huffaker et al., 2000].  

This study’s purpose is to develop an optimization model for determining optimal water 

allocation strategies under a daily drought scenario in a prior appropriation doctrine system.  A 

river forecasting model, which provides information about the amount of water in the river 

system, is coupled with an optimizaiton model for decision support. A real-time Web application 

is then developed to improve the real-time water allocation process by automating collection of 

information and coupling the river forecasting and optimization models through a service-

oriented approach. The framework can easily be deployed in any areas that have a priority 
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doctrine policy for water allocation by updating water user information and river data.  

In this study, we develop river modeling services, accessible through a user-friendly Web 

application, that execute on a National Center for Supercomputing Application (NCSA) server. 

Implementing river forecasting models as a model service can allow non-technical users to 

predict river streamflow and retrieve results directly online. Optimization services are then 

deployed in Azure Machine Learning (AzureML), which can easily call the river model services 

to support the decision-making process without manual model configuration or software 

installation. Decision makers can utilize the system to allocate water through a more scientific 

approach to assist subjective judgment.  

The built coupled model services are applied to the Upper Guadalupe River Basin, Texas, 

during a serious drought event, focusing on water allocation on April 1, 2015, as a case study. 

Scenario analyses, including single scenario analysis and robust scenario analysis, are conducted 

to address uncertainties that affect water management and to inform future water supply and 

management.  

4.2 Methodology 

 Figure 4.1 shows the entire water allocation framework, which consists of three major 

components: 1) River modeling service, which is the hydrological simulation model service 

deployed through the NCSA-developed Datawolf workflow tool; 2) a GA optimizer deployed 

through AzureML; and 3) a Web application to provide browser access. The GA optimizer in 

AzureML provides initial conditions such as river runoff and water diversion to the river 

modeling services and retrieves river streamflow predictions used by the optimization model. 

After both services are built, a Web application can be developed to provide ease of access to the 

model services for water management. Users can give input data and parameters through a Web 

browser and visualize the result via the Web interface. The following subsections discuss each 

component in more detail.  
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Figure 4.1. Framework for Decision Support Services during Drought Events 

4.2.1 River Modeling Service  

Villa et al. [2009] explained that a model application can be divided into several 

disciplinary steps and deployed as an automated pathway using a workflow approach. Workflow 

systems can integrate different components into an automation system in a loosely coupled 

environment [Georgakopoulos et al., 1995]. Workflows in which components do not affect one 

another can overcome technology-based software barriers such as different data standards, 

programming languages, and model compliers for each component.  

DataWolf is an NCSA-developed workflow system for generating and publishing 

workflows as services. It has advantages over other workflow tools such as Taverna [Oinn et al., 

2004] and bio-STEER [Lee et al., 2007] in wrapping modules as Web services without requiring 

programming skills [Bajcsy et al., 2005]. Furthermore, DataWolf uses the OGC standards for 

storing data, which allows it to easily extend to new types of data [Marini et al., 2007]. The 

DataWolf workflow tool has been published as a Web-based tool. Each user can build and access 

workflow tools through a Web browser.  

 Executing a large-scale hydrologic simulation model requires model configuration and 

user programming expertise, as well as requiring users to download data and software to execute 

models. DataWolf can use Python or a command line tool to build workflows for each step with 

specified inputs and outputs. Users can also check the intermediate results for each step. To 

illustrate the workflow creation process, the following subsection provides more details on the 
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RAPID model, which is a large-scale hydrological simulation model used in this work. This is 

followed by a subsection discussing the implementation of RAPID as a workflow using 

DataWolf. 

RAPID Simulation Model 

The RAPID model is a river routing model developed at the University of Texas at 

Austin for parallel computation of river discharge [David et al., 2011]. Given the river network 

and its connectivity information, and fed with predicted water inflows (i.e., runoff) into the river 

network, RAPID can be executed to compute river streamflow for any river network. River 

connectivity information is provided by NHDPlus, which describes all river networks and water 

bodies in the United States.  

The flow calculation in RAPID is based on the matrix-based Muskingum method 

[McCarthy, 1938]. The two important parameters k (a storage constant with dimension of time) 

and x (a dimensionless weighting factor characterizing the relative influence of the inflow and 

the outflow on the volume of the reach) in the Muskingum method are calculated based on the 

work of Cunge [Cunge et al., 1969]. The parameter k is a constant value with dimension of time, 

and x is a dimensionless weighting factor influenced by the inflow and outflow of one specific 

river reach [David et al., 2011]. These parameters are calibrated using any USGS gauges located 

in the river basin.   

The basic expression for calculating river streamflow is given in Equation (4.1) by David 

et al. [2011]: 

( + ∆ ) = ∙ ( + ∆ ) + ( + ∆ ) + ∙ ( ) + ( ) + ∙ ( )  (4.1) 

where t is time,  is the upstream flow,  includes lateral flows to the river network (e.g., 

runoff and groundwater seepage),  is the streamflow in the exiting river reach j. , , and 

, constant parameters, are computed using Equations (4.2), (4.3), and (4.4):  

=

∆
2 − ∙
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∆
2

∙ 1 − +
∆
2

  (4.4) 

where  and  are parameters in the Muskingum method [Cunge, 1969]. 
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Workflow System 

The RAPID model application is divided into three steps. The first step is to download 

the data from external data sources and prepare it for the RAPID input file. The second step is to 

execute the RAPID model with the RAPID input files from the first step. The final step is to 

visualize the RAPID output.  

For each step, DataWolf is used to build a workflow tool with input data and parameters. 

For example, the command line wizard shown in Figure 4.2 gives users instructions about how to 

build a command line tool in DataWolf to execute the RAPID model. The RAPID input 

parameters of start-year, start-day, end-year, and end-day are then set in the DataWolf interface. 

An executable shell script is manually prepared to run each step. Given an input zip file from an 

external data source, each step can be executed with the set parameters and an output file is 

generated. Figure 4.3 shows all the defined steps of the RAPID model application built in 

DataWolf.  

 

Figure 4.2. User Interface for DataWolf Workflow System 
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Figure 4.3. Defined Workflow Steps for RAPID Model Application 

 

 Once the three steps are implemented, DataWolf provides connecting tools to link each 

step. The output from the first step can be used as the input file for the second step. The output 

from the second step can be used as the input file for the third step, as shown in Figure 4.4 for 

the RAPID MaaS application. 

 

Figure 4.4. Connecting Tools in DataWolf that Link the RAPID MaaS Steps 

 

The built workflow can be executed on a remote server or in the Cloud by providing 

input data and parameters that support supercomputing and parallel computing. Rather than 

maintaining a long-term interaction with the server or the Cloud during the model execution 
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process, users receive a notification when the model execution is finished. The final results can 

be downloaded or visualized through the DataWolf Web interface. In addition, the built 

workflow can be published as a Web service through the RESTful interface [McHenry et al., 

2011], providing access to the published workflows and their inputs and outputs through 

Uniform Resource Locators (URLs) that can be called as services remotely or through user 

sharing.  This approach is general and can be applied with any river hydrology model.  

After the workflow is built, users export the workflow as a zip file that is then uploaded 

to the DataWolf server. Users can access the shared workflow in the DataWolf server via the 

RESTful service using the URL of each workflow. For instance, clients can access the shared 

workflow and check on execution status using a Web browser by calling the URL. Through 

sharing the model and its output as services, the models become accessible to users anywhere in 

the world, which can dramatically expand their usability. Figure 4.5 shows the framework for 

publishing the workflow as a service. 

        

 

Figure 4.5. Publishing the Workflow as a Service 

 

4.2.2 GA Optimizer 

The GA module consists of optimization services built in AzureML, a workflow system 

for supporting machine learning services [Azure ML team Microsoft, 2015]. Users can provide 
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input data and parameters, run the optimization service in Microsoft Azure Cloud, and call the 

simulation model service on the remote NCSA server, viewing the results in AzureML.  

Optimization Model 

 Instead of considering each water right permit holder individually in the optimization 

model, the water right permit holders are divided into groups to facilitate water allocation, 

following the approach of the Texas Commission on Environmental Quality (TCEQ), the 

regulatory organization that assisted with designing the case study. The objective of the 

optimization model is to minimize the daily total curtailment hours (the number of hours that 

each group of water right permit holders are not allowed to use water) across all groups of permit 

holders. This aims to reduce the total effects of water scarcity on each group of water users. 

There are two constraints in the formulation. The first constraint is to respect the priority 

doctrine, which says that senior water users have priority to withdraw water. This constraint 

ensures that the curtailment hours for the senior users will be smaller than those for the junior 

users. The second constraint is to ensure that the river streamflow after diversion still satisfies the 

minimum river streamflow requirement, which limits the amount of water that can be withdrawn 

from the river to maintain ecological sustainability. 

The problem can be formulated as follows: 

Minimize: the daily total curtailment hours in the whole river basin. 

min ∑  (4.5) 

Subject to the following constraints: 

1) Respect the priority doctrine. 

≤       = 1, … , − 1 (4.6) 

2) Maintain the minimum river flow requirement. 

( , ) ≥   (4.7) 

where  represents curtailment hours for different groups of water users; i represents 

the group of water right holders; N represents the total number of water right holder 

groups in the Priority Doctrine; ( , ) is the downstream river streamflow 

after water diversions in the river basin;  represents the minimum river 

streamflow which is calculated based on the historical river flow recordings.   

 The second constraint as shown in Equation (4.7) is nonlinear and involves a series of 

complex equations (Equation (4.1) to Equation (4.4) in Section 4.2.1) that are solved 
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numerically. We use a GA as a metaheuristics optimization approach to solve this simulation-

optimization problem.  

 Maier et al. [2014] pointed out that optimization as a service is a new direction for 

evolutionary algorithms because it facilitates linking multiple optimization and simulation 

models using workflows that users can easily access through Web applications. After the RAPID 

model service is built, the next step is to build the optimization model service and couple it with 

the RAPID service to construct simulation-optimization model services. In this study, the 

optimization service is built in Azure ML, a Cloud-based machine learning studio. The Azure 

ML python module executes the GA code by calling the RAPID service from the NCSA server 

and executing the whole framework in Microsoft Azure. Each Azure ML module is run on a 

single virtual machine (VM) in the Cloud. As shown in Figure 4.5, the input files generated in 

Azure ML are uploaded into the server where the RAPID model service is located. After RAPID 

has run, the output files are downloaded into the VM, where the optimization service can access 

them to check whether the constraint is satisfied and continue GA operations.  

Genetic Algorithm 

A real-coded Simple Genetic Algorithm (SGA) is implemented because the decision 

variables ( , … , ), as shown in Equation (4.5), are real values. Figure 4.6 shows the SGA 

execution process. First, the population (a group of candidate solutions, or chromosomes) is 

initialized. Then, the fitness value (the objective function value) is calculated for each 

chromosome in the population. Through tournament selection, crossover, and mutation 

operators, the GA generates a new population, which serves as the next generation. The process 

repeats until the stopping criteria are satisfied.  
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Figure 4.6. GA Execution Steps 

 Tournament Selection 

To handle the constraints in the constrained optimization problem, tournament selection is used 

to make pair-wise comparisons among chromosomes in the population [Deb, 2000]. Unlike 

penalty-based methods, which require tuning penalty weights [Yeniay, 2005], tournament 

selection searches for the true optimum solution by comparing feasible and infeasible solutions 

[Deb, 2000]. In this approach, if both candidate solutions satisfy the constraints, the one with the 

best objective function value is selected. If one solution is feasible and one is infeasible, then the 

feasible solution is selected. Lastly, if both are infeasible, then the one with the smaller constraint 

violation is selected.   

 Crossover and Mutation 

The crossover operator is a method of sharing information between two parent 

chromosomes (solutions) that assumes good chromosomes generate better offspring [Herrera et 

al., 1998]. If a random value between zero and one is less than the predefined crossover 
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probability, a crossover operation generates new offspring. Otherwise, the parent chromosomes 

will pass to the next generation. The mutation operation explores the local region of a solution in 

the current population.  

Figure 4.7 demonstrates the process of crossover and mutation. This study uses a simple 

two-point crossover for the GA crossover operator. Two positions are randomly chosen and 

children are generated by switching the genes of the parents between the two positions, as shown 

in Figure 4.7. The mutation operator increases the variability of the chromosomes. A random 

change is made based on mutation probability [Herrera et al., 1998]. Figure 4.7 shows that a 

position is randomly chosen and the genes (one decision variable value) are randomly changed to 

generate a new chromosome.  

 

Figure 4.7. Crossover and Mutation Operators 

 Elitism 

Elitism passes the best chromosome in the current generation to the next generation. 

Retaining the best solution in each generation is intended to speed up the GA’s convergence to 

the optimal solution [Minsker, 2005].  
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4.2.3 Web Application 

 

Figure 4.8. The Framework of Web Services 

 

Figure 4.9. Web application for Real-time Decision Support Services  

The decision variables from optimization services are fed into the river model service as 

one of the input files. The output of the river model service serves as optimization constraints for 

optimization services, as Figure 4.8 shows. Coupling the simulation model service and 

optimization service facilitates publishing the whole framework as a service and makes the 

models accessible to users through a Web browser. A Web application designed using R Shiny, a 

Web application framework based on R, is used for executing the simulation-optimization 

service.  

The Web application retrieves water user information and visualizes the simulation-
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optimization services (shown in Figure 4.9). This allows users to provide input parameters and 

execute the whole framework via a Web browser. Users can then retrieve and visualize the 

optimization results through the Web interface.  

In addition, the scenario analysis panel allows users to analyze how the uncertainty of the 

runoff affects the future water strategy. Users can execute the simulation-optimization model and 

compare water allocation strategies under different scenarios, as described in the next section. 

4.2.4 Scenario Analysis 

Scenario analysis has been an efficient tool for decision support systems in water 

resources management, which explores future uncertainties to provide better decisions for water 

managers [Pallotino et al., 2005]. The previous studies have used scenario analysis for 

uncertainties related to climate, population, political conditions, and other factors that can affect 

the water resources system performance [Dong et al., 2013]. In this study, the uncertainties of 

weather and water demand are considered and scenario analyses of the alternative future states 

are explored.   

Single Scenario Analysis 

The single scenario analysis only considers one of the alternative future conditions. Given 

assumptions about future scenarios, the water allocation strategy under a single scenario will be 

analyzed to assist in water management. The simulation-optimization model services can assist 

decision makers in identifying the optimal water allocation strategy under each drought scenario. 

In addition, the optimization formulation in Section 4.2.2 shows that there are N groups of water 

right holders defined by water managers. We will explore the impact of this grouping on optimal 

water allocation strategies by setting different values of N.     

The simulation-optimization system under a single scenario provides the optimal 

curtailment hours to each group of water right holders, assuming full compliance with the water 

restrictions. A few non-compliance scenarios are then proposed to examine how non-compliance 

would affect the river system and potentially violate the minimum river streamflow.  

Robust Scenario Analysis 

An alternative approach, described as robust scenario analysis, explores multiple scenarios 

simultaneously.  It is intended to provide robust solutions that are flexible and satisfy various 

uncertain conditions [Kang & Lansey, 2013]. Some previous studies have focused on developing 
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robust solutions over a range of scenarios defined by uncertainties. Watkins & McKinney [1997] 

proposed a robust optimization framework that converges to a near optimal solution while 

satisfying all the stakeholder requirements across scenarios. Hamarat et al. [2014] developed a 

robust optimization approach based on a signal-to-noise ratio that is equal to the mean 

performance divided by its standard derivation. These previous studies focused on satisfying the 

feasibility of all the constraints but sacrificed the optimality of the solution. Since the scenario 

analysis is mainly reflected in the constraint as shown in Equation (4.10), the robust scenario 

analysis implemented in this work provides flexibility in constraint satisfaction. Given a user-

specified probability that all scenario-related constraints are satisfied (e.g., 90%), the constraint 

is relaxed and the feasible region is extended to explore more alternatives without excessively 

risking river streamflow.  

 The robust optimization is formulated as shown in Equations (4.8) to (4.10). Equation 

(4.10) represents the probability that the satisfaction of all scenario-related constraints should be 

larger than the defined acceptance level of 90%. 

 The objective function is: 

min ∑  (4.8) 

Subject to the following constraints: 

≤       = 1, … , − 1 (4.9) 

( ( , ) ≥  ) > 90%  ∀     = 1, … ,  (4.10) 

where  represents curtailment hours for different groups of water users; S represents 

the total number of scenarios; s represents each single scenario; other parameters are 

the same as discussed in section 4.2.2.   

4.3 Case Study 

TCEQ employs water masters in certain river basins to provide active water management, 

particularly during droughts. The Priority Doctrine serves as a foundation for TCEQ’s water 

management policies. Domestic and livestock users have priority water rights over any permitted 

surface water right holders. The permitted surface water right holders consist of senior water 

right holders, who were granted early water rights, and junior water right holders, who have 

obtained water rights more recently.  Senior water right holders have higher priority to withdraw 

water than junior water right holders, except when health and safety are involved. During water 
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shortages, if all authorized water users’ needs cannot be satisfied, water right holders can call 

TCEQ to carry out water allocation based on the Priority Doctrine [L’Oreal Stepney, 2012]. 

During this process, the amount of water available in the river, both currently and in the next few 

weeks, is one critical factor in water allocation for TCEQ water masters.  

To manage water allocation more efficiently, TCEQ has divided the water right permit 

holders into seven groups. Each group of permit holders shares the same curtailment hours. 

Currently, water right holders are required to call TCEQ to request the amount of water they 

wish to use. During a severe drought, daily calls are required. After receiving a water request, 

TCEQ decision makers will check the amount of available water in the river by collecting 

information from USGS streamflow gauges. Then they allocate available water to each water 

user, respecting water users’ priority, based on their subjective judgment as to the impacts of 

these allocations. The process is repeated each day as the impacts of the previous days’ 

allocations become apparent in the river levels, but no forecasting is currently used. This process 

requires a large amount of time and the response of TCEQ decision makers is not immediate, nor 

is it based on the best available scientific forecasts.  

This section describes this case study in more detail. The case study region is introduced 

in Section 4.3.1 and the framework of simulation-optimization model services is described in 

Section 4.3.2. Sections 4.3.3 and 4.3.4 discuss the scenario analysis implementation of the 

framework and Web application.   
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4.3.1 Case Study Area 

 

Figure 4.10. The Case Study Area 

The case study area is the Upper Guadalupe River basin, located in the upper side of the 

Guadalupe River basin and 1432 mi2 from the Canyon reservoir [Bumgarner & Thompson, 

2012]. The climate pattern in this area is subtropical and subhumid, and the population in the 

largest city, Kerrville, Texas, was 22347 in 2010. The region’s characteristic weather has made 

water allocation during water shortages a crucial issue in this area. Figure 4.10 shows the case 

study river basins. The red points in Figure 4.10 are the TCEQ water diversion points. The black 

points represent the USGS gauges.  
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4.3.2 Coupled Simulation-Optimization Services 

 

Figure 4.11. Optimization Service coupled with RAPID Model Service 

The simulation-optimization model service is implemented using a recent drought event, 

focusing on April 1, 2015 allocations. Figure 4.11 shows the framework of the coupled 

optimization and RAPID model service. The decision variables in the optimization model are the 

curtailment hours of each group of water right permit holders. Based on the water demand and 

curtailment hours, the water diversion is calculated. Then the river inflow is updated using the 

water diversion values and initial National Water Service (NWS) river inflow. The river 

streamflow calculated by the RAPID model is used in the optimization model to ensure that the 

streamflow at the outlet of the river basin sustains the minimum river streamflow. The objective 

of the optimization is to minimize the total curtailment hours across all groups of permit holders. 

The optimization formulations have been given in Equations (4.5) to (4.7) for single scenario 

analysis and Equations (4.8) to (4.10) for robust scenario analysis. Since the RAPID model is 

nonlinear and the coupled simulation-optimization model cannot be solved using mathematical 

derivation, a GA is used to obtain the optimal solution to the water allocation problems as 

described in section 4.2.2. The input files for both the simulation and optimization models, 

including RAPID input files, water request data, and permit holder information, are uploaded 

into Azure ML. The permit holder information is from TCEQ. Water request data are daily water 

requests for each TCEQ permit holder in the river basin. Runoff files, which consist of hourly 

runoff data from April 2014 to August 2015, are downloaded from NWS and uploaded into 
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Azure ML.     

GA Parameters 

Based on Minsker’s [2005] guidelines for GA parameter settings using binary GA theory 

(comparable guidelines are not available for real-coded GAs), the preliminary GA parameters in 

the study were set as follows. The minimum population size is set to N = 1.4l, where l=7 is the 

chromosome length in this case.  After an initial test of different population sizes at and above 

this value (such as 100, 150, 200), the population size is set to be 100, which provides a set of 

sufficiently diverse chromosomes without excessive computational burden. The mutation rate is 

recommended to be set to the range of 0.04 to 0.3 [Wright, 1991]. We tested performance with 

mutation rate = 0.1 and 0.2 and found that mutation rate of 0.2 gives the best performance.  In 

addition, the GA terminates when the stopping criterion, when successive GA iterations no 

longer produce better results, is satisfied. The number of successive GA iterations, N_stop, was 

tested using values of 10 and 20. The experiments showed that N_stop = 20 performs best. Table 

4.1 summarizes the GA parameters used in this study. 

Table 4.1. GA Parameters 

Population Size Crossover Rate Mutation Rate N_Stop 
100 0.9 0.2 20 

 

Ecological Flow 

Equation (4.7) in the optimization formulation constrains the river streamflow in the 

downstream to be larger or equal to the minimum river streamflow. Richter et al. [2003] 

demonstrated that sustaining minimum river streamflow is critical in maintaining biological 

diversity and river ecology. Martin et al. [2014] showed that the ecology of the river should 

couple with the natural pattern of streamflow. Therefore, the minimum river streamflow, aiming 

to preserve sustainable river ecology, is computed from the historical river streamflow record 

during a “natural flow” period when no dams were constructed.       

Canyon Reservoir, which is at the downstream end of the Upper Guadalupe River Basin, 

was planned in the 1930s and completed in 1964. The daily USGS gauge streamflow data in the 

upper stream of Canyon Reservoir is available from the middle of 1922. Considering the data 

integrity and the effects of reservoirs, the period from 1925 to 1936 is defined as the “natural 

flow” period for establishing the constraint criterion. The streamflow of USGS gauge 08167500, 
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which is located in the downstream of the Upper Guadalupe River Basin and upper stream of 

Canyon Reservoir, is used to set the minimum allowable river streamflow in the Upper 

Guadalupe River Basin in Equation (4.7) to the minimum river flow experienced during the 

natural flow period. For instance, the April 1, 2015, water allocation is used as a case study. The 

minimum allowable river flow is calculated from the minimum streamflow on April 1st during 

the natural flow period.  

4.3.3 Scenario Analysis 

Scenario analysis is an efficient tool to deal with uncertainties that affect water resource 

management [Dong et al., 2013]. This study focuses on weather uncertainty that affects river 

inflows and leads to changes in river streamflow, conducts scenarios for multiple river inflows, 

and investigates strategies of water allocation under different scenarios.  

 The historical TCEQ water demand data from April 2014 to August 2015 are used as a 

reference for obtaining water demand scenarios. Figure 4.12 is the cumulative probability graph 

of water demand generated using the first quantile, median and third quantile from the historical 

TCEQ water demand data. Suppose the probability of water demand by each water user is 

uniformly distributed. Given a random value of probability over the range from 0 to 1, a 

corresponding water demand value is generated using the cumulative probability graph. To 

explore different levels of water demand, four water demand scenarios that include “very high,” 

“high,” “moderate,” and “very low” are examined. Water demand under the “very low” scenario 

is randomly selected from the 0 to 10% quantiles in the cumulative distribution function. 

Similarly, the “moderate” scenario is selected from 10 to 30% quantiles, “high” scenario from 30 

to 60%, and “very high” scenario from 60% to 100% quantile, as shown in Figure 4.12. We 

generated three runoff scenarios to represent different runoff levels: the actual runoff from NWS; 

drier runoff, which is calculated as actual runoff minus 1%; and wetter runoff, which is 

calculated as actual runoff plus 1%. Since the actual runoff on April 1, 2015 is a highly dry day, 

the wetter and drier runoff scenarios represent plausible scenarios under drought conditions.  
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Figure 4.12. Water Demand Scenario Graph 

4.3.4 Web Application 

Figure 4.13 shows a prototype Web application that allows users to access the simulation-

optimization services. Users need to set “optimization date”, the date of the water request, and 

“simulation model execution period,” the RAPID model execution period. The simulation-

optimization model services are run in the Azure Cloud and NCSA server. The optimal water 

allocation strategy that presents the curtailment hours for each group of water right permit 

holders is retrieved via Web browser. Decision makers who are unfamiliar with the RAPID 

simulation model and the GA algorithm can easily use the Web application to aid subjective 

judgment in developing water allocation strategies.  
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Figure 4.13. Web interface of Real-time Support Services for Water Allocation 

4.4 Results  

This section shows the results of implementing the built simulation-optimization model 

services for identifying optimal water allocation strategies under each scenario described in the 

previous section. In addition, the change in optimal water allocation strategies with different 

runoff levels and water demands is discussed.  The USGS river streamflow data has shown that 

April 1st, 2015 was an extremely dry day in the Upper Guadalupe River Basin, thus it is selected 

as a case study. The drought scenario is developed from “drier” to “wetter” and the water 

demand scenario ranges from “very low” to “very high” as shown in Table 4.2. Table 4.3 shows 

all the scenarios by combining the uncertainty of water demand and runoff. The optimal water 

allocation strategy under each scenario, which is represented by the curtailment hours for each 

group of water right permit holders, is discussed below.  

Table 4.2. Uncertain Variables 

Uncertain Variables Options 

Water Demand (indicated by water request) 

Very high 
High 

Moderate 
Very low 
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Table 4.2 (cont.) 

Uncertain Variables Options 

Drought Situation (indicated by runoff) 
Wetter 
Actual 
Drier 

 
Table 4.3. Drought and Water Demand Scenarios  

Scenario Name Water Demand Drought Situation 
s1_actual Very low 

Actual 
s2_actual Moderate 
s3_actual High 
s4_actual Very high 
s1_drier Very low 

Drier 
s2_drier Moderate 
s3_ drier High 
s4_ drier Very high 
s1_wetter Very low 

Wetter 
s2_wetter Moderate 
s3_wetter High 
s4_wetter Very high 

4.4.1 Single Scenario Analysis 

In this section, the optimal solution for each single scenario is identified using the built 

simulation-optimization model services. The GA is executed using three different random seeds 

and the best solution is chosen as the final solution for that scenario. The results of scenario 

analysis are discussed based on each runoff level. An alternative TCEQ priority grouping is 

proposed to explore the impacts of the grouping on water allocations. Then a few non-

compliance scenarios, in which the water right permit holders do not obey the optimal water 

allocation strategy, are developed to analyze the compliance aspects of the water allocation 

strategy.   

Table 4.4 and Figure 4.14 show the results of scenario analysis under the actual 

(historical) drought situation. The total curtailment hours of all groups increase from s1_actual to 

s4_actual due to the increasing water demand. The optimal curtailment hours for Groups 1, 2, 3, 

and 7 remain the same under different water demand scenarios. This indicates that the senior 

groups and the most junior group are not influenced by the water demand uncertainty. Water 

right permit holders in the most junior group (Group 7) are required to completely cut off water 

usage. Those in senior groups such as Groups 1, 2, and 3 can make full use of water. The 

curtailment hours for water right permit holders in Group 5 increase by 270% from s1_actual to 
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s2_actual. In the meantime, the curtailment hours in Group 4 decrease by 100%. This 

demonstrates that a decrease in curtailment hours for senior water right holders (Group 4) will 

lead to a sharp increase in the next group of more junior water right holders (Group 5). Group 6 

also has a slight decrease (around 4%) in the curtailment hours from s1_actual to s2_actual, but 

this does not lead to an increase of curtailment hours in Group 7 because permit holders in Group 

7 have been completely cut off. From s2_actual to s4_actual, the curtailment hours for Groups 5 

and 6 increase significantly due to greater water demand, indicating that measures to reduce 

water demand (e.g., public education) could help permit holders in these groups significantly.  

Table 4.4. Scenario Analysis Under Actual Runoff 

 fitness Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 
s1_actual 56 0 0 0 2.5 6 23.5 24 
s2_actual 68.5 0 0 0 0 22 22.5 24 
s3_actual 71 0 0 0 0 23.5 23.5 24 
s4_actual 71.5 0 0 0 0 23.5 24 24 

 

 

Figure 4.14. Scenario Analysis for Different Water Demand Levels under Actual Runoff 

Table 4.5 and Figure 4.15 illustrate how the curtailment hours change for different water 

demand levels under a drier runoff situation. Compared to the actual runoff scenario where the 

senior groups, Groups 1, 2, and 3, can make full use of water, only the most senior group (Group 

1) is guaranteed sufficient water usage. The curtailment hours for water right permit holders in 

Groups 2 and 3 increase by 65%, 30% and 5% from s1_drier to s4_drier. The junior groups such 

as Groups 5, 6, and 7 are required to completely cut off water usage during drier runoff 
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scenarios. In addition, when water demand increases from s2_drier to s3_drier, the curtailment 

hours in Group 4 decrease slightly (around 8%), but the curtailment hours in Group 5 are not 

altered since water right permit holders in Group 5 have been completely cut off.    

These results indicate that the optimal water allocations are highly sensitive to small 

reductions in runoff (in this case 1%), having a greater effect on senior water users such as 

Groups 2, 3, and 4 compared to the actual situation. Under actual runoff, the dry conditions 

mainly affect water right holders in Groups 5, 6, and 7, while most senior groups can make full 

use of water. When the drought situation is worse, the curtailment extends to senior groups such 

as Groups 2, 3, and 4. Only the most senior group (Group 1) is not affected by the drought 

situation under the drier scenario.  

Table 4.5. Scenario Analysis Under Drier Runoff 

 Fitness 
Group 

1 
Group 

2 
Group 

3 
Group 

4 
Group 

5 
Group 

6 
Group 

7 
s1_drier 102 0 10 10 10 24 24 24 
s2_drier 129 0 16.5 16.5 24 24 24 24 
s3_drier 137 0 21.5 21.5 22 24 24 24 
s4_drier 141 0 22.5 22.5 24 24 24 24 

 

 

Figure 4.15. Scenario Analysis for Different Water Demand Levels under Drier Runoff 

Table 4.6 and Figure 4.16 demonstrate how the curtailment hours change for different 

water demand scenarios under a wetter runoff scenario. Again, the results show significant 

changes for a small increase of 1% in runoff. The senior water right permit holders such as 
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Groups 1 and 2 can now make full use of water. Compared to the actual water scenario, water 

right holders in Groups 3 and 4 are required to slightly cut off water usage (0.5 -1 hours/day).  

The decrease (around 67%) of curtailment hours in Group 4 from s2_wetter to s3_wetter 

leads to an increase (around 89%) of the curtailment hours in the following junior group (Group 

5). Under s1_wetter, the curtailment hours in Group 6 decrease by 83% compared to the actual 

drought situation. From s1_wetter to s4 wetter, the curtailment hours in Group 5 increase by 

260%, 89%, and 18%, and hours for Group 6 increase by 438%, 7% and 2%. The only scenario 

where water right permit holders in Group 7 can use water is s1_wetter. They are required to 

completely cut off water usage under other scenarios.  

Therefore, the increase of available water in the system (wetter scenario) benefits Groups 

5 and 6 more and has a slight effect on senior groups (Group 1, 2, 3, and 4) and the most junior 

group (Group 7). 

Table 4.6. Scenario Analysis under Wetter Runoff 

 Fitness Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 
s1_wetter 29 0 0 0 0.5 2.5 4 22 
s2_wetter 56 0 0 0.5 1 9 21.5 24 
s3_wetter 61.5 0 0 0 0.5 13 24 24 
s4_wetter 67 0 0 0 0.5 18.5 24 24 

 

 

Figure 4.16. Scenario Analysis for Different Water Demand Levels under Wetter Runoff 

Overall, the most senior water right holders (Group 1) and the most junior water right 

holders (Group 7) are insensitive to the uncertainty of runoff and water demand. The curtailment 
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hours for Group 1 over all single scenarios are zero and Group 7 is required to completely cut off  

water usage except in s1_wetter, which has the smallest water demand and wetter runoff. Figure 

4.17 shows the sensitivity analysis of the curtailment hours for each group of water right permit 

holders under each runoff scenario with the uncertainty of water demand.  

Under the actual runoff scenario, water right holders in Groups 1, 2, 3, and 7 are not 

influenced by the uncertainty of water demand. Group 5 is the most sensitive to the uncertainty 

of water demand, followed by Groups 4 and 6. When water shortages happen, the imbalance of 

water supply and water demand cannot fulfill all water users. The water demand of senior water 

users (Groups 1, 2, and 3) is satisfied first. Since the remaining water is not enough for other 

users, water users in the middle groups (Groups 4, 5, and 6) have their water demand partially 

fulfilled, and the most junior water users (Group 7) have no water to use.  

A similar trend occurs in the drier and wetter runoff scenarios, as shown in Figures 4.17.b 

and 4.17.c. Groups 2, 3, and 4 are mainly affected by the uncertainty of water demand in the 

drier runoff scenario. In the wetter runoff scenario, Group 6, followed by Group 5, are the 

leading groups impacted by the uncertainty of water demand.   

When water supply declines from the actual runoff scenario to the drier runoff scenario, 

the available water calculated by water supply minus water demand decreases, which only 

suffices for the most senior group’s water consumption (Group 1). All the remaining groups lack 

sufficient water. The remaining water after withdrawal by Group 1 is not adequate for Groups 2, 

3, and 4, while the junior groups (Groups 5, 6, and 7) are fully blocked from water usage. When 

the drought situation shifts from the actual runoff scenario to the wetter runoff scenario, the more 

junior groups become the most sensitive due to the increment of available water.  

For those groups who are mainly affected by the uncertainty of water demand, TCEQ 

may encourage them to request conservative amounts of water during droughts, because smaller 

levels of water demand can increase the available water usage hours. In addition, water permit 

holders in more junior groups may find investments in water retention devices (e.g., water tanks) 

worthwhile to ease the fluctuations. Moreover, a water market for trading with the senior water 

users to satisfy water demand during droughts may be helpful, since senior water right permit 

holders are still eligible to withdraw water. Finally, the results illustrate the importance of 

accurate runoff estimation to enable informed water management. Even a small fluctuation of 

1% in runoff volume has a dramatic impact on many users’ optimal water allocation. 
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In addition, the optimal water allocation strategy for the highest water demand under the 

drier runoff scenario meets the streamflow constraint for all other scenarios since this scenario 

represents the worst drought condition. If extreme drought happens and water demand 

information is not available, TCEQ watermasters can allocate water based on this conservative 

strategy.   

 

Figure 4.17.a. Actual Runoff Scenario with 
Uncertainty in Water Demand 

Figure 4.17.b. Drier Runoff Scenario with 
Uncertainty in Water Demand 

 

Figure 4.17.c. Wetter Runoff Scenario with 
Uncertainty in Water Demand 

 

Figure 4.17. Average and Standard Deviation of Curtailment Hours for Each Group 
across Different Runoff Scenarios 

Alternative TCEQ Priority Grouping 

The previous single scenario analysis shows that water users in some groups under a 

scenario have the same curtailment hours. For instance, the water right permit holders in Groups 

2 and 3 with different priority year have the same curtailment hours under the drier runoff 

scenario.  The priority of each water user is based on the priority year and there are only seven 

groups of users in the current TCEQ priority grouping. If more groups are created among all 
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water users, the water allocation strategy may be fairer due to a smaller interval of priority years 

in each group. The objective of this section is to propose an alternative TCEQ priority grouping 

which uses more groups among all water users and to explore how the alternative grouping 

changes the optimal water allocation strategy.   

Table 4.7. Alternative TCEQ Groups 

Group Original Alternative 
1 1887-1896 1887-1900 
2 1900-1920 1900-1910 
3 1920-1935 1910-1920 
4 1935-1950 1920-1930 
5 1950-1965 1930-1940 
6 1965-1980 1940-1950 
7 1980-now 1950-1960 
8   1960-1970 
9   1970-1980 

10   1980-1990 
11   1990-2000 
12   2000 - now 

 

  
Figure 4.18.a. Original TCEQ Groups Figure 4.18.b. Alternative TCEQ Groups 

Figure 4.18. TCEQ Group Information 

Table 4.7 lists the original TCEQ groups and proposed TCEQ groups. Instead of using  

15-year intervals from 1900 to 1980 in the original TCEQ priority grouping, the alternative 

TCEQ priority grouping still respects the priority year of each water right holder but uses 10-

year intervals from 1900 to 2000. Figure 4.18 shows the distribution of water users in each 

group. Compared to the user distribution in the original TCEQ groups, the alternative TCEQ 

grouping is more evenly distributed. For instance, Group 7 permit holders are divided among 

three groups in the alternative TCEQ grouping system.  

Figure 4.19 shows a comparison of the optimal curtailment hours under the original 

TCEQ priority grouping and the alternative one. The curtailment hours of Group 1 remain the 
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same in both grouping systems. There is a slight increase from 0 to 0.5 hours in partial water 

users and from 0 to 1.5 hours in the rest of Group 2 by implementing the alternative TCEQ 

priority grouping. Groups 3, 4, and 5 have an incremental increase in the curtailment hours: 

Group 3 increases from 0 to around 3; Groups 4 and 5 correspondingly increase by 

approximately 120% and 170%, respectively. The curtailment hours for permit holders in Groups 

6 and 7 decrease by approximately 24% and 4%, respectively. These results show that the 

alternative TCEQ priority grouping is beneficial to the most junior groups, Groups 6 and 7. 

Allocations to the senior groups such as Groups 1 and 2 are almost independent of the priority 

grouping system. The alternative TCEQ priority grouping is not favorable to Groups 3, 4, and 5, 

whose curtailment hours increase in the alternative grouping system. These results demonstrate 

that the optimal water allocation strategy is highly sensitive to the grouping system and TCEQ 

decision makers may want to study this approach more closely.    

 

Figure 4.19. Comparison of Optimal Curtailment Hours between the Original and Alternative 
TCEQ Priority Doctrine Groupings 

Impact of Non-Compliance 

During water shortages, water users may not obey the optimal water allocation strategies. 

Non-compliance is defined as the percentage of violations during curtailment hours. Table 4.8 

shows a set of non-compliance scenarios, which are defined by various non-compliance ratios for 

each group of water right permit holders. The violation of minimum river streamflow, which 

measures the impact of each non-compliance scenario, is also given. We use complete non-

compliance (nc-s9 as shown in Table 4.8) as the baseline, which means all users violate the rules. 

In the first non-compliance scenario, the non-compliance rate decreases from Groups 1 to 7. This 
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scenario assumes that senior water users are more inclined to violate the optimal water allocation 

than junior water users since senior water users are eligible for more water. The non-compliance 

rate is set over the range 100% to 10% from Groups 1 to 7. The violation ratio is around 25% 

compared to the baseline experiment. This indicates that such non-compliance does not pose 

serious effects on the river system, because the curtailment hours of senior water users are small 

and the violation of those hours will not affect the river system seriously.  

The non-compliance rate is also in the range of 10% to 100% from Groups 1 to 7 in the 

second scenario, but in reverse order (i.e., highest non-compliance for junior water users). 

Compared to the baseline experiment (nc-s9), the violation ratio is around 94%, which almost 

reaches 100%. This indicates that non-compliance of the junior water users has a greater effect 

on the river system compared to the senior water users, because the curtailment hours of junior 

water users in the optimal water allocation strategy are larger. The other scenarios have the same 

non-compliance rate for all groups of users and the violation ratio increases with the increment 

of non-compliance rate. Therefore, non-compliance of the junior water users will have a greater 

effect on the river system compared to the senior water users.  

Based on these results, when watermasters inspect the withdrawing behavior of permit 

holders, we recommend that watermasters focus more on junior water right permit holders since 

the river system is more severely affected by their violations.  

Table 4.8. Effects of Non-Compliance on River System 

Non-
Compliance 
Scenarios 

Group1 Group2 Group3 Group4 Group5 Group6 Group7 Violation Ratio 

nc-s1 100% 85% 70% 55% 40% 25% 10% 0.59% 26.44% 

nc-s2 10% 25% 40% 55% 70% 85% 100% 2.09% 93.67% 

nc-s3 10% 10% 10% 10% 10% 10% 10% 0.33% 14.63% 

nc-s4 25% 25% 25% 25% 25% 25% 25% 0.78% 35.07% 

nc-s5 40% 40% 40% 40% 40% 40% 40% 1.17% 52.31% 

nc-s6 55% 55% 55% 55% 55% 55% 55% 1.48% 66.28% 

nc-s7 70% 70% 70% 70% 70% 70% 70% 1.76% 78.88% 

nc-s8 85% 85% 85% 85% 85% 85% 85% 2.00% 89.48% 

nc-s9 100% 100% 100% 100% 100% 100% 100% 2.23% 100.00% 

nc-s10 0% 0% 0% 0% 0% 0% 0% 0% 0% 
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4.4.2 Robust Scenario Analysis 

Figure 4.20 shows the robust scenario analysis solution, which represents the case for 

optimizing across multiple scenarios based on the formulation in Equations (4.8), (4.9), and 

(4.10). The square dots in Figure 4.20 show the optimal solution for the robust scenario analysis. 

The box whisker shows the range of curtailment hours for each group of water right holders 

across each single scenario. The results show that the junior water right permit holders from 

Groups 3 to 7 are required to completely cut off water usage hours and water users in Group 1 

can make full use of the water. The water right permit holders in Group 2 are allowed to use 

water for five hours on the case study day. Therefore, if TCEQ decision makers have no 

information about water demand and runoff, they can allocate water based on the robust scenario 

analysis results to ensure that minimum flows are met. 

 

Figure 4.20. Robust Optimization Solution across Multiple Scenarios 

 

Finally, we conduct two more robust scenario experiments with alternative acceptance 

levels of 80% and 70% in Equation (4.10).  Figure 4.21 shows the results of the robust scenario 

analysis under the three acceptance levels. When the acceptance level is 90%, only water users in 

Group 1 and a portion of users in Group 2 are allocated water. Under the alternative acceptance 
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levels, which involve more relaxed constraints, additional water users in Group 2 and a portion 

of water users in Group 3 are allocated water at acceptance level of 80% and a portion of water 

users in Groups 2,3, and 4 are allocated water at acceptance level of 70%. When more 

constraints are relaxed, the violation of the minimum river streamflow increases for each 

acceptance level from 0.22% to 0.36% to 0.62%. With one more constraint relaxed, the effect on 

the river streamflow increases by about 70%. Therefore, when the acceptance level decreases, 

water users in more groups can make use of water but the water shortages lead to significantly 

higher violations of the minimum river streamflows.   

 

 

Figure 4.21. Robust Optimization Solutions under Different Acceptance Levels 

4.5 Conclusions 

This study proposes a service-driven framework of simulation-optimization models for 

water management during droughts. GA as a metaheuristics optimization approach is used to 

solve the optimization problem. The simulation and optimization models are published as Web 

services using NCSA DataWolf and Microsoft Azure ML respectively, then the built model 

services are coupled to support large-scale water management.  

The framework was tested on a water allocation optimization problem in the Upper 

Guadalupe River Basin, which is aimed at identifying the optimal water allocation strategy under 

each drought scenario. Single scenario analysis and robust scenario analysis were conducted 

using the built simulation-optimization model services. The results demonstrate that the most 
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senior group and the most junior group are insensitive to the uncertainty of water demand and 

runoff. Both types of uncertainty affect the curtailment hours of other groups. The water right 

permit holders who are most affected by water demand and weather uncertainty may consider 

seeking more water from senior permit holders (if a water market were set up) or preserving 

water in advance to satisfy water demand during droughts. In addition, conservative water 

demand is suggested for those water users when they call TCEQ to request water.  

This work also compares an alternative priority grouping system with the original 

grouping. The sensitivity of grouping system on the optimal water allocation strategy is high, and 

the impacts of grouping should be assessed in more detail in future work.  

Moreover, non-compliance scenarios are developed and the results have shown that the 

non-compliance of junior water users is predicted to have a greater effect on the river system 

compared to non-compliance of senior water users. It is recommended that TCEQ watermasters 

should pay more attention to junior water right permit holders during inspection. 

In addition, a robust scenario analysis that satisfies the constraints under most scenarios 

was conducted. The optimal solution can be adopted if TCEQ decision makers do not have 

enough data to accurately estimate water demand and runoff uncertainty.   

The current Web application is a prototype, and further development and design of the 

Web interface is necessary before implementation for decision makers. In addition, the 

computational effort in handling the constraints, which involve a complex and computationally 

intensive simulation model, are a major obstacle for real-time Web application. More attention is 

paid to improving the simulation-optimization services’ computational performance in the 

following chapter.  
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Chapter 5 

Meta-Model Methods for Efficient and Accurate Constrained Nonlinear 
Optimization    

Chapter 4 has developed a Web service-driven framework for water management during 

droughts (Figure 4.1). However, the computational effort in handling the constraints, which 

involves executing computationally intensive models, is a major obstacle to developing an 

effective real-time Web application for decision support. The average execution time for each 

simulation model evaluation in Section 4.3 (Case Study) is over 30 seconds, thus requiring over 

12 hours to obtain the optimal solution. The objective of this chapter is to relieve the 

computational burden in such constrained non-linear optimization problems by developing a new 

meta-model approach that enables larger-scale real-time Web services for decision support 

during severe events such as droughts. We build a framework of meta-model optimization 

services and implement it using the case study from Chapter 4. The performance of different 

meta-model approaches is compared with the full simulation-optimization model.  

5.1 Introduction  

The meta-model approach, which replaces the simulation model with an approximating 

surrogate function, has been applied to improve computational efficiency in solving complex 

water resource management problems [e.g., Yan & Minsker, 2011, Pasha & Lansey, 2010, Gu et 

al., 2011]. This study develops a new and more efficient meta-model approach using a machine 

learning classifier to rapidly judge whether a constraint is satisfied. Finally, the meta-model 

service was built and coupled with the new optimization service for a more efficient real-time 

Web application (shown in Figure 5.1).  

Previous meta-model approaches have focused mainly on replacing the simulation 

models without considering the model’s role in the optimization process. Designing meta-models 

specifically to efficiently evaluate the constraint of an optimization model is a novel 

development of this study that supports real-time and interactive Web applications with non-

linear optimization services. Water management during droughts requires reliable and immediate 

information. Take Texas water management as an example. Currently, TCEQ decision makers 

allocate available water to users based on subjective judgment. To our knowledge, the real-time 

Web application is the first to implement coupled model services in water resources management 
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with real-time information retrieval and an optimization approach to improve water allocation 

strategies.   

In this study, both pre-trained and adaptive models are developed. The performance of 

both models is compared with solutions from the previous chapter for the full simulation 

optimization model. In addition, the performance of different types of machine learning models 

is compared using the water allocation optimization problem described in Chapter 4. The built 

models are published as model services in the Web application given previously, which allows 

water managers to more efficiently use the water allocation optimization model for decision 

support.  

 

Figure 5.1. Framework for Meta-Model-based Optimization Services During Droughts 

5.2 Methodology 

Figure 5.2 shows a more detailed diagram of the meta-model genetic algorithm (the 

dashed box in Figure 5.1). Instead of only using the simulation model to evaluate constraints and 

calculate fitness values, the meta-model module is adopted for constraint evaluation. Rather than 

replacing the simulation model with a meta-model that emulates the model’s predictions, as in 

previous work [Yan & Minsker, 2011, Pasha & Lansey, 2010, Gu et al., 2011], a classifier model 

is developed that only evaluates whether the constraint is satisfied or not. Two types of meta-

model training approaches are considered: pre-trained models [Johnson & Rogers, 2000, Cai et 

al., 2015], which are trained before optimization, and adaptive models [Yan & Minsker, 2011, 

Wu et al., 2015], which are trained and updated during the optimization process.  
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The “Simulation Model” has been described in Section 4.2.1, River Modeling Service 

and “GA Operators” is identical to Section 4.2.2, GA Optimizer. The remaining components in 

Figure 5.2 are discussed in the following subsections.  

  

Figure 5.2. Meta-Model Optimization Services 

5.2.1 Caching  

Caching temporarily stores the simulation-optimization-model chromosomes and the 

corresponding feasibility of the constraint into a memory space. The evaluated chromosome and 

the corresponding feasibility of the constraint can be searched and retrieved later. Kratica [1999] 

has demonstrated that caching improves GA performance by eliminating simulation model 

evaluations when the evaluated chromosomes reappear. As the population converges in later 

generations and becomes more homogeneous, caching plays an important role in improving local 

search accuracy because most evaluations can be based on the cached true values.  

5.2.2 Meta-Model Module 

The optimization model relies on computationally intensive simulation model evaluations 

to evaluate the feasibility of the constraints, which determines the fitness of each potential 

solution. The meta-model module uses machine learning techniques to develop a response 

function based on training datasets of simulation model runs. The previous approaches use the 

meta-model to approximate the simulation model function itself. In this work, we explore an 

alternative approach of building a classifier model to evaluate whether the constraint is satisfied 

or not using the decision variables as input features. Two types of meta-models, pre-trained 

meta-model and adaptive meta-model, are described in the following subsections.  
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Pre-Trained Meta-Model 

The pre-trained meta-models are trained offline using sampling data. Two types of data 

sampling methods are applied to collect training datasets. The first method is to randomly 

generate datasets and evaluate each random data point using the simulation model. The second 

method is to generate training datasets from the early generations of one test GA run, which are 

selected by the early global search operations of the optimization. The classification model is 

built using the training dataset to evaluate whether the constraint is satisfied or not. Our early 

tests showed that support vector machine (SVM), neural network (NN), and logistic regression 

(LR) have advantages in fast training and high accuracy for this application.  

Support Vector Machine (SVM) 

The SVM algorithm classifies data points by using a maximum margin hyperplane ( ∗

+ b = 0), which can shift in a perpendicular direction without changing the separation of data 

points [Cortes & Vapnik, 1995].  The SVM decision function depends on support vectors, which 

are the minimum closest points defining a separating hyperplane (the data points located in the 

dash line in Figure 5.3). A kernel function, which computes a dot product in high-dimensional 

feature space, must be selected for SVM [Ben-Hur & Weston, 2010]. After some initial 

experiments, we chose a linear kernel for this study, which is based on a linear discriminant 

function of the form in Equation (5.1). The sign of the function f(x) shown in Equation (5.1) 

denotes the side of the hyperplane where a point is located.                                         

                                        f( ) = ∗ + b                                                       (5.1) 

where  is the weight vector; b is the bias. 

The hyperplane in Figure 5.3 separates the feasible and infeasible points. The distance 

from the infeasible point to the hyperplane (as shown in Figure 5.3) represents the distance to the 

feasible region, which is used to evaluate the violation of the constraint for each infeasible point 

in the population during tournament selection. 
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Figure 5.3. Separating Hyperplane with Maximum Margin 

 

Neural Network (NN) 

The multilayer perceptron (MLP) is a feedforward neural network that maps the input 

data onto a set of output labels. Each layer is fully connected to the next one and an activation 

function is used to map the input of the neuron in one layer to the output of each neuron in the 

following layer using weight values, which are trained using backpropagation. The MLP network 

consists of three or more layers (input, output, and hidden layers). The input layer is the input 

features and the output layer is the output labels (as shown in Figure 5.4), while the hidden layer 

brings nonlinearity to the approximation using an activation function and weights. The sigmoid 

function, shown in Equation (5.2), is used as an activation function. The early experiments in this 

study showed that three layers (i.e., only one hidden layer) were sufficient to achieve good 

performance. The number of nodes in the hidden layer is tuned during the training process.  

                                          ( ) =                                                 (5.2) 
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Figure 5.4. MLP Network with Three Layers 

 

Logistic Regression (LR) 

 The logistic regression (LR) method is used to predict the probability P(y/x) of a binary 

response based on input features. A sigmoid function, given in Equation (5.3), is used to 

calculate the probability of the class label (in this case, feasible or infeasible constraint).  

                                                            ( = 1| ) =                                                (5.3) 

where ( , ): = 1, … , ,  ∈ {0,1}  is the training dataset and  is the weighting vector 

which is learned using maximum likelihood estimation.  

 The probability of each class label is predicted using Equation (5.1). For example, if 

( = 1| ) ≥ 0.5, the class label could be set to = 1. However, we found that with the pre-

trained meta-model, this approach may identify an infeasible final solution. To solve this issue, a 

higher probability threshold is used to weigh feasibility over accuracy and ensure that the final 

solution is feasible. This approach is conservative because the feasible region is narrowed by 

increasing the probability threshold of feasibility.  

 Lastly, an ensemble LR model is created that integrates SVM, NN, and LR using 

majority voting to select the class label. Ensemble models use two or more classifiers to predict 

the class label. The aggregation of several models can be useful in averaging biases and reducing 
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prediction variance [Dietterich, 2001]. The performance of each single classifier and the 

ensemble classifier is then compared.  

Adaptive Meta-Model  

 The pre-trained meta-model del may have poor accuracy since the final solution may 

converge to the infeasible region.  To alleviate this difficulty, Yan & Minsker [2011] 

implemented an adaptive meta-model that adaptively retrains the ANN-based meta-model during 

optimization. For the groundwater remediation case study examined, they found that adaptive 

models perform well in saving fitness evaluations while still achieving accurate solutions. This 

study adopts a similar approach to Yan & Minsker [2011] but focuses on directly predicting 

constraint feasibility. In addition, this study explores multiple machine learning models to 

identify which model performs best for the adaptive meta-model GA.  

In the initial G generations with the adaptive meta-model, the chromosomes are evaluated 

using the simulation model. The chromosomes and corresponding feasibility are stored in cache 

for future use in later generations. A meta-model is then initially trained using this initial training 

dataset. At each following generation, a sample of chromosomes are evaluated using the 

simulation model and other chromosomes are evaluated using the meta-model coupled with 

cache retrieval for chromosomes that have already been evaluated. The sampled simulation 

solutions are stored in a pool as well as updated in the cache library. When the retraining criteria, 

the number of training datasets in the pool reaching a pre-defined data size, are satisfied, the 

meta-model will be retrained. The whole process of the adaptive model approach is shown in 

Figure 5.5.  
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Figure 5.5. Adaptive Meta-Model Framework 

5.3 Case Study for Meta-Model Implementation 

 Scenario 1 with actual runoff, presented in Chapter 4, was used to test the meta-model 

performance and compare the optimal solution and the computation time for different models. 

The set-up of the meta-models is discussed in the following subsections.  

  The real-coded standard GA developed in Chapter 4 was implemented with the same 

parameters. The population size is 100. The crossover probability is 0.9 and the mutation 

probability is 0.2. The constraint handling approach is tournament selection method as described 

in Chapter 4. The meta-models were trained to predict whether Equation (4.7) is satisfied or not. 

The input features were the curtailment hours for each group of water right holders.   

 For the SVM model, the distance to the hyperplane was used to determine the violation of 

the constraint for each infeasible solution. For other algorithms, the probability of a chromosome 

being infeasible was used to determine which chromosome causes a larger constraint violation. 

The optimal solution found by the GA for this scenario has total curtailment hours at 56.0.  
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5.3.1 Pre-Trained Meta-Model 

 As described in the methodology section, the pre-trained meta-model was built offline 

before optimization using two types of training datasets. The training data size was set at 400 

[Yan & Minsker, 2011], considering the model accuracy and computation time of simulation 

models. The caching was disabled here to examine only the performance of the offline meta-

models.  

 The tuning parameters of each machine learning model were selected based on the 

predicting accuracy using K-fold cross validation. K=5 was chosen in the study since five- or 

tenfold cross-validation is recommended as a good compromise [Breiman & Spector, 1992, 

Kohavi, 1995]. The one standard error rule of cross validation was adopted to obtain the simplest 

(most regularized) model, whose error is within one standard error of the minimal error [Breiman 

et al., 1984].  

= argmin
∈{ ,… }

( )  (5.4) 

( ) < +    (5.5) 

= /√    (5.6) 

  where  represents the tuning parameter; ( ) represents the cross-validation error; 

 represents sample standard deviation of ( ) over K-fold;  represents the 

standard error of ( ) over K-fold. 

  In general, we choose the tuning parameter value that minimizes cross-validation errors 

as shown in Equation (5.4). Instead, we choose the parameter that induces the simplest model 

while satisfying Equation (5.5). 

 The machine learning models are implemented using Python scikit-learn library. The 

tuning parameter for each machine learning algorithm is discussed below.  

The tuning parameter C of linear SVM (the equation for C is given in the appendix), 

which controls the range of the margin (the distance between the dashed lines in Figure 5.3), was 

tested among 0.1, 1, and 10. C is a regularization parameter that controls the trade-off between a 

small error in the training dataset and the generalization of the classifier [Hsu et al., 2003]. A 

smaller value will lead to a larger margin that may misclassify data points, and a larger value will 

lead to a smaller-margin hyperplane, which will classify all training points correctly. C =0.1 was 

selected for both training datasets based on the results of cross validation.  
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 The NN consists of three layers: one input layer, one hidden layer and one output layer. 

We tested classifier accuracy with different values of the NN tuning parameter from 5 to 15. The 

best number of nodes for Data Type 1, which is generated using the first sampling method 

described in Section 5.2.2 (pre-trained meta-model) is 5 and the best number of nodes for Data 

Type 2 is 7. 

 The tuning parameter for logistic regression that controls the regularization was selected 

as 1×10 . 

5.3.2 Adaptive Meta-Model 

 The adaptive meta-model GA integrates simulation model evaluation, meta-model 

evaluation, and caching into an integrated framework. There are three parameters for the 

adaptive model: the initial training generations, the sampling ratio, and the retraining data size. 

The tuning of each parameter is explained below.  

The number of initial training generations determines the initial training data size because 

the initial meta-model is built based on the training data sets of the initial generations. Yan & 

Minsker [2011] demonstrated that AMGA’s performance is insensitive to the size of the initial 

training set and a coarse fitness estimation at an early stage is sufficient for the GA to detect 

promising regions of the solution space. Therefore, a smaller value of the number of initial 

generations is sufficiently accurate and leads to fewer simulation model evaluations in the initial 

stage. This study used the chromosomes from the first three generations as the initial training 

dataset as suggested by Yan & Minsker [2011].       

The sampling ratio determines the overall sampling level of the adaptive model and the 

retraining frequency of the meta-models. A low sampling ratio leads to longer retraining 

intervals and the coarse prediction of the initial meta-model will be retrained for more 

generations. A high sampling ratio will lead to longer computation time due to more simulation 

model evaluations. After trial and error experiments, the sampling ratio of 0.1, which means 10% 

of the chromosomes in each generation will be evaluated using the simulation model, was chosen 

for this study. A random sampling strategy [Yan & Minsker, 2011] was used to sample 

chromosomes where any chromosome in the population has an equal likelihood of being 

sampled.  
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The retraining data size was set to 150. When the retraining pool is full (i.e., reaches the 

user-specified retraining data size), the meta-model will be retrained and updated. Then the 

retraining pool is emptied for the next retraining.  

5.4 Results and Discussion 

This session presents the results for the pre-trained and adaptive meta-model tests. Each 

model was implemented for three random seeds and the model with the best performance among 

them was selected and discussed in this section.  

5.4.1 Pre-Trained Meta-Model 

The pre-trained meta-models are trained using two types of datasets: the randomly 

generated datasets (named Data Type 1) and the datasets from the early generations of one test 

GA run (named Data Type 2). Tables 5.1 and 5.2 show the optimal solutions of each type of 

classifier for each dataset respectively.  

Table 5.1 shows the optimal solutions of each classifier trained using the randomly 

generated dataset (Data Type 1). For the SVM classifier, if the prob_threshold is set at 0.5 

(called the “regular model”), it will converge to an infeasible solution. However, if the 

prob_threshold increases to 0.8 (called the “conservative model”), it will converge to a feasible 

solution.  

Figure 5.6 shows the simulation model evaluation of the best solution for each generation 

with pre-trained meta-model optimization. Figure 5.6.a shows that after twelve generations, the 

best solution chosen by the regular SVM model has moved to an infeasible region and never 

returns to the feasible region. Figure 5.6.b shows the results for the conservative SVM model. 

Although the best solution for a few generations falls into the infeasible region (the region below 

the red line in Figure 5.6.b), the higher probability threshold brings the best solution back to the 

feasible region (above the red line in Figure 5.6.b). The NN classifier has a similar trend as 

SVM. For other classifier models, both the regular and conservative models can achieve feasible 

solutions.  

Table 5.1. Optimal Solutions of Pre-Trained Meta-Model for Data Type 1 

 
Probability 
threshold 

fitness 
Group 

1 
Group 

2 
Group 

3 
Group 

4 
Group 

5 
Group 

6 
Group 

7 
feasibility 

SVM 
0.5 56.5 0 0 0 0.5 11 21 24 N 
0.8 58.0 0 0 0 0 14.5 19.5 24 Y 
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Table 5.1 (cont.) 

 
Probability 
threshold 

fitness 
Group 

1 
Group 

2 
Group 

3 
Group 

4 
Group 

5 
Group 

6 
Group 

7 
feasibility 

NN 
0.5 56.5 0 0 0 0.5 11.5 20.5 24 N 
0.8 58.0 0 0 0 1 13 20 24 Y 

LR 
0.5 58.5 0 0 0 2 10 22.5 24 Y 
0.8 59.0 0 0 0 2 11 22 24 Y 

Ensemble 
0.5 58.0 0 0 0 1 13 20 24 Y 
0.8 59.0 0 0.5 0.5 1 11 22 24 Y 

 

  
Figure 5.6.a. Simulation Result for SVM with 

Prob_threshold = 0.5 
Figure 5.6.b. Simulation Result for SVM with 

Prob_threshold = 0.8 
Figure 5.6. Simulation Result for Best Chromosome of Each Generation for Pre-trained SVM 

Model 

Table 5.2 shows the optimal solution of each classifier for Data Type 2, which has a 

similar trend to Data Type 1. The conservative SVM and NN classifier models perform better 

than the regular ones in identifying feasible solutions. For other classifiers, both probability 

thresholds can achieve feasible solutions. The conservative LR model and the conservative 

ensemble model perform better than the corresponding regular model. Therefore, the 

conservative models are recommended for SVM and NN classifiers to enforce feasibility.   

Table 5.2. Optimal Solutions of Pre-Trained Meta-Model for Data Type 2 

 
Probability 
threshold 

fitness 
Group 

1 
Group 

2 
Group 

3 
Group 

4 
Group 

5 
Group 

6 
Group 

7 
feasibility 

SVM 
0.5 57.5 0 0 0 0.5 13.5 20.5 23 N 
0.8 58.0 0 0 0 0.5 13 21 23.5 Y 

NN 
0.5 57.0 0 0 0 0 13 20 24 N 
0.8 58.0 0 0.5 0.5 1.5 9.5 22 24 Y 

LR 
0.5 62.0 0 0 0 3.5 16.5 19.5 22.5 Y 
0.8 58.5 0 0 0.5 0.5 14.5 19 24 Y 

Ensemble 
0.5 58.5 0 0 0.5 0.5 14.5 19 24 Y 
0.8 57.5 0 0 0 1.5 10 22 24 Y 
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Figure 5.7 summarizes the results of each classifier for each type of training dataset over 

three random seeds. For randomly generated datasets (Data Type 1), the best classifiers in terms 

of the fitness value are the conservative SVM, NN model and the regular ensemble model. For 

datasets generated by the initial optimization (Data Type 2), the best classifier in terms of fitness 

is the conservative ensemble model.  Again, the conservative model is helpful when the original 

model cannot find the feasible solution. By weighting feasibility more heavily than accuracy, the 

conservative optimization can help direct the search from the infeasible region back to the 

feasible region.  

In addition, the ensemble classifier model performs better than the single classifier for 

both Data Types 1 and 2. Comparing the two types of data, the datasets originating from the 

initial optimization perform better than randomly generated datasets. During the initial 

generations of GA, the individuals with higher fitness are statistically selected more often to be 

parents and generate the next generation using a GA operator. The average fitness of the datasets 

from the initial generations of GA (Data Type 2) is higher than that of the randomly generated 

datasets (Data Type 1), which leads to better performance for Data Type 2.  

 Moreover, compared to the simulation-optimization model results in Chapter 4, the 

optimal solutions with the pre-trained meta-model have not converged to the optimal solution 

(fitness value = 56.0). It only converges to a near-optimal solution (best fitness value = 57.5 

among all classifiers). However, the computation time of the pre-trained meta-model has an 

overwhelming advantage. The execution time for running the simulation models to obtain the 

training dataset is around three hours, while evaluating the classification model requires just 100 

seconds. Therefore, the comparison of computation time is given in terms of the number of 

simulation model runs, which dominate the computation time. The computational efficiency of 

the pre-trained meta-model GA exceeds the simulation-optimization model.  
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Figure 5.7.a. Performance of Pre-Trained Meta-Model for Data Type 1 

 
Figure 5.7.b. Performance of Pre-Trained Meta-Model for Data Type 2 

Figure 5.7. Performance of Pre-Trained Meta-Model 

5.4.2 Adaptive Model 

 The results of the adaptive meta-model approach for each classifier are shown in Table 

5.3. The adaptive meta-model GA consistently converges to the optimal solution found with the 

simulation optimization model in Chapter 4.  Since all single classifiers converged to the optimal 

solution, the ensemble classifier and the conservative constraint approach are not necessary.  

 Figure 5.8 shows the number of evaluations for each evaluation approach. In the 

adaptive meta-model GA, caching is enabled. For the initial generations, the simulation model 

dominates the evaluations. Then the meta-model becomes active and finally, as more evaluations 
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are accumulated in the cache and convergence limits the search, caching becomes more active in 

later generations. Since cached evaluations in later generations are from simulation model 

evaluations, the optimal solutions from the adaptive meta-model GA are more accurate than the 

pre-trained meta-models and the optimal solution found by the adaptive model is not sensitive to 

the choice of classifier. All three different classifiers give the same fitness value for the same 

random seed, indicating that the adaptive model is not affected by the choice of classification 

model.  

In terms of computation time, the number of simulation model evaluations is around 740, 

and the adaptive meta-model GA takes eight hours to converge to the optimal solution. Overall, 

the adaptive meta-model GA performs better than the simulation model GA in computational 

efficiency while maintaining accuracy. Compared with pre-trained meta-models, the adaptive 

meta-model GA is better in model accuracy but worse in computation time.  

Table 5.3. Optimal Solution using Adaptive Meta-Model Optimization  

 Fitness Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 
SVM 56 0 0 0 0.5 9.5 22 24 
NN 56 0 0 0 0.5 9.5 22 24 
LR 56 0 0 0.5 1 7 23.5 24 

   

 
Figure 5.8. Progression of Each Evaluation Approach in Adaptive Neural Network-based 

Meta-Model Optimization 

5.4.3 Overall Comparison of Best Meta-Model Approaches 

Figure 5.9 shows a comparison of the simulation model GA, the pre-trained meta-model 

GA, and the adaptive meta-model GA, using the number of simulation model evaluations as a 

metric for computation time. Since each simulation model run takes approximately 30 seconds, 
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the time for simulation model evaluations dominates computational time and the time for other 

steps can be neglected here. The converged fitness values of the simulation model GA and the 

adaptive meta-model GA are the same and the pre-trained meta-model GA performs worse, but 

only by 2.6%. The adaptive meta-model GA can save around 58% of computation time to solve 

the same problem while still achieving the same optimal solutions. The pre-trained meta-model 

GA reduces computation time by 78% but does not reliably obtain the optimal solution. Since the 

adaptive meta-model approach stores the dataset for retraining the meta-model with a small 

percentage of chromosomes over each generation, this leads to a larger number of simulation 

model evaluations but improved accuracy, as shown in Figure 5.9. 

 

Figure 5.9. Comparison of Three Models 

Figure 5.10 compares the performance of each type of model if the number of simulation 

model evaluations is the same. When the number of simulation model evaluations in the pre-

trained meta-model GA increases to 740 (same as the adaptive meta-model GA), the optimal 

solution found by the pre-trained meta-model GA is improved from 57.5 to 56.5 hours due to the 

larger training data size. The performance of the simulation model GA is significantly worse, 

increasing to 63.0 hours, since the number of evaluations is not sufficient to achieve 

convergence. Therefore, the overall performance of the adaptive meta-model GA is the best-

performing algorithm for the same number of simulation evaluations.  
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Figure 5.10. Comparison of Fitness Value with Same Number of Simulation Evaluations 

 

In addition, we also compare the meta-model developed in this work with the previous 

approach that estimates the simulation model predictions [Yan & Minsker, 2011, Pasha & 

Lansey, 2010, Gu et al., 2011]. Instead of the classification-based constraint approach, a 

regression-based adaptive approach using a neural network model is built to predict the value of 

the left side of Equation (4.7). The same approach as Yan & Minsker [2011] is applied using the 

framework shown in Figure 5.5.and described in Section 5.2.2. The first three generations are 

used as the training dataset to build the initial regression model, following the approach of Yan & 

Minsker [2011].  In each generation, a sample of chromosomes are selected for evaluation with 

the simulation model using their random sampling strategy, where any chromosome in the 

population has an equal likelihood of being sampled. In this work, the sampling ratio is equal to 

0.1 as suggested by Yan & Minsker [2011], meaning that 10 percent of the chromosomes are 

assessed with the simulation model. The sampled simulation solutions are stored in a retraining 

pool. The regression model is retrained and updated when the retraining pool reaches the 

retraining data size, which is 150 [Yan & Minsker, 2011].  

The results of applying this approach for this case study are identical to the results given 

previously, thus validating that the approach taken in this work is correct. However, the 

computational time of the regression-based approach is 12% faster than the classification-based 
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approach. The regression-based approach takes fewer generations to reach the optimal solution 

than the classification-based approach for this case study. The number of generations to converge 

is 56 for the regression-based approach and 65 for the classification-based approach with the 

same population size of 150). Future research is needed to further test the new proposed meta-

model approach for other simulation-optimization problems and compare the performance and 

computation time of both approaches. 

 The Web application shown in the previous chapter is modified to provide meta-model 

services coupled with the optimization model services, using the adaptive meta-model approach. 

The pre-trained meta-model approach requires users to collect the training dataset, executes the 

simulation model and builds the meta-model offline, which requires technical expertise from 

users that cannot be automated and generalized in a Web application. Therefore, the adaptive 

meta-model approach is implemented in the Web application as it performs best in terms of 

trade-offs between model accuracy and computation time, and the application is easily 

generalized to other case studies.  

Figure 5.11 shows the prototype Web application for real-time water allocation decision 

support services. The uploaded “river basin information” is an input file to the river modeling 

service. The uploaded “water demand information” file provides the user information as shown 

in Figure 5.11.a and the corresponding diversion values over the river system. Therefore, the 

Web application can be easily extended to other river basins by changing these files. 

The “Water Request Date” is an input parameter used for the river modeling system to 

download input data (runoff) from NWS. Since the water allocation strategy is sensitive to the 

permit grouping as discussed in Section 4.4.1 (Alternative TCEQ Priority Grouping), the Web 

application allows users to determine the number of permit groups by providing the priority start 

date and end date as well as setting the number of groups. The model services can be executed 

on a remote server in the Cloud by uploading the input files, filling in the input parameters, and 

selecting the “Submit” button; the result (the optimal curtailment hours for each group of water 

right permit holders) is retrieved and shown in the Web interface “Water Allocation 

Recommendation” as shown in Figure 5.11.b. The Web application provides an easy way for 

decision makers to rapidly allocate water and explore multiple permit grouping systems.  
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Figure 5.11.a. Web Interface for Water User Information 

 

Figure 5.11.b. Web Interface for Water Allocation Recommendations  

Figure 5.11. Web Interface for Real-time Water Allocation Decision Support Services 
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5.5 Conclusions  

 In this study, we investigated a new meta-model GA approach to replace the simulation 

model in optimization problems, and compared pre-trained and adaptive versions in terms of 

computation time and searching accuracy. Instead of building the meta-model to replace the 

simulation model, the meta-model approach in this study considers the model’s role in the 

optimization and uses a classification model to evaluate the simulation model-based constraint in 

the optimization formulation. The developed meta-model framework was implemented in water 

allocation optimization problems in the Upper Guadalupe River Basin.  

We compared four types of classifiers: SVM, NN, LR, and the ensemble of each 

classifier. A more conservative optimization approach, which weights feasibility more heavily 

than accuracy by increasing the probability threshold from 50% to 80%, was needed in some 

cases to ensure convergence to the optimal solution. The results demonstrate that the 

conservative approach performs better for ensuring constraint satisfaction in the SVM and NN 

classifiers. However, if both approaches converge to a feasible solution, the conservative 

approach does not consistently perform better.  

The pre-trained models were trained based on two types of datasets: randomly generated 

datasets and datasets generated by an initial optimization run. The datasets from the initial 

generations of a GA perform better as the average fitness value is higher than the randomly 

generated datasets. Overall, the results demonstrate that the pre-trained meta-model converges to 

the near-optimal solution with less computation time. It is suggested that the conservative option 

as well as the choice of classifier should be further tested to obtain the best performing meta-

model.  

The adaptive meta-model GA integrates the simulation model, the meta-model, and 

caching into an efficient framework. The simulation model dominates in early generations and 

then the meta-model is active in later generations. Caching becomes more active and dominant in 

later generations, which ensures that the adaptive meta-model GA converges to the optimal 

solution while saving computation time. The adaptive meta-model GA is insensitive to the 

choice of the classifier, as different types of single classifiers give the same optimal solution. The 

adaptive meta-model GA performs best considering the trade-offs between computation time and 

searching accuracy, as compared to the pre-trained meta-model and simulation model GA. 
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A prototype Web application is developed that couples meta-model services with 

optimization model services. The adaptive meta-model is implemented in the Web application as 

it does not require preliminary work such as selecting classifiers, tuning parameters, and 

executing simulation models offline. The Web application allows decision makers to explore 

optimal water allocation strategies using different permit grouping systems, and can be easily 

extended to other regions by uploading the river system and water demand information.This 

work extends the approach of Yan & Minsker [2011] by implementing a classification-model-

based meta-model approach for water allocation optimization problems. The results demonstrate 

that a meta-model approach is promising in reducing computation time for water allocation 

simulation-optimization models. This approach can be generalized to other models by updating 

the training datasets. In addition, the service-driven approach allows easy integration with other 

models to solve water resource problems. Lastly, the current Web application is a prototype and 

further development is necessary before the system can be adopted for water allocation 

management.  
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Chapter 6 

Conclusions and Future Work 

The previous chapters discuss the application of a service-driven approach to decision 

support in water management, using case studies related to drought and flooding. This chapter 

summarizes the findings as well as introduces some future topics for extending this work.   

6.1 Conclusions 

When extreme events happen, rapid response to assist in water management requires 

reliable and immediate information collection, optimal model-based water operations, and other 

information. Disparate models such as meteorological models, hydrological simulation models, 

water operations models, and other models are needed in this process. But the configuration of 

each model and communication of different models has been a major obstacle in applying them 

to this process. This dissertation develops a service-driven approach, which deploys each model 

in a loosely-coupled environment where each model service is an individual component and 

information is exchanged among each component across the whole network. The modeling 

components, which require complex configuration and specific data standards, can be integrated 

into a decision support system with each model located in its own running environment and 

easily accessible through Web services.  We developed a data-driven model service to rapidly 

estimate reservoir inflows for flooding events, and a simulation-optimization model service to 

optimize water allocation under multiple drought scenarios. To relieve the computational burden 

of the simulation-based optimization service without sacrificing accuracy, a meta-model service 

coupled with an optimization model service was proposed to solve non-linear constrained 

optimization problems.  

The data-driven model service was applied to flooding events in the Lower Colorado 

River Basin in Texas in November 2014 and May 2015, which involved a sudden switch from 

drought to flooding. Two prediction models were constructed: a statistical model for flow 

prediction and a hybrid statistical- and physics-based model that estimates errors in flow 

predictions from a physics-based model. The results demonstrate that the statistical flow 

prediction model provides acceptably accurate short-term forecasts. However, for longer-term 

prediction (2 hours or more), the hybrid model forecasts more accurately than the purely 
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statistical or physics-based prediction models alone. The Web services based on these built 

models use Microsoft’s Azure Machine Learning software and are accessible through a browser-

based Web application, enabling ease of use by both technical and non-technical personnel.  

The second section of the thesis focuses on water allocation problems during droughts. 

The imbalance between water supply and water demand poses a crucial challenge for water 

management. The coupled simulation-optimization models have been used widely in water 

resource management, but the service-driven approach for simulation-optimization was first 

proposed. This approach allows an optimization service to communicate with a simulation 

service using standards-based approaches that are independent of the model structure. The 

resulting framework can be published as a Web application to enable near real-time decision 

support in the Cloud. A drought event in the Upper Guadalupe River Basin in April 2015 was 

used as a case study to illustrate the benefits of the approach. The Texas Commission on 

Environmental Quality (TCEQ) currently allocates water in the basin based on subjective 

judgment and does not have quantitative methods for rapid daily water allocation based on the 

best available forecasts of river streamflow. The current TCEQ grouping system divides water 

right permit holders into seven groups to allocate water in a manageable way.  The built 

simulation-optimization model services were implemented to identify the optimal water 

allocation under each weather and water demand uncertainty scenario.    

The results demonstrate that the most senior group and the most junior group are 

insensitive to the uncertainty of water demand and runoff. Both types of uncertainty affect the 

curtailment hours of other groups. The water permit holders who are mainly affected by water 

demand uncertainty under each drought situation may consider seeking more water from senior 

water right permit holders or preserving water in advance to satisfy water demand during 

droughts. Moreover, conservation measures to reduce water demand are suggested to aid those 

water users.  

The results also provide suggestions to decision makers for more effective water 

allocation management. The sensitivity of the permit grouping system on optimal water 

allocation strategies suggests that TCEQ water masters should pay more attention to the 

grouping system. Since the non-compliance of junior water right permit holders has a greater 

effect on the river system, it is recommended that TCEQ water masters focus on junior water 

permit holders during inspection. In addition, the optimal solution from robust scenario analysis 
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solution would provide a more robust strategy if TCEQ decision makers have little information 

about water demand and runoff uncertainty. Moreover, a prototype Web application was 

developed for near real-time implementation in water allocation management.  

Results from the application of simulation-based optimization model services indicate 

that the computational effort in handling the constraints, which involve a complex, 

computationally intensive simulation model, are a major obstacle for real-time Web application. 

Hence relieving the computational burden in constrained non-linear optimization problems is 

another research objective in this dissertation. Two types of meta-models were developed: a pre-

trained meta-model that was built before the optimization and an adaptive meta-model that was 

built and updated during the optimization process. The meta-model is developed as a classifer 

that evaluates whether a constraint is satisfied or not in the optimization formulation, which 

better considers the meta model’s role in water management application.  

The conservative model, which narrows the feasible region by increasing the constraint 

probability threshold, was needed with the pre-trained meta-model to aid in converging to a 

feasible near-optimal solution, but not for the adaptive meta model. The meta-model framework 

was tested in the same case study as the simulation-optimization model services in Chapter 4 and 

the performance of different approaches was compared. The results show that the adaptive meta-

model GA performs best in model accuracy in addition to reducing computation time by 58%. It 

also does not require users to select classifiers, tune parameters, or execute simulation models 

offline. Therefore, a prototype Web interface was designed based on the adaptive meta-model 

approach to assist decision makers with real-time water management. The Web application 

allows decision makers to explore optimal water allocation strategies using different permit 

grouping systems by providing “the permit start date”, “the permit end date”, and “the number of 

permit groups”. The model services can be easily extended to other regions by updating the river 

system information and providing water demand data.    

6.2 Future Work 

The results of this research have demonstrated the promise of a service-driven approach 

to water management as well as a new meta-model approach to improve water resource 

optimization. A few future topics are recommended to extend the work. 
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Firstly, the Web application in this study is a prototype and further user-centered design 

and development is necessary before the application is adopted for real-world water 

management. Feedback from LCRA reservoir operators and TCEQ water managers can be used 

to improve the interface and add more features to allow for real-time decision support. In 

addition, the parallel execution of model and optimization services has not been explored in the 

Web application. The future work can be extended to parallel execute model services to improve 

computational efficiency.  

Secondly, in terms of the data-driven model services for predicting reservoir inflows, the 

built models can be readily updated and improved using the AzureML framework. The 

prediction data of soil moisture, precipitation, and upstream reservoir flowout may be considered 

to replace historical data to improve reservoir inflow forecast. Moreover, the simulation-based 

optimization model services were developed using hypothetical water demand data. If real water 

demand data is available in the future, the framework can be extended to replace the hypothetical 

data with real data and verify the optimization results using the TCEQ subjective water 

allocation decisions. 

Thirdly, the built framework can be extended to other areas. The water allocation based 

on Priority Doctrine has been implemented in different U.S. states. The built framework can be 

modified for other water allocation problems in other areas with a similar Priority Doctrine. The 

RAPID model service has been applied to the whole U.S. area. By providing the water demand 

data and corresponding user information, the models and tools developed in this work can be 

generalized to other regions.   

Fourthly, Genetic Algorithm (GA) as a population-based algorithm has been widely 

applied in water resources management [Maier et al., 2014, Nicklow et al, 2010]. Other types of 

metaheuristic algorithms can be implemented to compare the performance of different 

algorithms. For instance, the trajectory-based metaheuristic algorithm, which starts from a guess 

solution and moves to the next solution based on whether performance is improved or not, can be 

applied to compare the algorithm performance in terms of model accuracy and computation time.  

Finally, the optimization model developed in this study only considers the TCEQ Priority 

Doctrine and the ecological influence on the river system. A single-objective optimization model 

was implemented to obtain a single optimal solution. The future work can be extended to build 

multi-objective optimization problems that incorporate more objectives, such as maximizing the 
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total economic value of water usage. Then, a set of compromise solutions instead of a single 

optimal solution can be obtained for water resource management. For instance, Rezapour et al. 

[2013] developed a multi-objective model to maximize the reliability and minimize the water 

supply cost in water allocation problems. The optimal trade-off between multiple objectives was 

presented in their work. The service-driven approach for multi-objective optimization should 

incorporate the decision makers’ perspective in the Web application to balance the trade-off 

among multiple objectives. 
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APPENDIX 

Applied Machine Learning Algorithms 

BRT Algorithm (Friedman 2001, Hastie & Friedman, 2008) 

Input: training dataset {( , )}  where  represents input datasets (‘features’) and  

represents output dataset (‘targets’), number of iterations. 

Algorithm: 

1. Initialize model with a constant value 

( ) = ( , ( )) 

2. For each iteration: 

a. Compute pseudo-residuals: 

= −
( , ( )

( )
 for i = 1,…, n 

b. Fit a decision tree learner ( ) to pseudo-residuals using the training dataset. 

c. Add ( ) to the model ( ) = ( ) + ( ) , where  is called step-size or 

shrinkage. In this study, it was set to 0.1 to prevent overfitting by not doing a full 

optimization in each step.  

3. Output ( ) 
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Linear SVM Algorithm with soft margin (Cortes & Vapnik, 1995) 

Input: training dataset {( , )}  where  represents input datasets (‘features’) and  

represents output dataset (‘targets’), and ∈ {−1,1}, each indicating the class to which the point 

 belong.  

The training dataset is used to learn a classifier  

f( ) = ∗ + b 
≥ 0     = 1 
≤ 0   = −1 

where  is the weight vector; b is the bias. 

Instead of finding a single hyperplane line to classify the data points, we would prefer a larger 

margin for generalization. We want to find the “maximum-margin hyperplane” that separate the 

group of points  for = 1 from the group of points for = −1. The maximum margin 

solution will be most stable under perturbations of the inputs. 

Learning an SVM can be formulated to be an unconstrained optimization problem over . 

min || || + max(0, 1 − ( )) 

where || ||  controls the regularization; max (0, 1 − ( )) is the loss function; the parameter 

 determines the tradeoff between increasing the margin-size and ensuring the  does not 

violate the margin constraint.  
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