
c© 2017 by Seyyed Mohammad Hosseini. All rights reserved.

AN ADAPTIVE PHYSIOLOGY-AWARE COMMUNICATION FRAMEWORK FOR
DISTRIBUTED MEDICAL CYBER PHYSICAL SYSTEMS

BY

SEYYED MOHAMMAD HOSSEINI

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2017

Urbana, Illinois

Doctoral Committee:

Professor Lui Sha, Chair and Director of Research
Professor Roy Campbell
Professor Carl Gunter
Professor Shangping Ren, Illinois Institute of Technology

Abstract

For emergency medical cyber-physical systems, enhancing the safety and effectiveness of patient care,

especially in remote rural areas, is essential. While the doctor to patient ratio in the United States is 30

to 10,000 in large metropolitan areas, it is only 5 to 10,000 in most rural areas; and the highest death

rates are often found in the most rural counties.

Use of telecommunication technologies can enhance effectiveness and safety of emergency ambulance

transport of patients from rural areas to a regional center hospital. It enables remote monitoring of

patients by the physician experts at the tertiary center. There are critical times during transport

when physician experts can provide vital assistance to the ambulance Emergency Medical Technicians

(EMT) to associate best treatments. However, the communication along the roads in rural areas can

range irregularly from 4G to low speed 2G links, including some parts of routes with cellular network

communication breakage. This unreliable and limited communication bandwidth together with the

produced mass of clinical data and the many information exchanges pose a major challenge in real-time

supervision of patients.

In this study, we define the notion of distributed emergency care, and propose a novel adaptive

physiology-aware communication framework which is aware of the patient condition, the underlying

network bandwidth, and the criticality of clinical data in the context of the specific diseases. Using the

concept of distributed medical CPS models, we study the semantics relation of communication Quality

of Service (QoS) with clinical messages, criticality of clinical data, and an ambulance’s undertaken

route all in a disease-aware manner. Our proposed communication framework is aimed to enhance

remote monitoring of acute patients during ambulance transport from a rural hospital to a regional

center hospital. We evaluate the components of our framework through various experimentation phases

including simulation, instrumentation, real-world profiling, and validation.

ii

To my father and mother, sisters, advisor, and beloved friends for their support.

iii

Happiness is motivation!

Find out where joy resides. For to miss the joy is to miss all,

Mohammad Hosseini, 2017

iv

Acknowledgments

I would like to express my deep appreciations to my advisor, Prof. Lui Sha for his profound assistance.

With no exaggeration, he was not only my academic advisor, he was my life advisor. He taught me a

great deal of valuable lessons in both my personal life and professional life, which really helped me to

quickly develop my skills and grow towards many achievements.

I also want to thank my great committee members, Prof. Roy Campbell, Prof. Carl Gunter, and

Prof. Shangping Ren, and some other faculty members in the Department of Computing Science,

especially Prof. Matthew Caesar and adjunct professor Dr. Richard Berlin, for their support during

my research.

I also give appreciation to Carle Foundation Hospital and funding agencies to support my work. My

research was supported in part by NSF CNS 1329886, NSF CNS 1545002, and ONR N00014-14-1-0717.

Finally, I would like to thank my family for their love and support over the years of my PhD studies.

Clearly, I was not able to finish my thesis without their kind helps.

v

Table of Contents

List of Tables . ix

List of Figures . x

List of Abbreviations . xii

Chapter 1 Introduction . 1
1.1 Broader Impact . 3
1.2 Intellectual Merit . 4
1.3 Scholastic Output . 4

1.3.1 Publications . 5
1.3.2 Patents . 6

1.4 Thesis Outline . 6

Chapter 2 Distributed Medical Best-Practice CPS . 7
2.1 Introduction . 7
2.2 Background and Literature Review . 9

2.2.1 Real Use-Case: Acute Stroke Patient Emergency Care 9
2.2.2 Medical Best Practices for Emergency Care . 12
2.2.3 Executable Best Practice Automata . 13
2.2.4 Analogy: Space Communication Systems . 14

2.3 Distributed Medical Best Practice Systems . 15
2.4 Message Exchange Architecture . 18

2.4.1 Initialization and Registration Process . 21
2.4.2 Monitoring Failure . 23
2.4.3 Open-Loop Safety . 26
2.4.4 Remote Message Exchange . 27
2.4.5 Communication Protocol Header . 28

2.5 Proof-of-Concept Simulation . 29
2.6 Conclusion and Future Work . 31

Chapter 3 ModelSink: Model-Driven Synchronization 32
3.1 Introduction and Background . 32
3.2 Related Work . 37
3.3 Design of the Middleware . 38

3.3.1 Middleware Structure . 39
3.3.2 Communication Architecture . 40
3.3.3 Open-Loop Safety Protocol . 42
3.3.4 Data Structures and Rules for Mapping . 43
3.3.5 Data Structures and Rules for Queuing . 44

vi

3.4 Evaluation . 45
3.4.1 Experimental Setup . 45
3.4.2 Performance Evaluation . 48
3.4.3 Discussion . 53

3.5 Conclusion and Future Work . 54

Chapter 4 SINk: GUI-Driven Synchronization . 55
4.1 Introduction . 55
4.2 Related Work . 57
4.3 Design of the Middleware . 58

4.3.1 Middleware Structure . 58
4.3.2 Customized Client-Sever Architecture . 59
4.3.3 Data Structures and Rules for Mapping . 60

4.4 Evaluation . 62
4.5 Conclusion and Future Work . 64

Chapter 5 Bandwidth-Compliant Clinical Data Communication 66
5.1 Introduction . 66
5.2 Background and Related Work . 68

5.2.1 Dynamic Adaptive Streaming . 68
5.2.2 Prioritized and Criticality-Aware Adaptations . 69
5.2.3 Clinical Optimization . 69
5.2.4 Executable Clinical Automata . 70

5.3 Prioritization in Emergency Patient Care . 72
5.4 Proposed System . 74

5.4.1 Problem Modeling . 77
5.4.2 Adaptation of Clinical Data . 78
5.4.3 Proposed Solutions . 79
5.4.4 Heuristic Algorithms . 80

5.5 Evaluation . 81
5.6 Conclusion and Future Work . 88

Chapter 6 Geo-Communication Profiling and Dataset 90
6.1 Introduction . 90
6.2 Background and Related Work . 92

6.2.1 Real-World Clinical Use-Case . 92
6.3 System Design and Structure . 94

6.3.1 Profiler Development . 95
6.3.2 Analysis of Traces . 97

6.4 Conclusion and Discussion . 99

Chapter 7 Physiology-Aware Ambulance Routing . 100
7.1 Background . 101

7.1.1 Related Work . 102
7.1.2 Real-World Medical Use-cases . 103

7.2 Methodology . 105
7.2.1 Problem Definition . 105
7.2.2 Proposed Solution . 107
7.2.3 Algorithms . 109

7.3 Evaluation . 110
7.4 Conclusion . 112

Chapter 8 Conclusions . 113

vii

Chapter 9 Future Plans . 114

References . 115

viii

List of Tables

2.1 Our protocol’s message header fields (64-bit total) . 27

6.1 An example set of 5 consecutive geo-communication traces (Sprint) 95

ix

List of Figures

1.1 An overview of distributed emergency care from a rural hospital to a center hospital . . 2

2.1 Emergency stroke patients care from a rural rural to a center hospital 10
2.2 Stroke care manager abstract . 13
2.3 Workflow adaption in a dynamic distribution . 16
2.4 An instance of simplified distributed stroke automata . 17
2.5 Visual overview of the proposed message exchange architecture 19
2.6 Registrar initialization and registration process . 21
2.7 Automaton registration process . 22
2.8 Registrar failure detection process . 24
2.9 Automaton failure detection process . 25
2.10 A sample of real platform experiments. 29

3.1 Current stroke management inherently distributes care provision from remote rural to
ambulance to central tertiary hospital. The bars show various levels of skill and facility
capacity at each location. 33

3.2 The ModelSink workflow. The middleware allows heterogeneous distributed executable
medical models (medical best-practice models in this example) to communicate and syn-
chronize automatically. 35

3.3 The overall structure of ModelSink . 39
3.4 Simplified statechart models for sepsis, including disease (top) and two organ models

(bottom). 46
3.5 A sample of real-platform simulations. 47
3.6 ModelSink’s memory usage. (Top) Heap memory usage, (Middle) Non-heap memory

usage, (Bottom) Zoomed non-heap memory usage . 49
3.7 ModelSink’s thread statistics. 51
3.8 ModelSink’s CPU usage. 52

4.1 The SINk workflow. Multiple graphical interfaces (right-side) are remotely synchronized
with a single interface (left). 56

4.2 The overall structure of SINk. 59
4.3 An example mapping module. 60
4.4 Interface control process for an example horizontal slider bar. 61
4.5 Real platform clinical experiments in collaboration with Carle Foundation Hospital [26]. 62
4.6 Real platform testing (Middle). Local interface (Top). Remote closed-box application

(Bottom). 63

5.1 Real-world mobile data coverage maps between Hoopeston rural hospital and Carle re-
gional center hospital (Sprint carrier). Darker colors show higher bandwidth. 67

x

5.2 An instance of simplified stroke best-practice automata distributed between a rural hos-
pital, ambulance, and a center hospital. 71

5.3 An example scheme of proposed adaptation approach. 74
5.4 Abstract flow of emergency care manager. 75
5.5 Overview of our proposed system. Clinical data generated at the ambulance are adapted

based on available bandwidth and inputs from a regional center hospital. 76
5.6 A sample of profiled bandwidth rates along a route from Hoopeston rural hospital to

Carle center hospital. 83
5.7 Total quality of clinical data measured for Aggressive, Round-Robin, and Compromise

algorithms, for four priority classes, and two values of Rmax = 1/ck. (Top-Left) Com-
promise, k = 4, (Top-Right) Compromise, k = 6, (Middle-Left) Round-Robin, k = 4,
(Middle-Right) Round-Robin, k = 6, (Bottom-Left) Aggressive, k = 4, (Bottom-Right)
Aggressive, k = 6. 84

5.8 Adaptation ratio in terms of bandwidth reduction, measured for four priority classes, and
two values of Rmax = 1/ck. (Top-Left) Compromise, k = 4, (Top-Right) Compromise,
k = 6, (Middle-Left) Round-Robin, k = 4, (Middle-Right) Round-Robin, k = 6, (Bottom-
Left) Aggressive, k = 4, (Bottom-Right) Aggressive, k = 6. 85

5.9 Average quality per clinical data measured for four priority classes, and two values of
Rmax = 1/ck. (Top-Left) Compromise, k = 4, (Top-Right) Compromise, k = 6, (Middle-
Left) Round-Robin, k = 4, (Middle-Right) Round-Robin, k = 6, (Bottom-Left) Aggres-
sive, k = 4, (Bottom-Right) Aggressive, k = 6. 86

6.1 Abstract road maps of our profiled region. 94
6.2 A screenshot of our developed geo-communication profiler. 95
6.3 CDF of bandwidth traces for two samples. 96
6.4 A sample of our collected geo-communication traces from Hoopeston rural hospital to

Carle center hospital. 97

7.1 An example planar graph model. (Left) The initial abstract graph with partial commu-
nication on edges. (Right) The transformed graph model with added nodes (highlighted)
and each edge having a single communication label. 104

7.2 A sample of our profiled communication from Hoopeston rural hospital to Carle center
hospital. 110

7.3 Scalability analysis of proposed algorithm in terms of execution time. 111

xi

List of Abbreviations

CPS Cyber Physical System.

QoS Quality of Service.

CT Computerized Tomography.

tPA Tissue plasminogen activator.

HR Heart Rate.

BP Blood Pressure.

GUI Graphical User Interface.

EMT Emergency Medical Technician.

JVM Java Virtual Machine.

Kbps Kilo bits per second.

VANET Vehicular Ad Hoc Network.

xii

Chapter 1

Introduction

There is still a great disparity in medical care and most profoundly for emergency care, where limited

facilities and remote location play a central role. Based on the Wessels Living History Farm report

[118], the doctor to patient ratio in the United States is 30 to 10,000 in large metropolitan areas,

only 5 to 10,000 in most rural areas; and the highest death rates are often found in the most rural

counties. Currently, more than 60 million Americans live in rural areas and face challenges in accessing

high-quality medical care [108].

For emergency medical cyber-physical systems, enhancing the safety and effectiveness of patient care

is essential. Use of telecommunication technologies can enhance effectiveness and safety of emergency

ambulance transport of patients from rural areas to a regional center hospital. It enables remote

monitoring of patients by the physicians at the center hospital and provides vital assistance to the

Emergency Medical Technicians (EMT) to associate best treatments. However, the communication

along the roads in rural areas can range from 4G to 2G to low speed satellite links, with some parts

suffering from communication breakage. This unreliable and limited communication bandwidth together

with the produced mass of clinical data and the many information exchanges pose a major challenge in

real-time supervision of patients.

To address the many challenges that exist, the main goal of this research is to propose an adap-

tive model-driven communication framework for medical cyber-physical systems which are dynamically

distributed across a rural hospital, a tertiary center hospital, and an ambulance. The objective of

our proposed communication framework is to promote the smoothness and effectiveness of emergency

patient care in distributed emergency care settings. Using the concept of distributed medical CPS

models, we seek to exploit the semantics relation of communication Quality of Service (QoS) with clin-

ical messages, criticality of clinical data, and an ambulance’s undertaken route all in a disease-specific

manner. We evaluate components of our framework through various experimentation phases including

simulation, instrumentation, real-world profiling, and validation with domain experts.

1

Figure 1.1: An overview of distributed emergency care from a rural hospital to a center hospital

Figure 1.1 illustrates an architectural overview of a distributed mobile emergency care environment.

The emergency care cyber-physical systems in this environment are naturally distributed among the

three care units, the rural and center hospital as the two static units, and a transporting ambulance

as a mobile unit. The major goal that we are going to achieve throughout this study is to enable

an enhanced and effective remote monitoring process under this distributed medical settings. As also

illustrated in Figure 1.1, such inherently distributed care settings involves with some unique challenges

which include, but are not limited to:

• Difference in expertise, facilities, and physiological cyber-physical systems across a rural hospital,

an ambulance, and a center hospital

• Patient monitoring in ambulances under limited and variable bandwidth, and

• Communication breakage in parts of major routes, especially along rural routes.

In response to these challenges, we therefore seek the following contributions throughout our study:

1. Proposing the notion of distributed physiological best-practice cyber-physical systems and to

model them as communicating medical executable automata. Within this context, we propose a

model-driven message-exchange communication architecture to enable executable models to ex-

change messages with each other, communicate and get synchronized in a safe manner. For the

purpose of synchronization, we implement two distinct software tools: A GUI-driven synchro-

nization, and a model-driven synchronization middleware. We design a physiology-aware com-

2

munication protocol that meets the reliability and safety requirements of emergency care with

support of message prioritization. We partially implemented and evaluated our physiology-aware

communication architecture as well as the synchronization systems over multiple medical cases

conducted in collaboration with Carle Foundation Hospital [93, 89, 94, 91]. Chapter 2, 3, and 4

will mainly cover these topics.

2. Design of a bandwidth-compliant criticality-aware system for transmission of clinical data adaptive

to varying bandwidths and patient’s varying physiological states during rural ambulance transport.

Within this context, we study the semantic relation of communication with criticality of clinical

data and disease awareness. Our data communication adaptation techniques aim to transmit more

critical clinical data with higher fidelity in response to changes in both bandwidth and patient

condition [90, 86]. Chapter 5 will mainly cover this topic.

3. Design and development of a mobile multi-carrier geo-communication profiler in collaboration with

Carle’s ambulance service center. We used our profiler to profile geo-communication information

from major US cellular carriers, and collect various traces including bandwidth, GPS data, vehicle

velocity, and others. We used the traces as proof-of-concept to support our experiments [87]. This

topic is covered in Chapter 6.

4. Design of a disease-aware route scheduler integrated into our pathophysiology-aware communi-

cation architecture to assist ambulances pick the best route when continuous communication

coverage is needed for real-time remote monitoring of patients. Within the context of emergency

care, we study the semantic relation of communication with an amnulance undertake route and

disease awareness. Our novel physiology-aware ambulance scheduler seeks trade-offs in transport

duration and communication coverage during rural ambulance transport which aims to minimize

a cost function through approximation of an NP-hard problem [88]. Chapter 7 will cover this

topic.

1.1 Broader Impact

The broader impacts of this study are three fold: a) the work is aimed to improve emergency care for

people in rural areas; b) our adaptive communication framework is supported by real communication

data obtained from profiling of major routes from a rural hospital (i.e. Hoopeston Regional Hospital

3

[4]) to a center hospital (i.e. Carle Foundation Hospital [26]); and c) the design methodologies and

technologies behind our physiology-aware communication framework can be applied in many areas

other than medicine where access to communication is limited and adherence to emergency guidelines

is crucial to ensure safety. This can include military or disaster response scenarios in rural areas.

Our work on adaptive physiology-aware communication framework can have a long term impact on

the healthcare system of rural areas with limited facility. As designed, this system will be functional

and applicable in many emergency medical and healthcare environments, from rural trauma accidents

to stroke patients who need emergency ambulance transport to a center hospital. Overall, we believe

our technology package enhances the adherence to best-practice guidelines where expertise and commu-

nication is limited, especially during patient transfer with an ambulance en route from a rural hospital

through arrival at the regional center hospital.

1.2 Intellectual Merit

We believe the study conducted here will make advances in networked cyber-physical system engi-

neering with an integrated, multi-disciplinary, and innovative approach to deliver enhanced emergency

healthcare services in hospital networks covering a large rural environment. These advances span

the state-of-the-art in the intersection of cyber-physical communications and tele-medicine to support

disease-specific emergency care in ambulances where bandwidth is unreliable and limited. The re-

search here will demonstrate the potentials to decrease the mortality rate of acute diseases especially

strokes given its 3-hour window and other difficult cases/emergency situations which require additional

expertise possible only through real-time remote patient supervision over networks.

1.3 Scholastic Output

In addition to meeting its objectives as described above, this research here-to-forth has also resulted in

a number of scholastic outputs, as listed below.

4

1.3.1 Publications

Submitted Papers

• M. Hosseini, R. B. Berlin, Jr., and L. Sha, “Towards Physiology-Aware Route Scheduling for

Emergency Rural Ambulance Transport”, IEEE International Conference on Healthcare Infor-

matics (IEEE ICHI’17), submitted, 2017

• M. Hosseini, Y. Jiang, P. Wu, R. B. Berlin, Jr., and L. Sha, “Communication and Synchronization

of Distributed Statechart Models: Design, Development, and Performance Analysis”, ACM/IEEE

20th International Conference on Model-Driven Engineering Languages and Systems (MODELS

’17), submitted, 2017

• M. Hosseini, R. B. Berlin, Jr., and L. Sha, “Towards Physiology-Aware DASH: Bandwidth-

Compliant Prioritized Clinical Multimedia Communication in Ambulances”, IEEE Transactions

on Multimedia (IEEE TMM), submitted, 2016

Published Papers

• M. Hosseini, et. al., “A Multi-Carrier Mobile Geo-Communication Dataset for Rural Ambulance

Transport”, ACM Multimedia Systems (ACM MMSys’17), 2017

• M. Hosseini, R. B. Berlin, Jr., and L. Sha, “Adaptive Clinical Data Communication for Remote

Monitoring in Rural Ambulance Transport”, ACM/IEEE International Conference on Connected

Health (ACM/IEEE CHASE ’17), Philadelphia, USA, 2017

• M. Hosseini, R. B. Berlin, Jr., and L. Sha, “A Physiology-Aware Communication Architecture for

Distributed Emergency Medical CPS”, ACM International Conference on Cyber-Physical Systems

(ACM ICCPS ’17), 2017

• M. Hosseini, J. Yu, P. Wu, R. Berlin, S. Ren, and L. Sha, “A pathophysiological model-driven

communication for dynamic distributed medical best practice guidance Systems”, Springer Journal

of Medical Systems, 2016

• M. Hosseini, Y. Jiang, P. Wu, R. B. Berlin, Jr., and L. Sha, “Sink: A middleware for synchroniza-

tion of heterogeneous software interfaces”, in Proceedings of the ACM ARM ’15, in conjunction

with ACM Middleware ’15, 2015

5

1.3.2 Patents

• “A GUI-dependent software synchronization and verification system”, pending, 2016.

1.4 Thesis Outline

The thesis is organized as follows: In Chapter 2, we will discuss our notion of “distributed medical best-

practice CPS”, and present the design of our message-exchange communication architecture for this in-

herently distributed environment. In Chapter 3, we present the design of our model-driven synchroniza-

tion software middleware used for model-to-model communication and synchronization of distributed

medical CPS models. In Chapter 4, we present our GUI-driven synchronization software middleware

used for the purpose of GUI-to-GUI communication and synchronization of heterogeneous software in-

terfaces in distributed medical CPS. In Chapter 5, we devote our discussions to our bandwidth-compliant

adaptation techniques used for the clinical data communication aspects of our communication frame-

work. In Chapter 6, we present our real-world geo-communication dataset, and discuss how we designed

our profiler to collect mobile traces to support various components of our communication framework.

In Chapter 7, we present our ambulance routing techniques and study the semantic relation of com-

munication with ambulance’s transport route and patient’s disease. We finally conclude the thesis in

Chapter 8 with a summary of the work, followed by our future plans in Chapter 9.

6

Chapter 2

Distributed Medical Best-Practice
CPS

2.1 Introduction

There is still a great disparity in medical care system support across large geographic regions, most

profoundly for emergency care, where limited facilities and remote location play a central role. Based

on the Wessels Living History Farm report [118], the doctor to patient ratio in the United States is 30 to

10,000 in large metropolitan areas, only 5 to 10,000 in most rural areas; and the highest death rates are

often found in the most rural counties. Currently, more than 60 million Americans live in rural areas

and face challenges in accessing high-quality medical care [108]. For emergency patient care, time to

definitive treatment is critical. However, deciding the most effective care for an acute patient requires

knowledge and experience as well as infrastructure support. Although medical best practice guidelines

are accepted and widely available in hospital handbooks, such guidelines are often lengthy and difficult

to apply clinically. The challenges are exaggerated for doctors in rural areas and emergency medical

technicians (EMT) during patient transport.

In this work, the team developed an advanced cyber-physical-human system technology to transform

emergency care for acute patients in a hospital network covering a large rural area. The technology en-

ables the adherence to best practice guidelines from rural hospitals, during ambulance transfer, through

arrival at the regional center hospital. Although applicable for many life-critical systems, we focus on

many-faceted stroke symptomatology and presentation of illness as a motivating use case, and illustrate

a scenario given a patient in a rural hospital with signs and symptoms of stroke. We codify complex

medical knowledge in the form of simplified executable automata, and use them to propose dynamic

distributed emergency best practice models that can be shared between the rural hospitals on the am-

bulance, and at the regional center hospital. The best practice models are executed in real-time at both

rural and center hospitals, with doctors in the center hospital supervising the rural hospital doctor as

both follow best practice based on patient pathophysiological information that is simultaneously mon-

7

itored at both locations and in the ambulance. However, despite the promising nature of adherence to

best practice models, a challenge remains in the rural facility transport example in that the distribution

requires that distributed executable models become synchronized to keep current states of distributed

models consistent with each other.

This complex problem of patient diagnosis and transport from rural to center facility is fraught with

many uncertainties and change in patient condition resulting in a high degree of dynamism. When a

patient is being transferred from rural hospital to ambulance and then to a regional hospital center, the

available diagnoses and treatment options vary greatly. And a critically ill patient’s medical conditions

can change abruptly in addition to changes in the wireless bandwidth during the ambulance transfer.

The distribution of communication needs can adapt over time, and new automata can leave or join

the best practice system in response to variations in physiological and physical conditions, such as

capabilities, patient, or disease models. Such dynamics have yet to be addressed in existing literature

on telemedicine as existing distributed communication mechanisms fall short to support synchronization

requirements due to their static communication semantics. Lack of support for dynamic invocations

introduces fundamental implementation issues, such as handling failures at client and/or server using

request-reply protocols, parameter passing, etc. [144, 54]. That said, existing tele-medicine technologies

such as [56, 127, 153] provide healthcare communication via remote audio/visual monitoring of patients,

with unstructured and static communication semantics. Our work on the contrary, is centered around

the novel concept of distributed medical best-practice systems and the messaging aspect of tele-medicine

introduced with structured communication and a high degree of dynamism, which is distinguished form

the boundaries of existing tele-medicine systems.

To address the challenges, we propose a pathophysiological model-driven message exchange archi-

tecture for dynamic distributed best practice systems with the aim of synchronizing the distributed

pathophysiological models of patients in rural and center hospitals given their timely changes, while

discussing how it can meet the reliability and safety requirements of dynamic distributed emergency

best practice systems. Our proposed communication architecture can be extended to implement the

distributed best practices in emergency first response systems not directly related to medicine, such

as those seen in disaster response scenarios [74]. In summary, the main contributions of this chapter

include the following:

• The description of distributed medical best practice guidance systems and the dynamism in-

troduced by this distribution, as well as the concept of synchronization among the distributed

8

executable automata. This new generation of synchronized best practices enhances the overall

treatment time for emergency care.

• Codification of medical best practice knowledge into executable automata. We take signs and

symptoms suggestive of stroke as the motivating use case to conceptualize distributed medical

best practice guidance systems.

• Design of a dynamic message-exchange communication architecture built for synchronization of

distributed safety-critical executable best-practice automata.

The remainder of the chapter is organized as follows: In Section 5.2, we provide background in-

formation illustrating a stroke emergency care scenario, and cover a wide area of related work about

best-practice systems, executable automata, and communication systems, while discussing how our

work is related to them. In section 2.3 we discuss the notion of distributed medical best practice sys-

tems and the dynamism introduced by the distribution. In section 2.4, we explain our methodology

for the design of a message-exchange communication architecture, including discussion of registration

procedures for architectural components, failure detection, as well as the safety features of the protocol.

Our proof-of-concept simulation is discussed in Section 2.5, while in Section 5.6 we conclude the chapter

and briefly discuss our plan for future work.

2.2 Background and Literature Review

In this chapter, we provide background information and discuss different work related to stroke emer-

gency care scenarios, best-practice systems, executable automata, as well as communication systems.

2.2.1 Real Use-Case: Acute Stroke Patient Emergency Care

We target stroke patient as a use case to investigate and envision how an ideal distributed best prac-

tice system and its communication support may improve the acute patient care in remote and rural

areas. Stroke is the third leading cause of death and the first leading cause of disability in the United

States [149]. In addition, stroke patients are often elderly (in fact, 65% to 72% stroke patients are

over age 65 [47]) who may have other illness, such as heart diseases and diabetes. Furthermore, some

effective stroke treatment medications have strict implementation guidelines. These factors not only call

9

Rural
Hospital

CT Scan,
Index

Collection

TPA

AMB

TPA AMB

Center
Hospital

Vital signs
monitor and

control

Special Transfer
Center

Hospital

CHF/HR/BP/Vent, etc.

BP>180||BP<90
HR>120||HR<60

Stable

Unstable
Ischemic

Stroke

No CT
Result

Hemorrhagic
Stroke

Standard Transfer Center
Hospital

CT Result
TPA Start

Vital signs
monitor and

control
EMBG System Transfer

Figure 2.1: Emergency stroke patients care from a rural rural to a center hospital

for new research to provide more effective acute stroke patient care, but also make it more challenging

to provide computer and communication technology support for stroke patient care.

Figure 2.1 shows the workflow for emergency care of stroke patients from a rural hospital to a center

hospital. Consider a 70 year old male patient arrives at a rural hospital. It is determined that the patient

has the sudden onset of stroke. Computerized Tomography (CT) scan is completed and the images are

sent to the stroke team at the center hospital for further immediate interpretation. His primary vital

signs, measurements and indexes, such as blood pressure, heart rate, and blood oxygenation (SpO2),

etc., are promptly collected immediately. With the assistance from the regional center hospital via

real-time monitoring (we collaborate with Carle Foundation Hospital as the center hospital [26]), the

physicians and nurses in the rural hospital determine the patient’s state and the types of the stroke.

If it is determined that the patient has a hemorrhagic stroke1 (and not an ischemic stroke), he will

be sent to the center hospital immediately because of the specials and specialized treatments that will

be required. In the ambulance, supportive measures begin and the center hospital is notified and will be

prepared for the patient. If the patient has ischemic stroke2 (much more common than a hemorrhagic

stroke) and is in a stable state, standard actions such as tissue plasminogen activator (tPA) will be

considered and administration begun; the patient will be sent to the center hospital with existing

standard transfer approach through ambulance. Unfortunately, most patients with ischemic stroke are

1Hemorrhagic stroke occurs when a blood vessel bursts inside the brain, which damages the nearby brain tissue.
2Ischemic stroke occurs when a blood clot blocks an artery headed to the brain.

10

often in an unstable state, that is, vital signs are seriously out of range and must be treated actively.

In this case of a patient with an ischemic stroke but unstable vital signs, the patient is placed on the

ambulance accompanied with a stroke bag carrying needed equipment, blood products and treatments

to manage care during transport and reduce the patient’s risk of further deterioration.

tPA is a common treatment for blood clot which occludes an artery supplying blood to the brain

and thus such clotting may be a common cause of ischemic stroke. A significant risk of the use of

tPA to dissolve an occluding blood clot that has caused a stroke the complication of brain hemorrhage.

The TEG3 will be used to measure blood coagulation capability; the results will be sent to the center

hospital to help guide the correct approach toward abnormalities in the stroke patient’s blood clotting

mechanism (many commonly taken medication have profound effects on blood clotting). In coordination

with the expert consults at the central receiving hospital, the TEG results may also be used to address

the infusion of tPA itself. In addition, patient’s neurological symptoms such as speech difficulty, facial

droop, weakness in hands and vital signs such as the blood pressure, heart rate, SpO2, blood glucose

level, and blood coagulation index will be monitored in real-time in the center hospital, at the rural

hospital and the ambulance during transport. If any of the vital signs are out of range, the stroke team

in the center hospital will work with rural physicians and the ambulance staff to manage treatment

orders and the additional requirements that arise from a changing patient state.

For example, when the patient’s blood pressure exceeds the safe threshold 180, the stroke team of the

center hospital may suggest injecting the IV infusion of a medication such as nicardipine or nitroprusside

to control the blood pressure. If the nicardipine or nitroprusside infusion does not control the elevated

blood pressure or there are signs of further patient neurologic deterioration, the physician of the center

hospital may change treatment accordingly. A blood glucose level that cannot be controlled within

acceptable clinical range may be another measurement value which requires close coordination among

the rural physician, the ambulance staff and the expert physicians at the central facility. Clearly, to

minimize the patient’s risks during transport, real-time supervision and monitoring of the stroke team

in the ambulance is crucial, because the majority of stroke patients are elderly with various chronic

diseases characterized by many complicating features. Even if such elderly patients are initially in a

stable state, they may become unstable under the stress of stroke. Overall, the support of physicians’

communication and real-time monitoring of patient and disease states is an important motivation in

driving this research.

3Thromboelastography (TEG) is a method of testing the efficiency of blood coagulation, which helps with timing tPA
and clot dissolving therapy.

11

The design of our distributed best-practice system takes into consideration the different components

that may impact the emergency care, and incurs real-time communication across rural hospitals, patient

transport service, and center hospitals. The key components include (1) patient disease model, (2)

facility models of rural hospitals, ambulances, and center hospitals, (3) patient conditions, and (4)

any environment conditions such as road and traffic, weather, and communication coverage conditions.

Overall, an effective emergency patient care involves an efficient, reliable, and safe communication and

synchronization among all these models.

2.2.2 Medical Best Practices for Emergency Care

Medical best practice for emergency care have been created for patients in major hospitals [49, 131, 125].

For instance, the University of Texas’ MD Anderson Cancer Center has developed clinical management

algorithms [49] that depict best practices for diagnosis, evaluation, and treatment of specific diseases

including acute ischemic stroke targeting adult patients. While their contribution provides a high level

algorithmic workflow using a multi-disciplinary approach, there are still several issues: a) their practice

algorithms are specifically developed for MD Anderson Cancer Center and take into account circum-

stances particular to MD Anderson, including MD Anderson’s specific patient population, their available

services and structures, and its clinical information, b) the management algorithms are specially focused

on those conditions that may arise during the course of cancer treatment, and c) their management

algorithms lack enough details to handle patients who do not meet their necessary pre-requirements.

For stroke care for example, Görlitz et al studied the feasibility of a stroke manager service concept

using a combined medical service and software engineering approach, and developed workflow and IT

architecture for improved post-stroke management [64]. Hofmann et al described concepts used for

process optimization in stroke care and evaluated industrial methods to provide quality improvement

in stroke management [84]. Panzarasa and Stefanelli likewise designed an evidence-based workflow

management system as components of a knowledge management infrastructure by efficiently exploiting

the available knowledge resources, aiming to increase the performance of higher quality of health-care

delivery [123]. While the proposed concepts in these studies consider requirements for enhanced stroke

management, they were mainly positioned around health service networks, workflow, and knowledge

management at individual health-care organizations. Many fundamental system and pathophysiological

issues such as absence of stroke-specific expertise and high-end diagnosis and treatment equipment in

rural areas, as well as problems associated with communication, distribution, and coordination among

12

Figure 2.2: Stroke care manager abstract

distributed best practices conditions still remain unaddressed.

From the current practices, most notably, there is a need to develop novel executable, distributed,

and dynamic workflow automata that (1) adheres to best practices in acute patient care management,

(2) ensures effectiveness and safety from both systematical and pathophysiological perspectives, and

(3) enables efficient distribution of acute patient care across the rural area hospital, ambulance, and

the center hospitals, given the many uncertainties and condition changes that exist. Unfortunately, the

need has been neglected heretofore. It is worth pointing out that as a contribution to computer science

and communications technology, we do not attempt to discover new medical knowledge. Rather, we

focus on developing guidance system based on the accepted best practice medical system guidelines.

The guidelines are high level instructions that are based on the pathophysiological models of patient’s

organ conditions. The complex interactions between organs in specific, provides the basis to codify

disease dynamics in the form of interactive executable automata.

2.2.3 Executable Best Practice Automata

From a medical perspective, physicians are taught organ system function as part of the representation

of disease process. They look for patterns of pathophysiological changes (the change in physiological

measurements as a result of disease) within an organ system to understand organ state [67, 65]. This

organ-centric view of pathophysiological expression also matches medical treatment, which is captured

by best practice medical workflows. Therefore, the engine of our best practice systems is an executable

13

best practice workflow model, and system automata such as disease or organ system automata. By

codifying medical knowledge into executable formal best practice system automata, the codification

can be checked by expert physicians via the execution of these models using scenario-driven simulation.

In our previous work, we have proposed a Situation Awareness and Workflow Management (SAWM)

system, and built best practice workflow and organ automata for cardiac arrest resuscitation [93], with

the states in each organ automaton, such as cardiac automaton, representing different organ states.

The changes in the relevant physiological measurements and lab values which result in satisfaction of

the condition for a new organ state causes state transitions. In summary, SAWM system transforms

passive text guidelines into a set of executable automata and helps physicians keep track of the states

of automata. Based on the diagnosis from physicians, SAWM system provides step-by-step guidance in

coherent with the workflows.

As a part of contributions in this chapter, taking stroke as the motivating use-case, we codify

medical knowledge into a simplified version of executable best practice workflow, and use that to

develop a message-exchange architecture that can be used for communication and coordination among

distributed best practice automata.

2.2.4 Analogy: Space Communication Systems

Our medical best practice guidance system has an analogy with space communication systems, where a

spacecraft communicates with the ground support system. In spacecraft control and fault recovery, a big

brother copy is based on the ground station, which is fed with most recent information from spacecraft

little brother to support the mission operation. The spacecraft does not need to run diagnostics,

and therefore sends the information, called telemetry data, back to the ground system. Telemetry

information is the data about the spacecraft needed to assess how well the spacecraft and the space

mission operation are doing. Spacecraft attitude, power system measurements such as voltages of

electronic systems on the spacecraft, the on/off status of all commandable equipment and heaters, as

well as temperatures of components are examples of such data. For example, temperatures of key

components are monitored on the ground station to make sure they do not overheat and malfunction.

Should there be sudden rise of temperature, engineers on the ground station may decide to decrease

utilization of the component, or other relevant systems. Loss of any major component on a spacecraft

can affect all other components on a spacecraft and therefore, cause the mission to fail. The ground

center copy is an exact model of the spacecraft, plus additional instrumentation that cannot be put into

14

the spacecraft due to resource limitations, which in overall is considered a rich, extensive, and locally

controlled model of spacecraft [137, 43, 105].

Similar to space communication systems, for the medical best-practice guidance systems, a big

brother model exists at regional center hospital which receives information from the little brother

model located at rural hospital. The distributed best practice system is executed in real-time at both

rural and center hospitals, with doctors in the center hospital supervising a rural hospital doctor to

follow the best practices modeled by our guidance system. Figure 2.2 shows an abstract overview of the

care management process for stroke. Clinical information such as vital signs, neurological symptoms,

and updates of disease states are monitored by doctors in the center hospital, potential consistencies

are detected, and new patient state is then updated and confirmed. Next, appropriate best practice

suggestions, corresponding warning messages, and necessary sets of alerts along with other invaluable

information are generated, which are then being sent back to the rural hospital.

Current space communication systems such as NASA’s Deep Space Network [82] involve protocols

residing on all OSI layers, with some orthogonal aspects such as capabilities and security relying on

services implemented at lower layers of the stack. However, unlike space communication systems,

our design needs to be compliant with existing TCP/IP infrastructure. Furthermore, the problem

is made more challenging by the fact that uncertainty of resources and patient heterogeneity as well

as uncertainty resulting from human-in-loop nature of medical reasoning and evidence-based patient-

centered care induces a high degree of dynamism to the emergency care communication system [76],

therefore requiring novel design considerations.

2.3 Distributed Medical Best Practice Systems

The executable workflow automata as described in previous section focus on adherence to the best

medical practice guidelines. They are based on various models, such as disease models, patient condition

models, and models of facilities capabilities. To virtually extend a regional center hospital to its rural

boundaries, the automata designed for different models have to be integrated together to form smooth

and seamless care from rural to center hospitals. In addition, the distributed automata takes into

consideration the physical environment between rural and center hospitals, such as communication

coverage, weather, road, and traffic conditions as patient transport can be significantly impacted by

the environment. What further exacerbates the distributed workflow challenge is the dynamic nature

15

Figure 2.3: Workflow adaption in a dynamic distribution

of distribution as system components such as physical environment and patient condition can change

rapidly. Both physical environment change and patient condition change can cause the workflow to

be re-distributed or even a different automata to be introduced to the system and get activated. In

stroke for instance, the scenario where a patient whose blood pressure increases above 180 after tPA

treatment is begun will activate a new disease automata based on blood pressure control and change

the automata of patient transport en route from one with best communication coverage for monitoring

and consultation purposes to one that emphasizes fast transport of a patient whose conditions may

require tPA to be discontinued pending blood pressure control or other complications. The transition

at the center hospital procedure would be different as well if the patient situation is changed from

initial ischemic stroke to hemorrhage stroke and should be able to continue implementing best practice

accordingly and seamlessly.

The design of such distributed best practice system takes the responsibility and capability of rural

and center hospitals and transport vehicles into consideration, and provides different levels of abstrac-

tions accordingly. In addition, as the initial diagnosis and performed treatments are automatically

recorded, the best-practice system can continue the workflow automata after a patient is transferred to

a center hospital, and help physicians and nurses at the center hospital seamlessly resume the patient

treatment.

As what needs to be done and at what location are impacted by patient disease and patient current

progress, capabilities of rural, ambulance, and center hospitals, and physical environment (e.g. com-

munication coverage, weather, road, and traffic condition), the automata is first distributed based on

16

(a) Rural Hospitals

(b) Center Hospitals

Figure 2.4: An instance of simplified distributed stroke automata

static information, such as disease model and individual rural and center hospital capabilities, and then

iterative and timely adaptation is made based on any changes in patient or physical conditions which

overall forms a dynamic distribution. Figure 2.3 depicts the iterative procedure in forming a dynamic

distributed acute patient care.

Taking stroke as our use case, Figure 2.4 shows two greatly simplified stroke automata that are

executed at a rural hospital (Figure 2.4(a)) and at a supervising regional center hospital (Figure 2.4(b)).

The figures represent an instance of a possible distribution since as mentioned before, variances in

capabilities, expertise, and physical environment can cause dynamism in the sense of different cut-offs

17

and different levels of abstraction for distributed executable workflow automata. The executable stroke

automata in center hospitals as seen in Figure 2.4(b) provide a rich, extended level of complications

compared to the thin counterpart automata in rural hospitals as represented in Figure 2.4(a). Many

actions that can not be performed in rural hospitals due to lack of capabilities, such as supporting

therapy using Aspirin, can only be performed in center hospitals as shown in Figure 2.4(b). However, it

is always possible that thin models at rural hospitals have exclusive private states not common with the

ones at center hospitals. Without loss of generality, we hereby assume that the simplified models at rural

hospitals are a proper subset of the rich models at center hospitals. Overall, having the best practice

models displayed in real-time at distributed locations, with doctors at center hospitals supervising a

rural hospital by sending best-practice commands, will make the assistance much easier.

A major challenge however, is that the development of a communication system among these dy-

namically distributed medical best-practice systems asks for a pathophysiological model-driven message-

exchange architecture with a set of performance-wise requirements that we uncovered during our case

study. The message-exchange communication architecture shall: a) be efficient in the sense that it must

meet the dynamic and real-time requirements of distributed emergency care, with best practice medical

system components joining and leaving the system, b) scale to large numbers of messages and commu-

nicating automata, c) support priority in the communication protocol representing urgency of medical

messages, d) be reliable in the sense that it must detect failure and monitor health of the architectural

components due to the life-critical nature of medical best practice systems, and e) be safe in the sense

that it avoids medical hazards in case communication fails. In the following, we will propose and discuss

our pathophysiological model-driven message-exchange architecture.

2.4 Message Exchange Architecture

Distributed best-practice models communicate by passing large number of various types of messages.

A resulting key challenge therefore is how to efficiently synchronize the distributed executable best-

practice automata from rural hospitals or the ambulance with the ones in the regional center hospitals.

We borrow concepts employed in space communication systems such as [82], [9] and [12] to design a

novel model-driven message-exchange communication architecture for dynamic distributed best practice

automata, and apply significant addons and adjustments to meet our pathophysiological requirements

and address the challenges discussed in Section 2.2.4.

18

Figure 2.5: Visual overview of the proposed message exchange architecture

The main design goal of our message exchange communication architecture is to allow a dynamic

model-driven message-oriented communication with reliability and safety requirements among various

distributed best practice automata. These automata can simply represent any distinct workflow, such

as disease automata, patient automata, or any other executable automata that may all reside in a

single system or single location, or may inter-operate in a distributed system as seen in our distributed

medical best practice system. Multiple instances of the same automata can operate concurrently in

the same message space environment; they are distinguished by different hierarchical and layered UIDs

with different authorities concerning their configuration and operation. Figure 2.5 shows an overview

of the components of our proposed message exchange communication architecture.

In our proposed architecture, the best-practice automata are managed by a registration server

or registrar, that controls automata, monitors their status, transfers and receives configuration data.

Every single automaton can only begin operation by announcing itself to a registrar. It learns the

configuration information of its registrar such as its location or UID by querying a configuration server,

which is responsible for monitoring and tracking the health of all registrars in any given location.

We employ the notion of an entity, each consisting of multiple automata, registrars, and a config-

uration server that use message passing for the purposes of communication among themselves. Entity

can represent executable models couples together at a specific location, such as rural or center hos-

pitals, or an ambulance. While our communication architecture enables an entity to provide internal

message-oriented communication, it can also communicate with an external entity remotely, through

19

Remote Message Exchange (RME) gateways that we will describe in Section 2.4.4. All message data

are encrypted with the AES 128-bit symmetric cipher in electronic codebook (ECB) mode. To tackle

complications made by single point of failure, a single entity can include multiple redundant configura-

tion servers through a hierarchical ranking system. However, only a single, highest-ranked configuration

server instance will operate at any given time.

An entity can be organizationally subdivided into units, or grouped automata, which are a group

of role-related automata that overall make a consistent model. For example, an entity may consist of

multiple automata such as executable disease automata, patient automata, or communication coverage

automata. Each of these automata represents a single unit, which is categorized by the role it is desig-

nated to perform in the overall best practice system. Given this hierarchy, a unit is then consisted of

a registrar and its associated automata. The subset of a units are automatons of that unit. For exam-

ple, disease automata may include multiple organ automatons. In our previous work [93], we modeled

cardiac arrest resuscitation disease as a combination of three organ automata, i.e. cardiac automaton,

pulmonary automaton, and kidney automaton. Employment of such hierarchical sub-component-based

architecture foster construction of delimited identifiers that helps an exchanged message to be uniquely

transmitted among entities, and get directed to the targeted automaton. The design of our hierarchi-

cal message exchange communication architecture is independent of underlying transport and network

protocols, and can therefore operate virtually on top of any communication methods, including existing

TCP/IP infrastructure as well as the emerging Named-Data Networks (NDN). Our architecture can

best facilitate delivery of messages between hierarchical sets of entities using a layered content descriptor

naming design as promoted by NDN [52, 53, 109]. Our communication architecture also supports dif-

ferent message-oriented patterns such as send-receive, request-response, push-pull, publish-subscribe, is

compliant with both synchronous and asynchronous communication, and can employ any combinations

of these patterns to meet various application-specific requirements.

Due to the asynchronous nature of proposed message exchange communication architecture, a mes-

sage does not incur a busy-wait suspension on an issuing automaton until a reply message is returned.

That enables a high degree of concurrency in the overall performance. However, some key message

exchanges naturally occur synchronously. For instance, as we will describe later a newly registering and

initializing automaton must remain on busy waiting for responses form the configuration server and

the registrar before running. In the future, we plan to apply the Physically-Asynchronous Logically-

Synchronous (PALS) [32] pattern that we have developed to our proposed communication architecture,

20

Figure 2.6: Registrar initialization and registration process

and investigate the trade-offs between the formal verification time and performance.

In the followings, we describe an overview of configuration and registration process for major compo-

nents, associated messages as well as general flow of messages, and introduce methods to detect failure

and to enhance safety and reliability of the whole communication system.

2.4.1 Initialization and Registration Process

Registrar Initialization and Registration

As mentioned previously, registrar is the main communication component in each unit that propagates

information, monitors status, and acts as a registration server for every registered unit of multiple

automata. Figure 2.6 shows registrar’s initialization and registration process. At the beginning, each

registrar is initialized by locating the configuration server and sends a “announce-registrar” configura-

tion message to the configuration server. It is the responsibility of the configuration server to validate

and verify the “announce-registrar” messages, so to make sure that the registrar belongs to a valid unit,

and that the corresponding unit is not already initialized (given that no registrar is already active for

that unit). The configuration server will then reply to the received message accordingly. Given that the

validation and verification process is successful or not, two types of messages can be generated. If the

validation process is failed, the configuration server generates a “rejection” message, and sends it back

to the registrar. In case the validation process was successful, a “registrar-noted” message is generated

which is sent back to the registrar. Upon a successful validation once the “registrar-noted” message

is transmitted, configuration server will then generate a “unit-spec” message representing the updated

status of the corresponding registered registrar, and sends it to all other registrars in the entity. In case

21

Figure 2.7: Automaton registration process

the initialized registrar is the first and the only registered registrar, and there is no other active regis-

trar, a single “unit-spec” message will be generated that will be returned to the corresponding registrar,

with the message containing a unit ID set as the unique ID of registrar’s unit number. Otherwise, one

“unit-spec” message is generated and sent back to every other registrar in other units. From this point

on, heartbeat messages are being exchanged between the registered unit and the configuration server

periodically to detect possible failures and monitor unit’s availability.

Automaton Registration

As mentioned in Section 2.3, the distributed nature of medical best practice systems is associated with

a high degree of dynamism due to the many uncertainties and condition changes that exist. Given the

timely changes in pathophysiological and physical conditions, the automata distribution cutoffs adapt

over time, with new automata joining or leaving the system in response to variations in capabilities,

patient, or disease models. For example, availability of portable CT scan ambulances [120] can change

the distribution of best practice automata, and introduce new entities with sets of units and automata

which overall helps reduce the overall treatment time for stroke patients. Drug complications and

side effects or development of side diseases are other examples. For instance, patients treated with

antiplatelet agents such as aspirin therapy have a high prevalence of side effects, such as stomach pain,

heartburn, or nausea [2]. Development of any side effect per se can therefore introduce new disease

automata, asking for a dynamic registration approach.

22

Automata can only operate by identifying themselves to registrars. Automaton registration involves

three phases. During the first phase, configuration server is located and identified through repetitive

query messages sent to the configuration server at its location address within a specific period of time,

which is returned with a “configuration-server-located” reply message (location address of configuration

is known and pre-defined). Receipt of this message is considered as a successful discovery of configuration

server, meaning the location address of configuration server is noted. Otherwise, the procedure is

considered not to have succeeded. Availability of a verified configuration server is a necessity otherwise

automaton registration would be impossible.

In the next phase, the automaton generates a “registrar-query” message with the aim of determining

the location address of the automaton’s registrar (i.e. registrar of the corresponding unit the automaton

belongs to), which is then sent to the configuration server. In case there is no available registrar for

the automaton’s corresponding unit, a “registrar-unknown” message is generated, and is sent back.

This failure is updated as a status variable inside the automaton. Otherwise a “unit-spec” message

is generated and is returned, noting the location address of the corresponding registrar. Once this

process is succeeded, the automaton is now allowed to register with its own registrar. A “automaton-

registration” message is generated and is transmitted to the registrar. The registrar can then reply with

two types of messages: a “you-are-in” message will be returned if successful, or a “rejection” message

stating the denial. Figure 2.7 shows the overall process of automaton registration. From this point

on, heartbeat messages are being exchanged between the registered unit and the configuration server

periodically to monitor unit’s availability and to detect registrar’s failure.

As for implementation purposes, in case registration was accepted, the registrar generates a “I-

am-starting” message containing the new automaton’s configuration state, which is sent to all other

automatons in the unit as well all other registrars to be directed to their respective automatons. Once

received, each automaton will reply back with a “I-am-here” message containing its unique ID. We

consider this approach as the default implementation method. However, other alternatives can be

implemented if registrars need to track and keep record of information for their respective automata.

2.4.2 Monitoring Failure

To detect failure and monitor availability of the architectural components, we integrate heartbeat

protocol into our architecture. Heartbeat messages are periodically being exchanged between registrars

and configuration server, as well as between registrars and their unit’s automata, with the time period

23

Figure 2.8: Registrar failure detection process

of heartbeat exchanges between registrar and configuration, and between registrar and automaton set

to T and T’ seconds, respectively. We use a default heartbeat rate of once every 5 seconds for both T

and T’, and set N=3 successive missed heartbeats as an indication of termination, as recommended by

IEEE Standard 1278 for Distributed Interactive Simulation [14] and Space Data Systems Standards for

messaging services [9].

Monitoring Health of Automaton

In order to maintain the availability and also to avoid wasting resources on attempts to send messages

to unavailable automata, it is crucial for registrars to keep monitor health, and detect termination

of automata they are responsible for. When an automaton terminates, it automatically signals its

registrar about its cease of service. However, in case of crashes, or when the automaton is powered off

or rebooted, no such signal is being transmitted to the registrar. For this reason, heartbeat messages

are periodically being sent from every automaton to its registrar every T’ seconds as mentioned earlier.

Figure 2.9 shows actions taken by the registrar when an automaton failure has been detected. In

case of a heartbeat failure, the registrar generates a “you-are-dead” message, and sends it back to the

automaton, indicating that it is presumed the automaton has failed, is no longer available, or is no longer

authenticated. In case the automaton is in fact still running (assume the automaton is hung due to a

deadlock such as performing a CPR (Cardiopulmonary Resuscitation) on an unshockable rhythm), the

automaton will terminate immediately upon receipt of this message. Following that, a “I-am-stopping”

message is generated and returned to the registrar, which is then forwarded to all other automatons

24

Figure 2.9: Automaton failure detection process

inside the same unit and other registrars, signaling the termination of the failed automaton.

Monitoring Registrar’s Health

In addition to monitoring health of automata by registrars, in a mutual way, every registrars also sends

heartbeats to its unit’s automatons, so that an automaton can infer its registrar has crashed. When a

registrar failure is detected, it is assumed by the automaton that the registrar has been restarted from

the time it was failed. In that case, the automaton will query the configuration server to determine

the new location address of the restarted registrar and attempts to reconnect. Once reconnected,

heartbeat exchanges are resumed. The process is shown in Figure 2.8. It should be noted that given

the automaton heartbeat period, within the first N × T ′ seconds after reset, the heartbeat messages

from all automatons will be received by the registrar, which therefore helps in the accurate acquisition

of unit’s configuration.

Configuration Server Fail-over

Similar to other components, a configuration server may also presumed to be failed or unavailable,

once N successive missed heartbeats are detected by a registrar. In case of this event, the registrar

begins cycling through all possible known location addresses for the entity’s configuration server, and

attempts to re-establish the connection at an alternate location which was thought to be caused by

a reboot. During the crash interval, no new automaton can register and get initialized as there is no

way of knowing registrar’s location due to unavailability of configuration server. The new automatons

will also cycle through all known possible location addresses searching for the entity’s configuration

25

server to perform initialization procedure. Once the configuration is restarted and was bound to a new

location address, all registrars will eventually find it and note themselves to it. Similarly, initialization

and registration process of newly joined automata will resume immediately after that.

As mentioned earlier, our architecture supports multi-ranked configuration servers for redundancy

purposes, which makes it possible for multiple configuration servers to run concurrently in case one of

the configuration servers crashed due to reasons such as a transient network connectivity failure. In

that case, every running configuration server periodically sends a “I-am-running” message to all lower-

ranked configuration servers. Upon receipt of such a message, the respective configuration server stops

immediately. That causes all registrars and automata that were communicating with that configuration

server to note its unavailability, which makes them search for the highest-ranked available configuration

server. This causes the whole entity get back to service eventually.

2.4.3 Open-Loop Safety

Communication failure in the wireless environment can lead to life-critical safety issues within the

message exchange environment. Our message-exchange architecture should guarantee the safety of the

execution of distributed best practice automata, to ensure that the automata transit to a safe state

even with communication failure or loss of messages. Let’s take the stroke automata in Figure 2.4 as

example. Assume a message triggers a state transition event, making the automaton transit to the “tPA

Therapy” state. Suddenly communication fails, arising the question “how long to stay in the state and

continue tPA therapy?”. Continuing tPA therapy for longer than a specific duration characteristically is

hazardous for the patient, therefore considered to be unsafe for the system. Same concept is applied to

the ”supporting therapy” state using Aspirin as well, which is only allowed for a bounded period of time,

given some vital signs changes as per supervising doctor’s suggestions. Based on that characteristic, we

classify states into the following two classes:

• Transient safe state, which allows an automaton to stay safely in the state, but only for a limited

duration. That said, if staying on a transient safe state lasts longer than the specified allowed

limit, it becomes unsafe, and may lead to hazards. “tPA Therapy” state is an example of a

transient safe state;

• An open-loop safe state, which is considered always-safe for the maximum duration of the given

medical procedure. Therefore, an open-loop safe state does not involve any hazard while stay

26

Table 2.1: Our protocol’s message header fields (64-bit total)

Field bits Description
Message type 6 UID representing type of message
Priority 3 0-7: A value representing the urgency of message
Checksum flag 1 Value is set to 1 if data is followed by a 32-bit checksum
Open-loop safe state 8 UID representing the next safe state in case of failure
Source entity number 5 UID representing source entity
Source unit number 5 UID representing source unit
Source automaton number 5 UID representing source automaton
Destination entity number 5 UID representing destination entity
Destination unit number 5 UID representing destination unit
Destination automaton number 5 UID representing destination automaton
Application-specific data length 16 Length of application-specific data (limited to 65,000 bits)

lasts more than any time threshold.

To maintain reliability and safety, our designed communication protocol must ensure open-loop

safety to guarantee that the system transits from a transient safe state to a predefined open-loop

safe state in case a communication failure occurs. Therefore, we embed open-loop safety as a safety

parameter into our protocol, so that a message triggering a state transition forces the automaton not

to make a state transition unless an open-loop state is determined, and queued as an emergency option

in case communication fails. Given the stroke example, possible transient safe states such as “tPA

Therapy” are transited to an implicit “general assessment” state as an open-loop safe state, so to

ensure the safety requirements of any automaton.

2.4.4 Remote Message Exchange

Automata in different entities exchange messages through Remote Message Exchange (RME) gateways.

The RME gateways have access to other entities’ RME gateways through establishment of a persistent

connection using their network interfaces, that in overall form a tree of mutually aware interconnected

entities for the distributed best practice systems, enabling a message to get forwarded to any desired

automaton placed at any distributed location. Upon receipt of a message, the RME gateway forwards

the message to any number of target automata. Using a publish-subscribe messaging model can therefore

help as the copies can be published to only the subscribed automata. The protocol is efficient in the sense

that only a single copy of messages is ever being sent over the link, no matter how many automata

intend to receive copies of the messages. The use of RME gateways cannot insulate the effect of

latency variation on message propagation. This fact is assumed to be be handled by the underlying

27

communication layers, which is beyond design of our higher-layer message-oriented architecture.

2.4.5 Communication Protocol Header

Our pathophysiological communication protocol consists of a header in fixed format as a 64-bit prefix

to a packet, which is followed by zero or more octets of data, plus an optional 32-bit checksum. Table

2.1 shows an overview of our message header fields. The first header field in a message is the 6-bit

message type, which represents the type of the message that is being exchanged, either application-

specific data messages (e.g. a neurological symptom, disease state, patient state confirmation, time log,

etc.), or configuration messages (e.g. heartbeat, query, acknowledgement messages, etc.). The priority

field is a 3-bit field indicating a value 0 to 7, which represents the urgency of the message, with higher

values representing higher priority of messages. Consideration of the priority field is inspired by the

fact that the urgency of messages are in fact state-dependent, which requires situation awareness [152].

Given the case of our stroke scenario for example, at the time of assessing a suspected stroke to detect

whether the type of stroke is ischemic or hemorrhage, transmission of lab results such as TEG values for

blood coagulation level has a slightly higher priority than general vital signs such as heartbeat or blood

pressure, while both have higher priorities than video data for remote screening of patient. A checksum

may optionally be provided as the last 32 bits of any messages, using the ISO/IEC 3309 -compliant 32

bit CRC algorithm [6]. This algorithm is also compliant with the frame checking sequence as defined in

section 4.2.5.3 of the ISO/IEC 13239 specification [5] and section 8.1.1.6.2 of ITU-T recommendation

V.42 [7]. The presence of a checksum is indicated by a set value of “1” in the checksum flag field, while

otherwise is set to “0”. To ensure open-loop safety, our protocol header reserves a field for open-loop safe

state, which represents the UID of a safe state that must be perpetuated as a permanent safe state where

the automaton must transit to in case of undesirable unsafe situations or communication failure. Next

fields represent source and destination entity number, unit number, and automaton number storing the

hierarchical source and destination address, respectively, used for end to end forwarding of messages.

As the length of the pathophysiological data in a message varies, the data length field of the header

indicates the length of data which is followed, limited to 65,000 bits.

28

Figure 2.10: A sample of real platform experiments.

2.5 Proof-of-Concept Simulation

We have developed best practice medical executable automata as our case study proof-of-concept, and

partially implemented and tested our message-exchange communication architecture rigorously over

these case studies conducted in collaboration with Carle Foundation Hospital [26]. We performed

our experimentations on a real platform where 220 synchronization requirements were specified to

synchronize two sets of distributed medical automata. To develop our best practice medical automata,

we used Yakindu statechart 2.4 open-source tool on top of Eclipse Luna 4.4.0 IDE to model the automata

as executable statechart models which can further enable rapid prototyping and validation with domain

experts [25]. Our developed best-practice statechart models include the simplified stroke as well as

simplified sepsis medical best-practice automata consisting of both disease and underlying organ models,

all represented as executable statecharts. The models focus on adherence to best-practice medical

guidelines, which are codified from medical knowledge, simplified, and then validated with physicians

for correctness. A pair of each set of statechart models are distributed on two different machines- one set

representing rural hospital or ambulance, and the other representing center hospital. We implemented

the messaging communication system in Java, so that it can be deployed on any platform running

Java Virtual Machine (JVM), including Linux and Windows. We have designed a list of APIs for the

29

users, including establishment of a connection, composing messages, and message pushing and polling

operations. Figure 2.10 illustrates a sample of our experiments 4.

As our communication architecture supports different message-oriented patterns and any combi-

nations of these patterns to meet application-specific requirements, we employ a push-poll pattern to

implement our model-driven communication system, consisted of a push client and a polling client to

form a registrar, as well as a synchronized FIFO queuing module, all residing on each statechart ma-

chine. The messages are captured by the push client and are encoded to a specific message format as

defined per our communication protocol described in Section 2.4.5. The messages are then encrypted

with the AES 128-bit symmetric cipher in electronic codebook (ECB) mode, serialized, buffered, and

are eventually pushed into the queuing module via a persistent socket connection to be polled by

corresponding destination registrar.

While sending is good for individual distributed statecharts to push messages to the synchronized

queuing module, this is not yet a good approach for distributing the messages among distributed

models as it imposes a significant overhead on the registrars. The registrars are forced to inefficiently

keep a long-lived and mostly unused network socket connection open with eachother. This leads us to

use client-side polling for registrars, for two main reasons: First, client-side polling is architecturally

simpler. Using this approach, the registrars doesn’t have to track which registrars called and which

registrars are waiting for replies. This leads to simpler implementations while also making it easier for

supporting various types of registrars. Nevertheless, the most efficient option here is to poll values in

a guard expression. We set the polling frequencies to 200ms as a result of trade-offs between callback

frequencies and processing overhead, which meets the real-time synchronization requirements of our

hospital setting.

The communication and synchronization requirements were inspected multiple times with multi-

disciplinary domain experts (10 developers, 12 researchers, and 4 physicians) to ensure that specific

functional and medical requirements were satisfied and accomplished correctly. To evaluate the per-

formance of our message-exchange architecture, we extensively profiled and instrumented the resource

consumption of our implemented system. The evaluation and performance instrumentation results are

presented in the next chapter.

Apart from the real experiments and the important benefits resulting from using our message-

exchange architecture, we have received positive feedback from the experts witnessing our message-

4A demo illustrating a part of our simulation is available at:
http://publish.illinois.edu/mdpnp-architecture/672-2

30

exchange architecture. The qualitative feedback we received is promising and suggests that the middle-

ware can in fact be applicable to large sets of requirements and that it can be extended to domains that

than medical services. Such domains include large-scale co-simulation of heterogeneous production and

ERP software models especially in the automotive industry [13].

2.6 Conclusion and Future Work

In this chapter, we described a dynamic distributed executable medical best practice guidance system.

The design provides a platform to assist adherence to medical best practices in locations throughout a

distributed healthcare provider network: from rural hospital, through ambulance transfer, to regional

tertiary hospital center. We codified complex medical knowledge into simplified executable automata,

and targeted stroke as the case study demonstration to illustrate and motivate the synchronization

of distributed medical best practice models. The design is founded on a dynamic pathophysiological

model-driven message-exchange architecture; our proposed message-exchange architecture meets the dy-

namism, safety, and reliability requirements for communication and synchronization across distributed

emergency medical best practice systems. We partially implemented the communication system and

applied it using proof-of-concept medical best practice automata. Stroke model medical best practice

simulations were conducted. In the next chapter, we will discuss our implemented prototype of the

proposed system and run extensive evaluation and instrumentation in support of the performance.

In the future, possible avenue of research to extend this work can be to systematically evaluate our

communication system using quantitative metrics, and to formally verify the protocol to make sure it

is always safe for all random combination of inputs.

31

Chapter 3

ModelSink: Model-Driven
Synchronization

3.1 Introduction and Background

Medical best-practice guidelines, instructions and standards of care play a vital role in medical care.

Results of studies report that 44,000 to 98,000 Americans die each year as a result of failing to fol-

low medical best-practice guidelines [146, 150]. Many medical best-practice guidelines exist in hospital

handbooks that are commonly lengthy and quite difficult to apply clinically, particularly in the acute

medical care setting. Therefore, more and more text-based medical best-practice guidelines are repre-

sented and encoded in computer-interpretable formats such as Arden [128], GLIF [126], and PROforma

[63]. Decision support systems such as Spock [156] have been developed to monitor treatment decisions

and provide medical staff with proper, timely recommendations. However, most such encodings and

representations are similar to the format of executable pseudo code, which are usually at a quite low

level for medical staff. Many clinical problems are complicated and such formats do not provide a visual

and user friendly interface for physicians to validate correctness. Furthermore, it is not easy to verify

formally these formats using the requirement of rigorous correctness needed for life-critical medical

cyber-physical systems.

Advances in techniques of software engineering accelerated the industrial use of model-driven devel-

opment, and visual modeling in particular, for building very large and complex models not only in the

medical domain, but also other domains such as automobile and avionics [147, 77, 122]. It is said that

60-90% of production in the automotive domain for example, is done through model-driven develop-

ment [147]. Organizations such as FDA have supported initiatives to aid in the effective development

and regulatory approval of medical devices. The Center for Devices and Radiological Health (CDRH)

branch of FDA for example, supports contributions aimed for effective development techniques of medi-

cal devices. Multiple public workshops focusing on promoting advances in medical device modeling and

simulation have been organized by FDA for this purpose [83, 107]. For medicine, the fact is that visual

32

Figure 3.1: Current stroke management inherently distributes care provision from remote rural to ambulance
to central tertiary hospital. The bars show various levels of skill and facility capacity at each location.

models such as statecharts are very similar to disease models and treatment models, and are executable

and can be indirectly verified motivates the use of statecharts for encoding medical guidelines. Their

well-designed user interface, simulation functionality, and hence rapid prototyping and validation helps

medical staff to understand the design more easily, validate the design model through user-friendly

simulation, and therefore give more meaningful suggestions to the model of the best-practice guidelines.

On the other hand, emergency patient transport for acute diseases from a rural hospital to a ter-

tiary center hospital such as those seen in stroke scenario has naturally complicated the process of

adherence to best practice guidance. Executable medical best-practice models are distributed across

multiple locations from the time that a patient first presents at a rural hospital, through diagnosis and

ambulance transfer, to arrival and treatment at a regional tertiary hospital center. This has led to

the creation of medical models that are widely separated physically and must run synchronously while

communicating with each other in real-time and sharing clinical data as necessary. These distributed

medical models are executable statecharts based on various disease models, patient condition models,

and models of care provision capability. Care provisions vary from remote rural to ambulance to central

tertiary referral. Figure 3.1 shows an abstract view of a stroke rural patient transport. Best-practice

models are executed in real-time at each of multiple locations, with physicians at the tertiary center fa-

cility supervising the remote rural hospital physicians and/or the EMT in the transporting ambulance.

This approach extends in a virtual manner the boundaries of the tertiary center to include the remote

facility and transport channels using models and an integrated communication system that safely and

effectively synchronizes care across large hospital network. The models of patient and system remain

consistent throughout. Furthermore, the heterogeneous nature of medical models exacerbates the prob-

33

lems as model design applications may lack consistency and common features of design. This makes

the problem of monitoring, traceability, and validation even harder for the medical software developers

during development of medical systems.

Without loss of generality, similar problem is extended to the context of interoperability and coordi-

nation of various medical devices. The lack of coordination and synchronization among medical devices

is a daily problem across hospital networks [81, 141]. Medical devices such as ventilators, IV pumps,

heart monitors and computers holding patient records communicate and update one another and get

synchronized automatically [81, 141]. Unfortunately a big problem in hospitals is that most of these

medical devices can’t communicate with eachother to share data. A recent survey on 526 nurses [30]

showed that more than half of the nurses had witnessed a medical error caused by a lack of coordination

among devices. More than two-thirds of the nurses said they spend at least an hour a shift dealing

with communication issues among devices, troubleshooting problems, and recording data manually that

isn’t shared among devices automatically. Such problems place a heavy burden on nurses to translate

and exacts a toll on patients as well. 93 percent of nurses in the survey strongly agreed that medical

devices such as monitors, diagnostic devices, and others should be able to seamlessly share data with

one another automatically [30].

The problem of coordination and synchronization may sometimes be hazardous that needs to be

considered during the design and modeling phases. In laser tracheotomy for example [115, 142], a

surgeon operates a laser scalpel to unblock the airway of the patient. In a simplified scenario, the

system has two main components: the ventilator to supply the oxygen or plaint air, and the laser

scalpel to emit the laser. Coordination among these two components is highly critical to ensure the

ventilator and the laser scalpel are not operating at the same time. More specifically, laser scalpel

should not start operation until a certain amount of time past from shutting off the ventilator to make

sure the amount of oxygen left in the patient is always kept below a specific safe threshold. Similarly,

to avoid brain damage due to hypoxia1, the ventilator should not be kept at non-operational status for

a specific amount of time. Overall, a need for an intermediary system to help medical devices software

or their executable models to communicate with each other, and to update, coordinate, and to get

consistent with each other is therefore evident.

In our preliminary study presented in the previous chapter, we ran a pilot study on a pathophysi-

ological model-driven communication for dynamic distributed medical best practice guidance systems.

1Hypoxia is a condition where the oxygen concentrations fall below the level necessary. Hypoxia may cause severe
brain damage or brain death.

34

Organ State Models

Best-Practice Manager

Lab
Values

Physiological
Measurements

Disease Model

Best Practice Assist System
#2

State Changes,
Monitoring
Guidelines,
Treatment

Orders

State Changes,
Monitoring
Guidelines,
Treatment

Orders

Organ State Models

Best-Practice Manager

Lab
Values

Physiological
Measurements

Disease Model

Best Practice Assist System
#1

Physician
Response

Patient
Clinical

Data

Readings

Physician
Interface

Medical
Devices

Nurse
Interface

Patient

Physician
Response

Patient
Clinical

Data

Readings

Physician
Interface

Medical
Devices

Nurse
Interface

Patient

E1 E2 E3

RMI

Polling

Server

RMI

Registry

Synchronized Queue

Threaded

Socket

Push

Server

Input Output

RMI

Client

Socket

Client

L1 L2 L3

RMI

Client

Socket

Client

Figure 3.2: The ModelSink workflow. The middleware allows heterogeneous distributed executable medical
models (medical best-practice models in this example) to communicate and synchronize automatically.

In that chapter, we proposed the notion of distributed medical best-practice guidance systems across

multiple distributed hospital networks, the dynamism introduced by this distribution, as well as the

concept of executable best-practice automata. We targeted acute stroke patient emergency care as a

use case, and codified medical best-practice knowledge available in medical textbooks into executable

automata. We presented an initial design of a message-exchange architecture using space communica-

tion analogy, and introduced our customized pathophysiological model-driven communication protocol.

The work presented here follows our pilot study, and builds upon our earlier model-driven design to-

wards a real-platform development and implementation of a model-driven communication middleware

for synchronization of the executable models that we codified during our pilot study, followed by per-

formance evaluation through extensive experiments and instrumentation. We describe ModelSink, a

middleware that enables automatic model-to-model communication and synchronization among het-

erogeneous statechart models, not only during execution, but can also aid model-driven development,

simulation, validation, and traceability of any distributed statechart models. Through ModelSink, dis-

tributed statechart models can communicate and be synchronized with each other efficiently through

automatic sharing of data such as patient state changes for example in the clinical context. This per-

mits the communication and automatic synchronization of various statechart models such as medical

best-practice guidance models in distributed hospital settings, in an ensemble. In summary, ModelSink

i automatically performs model-to-model synchronization by sharing state changes as opposed to

manual updates by the users. ModelSink therefore facilitates communication among physically

distributed users (e.g. EMT and doctors at a center hospital) to share status updates.

35

ii leverages an efficient communication architecture to distribute messages among disjoint statechart

models. Our design uses a customized low-overhead persistent push/poll communication mechanism

which also complies with the semantics of automata-based model-driven development.

iii leverages a synchronized atomic and thread-safe queuing module to achieve the real-time require-

ments for co-execution and synchronization of statechart models. Our specialized design removes

possible synchronization overhead between the pushes and the multi-threaded polls.

iv provides a distributed mechanism to avoid life-critical safety issues within the context of distributed

medical systems when communication fails. We embed an open-loop safety parameter field in the

communication protocol header to ensure that the models always transit to a safe state in case of

communication failure or message loss.

v leverages a parameter mapping module to transfer messages among distributed models for the

purpose of supporting coordination and synchronization. The module helps translate model-specific

synchronization control events from one model to another.

vi is platform independent. ModelSink can be deployed on any platform, and supports the hetero-

geneous nature of statechart models as the design semantics are independent of the underlying

modeling application.

To the best of our knowledge, this is the first medical middleware that achieves automatic commu-

nication and synchronization among heterogeneous distributed medical models.

Figure 3.2 illustrates a view of the ModelSink workflow. The heterogeneous medical models such

as best-practice guidance models monitored by physicians and nurses are executed in different loca-

tions. Once the medical models are connected, our middleware automatically shares synchronization

data and control events such as patient state changes and monitoring guidelines in the context of best

practices across the distributed medical and clinical models, remotely, as if they are manually controlled

by the medical staff. Furthermore, ModelSink’s automated communication and synchronization mech-

anisms achieved through model-only control incurs a high degree of flexibility, and can effectively adapt

to clinical ecosystem changes when reconfiguration of medical models such as disease models rapidly

occurs. That leads to significant reduction in heterogeneous model-driven development and software

maintenance costs of medical best-practice models. ModelSink can further assist software engineers to

build a single user-friendly gateway with minimum complexity that can be used as a front-end inter-

36

action to realize co-simulation, co-execution, or to monitor and control large-scale statechart models

simultaneously.

3.2 Related Work

ModelSink is conceptually similar to the notion of mediators underlying emergent connectors [104,

103, 72] such as Enterprise Service Bus [69] as the concept of a “connectivity middleware” is common

between the two. However, ModelSink is fundamentally different as the design goal of mediators is to

enable the composition of pervasive networked systems and protocol mediation as opposed to remote

synchronization of executable medical models. Another set of related work to ModelSink is database

data replication tools such as [18, 16, 23] and [17] that provide automated data sharing and data

replication between databases. Overall, while there are multitude of related work from computer science

perspective, these tools have not been properly integrated into medicine and the safety-critical aspects

of clinical practices, such as handling connection failure and safety in cases of communication loss. A

major distinguishing point for ModelSink therefore, is to understand medical models as well as clinical

needs. Furthermore, in ModelSink , on the contrary, the notion of access is platform independent and

lightweight because it provides a model-to-model access as opposed to system-to-system or database-to-

database.

Aside from the medical related work described in Section 3.1, medical best-practice guidelines for

emergency care have been created for patients in major hospitals. For instance, the University of

Texas MD Anderson Cancer Center has developed clinical management algorithms [15] that depict

best practices for diagnosis, evaluation, and treatment of specific diseases such as cancer targeting

adult patients. Their contribution however, only provides a high level algorithmic workflow using

a multi-disciplinary approach, and not only are not modeled as executable guidelines, but also are

conceptually centralized, and therefore the notion of communication, synchronization, and distribution

is not applicable in their context.

A variety of heterogeneous model construction and interpretation have been proposed for the simula-

tion of complex systems. Ptolemy [46] for example, the most famous heterogeneous modeling platform,

supports prototyping of heterogeneous systems with different domain computation model to capture

different type of subsystems. Current examples of domains include synchronous and dynamic dataflow,

discrete-event, and others appropriate for control software. Domains can be mixed as appropriate and

37

use underlying meta model to realize an overall system simulation. Similar methods are adopted by

[106] and [129], as they use automata to interpret heterogeneous timed automata and dataflow model

and capture the heterogeneous sub-models. These works however, function in a single project and a

single machine, and lack support of communication and distributed execution.

Some works have been done to address the problem of co-simulation for heterogeneous models lo-

cated in different projects. For example, in [62], the authors implement Crescendo, a tool that allows

the model expressed in discrete-event of a tool called VDM and the model expressed in continuous time

of a tool called 20-sim to share information and accomplish co-simulation among them. In [42], the

authors propose FMI, a tool to support model exchange using a combination of XML files and C-code.

Similarly in [45], authors propose a code-in-the-loop co-simulation framework for the OMG SysML im-

plemented in the Artisan Studio tool, and the Stateflow model implemented in Matlab Simulink tool.

The main feature of their tool is the automatic generation of optimized code, allowing simulation that

may eventually run natively on a target for embedded systems. While these works capture the heteroge-

neous models, they are still limited to a single machine and lack support for distributed models, which

need significant effort to solve the communication, synchronization, and consistency which motivates

our work.

3.3 Design of the Middleware

The core of ModelSink is implemented through a queuing and mapping system as well as a push-

based and poll-based communication system, which are accomplished through socket-based and Remote

Method Invocation (RMI)-based client/server architecture, respectively. Two client agents (a push

socket client agent and a polling RMI client agent) are installed on every machine executing any medical

models. These clients are then connected to the corresponding servers that can be located on any of those

machines. During ModelSink sessions, all corresponding communication and synchronization control

events are registered and distributed through ModelSink as if medical staff were actually monitoring

and manually tracking the disease or patient status through their executable models. We implemented

ModelSink in Java as a partial compliance with the design feature (vi), so that it can be deployed on

any platform running Java Virtual Machine (JVM), including Linux and Windows, therefore, making

the compiled code platform-independent. We have designed an open-loop safe communication protocol

for cases where communication fails, as well as a list of APIs for ease of operations such as establishment

38

Figure 3.3: The overall structure of ModelSink .

of a connection, specifying medical control events and rules for synchronization, as well as specifying

push or poll mechanisms for communication or synchronization control events.

3.3.1 Middleware Structure

ModelSink consists of six major components: a socket-based client agent (push client) and a RMI-

based client agent (polling client), both residing on each medical machine, a mapping module for

synchronization purpose, a queuing module, a multi-threaded socket-based server (push server) and a

RMI-based registry and server residing on any of the distributed medical machines designated as the

server. The overall structure of ModelSink is illustrated in Figure 3.3.

The push client captures medical events through operation callback on the executable models once

an event such as a state change is triggered. These locally-triggered synchronization control events are

then encoded to a specific message format identifying the medical model’s UID and triggered events

which overall forms the synchronization control message. The messages are then encrypted with the

AES 128-bit symmetric cipher in Electronic Codebook (ECB) mode, serialized, buffered, and then sent

to the push server via the persistent socket connection that has been established. The push server

is a socket-based multi-threaded server that communicates with all other remote push-client agents

39

concurrently. The server receives synchronization control messages associated with each executable

medical model, which are eventually pushed into the queuing module. Once received at the push server,

the synchronization messages are deserialized, decrypted, decoded, and normalized to a generic format

which are then directed to the mapping module. The use of the generic format is to store messages as

a globally understandable format, which later helps with model-specific translation of synchronization

control events specific to each medical model.

To enable synchronization among distributed medical models, the mapping module is pre-configured

with semantic mappings of synchronization control events from one model to another, to provide a

particular set of events specific to each of the distributed medical models. This happens by performing

translation of synchronization control events from one medical model to corresponding control events of

other medical models located on other remote devices or platforms, thereby automatically synchronizing

medical models or co-executing medical devices altogether. While placement of the mapping module

in a centralized manner on the server machine is more convenient for applying or spreading updates as

well as for auditing and security purposes, it is not yet a hard requirement. The mapping module can

be partially placed locally on each of medical machines alternatively.

The normalized synchronization messages originated from the mapping module are then pushed to

the atomic thread-safe FIFO queuing module. Upon polling operations which are done through RMI-

based communication system, the generic formatted messages are then dequeued from the queuing

module, and are re-mapped to form model-specific events, and to generate a set of synchronization

control events specific to each medical model. Messages are then composed and deployed on our open-

loop-safe communication protocol supporting both reliability and safety features, and are then sent

to the RMI polling server. The synchronization control messages are deserialized and decrypted once

polled by the RMI client agents residing on each medical model. Once the synchronization control

events are decomposed, synchronization among distributed medical models is performed by triggering

the destination model’s receive() operation callback formed in accordance with the originating model’s

synchronization control events received through the communication channel.

3.3.2 Communication Architecture

In compliance with the design feature (ii) (refer to Section 3.1), we employ an efficient communication

architecture inside ModelSink to propagate messages among distributed medical models. Our design

uses customized low-overhead persistent push-based and poll-based communication mechanisms which

40

is also compliant with the semantics of automata-based model-driven development. From an engineering

point of view, unlike a regular client-server communication such as those used in messaging applications

with the client process looping around a buffer to read responses, our medical middleware must also

support continuous and sporadic message transfer, but with no termination of the socket connection.

However, it also needs to maintain safety, security, reliability, as well as a long-lived connection after

each data transfer in order to incur minimum latency.

To address the communication requirements, we customized a low-overhead persistent socket-based

client-server communication architecture over TCP/IP for push operations throughout the running

sessions rather than setting up a new connection for each push operation. This maintains the stability

of the socket connections by initially creating a connection at the beginning of each transfer session,

and occasionally sending a message as necessary. To enable that, we wrapped the push client socket

connection around a thread, and use a blocking queue to wait for messages. A single sender queue

exists throughout the application, therefore using a singleton pattern. On the other hand, performing

a read() function causes the thread to block forever. To address that, we use a special thread that

calls a specific method repetitively at specified periods and read time-out that can be used to post a

ping message, once in a while. This improves the stability of connections while also relaxing problems

associated with application terminations due to calling the close() function.

While the socket-based client-server architecture is good for individual medical models to push

messages to the socket-based server, this is not yet a good solution for distributing the messages between

the distributed medical models as it imposes a significant commitment on the server side. The server

is forced to inefficiently keep a long-lived and mostly unused socket connection open with each client.

This leads us to use client-side polling, for two main reasons: First, client-side polling is architecturally

simpler. Using this approach, the server doesn’t have to track which medical clients called and which

medical clients are waiting for messages. This leads to simpler implementations while also making

it easier to support various types of medical clients; meeting the heterogeneity requirements of the

distributed medical devices and their executable models. The second reason to use client-side polling

is the inability of clients to accept socket connection initiated from server, especially in the context of

automata-based model designs. Our design enables ModelSink to support the heterogeneity nature of

medical models and makes it independent of the automata modeling application, partially addressing

the design feature (vi). For example, in models designed in Simulink’s Stateflow, the destination model

reads the value of data from an input port which is only possible through polling mechanism. Similarly,

41

in models designed in Yakindu’s Statecharts modeling software, it is not possible to directly raise events

from the operation callback and trigger a receiving data. Nevertheless, the only option here is to poll

values in a guard expression. Our use of RMI-based callbacks further helps with significant efficiency

such as decreased client-side processing as well as implementation simplicity and support of various

medical modeling frameworks [73].

3.3.3 Open-Loop Safety Protocol

As previously described in Chapter 2, communication failure in the wireless medical environment can

lead to life-critical safety issues within the context of distributed medical systems. Following the design

feature (iv), the architecture of our medical middleware should guarantee the safety of the execution

of distributed medical models, to ensure that the models always transit to a safe state from a model-

driven perspective even with communication failure or loss of messages. Let’s take Stroke best-practice

guidance models as an example. Figure 2.4 in Chapter 2 illustrates a simplified version of our developed

stroke best-practice workflow model both for rural hospital (top) and regional center hospital (bottom),

which form the executable core of best-practice guidance models. Assume a message triggers a state

change event in the model of regional center hospital, making the workflow model transit to “tPA

Therapy” state. Suddenly communication failure occurs. A question which arises is “how long to

continue tPA therapy and stay in that state?”. Continuing tPA therapy for longer than a specific

duration characteristically is hazardous for the patient, which therefore is considered to be unsafe for

the whole cyber-physical-medical system.

Similarly, let’s consider the laser tracheotomy example again. As mentioned earlier, to avoid surgical

fire, one of the vital safety requirements is to ensure the ventilator and the laser scalpel are not operating

at the same time, and that laser scalpel does not start operation until a certain amount of time has been

past from shutting off the ventilator. Similarly, to avoid brain damage due to hypoxia, the ventilator

should not kept non-operational for a specific amount of time. In such scenarios therefore, continuing

emission of laser or keeping ventilator off more than a specific period are both considered unsafe for the

whole system.

Given the aforementioned characteristics, we therefore classify states of model execution into the

following two classes:

• A transient safe state, which allows models to stay safely in the state, but only for a limited

duration. That said, if staying on a transient safe state lasts longer than the specified allowed

42

limit, it becomes unsafe, and may lead to medical hazards. “tPA Therapy” state is an example

of a transient safe state.

• An open-loop safe state, which is considered always-safe for the maximum duration of the given

medical procedure. Therefore, an open-loop safe state does not involve any medical hazard while

stay lasts more than any time threshold.

To maintain reliability and safety, our designed communication and synchronization system uses

open-loop safety to guarantee that execution of medical models transits from a transient-safe state to a

predefined open-loop-safe state when a communication failure occurs. Earlier works on open-loop safety

protocol in the context of a medical systems include [110] and [111]. The authors in these works used

an airway laser surgery system as the target example to propose a centralized supervisor which decides

a safe operation region for medical devices. While these works share the same assumption that the

communication network is unreliable, they deal with the problem of open-loop safety by a centralized

approach. Whereas in our work, we employ the notion of open-loop safety mechanisms in a distributed

medical environment, and extend that towards medical best-practice models in a distributed hospital

network. As a part of tackling the problem in the distributed environment, we embed open-loop safety

as a safety parameter field into our communication protocol’s header, so that a communicated message

triggering a state change forces the medical models not to make a state change unless an open-loop

state is already determined and queued as an emergency option in case communication fails. It is also

necessary to assure that the open-loop safety option is executable locally on patient’s side. In the context

of Stroke best-practice guidance models, transient safe states such as “tPA Therapy” are transited to an

implicit “general assessment” as an open-loop-safe state to ensure the safety requirements of execution

of distributed medical models.

3.3.4 Data Structures and Rules for Mapping

Following the design feature (v), ModelSink leverages a parameter mapping module to transfer messages

and control events among distributed executable models for the purpose of supporting coordination and

synchronization. It provides a mapping of model-specific synchronization control events specific to each

individual model from one model to another. The mapping module works on the principle of key-

value store and hashing, composed of a combination of multi-hashmap and 2-dimensional linked-list

data structures, which is pre-configured with mappings of synchronization control events from one

43

medical model to another for the purpose of coordination and synchronization. To store key-value

pairs, we used the first dimension of the 2D linked-list as a bucket to store key objects corresponding

to encoded normalized generic synchronization control events. The second dimension is used to store

values corresponding to an ordered list of model-specific synchronization control events specific to each

individual model such as necessary medical functions and state changes that must be triggered on the

other medical models. Similar to a regular HashMap, the mapping module’s get(Key k) method calls

hashCode method on the key inputs, and applies returned hashValue to its own static hash function to

find a bucket location where keys and values are stored.

Our implementation of the mapping module imposes a one-time overhead, while it can also be

reusable. Therefore, if the specifications of medical models change considerably, only the mapping

module is updated, therefore incurring minimum cost.

3.3.5 Data Structures and Rules for Queuing

According to the design features (i) and (iii), to achieve the real-time requirements of co-execution and

synchronization of emergency medical systems, it is crucial to remove possible synchronization overhead

between the multi-threaded push server and the pipelined RMI polls. As mentioned earlier, for higher

performance, ModelSink does not rely on send/receive messaging model to distribute messages across

different medical clients. Instead, medical clients retrieve messages by polling data from a shared

synchronized queue-like data structure where only the socket push server writes. This specific approach

is called pointer polling and is more efficient, is simpler, and requires no additional storage data structure

on the receiving side compared to send approach when data is continuously produced.

In order to synchronize multiple pipelined RMI polling accesses, we developed a listed chasing-

pointer queue which is our efficient customized list. Our listed chasing-pointer queue is a specialized

data structure to support low-latency concurrent accesses which employs an efficient wait-free algorithm

inspired from [143] and [121]. We borrow similar concepts, and implement another variation that can

be employed for multiple number of producers and consumers. The queue is thread-safe, and is based

on linked nodes. The queue orders messages FIFO, with the head of the queue being the message

pushed the longest time and the retrieval operations obtaining elements at the head of the queue. The

traditional implementation of a synchronized queue works based on the concept of a shared variable such

as a counter to synchronize the writer and the reader, which is referred to as a counter-based approach.

Since both the writer and the different readers modify this shared variable, multiple cache misses

44

are unavoidable for distribution of each message on the server side, therefore resulting in significant

performance overhead when synchronization has to be performed very frequently. Our specialized

implementation avoids use of a shared synchronization variable, and instead uses a list of boolean flags

to indicate whether a message is available in the list to poll which reduces the synchronization issues.

Each message slot in the queue is augmented with a header that indicates whether a message is available

or not. Each queue cell contains the normalized generic message value, which points to a list of flagged

pointers, with each index associated with a specific medical client. Thus, a consumer medical client

is always chasing the producer medical client in the synchronized queue for filled queue cells. With

that feature being implemented, every medical client regularly polls only its own pointer, and unflags

it whenever data is successfully retrieved. The process of polling messages from the queue continues

until at least one pointer associated with a specific medical model is still flagged. Once all pointers are

unflagged, the data is dequeued, and the head of the queue is advanced.

3.4 Evaluation

From a medical perspective, physicians are taught organ system function as part of the representation

of disease process. They look for patterns of pathophysiological changes (the change in physiological

measurements as a result of disease) within an organ system to understand organ states [68, 65].

This organ-centric view of pathophysiological expression also matches medical treatment, which is

captured by a best-practice medical system. Given that, to evaluate our middleware, we developed

multiple medical best-practice executable models, and used them as benchmarks and proof-of-concepts

to evaluate ModelSink. The engine of our best-practice guidance systems is executable medical models

including disease and organ models. We codified medical knowledge into executable formal best-practice

models so that they can be checked by expert physicians via the execution of these models using scenario-

driven simulation and a user-friendly graphical interface that the statechart-based design provides.

3.4.1 Experimental Setup

For the development of the executable models, we used Yakindu Statechart tools 2.4 plugged into

Eclipse Luna 4.4.0 Integrated Development Environment (IDE) which altogether provide an integrated

open-source modeling environment for model-driven development, and rapid prototyping and validation

with domain experts [25]. Our medical models include executable models of simplified models of sepsis

45

Figure 3.4: Simplified statechart models for sepsis, including disease (top) and two organ models (bottom).

46

Figure 3.5: A sample of real-platform simulations.

and stroke best practice guidelines consisting of both disease and underlying organ models, which are

codified from medical knowledge, simplified, and then validated with physicians for correctness.

We have evaluated and tested the functionality of ModelSink through our proof-of-concept medical

case studies conducted in collaboration with Carle Foundation Hospital [26], on real platforms where

overall 230 types of communication and synchronization requirements were specified to provide com-

munication across multiple sets of distributed executable medical models, and to synchronize them as

necessary. Figure 3.4 illustrates an instance of simplified best-practice guidance models for sepsis. These

medical models are all represented as executable statecharts that focus on adherence to best-practice

medical guidelines, with sets of disjoint models mounted and executed on two physically distributed

machines. The machines included a Dell Latitude E5540 with Intel(R) Core i7 4600U 2.10 GHz quad-

core processors, 4 MByte Cache and 8,192 MByte physical memory, running Windows 10.0 Pro 64-bit

Operating System, and a HP Z230 SFF with Intel Xeon E3-1240 with 3.4 GHz quad-core processors, 8

MByte Cache and 8,192 MByte physical memory, running Windows 7 Enterprise 64-bit Operating Sys-

tem. Overall, the correctness of communication and synchronization operations were inspected multiple

times with multi-disciplinary domain experts (10 developers, 12 researchers, and 4 physicians) to ensure

that specific functional and medical requirements were satisfied and accomplished correctly. Figure 3.5

47

presents a sample of our real-platform simulations and experiments2.

3.4.2 Performance Evaluation

We evaluated the performance of ModelSink through resource consumption instrumentation. We used

three different monitoring tools as below for instrumentation of the Java Virtual Machine (Java VM)

for fine-grained experimental data and to ensure the results are accurate and are consistent with each

other:

• JConsole 1.8.0 [19]: A monitoring tool compliant with Java Management Extensions (JMX) which

monitors Java Virtual Machine (JVM) and Java applications, supporting both local and remote

machines.

• VisualVM 1.38 [24]: A profiling tool to profile the performance and memory consumption, which

provides detailed information about CPU and memory usage of Java applications.

• JVM Monitor 3.8.1 [20]: A Java profiling tool integrated with Eclipse as a plug-in to monitor

resource usage of Java applications running on Eclipse IDE.

We employed all three profiling tools and instrumented detailed information on the CPU usage,

number of threads, and heap memory consumption of ModelSink. Each profiling experiment lasted

for 300 seconds, and we repeated each single experiments for 10 times to make sure the standard

deviation always falls below 10% and that the results are accurate and dependable. We tuned the

polling frequency of each medical clients at multiple rates including 100ms, 1s, and 5s to analyze trade-

offs between callback frequencies and processing overhead. Figures 3.6 to 3.8 illustrate a subset of all

our performance instrumentation results.

Memory Instrumentation

We measured the heap and non-heap memory usage of ModelSink through instrumentation done with

JConsole profiler. The heap memory of JVM is created at the JVM start-up, and is the runtime data

area from which memory for all class instances and arrays are allocated. We set the maximum heap

size to 35MByte. The non-heap memory of JVM is also created at the JVM start-up, however, stores

per-class structures and includes call stacks, memory allocated by native code for instance for off-heap

caching, the Metaspace as well as memory used by the JIT compiler (compiled native code).

2A short simulation demo is available at: http://publish.illinois.edu/mdpnp-architecture/672-2

48

0

5

10

15

20

25

30

35

40

4 8
1

2
1

6
2

0
2

4
2

8
3

2
3

6
4

0
4

4
4

8
5

2
5

6
6

0
6

4
6

8
7

2
7

6
8

0
8

4
8

8
9

2
9

6
1

0
0

1
0
4

1
0
8

1
1
2

1
1
6

1
2
0

1
2
4

1
2
8

1
3
2

1
3
6

1
4
0

1
4
4

1
4
8

1
5
2

1
5
6

1
6
0

1
6
4

1
6
8

1
7
2

1
7
6

1
8
0

1
8
4

1
8
8

1
9
2

1
9
6

2
0
0

2
0
4

2
0
8

2
1
2

2
1
6

2
2
0

2
2
4

2
2
8

2
3
2

2
3
6

2
4
0

2
4
4

2
4
8

2
5
2

2
5
6

2
6
0

2
6
4

2
6
8

2
7
2

2
7
6

2
8
0

2
8
4

2
8
8

2
9
2

2
9
6

3
0
0

M
em

o
ry

 S
iz

e
(M

B
y
te

s)

Time (s)

Heap Memory Usage

2 Models (100ms)

2 Models (1s)

2 Models (5s)

1 Model (1s)

No Model (1s)

0

2

4

6

8

10

12

14

16

18

4 8
1

2
1

6
2

0
2

4
2

8
3

2
3

6
4

0
4

4
4

8
5

2
5

6
6

0
6

4
6

8
7

2
7

6
8

0
8

4
8

8
9

2
9

6
1

0
0

1
0
4

1
0
8

1
1
2

1
1
6

1
2
0

1
2
4

1
2
8

1
3
2

1
3
6

1
4
0

1
4
4

1
4
8

1
5
2

1
5
6

1
6
0

1
6
4

1
6
8

1
7
2

1
7
6

1
8
0

1
8
4

1
8
8

1
9
2

1
9
6

2
0
0

2
0
4

2
0
8

2
1
2

2
1
6

2
2
0

2
2
4

2
2
8

2
3
2

2
3
6

2
4
0

2
4
4

2
4
8

2
5
2

2
5
6

2
6
0

2
6
4

2
6
8

2
7
2

2
7
6

2
8
0

2
8
4

2
8
8

2
9
2

2
9
6

3
0
0

M
em

o
ry

 S
iz

e
(M

B
y
te

s)

Time (s)

Non-Heap Memory Usage

2 Models (100ms)

2 Models (1s)

2 Models (5s)

1 Model (1s)

No Model (1s)

14

14.2

14.4

14.6

14.8

15

15.2

15.4

15.6

15.8

16

152 156 160 164 168 172 176 180 184 188 192 196 200 204 208 212 216 220 224 228 232 236 240 244 248 252 256 260 264 268 272 276 280 284 288 292 296 300

M
em

o
ry

 S
iz

e
(M

B
y
te

s)

Time (s)

Non-Heap Memory Usage

2 Models (100ms)

2 Models (1s)

2 Models (5s)

1 Model (1s)

No Model (1s)

Figure 3.6: ModelSink’s memory usage. (Top) Heap memory usage, (Middle) Non-heap memory usage,
(Bottom) Zoomed non-heap memory usage

49

Figure 3.6 illustrates the average heap memory consumption of ModelSink. We analyzed and com-

pared the memory consumption of ModelSink for five different scenarios: a) baseline performance where

no medical model is communicating with ModelSink, b) a single medical model is communicating with

ModelSink, polling data with the rate of 1s and sending data as necessary, c) two medical models are

communicating with each other through ModelSink, polling data with the rate of 1s and sending data as

necessary, d) two medical models are communicating with each other through ModelSink, polling data

with the rate of 100ms and sending data as necessary, and e) two medical models are communicating

with each other through ModelSink, polling data with the rate of 5s and sending data as necessary. As

can be seen, the heap memory usage show an overall slight increasing linear trend due to the increase

in buffer size, and no anomalies is noticed within the heap memory usage. Also, a relative comparison

of the overall heap memory consumption of cases a to e above can be derived according to the figure.

As can be seen, case c (average of 21.678 MByte over the time range of demo runtime) shows a slightly

higher slope in heap memory usage compared to case b (average of 20.552 MByte), and case b shows a

slightly higher slope in heap memory usage than case a (average of 19.234 MByte) simply due to the

increase in the number of medical clients communicating with each other. Similarly, case e (average

of 20.579 MByte) shows a slightly lower slope in heap memory usage compared to case c (average of

21.678 MByte), and case c shows a slightly lower slope in heap memory usage than case d (average of

23.335 MByte) simply due to the higher rates of polling requests. Overall, an increase in the number of

communicating medical models and higher frequencies of polling requests pushes negligible overhead.

No OutOfMemoryError due to data spike or memory leakage is detected by the profiler during the

time range of the demo runtime, approving the heap memory usage functionality of the tool. As the

heap memory size reaches the defined maximum size (i.e. 35MByte), the dead objects of the heap

memory are reclaimed by the JVM’s garbage collection, freeing almost 31 MByte (i.e. 88% of used

memory). It is also concluded that the overhead of garbage collector process is negligible, and that

garbage collector is not even called for a single point in time during a 5 minute runtime of case d

above where two medical models are communicating through ModelSink with a polling rate of 100ms.

Furthermore, in case garbage collector process runs, a single call only takes an average of 2 ms to free up

heap memory, which is significantly below the polling threshold and charges relatively no performance

overhead on the execution of ModelSink.

Figure 3.6 (middle) shows the average non-heap memory consumption of ModelSink. For non-heap

memory, the abnormal growth of memory size may indicate a critical problem such as leaked loader

50

issues or massive interned strings. As the figure shows, no abnormal increase can be noticed in non-

heap memory consumption of ModelSink over the time range of its runtime. That proves there is no

class loading and object allocation problems within ModelSink. As can be seen, all figures show almost

identical trendlines, with no noticeable difference. Figure 3.6 (bottom) shows the same figure zoomed

in significantly. As can be seen, a tiny difference exists among the five cases.

Interestingly, the same argument made previously for heap memory usage is compliant with non-

heap memory usage. Case c with 2 communicating models (average of 14.985 MByte over the time

range of demo runtime) shows a slightly higher values in non-heap memory usage compared to case

b with a single communicating model (average of 14.901 MByte), and case b shows a slightly higher

values in non-heap memory usage than case a with no communicated model (average of 14.750 MByte)

simply due to the increase in the number of threads corresponding to medical clients communicating

with each other and the memory stacks allocated for socket threads3. Similarly, case e with polling

rate of 5s (average of 14.914 MByte) shows a slightly lower values in non-heap memory usage compared

to case c with polling rate of 1s (average of 14.985 MByte), and case c shows a slightly lower values

in non-heap memory usage than case d with polling rate of 100ms (average of 15.051 MByte) simply

due to the higher polling rates. Overall, similar to the argument made for heap memory, it can be

concluded that an increase in the number of communicating medical models and higher frequencies of

polling requests enforces negligible overhead.

Threads Statistics

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10

N
u

m
b

er
 o

f
T

h
re

a
d

s

Number of Communicating Models

Thread Count

Thread count

Peak thread count

Daemon thread count

Linear (Thread count)

Figure 3.7: ModelSink’s thread statistics.

3Inside JVM, each Thread consumes a small amount of memory called Stack where all active execution frames and
traces are stored

51

We instrumented the JVM, monitored the thread properties of ModelSink, and collected thread

statistics of JVM such as the list of threads, their states, resource usage, as well as stack traces.

Given the architecture design of ModelSink, a new socket thread is created and executed to serve each

communicating medical thread whenever a new medical client communicates with ModelSink. Figure

3.7 shows the trend in the total thread count per the total number of communicating medical clients.

We instrumented three types of JVM’s monitoring statistics: a) threadcount, which shows the current

number of live and active daemon and non-daemon threads (currently running), b) peakthreadcount

showing the peak live thread count since the JVM started or it was reset, and c) daemonthreadcount

showing the current number of live daemon threads. As can be seen, after the baseline with the limited

number of 14 live threads, the total thread count follows a simple linear trendline, with each additional

communicating medical client initiating a new thread. No abnormal thread behavior and state change

has been detected.

To identify if any deadlock is caused during the runtime of ModelSink, we inspected the states of all

threads against deadlocks. Using JVM Monitor profiler [20], deadlocks are automatically detected and

it can be recorded which threads are involved in deadlock. Our instrumentation proved no deadlock

has been ever detected, and CPU was never seen to get unexpectedly overloaded.

CPU Usage

y = 0.1392x - 0.178

R² = 0.9752

y = 0.1256x - 0.175

R² = 0.9624

y = 0.1144x - 0.1621

R² = 0.9636

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

0 1 2 3 4 5 6 7 8 9 10

C
P

U
 U

sa
g

e
(%

)

Number of Communicating Models

CPU Usage

100ms

1s

5s

Linear (100ms)

Linear (1s)

Linear (5s)

Figure 3.8: ModelSink’s CPU usage.

We profiled the performance of ModelSink in terms of CPU consumption, and instrumented the

CPU usage of all the threads. This is useful especially for identifying threads that have high CPU

consumption. During the profiling sessions, no abnormal CPU usage was detected by a specific thread.

52

Figure 3.8 shows average CPU usage for various number of communicating medical clients (baseline

case with no communicating medical client, up to 10 concurrent communicating medical clients), for

three different polling rates (100ms, 1s, and 5s). As can be seen, overall, the overhead of ModelSink

is negligible, and no sudden spike can be noticed in the load. The average CPU consumption for 10

communicating medical clients with polling rates of 1s are less than 5%. The low CPU utilization

of ModelSink also signifies that no source code problems such as infinite loops or excessive backend

calls, and no excessive garbage collection cycles take place inside the runtime execution of ModelSink.

The limited number of active threads in ModelSink helps with lowering the CPU consumption and

the overall performance as the number of context switches are also limited. Figure 3.8 also illustrates

that the CPU consumption almost follows a linear-like trendline with high confidence (R-Squared value

of more than 95% fitting the linear regression lines), therefore making ModelSink scalable in terms

of number of communicating medical clients. Interestingly, the small difference in the slope of linear

regression trendlines indicates that ModelSink’s performance overhead is not significantly influenced by

the rate of polling requests by the medical clients, therefore making ModeSink more robust in higher

polling rates.

3.4.3 Discussion

From a computing and software engineering perspective, within ModelSink we propose the notion of

“model-driven communication”, enabling communication among distributed models and executable

state machines. Our middleware can be deployed as an add-on layer on top of modeling and decision

logic software such as Yakindu’s Statecharts [25] and Matlab’s Stateflow [21]. ModelSink therefore

assists with rapid prototyping of heterogeneous models of cyber-physical systems which are physically

distributed, and makes it possible for the interaction and concurrent subjective functions such as co-

design, co-simulation, and co-validation of system prototypes in various domains.

In addition to the important benefits that result from the use of ModelSink, our middleware was

highly praised for the automation role that it was able to play, especially in the medical domain. Prior

to applying our tool, a medical technician or EMT had to coordinate manually from an ambulance

transfering a patient to a regional hospital, tracing and reporting the changes, and therefore perform

communication and synchronization functions manually. With the application of ModelSink, automatic

communication and synchronization is achieved, removing the manual intervention of EMT, nurses, and

doctors from the loop.

53

Overall, we have received positive feedback from both the model-driven development industry as

well as the medical staff and physicians as the end users using our middleware (the results of user study

and quality of experience are prepared in a separate document). The qualitative feedback we received

is promising and suggests that the middleware can in fact be applicable to large sets of requirements

and that it can be extended to domains that than medical services. Such domains include large-

scale co-simulation of heterogeneous production and ERP software models especially in the automotive

industry [13].

3.5 Conclusion and Future Work

The rapid growth of model-driven development together with distributed computer systems has led

to the development of distributed best-practice medical models which assist the medical staff with

clinical validation and adherence. These accomplishments are achieved across a medical network from

rural, through ambulance transfer, to tertiary center. However, the distributed medical models require

continuous and real-time interaction among models of different forms. This makes it necessary to offer

methods of communication, especially to synchronize their co-simulation and co-execution in a medical

environment.

In this chapter, we describe ModelSink, a middleware that enables model-to-model communication

and synchronization between heterogeneous distributed medical models. We evaluated ModelSink, and

instrumented its resource usage using medical best-practice guidance models that we have developed

to assess how ModelSink performs in various loads given different performance metrics. We tested

ModelSink on a real platform running distributed medical models, and demonstrated that there are in

fact many potential uses of our tool in industry services other than medical systems that cannot be

realized through other means.

In the future, we are planning to extend the work is to formally verify and systematically evaluate

ModelSink using quantitative metrics, especially using model checking techniques for correctness of

our queuing module. Another future avenue of research is to validate clinically our middleware in

collaboration with Carle Foundation Hospital [26], and to implement ModelSink on a real clinical

testbed that we have built using the SimMan medical patient simulator [22].

54

Chapter 4

SINk: GUI-Driven Synchronization

4.1 Introduction

“Software is eating the world!” [35]. Our dependency on software is continuously increasing, and it is

said that 60-90% of production in the automotive domain for example, is done by software systems [147].

Many products and industrial services that would have traditionally been realized through “hardware”,

are now realized purely via “software solutions”. Overall, one way or another, human-in-the-loop

software systems in various domains are getting more and more complex, as they operate within a

complex ecosystem of libraries, models, protocols and devices, and require human interaction [147]. The

interfaces of many platform-dependent software, such as industrial controller simulators (e.g. Mitsubishi

PLC x7 [124]) and healthcare systems (e.g. Laerdal’s SimMan Patient Simulator [22]) for example, are

sometimes hard to manage and lack user-friendliness. Therefore, third-parties are pushed to develop

simple-to-use, and more user-friendly and maneuverable interfaces for those applications, which in fact

motivates the need for co-simulation among different interfaces. While the graphical user interfaces

are easy to develop, there has been a significant demand on interface-to-interface synchronization of

heterogeneous software interfaces.

Unfortunately, existing tools such as those spanning from remote desktop applications and desktop

sharing to collaborative software applications lack support of interface synchronization, and only provide

access to applications simply through desktop screen sharing and manual control by users.

In this chapter, we describe SINk1, a middleware that enables interface-to-interface synchronization

and automatic remote control of heterogeneous distributed graphical user interfaces. The design of this

middleware is mainly motivated by connecting and synchronizing heterogeneous applications with ho-

mogeneous functionality, but different graphical interfaces, over a network or the Internet, as presented

in Figure 4.1. Once the interfaces are connected through the established client-server connection, our

1A demo illustrating how our middleware works in practice is available at http://publish.illinois.edu/mdpnp-
architecture/?p=639

55

Figure 4.1: The SINk workflow. Multiple graphical interfaces (right-side) are remotely synchronized with a
single interface (left).

middleware allows users to automatically synchronize multiple applications, remotely, without physical

access or visual view of the remote desktops, as if they were sitting right in front of the remote ap-

plications. In this manner, we enable the user to control any remote applications and automatically

perform actions such as opening and closing windows and tabs, pushing buttons, applying keystrokes,

and updating strings, values, and checkboxes, using only their graphical interfaces and without causing

mismatches between them. SINk is adaptive in the sense that it can accommodate varying platform

features such as changes in display screen resolutions, as it can dynamically adapt itself to locate pixel

values relative to any resolution. Moreover, SINk’s automated mechanisms achieved through interface-

only control incurs a high degree of flexibility, and can effectively adapt to ecosystem changes when

reconfiguration of application rapidly occurs. That leads to significant reduction in heterogeneous

software maintenance costs.

Technically speaking, the SINk middleware leverages efficient architecture, protocol, and parameter

mapping mechanisms to transfer control events, while at the same time ensuring consistency, bandwidth

saving, platform independence and the fulfillment of real-time requirements for synchronization. In

summary, SINk

• automatically performs remote control as opposed to manual control by users,

• does not require visual view of remote desktop, thus providing significant bandwidth savings,

• does not require source code or non-graphical interfaces (such as web services or RMI) access to

remote applications,

• performs synchronization in real-time,

56

• is platform independent.

To the best of our knowledge, no single middleware currently exists that achieves synchronization among

heterogeneous applications in a coherent way. Moreover, SINk can further assist software engineers to

build a single user-friendly interface as a general application interface for front-end interaction, or to

realize co-simulation among multiple heterogeneous graphical interfaces.

4.2 Related Work

SINk is conceptually similar to the notion of mediators underlying emergent connectors [104, 103, 72]

such as Enterprise Service Bus [69] as the concept of a “connectivity middleware” is common between

the two. However, SINk is fundamentally different as the design goal of mediators is to enable the

composition of pervasive networked systems, protocol mediation, and interoperability in distributed

systems as opposed to remote interface-based synchronization. The most related tools to SINk are

remote desktop and desktop sharing software, which allow a personal computer’s desktop environment

to be run remotely on one system, while being displayed on a separate client device. Microsoft’s Remote

Desktop Connection [10], Apple Remote Desktop [1], and Chrome Remote Desktop [3] for example, allow

users to remotely connect to a computer from another computer, therefore providing access to programs

and files by visually controlling the keyboard and mouse and relaying the graphical screen over a network.

Similarly, desktop sharing applications and collaborative software such as Microsoft’s Lync [8] and

TeamViewer [11] provide desktop access to a remote machine running the same software, helping users to

remotely control and share a desktop, with the additional option of video conferencing services. However,

not only are these applications manual and user-controlled, but the remote desktop software and desktop

sharing applications also act in a computer-to-computer manner and have computer-wide access. This

is not easily applied to the synchronization among platform dependent applications, such as flight

control and autopilot systems in drones [80], automatic remotely-controlled construction machinery in

smart-grids [151], and co-simulation of heterogeneous production and ERP software in the automotive

industry [13].

In SINk , on the contrary, the notion of access is platform independent and lightweight because it

is application-to-application or interface-to-interface. Furthermore, control and input parameters are

directed automatically into the remote graphical application interfaces residing on the remote computers,

thus synchronizing multiple interfaces and allowing users to need only control a single interface. In

57

addition, SINk eliminates the unnecessary need to visually share the desktop views, hence allowing

for significant bandwidth savings by avoiding the real-time encoding and transfer of desktop views,

especially crucial for power-limited mobile devices [85, 97]. Moreover, remote users have no ability

to modify the shared content and resources whatsoever, and are only passively controlling remote

interfaces.

4.3 Design of the Middleware

SINk is implemented through a mapping system as well as a communication system accomplished

through a client/server architecture. The client is installed on the local computer running the local

application and then connects to the server component, which is installed on the remote computer.

During SINk sessions, all corresponding keystrokes and mouse clicks are registered as if the users were

actually sitting in front of the remote computers and performing tasks on the remote interfaces. We

implemented SINk in Java that can be deployed on any platform running Java Virtual Machine (JVM),

including Linux and Windows. Therefore, JVM is a base requirement, making the compiled code

platform-independent. We have designed a list of APIs for the users, such as performing a remote

connection, specifying control attributes, and transferring parameter values.

4.3.1 Middleware Structure

SINk consists of three major components: a local agent (control client) residing on the local machine, a

mapping module, and a remote agent (control server) residing on each remote machine, as illustrated in

Figure 4.2. The local agent communicates with the remote agents through a secure persistent message

exchange communication system. Users’ control inputs are received by the local agent, encoded to a

specific message format, and are then directed to the mapping module.

The mapping module is pre-configured with interface control attributes to provide a particular set of

interface functions on each of the remote interfaces. This happens by performing transformation of local

control inputs on the local platform to remote interface control attributes corresponding to the remote

graphical interfaces on the remote platform, thereby allowing remote synchronization with each remote

interface. This is similar to a remote desktop connection, but it happens automatically and with no need

for sharing the desktop view or visual control with users. The output data originating from the mapping

module consists of control attributes, which are then encrypted with the AES 128-bit symmetric cipher

58

Local Agent (Client)

User Input Commands

Control Queries

Encoding

Encryption

Buffer Manager

Networking- Send

Message Serializations

Networking- Receive

Buffer Manager

Deserializer

Decryption

Graphical Interface

Mapping Module

Persistent

Connection

Remote Agent (Server)

Control Attributes

Control Attributes

Figure 4.2: The overall structure of SINk.

in electronic codebook (ECB) mode, buffered, serialized, and then transferred to the remote agent via

the persistent socket connection. While placement of the mapping module as a centralized module on

the local machine is more convenient for updates, auditing, and security reasons, it is not yet a hard

requirement. The module can be placed separately on each individual remote machine alternatively.

The control messages are deserialized and decrypted once received at the remote agent. Remote

synchronization between the local interface and remote interfaces is performed via interface control

functions in accordance with the control attributes received through the communication channel. Al-

though currently synchronization is only one-way (from local to the remote interfaces), without loss of

generality, SINk can be reconfigured so that changes and results on remote interfaces be synchronized

back and displayed on the local interface for any possible adaptation purposes.

4.3.2 Customized Client-Sever Architecture

From an engineering point of view, unlike a regular client-server connection such as those in chat systems

with the client looping to read the responses, our middleware tool must also support sporadic message

transfer but with no connection termination. However, it also needs to maintain a live and permanent

connection after each transfer in order to incur minimum latency.

To address the requirement above, we customized a low-overhead persistent client-server connection

59

Figure 4.3: An example mapping module.

over TCP/IP throughout the running session rather than setting up a new connection for each transfer.

This maintains the stability of the socket connections by initially creating a connection at the beginning

of each session, and occasionally sending a message given the system’s input. To enable that, we wrapped

the client socket connection around a thread, and use a blocking queue to wait for messages. A single

sender queue exists throughout the application, therefore using a singleton pattern. On the other side,

performing a read() function causes the thread to block forever. To address that, we use a special type

of thread that calls a specific method repetitively at specified periods and read time-out that can be

used to post a message, a ping message, every so often, which improves the stability of connections while

also relaxing problems associated with closing the applications due to calling the close() function.

4.3.3 Data Structures and Rules for Mapping

The mapping module works on the principle of key-value store and hashing, composed of a combination

of hash-map and 2-dimensional linked-list data structures, which is used to simulate user interaction

and control the graphical interfaces pre-configured with mouse and keyboard events. To store key-value

pairs, we used the first dimension of the 2D linked-list as a bucket to store key objects corresponding to

encoded user inputs, while the second dimension is used to store values, corresponding to an ordered list

of interface control attributes such as necessary mouse clicks and key presses that must be executed on

the remote interfaces to perform identical actions. Similar to a regular HashMap, the mapping module’s

get(Key k) method calls hashCode method on the key inputs, and applies returned hashValue to its

own static hash function to find a bucket location where keys and values are stored. Figure 4.3 shows

an overview of an example mapping module. For example, the first entry of the map as shown in Figure

60

4.3, executes the following chain of events:

1. Move the mouse pointer to a specific 2D coordinate on the display screen (given x and y coordinates

as the horizontal and vertical addresses of any pixel, respectively),

2. Perform a mouse click event on current pointer (we implemented click event as a combination of

mouse left button’s press and release events, with an intermediate delay of 200 ms),

3. Enter a specific value or number in the current position. This requires it to iteratively press

multiple specific keys on the keyboard, and

4. Press the “Enter” key on the keyboard.

Figure 4.4: Interface control
process for an example
horizontal slider bar.

Our implementation of the mapping module imposes a one-time

overhead, and it can be reusable. Therefore, if the application’s user

interface changes considerably, only the mapping module is updated,

incurring minimum cost so the automation does not need to be rewrit-

ten.

The graphical interface control attributes are implemented as a

series of sequential mouse and keyboard events. While many of the

graphical user interface components are elementary actions and are

straightforward to control through events originating from multiple

registered mice and keyboards, such as moving the mouse pointer to a

specific coordinate location, clicking, pressing a key or entering a value,

interesting challenges exist when controlling or adjusting some interface components such as scroll bars

and slider bars. Let’s take a horizontal slider bar for example. To control a slider bar to set a new

value, use of a mouse drag event is infeasible as the initial position of the slider knob is unknown for the

mouse pointer to hover on. While the current position of the slider knob is not known, the coordinates of

minimum or maximum value endpoints are known on the horizontal bar. The design trick to address this

challenging issue is to first move the mouse pointer to the coordinate corresponding to either endpoint,

and then perform mouse clicks multiple times to push the slider pointer on the track towards the specific

endpoint (the maximum number of mouse clicks is deterministic- in our experiments the number was

four). Once the mouse pointer is on the slider knob, a mouse drag event is then performed to move the

knob to the desired pre-determined position corresponding to the desired control value. Figure 4.4 (top

61

to bottom) visually illustrates the control process. Although graphical component functions and views

are subject to operating system, design language and layout variants, mouse and keyboard events can

be registered for our control mapping purposes without loss of generality.

4.4 Evaluation

Figure 4.5: Real platform clinical experiments in collaboration with Carle Foundation Hospital [26].

We have evaluated and tested SINk rigorously over our industrial case study conducted in collabo-

ration with Carle Foundation Hospital [26], on a real platform where 138 synchronization requirements

were specified to synchronize two medical simulator software products. The requirements were in-

spected multiple times with developers, researchers, and physicians to ensure that specific functional

requirements are satisfied.

Figure 4.5 shows a sample of our evaluation platform in hospital settings with the two software

interfaces being synchronized. Figure 4.6 illustrates a detailed view of the closed-box simulator software

as the remote interface on the bottom, and the local interface illustrated on the top. The closed-box

software is SimMan’s [22] advanced patient simulator shipped with a laptop running Windows XP,

which controls a SimMan medical manikin used for basic and advanced life Support skill assessment.

The SimMan’s simulator software allows observation, recognition, and modification of most vital signs

62

Figure 4.6: Real platform testing (Middle). Local interface (Top). Remote closed-box application (Bottom).

63

which are used in emergency medicine, fed directly to the manikin itself as well as a patient monitor.

The local interface likewise, is a patient simulator locally developed for nurses and physicians as a part

of a best practice medical system to perform the most relevant medical interventions according to the

medical guidelines and protocols. The local patient simulator features a simple, user-friendly, and easily-

operated graphical interface with straightforward and uncomplicated control functions to help nurses

and physicians avoid complications of using the SimMan’s patient simulator. As an example, the local

interface incurs a single step including 10 parameters to modify the running heart rhythm, whereas the

SimMan’s patient simulator involves 9 steps, requiring the user to audit 57 different parameters. With

SINk, the input values are only controlled through a single user-friendly interface, and are automatically

synchronized with those corresponding to the SimMan’s simulator, thereby relieving the users from

confusing complications and removing the need to double-enter the input values on a second interface.

All 138 synchronization requirements are accomplished correctly.

Apart from the case study and the important benefits resulting from using SINk, our middleware

was specially regarded for its automation role. Prior to applying our middleware, a technician was

hired to replicate, and manually perform the control functions on the SimMan’s simulator as a way to

synchronize the user-friendly patient simulator with the SimMan’s simulator. Thenceforth, automatic

synchronization was achieved, removing the human from the loop. Overall, we have received positive

feedback from the experts using the middleware. The qualitative feedback we have received is promising,

suggesting the middleware might be applicable to large sets of requirements and extended to domains

such as co-simulation of heterogeneous production and ERP software in the automotive industry [13].

4.5 Conclusion and Future Work

In this chapter, we presented SINk, a middleware that performs GUI-driven synchronization automat-

ically, remotely, and without physical access or visual view of remote interfaces, as if users were sitting

right in front of the remote software. We tested and evaluated SINk on a real platform, and showed

that apart from daily personal applications, there are in fact many potential uses of our middleware in

industry services such as medicine and automotive industry that can not be realized by other means.

We are planning to work on an interface attribute recorder that can capture and log interface control

inputs on local interfaces and be fed directly into the mapping module, to strengthen the automation

and the scalability of the middleware. We can also exploit image segmentation and texture recognition

64

techniques to learn type and position of graphical components on software interfaces, especially when

aimed at interfaces on power-constrained mobile devices. In the future, we also plan to systematically

evaluate SINk using quantitative metrics.

65

Chapter 5

Bandwidth-Compliant Clinical Data
Communication

5.1 Introduction

There is a great divide in emergency medical care between rural and urban areas. The highest death

rates are found in rural counties, which has motivated huge research efforts in recent years to enhance

the safety and effectiveness of patient care especially in these areas. For mobile care and emergency

ambulance patient transport from rural areas to center tertiary hospitals, time to definitive treatment

is critical. During emergency rural patient transport, the real-time monitoring of a patient by the

physicians at the receiving regional center hospital provides vital assistance to the EMT in the ambu-

lance. Such simultaneous monitoring allows the physicians in the center hospital to remotely supervise

the patient in the ambulance and to help follow best treatment practices based on patient’s condition

and clinical multimedia data. These multimedia data are often generated from various clinical sensors,

and include clinical videos, medical images, speech data, voice communication, and vital signs which

overall form a rich clinical multimedia system. These clinical multimedia data are then transmitted

and continuously monitored at the center hospital for diagnosis, best-practice orders and treatments.

To ensure safety and effectiveness of emergency care during such ambulance patient transfer, reliable

and real-time communication is essential. However, the wireless networks along the roads in rural areas

range from 4G to 2G to low speed satellite links, which can result in periods of low fidelity communication

bandwidth. Figure 5.1 illustrates a real-world example. It demonstrates the 4G mobile data coverage

maps along possible routes from a rural hospital located in Hoopeston, Illinois, to the Carle [26] regional

center hospital in Urbana, Ilinois; the darker colors show higher bandwidth. As the map demonstrates,

the roads located in the rural areas manifest varying and often poor communication coverage especially

when compared to coverage in urban areas. Therefore the challenges for transmission of necessary

clinical data may be exaggerated during high-speed ambulance patient transport. The criticality of

clinical data needed for remote supervision also varies as the patient condition may change. As a

66

Figure 5.1: Real-world mobile data coverage maps between Hoopeston rural hospital and Carle regional center
hospital (Sprint carrier). Darker colors show higher bandwidth.

result, the semantics relation between limited and dynamically-changing communication bandwidth

and the physiological criticality of communicated clinical multimedia becomes a vital problem which

unfortunately remains unaddressed by prior work.

In this chapter, we propose a bandwidth-compliant criticality-aware system for adaptive transmission

of clinical data in response to varying bandwidths during ambulance patient transport. We use the

concepts of model-driven clinical automata to differentiate the criticality of each category of clinical

data at any given clinical state, and present adaptation techniques to transmit more critical data

with higher fidelity as the disease and clinical states change. Our approach is to selectively choose

appropriate clinical data sampling frequencies given their physiological criticality so that the bandwidth

requirements of clinical multimedia streams best satisfies a limited bandwidth available to an ambulance.

In collaboration with Carle’s ambulance service center, we develop a bandwidth profiler, and use it

as proof of concept to support our experiments. Our preliminary evaluation results show that our

physiology-aware bandwidth-compliant adaptations ensure that most critical patient’s clinical data are

communicated with higher fidelity.

The chapter is organized as follows. In Section 5.2, we cover a wide area of background and related

work, and discuss how our system is related to them. In Section 5.3, we discuss real clinical use-cases of

prioritization in emergency acute disease care. Section 5.4 explains our methodology for adaptive clinical

67

data management, including the problem definition and the adaptation algorithms. Our evaluation

results are presented in Section 5.5, while in Section 5.6 we conclude the chapter and briefly discuss

possible avenues of future work.

5.2 Background and Related Work

In this section we present different concepts and categories of work relevant to our proposed system.

5.2.1 Dynamic Adaptive Streaming

One of the main approaches for bandwidth saving when bandwidth is limited and dynamically changes

is adaptive streaming. Adaptive streaming in general is a process where the quality of a data stream

is altered in real-time while it is being transmitted. The adaptation of quality is controlled by decision

modules on either the client or the server, and can be the result of adjusting various network or device

metrics. For example, with a decrease in network throughput, adaptation to a lower bitrate may reduce

packet loss and therefore improve the user’s experience.

Researches on adaptive streaming have been mostly applied to video context, and generally range

from network coding, bandwidth detection, and rate determinations [57, 134, 44, 51, 117] to quality

of service and user experience [145, 78, 79]; many also have been applied to video-based tele-medicine

systems [136, 119, 33]. Dynamic Adaptive Streaming over HTTP (DASH) specifically, also known as

MPEG-DASH [139], is probably most prominent example that has been applied in the context of video

streaming. It is an ISO standard that enables adaptive bitrate streaming whereby a client chooses the

video segment with the appropriate bitrate based on its constrained resources such as bandwidth. Some

work studied feasibility of extending DASH into domains other than videos and different variations, such

as adaptive 3D graphics streaming [97, 98], energy-aware DASH [100, 148], and viewport-aware DASH

for adaptive streaming of Virtual Reality (VR) contents [99]. The multimedia content is stored on a

server, and is accompanied by a manifest of the available segments, their various bitrate alternatives,

their URL addresses, and other characteristics.

In this chapter, we extend similar concepts towards clinical domain, and run an initial study to-

wards a physiology-aware DASH. We apply adaptive streaming to the context of clinical multimedia

transmission in emergency patient transport scenarios where a high-speed ambulance en route from a

rural hospital to a center hospital is encountered with limited and variable bandwidth.

68

5.2.2 Prioritized and Criticality-Aware Adaptations

Generally the priority of contents being transmitted in a network can have different importance or

criticality given the context or various settings. A large body of work have proposed prioritized ap-

proaches for a differentiated transmission service among contents of various priorities. For example in

[97], and [92] the authors adopted prioritization techniques towards the study of efficiently transmitting

3D contents to resource-limited devices given the importance of various objects in the gaming context.

The authors in [58] applied the concept of prioritization on a multi-user teleconference room equipped

with a static camera capturing the whole room. Similarly, some works in the context of large-scale

immersive systems [95] and [96] studied data prioritization in regards to bandwidth savings. In another

work [112], the authors used similar concepts, and proposed a bitrate allocation approach to minimize

energy consumption in wireless surveillance systems according to event criticality. The authors in [75]

proposed criticality-aware access control policies to control resource access for both critical and non-

critical events within smart spaces. They add a new criticality parameter to measure the urgency of

a critical event. Similarly, in [154], the authors propose a criticality-aware clustering protocol in the

context of wireless sensor networks. In their approach, they keep a criticality threshold for informa-

tion, and if such information is sensed, it is sent with highest priority to the base station. While all

these work employ the concept of prioritization according to contents’ criticality, application of clinical

data prioritization and criticality awareness in the context of clinical and medical domain has remained

unaddressed by the existing work.

The most related work to our system is [66], in which the authors use the notion of prioritization and

criticality awareness for pervasive medical sensor networks. Their model enables different types of access

control decisions and assigns highest priority to critical operations and lowest priority to normal access

control situations. While this work uses criticality awareness in the context of medical domain, their

notion of prioritization is only tied to access control decisions. However, the relation between clinical

multimedia transmission, bandwidth consumption, and criticality of data in various physiological states

has not been addressed heretoforth.

5.2.3 Clinical Optimization

Most existing optimization approaches developed in the clinical domain target high-level algorithmic

clinical practices, and provide optimization in clinical workflow, services, and emergency care manage-

ment. For emergency care for instance, optimized medical best practices have been created for patients

69

in major hospitals. The University of Texas’ MD Anderson Cancer Center for example has developed

clinical management algorithms [49] that provides a high-level workflow optimization for diagnosis,

evaluation, and treatment of specific acute diseases. Görlitz et. al. also studied the feasibility of an

optimized stroke manager service concept using a combined service and software engineering approach,

and improved workflow and IT architecture for enhanced post-stroke management [64].

While the proposed concepts in these studies consider requirements for clinical optimizations, they

are mainly designed for well-equipped major medical centers around high-level clinical services, work-

flow, and emergency care management. Many fundamental disease-specific system and pathophysiolog-

ical issues, especially problems associated with communication bandwidth, mobility, and criticality of

clinical data still remain unaddressed.

5.2.4 Executable Clinical Automata

From a medical perspective, physicians are taught organ system function as part of the representation

of disease process. They look for patterns of pathophysiological changes (the change in physiological

measurements as a result of disease) within an organ system to understand organ states. This organ-

centric view of pathophysiological expression also matches medical treatment, which is captured by

best-practice medical workflows. Therefore, our adaptation system is plugged into, and fed with model-

driven executable medical automata including executable best-practice workflow models, and model-

based clinical automata such as disease and organ system automata [93].

Figure 5.2 shows three greatly simplified best-practice automata for stroke that are executed at

a rural hospital (Figure 5.2(a)), an ambulance (Figure 5.2(b)), and at a supervising regional center

hospital (Figure 5.2(c)). The states in each automaton represents different physiological states of an

organ. The physiological changes of patients which result in satisfaction of the condition for a new

organ state causes state transitions within these automata. The state changes can also be driven when

the physicians confirm the new patient and organ states. Possible variances in capabilities, expertise,

and physical environment can cause different levels of abstraction for executable clinical automata and

different sets of generated clinical data at each location. The best-practice models are executed in

real-time, allowing doctors at center hospitals to retrieve necessary clinical multimedia information and

supervise a patient remotely by sending appropriate commands. The engine of our system in this work

is models of executable clinical automata, and we use the concepts of executable automata to model

all clinical components including patient and disease automata. We extend the same concepts towards

70

(a) Rural Hospital

(b) Ambulance

(c) Center Hospital

Figure 5.2: An instance of simplified stroke best-practice automata distributed between a rural hospital,
ambulance, and a center hospital.

71

communication, and codify bandwidth available to a high-speed ambulance transferring a patient from

a rural hospital to a center hospital as an executable automata. A model-driven communication au-

tomata also allows expert physicians to remotely check and track the communication when necessary.

Our system therefore semantically links the communication bandwidth to other model-driven clinical

components including best-practice workflow automata, disease automata, and organ automata. It

therefore integrates all executable clinical models together and provides model-driven coordination and

synchronization among various clinical components.

In summary, in this chapter we build upon concepts from the aforementioned related work, and

propose bandwidth-compliant prioritized adaptations for efficient delivery of various clinical multime-

dia for emergency care. Our adaptations is applied to the context of emergency patient transport of

acute diseases within a bandwidth-limited high-speed ambulance in regards to the criticality of clinical

data given the patient’s physiological states. The design of our bandwidth-compliant clinical multi-

media adaptation system takes into consideration the variability of priorities within different clinical

components that may impact the emergency care based on interaction among various models of clinical

components. The key components include patient physiological models including disease and organ

models, patient condition models, and models of communication bandwidth. Our proposed system

aims to enhance the effectiveness of emergency patient care from a high-speed ambulance leveraging an

efficient interaction among all clinical models, which all change throughout the transport.

5.3 Prioritization in Emergency Patient Care

Various clinical data can have different priorities depending on the context of specific episodes of acute

patient care transport. We describe acute stroke scenario as a real-world use case to illustrate the

concept. Figure 2.1 in Chapter 2 illustrates the workflow for a stroke patient being transferred from a

rural facility to a regional hospital center. Let’s consider a 70 year old male patient arrives at a rural

hospital and the diagnosis of acute stroke is considered. Initially a CT (Computerized Tomography)

head scan is performed. The CT images are sent electronically to the regional center for interpretation.

At this clinical state, highest priority is devoted to transmission of streams associated with CT images.

The patient’s neurological examination, laboratory data, and vital signs (including heart rate (HR),

blood pressure (BP), oxygenation level) are obtained and sent for the purpose of continuous monitoring.

The diagnosis of an acute stroke is made, and the patient is placed in an ambulance for transport.

72

Physicians at the center hospital remotely monitor the physiological models including patient models

and disease models. Models of clinical best practices and communication bandwidth models are also

executed continuously in interaction with each other.

A video camera and microphone in the ambulance, connected to the regional center, is used to

remotely monitor the patient’s status through audio-visual data during ambulance transport. In ac-

cordance with the patient’s physiological models, it is determined that the patient has a hemorrhagic

stroke (bleeding into the brain from blood vessel rupture). In this case, models of clinical best practices

suggest that time of transport is most important. Available bandwidth is used for communication with

specialists at the regional center in case emergency consultation, interventional radiology or surgery is

indicated. The HR, BP, oxygenation, and neurological status are remotely monitored. In these sit-

uations, with higher bandwidth according to the communication bandwidth models, the audio/video

support and therefore, the transmission of audio-visual streams gets very important. However, in the

event of limited bandwidth, the audio-visual monitoring system as well as the transmission of repeated

laboratory data get limited with secondary priority. Highest priority in this situation is maintaining

the patient’s vital signs. The HR and BP in specific must be kept within strict limits. The BP assumes

particular importance if it rises too high (greater than 180/-) or falls too low (less than 90/-) which

are indicated by the physiological models. In accordance with guidance given by best-practice clini-

cal models, audio communication with the center hospital to manage elevated blood pressure assumes

highest priority if BP is greater than 180. This might require the continuous intravenous infusion of

active medications to lower blood pressure in the ambulance, using nicardipine or nitroprusside medi-

cations. Once communication models show availability of higher bandwidth, periodic laboratory data,

treatments for an elevated blood glucose (greater than 350), and the video camera streams can be used

with normal sampling frequency of transmission with higher priority levels.

Now for a different patient, let’s consider a 70 year old male patient who has an ischemic stroke (a

clotted artery reducing blood flow to the brain rather than hemorrhage into the brain itself). In this

case, blood coagulation laboratory data, TEG1 examination, and the early transport treatment with

a clot dissolving medication such as tissue plasminogen activator (tPA) infusion may be recommended

given inputs from the best-practice clinical models. The patient is placed in the ambulance, tPA is

continuously running, and ambulance transport towards the city hospital follows. In the ambulance,

if the patient has stable vital signs based on the current state of physiological models, then priority

1Thromboelastography (TEG) is a method of testing the efficiency of blood coagulation, which helps with timing clot
dissolving therapy.

73

Hospital
Server

Center
Hospital

Hospital
NetworkMedical

History

Model-Driven Adaptation
System

911

Communication
Automata

Cellular
Network

Best-Practice
Medical
Instructions

Monitored
Clinical Data

Disease Automata

Best-Practice
Automata

Organ Automata

Patient
Automata

Clinical State i Clinical State i+1

Limited and
Variable
Bandwidth

Figure 5.3: An example scheme of proposed adaptation approach.

attention is turned to a) the management of the tPA infusion, b) the maintenance of BP within strict

parameters, and c) voice communication for the treatment of complicating factors. The ambulance

crew and regional center physicians work as a team managing the patient’s physiological status and

tPA infusion. In this clinical state, the transmission of BP data, as well as voice communication has

higher priority compared to other clinical data. If there is a state change in the patient’s physiological

models leading to signs of deterioration in the patient’s condition, a complication of the tPA or extension

of the area of brain with limited blood flow is assumed. Therefore, here bandwidth attention turns

to managing the patient’s vital signs, while the clinical data associated with tPA itself, coagulation

values, TEG examination data, and laboratory results are considered secondary importance. Once

patient neurological deterioration is determined on the physiological models, priority is directed to the

vital signs and maintaining oxygenation. Therefore, intubation and artificial ventilation are considered

higher priority, while the laboratory data such as hematocrit (percentage amount of red blood cells in

the blood) have lower priority given the available bandwidth.

5.4 Proposed System

The design of our bandwidth-compliant physiology-aware adaptation system allows for efficient com-

munication of clinical data in regards to the priority inputs from various clinical models while satisfying

a bandwidth budget available to the ambulance. Figure 5.3 shows a visual view of our model-driven

74

Figure 5.4: Abstract flow of emergency care manager.

prioritized adaptation system, showcasing an ambulance en route from a rural hospital to a regional

center hospital communicating with the center hospital under a variable and limited bandwidth. The

figure illustrates the notion of how different clinical states within an integrated set of various interact-

ing clinical models can potentially change the priority of necessary clinical data within two consequent

clinical states. It therefore adapts the bandwidth requirement of clinical multimedia to the available

bandwidth. Figure 5.4 shows an abstract overview of our care management process feeding our adap-

tation system. All necessary clinical data including vital signs, audio-visual streams, information of

neurological symptoms, and updates of disease states are monitored by doctors remotely in the center

hospital, new patient physiological state is confirmed, and priority of each clinical data associated with

current clinical state is then updated periodically.

The design of our bandwidth-compliant adaptation system revolves around the notion of model-

driven physiology-aware adaptation and a two-level clinical data prioritization. The priority of each

category of clinical data is considered in regards to the physiological models and the current state of

underlying disease and organ models. A first-level priority is associated with each clinical data which

depend on the disease models and its underlying organ models, and a second-level priority which depends

on the state within each model. Under this prioritization schema, the adaptation system differentiates

among clinical multimedia streams according to their criticality and select suitable adaptation per

clinical multimedia stream for dynamic sampling frequency adjustment and bandwidth management.

We adopt a Physiology-aware Priority Calculator (PPC) module which provides priority of clinical data

at each point from inputs of physicians and nurses at a regional center hospital.

75

Streaming Control

Adaptation System

Prioritization

Budget-based Adaptation

Heuristic Algorithm

Sampling Frequency
Selection

Buffer Manager

Optimized Clinical
Data

Streaming Control

Sampling
Frequency Adapter

Scheduling

BW
Budget

PPC

Bandwidth Manager

Networking- Send

Serialization

Organ State Models

Best-Practice Manager

Lab
Data

Physiological
Data

Disease Model

Remote Best-Practice
Assistance System

Physician
Response

Patient’s Clinical
Multimedia Data

Physician
Interface

Nurse
Interface

Medical Multimedia
Systems

Nurse
Response

Regional Center
Hospital

Clinical
Multimedia

Data BW

Figure 5.5: Overview of our proposed system. Clinical data generated at the ambulance are adapted based on
available bandwidth and inputs from a regional center hospital.

Figure 5.5 shows an overview of various modules and processes within our physiology-aware adap-

tation system. As a part of the adaptation system, the bandwidth manager module is devised as the

core of the communication model to determine the current bandwidth budget and the bandwidth con-

tribution of each specific clinical data stream. The information resulted from the bandwidth manager

module is then fed to the main adaptation module. The first-level priority and second-level priority

are integrated together and contribute to a global priority. The bandwidth budget, the clinical data

streams bandwidth feed, along with the global priority are then used to provide adaptation by the

heuristic algorithm that is described in the next subsection. Under the budget-based adaptations,

proper sampling frequency of each clinical multimedia stream for all medical multimedia systems that

generate clinical data (including medical devices and physiological systems) are selectively calculated

and is sent to the sampling frequency adapter module for each medical system. The sampling frequency

adapter then applies the specified sampling frequencies to the medical systems’ buffer manager. The

resulting patient clinical data are then compressed, encoded, scheduled for transmission, serialized, and

streamed to the remote center hospital through the ambulance communication gateway to be finally

76

decompressed, decoded, and remotely monitored by the physicians at the center hospital.

The best-practice assistance system including the best-practice automata and physiological automata

including disease and organ state models are run given the patient clinical data inputs received from

the en-route ambulance. The PPC module is then derived by the recommendations from physicians

remotely supervising the EMT at the ambulance. The cycle continues and in parallel the bandwidth

manager monitors the variations in the bandwidth budget and the bandwidth contribution of each

clinical multimedia stream. Transmission of an optimal and efficient bitrate not only reduces the

communication bandwidth requirement, but also less exhausts other limited resources and reduces the

scheduling and transmission delays from buffer, to process, and to model-driven visualization at the

remote center hospital- a fact which is critical especially in remote supervision and emergency care.

5.4.1 Problem Modeling

For selection and transmission of clinical multimedia during emergency ambulance transport, one of

the most significant factors in bandwidth usage is the sampling frequency of clinical multimedia which

corresponds to the volume of data produced for the purpose of remote patient supervision. As discussed

in Section 5.1, communication bandwidth can get very limited in high-speed ambulances transferring

a patient from a rural hospital to a regional, center hospital. Traveling through rural areas further

exacerbates the problem due to the limited cellular data coverage. As discussed in Section 5.3, if the

total bandwidth requirement of the all clinical data does not exceed the available bandwidth at any given

time, then all of them can be transmitted as per standard protocol. If the available bandwidth budget

W is insufficient to transmit all the clinical multimedia streams, then an adaptation technique must

be employed to reduce the bandwidth requirement of clinical data. Each category of clinical telemetry

medical system consumes a specific bandwidth at any given time, and we must decide how to adopt a

proper sampling frequency for each data type given their physiological state-dependent criticality so to

be able to transmit the clinical multimedia streams within the available budget W.

One approach to reducing the bandwidth requirement of communicating clinical data is to transmit

a subset of the required clinical data. This selection scheme is the well-known binary Knapsack opti-

mization problem. The binary Knapsack problem is NP-hard but efficient approximation algorithms

can be utilized (fully polynomial approximation schemes), so this approach is computationally feasible.

However, this method enables to only select a subset of the necessary clinical data types, which is not

safe in the emergency care scenario as all the necessary multimedia streams and physiological informa-

77

tion must be transmitted. Our proposed algorithms select all necessary clinical multimedia streams,

but each with different bandwidth requirements according to their priorities. This is a multiple-choice

knapsack problem in which the items (streams) are organized into groups corresponding to the ob-

jects. Each group contains the full-bandwidth clinical multimedia stream corresponding to an object

and lower-bandwidth versions of the same clinical multimedia streams obtained by applying sampling

frequency adaptation. Overall, the goal is to adapt to one proper clinical multimedia stream from each

group within a bandwidth budget W available to an en-route high-speed ambulance.

5.4.2 Adaptation of Clinical Data

As discussed in Section 5.3, one of the important factors to consider clinical data communication is the

criticality of any type of clinical data at any clinical state. The first step in our adaptation approach

is to establish the criticality of each clinical data type within a specific physiological state. Given

the first-level and second-level priorities by the PPC module, the prioritization module classifies the

required clinical data types into four clinical classes of pairs (first-level priority, second-level priority),

namely C11, C12, C21, and C22, with C11 representing the “low”, C12 and C21 the “medium”, and C22

the “high” clinical priority classes.

The optimization problem is to transmit the necessary set of clinical data in a way that maximizes

a total of defined quality of clinical data as a quantitative measure of clinical effectiveness within an

available bandwidth limit. The bandwidth requirement of a specific clinical data stream can be reduced

by reducing the capturing sampling frequency, but as per definition, this also results in a lower quality

of that clinical data type. To take this into account, we ask physicians to define a maximum sampling

frequency scaling called Rmax which is the maximum reduction in clinical data sampling frequency

that is acceptable for the remote physicians. In this initial study, we assume that the quality of clinical

data for a specific clinical multimedia stream is a function of its bandwidth requirement (with maximum

quality of clinical data corresponding to minimum sampling frequency reduction) and its global priority.

Without loss of generality and to enable a robust quantitative modeling in the simulation environment,

we use the product of consumed bandwidth and global priority as the simplest function as the measure

for quality of clinical data to start. For example, a clinical data stream τi of original bandwidth sτi

with sampling frequency scaling factor ri (therefore, the resulting sampling frequencies are factorials

of the medical system’s sampling rate and require no interpolation processing while sending data), and

global priority of pτi contributes to the quality of clinical data sτi × pτi × ri. Our objective here is to

78

Algorithm 1: Compromise

T : prioritized list of clinical data sorted from smallest to largest global priority
τi: clinical data with original bandwidth requirement of sτi
xi: adapted clinical data with bandwidth requirement of sxi
Rmax = 1/ck: maximum reduction of sampling frequency
Calculate W0 =

∑
sτi ×Rmax %comment: minimum bandwidth requirement of all clinical data

∀τi ∈ T : sxi ← sτi ×Rmax %comment: apply Rmax to all τi’s.
while sτi × (1−Rmax) ≤Wi−1 do
%comment: i=1 initially.

sxi ← sτi
Wi ←Wi−1 − sτi × (1−Rmax)
i← i+ 1 %comment: adapt the sampling frequency of next clinical data

end while
%comment above loop repeats until some clinical data τ` cannot be received at original bandwidth
within the remaining bandwidth budget W`−1.
`← i %comment: resulting from above loop.
Find minimum rl = 1/cl such that
sτ` × rl ≤W`−1 + (sτ` ×Rmax) %comment: determine the maximum bandwidth at which τ` can e
received by calculating the minimum bandwidth reduction r`.
sx` ← sτ` × rl %comment: adapt τ` and calculate sx`

apply sampling frequency scaling for sets of clinical data in a way that maximizes the total quality of

clinical data subject to the constraints of the bandwidth budget W at any given time and maximum

sampling frequency reduction Rmax.

5.4.3 Proposed Solutions

There are n clinical data types T = {τ1, τ2, . . . , τn}, and each τh ∈ T has an original bandwidth

requirement of sτh , and a global priority or criticality pτh . The quality of clinical data τh is qτh =

pτh×sτh . The total travel time for which adaptations are done is T , and the available bandwidth limits

the total bandwidth requirement of the clinical data that must be transmitted to the regional center

hospital to W .

Let X = {x1, x2, . . . , xn}, be the set of clinical data that are transmitted to the regional center

hospital. Each xi ∈ X corresponds to an original clinical data τi ∈ T with a global priority pxi = pτi .

The bandwidth requirement of a specific clinical multimedia stream xi ∈ X is the original bandwidth

requirement of the clinical multimedia stream τi ∈ T scaled by a factor of cri for some 0 ≤ ri ≤ k and

constant c where Rmax = 1/ck is specified by the physicians as the maximum reduction of sampling

frequency clinically. Our choice of a scaling factor of cri was motivated by the systems based on

Distributed Hash Table such as Chord [140] in which the distance between a node and its fingers

increases exponentially. So, the bandwidth requirement of clinical data xi is sxi =
sτi
cri , and the quality

79

Algorithm 2: Round-Robin

T : prioritized list of clinical data sorted from smallest to largest global priority
τi: clinical data stream with original bandwidth sτi
xi: adapted clinical data stream with bandwidth sxi
Rmax = 1/ck: maximum reduction of bandwidth
while

∑
sxi ≤W do

Find maximum j < k such that ri = 1/cj and
sτi × ri ≤Wi−1 + (sτi ×Rmax) %comment: determine minimum bandwidth reduction ri ≥ Rmax

sxi ← sτi × ri %comment: adapt τi and calculate sxi
i← (i+ 1) % n %comment: adapt the sampling frequency of next clinical data; if the end, start

from the beginning
end while

Algorithm 3: Aggressive

T : prioritized list of clinical data sorted from smallest to largest global priority
τi: clinical data stream with original bandwidth sτi
xi: adapted clinical data stream with bandwidth sxi
Rmax = 1/ck: maximum reduction of bandwidth
while

∑
sxi ≤W do

repeat
Find maximum j < k such that ri = 1/cj and

sτi × ri ≥Wi−1 + (sτi ×Rmax) %comment: determine minimum bandwidth reduction ri ≥ Rmax

sxi ← sτi × ri %comment: adapt τi and calculate sxi
until j ≤ k %comment: ri = Rmax
i← i+ 1 %comment: adapt the sampling frequency of next clinical data

end while

of clinical data xi is qxi = pxi × sxi =
pτi×sτi
cri as per our initial definitions.

5.4.4 Heuristic Algorithms

Let S be the total bandwidth requirement of transmitting all clinical multimedia streams, and W be the

available bandwidth at a given point. The physician-defined maximum reduction of sampling frequency

is Rmax = 1/ck. Let C11 be the class of clinical multimedia streams with the smallest global priority,

and similarly for C12, C21, and C22. For each clinical multimedia stream τi in the list, we calculate

the quality of clinical data qi as described previously. This is the contribution that τi would make to

the average quality of the clinical data for the whole adaptation period if it was received at original

bandwidth. We then calculate Wmin = S×Rmax which is the minimum bandwidth requirement needed

for transmission of all clinical multimedia streams. In the following, assume that Wmin ≤ W so the

unused bandwidth budget is W0 = W −Wmin.

To determine the bandwidth reduction for each clinical data, our main heuristic algorithm (namely

Compromise represented in Algorithm 1) sorts the prioritized list of clinical multimedia streams by

80

their global priority from the largest to the smallest. For ease of notation in the following, suppose

that the clinical data streams are re-indexed so that the sorted list of clinical data is τ1, τ2, . . . , τn. If

sτ1×(1−Rmax) ≤W0 then there is enough unused bandwidth to receive τ1 at original full bandwidth, so

the clinical data x1 has sx1 = sτ1 and contributes q1 to the average quality of clinical data. This leaves

an unused bandwidth of W1 = W0−sτ1×(1−Rmax) for the remaining clinical multimedia streams after

x1. The algorithm repeats for τ2, τ3, . . . until some clinical data τ` cannot be transmitted at original

bandwidth within the remaining budget W`−1. It then determines the maximum bandwidth at which

it can be transmitted by calculating the minimum bandwidth reduction r` which similar to Rmax is

a multiplicative inverse (reciprocal) of a power of c such that sτ` × r` ≤ W`−1 + (sτ` × Rmax). The

received clinical data x` will have bandwidth sx` = sτ` ×r` and will contribute q′` to the average quality

of clinical data of the whole adaptation period. The remaining bandwidth budget after transmission

of x` will be W` = W`−1 − (sτ` × r`)). The algorithm repeats this process to determine the available

bandwidth budget and quality contribution for each of the remaining clinical data x`+1, x`+2, . . . , xn.

Finally the total quality of clinical data and other statistics are calculated.

The other two heuristic algorithms (namely Aggressive and Round-Robin) are also represented in

Algorithm 2 and Algorithm 3 respectively. All our heuristic algorithms run in real-time and incur trivial

overhead during the runtime- a fact necessary for real-time remote monitoring of patients. They are

implemented efficiently in O(nlogn) time and O(n) space and produce solutions very close optimal.

The approximation error depends on the difference between the bandwidth chosen for the first clinical

data that cannot be received at original bandwidth and the remaining bandwidth available to transmit

it. Furthermore, our proposed heuristic algorithms achieve global optimality, and can support dynamic

cases for add or remove of additional clinical data types, clinical models, or physiological states as

well. Also, it should be noted that the adaptive clinical scheme only changes the sampling frequency

but not other metric leading to bandwidth changes of clinical data (such as multimedia compression

ratios). However, our proposed optimization scheme could be adopted in a similar way to controlling

the compression ratio as well.

5.5 Evaluation

To assess the effectiveness of the proposed methodology in real world and to facilitate a logical interpre-

tation of the problem to be analyzed, we conducted a communication profiling experiment in a small

81

region of hospital health system in Illinois. We took a scenario where a patient is transferred from a

rural hospital to a regional center hospital via a high-speed ambulance, and profiled geo-communication

information including available bandwidth covering major routes from Hoopeston to Urbana as proof of

concept. Hoopeston Health Center (rural hospital) is an integrated part of Carle Foundation Hospital

in Urbana (center hospital), which includes medical clinic based in Hoopeston, Illinois, with multiple

additional clinics serving its surrounding rural communities.

To measure the available bandwidth, we developed a mobile bandwidth profiler application in col-

laboration with Carle Ambulance Service to validate both the variability and limitation of bandwidth

under our bandwidth-compliant prioritized adaptation system. We used Android SDK 25 for develop-

ment, and used Google Nexus 5 smartphone as our profiling platform mounted with 4G LTE ICCID

SIM Cards under 4 major US mobile cellular carriers. Our profiler periodically samples and logs useful

geo-communication information once every 4 seconds, including: a) rate of available bandwidth, b)

timestamp, c) GPS longitude, d) GPS latitude, e) altitude, and f) velocity. To implement the profil-

ing process of bandwidth rates, the profiler client first establishes multiple TCP connections with our

server over port 8080, and continuously retrieves file chunks of 1 megabits for a course of 4 seconds.

Our server is a local HTTP server that we specified to minimize latency and jitter due to congestion

and communication errors. As the chunks are received by the profiler, the profiler requests more file

chunks throughout the fixed duration. The total size of the buffered transfers is then received, and the

download speed is calculated in kbps (1 byte = 0.0078125 kilobits) given the fixed specified duration.

The sampling process ends once the configured amount of duration has been reached. More details in

regards to the development of our profiler and our collected traces are presented in Chapter 6.

Figure 7.2 demonstrates only a single sample of our profiled data, the communication bandwidth

under Sprint cellular network accounting for one of the major routes for a total distance of 53 miles and a

total travel time of 47 minutes. The vertical axis shows the available bandwidth while the horizontal axis

shows the timestamp with each point of data accounting for the four seconds of sampling period. The

figure showcases interesting results to support our assumption of bandwidth variability and limitation.

As can be clearly observed, the results show lower communication bandwidth on rural areas while they

show higher bandwidth as we get closer to the urban area. It can be concluded from the results that

the communication bandwidth along this route can range from as low as a few Kbps to as high as

several Mbps, with most part of the route suffering from very poor communication coverage. The low

communication bandwidth severely limits the amount of clinical data that can be communicated during

82

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

B
an

d
w

id
th

 (
K

b
p

s)

Timestamp

Profiled Bandwidth

Hoopeston Rural HospitalCarle Center Hospital

Figure 5.6: A sample of profiled bandwidth rates along a route from Hoopeston rural hospital to Carle center
hospital.

emergency rural patient transport via an ambulance. It should be noted that the average travel speed

during the profiling process was 72 miles per hour to comply with the speed limits. It is expected

that the higher travel speed of an ambulance during an emergency situation further limits the available

communication bandwidth.

To evaluate our proposed adaptation algorithms, we ran 10 experimental tests of simulated clinical

models derived from automata of 30 different physiological states and a maximum of 15 types of various

clinical data required as per each clinical state. We used NIH PhysioNet databases of recorded phys-

iological information needed for clinical data [71]. We classified the criticality of both the states and

clinical data and determined the four priority classes C11, C12, C21, and C22 according to our definitions

in Section 5.4. We calculated performance measurements of our adaptation heuristics, and collected

statistical including the mean and standard deviation of the results. Our performance measure is the

total quality of clinical data according to Section 5.4, which is a measure of the effectiveness of an

approach to maximizing the total of our defined quality of clinical data based on prioritization, with

larger values being more effective. In compliance with both the variability and limitations of the results

of our bandwidth profiling, we ran our experiments with the available bandwidth W set to be different

percentages of S (total of full bandwidth requirements of all clinical data). In particular, we set W to

0.1S, 0.2S, ..., 1.0S corresponding to 10%, 20%, ..., 100% of the total bandwidth of all clinical multime-

dia streams. We set Rmax = 1
ck

as the maximum possible scaling factor, in which we chose c = 2 based

83

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
o
ta

l
Q

u
al

it
y

% Available Budget

Total Quality of Clinical Data (Cmpr)

No-priority Prioritized (1,2,2) Prioritized (1,3,3)

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
o
ta

l
Q

u
al

it
y

% Available Budget

Total Quality of Clinical Data (Cmpr)

No-priority Prioritized (1,2,2) Prioritized (1,3,3)

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
o
ta

l
Q

u
al

it
y

% Available Budget

Total Quality of Clinical Data (RR)

No-priority Prioritized (1,2,2) Prioritized (1,3,3)

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
o
ta

l
Q

u
al

it
y

% Available Budget

Total Quality of Clinical Data (RR)

No-priority Prioritized (1,2,2) Prioritized (1,3,3)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
o
ta

l
Q

u
al

it
y

% Available Budget

Total Quality of Clinical Data (Aggr)

No-priority Prioritized (1,2,2) Prioritized (1,3,3)

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
o
ta

l
Q

u
al

it
y

% Available Budget

Total Quality of Clinical Data (Aggr)

No-priority Prioritized (1,2,2) Prioritized (1,3,3)

Figure 5.7: Total quality of clinical data measured for Aggressive, Round-Robin, and Compromise algorithms,
for four priority classes, and two values of Rmax = 1/ck. (Top-Left) Compromise, k = 4, (Top-Right)

Compromise, k = 6, (Middle-Left) Round-Robin, k = 4, (Middle-Right) Round-Robin, k = 6, (Bottom-Left)
Aggressive, k = 4, (Bottom-Right) Aggressive, k = 6.

84

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
at

io
 (

o
u

t
o
f

1
)

% Available Budget

Adaptation Ratio (Cmpr)

C22 C21 C12 C11

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
at

io
 (

o
u

t
o
f

1
)

% Available Budget

Adaptation Ratio (Cmpr)

C22 C21 C12 C11

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
at

io
 (

o
u

t
o
f

1
)

% Available Budget

Adaptation Ratio (RR)

C22 C21 C12 C11

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
at

io
 (

o
u

t
o
f

1
)

% Available Budget

Adaptation Ratio (RR)

C22 C21 C12 C11

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
at

io
 (

o
u

t
o
f

1
)

% Available Budget

Adaptation Ratio (Aggr)

C22 C21 C12 C11

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
at

io
 (

o
u

t
o
f

1
)

% Available Budget

Adaptation Ratio (Aggr)

C22 C21 C12 C11

Figure 5.8: Adaptation ratio in terms of bandwidth reduction, measured for four priority classes, and two
values of Rmax = 1/ck. (Top-Left) Compromise, k = 4, (Top-Right) Compromise, k = 6, (Middle-Left)

Round-Robin, k = 4, (Middle-Right) Round-Robin, k = 6, (Bottom-Left) Aggressive, k = 4, (Bottom-Right)
Aggressive, k = 6.

85

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Q
u

al
it

y
/S

tr
ea

m

% Available Budget

Quality per Clinical Multimedia Stream (Cmpr)

C22 C21 C12 C11

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Q
u

al
it

y
/S

tr
ea

m

% Available Budget

Quality per Clinical Multimedia Stream (Cmpr)

C22 C21 C12 C11

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Q
u

al
it

y
/S

tr
ea

m

% Available Budget

Quality per Clinical Multimedia Stream (RR)

C22 C21 C12 C11

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Q
u

al
it

y
/S

tr
ea

m

% Available Budget

Quality per Clinical Multimedia Stream (RR)

C22 C21 C12 C11

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Q
u

al
it

y
/S

tr
ea

m

% Available Budget

Quality per Clinical Multimedia Stream (Aggr)

C22 C21 C12 C11

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Q
u

al
it

y
/S

tr
ea

m

% Available Budget

Quality per Clinical Multimedia Stream (Aggr)

C22 C21 C12 C11

Figure 5.9: Average quality per clinical data measured for four priority classes, and two values of Rmax = 1/ck.
(Top-Left) Compromise, k = 4, (Top-Right) Compromise, k = 6, (Middle-Left) Round-Robin, k = 4,

(Middle-Right) Round-Robin, k = 6, (Bottom-Left) Aggressive, k = 4, (Bottom-Right) Aggressive, k = 6.

86

on a trade-off between the different choices of sampling frequencies and a decreasing fine-grained gaps

between two consequent rates, and ran our experiments for two different values of Rmax. In practice,

values of Rmax is prescribed by the physicians at the regional center hospital based on patient’s various

physiological states. We also measured the contribution of each of the four priority classes C11, C12,

C21, and C22 to the total quality of clinical data for all three algorithms.

Figure 5.7 shows the experimental results for normalized total quality of clinical data achieved using

our three adaptation algorithms, and two different values of Rmax = 1/ck (k = 4 and k = 6). We used

two different tuples (p0, p1, p2), (1,2,2) and (1,3,3), with p1 and p2 showing first-level and second-level

priorities respectively relative to p0 to differentiate the priorities of clinical data in different classes.

We set p0 = 1 to normalize the priorities. As can be seen, the total effectiveness achieved by all

three algorithms increases as the bandwidth increases simply because sampling frequency contributes

to bandwidth which is a component of our definition of quality of clinical data. As the bandwidth

budget increases, there is more space for higher sampling frequencies of clinical data, and therefore

higher clinical bandwidth. Also, the total quality of clinical data increases as the ratio of p1
p0

or p2
p0

increases, confirming that our proposed criticality-aware adaptations noticeably distinguish the more

critical clinical data from the less critical clinical data. Interestingly, it can be concluded that ratios

between the smallest and largest priorities that are larger than 1:3 are not likely to be effective. Also,

the graphs demonstrate lowest gain in the total quality of clinical data in ranges other than 50% to

70% of the bandwidth percentile, suggesting the ranges where our adaptations can be most effective.

Figure 5.8 shows the results for average bandwidth reduction in terms of how much the sampling

frequency adaptations scaled down the bandwidth, given the equation

Adaptation Ratio =
Total quality of clinical data after adaptation

Total quality of clinical data before adaptation

measured for four different pairs indicating each clinical priority classes, and two different values

of Rmax = 1/ck (k = 4 and k = 6). As can be seen, the higher Rmax results in more bandwidth

reduction for clinical data in C11 (corresponding to the less critical class), while preserving more of the

full-bandwidth clinical multimedia streams in C22 (corresponding to the more critical class). Clearly the

larger values of Rmax work better for situations with lower communication bandwidth. Also, similar to

the total quality of clinical data, these figures suggest two points. Firstly, the adaptation ratio increases

as the available bandwidth increases. Secondly, the diagram of C22 shows larger adaptation ratio

compared to C11, confirming that our proposed adaptations noticeably distinguish the more critical

87

clinical data from the less critical clinical data, with Aggressive and Round-Robin causing the most,

and the least differentiation, respectively, as compared to a compromise and fair differentiation resulted

by Compromise.

Figure 5.9 shows normalized average quality of clinical data per each clinical data for the same set

of experiments. The diagrams confirm the conclusions derived from Figure 5.7 and Figure 5.8. As can

be seen, the diagram of C22 shows larger values compared to the other priority classes. It is worth

mentioning that our adaptations carry maximum effectiveness when all the clinical data in C11 are

adapted by Rmax, and none of the clinical data in C22 are adapted. This specific point is considered as

the peak of quality of clinical data. As our approach adapts the clinical data in C22, the gain in quality

of clinical data brought by our approach is being decreased.

Overall, although our prioritized bandwidth-compliant clinical data adaptations do provide degra-

dation in clinical data sampling frequencies in general, considering the communication bandwidth con-

straints in emergency rural ambulance transport, it is reasonable to believe that the medical community

would make this small sacrifice in less-critical clinical data in exchange for respecting higher bandwidth

for more critical clinical data using our adaptations system. In the next chapter, we will discuss our

profiling process and our collected bandwidth traces.

5.6 Conclusion and Future Work

Use of telecommunication technologies can enhance effectiveness and safety of emergency ambulance

transport of a patient from rural areas to a regional center hospital. It enables remote monitoring

of the patient by the physicians at the center hospital which provides vital assistance to the EMT to

associate best treatments. However, the communication along the roads in rural areas range from 4G

to 2G to low speed satellite links. This variable and limited communication bandwidth together with

the produced mass of clinical data pose a major challenge in real-time supervision of patients.

In this chapter, we proposed bandwidth-compliant prioritized adaptation techniques to manage

transmission of massive clinical data during ambulance transport with limited bandwidths. We use the

concepts of model-driven clinical automata, and exploit the semantics relation of limited communication

bandwidth with criticality of clinical data in a physiology-aware manner. In collaboration with Carle

Foundation Hospital, we developed a profiler, and profiled the communication bandwidth for a realistic

emergency rural ambulance transport to support our experiments. Our initial evaluation results show

88

that our adaptations can improve the effectiveness of emergency care by transferring the most critical

clinical information given the limited bandwidth.

In the future, a possibility is to derive a more sophisticated measures of quality of clinical data and

integrate our objective function with subjective clinical metrics. Another possible avenue of research can

be to add transmission time into the formulation of our adaptations, and propose scheduling algorithms

aimed to minimize the transmission delays of clinical data.

89

Chapter 6

Geo-Communication Profiling and
Dataset

6.1 Introduction

Use of mobile communication technologies allows the physicians in the center hospital to remotely su-

pervise the patient in the ambulance and assist the EMT to follow best treatment practices based on

patient’s clinical states. Unfortunately, remote monitoring of patients involves real-time transmission

of various clinical data including videos, medical images, and vital signs, which requires use of mobile

network with high-fidelity communication bandwidth. However, the wireless networks along the roads

in rural areas range from 4G to 2G to low speed satellite links with high degree of bandwidth fluctua-

tions, which poses a significant challenge to transmit critical clinical data. The problem is exacerbated

particularly in the high mobility scenarios of high-speed ambulances. Therefore, ensuring proper QoS

especially for the life-critical and bandwidth-sensitive tele-medicine applications becomes crucial.

In this chapter, we follow our adaptive clinical data communication presented in Chapter 5, and

present our geo-communication dataset that we obtained from extensive profiling of multiple mobile car-

riers in Illinois. We are mainly motivated by the bandwidth fluctuations and the high QoS requirement

of remote monitoring of patients during high-speed ambulance transport and the high mortality rate of

patients in Illinois’s rural environment. In collaboration with Carle Foundation Hospital [26] in Urbana,

we developed a profiler, and profiled various geo-communication information for a realistic emergency

ambulance transport targeting a large rural area in Illinois, from Hoopeston’s Regional Hospital [4] to

the Carle’s center hospital in Urbana. Hoopeston Regional Health Center (rural hospital) is an inte-

grated part of Carle Foundation Hospital in Urbana (center hospital), which includes medical clinic

based in Hoopeston, Illinois, with multiple additional clinics serving its surrounding rural communities.

Figure 5.1 in Chapter 5 illustrates a real-world geographical map of our experimental region with mo-

bile data coverage map, with darker colors showing higher bandwidth. Our geo-communication dataset

includes profiling of 4 major mobile carriers in the US through continuous sampling of communication

90

bandwidths (download and upload rates), GPS coordinates, GPS accuracy, altitude, and vehicle’s ve-

locity and bearing. Our dataset is particularly useful to support remote monitoring of patients and

the various clinical data communication issues during high-speed ambulance transport in large rural

hospital settings. Insights obtained from our dataset can be crucial in improving the effectiveness of

patient care, for example through adaptive selection of best transport routes, adaptive adjustment

of ambulance velocity, or adaptive transmission of various clinical multimedia in response to changes

in patients’ clinical states and bandwidth conditions. Our dataset is particularly useful for research

groups intersecting with mobile and wireless communications, multimedia streaming, and tele-medicine

sub-divisions. Apart from personal and research purposes, our dataset has real-world applications in

ambulance services especially in emergency scenarios. We are planning to use our dataset to validate

our adaptive clinical data transmission system that will serve at central and southern Illinois with 1.2

million people.

Our dataset is unique in the sense that:

• It specifically targets mobile healthcare communication in emergency ambulance services, with

the main goal of enhancing remote patient monitoring through adaptive clinical multimedia.

• It includes profiling of a large rural environment and rural Illinois in specific with almost 54,000

samples, with a real clinical use-case and hospital collaboration.

• Prior datasets separately covered measurements of individual geo-communication information,

whereas in our dataset we profile a comprehensive and integrated set of fields as a single dataset.

• Our communication traces is collected through profiling of 4 different mobile carriers as opposed

to only one.

To the best of our knowledge, there is no previous geo-communication dataset covering all these

four contributions at the same time.

The chapter is organized as follows. In Section 6.2, we cover some related work and discuss a

real clinical use-case in emergency ambulance transport where our dataset can be employed. Section

6.3 explains the design of our geo-communication profiler and the structure of the measurements, and

present a sample of our dataset measurements. We finally conclude the chapter in Section 6.4 and

provide a brief discussion of the work.

91

6.2 Background and Related Work

There has been a large body of work done around capturing datasets targeting various network and

location services. In [114] presented a dataset used for Dynamic Adaptive Streaming over HTTP

(DASH). Their DASH dataset includes metadata for media presentations, providing insights on the

advantages as well as problems of various video segment lengths. For a similar application, in [113] the

authors present a distributed dataset for the DASH standard which is mirrored at different sites within

Europe. The dataset was mainly used for simulation of switching between different content delivery

networks.

There are also a large body of work using location-based datasets, however, not necessarily generat-

ing such datasets per se. These works are mostly using outdoor movements with GPS traces targeting

various applications, including sharing of travel experiences [55, 27], personalized travel recommenda-

tions [159], life logging [158], user speed estimation [34], detection of taxi trajectory anomalies [157]

and analyzing sports activities [28].

Probably the most related set of traces to our dataset is [130]. In [130], the authors presented

measurements of network throughput when adaptive HTTP streaming is performed over 3G networks

using mobile devices. They used popular commute routes in Oslo, Norway under different types of

public transportation (metro, tram, train, bus and ferry) for profiling of network behavior. Their log

provides the GPS coordinates and the number of bytes downloaded for every second in the route.

In our previous work [93], we proposed an adaptive clinical communication architecture, and designed

a physiological message-exchange architecture for emergency patient transport from a rural hospital to a

regional center hospital. Our collection of traces in this dataset follows our previous chapters to support

and validate the design of our physiology-aware message-exchange architecture and data communication

system.

6.2.1 Real-World Clinical Use-Case

Let’s elaborate on emergency care for acute diseases as real-world use cases and illustrate how geo-

communication information especially communication bandwidth can get crucial within the context of

an ambulance transport. To clarify the concepts, we take acute stroke care being practiced at Carle’s

hospital networks as a real-world example of emergency rural ambulance transport.

Stroke is the third leading cause of death and the first leading cause of disability in the United

92

States [149]. In addition, stroke patients are often elderly (in fact, 65% to 72% stroke patients are

over age 65 [47]) who may need the highest communication requirement for remote monitoring due

to complicating medical factors. Furthermore, some effective stroke treatment medications have strict

implementation guidelines; these may begin at the remote facility and continue through ambulance

transport to the receiving regional hospital center. Overall, different factors and features may take

priority when considering limited communication coverage and bandwidth availability.

Figure 2.1 in Chapter 2 illustrates the workflow for a stroke patient being transferred from a rural

facility to a regional hospital center. Let’s consider a 70 year old male patient arrives at a rural

hospital and the diagnosis of acute stroke is considered. A CT (Computerized Tomography) head scan

is performed. The CT images are sent electronically to the regional center for interpretation. At this

clinical state, transmission of streams associated with CT images has highest priority. The patient’s

neurological examination, laboratory data, and vital signs including heart rate (HR), blood pressure

(BP), oxygenation level are obtained and sent for the purpose of continuous monitoring. The diagnosis

of an acute stroke is made, and the patient is placed in an ambulance for transport with physicians at

the center hospital remotely monitoring the patient.

A video camera and microphone in the ambulance, connected to the regional center, is used to

remotely monitor the patient’s physiological status en route. It is determined that the patient has

a hemorrhagic stroke (bleeding into the brain from blood vessel rupture). In this case, clinical best

practices suggest that time of transport gets most important. Available bandwidth is used for commu-

nication with specialists at the regional center in case emergency consultation, interventional radiology

or surgery is indicated. The HR, BP, oxygenation, and neurological status are remotely monitored. In

these situations, with higher bandwidth, the audio/video support and therefore, the transmission of

audio-visual streams gets very important. However, in the event of limited bandwidth, the audio-visual

monitoring system as well as the transmission of repeated laboratory data gets limited with secondary

priority. Highest priority in this situation is maintaining the patient’s vital signs. The HR and BP

in specific must be kept within strict limits. The BP assumes particular importance if it rises too

high (greater than 180/-) or falls too low (less than 90/-) which are indicated by the physiological

models. In accordance with guidance given by best-practice received, audio communication with the

center hospital to manage elevated blood pressure assumes highest priority if BP is greater than 180.

This might require the continuous intravenous infusion of active medications to lower blood pressure in

the ambulance, using nicardipine or nitroprusside medications where vigorous real-time monitoring is

93

Figure 6.1: Abstract road maps of our profiled region.

needed. Once higher communication bandwidth is available, periodic laboratory data, treatments for

an elevated blood glucose (greater than 350), and the video camera streams can be transmitted with

normal transmission frequency. Overall, a continuous and high-fidelity communication coverage gets

crucial depending on how critical remote monitoring can be. Use of geo-communication information

therefore can provide extremely useful insights on ensuring higher QoS for remote monitoring through

either adaptively selecting best routes for ambulance transport, adapting the clinical data transmission

rate, or even adjusting ambulance velocity in response to changes in patients’ physiological states and

bandwidth conditions.

6.3 System Design and Structure

To collect our geo-communication traces, we conducted our profiling experiments for major routes within

rural hospital settings to assess the effectiveness and to facilitate analyzing a logical interpretation of

how our physiological communication architecture works in real world. We collected almost 54,000

94

Table 6.1: An example set of 5 consecutive geo-communication traces (Sprint)

Timestamp DL UL Longitude Latitude Acc. Alt. Vel. Bearing
100 1192.1749 971.52216 40.459123 -88.070278 14 193.0 28.75 91.1
101 566.8956 932.59045 40.459017 -88.066069 13 189.0 30.0 90.7
102 834.95325 1560.9518 40.459028 -88.063833 11 195.0 30.75 90.6
103 1192.1749 971.52216 40.459123 -88.070278 14 193.0 28.75 91.1
104 878.0356 1117.8868 40.459036 -88.062363 11 197.0 30.75 90.3

samples in 4 trips under 4 major US cellular carriers, by driving through two major routes covering a

large rural hospital environment in Illinois, from Hoopeston’s rural hospital to Carle’s center hospital

in Urbana. Figure 6.1 illustrates the geographical trajectories of the two profiled routes.

6.3.1 Profiler Development

Figure 6.2: A screenshot of our developed
geo-communication profiler.

To collect our geo-communication information, we devel-

oped a mobile geo-communication profiler application in

collaboration with Carle Ambulance Service [26]. We used

Android SDK 25 for development, and used Google Nexus 5

and Google Nexus 5X smartphones as our profiling platform

mounted with 4G LTE ICCID SIM Cards under 4 major

cellular carriers in the US: Sprint, AT& T, T-Mobile, and

Verizon.

Figure 6.2 shows a screenshot of our developed geo-

commun-ication profiler. Our profiler periodically samples

and logs various useful geo-communication information once

every 4 seconds (2 seconds dedicated for download rates and

2 seconds for upload rates). The profiled geo-communication

information includes: a) timestamp, b) downlink band-

width, c) uplink bandwidth, d) GPS longitude, e) GPS lat-

itude, f) GPS accuracy, g) altitude, h) velocity, and i) bear-

ing (the bearing from the source to the destination location in degrees east of the true north). All traces

were stored locally on the profiling device and were collected at the end of each experiments. Table 6.1

shows 5 consecutive samples of our dataset, containing values for each of these fields respectively.

To implement the profiling process for downlink rates, we followed a similar approach to Ookla’s

95

Bandwidth (Kbps)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
D

F

0

0.2

0.4

0.6

0.8

1
Profiled Bandwidth

Bandwidth (Kbps)
0 1000 2000 3000 4000 5000 6000

C
D

F

0

0.2

0.4

0.6

0.8

1
Profiled Bandwidth

Figure 6.3: CDF of bandwidth traces for two samples.

SpeetTest [29]. our profiler client first establishes multiple TCP connections with our server over port

8080, and continuously retrieves file chunks of 1 megabits (Mb) for a course of 2 seconds. Our server is

a HTTP server that we specified to minimize latency and jitter due to congestion and communication

errors. As the chunks are received by the profiler, the profiler requests more file chunks throughout

the fixed duration. The total size of the buffered transfers is then received, and the download rate

is calculated in kbps (1 byte = 0.0078125 kilobits) given the fixed specified duration. The sampling

process ends once the configured amount of duration has been reached. For uplink measurements, our

profiling works in a similar way. The profiler client first establishes multiple TCP connections with our

local server over port 8080, and continuously sends chunks of random generated data in uniform sizes

for a course of 2 seconds. The data are then pushed via POST method to the server-side PHP script

that we have developed and placed on our server. As the chunks are received by the server, the profiler

sends more file chunks throughout the fixed duration. The profiler then retrieves the total size of the

buffered transfers, and the uplink rate is calculated given the fixed duration. Similar to the downlink

96

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
B

an
d

w
id

th
 (

K
b

p
s)

Timestamp

Profiled Bandwidth

Hoopeston Rural HospitalCarle Center Hospital

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

B
an

d
w

id
th

 (
K

b
p

s)

Timestamp

Profiled Bandwidth

Carle Center HospitalHoopeston Rural Hospital

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

B
an

d
w

id
th

 (
K

b
p

s)

Timestamp

Profiled Bandwidth

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

B
an

d
w

id
th

 (
K

b
p

s)
Timestamp

Profiled Bandwidth

0

50

100

150

200

250

M
et

er
s

Timestamp

Altitude

0

5

10

15

20

25

30

35

40

45

M
et

er
s

p
er

 S
ec

o
n
d

Timestamp

Velocity

Figure 6.4: A sample of our collected geo-communication traces from Hoopeston rural hospital to Carle center
hospital.

process, the uplink sampling process ends once the configured amount of duration has been reached.

6.3.2 Analysis of Traces

Figures 6.3 and 6.4 demonstrate only a small subset of our dataset under Sprint cellular network, pre-

senting a subset of all our profiled communication and geographical information. Figure 6.4 (Top-Left)

and (Middle-Left) show the downlink and uplink bandwidths for the longer route shown in Figure 6.1

(Top). For the purpose of comparisons, Figure 6.4 (Top-Right) and (Middle-Right) show the downlink

and uplink bandwidth for the shorter route shown in Figure 6.1 (Bottom). The vertical axis in all these

four figures shows the available bandwidth in Kbps while the horizontal axis shows the timestamp with

97

each point of data accounting for the four seconds of sampling period. The figures showcase interesting

results to support our assumption of bandwidth variability and limitation. As can be clearly observed in

all four figures, overall the results show lower communication bandwidth on rural areas while they show

higher bandwidth as we get closer to the urban areas. It can clearly be seen that the communication

bandwidth along both routes can range from as low as a few Kbps to a few Mbps, with most part of the

routes suffering from very poor communication coverage, and some parts, especially in the shorter route,

with no communication coverage. In Figure 6.3, we present the empirical CDFs of downlink bandwidth

in both routes to better illustrate the concept of limited bandwidth. As can also be seen here, more

than half of the both routes suffer bandwidth rates of less than 1000 Kbps, with almost %17-%23 of

the traces showing no data coverage (0 Kbps). The low communication bandwidth severely limits the

remote monitoring capability and therefore, transmission of clinical multimedia that can be communi-

cated during emergency ambulance patient transport in rural areas. As can be witnessed, interestingly

while the route shown in Figure 6.1 (Bottom) is shorter with less transport duration, it involves more

vigorous communication breakage, making it more suitable for emergency scenarios where transport

duration is of higher criticality than the remote monitoring. On the contrary, the longer route shown in

Figure 6.1 (Top) shows better coverage and more continuous communication coverage in spite of longer

transport duration, which makes it more suitable for emergency ambulance transports where remote

monitoring becomes more critical. This particular information can provide useful insights on designing

a disease-aware scheduler for next-generation ambulance dispatch centers which can assist ambulances

pick the best route when continuous network coverage is critically needed for real-time monitoring

of patients. Our envisioned disease-aware ambulance dispatch scheduler will seek trade-offs in travel

duration and availability of continuous network coverage during an emergency ambulance transport.

Figure 6.4 (Bottom-Left) illustrates the altitude distribution in meters for the route shown in Figure

6.1 (Top). It shows the variance in altitude in our experimental regions is low (standard deviation of

%5.8), interestingly proving the fact that Illinois is mostly flat prairie and hill-less plains, in fact the

second flattest state on mainland [31]. Figure 6.4 (Bottom-Right) illustrates the vehicle’s velocity traces

during that specific instance of profiling. The average travel speed during the profiling process was 27.93

meters per second (62.5 miles per hour). It is expected that the higher travel speed of an ambulance

during an emergency situation can further limit the available communication bandwidth.

98

6.4 Conclusion and Discussion

Use of telecommunication technologies for remote monitoring of patients can enhance effectiveness and

safety of emergency ambulance transport from rural areas to a regional center hospital. However, the

communication along the roads in rural areas can be as low as a few Kbps, with some parts with

no communication coverage. This bandwidth fluctuations together with the real-time communication

of various clinical multimedia can pose a major challenge in remote supervision of patients. Use of

geographical and communication statistics can therefore assist the EMT to associate best treatments

through a better prediction of the communication behavior and help them take proper actions during

emergency ambulance transport.

In this chapter, we present a geo-communication dataset from extensive profiling of multiple mobile

carriers in a large rural area in Illinois, from Hoopeston to Urbana. In collaboration with Carle Am-

bulance Service, we developed a profiler, and collected almost 54,000 samples of various geographical

and communication traces targeting a realistic emergency rural ambulance transport. Our dataset is

particularly useful to support remote monitoring of patients in large rural hospital settings. It further

provides insights on ensuring higher QoS for remote monitoring of patients through adaptively selecting

best routes, adaptive transmission of most critical clinical multimedia data, or adjusting ambulance

velocity in response to changes in patients’ clinical states and bandwidth conditions.

Our dataset is available online for research community, and can be useful for various research com-

munities especially those targeting tele-medicine and emergency services in remote areas such as those

seen in emergency rural ambulance transport. We believe our traces have high potentials in improv-

ing the safety and effectiveness of emergency patient care in major rural hospital settings, urban and

suburban, as well as military settings, as it was useful for our real-world use-case in Carle’s Ambulance

Service in Illinois region. We are planning to use our dataset to validate our adaptive clinical data

transmission system that will serve at central and southern Illinois with 1.2 million people.

99

Chapter 7

Physiology-Aware Ambulance
Routing

Patient monitoring during emergency ambulance transport from rural areas to center tertiary hospitals

requires reliable and real-time communication. This allows the physician experts in the center hospital

to remotely supervise the patient in the ambulance and assist the EMT to follow best treatment practices

based on patient’s physiological state. Unfortunately, remote monitoring of patients with critical illness

involves real-time transmission of vital signs, graphs, and medical data, and relies on the presense of

mobile network with high-fidelity communication. However, the wireless networks along the roads in

rural areas can range irregularly from 4G to low speed 2G links, including some routes with cellular

network communication breakage and only low speed satellite links [101]. Due to the lack of access

to satellite links, we do not address them in this paper. However, the technology presented in this

paper can be easily extended to address satellite link. This poses a significant challenge for real-time

monitoring of patients in an ambulance, therefore compromising the safety of patient care. The problem

is exacerbated particularly in the high mobility scenarios of high-speed ambulances. Therefore, ensuring

proper network QoS for the life-critical and communication-sensitive remote care especially for patients

with acute diseases becomes crucial.

In this study, on one hand we are motivated by the higher mortality rate of patients in Illinois’s

rural areas, and on the other hand mainly by the high-fidelity communication requirements of remote

patient monitoring and communication breakage in parts of rural routes during high-speed ambulance

transport. Figure 5.1 in Chapter 5 illustrates a real-world geographical map of our experimental region,

illustrating 4G mobile data coverage along routes from Hoopeston to Urbana. The maps show varying

communication coverage along routes, with some parts suffering communication breakage. From a pa-

tient care perspective, transport during critical illness can make route selection patient state dependent.

Depending on the type of illness, prompt decisions which weigh a longer more secure bandwidth route

versus a shorter, more rapid route with less secure bandwidth must be made. Also, the deadline of the

patient transfer is the maximal time that the patient’s condition can be kept stable in the ambulance.

100

Since the emergency treatment supervised by remote regional center hospital may effectively extend

the transfer deadline, the trade-off between proper route selection and the quality of wireless commu-

nication along transport routes becomes an important optimization problem which unfortunately have

been neglected by prior work.

In this chapter, we propose a novel physiology-aware route scheduling approach for emergency

ambulance transport of patients, especially those in rural areas with acute, high risk diseases in need

of continuous remote monitoring. Our physiology-aware route scheduling algorithms aims to select the

most optimum route for an en-route ambulance depending on the underlying disease and the criticality

of real-time continuous monitoring of patients. We mathematically model the problem into an NP-

hard graph theory problem, and approximate a solution based on a trade-off between communication

coverage and shortest path in a road network graph. We profile communication along two major routes

in a large rural hospital settings in Illinois, and use the collected traces to validate our concept. We

preliminary develop our algorithms and evaluate the performance at scale. Our approach is particularly

useful to enhance the remote monitoring of patients during high-speed ambulance transport in large

rural hospital settings. Our methodology is particularly useful for research groups intersecting with

mobile and wireless communications and tele-medicine sub-divisions, and has real-world applications

in ambulance dispatch centers especially those targeting emergencies in rural environment. We are

planning to validate our adaptive physiology-aware route scheduling system that will serve at central

and southern Illinois with 1.2 million people.

The chapter is organized as follows. In Section 7.1, we cover some related work and discuss a

real clinical use-case for disease-aware ambulance routing. Section 7.2 explains our methodology and

algorithms. In Section 7.3, we present our preliminary evaluation experiments, while we conclude the

chapter in Section 7.4.

7.1 Background

In this chapter, we discuss some related work and provide background information about a real clinical

use-case for disease-aware ambulance routing.

101

7.1.1 Related Work

There has been a body of work addressing problem of ambulance and medical facility allocation and

scheduling. In [61] for example, the authors address the problem of allocating ambulances to stations

which are distributed throughout a geographical region, aimed to maximize the expected coverage

in overall. The core of their decision method is basically crew-shift assignment to allocate crews to

shift, based on the maximum number of work hours that can be managed. Similarly, the authors

in [59] discuss the problem of locating a fleet of ambulances in a given region so that the overall

service time is maximized. They model the service time as the coverage of requests by the available

ambulance crews. In [102], the authors considered the problem of ambulance allocation to various

stations to provide coverage for a given region, assuming that the travel times from a station to the

demand location is followed by a specific distribution. In [36], the problem of forecasting the ambulance

requests and distributing their working hours is being defined. The authors propose a systematic

optimization approach for ambulance scheduling, and discuss how their method can lead to savings

and improvement of technicians’ schedules. In a similar domain, a wide range of literature review

such as [138], [37], [50], [133], and [155] defined the concept of coverage for emergency facilities, and

discussed how it relates to service time, requests, location and re-location in various ways. [48] and

[116] provide a literature review on coverage and optimization models for emergency facility location

and planning. However, while interesting, none of previous work discuss the problem of emergency

ambulance routing in correspondence with communication QoS. Furthermore, previous work mainly

discuss a general view of the problem from allocation and optimization, and do not consider the context

of medicine. Unfortunately, a relation between routing and disease awareness especially in regards to

real-time continuous monitoring has been left unaddressed. Our work in fact complements the previous

work by filling the details by proposing scheduling and optimization techniques when a particular service

demand (e.g. emergency patient transport) is specifically assigned to a single ambulance.

Due to the recent popularity of vehicular ad hoc networks (VANET), another set of works such as

[39], [40], and [41] to enumerate a few, focused on the applications of VANET in vehicle routing. The

focus of these work is mainly proposing a location-based routing protocol to send information from a

source to a destination by performing road selection from a junction to the neighbor junction. These

approaches however, not only are general to all moving vehicles and do not consider the emergency

requirements of remote care and ambulance patient transfer, but also they focus on position and traffic

for data forwarding as opposed to communication coverage for the purpose of road selection. Further-

102

more, the formulations in these work are based on static topology and employment of offline processes,

and therefore topology changes and dynamism are not introduced. Bhoi and Khilar in their work [38]

developed a system called VehiHealth used for vehicular communication to transfer data from a source

to destination. While their target vehicle is an ambulance and their goal is to provide quick emergency

consultancy to save a patient’s life, their approach is focused on information and data forwarding which

differs from our work on route selection and scheduling.

7.1.2 Real-World Medical Use-cases

Let’s elaborate on emergency care for an acute disease as a real-world use-case and illustrate how

ambulance routing can get crucial within the context of remote monitoring. To clarify the concepts,

we take acute stroke care being practiced at Carle’s hospital networks [26] as a real-world example of

emergency rural ambulance transport.

Stroke is the third leading cause of death and the first leading cause of disability in the United

States [149, 93]. In addition, stroke patients are often elderly (in fact, 65% to 72% stroke patients

are over age 65 [47]) who may need the highest communication requirement for remote monitoring

due to complicating medical factors. Furthermore, some effective stroke treatment medications have

strict remote monitoring implementation guidelines [70, 132]; these may begin at the remote facility

and continue through ambulance transport to the receiving regional hospital center. Overall, real-time

and continuous remote monitoring may take priority depending on type and state of stroke.

Figure 2.1 in Chapter 2 illustrates the workflow for a stroke patient being transferred from a rural

facility to a regional hospital center. Let’s consider a patient arrives at a rural hospital and the diagnosis

of acute stroke is considered. A CT (Computerized Tomography) head scan is performed. The CT

images as well as patient’s initial neurological examination, laboratory data, and vital signs including

heart rate (HR), blood pressure (BP), and oxygenation level are sent electronically to the regional

center for interpretation. The diagnosis of an acute stroke is then made, and patient is placed in the

ambulance for transport to the regional center hospital.

For the first scenario, with consultation with regional hospital it is determined that the patient has

a hemorrhagic stroke (bleeding into the brain from blood vessel rupture), initially manageable in the

ambulance. There is noted once in the ambulance a slight deterioration in patient state. In this case,

time of transport gets most important. The regional center has the neurological team ready on call to

take the patient to radiology, to try to identify the aneurysm and place a stent in the artery to control

103

Figure 7.1: An example planar graph model. (Left) The initial abstract graph with partial communication on
edges. (Right) The transformed graph model with added nodes (highlighted) and each edge having a single

communication label.

the hemorrhage. As a result, real-time continuous monitoring gets second priority and ambulance must

take the shorter route for fastest transport.

For another scenario, after communication with experts at the remote regional hospital and coagula-

tion lab studies, the patient shows signs of an ischemic stroke. There is no medical contradictions, TPA

is begun and continued onboard the ambulance, and the HR, BP, oxygenation, and neurological status

are remotely monitored. With ischemic stroke, highest priority is maintaining the patient’s vital signs.

The HR and BP in specific must be kept within strict limits. The BP assumes particular importance

if it rises too high (greater than 180/-) or falls too low (less than 90/-). Vigorous real-time monitoring

o continuous intravenous infusion of active medications to lower blood pressure using nicardipine or

nitroprusside medications is required during transport. In this case, time is not critical, and in the face

of stable patient and vital signs, the network connection becomes most critical. Precise monitoring and

management of BP, TPA, and oxygenation (O2 saturation) is necessary if brain condition deteriorates

[132, 135]. As a result, the ambulance may take the longer route, but more secure with coverage to

assist EMT manage change in patient state in accordance with guidance from remote physicians.

Figure 6.1 in Chapter 6 illustrates the geographical trajectories of the two major routes from Hoope-

ston’s rural hospital to Carle regional hospital in Urbana. Figure 6.1 (Top) illustrates a longer route,

but with higher-fidelity communication and more secure coverage according to Figure 5.1 in Chapter 5

and our conducted profiling. This longer route is most suitable for acute diseases with high real-time

monitoring requirements such as those seen in ischemic stroke patients. In contrast, while the trans-

port duration is shorter in the route highlighted in Figure 6.1 (Bottom), the communication coverage

104

bears much lower fidelity, some parts with no coverage, which makes it most suitable for transport of

patients with hemorrhagic stroke. Overall, a continuous and high-fidelity communication coverage gets

crucial depending on type of illness and therefore, how critical remote monitoring is. This requires the

ambulance to adaptively select best transport route in response to changes in patients’ physiological

states and communication coverage conditions.

7.2 Methodology

In this chapter we define our problem, and explain our methodology and algorithms in regards to our

proposed physiology-aware ambulance routing.

7.2.1 Problem Definition

For continuous monitoring of patient when an ambulance is en route, an important feature is reliable

high-speed communication coverage along transport routes. The design of our physiology-aware route

scheduler is centered around communication coverage along transport routes to assist ambulances pick

the best possible route when communication is needed for real-time remote monitoring of patients. The

selection of a shorter route with low-fidelity communication coverage versus a longer route with better

coverage and thus, better remote monitoring and assistance is what we call a communication-aware

shortest path problem.

Our route selection problem is generally considered a resource-constrained shortest path in the sense

that it seeks a shortest and fastest path in a directed graph with pre-defined edge lengths from an origin

node to a destination node, but with regards to resource limitations. The edge lengths are associated

with ambulance travel duration, and the route selection is subject to one or more constraints. To

illustrate the concept of resource constraints better, a constraint can be that the total amount of some

data that has to be collected at the nodes along the paths be less than a given limit. In a similar way,

in our communication-aware shortest path problem, an ambulance needs to pick a path of minimum

length from any given origin node s to a given destination t to certain constraints. For an ambulance

en route from a rural hospital to a city hospital, we define a set of requirements for a path constraints

as follows:

• Req. 1: The total length of communication unavailability and breakage in a path must not

exceed a specific duration constraint D1.

105

• Req. 2: the total length of continuous communication unavailability and breakage in a path

must not exceed a specific duration constraint D2.

Our communication-aware shortest path problem therefore seeks a trade-off between the shortest

and fastest transport time and satisfaction of communication constraints as mentioned above. Similar

to multi-criteria decision problems, shortest path problems with resource constraints are NP-hard in

the strong sense. However, efficient approximation algorithms can be utilized, so this approach is

computationally feasible.

The standard approach to solve shortest path problems with resource constraints is based on dy-

namic programming. Our communication-aware shortest path problem however, differs from the known

resource-constraints shortest path problems. By definition, a resource is constrained if there is at least

one node in the graph where the resource must not take all possible values. However, our problem

modeling has multiple variations and unique features as we describe in the following:

1. Edge-constrained shortest-path problem: In our context, the notion of resource is not applied to

the node, but is rather applied to the edges. This variation complicates the problem and makes it

non-deterministic as the window of resources or the set of allowed values for the resource is defined

at each traversed edge. This implies that a prior insight of the future to-be-chosen edge is needed

before selecting an edge. Therefore, if edge (i, j) from node i to node j is chosen, then selecting

the next edge (j, k) from node j to node k is considered valid only if the whole resulting path

from node i to node k is valid and falls within the communication requirements. In other words,

assuming Fn(i, j) to be a function returning the optimum route from a given node i to j, then

in our context, Fn(i, j) 6= Fn(i, j − 1) +Fn(j − 1, j), which differs from a dynamic programming

approach.

2. Partial communication on edges: In our context, communication coverage can exist partially on

a route or an edge. This also complicates our problem since multiple values are associated with

a single route as opposed to a single value for an individual route. Figure 7.1 (left) illustrates an

example road network planar graph, with routes having a weight label representing the transport

duration as well a binary label representing the communication coverage that can cover parts of a

route. A green coverage symbol represents availability of coverage whereas a red symbol showing

lack of coverage on a part of an edge. For instance, in Figure 7.1 (left), edge eAC partially carries

two communication coverage labels, with a portion with communication coverage and the rest

106

with lack of communication coverage.

3. Mutually adaptive route scheduling: Our problem modeling is more complex due to the adaptation

nature of the routing algorithm. The algorithm must be adaptive in the sense that once a node

is reached, the pre-determined optimum path can be modified depending on current conditions.

This makes the routing algorithm interactive and mutually adaptive with physicians at the remote

center hospital.

4. Trade-offs in satisfaction of requirements: Due to the trade-off nature of our problem modeling,

satisfaction of requirements must be relative to the transport duration. In other words, satisfying

a specific requirement, for instance Req. 1, must not enforce the algorithm to select an extended

route with a long duration. For that purpose, we devise an objective function as a metric to weigh

alternative paths for the purpose of optimization. In the graph represented in Figure 7.1, there

are three alternative paths from D to F . While there is communication breakage in parts of paths

(D → C → F) and (D → F), they are shorter than the third alternative path (D → G → F)

which has full communication coverage. Therefore, our objective function must provide a metric

to weigh these three paths differently.

7.2.2 Proposed Solution

The underlying system of transport routes is characterized by a weighted directed graph G = (T , E)

representing a graph of |T | nodes and |E| links between them. Thus, each vertex τi ∈ T represents an

intersection, and each edge eij = (τi, τj) ∈ E represents a possible route between a pair of vertices, τi

and τj . Due to the fact that communication coverage might exist for parts of an edge, we use labels

to store information on the communication coverage for partial paths. Aside from having the length

of an edge, a label considers the level of communication coverage along that edge, which maps the

set of all possible values of communication bandwidth to a set of limited integer values defined as a

resource. In this initial work, we start with a binary label for communication, specifying the availability

of communication coverage.

In our generalized route selection setup, each edge eij is associated with a weight wi representing

the length or duration of transport time, and multiple labels each denoted as a binary flag vi ∈ {0, 1}

representing existence or lack of communication coverage. The values of wi and vi are known in advance

based on profiled communication traces. The problem of selecting the optimal set of upcoming route

107

in order to select the most proper shortest path based on communication needs can be formulated as

an optimization problem. The goal is to minimize a cost function derived by transport duration as well

the sets of requirements as defined previously through selectively choosing a particular subset of routes,

S ⊆ E, under which the total cost is minimized.

First, to accommodate the partial communication coverage on edges with possibility of edges having

multiple communication labels, we transform G into the planar graph G′ through an edge partitioning

process. All multi-labeled edges are partitioned into multiple independent edges, each with a single

communication label, through inserting additional nodes between each pair of edge segments.

Figure 7.1 (right) shows the transformed graph of the example planar graph model shown in Figure

7.1 (left), with added vertices and extra edges, with each edge associated with a single coverage label.

It illustrates how the edge eDF with weight w6 and two communication labels is segmented into two

distinct edges, eDK with weight w6′ and eKF with weight W6′′, each carrying separate communication

labels. The new added nodes are highlighted in green.

Next, to keep the number of candidate paths as small as possible, we perform a graph simplification

approach. To achieve that, we iterate through all edges eij ∈ E and remove edges violating Req. 2.

Due to the criticality of this requirement, Req. 2 is checked as a satisfaction rule to filter candidate

paths.

In the next step, an objective function is defined as a metric to weigh various alternative paths.

Our objective function seeks trade-offs between a path which is long, but with less connectivity, and

a shorter, but more secure connectivity. Therefore, we define our objective function as a weighted

function of both the total length and total communication coverage. In this pilot study, we start from

the simplest function, and define the objective function f(p) for a given path p as the sum of the total

length of the path and the total length of breakage multiplied by a specific co-efficient, represented as:

f(p) =
(∑

W(i,j) + α.
∑

W(m,n)

)
(7.1)

s.t. V(m,n) = 1, (i, j), (m,n) ∈ p. (7.2)

α a disease-specific coefficient given by physicians which determines how critical continuous remote

monitoring is for a specific illness at any given time.

108

7.2.3 Algorithms

Our proposed solution involves finding candidate shortest paths between a designated pair of nodes in

a given directed weighted graph. For that purpose, use Eppstein’s K-shortest path algorithm [60] to

find k number of shortest paths as it represents all possible deviations from the shortest path. The

core of the proposed approach is to use the K-shortest path algorithm to shortlist candidate paths, and

apply the objective function as a metric to select most suitable path. If no candidate paths are found

given the requirements, the algorithm is repeated with higher threshold values until a path is returned.

Overall, our proposed algorithm is consisted of five major phases, as follows:

• Phase 1. Graph transformation phase. Transform the initial multi-labeled graph G into a singly-

labeled graph G′ through the edge partitioning process as described previously and depicted in

Figure 7.1.

• Phase 2. Graph simplification phase. The transformed graph G′ is then simplified, and trans-

formed into graph G′′ through ignoring edges violating Req. 2.

• Phase 3. K-shortest paths candidates. Run our K-shortest path algorithm, and modify the

Eppstein’s K-shortest path algorithm to retrieve each shortest path one-by-one, and verify the

path against Req. 1 and Req. 2 until we get k distinct shortest paths from the designated source

to the destination node. Finally the total lengths of each path is calculated and stored.

– If no path is found, increment D1 by a coefficient d with an upper bound D′, so that

D1 = d.D1 s.t. D1 ≤ D′. Repeat until k paths are found.

– If no path is found, the problem can not be solved. The EMT must communicate with the

physicians for an acceptable solution. This can be following the best effort such as shortest

path.

• Phase 4. Repeat phase 2 for h discrete values of D1i ∈ [β1.D1, β2.D1] : 1 ≤ i ≤ h and construct

a 2-dimensional array, with each row representing an array of the resulting k-shortest paths for a

given D1i : 1 ≤ i ≤ h.

– Note that this algorithm retrieves k paths not violate Req. 2.

• Phase 5. Lastly, apply our objective function in Equation 7.1 against each individual path in the

constructed 2-dimensional array and calculate the values. Select the path resulting in the lowest

cost as the optimal path.

109

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

B
an

d
w

id
th

 (
K

b
p

s)

Timestamp

Profiled Bandwidth

Hoopeston Rural HospitalCarle Center Hospital

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

B
an

d
w

id
th

 (
K

b
p

s)

Timestamp

Profiled Bandwidth

Carle Center HospitalHoopeston Rural Hospital

Figure 7.2: A sample of our profiled communication from Hoopeston rural hospital to Carle center hospital.

It should be noted that the values of k, d, β1 and β2 are defined by the physicians and can be adjusted

based on the criticality of a disease as well as the complexity of a given planar graph.

7.3 Evaluation

To validate our study in real world and to facilitate a logical interpretation of the problem to be

analyzed, we conducted communication coverage and bandwidth profiling in a large region of hospital

health system in Illinois. We took a scenario where a patient is transferred from a rural hospital to a

regional center hospital via a high-speed ambulance, and profiled the two major routes in Figure 6.1

in Chapter 6, from Hoopeston’s rural hospital to Carle Foundation Hospital in Urabana as proof of

concept. To profile the available bandwidth, we developed a mobile bandwidth profiler application in

collaboration with Carle Ambulance Service, and collected communication bandwidth traces under 4

110

0.094 0.111 0.116 0.126 0.146
0.185

0.218

0.329

0.553

y = 0.0112x2 - 0.0658x + 0.184

R² = 0.9373

0

0.2

0.4

0.6

0.8

1

1 10 50 100 500 1000 2000 5000 10000

S
ec

o
n

d

K (Number of candidate paths)

Execution Time (second)

Proposed

Poly. (Proposed)

Figure 7.3: Scalability analysis of proposed algorithm in terms of execution time.

major US cellular networks.

Figure 7.2 demonstrate only a small subset of our profiled data under Sprint cellular network. Fig-

ure 7.2 (Left) shows the downlink bandwidth for the longer route shown in Figure 6.1 (Top), whereas

Figure 7.2 (Right) shows the bandwidth traces for the shorter route shown in Figure 6.1 (Bottom).

The vertical axis shows the available bandwidth while the horizontal axis shows the timestamp with

each point of data accounting for the four seconds of sampling period. As can be witnessed, interest-

ingly while the route shown in Figure 6.1 (Bottom) is shorter with less transport duration (almost 35

minutes), it involves more vigorous communication breakage, making it more suitable for emergency

scenarios where transport duration is of higher criticality than the remote monitoring. On the contrary,

the longer route shown in Figure 6.1 (Top) (almost 47 minutes) shows a more reliable and more con-

tinuous communication coverage in spite of longer transport duration, which makes it more suitable for

emergency ambulance transports where remote monitoring becomes more critical.

We evaluated the execution time of our algorithm, and conducted preliminary computational ex-

periments to analyze the average-case performance and scalability of the algorithm. Our experimental

platform was a HP Z230 SFF Intel Xeon E3-1240 machine with 3.4 GHz quad-core processors, 8 MByte

Cache and 8,192 MByte physical memory running Java 1.8.0.121. We randomly generated a large-scale

planar directed weighted graph representing a road network, with around 12,000 nodes and 30,000

edges with non-integer weights. We generated random source and destination nodes, and repeated each

experiment 10 times and calculated the average execution times.

Figure 7.3 shows a subset of our experimental evaluation. It illustrates the average execution times

for different sizes of k (i.e. number of shortest paths analyzed), varying from 1 to 10,000, with d and βs

111

set to 1 for the purpose of scalability analysis. This means the biggest problem solved was analyzing

the top 10,000 shortest path. The curve line shows the polynomial trend-line for the execution time,

indicating that with a probability of higher than 0.93, the function y = 0.0112x2 − 0.0658x + 0.184

can generalize the overall trend and estimate future data points. The results illustrate the efficiency of

our proposed algorithm at scale, and verifies its suitability for the real-time requirements of large-scale

route scheduling. We will comprehensively present all our evaluation results and profiled traces in future

studies.

7.4 Conclusion

In this chapter, we propose a physiology-aware route scheduling algorithm for emergency ambulance

transport of patients with acute diseases in need of continuous remote monitoring. We study the trade-

offs between route scheduling and the quality of wireless communications in the context of disease

awareness and investigate it through an NP-Hard optimization problem. We design our algorithms,

validate them conceptually using our real-world profiled data, and run preliminary experiments to

evaluate the runtime performance and scalability. We believe that our techniques can enable next-

generation ambulance dispatch centers in emergency patient transfer scenarios when continuous network

coverage is critically needed, which can help drop morbidity and mortality rates with early diagnosis

and effective treatment.

112

Chapter 8

Conclusions

For emergency medical cyber-physical systems, enhancing the safety and effectiveness of patient care

in remote rural areas, is crucial. While the doctor to patient ratio in the United States is 30 to 10,000

in large metropolitan areas, it is only 5 to 10,000 in most rural areas; and the highest death rates are

often found in the most rural counties.

Use of telecommunication technologies can enhance effectiveness and safety of emergency ambulance

transport of patients from rural areas to a regional center hospital. It enables remote monitoring of

patients by the physicians at the center hospital and provides vital assistance to the EMT to associate

best treatments. However, the communication along the roads in rural areas can range from 4G to 2G

to low speed satellite links, with some parts suffering from communication breakage. This unreliable

and limited communication bandwidth together with the produced mass of clinical data and the many

information exchanges pose a major challenge in real-time supervision of patients.

In this study, we propose a novel adaptive physiology-aware communication framework for dis-

tributed emergency care from a rural hospital to the transporting ambulance to the tertiary center

hospital. We study the semantics relation of communication with clinical messages, criticality of clinical

data, and an ambulance’s undertaken route all in a disease-aware manner. Our proposed communication

framework is aimed to enhance remote monitoring of acute patients during ambulance transport from

a rural hospital to a regional center hospital. We evaluate the components of our framework through

various experimentation phases including simulation, instrumentation, real-world profiling, and valida-

tion.

113

Chapter 9

Future Plans

Overall, we believe that our study will make advances in networked cyber-physical system engineering

and medical cyber-physical systems and services. Aside from the more in-depth technical future work

described in each chapter, we plan to expand the recognition and extend the features of our proposed

system from two major perspectives.

From a research perspective, we plan to open up a novel avenue of multi-disciplinary research through

a conference track or a workshop covering “distributed emergency care”, intersecting with advanced

topics in mobile networks, distributed cyber-physical systems, and healthcare and medical services.

The new track will further call for research exploring how to advance our proposed system through

integrating emerging network technologies, including: a) 5G mobile networks and its proposed Multi-

access Edge Computing (MEC) features to better provide a differentiated QoS for healthcare services, to

scale the network, and to reduce latency, b) Software-Defined Networking (SDN) and Network Function

Virtualization (NFV) to further decrease the transmission latency of clinical data, and c) Information

Centric Networks (ICN) to better assist with content-centric delivery of medical data.

From medical consumer and end-user perspective, we plan to clinically validate our studies in real

hospital settings, aiming to integrate the output of our study into next-generation ambulances and

emergency medical services to convey enhanced emergency healthcare and tele-medicine services via

intelligent disease-specific emergency care. A specific plan is to clinically validate our system in a long

run in collaboration with Carle Foundation Hospital for central and southern Illinois with 1.2 million

people, and to showcase that we can in fact decrease the mortality rate of stroke acute disease (or any

other difficult emergency situation) given its 3-hour window.

114

References

[1] Apple - remote desktop. www.apple.com/remotedesktop.

[2] Aspirin side effects. http://www.drugs.com/aspirin.html.

[3] Chrome remote desktop - chrome web store - google. https://chrome.google.com/webstore/

detail/chrome-remote-desktop.

[4] Hoopeston Regional Helth Center. https://carle.org/hoopeston.

[5] Iso/iec 13239 standard catalogue. http://www.iso.org/iso/catalogue_detail.htm?

csnumber=37010.

[6] Iso/iec 3309 standard catalogue. http://www.iso.org/iso/catalogue_detail.htm?csnumber=
8561.

[7] Itu-t recommendation v.42. http://www.itu.int/rec/T-REC-V.42-200203-I.

[8] Lync - microsoft office (currently known as skype for business. http://products.office.com/en-
us/skype-for-business/online-meetings.

[9] Recommendation for space data system standards-ccsds 735.1-b-1.

[10] Remote desktop connection - microsoft windows. http://windows.microsoft.com.

[11] Teamviewer: remote control, remote access, & online meeting. http://www.teamviewer.com.

[12] Review of the space communications program of nasa’s space operations mission directorate. pages
51–53, 2006.

[13] Must-have erp features for the automotive industry. Plex Systems, Manufacturing Business Tech-
nology, 2014. http://www.mbtmag.com/articles/2014/01/must-have-erp-features-automotive-
industry.

[14] Ieee standard for distributed interactive simulation (1278.2-2015). IEEE Working Group for
Distributed Interactive Simulation, IEEE https://standards.ieee.org/findstds/standard/

1278.1-2012.html, 2015.

[15] Clinical management algorithms. MD Anderson Center, last accessed on Apr 9, 2016.

[16] Data replication and fast clone. Informatica Data Replication, last accessed on Apr 9, 2016.

[17] Dbmoto. HiT Software, last accessed on Apr 9, 2016.

[18] Double-take share. Vision Solution, last accessed on Apr 9, 2016.

[19] Jconsole, Last accessed on Apr 9, 2016.

115

[20] Jvm monitor: Java profiler integrated with eclipse, Last accessed on Apr 9, 2016.

[21] Matlab’s stateflow. http://www.mathworks.com/products/stateflow/, last accessed on Apr 9,
2016.

[22] Simman patient simulator, laerdal medical. http://www.laerdal.com/doc/86/SimMan, last ac-
cessed on Apr 9, 2016.

[23] Symmetricds. http://www.symmetricds.org, last accessed on Apr 9, 2016.

[24] Visual vm: All-in-one java troubleshooting tool, Last accessed on Apr 9, 2016.

[25] Yakindu statecharts. http://statecharts.org, last accessed on Apr 9, 2016.

[26] Carle Foundation Hospital. http://www.carle.org, last accessed on Apr 9, 2017.

[27] Geolife: Building social networks using human location history. http://research.microsoft.com/en-
us/projects/geolife/, last accessed on Feb 14, 2017.

[28] Routes at bikely. http://www.bikely.com/, last accessed on Feb 14, 2017.

[29] Speedtest.net by ookla- the global broadband speed test. http://www.speedtest.net/, last accessed
on Feb 14, 2017.

[30] Missed connections: A nurses survey on interoperability and improved patient care. Gary and
Mary West Health Institute, March 2015.

[31] Study says illinois is second-flattest state on mainland. http://articles.chicagotribune.com/2014-
06-19/news/chi-study-says-illinois-is-second-flattest-state-on-mainland, published on June 19,
2014, last accessed on Feb 14, 2017.

[32] A. Al-Nayeem, Cheolgi Kim, Woochul Kang, Po-Liang Wu, and Lui Sha. Middleware design for
physically-asynchronous logically-synchronous (pals) systems. In Embedded Software (EMSOFT),
2013 Proceedings of the International Conference on, pages 1–10, Sept 2013.

[33] A. Alinejad, N. Philip, and R. S. H. Istepanian. Mapping of multiple parameter m-health scenarios
to mobile wimax qos variables. In 2011 Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, pages 1532–1535, Aug 2011.

[34] Mohamed Taher Alrefaie. Demo: Road speed profile: From gps traces to real-time traffic speed.
In Proceedings of the 15th ACM International Symposium on Mobile Ad Hoc Networking and
Computing, MobiHoc ’14, pages 407–408, New York, NY, USA, 2014. ACM.

[35] Marc Andreessen. Why software is eating the world. Wall Street Journal, vol 20, August 2011.

[36] Jean Aubin. Scheduling ambulances. Interfaces, 22(2):1 – 10, March 1992.

[37] Ayfer Başar, Bülent Çatay, and Tonguç Ünlüyurt. A taxonomy for emergency service station
location problem. Optimization Letters, 6(6):1147–1160, 2011.

[38] S. K. Bhoi and P. M. Khilar. Vehihealth: An emergency routing protocol for vehicular ad hoc
network to support healthcare system. Journal of Medical Systems, 40(3):1–12, 2015.

[39] Sourav Kumar Bhoi and Pabitra Mohan Khilar. A road selection based routing protocol for
vehicular ad hoc network. Wireless Personal Communications, 83(4):2463–2483, 2015.

[40] Sourav Kumar Bhoi, Pabitra Mohan Khilar, and Munesh Singh. A path selection based routing
protocol for urban vehicular ad hoc network (uvan) environment. Wireless Networks, pages 1–12,
2015.

116

[41] Sardar Muhammad Bilal, Carlos Jesus Bernardos, and Carmen Guerrero. Position-based routing
in vehicular networks: A survey. J. Netw. Comput. Appl., 36(2):685–697, March 2013.

[42] Torsten Blochwitz, M Otter, M Arnold, C Bausch, C Clauß, H Elmqvist, A Junghanns, J Mauss,
M Monteiro, T Neidhold, et al. The functional mockup interface for tool independent exchange
of simulation models. In 8th International Modelica Conference, Dresden, pages 20–22, 2011.

[43] Boeing. Spacecraft support ground system. In GOES N Data Book- Revision C, pages 15: 1–18,
February 2009.

[44] A. Bokani, M. Hassan, and S. Kanhere. Http-based adaptive streaming for mobile clients using
markov decision process. In 2013 20th International Packet Video Workshop, pages 1–8, Dec
2013.

[45] Massimo Bombino, Matthew Hause, and Patrizia Scandurra. Heterogeneous systems co-
simulation: a model-driven approach based on sysml state machines and simulink. In First
Workshop on Hands-on Platforms and tools for model-based engineering of Embedded Systems,
HOPES, 2010.

[46] Joseph T Buck, Soonhoi Ha, Edward A Lee, and David G Messerschmitt. Ptolemy: A framework
for simulating and prototyping heterogeneous systems. 1994.

[47] Griswold Home Care. Stroke prognosis and treatment in elderly patients.
http://www.griswoldhomecare.com/blog/stroke-elderly-overview/.

[48] Aakil M. Caunhye, Xiaofeng Nie, and Shaligram Pokharel. Optimization models in emergency
logistics: A literature review. Socio-Economic Planning Sciences, 46(1):4 – 13, 2012. Special
Issue: Disaster Planning and Logistics: Part 1.

[49] MD Anderson Center. Clinical management algorithms. http://www.

mdanderson.org/education-and-research/resources-for-professionals/

clinical-tools-and-resources/practice-algorithms/clinical-management-algorithms.

html.

[50] Sunarin Chanta, Maria E. Mayorga, and Laura A. McLay. Improving emergency service in rural
areas: a bi-objective covering location model for ems systems. Annals of Operations Research,
221(1):133–159, 2011.

[51] C. Chen, X. Zhu, G. de Veciana, A. C. Bovik, and R. W. Heath. Rate adaptation and admission
control for video transmission with subjective quality constraints. IEEE Journal of Selected Topics
in Signal Processing, 9(1):22–36, Feb 2015.

[52] Jiachen Chen, M. Arumaithurai, Xiaoming Fu, and K.K. Ramakrishnan. G-copss: A content cen-
tric communication infrastructure for gaming applications. In Local Metropolitan Area Networks
(LANMAN), 2011 18th IEEE Workshop on, pages 1–6, Oct 2011.

[53] Jiachen Chen, Mayutan Arumaithurai, Xiaoming Fu, and K.K. Ramakrishnan. Reliable pub-
lish/subscribe in content-centric networks. In Proceedings of the 3rd ACM SIGCOMM Workshop
on Information-centric Networking, ICN ’13, pages 21–26, New York, NY, USA, 2013. ACM.

[54] George Coulouris, Jean Dollimore, Tim Kindberg, and Gordon Blair. Distributed Systems: Con-
cepts and Design. Addison-Wesley Publishing Company, USA, 5th edition, 2011.

[55] Scott Counts and Marc Smith. Where were we: Communities for sharing space-time trails.
In Proceedings of the 15th Annual ACM International Symposium on Advances in Geographic
Information Systems, GIS ’07, pages 10:1–10:8. ACM, 2007.

117

[56] Perednia DA and Allen A. Telemedicine technology and clinical applications. JAMA, 273(6):483–
488, 1995.

[57] D. De Vleeschauwer et al. Optimization of HTTP adaptive streaming over mobile cellular net-
works. In Proc. of IEEE INFOCOM, 2013.

[58] Anthony DeVincenzi, Lining Yao, Hiroshi Ishii, and Ramesh Raskar. Kinected conference: aug-
menting video imaging with calibrated depth and audio. In Proceedings of the ACM 2011 confer-
ence on Computer supported cooperative work, pages 621–624. ACM, 2011.

[59] Karl F. Doerner, Walter J. Gutjahr, Richard F. Hartl, Michaela Karall, and Marc Reimann.
Heuristic solution of an extended double-coverage ambulance location problem for austria. Central
European Journal of Operations Research, 13 Issue 4:325 340, Dec 2005.

[60] David Eppstein. Finding the k shortest paths. SIAM J. Comput., 28(2):652–673, February 1999.

[61] G Erdoan, E Erkut, A Ingolfsson, and G Laporte. Scheduling ambulance crews for maximum
coverage. Journal of the Operational Research Society, 61:543 550, 2010.

[62] John Fitzgerald and Kenneth Pierce. Co-modelling and co-simulation in embedded systems design.
In Collaborative Design for Embedded Systems, pages 15–25. Springer, 2014.

[63] John Fox, Nicky Johns, and Ali Rahmanzadeh. Disseminating medical knowledge: the
{PROforma} approach. Artificial Intelligence in Medicine, 14(12):157 – 182, 1998. Selected
Papers from {AIME} ’97.

[64] Roland A. G˙ Stroke manager service for improved post-acute continuity of care. Health Policy
and Technology, 1(3):145 – 154, 2012.

[65] Haiyan Gao, Ann McDonnell, David A Harrison, Tracey Moore, Sheila Adam, Kathleen Daly,
Lisa Esmonde, David R Goldhill, Gareth J Parry, Arash Rashidian, Christian P Subbe, and Sheila
Harvey. Systematic review and evaluation of physiological track and trigger warning systems for
identifying at-risk patients on the ward. Intensive care medicine, 33(4):667–679, 2007.

[66] O. Garcia-Morchon and K. Wehrle. Efficient and context-aware access control for pervasive medi-
cal sensor networks. In Pervasive Computing and Communications Workshops (PERCOM Work-
shops), 2010 8th IEEE International Conference on, pages 322–327, March 2010.

[67] Una Geary and Una Kennedy. Clinical decision-making in emergency medicine. Emergencias,
22:56–60, 2010.

[68] Una Geary and Una Kennedy. Clinical decision-making in emergency medicine. Emergencias,
22:56–60, 2010.

[69] Dimitrios Georgakopoulos and Michael P. Papazoglou. Enterprise service bus. In Service-Oriented
Computing, pages 1–28. MIT Press, 1 edition, November 2008.

[70] R. T. Gerhardt. Prehospital and emergency care research at the US Army Institute of Surgical
Research: enabling the next great leap in combat casualty survival. US Army Med Dep J, pages
82–86, 2011.

[71] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. Ch. Ivanov, R. G.
Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley. PhysioBank,
PhysioToolkit, and PhysioNet: Components of a new research resource for complex
physiologic signals. Circulation, 101(23):e215–e220, 2000 (June 13). Circulation Elec-
tronic Pages: http://circ.ahajournals.org/cgi/content/full/101/23/e215 PMID:1085218; doi:
10.1161/01.CIR.101.23.e215.

118

[72] Jr. Green, P. Protocol conversion. Communications, IEEE Transactions on, 34(3):257–268, Mar
1986.

[73] William Grosso. Java RMI, pages 468–475. 1st edition, 2001.

[74] Siyu Gu et al. Data extrapolation in social sensing for disaster response. In Proceedings of the
2014 IEEE International Conference on Distributed Computing in Sensor Systems, DCOSS ’14,
pages 119–126, Washington, DC, USA, 2014. IEEE Computer Society.

[75] S. K. S. Gupta, T. Mukherjee, and K. Venkatasubramanian. Criticality aware access control model
for pervasive applications. In Proceedings of the Fourth Annual IEEE International Conference
on Pervasive Computing and Communications, PERCOM ’06, pages 251–257, Washington, DC,
USA, 2006. IEEE Computer Society.

[76] Paul K.J. Han, William M.P. Klein, and Neeraj K. Arora. Varieties of uncertainty in health care:
a conceptual taxonomy. Medical Decision Making, 31(6):828838, July 2012.

[77] David Harel. Statecharts: a visual formalism for complex systems. Science of Computer Pro-
gramming, 8(3):231 – 274, 1987.

[78] Z. He, S. Mao, and S. Kompella. Quality of experience driven multi-user video streaming in
cellular cognitive radio networks with single channel access. IEEE Transactions on Multimedia,
18(7):1401–1413, July 2016.

[79] Zhifeng He, Shiwen Mao, and Sastry Kompella. QoE driven video streaming in cognitive radio
networks: The case of single channel access. In 2014 IEEE Global Communications Conference,
pages 1388–1393, Dec 2014.

[80] Shawn Helton. Fukushima daiichi workers clear debris by remote control. 21st Century Wire,
August 2014. http://21stcenturywire.com/2014/08/07/flight-control-boeings-uninterruptible-
autopilot-system-drones-remote-hijacking.

[81] Scott Hensley. Nurses have to translate when medical devices fail to communicate, March 2015.

[82] W Randy Heuser. An osi architecture for the deep space network. In TDA Progress Report
42-109, Jet Population Lab, March 30, 1992.

[83] Dave Hoadley. Model-based design of medical devices. FDA’s public workshop: Physiological
Closed-Loop Controlled (PCLC) Devices, October 2015, last accessed on Apr 9, 2016.

[84] Bernd M. Hofmann, Udo Zikeli, and E. Bernd Ringelstein. Act on stroke optimization of clinical
processes and workflow for stroke diagnosis and treatment. Perspectives in Medicine, 1(112):73 –
76, 2012. New Trends in Neurosonology and Cerebral Hemodynamics an Update.

[85] Mohammad Hosseini, Dewan T. Ahmed, and Shervin Shirmohammadi. Adaptive 3D texture
streaming in M3G-based mobile games. In Proceedings of the 3rd ACM Multimedia Systems
Conference, MMSys ’12, 2012.

[86] Mohammad Hosseini, Richard Berlin, and Lui Sha. Adaptive clinical data communication for
remote monitoring in rural ambulance transport. In ACM/IEEE International Conference on
Connected Health, CHASE ’17. ACM, 2017.

[87] Mohammad Hosseini, Richard Berlin, and Lui Sha. A multi-carrier mobile geo-communication
dataset for rural ambulance transport. In ACM Multimedia Systems, MMSys ’17. ACM, 2017.

[88] Mohammad Hosseini, Richard Berlin, and Lui Sha. Physiology-aware route scheduler for emer-
gency rural ambulance transport. In IEEE International Conference on Healthcare Informatics,
submitted, ICHI ’17. IEEE, 2017.

119

[89] Mohammad Hosseini, Richard Berlin, Jiang Yu, and Lui Sha. Communication and synchronization
of distributed statechart models: Design, development, and performance analysis. ACM/IEEE
20th International Conference on Model-Driven Engineering Languages and Systems (MODELS
’17), submitted, 2016.

[90] Mohammad Hosseini, Richard Berlin, Jiang Yu, and Lui Sha. Towards physiology-aware dash:
Bandwidth-compliant prioritized clinical multimedia communication in ambulances. IEEE Trans-
actions on Multimedia (IEEE TMM), 2017.

[91] Mohammad Hosseini, Richard R. Berlin, and Lui Sha. A physiology-aware communication archi-
tecture for distributed emergency medical cps. In Proceedings of the 8th International Conference
on Cyber-Physical Systems, ICCPS ’17, pages 83–83, New York, NY, USA, 2017. ACM.

[92] Mohammad Hosseini, Alexandra Fedorova, Joseph Peters, and Shervin Shirmohammadi. Energy-
aware adaptations in mobile 3D graphics. In Proceedings of the 20th ACM international conference
on Multimedia, pages 1017–1020. ACM, 2012.

[93] Mohammad Hosseini, Yu Jiang, Poliang Wu, Richard B. Berlin, Shangping Ren, and Lui Sha.
A pathophysiological model-driven communication for dynamic distributed medical best practice
guidance systems. Journal of Medical Systems (JOMS), 40(11):227, 2016.

[94] Mohammad Hosseini, Yu Jiang, Poliang Wu, Richard B. Berlin, Jr., and Lui Sha. Sink: A
middleware for synchronization of heterogeneous software interfaces. In Proceedings of the 14th
International Workshop on Adaptive and Reflective Middleware, ARM 2015, pages 2:1–2:6. ACM,
2015.

[95] Mohammad Hosseini and Gregorij Kurillo. Coordinated bandwidth adaptations for distributed
3d tele-immersive systems. In Proceedings of the 7th ACM International Workshop on Massively
Multiuser Virtual Environments, MMVE ’15, pages 13–18. in conjunction with ACM Multimedia
Systems conference (MMSys’15), ACM, 2015.

[96] Mohammad Hosseini, Gregorij Kurillo, Seyed Rasoul Etesami, and Jiang Yu. Towards coordinated
bandwidth adaptations for hundred-scale 3d tele-immersive systems. Multimedia Systems, pages
1–14, 2016.

[97] Mohammad Hosseini, Joseph Peters, and Shervin Shirmohammadi. Energy-budget-compliant
adaptive 3D texture streaming in mobile games. In Proceedings of the 4th ACM Multimedia
Systems Conference, pages 1–11. ACM, 2013.

[98] Mohammad Hosseini, Joseph Peters, and Shervin Shirmohammadi. Energy-efficient 3d texture
streaming for mobile games. In Proceedings of Workshop on Mobile Video Delivery, MoViD’14,
pages 5:1–5:6. ACM, 2013.

[99] Mohammad Hosseini and Viswanathan Swaminathan. Adaptive 360 VR Video Streaming: Divide
and Conquer. In Proceedings of IEEE International Symposium on Multimedia, ISM ’16. IEEE,
2016.

[100] Mohammad Hosseini, Anduo Wang, and Rasoul Etesami. Towards energy-aware dash for mobile
video. In Proceedings of the 7th ACM International Workshop on Mobile Video (MoVid ’15), in
conjunction with ACM Multimedia Systems (MMSys ’15), pages 7–8, New York, NY, USA, 2015.
ACM.

[101] Information Resources Management Association. Healthcare Administration: Concepts, Method-
ologies, Tools, and Applications, pages 540–545. IGI Global, 1st edition, 1586 pages, Hershey, PA,
USA, 2015.

120

[102] Armann Ingolfsson, Susan Budge, and Erhan Erkut. Optimal ambulance location with random
delays and travel times. Health Care Management Science, 11(3):262–274, 2008.

[103] V. Issarny, B. Steffen, B. Jonsson, G. Blair, P. Grace, M. Kwiatkowska, R. Calinescu, P. Inverardi,
M. Tivoli, Antonia Bertolino, and A. Sabetta. Connect challenges: Towards emergent connectors
for eternal networked systems. In Engineering of Complex Computer Systems, 2009 14th IEEE
International Conference on, pages 154–161, June 2009.

[104] Valrie Issarny, Amel Bennaceur, and Yrom-David Bromberg. Middleware-layer connector synthe-
sis: Beyond state of the art in middleware interoperability. In Marco Bernardo and Valrie Issarny,
editors, Formal Methods for Eternal Networked Software Systems, volume 6659 of Lecture Notes
in Computer Science, pages 217–255. Springer Berlin Heidelberg, 2011.

[105] NASA’s Jet Propulsion Laboratory Jia-Rui C. Cook. Nasa spacecraft embarks on historic jour-
ney into interstellar space. http://www.nasa.gov/mission_pages/voyager/voyager20130912.
html, Last updated on July 30, 2015.

[106] Yu Jiang, Hehua Zhang, Zonghui Li, Yangdong Deng, Xiaoyu Song, Ming Gu, and Jiaguang Sun.
Design and optimization of multiclocked embedded systems using formal techniques. Industrial
Electronics, IEEE Transactions on, 62(2):1270–1278, 2015.

[107] Paul Jones. Software systems assured verification. FDA, Last updated on March 14, 2016, last
accessed on Apr 9, 2016.

[108] Karen E. Joynt. Mortality rate at rural hospital unusually high.
http://www.medicalnewstoday.com/articles/258598.php.

[109] Ed. K. Pentikousis, B. Ohlman, D. Corujo, G. Boggia, G. Tyson, E. Davies, A. Molinaro, and
S. Eum. Information-centric networking: Baseline scenarios (rfc 7476). https://tools.ietf.

org/html/rfc7476, March 2015.

[110] Cheolgi Kim, Mu Sun, Sibin Mohan, Heechul Yun, Lui Sha, and Tarek F. Abdelzaher. A frame-
work for the safe interoperability of medical devices in the presence of network failures. In
Proceedings of the 1st ACM/IEEE International Conference on Cyber-Physical Systems, ICCPS
’10, pages 149–158, New York, NY, USA, 2010. ACM.

[111] Cheolgi Kim, Mu Sun, Heechul Yun, and Lui Sha. A Medical Device Safety Supervision over
Wireless, pages 21–40. Springer Basel, Basel, 2010.

[112] J. Kim, J. Kim, G. Kim, S. Na, S. Yoo, and C. M. Kyung. Event statistics and criticality-aware
bitrate allocation to minimize energy consumption of memory-constrained wireless surveillance
system. In Multimedia and Expo (ICME), 2010 IEEE International Conference on, pages 7–12,
July 2010.

[113] Stefan Lederer, Christopher Mueller, Christian Timmerer, Cyril Concolato, Jean Le Feuvre, and
Karel Fliegel. Distributed dash dataset. In Proceedings of the 4th ACM Multimedia Systems
Conference, MMSys ’13, pages 131–135. ACM, 2013.

[114] Stefan Lederer, Christopher Müller, and Christian Timmerer. Dynamic adaptive streaming over
http dataset. In Proceedings of the 3rd Multimedia Systems Conference, MMSys ’12, pages 89–94,
New York, NY, USA, 2012. ACM.

[115] T. Li, F. Tan, Q. Wang, L. Bu, J. N. Cao, and X. Liu. From offline toward real-time: A hybrid
systems model checking and cps co-design approach for medical device plug-and-play (mdpnp).
In Cyber-Physical Systems (ICCPS), 2012 IEEE/ACM Third International Conference on, pages
13–22, April 2012.

121

[116] Xueping Li, Zhaoxia Zhao, Xiaoyan Zhu, and Tami Wyatt. Covering models and optimization
techniques for emergency response facility location and planning: a review. Mathematical Methods
of Operations Research, 74(3):281–310, 2011.

[117] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. C. Begen, and D. Oran. Probe and adapt: Rate
adaptation for http video streaming at scale. IEEE Journal on Selected Areas in Communications,
32(4):719–733, April 2014.

[118] LivingHistoryFarm. Farming 1970s to today. http://www.livinghistoryfarm.org/

farminginthe70s/life_01.html.

[119] Phumzile Malindi and Mohamed Toriq Kahn. Providing qos for ip-based rural telemedicine sys-
tems. In Proceedings of the 2008 Third International Conference on Broadband Communications,
Information Technology & Biomedical Applications, BROADCOM ’08, pages 499–504, Washing-
ton, DC, USA, 2008. IEEE Computer Society.

[120] Rachel McNeill. Mobile stroke unit already saving lives. http://www.click2houston.com/news/
26773180, Aug 2014.

[121] Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In Proceedings of the Fifteenth Annual ACM Symposium on Prin-
ciples of Distributed Computing, PODC ’96, pages 267–275, New York, NY, USA, 1996. ACM.

[122] Raimundo Santos Moura and Luiz Affonso Guedes. Using basic statechart to program industrial
controllers. Computer Standards & Interfaces, 34(1):60 – 67, 2012.

[123] S. Panzarasa and M. Stefanelli. Workflow management systems for guideline implementation.
Neurological Sciences, 27(3):s245–s249, 2006.

[124] Chang Mok Park, Sachin Man Bajimaya, Sang C Park, Gi Nam Wang, Jong Geun Kwak,
Kwan Hee Han, and Minho Chang. Development of virtual simulator for visual validation of
plc program. In Computational Intelligence for Modelling, Control and Automation, 2006 and
International Conference on Intelligent Agents, Web Technologies and Internet Commerce, Inter-
national Conference on, pages 32–32. IEEE, 2006.

[125] Intercollegiate Stroke Working Party. National clinical guideline for stroke, 2008.

[126] Vimla L. Patel, Vanessa G. Allen, Jos F. Arocha, and Edward H. Shortliffe. Representing clinical
guidelines in glif. Journal of the American Medical Informatics Association, 5(5):467–483, 1998.

[127] S. Pavlopoulos, E. Kyriacou, A. Berler, S. Dembeyiotis, and D. Koutsouris. A novel emergency
telemedicine system based on wireless communication technology-ambulance. Information Tech-
nology in Biomedicine, IEEE Transactions on, 2(4):261–267, Dec 1998.

[128] T. Allan Pryor and George Hripcsak. The arden syntax for medical logic modules. International
journal of clinical monitoring and computing, 10(4):215–224, Nov 1993.

[129] Ivan Radojevic, Zoran Salcic, and Partha S Roop. Design of distributed heterogeneous embedded
systems in ddfcharts. Parallel and Distributed Systems, IEEE Transactions on, 22(2):296–308,
2011.

[130] Haakon Riiser, Paul Vigmostad, Carsten Griwodz, and P̊al Halvorsen. Commute path bandwidth
traces from 3g networks: Analysis and applications. In Proceedings of the 4th ACM Multimedia
Systems Conference, MMSys ’13, pages 114–118. ACM, 2013.

122

[131] Peter A. Ringleb, Marie-Germaine Bousser, Gary Ford, Philip Bath, Michael Brainin, Vale-
ria Caso, lvaro Cervera, Angel Chamorro, Charlotte Cordonnier, Lszl Csiba, Antoni Davalos,
Hans-Christoph Diener, Jos Ferro, Werner Hacke, Michael Hennerici, Markku Kaste, Peter
Langhorne, Kennedy Lees, Didier Leys, Jan Lodder, Hugh S. Markus, Jean-Louis Mas, Hein-
rich P. Mattle, Keith Muir, Bo Norrving, Victor Obach, Stefano Paolucci, E. Bernd Ringelstein,
Peter D. Schellinger, Juhani Sivenius, Veronika Skvortsova, Katharina Stibrant Sunner-hagen,
Lars Thomassen, Danilo Toni, Rdiger von Kummer, Nils Gunnar Wahlgren, Marion F. Walker,
and Joanna Wardlaw. Guidelines for management of ischaemic stroke and transient ischaemic
attack 2008. Cerebrovascular diseases (Basel, Switzerland), 25(5):457, 2008.

[132] Mallory C. Salcedo, Kelly Tart, and Kelly Hall. A systematic review of human and veterinary ap-
plications of noninvasive tissue oxygen monitoring. Journal of Veterinary Emergency and Critical
Care, 26(3):323–332, 2016.

[133] Verena Schmid and Karl F. Doerner. Ambulance location and relocation problems with time-
dependent travel times. European Journal of Operational Research, 207(3):1293 – 1303, 2010.

[134] H. Seferoglu and A. Markopoulou. Delay-optimized network coding for video streaming over
wireless networks. In IEEE Communications (ICC), 2010.

[135] W. C. Shoemaker, C. C. Wo, K. Lu, L. C. Chien, P. Rhee, D. Bayard, D. Demetriades, and R. W.
Jelliffe. Noninvasive hemodynamic monitoring for combat casualties. Mil Med, 171(9):813–820,
Sep 2006.

[136] Lea Skorin-Kapov and Maja Matijasevic. Analysis of qos requirements for e-health services and
mapping to evolved packet system qos classes. Int. J. Telemedicine Appl., 2010:9:1–9:18, January
2010.

[137] NASA’s Space Operation Learning Center (SOLC). Space mission operations. http://solc.

gsfc.nasa.gov/vcs/SOLC/modules/missionops/mainMenu_textOnly.php, June 10, 2014.

[138] Paul Sorensen and Richard Church. Integrating expected coverage and local reliability for emer-
gency medical serviceslocation problems. Socio-Economic Planning Sciences, 44(1):8 – 18, 2010.

[139] Thomas Stockhammer. Dynamic adaptive streaming over HTTP: standards and design principles.
In Proceedings of the second annual ACM conference on Multimedia systems, pages 133–144. ACM,
2011.

[140] Ion Stoica et al. Chord: A scalable peer-to-peer lookup service for internet applications. In
Proceedings of the 2001 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, SIGCOMM ’01, pages 149–160. ACM, 2001.

[141] Darius Tahir. Getting the data stream flowing: Hospitals want monitoring devices and ehrs to
communicate, May 2015.

[142] F. Tan, Y. Wang, Q. Wang, L. Bu, R. Zheng, and N. Suri. Guaranteeing proper-temporal-
embedding safety rules in wireless cps: A hybrid formal modeling approach. In Dependable
Systems and Networks (DSN), 2013 43rd Annual IEEE/IFIP International Conference on, pages
1–12, June 2013.

[143] Kun Tan, He Liu, Jiansong Zhang, Yongguang Zhang, Ji Fang, and Geoffrey M. Voelker. Sora:
High-performance software radio using general-purpose multi-core processors. Commun. ACM,
54(1):99–107, January 2011.

[144] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Principles and Paradigms
(2Nd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2006.

123

[145] Srisakul Thakolsri, Wolfgang Kellerer, and Eckehard Steinbach. Qoe-based rate adaptation scheme
selection for resource-constrained wireless video transmission. In Proc. of the ACM Multimedia,
MM ’10, 2010.

[146] Eric J. Thomas, David M. Studdert, Joseph P. Newhouse, Brett I. W. Zbar, K. Mason Howard,
Elliott J. Williams, and Troyen A. Brennan. Costs of medical injuries in utah and colorado.
Inquiry, 36(3):255 – 264, Fall 1999.

[147] Adam Trendowicz. Why software effort estimation? In Software Cost Estimation, Benchmarking,
and Risk Assessment, The Fraunhofer IESE Series on Software and Systems Engineering, pages
3–7. Springer Berlin Heidelberg, 2013.

[148] M. Uitto and A. Heikkinen. Sand-assisted encoding control for energy-aware mpeg-dash live
streaming. In 2016 24th International Conference on Software, Telecommunications and Computer
Networks (SoftCOM), pages 1–5, Sept 2016.

[149] NJ University Hospital, Newwark. Stroke statistics. http://www.uhnj.org/stroke/stats.htm.

[150] Elizabeth Weise. Medical errors still claiming many lives. USA TODAY, May 2005, last accessed
on Apr 9, 2016.

[151] Martyn Williams. Fukushima daiichi workers clear debris by remote control. Computer World,
April 2011. http://www.computerworld.com/article/2507273/computer-hardware/fukushima-
daiichi-workers-clear-debris-by-remote-control.html.

[152] Po-Liang Wu, D. Raguraman, Lui Sha, R.B. Berlin, and J.M. Goldman. Wip abstract: A treat-
ment coordination protocol for cyber-physical-human medical systems. In Cyber-Physical Systems
(ICCPS), 2014 ACM/IEEE International Conference on, pages 226–226, April 2014.

[153] Yan Xiao et al. Design and evaluation of a real-time mobile telemedicine system for ambulance
transport. In Proceedings of the AMIA Symposium, page 1102, 1998.

[154] R. K. Yadav and A. Jain. Chatsep: Critical heterogeneous adaptive threshold sensitive election
protocol for wireless sensor networks. In Advances in Computing, Communications and Informat-
ics (ICACCI, 2014 International Conference on, pages 80–86, Sept 2014.

[155] Ping Yin and Lan Mu. Modular capacitated maximal covering location problem for the optimal
siting of emergency vehicles. Applied Geography, 34:247 – 254, 2012.

[156] Ohad Young and Yuval Shahar. Artificial Intelligence in Medicine: 10th Conference on Artificial
Intelligence in Medicine, AIME 2005, Aberdeen, UK, July 23-27, 2005. Proceedings, chapter The
Spock System: Developing a Runtime Application Engine for Hybrid-Asbru Guidelines, pages
166–170. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

[157] Daqing Zhang et al. ibat: Detecting anomalous taxi trajectories from gps traces. In Proceedings of
the 13th International Conference on Ubiquitous Computing, UbiComp ’11, pages 99–108. ACM,
2011.

[158] Yu Zheng, Yukun Chen, Quannan Li, Xing Xie, and Wei-Ying Ma. Understanding transportation
modes based on gps data for web applications. ACM Trans. Web, 4(1):1:1–1:36, January 2010.

[159] Yu Zheng and Xing Xie. Learning travel recommendations from user-generated gps traces. ACM
Trans. Intell. Syst. Technol., 2(1):2:1–2:29, January 2011.

124

