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Abstract

This is a study of how the properties of dark matter halos can be used to probe fundamental

questions in cosmology. Similar to the inner regions of a halo the outer density profiles of

the dark matter halo carry a wealth of information regarding its formation epoch, accretion

history and environment. I study how the splashback feature, which is a steepening of the

slope of the density profile in a narrow, localized region near the outskirts of the halo, is

in reality a powerful physical length scale within the halo that naturally demarcates the

actual boundary of its virialized region. This feature can also be used to probe cosmology

and fundamental physical processes like dynamical friction. Apart from the density profile I

also study the shapes of halos and how to measure them using three-point galaxy statistics

and finally I study the evolution of substructure in dark matter halos and its implication for

galaxy evolution in clustered environments.
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Chapter 1

Introduction

Understanding the formation and evolution of dark matter halos can give us insights into

some of the fundamental questions in cosmology. Dark Matter halos are the endpoints

of structure formation. Quantum fluctuations in the energy density of the early universe

are amplified after a period of rapid exponential expansion known as inflation. Inflation

lays down a gaussian, scale-invariant spectrum of adiabatic perturbations in all the energy

fields in the universe, namely, radiation, curvature and matter. The perturbations in matter

grow gravitationally to collapse and form bound and virialized structures that are known

as dark matter halos. These highly non-linear bound structures evolve independently of the

background expansion. The average overdensity of the matter field within these halos is

almost 200 times greater than the mean matter density of the universe, making them the

strong gravitational potential wells within which all known structure in the universe, like

galaxies, stars, solar systems, planets form and evolve.

1.1 Halo collapse and density profiles

A standard way to understand the formation of the halos is using the spherical collapse

model. This model follows the evolution of a shell enclosing a top hat density perturbation

in a spatially flat, matter dominated Einstein de-Sitter universe that is expanding according

to the Friedmann equations given by,

1

abg

dabg
dt

= H0a
−3/2
bg , (1.1)

1



where abg is scale factor of the background universe and H0 is the Hubble expansion factor

today. The top hat density perturbation evolves independently as a closed universe with

the mass enclosed within the shell surrounding the perturbation given by, M = 4π
3
r3

0Ωmρc

where r0 is the inital radius of the shell, Ωm is the fractional matter overdensity of the closed

universe. We can also write down the equation of motion of the shell. From Gauss’s law, the

force on shell enclosing a spherically symmetric density depends only on the mass enclosed

within it and therefore,

d2r(t)

dt2
= −GM(< r(t))

r(t)2
(1.2)

Integrating these equations, the solution in its parametric form is given by,

R = A(1− cos θ) (1.3)

t = B(θ − sin θ) (1.4)

A3 = GMB2 (1.5)

where θ is called the developmental angle that goes from 0 to 2π and is related to the scaled

conformal time η by θ = H0η(Ωm − 1)1/2. Equations 1.3 and 1.4 define a cycloid. The Fig

1.1 shows the solution of the spherical collapse model. The figure demonstrates that initially

the perturbation expands with the Hubble flow, after some time it detaches from the Hubble

flow and begins to deviate significantly. At θ → 0 the leading order terms of the solution

give, r(θ → 0) = Aθ2/2 and t(θ → 0) = Bθ3/6, rearranging this we get a relation between r

and t as r(t) = A/2(6t2/B)1/3. Therefore, initially r ∝ t2/3, which is similar to the evolution

of a matter dominated universe with Ωm = 1.

We can expand the solutions to higher order to follow the evolution further,

2



Figure 1.1: The solution of the spherical collapse model in a matter dominated universe.
The Blue curve shows the evolution of the background universe and the green curve shows
the evolution of a shell enclosing a top hat density perturbation.

r(θ) = A

[
θ2

2
− θ4

24

]
(1.6)

t(θ) = B

[
θ3

6
− θ6

120

]
(1.7)

A3 = GMB2 (1.8)

Manipulating these equations by reiterating solutions for r and t, we get

r(t) =
1

2
(6t)2/3(GM)1/3

[
1− 1

20

(
6t

B

)2/3 ]
(1.9)

The initial mass of the system is given by, Mf = 4π/3 r3
0 ρ̄m, spherical collapse conserves

the mass inside the shell and therefore if the overdensity increases by an amount δ, the radius

must have shrinked by an amount ∆r. giving Mf = 4π/3r3
0ρ̄m(1 + δ)(1 + ∆r)3. Equating

the two masses we get (1 + δ)(1 + ∆r)3 = 1. Taylor expanding to find δ in terms of ∆r and

substituting the expression of ∆r from eqn 1.9 we find that the overdensity at a given time

3



t is given by,

δ = −3∆r =
3

20

(
6t

B

)2/3

(1.10)

Describing some of the key epochs of evolution using eqn.1.10, turnaround occurs when

θ = π, t = πB and collapse occurs when θ = 2π and t = 2πB giving,

δturnaround = 1.06 (1.11)

δcollapse = 1.69 (1.12)

In this simple model collapse is homologous, there is no shell crossing, all shells collapse at

the same time creating an infinite overdensity at collapse. In reality however, the shells never

proceed to collapse to 0 radius. Nearby structure imparts angular momentum to the shells

that will cause the particles to avoid the singularity at 0, processes like dynamical friction

eventually leads to equipartition of energy resulting in a pressure supported halo. Energy

arguments can help us evaluate the non-linear overdensity at this epoch which is known as

“virialization”.

Virial theorem tells us that the final equilibrium state of a system has energy such that

U = −2T , where U is the potential energy and T is the kinetic energy. At turnaround the

kinetic energy of a shell is 0. Therefore invoking the virial theorem along with conservation of

energy we find U(rta) = U(rvir)/2. Since U ∝ r−1, rvir = rmax/2 and θvir = 3π/2. Therefore

the overdensity at virialization can be evaluated giving,

∆v =
ρm(θ = 3π/2)

ρ̄(θ = 2π)
= 18π2 = 178 (1.13)

Although simple in its construction the spherical collapse model is a powerful intuitive

tool. One of the key insights obtained from this model is the fact that the overdensity at
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virialization is independent of the initial size and amplitude of the density perturbation. A

shell is said to have “collapsed” when the overdensity within it reaches about 200 times the

background matter density. This overdensity is therefore abundantly used in literature to

define the boundary of a halo. A halo is defined as the interior of the radius enclosing a

matter overdensity of ∆vir = 200 .

In reality however some of the assumptions of the spherical collapse model break down. It

is rare to find a top hat, spherical density perturbation. Moreover the halos are not formed

by a monolithic collapse of a density perturbation independent of its local environment.

During formation their rate of collapse is affected by tidal forces from nearby structure

which intimately depends on the shape of the density perturbation itself. Also, once shells

of particles collapse into the halo and begin to orbit in its potential they start crossing each

other as a result of which the mass inside them does not remain constant. The halo potential

grows with time as more matter is accreted on to the halo. The spherical collapse model

predicts that virialization occurs at half the turnaround radius, in N-body simulations it

has been found that this is often not the case. Objects orbiting in the halo can extend

anywhere from 0.4-0.9 rta [6, 7], therefore matter near the virial overdensity of 178 has not

usually undergone a collapse by a factor of 2 as predicted by the spherical collapse model.

As spherical overdensities are easy to measure, the conventional definitions of halo use the

spherical collapse model, while in a matter dominated universe this overdensity is 178ρm, in

a cosmological constant dominated universe this is closer to 300ρm. However, as we will see

these definitions of boundaries may often underestimate the mass, and in some cases even

overestimate it.

In general the growth of structure in the universe is hierarchical. In the power spectrum

of perturbations laid down by inflation, the smallest wavelengths collapse first forming the

smallest halos. Larger structures form subsequently either by accreting these small halos,

merging with pre-existing similar mass halos (major mergers) and by accreting diffuse dark

matter, i.e dark matter that hasn’t been part of any other structure. Halos typically form
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Figure 1.2: Left panel shows the NFW density profile of dark matter halos in the aquarius
simulations. The right panel shows the logarithmic slope of the local density. [1]

with a strongly bound core at first and then eventually accrete loosely bound matter in the

outskirts. The complete mixing of old and new material occurs rarely and only in the case of

major mergers. This is known as inside out formation. For Gaussian initial conditions where

the spectrum of perturbations increases monotonically, such hierarchical growth is natural.

Due to the complicated nature of halo formation, dark matter halos have been studied

extensively in simulations. The purely gravtiational interaction of dark matter particles is

studied with the N-body interaction methods. Modern high resolution simulations, that

have mass resolutions down to 105M�h
−1 have been used to gain a statistical understanding

of the growth and structure of halos themselves in addition to the statistics of halo mergers,

formation times and their spatial distributions.

One of the most remarkable findings in simulations of dark matter halos was that their

density profiles are nearly universal and are well explained by the NFW fitting (Fig 1.2).

This is basically a two parameter density model, which is composed of two broken power

laws. In the inner regions of the halo the density profile has a slope of −1 and as we move

outwards the slope rolls over to −3. The expression for the density at a given radius r is,
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ρ(r) =
ρs

r
rs

(
1 + r

rs

)2 , (1.14)

here rs and ρs are known as the scale radius and scale density respectively and are simply

related to the radius, r−2, and density, ρ−2, where the slope of the density profile is -2.

The total mass of the halo is defined to be the virial mass. And the concentration of the

halo is defined as the ratio of the scale radius to the virial radius, i.e. cvir = rvir/rs. The

concentration is a measure of how quickly the slope of the density profile rolls over from −1

to −3.

Many attempts have been made to study and analyze this apparent universality of the

dark matter halo density profile [8, 9, 10, 11, 12, 13]. Even though halo formation is an ap-

parently complicated and violent process the final profiles of dark matter halos are strikingly

similar. In reality NFW like profiles are known to arise even in the absence of complicated

hierarchical structure formation. Calculations of smooth, monolithic collapse of halos also

predict NFW like profiles [14] moreover in cosmologies with hot dark matter where there is

very little or no substructure the same final profiles are recovered given there is a sharp cut

off in the power spectrum at small scales[15] .

It must be noted however that universal density profiles are not a generic outcome of cold,

dissipationless, gravitational collapse of a density perturbation in an expanding universe.

[2, 16, 3] study self-simiar collapse of scale-free density perturbations described by a power

law profile in an expanding universe. They find that the final profile of the halo is not

universal but depends on the index of the power-law of the of the initial perturbation profile.

Triaxial collapse produces inner cusps whose shapes again depend on the slope of the initial

perturbation. However based on some simple arguments which are explained in [8] it can

be shown that as halo growth slows down, the outer profiles of halos naturally approaches

ρ ∝ r−3.

Let us consider a spherical overdensity in the early universe with a powerlaw radial
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profile for the average enclosed density within a shell given by δ(rL) ∝ r−γL , where rL is

the Lagrangian radius of the shell. At early times in a matter dominated universe the

density perturbation grows as the linear growth factor, D(a) ∝ a. At any time the enclosed

overdensity profile is therefore given by, δ ≡ δ(rL, a) ∝ ar−γL . From sphercical collapse a shell

turnaround is said to occur when the linear over density, δ ∼ 1. Therefore at a given time

the Lagrangian scale that is turning around has rL ∝ a1/γ. The physical scale associated

with turn around at a is given by r ∝ arL ∝ a1+1/γ.

Let us now also suppose the halo is accreting mass at a constant rate which is given

by M ∝ as, where s is defined as the accretion rate of the halo. At any time the mass

enclosed within a Lagrangian radius is M ∝ r3
L. Therefore the shell that is turning around

at scale factor a has M ∝ a3/γ ∝ as. Hence the mass accretion rate and the slope of the

density profile are related as s = 3/γ, implying that a steep initial profile leads to a slow

growth where as a shallow initial density profile leads to fast accretion. This simple argument

explains why concentration of the halo density profile is correlated with the formation time

or age of a halo, as can be seen the shape of the halo profile determines how fast it will grow.

Further to understand how the initial density profile effects the shape of the final profile,

let us consider that we freeze the shells in their positions post turn around and artificially

stop shell crossing. The distribution of turn around radii is simply given by,

r ∝ r
1+ 1

γ

L ∝ r
3+s
s

L ∝M
3+s
3s (1.15)

therefore the mass M ∝ r
3s
3+s . The density profile can now be evaluated giving,

ρ(r) = 4πr2dM

dr
∝ r−

9
3+s ∝ r−

3γ
1+γ (1.16)

This slope of the density profile,s g = −3γ/(1 + γ) is known as the Fillmore Goldreich slope

which arises from the self-similar collapse of power law density perturbations. If γ ∼ 0, i.e
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the initial perturbation is shallow the final slope is also shallow. On the other hand if γ ∞ or

alternatively if the accretion rate s = 3/γ → 0, the final collapsed slope of the density profile

approaches −3. This explains some of the behavior of dark matter halos. If halo growth

stops or slows down with time, the outer slope of the density profiles naturally approach −3

as is seen in NFW profiles. Infact as time goes forward the r−3 region of the halo simply

expands.

To get the complete picture of halo formation one must extend beyond the frozen ap-

proximation and follow the orbits of individual shells. It can be shown that for a spherical

potential, each shell lays down a time averaged density profile which is nearly isothermal

inside of its apocenter. The final collapsed profile of the dark matter halo can be thought of

as the sum of these indivdual shell profiles. Considering smooth spherical accretion onto the

halo, as the mass of the halo grows by accumulating matter around itsel each shell responds

to the slowly changing potential adiabatically. In other words the shells contract conservinig

the adiabatic invariants which in this case is given by the product Mr, where M is the mass

enclosed within the shell at radius r. The profile of adiabatic invariants is set by the initial

density perturbation and it is elegantly shown in [8] that the final profile of halos derived

under these assumptions closely resemble those found in N-body simulations.

The NFW profile has been largely successful in fitting most halos formed in N-body

simulation. It should however be noted that it has been seen that the NFW is a better fit to

halos that are of low mass. The density profile of large cluster sized halos are often better

approximated by isothermal profiles in their outskirts.

Dark matter halo profiles not only tells us about the gravitational field within which

galaxies form and evolve it also tells us about the history and evolution of the universe in

general. The shape or concentration of the halo profile is related to the accretion rate of

the halo, which in turn is related to the formation time of a halo and its local environment.

The post collapse density profile inside the halo and in it’s immediate neighbourhood can

arguably be derived from the pre collapse initial density perturbations. Therefore measuring
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profiles of dark matter halos today can also act as a probes to study the nature of fluctuations

in the initial density field.

Understanding the shape and structure of dark matter halos has been the focus of my

dissertation. One aspect of halo formation that had previously received somewhat less

attention were the density caustics that form during halo formation. As shells of matter

turn around in their orbits at their apocenters their radial velocities approach 0 as a result

of which subsequent shells of matter pile up against each other forming density caustic.

These are basically narrow, localized regions of enhanced densities. The outer most density

caustic in a dark matter halo corresponds to the first apocenter after infall of a shell into

the halo potenitial and acts as the boundary of the virialized region of the halo. This is a

characteristic scale inside a halo beyond which there is only the infall stream. The outskirts

of the halo and their implications for cosmology have been the focus of my study during these

past few years. The following 2 chapters of this document elaborate on this very subject.

1.2 Shapes of dark matter halos

Dark matter halos are in general not spherical. Halos in N-body simulations are known to be

triaxial. They are usually prolate with the average axis ratios of the longest to the shortest

axis close to 2:1. Typically high mass halos are more spherical than low mass ones that are

of the order of the milky way halo mass, 1012M�h
−1, and halos also tend to be slightly more

aspherical in the inner regions compared to the outskirts [17, 18]. The mean angle between

the major axis of the inner and outer region is close to 20◦ with a fairly large scatter. The

final shape of the collapsed halo is effected by several factors, the initial density perturbation

that collapses to form the halo may be triaxial itself apart from this the final asphericity of

a halo also reflects its growth by large mergers, accretion of substructues which creates tidal

torques disrupting smooth spherical collapse. The matter within halos end up in shells that

are triaxial ellipsoids that are fairly well aligned with each other.In some cases they may also
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show evidence for a slight twisting of the principal axes with radius. Halos also show strong

alignments with matter well beyond the virial radius, especially high mass halos may even

show alignments out to almost 10Mpc h−1. As cold dark matter is dissipationless it can

retain signatures of anisotropy during its formation. However, alternative models of DM like

self interacting dark matter or warm dark matter, where particles can dissipate momentum

through non-gravitational interactions, or MOND theories which do not invoke particle dark

matter are known to produce halos that are rounder. Therefore measuring the shapes of

dark matter halos can help probe the fundamental nature of dark matter itself.

Weak gravitational lensing is a powerful tool to study the structure of halos. Two point

cross-correlations between foreground galaxies and the tangential shear in galaxies behind

them give high precision measurements of the radial profile of halos. Inferring the shape of

galactic halos, however, requires measuring the shear as a function of angle from the principal

axes of the halo. One of the challenges to measure the angular dependence of shear is the

fact that we do not, a priori, know the orientation of halos in the sky, the general practice

has been to measure shear as function of the angle from the principal axis of the galaxy light

profile. However, in simulations galaxy halo misalignments of the order of ∼ 38◦ are quite

typical, complicating the interpretation of these measurements. In [19] we propose a novel

method to measure halo anisotropy independent of galaxy-halo misalignment, using the lens-

shear-shear three-point correlation functions. As our method provides an independent way

to measure ellipticities, combined with the two-point galaxy-shear correlation function, it

can also be used to measure the average degree of galaxy-halo misalignments. Large scale

imaging surveys are making higher order correlations measurable. We show that current

and ongoing imaging surveys like DES, PanSTARRS and HSC can detect halo ellipticities

at 2σ level, while future surveys like LSST should have sufficient sensitivity for a significant

(> 3σ) detection.
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1.3 Halo substructure and galaxies

While N-body simulations are an excellent tools to study the growth of structure and evo-

lution of the universe, in reality we cannot “see” dark matter or the collapsed structures

they form. We can only infer their existence and properties with their gravitational in-

teraction with the baryonic content of the universe either by gravitational lensing or from

the clustering and dynamics of galaxies in the sky. Following recombination when baryons

and photons decouple from each other baryons begin to fall into the potential wells of dark

matter halos and condense dissipatively to form galaxies in the central region of these halos.

Isolated halos along with their central galaxies are often accreted on to larger structures in

their vicinity and reside in their potential as subhalos. As mentioned previously cold dark

matter halos are not smooth and hierarchical structure formation predicts an abundance of

such substructure. Significant fraction of a halo’s mass is tied up in the form of subhalos.

Prior to infall these subhalos have NFW-like profiles. However once they fall in to their host,

processes like tidal stripping alter their profiles and they are less likely to resemble halos in

the field. ’

Just like diffuse dark matter particles subhalos are tracers of the gravitational potential

of the host dark matter halo. Therefore apart from from gravitational lensing which is a

direct probe of the matter density in the universe the dynamics and spatial distribution of

galaxies that reside in these subhalos help us probe the large scale structure of the halo.

Part of my dissertation has been to study the behaviour of subhalos to probe fundamental

physical processes like dynamical friction and to understand the galaxy evolution in cluster

environments.

Recently More et al. detected the aforementioned splashback feature in the projected

number density profile of galaxies around in clusters identified in the SDSS galaxy survey

using the RedMaPPer algorithm. Unlike diffuse dark matter particles massive structures

experience extra forces due to dynamical friction, therefore their splashback position, which

12



is the position of the first apocenter after accretion on to a halo, should depend on the

ratio of the subhalo mass to the halo mass. The decceleration due to friction makes massive

objects moving in an ambient field of diffuse matter lose energy and the timescales for such

effects depend on the ratio of the subhalo to the host halo mass. In [20] we for the first

time see direct evidence for dynamical friction in action in galaxy clusters. We find that the

splashback radius for subhalos shrinks as a function of their mass. This is the subject of

chapter 3.

Currently we are also looking at the correlation between galaxy colors and clustering.

It has been known that galaxies that reside in clustered environment tend to be red with

quenched star formation. Large over densities therefore somehow suppress star formation.

Two competing theories try to explain the increased red fraction in galaxy clusters, the

first claims that intracluster astrophysical processes strip gas off galaxies rendering them

quenched and the other say that galaxies that reside in clusters are simply older and therefore

if all galaxies turn off starformation at some point in their evolution we can reproduce the

observed statistics of quenched galaxies. In Chapter 6 I discuss an independent probe to

test the two theories based on satellite kinematics.
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Chapter 2

Splashback in accreting dark matter
halos

Recent work has shown that density profiles in the outskirts of dark matter halos can become

extremely steep over a narrow range of radius. This behavior is produced by splashback

material on its first apocentric passage after accretion. We show that the location of this

splashback feature may be understood quite simply, from first principles. We present a

simple model, based on spherical collapse, that accurately predicts the location of splashback

without any free parameters. The important quantities that determine the splashback radius

are accretion rate and redshift. 1

2.1 Introduction

The structure of dark matter halos has attracted both theoretical and observational interest

over several decades. Beginning with the pioneering work of [21], numerous papers have

investigated the formation of bound virialized structures that gravitationally collapse in

an expanding universe. A key breakthrough was provided by [2], who studied the self-

similar collapse of scale-free perturbations, and identified several key physical processes that

determine halo profiles. As numerical simulations of halo formation have progressed [22, 23,

24, 25], producing increasingly precise calculations of halo structure, the ideas presented in

[2] have proven fundamental towards understanding the simulation results [3, 8].

Much of this theoretical work has focused on the interior structure of halos, while the

1This chapter was previously published in the Journal of Cosmology and Astroparticle Physics as S.
Adhikari, N. Dalal and R. T. Chamberlain, Splashback in accreting dark matter halos, Journal of Cosmology
and Astroparticle Physics 11 (Nov., 2014) 019, [1409.4482].This chapter matches the published version.
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outer profiles of halos have received somewhat less attention. Recently, however, [26] studied

the outskirts of simulated halos and discovered that the outer density profiles of halos exhibit

steep logarithmic slopes, d(log ρ)/d(log r) . −4, over a narrow range of radii. This behavior

is inconsistent with standard fitting functions used to characterize halo shapes, like the

NFW profile [27, 28] or the Einasto profile [29, 30]. [26] found that the location of this sharp

feature depends principally on the accretion rate s = d(logM)/d(log a) of the halos, and

they provided a fitting function for its location as a function of s.

As argued by [26], the local steepening that they observed is produced by a caustic,

associated with the splashback of material that has been recently accreted by the halo.

Caustics arise when the orbits of different particles pile up at similar locations, frequently

near the apocenters of the orbits. For example, the spherically symmetric similarity solutions

of [2] exhibit pronounced caustics. Similar features arise in 3D similarity solutions of the

collapse of triaxial peaks [3], although the features are not as prominent in the spherically

averaged density profile, because the caustics are not spherically symmetric in general (see

§2.3). In dark matter halos from cosmological N-body simulations, the density enhancements

associated with caustics are difficult to detect, not only because of triaxiality, but also

because of the effects of small-scale substructure, both of which act to smear out caustics

spatially [31, 32]. In real galaxies, these caustics are observed as radial shells with sharp

edges [33].

As noted above, radial caustics are associated with the pileup of orbits near apoapse.

The outermost caustic is associated with the first apoapse after collapse, termed splash-

back. Figure 2.1 illustrates that the local steepening discussed by [26] coincides with the

splashback radius. The figure plots the phase space structure of the particles near dark

matter halos taken from the publicly available MultiDark Simulation2, along with the ra-

dial dependence of the local logarithmic slope of the density d(log ρ)/d(log r). The location

where d(log ρ)/d(log r) < −3 coincides with splashback, the outermost radius attained by

2http://www.multidark.org/MultiDark
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Figure 2.1: Top: The phase space diagram for halos from the MDR1 simulation in the mass
range M = 1−4×1014h−1M�. The colorbar shows the number of particles within each phase
space pixel. The pixel spacing is linear in both r and v, so the number is proportional to r2ρ.
Bottom: The local slope of the density of all particles (red) and particles with |vr| < 0.4 vcirc

(blue), as a function of radius r. The location of the feature in the local slope coincides with
the outer caustic at the splashback radius.

particles following their collapse into halos. As the phase-space diagram illustrates, the

splashback radius is near the location of a radial caustic, where the slope of the phase space

sheet becomes vertical. To further illustrate this point, the figure plots the density slope of

only the particles near splashback, i.e. those with |vr| < 0.4 vcirc. Among the particles near

splashback, the steepening of the density slope becomes even more pronounced.

The steepening feature in the outer profile is therefore determined by the splashback

radius of recently accreted material. Since splashback occurs only half an orbit after collapse,

a relatively simple treatment of the orbital dynamics should suffice to capture the physics

setting the splashback radius. In this paper, we show that this is indeed the case. We

construct an extremely simple model for splashback, based largely on the spherical collapse

model of [21]. We then compare the predictions of our model with N-body simulations, and
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show that it accurately predicts the location of the steepening feature for a variety of halos

with different mass, redshift, and accretion rate.

2.2 Toy model for splashback

As noted above, the steepening feature occurs near the splashback radius. To predict the

location of this feature, we therefore must predict where splashback occurs following col-

lapse. One estimate for the location of the splashback radius may be constructed from the

spherical collapse model [21]. This model computes the nonlinear evolution of a spherical

shell, assuming that the mass interior to the shell is overdense, and that the interior mass

is a constant (i.e., the model neglects shell crossing). The equation of motion is therefore

quite simple,

r̈ = −GM
r2

+
Λ c2

3
r, (2.1)

where M is a constant. For ΩM = 1 and Λ = 0, this model predicts that turnaround occurs

at the time when the linearly evolved density reaches δl ≈ 1.06, and collapse to r = 0

occurs at the time when δl ≈ 1.69. Once the infalling shell enters the virialized region,

the assumption of constant interior mass becomes invalid. Estimating virialization as the

time when 2 KE + PE = ṙ2 − GM/r = 0 gives rvir ≈ rta/2, corresponding to a nonlinear

overdensity of ∆vir = 18π2. For ΩM 6= 1, these expressions are somewhat modified [34].

Following entry into the halo, the shell begins to orbit in the halo potential. If we

continue to assume spherical symmetry, then we can still use Eqn. (4.2) to compute the

motion; the only change is that now the mass M interior to the shell is not constant,

but instead depends on radius r and time t. The time dependence of the mass profile is

determined by the accretion rate of the halo. Let us suppose that the halo mass grows as

Mtot ∝ as, where s = d(logMtot)/d(log a). Then the halo radius scales as R ∝ a1+s/3. We
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Figure 2.2: Overdensity enclosed within the splashback radius as a function of accretion rate
s = d logM/d log a. Large ∆ corresponds to small radius within the halo. For reference,
the horizontal line at ∆ = 200 indicates the usual definition of the halo boundary. Halos
with high accretion rate have a larger enclosed overdensity within the splashback radius
than halos with low accretion rates, corresponding to a smaller splashback radius for rapidly
accreting halos. Additionally, the enclosed overdensity increases as Ωm becomes smaller,
meaning that at low redshift, the splashback occurs at a smaller fraction of r200m.

assume that the halo mass distribution is given by the NFW profile [28],

M(r) = Mtot
fNFW(r/rs)

fNFW(R/rs)
, (2.2)

where rs is the NFW scale radius, and fNFW(x) = log(1 + x) − x/(1 + x). The NFW

concentration c ≡ R/rs sets the slope of the mass profile at the halo boundary, and we

choose c such that the outer slope is given by d logM/d log r = 3s/(3 + s) at r = R [2, 3, 8].

Equations (4.2)-(4.16) fully specify our model. We use spherical collapse with constant
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enclosed mass M until the shell radius reaches ri = rta/2. Thereafter, we assume the mass

profile is given by Eqn. (4.16). We integrate the motion of the shell in this potential until

splashback, when ṙ = 0. From the radius and time of splashback, rs and ts, we can determine

the enclosed mass, the enclosed density, and the background mean density, allowing us

to determine the enclosed overdensity inside the splashback radius, ∆s. Our results do

not strongly depend on our assumed mass profile inside the halo. For example, using an

isothermal profile instead of NFW gives results that are consistent at the ∼ 10% level. Figure

4.1 shows the predicted values of the enclosed overdensity. Throughout this paper, we define

overdensities relative to the mean matter density, not the critical density. In our model,

∆s depends only on the halo’s accretion rate s, along with the values of the background

cosmological parameters ΩM and ΩΛ at the time the halo is observed. The behavior we

find is unsurprising. As the accretion rate is increased (larger s), the potential deepens

more quickly in time, resulting in splashback occuring at a smaller radius, or equivalently,

at a larger enclosed overdensity ∆s. Similarly, at low redshift when ΩM diminishes and ΩΛ

increases, the mean background density of the universe ρ̄m decreases more during the time

between turnaround and splashback, again resulting in a larger ∆s.

Finally, although the model presented here is extremely simple to evaluate, we also

provide a very rough fitting function to approximate the location of splashback:

∆s ≈ AΩ−b−c sM edΩM+e s3/4 , (2.3)

with fitted parameters A = 38, b = 0.57, c = 0.02, d = 0.2, e = 0.52. This fitting function

has ∼ 5% accuracy over the range 0.5 < s < 4, 0.1 < ΩM < 1. The results shown in this

paper do not use this fitting function, since it is equally simple to evaluate the spherical toy

model.
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2.3 Comparison with simulations

In this section, we compare the predictions of the toy model described in the previous section

with results of numerical simulations. First, we compare our model with the similarity

solutions that arise from the collapse of scale-free perturbations [2, 3]. Fig. 2.3 shows one

example, for accretion rate s = 3. In all cases, we find good agreement between the caustic

location obtained in the similarity solution and that predicted by the toy model. This even

holds true for collapse of highly triaxial perturbations: the main effect of the triaxiality is to

make the splashback surface nonspherical, reducing the maximal depth of the slope of the

spherically averaged profile, while preserving the mean radial location of splashback.

Our toy model also predicts a significant dependence on redshift (or equivalently, a

dependence on the value of ΩM). We cannot test that prediction using similarity solutions,

because they assume ΩM = 1. To test this prediction, we therefore ran 1-dimensional N-

body simulations of the collapse of isolated overdensities. The simulations evolve the motion

of spherical shells following Eqn. (4.2). The initial linear overdensity profiles are chosen to

produce M ∝ as for various values of s. Figure 2.4 shows an example, for s = 3. The solid

curves in the figure show the results of the 1-D simulations, while for comparison, the dashed

curve shows the similarity solution for s = 3. Note that for ΩM = 1, the 1-D simulation does

not exactly match the similarity solution. This is because the dynamics, even in spherical

symmetry, are ubject to a slew of instabilities that are not present in the similarity solution

[35, 36, 32]. To suppress these instabilities, we follow [32] and soften the force law in Eqn.

(4.2) near r = 0. As Fig. 2.4 shows, the halo profile for ΩM = 1 is similar to the similarity

solution. The level of agreement or disagreement between the two curves illustrates the

extent to which the 1-D N-body simulations may be trusted. Note in particular that the

location of the splashback radius is similar in the two cases. The figure also shows results

for ΩM = 0.3, in the solid red curve. For comparison, the vertical dotted lines show the toy

model’s predictions for the splashback radius for these values of ΩM . Overall, we find good
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Figure 2.3: Caustics for self-similar halos [2, 3] with accretion rate s = 3. The top panel
shows the phase space diagram for spherically symmetric collapse (solid black curve) and
for 3D collapse with e = 0.05 (colormap), while the bottom panel shows the density vs.
radius. The vertical line in the bottom panel indicates the splashback radius predicted
by the spherical collapse model for this value of s. As the density profiles demonstrate, the
caustic location depends mainly on accretion rate, with little if any dependence on the initial
ellipticity e. However, the caustic width does depend on e, apparently because the shape of
the splashback surface is related to the initial ellipticity.
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Figure 2.4: Halo profiles for 1-D spherical collapse with accretion rate s = 3. The x-axis
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similarity solution. The red curve shows the profile for ΩM = 0.3. The dotted vertical lines
show the location of splashback predicted by our toy model for ΩM = 1 (blue) and ΩM = 0.3
(red) respectively.

agreement, demonstrating that the location of splashback does indeed depend on cosmology

and redshift.

Finally we compare with cosmological N-body simulations from the publicly available

MultiDark Database. The MDR1 simulation [37, 38] contains 20483 particles in a box of

side length L = 1h−1Gpc, giving a particle mass of Mp = 8.7×109h−1M�, while the Bolshoi

simulation [39] contains 20483 particles in a box of side length L = 250h−1Mpc, giving a

particle mass of Mp = 1.3×108h−1M�. We extracted halos of mass Mvir . 1014h−1M� from

the Bolshoi simulation, and used MDR1 to obtain halos of mass M & 1014h−1M�. For both
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simulations, we used the publicly available Rockstar [40] catalogs and merger trees [41] 3

to measure halo mass accretion histories. For each halo, we walked the main branch of the

merger tree to determine the mass accretion history (MAH) over a narrow redshift range,

typically from (0.67− 1)× aobs. Then we fit the MAH to the form Mvir ∝ e−αz [42] over the

narrow redshift range, and used the fitted value of α to determine Γ = d(logMvir)/d(log a)

at a = aobs. We then stacked halos in bins of mass, redshift, and Γ.

One point to note is that Γ = d(logMvir)/d(log a) need not be equal to the mass accretion

rate s = d(logM)/d(log a). This is because Mvir does not represent the total amount of

mass that has collapsed into a halo. Instead, Mvir is the mass within a radius of average

density ∆vir. As Fig. 4.1 shows, the splashback radius (which does encompass the collapsed

mass) occurs at various overdensity levels depending on redshift and accretion rate, meaning

that sometimes Mvir will exceed Mcollapsed, sometimes Mvir will be less than Mcollapsed, and in

general, the two will not evolve in the same way. This difference in behavior has been termed

pseudo-evolution by [43], who point out that even in cases where there is no mass accretion

and the halo mass profile is constant in physical units, the virial mass can still grow over

time. Because of pseudo-evolution, in general Γ 6= s. This complicates the comparison of our

model with cosmological N-body simulations. Instead of stacking halos based on virial mass,

we should stack halos based on the mass within their splashback radius, however it is difficult

to determine the splashback radius for any individual halo. We therefore stack the profiles

of halos in bins of Mvir and Γ. From the stacked profiles, we can determine the location

of splashback and the average enclosed mass, 〈Mcollapsed〉. By repeating this procedure for

the progenitors of the stacked halos, we can determine 〈Mcollapsed〉 as a function of time,

and thereby measure a typical accretion rate s for each bin of Mvir and Γ. We find that

for Γ & 0.5, the difference between the reconstructed s and Γ is small, typically of order

Γ− s ∼ 0.1. We therefore use Γ as a proxy for s, valid for Γ > 0.5.

With that caveat in mind, we now move on to the comparison of our model with cosmo-

3http://hipacc.ucsc.edu/Bolshoi/MergerTrees.html
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Figure 2.5: (Left) Dependence of splashback location on growth rate Γ. Here we show
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ΩM = 0.27. The dashed vertical lines are at the predicted position of splashback as a
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logical N-body simulations. Our results are shown in Figs. 2.5-2.7. The left panel of Figure

2.5 shows the dependence of the splashback radius on the accretion rate, Γ. As shown by

[26], splashback occurs at a higher density (smaller r/r200m) for higher accretion rates. Our

model’s prediction for rsp agrees quite well with the observed dependence on accretion rate,

across the entire range we have checked (0.5 < Γ < 3.5). We also confirm the model’s

predicted redshift dependence of splashback (Fig.2.5 right column). Since these figures have

many overlapping curves at different radii, it may be difficult to see how well the observed

splashback radius agrees with the model prediction. Therefore, in Fig. 2.6 we scale r by
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the predicted splashback radius rsp, and show that splashback occurs where predicted, at all

accretion rates and redshifts. Similarly, as predicted by the model, the location of splashback

does not depend on halo mass M (or equivalently, ν ≡ δc/σ(M)), as illustrated in figure 2.7.

One possibly interesting feature shown in Fig. 2.7, and also noted by [26], is that although

the location of the steepening feature is independent of M or ν, the depth of the feature does

depend systematically on ν. As shown in the figure, the lower mass halos, which correspond

to peaks of smaller ν, have systematically shallower caustics. The behavior is reminiscent of

that shown in Fig. 2.3, which showed that similarity solutions with stronger initial triaxiality

produce caustics that are progressively more non-spherical, producing shallower features in

the spherically averaged profile. Similar behavior could also explain the ν dependence of the

N-body halos. It is well known from the statistics of peaks of Gaussian random fields that

peaks of larger height ν are systematically more spherical, with a smaller range of ellipticity

e, than peaks of low ν [44]. Based on the behavior shown in the similarity solutions shown

in Fig. 2.3, we might therefore expect that N-body halos of larger ν will have smaller initial

ellipticity, and therefore have deeper caustics, than halos with lower ν, exactly as found in

Fig. 2.7. We have not investigated this topic in this paper, but it may be worth exploring

in future work.

At low accretion rates, Γ < 1, the stacked profiles begin to exhibit additional features

besides the steepening at rsp. The most pronounced example of this is the stacked profile

for Γ ≈ 0.5, shown in Fig. 2.6. Instead of monotonically becoming more shallow at r < rsp,

the slope of the density profile oscillates. The origin of this behavior may be understood

by examining the ensemble phase space diagram for these halos, shown in Figure 2.8. The

phase space structure for low accretion rate is distinct from the other Γ bins, in that the

stream of splashback material is noticeably separated from the rest of the virialized matter

in the halo. This behavior is similar to the phase space structure seen in spherical self-similar

collapse [2], in which each separate stream produces a separate caustic (see Fig. 2.3).
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Figure 2.8: Phase space diagram for different accretion rates. The left panel shows halos in
the mass range Mvir = 1 − 4 × 1014h−1M� at z = 0 for accretion rates Γ ≈ 3. The middle
panel shows halos of the same mass and redshift, but with Γ ≈ 0.5. The right panel shows
halos with Mvir = 3− 6× 1013h−1M� at z = 1, also with Γ ≈ 0.5. The bottom panels show
the slope of the local density profile of all mass in red, and for particles with |vr| < 0.4vc
in blue. This is similar to Fig. 2.1, which showed results for an intermediate growth rate
Γ ≈ 1.5. Note that at low accretion rates, the splashback material forms a distinct stream,
which leads to multiple minima in the run of density slope vs. radius, indicated by the
vertical dashed lines.
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2.4 Implications of detection of the Splashback radius

Depending on the accretion rate and redshift, the overdensity at the splashback radius, ∆s,

can be much larger or much smaller than either ∆ = 200 or ∆vir, the nominal ‘virial’ overden-

sity, which is typically in the range 200-300 [34]. Since the splashback radius encompasses

the multi-streaming region, this means that the virialized region surrounding a halo can

extend far beyond Rvir. This fact is not surprising: numerous simulations have found that

material which has passed inside Rvir can later be found at large distance, e.g. ∼ 2 − 3Rvir

[45, 31, 46, 47, 48, 49]. As we have seen, recently accreted material can splash back to such

large distances, when the accretion rate in the halo is low. Our expectation, therefore, would

be that much of the halo material found at large distances (∼ 2− 3Rvir) is associated with

slowly accreting halos. To demonstrate this, we plot in Figure 2.9 the average halo accretion

rate for material around halos of mass Mvir = 1 − 4 × 1014h−1M� at z = 0 as a function
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of phase space coordinates r and vr. Outgoing material (i.e. vr > 0) at r ≈ 2Rvir (which is

r ∼ 2h−1Mpc for this mass bin) is typically found around halos with the lowest accretion

rates, Γ ≈ 0.5.

In principle, the steepening associated with splashback could be observable. The pro-

jected surface density of dark matter halos shows a similar steepening at the same location at

the 3D steepening feature [26], implying that this feature may be observable in the stacked

lensing profiles of ensembles of halos [50]. As we have seen, the steepening feature associated

with splashback is most prominent for massive (high ν) objects with high accretion rates.

This suggests focusing on galaxy clusters, rather than lower-mass objects like galaxies whose

lower accretion rates would produce weak splashback features possibly in the 2-halo region.

In practice, it is often difficult to predict halo masses from observable quantities like cluster

richness or SZ decrement, meaning that stacked profiles will typically average over wide mass

bins. This will not necessarily wash out the steepening signature, however. In our analysis

of stacked profiles, we found that stacking rather wide bins of mass (such as a factor of 4

in Mvir) does not wash out the steepening feature, e.g. Fig. 2.6. Therefore, realistic uncer-

tainties in the mass-observable relation should not wash out the steepening feature entirely.

If the steepening feature is measured with high significance, then it may be interesting to

stack halos as a function of various observable properties like concentration. Measuring how

the splashback radius depends on those observable properties immediately translates into a

measurement of how well the mass accretion rate correlates with those properties, which can

test the predicted behavior for CDM cosmologies [42, 51].

Similar steepening features could also arise in the baryonic components of halos. Unlike

the dark matter, however, the baryons are not collisionless, which means that splashback

need not occur at the same location as the dark matter. Hydrodynamic simulations of galaxy

cluster outskirts can quantify whether gas splashback occurs near dark matter splashback

[52]. Stars, unlike gas, are effectively collisionless at the densities found in halo outskirts, so

the stacked starlight profiles of ensembles of halos could in principle exhibit similar behavior
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as the dark matter. Dynamical friction could potentially slow down stars in galaxies relative

to unbound dark matter, though, so it may be worthwhile performing simulations with star

formation to check if stars produce similar caustics as the dark matter. In the next section

I will elaborate on the effects of dynamical friction on subhalo splashback.
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Chapter 3

Observing Dynamical friction in
Galaxy Clusters

We present a novel method to detect the effects of dynamical friction in observed galaxy

clusters. Following accretion into clusters, massive satellite galaxies will backsplash to sys-

tematically smaller radii than less massive satellites, an effect that may be detected by

stacking the number density profiles of galaxies around clusters. We show that this effect

may be understood using a simple toy model which reproduces the trends with halo proper-

ties observed in simulations. We search for this effect using SDSS redMaPPer clusters with

richness 10 < λ < 20, and find that bright (Mi < −21.5) satellites have smaller splashback

radii than fainter (Mi > −20) satellites at 99% confidence. 1

3.1 Introduction

In the standard cosmological model, cosmic structures form hierarchically. Short wavelength

perturbations collapse to generate low-mass halos, which subsequently merge to create larger

halos, which themselves merge to form even larger structures, and so on. Every macroscopic

structure in the dark matter field is believed to have assembled out of constituent structure

on smaller scales. Much of that substructure survives within halos, however a considerable

amount of substructure is dynamically erased, through processes like tidal stripping and

dynamical friction. In this paper, we focus on the latter process.

Dynamical friction is an effective gravitational drag experienced by massive bodies mov-

1This chapter was previously published in the Journal of Cosmology and Astroparticle Physics as S.
Adhikari, N. Dalal and J. Clampitt, Observing dynamical friction in galaxy clusters, JCAP 1607 (2016) 022,
[1605.06688].This chapter matches the published version.
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ing through a population of lower mass bodies [53, 54]. A dark matter subhalo orbiting

inside a larger halo will experience dynamical friction due to the density of dark matter

particles in the host halo, with a rate

dv

dt
∝ −G

2Mρ

v3
vf(v, σ), (3.1)

where M is the mass of the subhalo, v is its velocity relative to its host, and ρ is the density

through which it moves. The proportionality constant depends on the distribution function

of the particles, as well as the internal structure of the subhalo. The drag is largest for the

most massive subhalos with large M .

The effects of dynamical friction are manifest in simulations of nonlinear cosmological

structure formation. Dynamically young halos, like massive galaxy clusters, contain copious

amounts of massive substructure that comprise significant fractions of the cluster’s total

mass. For example, it is not uncommon to find massive subhalos within clusters, containing

∼ 1− 10% of the cluster mass [55]. In contrast, massive substructure is rare in dynamically

older halos, like those hosting galaxies similar to the Milky Way. In galactic halos, it is

uncommon to find individual subhalos comprising more than & 3% of the host mass [1].

Dynamical friction is believed to be the origin of this difference: in the older systems, drag

from dynamical friction had sufficient time to cause the orbits of massive subhalos to decay

to small radii, where mass loss from tidal stripping and disruption becomes most effective

[56]. The proportion of substructure in real galaxies and clusters is presumably affected by

the same processes that arise in simulations.

Therefore, considerable indirect evidence exists that dynamical friction should operate

in actual halos. It is difficult, however, to directly observe dynamical friction in action,

since the relevant timescales are cosmological in duration. In this paper, we propose a

novel method to directly observe the deceleration produced by dynamical friction acting on

massive galaxies within galaxy clusters. The basic idea is that drag from dynamical friction
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reduces the orbital energy of galaxies within subhalos, which reduces the apocentric radius.

Recent work has shown that a steepening feature in the density profiles of halos occurs

near the apocenters of material on its first orbit within halos, termed the splashback feature

[26, 4, 57]. In the context of the halo model [58, 59], this feature may be thought of as

the boundary of the 1-halo region. For massive cluster-sized halos, where the 1-halo term

is large compared to the 2-halo term, the sharp edge to the 1-halo term produces a steep

falloff in the total density profile at the splashback radius rsp, and therefore the location

of the steepest slope of the density profile occurs close to rsp. Dynamical friction reduces

rsp, and because friction is more effective for more massive subhalos, high-mass satellites

should therefore have a smaller splashback radius than low-mass satellites. For the lowest

mass subhalos, the dynamical friction timescale greatly exceeds the orbital timescale, and

therefore for these satellites the splashback radius coincides with that of the dark matter

particles.

3.2 Dynamical friction in simulated clusters

Figure 3.1 illustrates this effect, using results from the MDPL2 simulation from the Cos-

moSim database [37, 60]. The figure shows the density slope d log n/d log r as a function of

radius for subhalos of varying Mpeak, the largest mass attained by each subhalo throughout

its history. Halos and subhalos were selected from the Rockstar [61, 62] catalogs publicly

available at http://cosmosim.org. The splashback radius for low-mass subhalos is indis-

tinguishable from the splashback radius of dark matter particles, but as Mpeak increases, the

splashback radius steadily decreases. This effect appears to be caused by dynamical friction,

rather than selection effects or other physical processes which affect the spatial distribution

of substructure. For example, it has long been known that subhalos orbiting at small radii

tend to have earlier accretion redshifts than subhalos orbiting at large radii within their

hosts [63, 64, 65, 56]. One might therefore imagine that the difference in splashback radii

33



-5

-4

-3

-2

-1

 0

 1

 0.1  1

d
 l

o
g
 n

(r
)/
d
 l

o
g
 r

r (Mpc h
-1

)

<cv>=3.0

Msub < 1e12

Msub > 1e12

Msub > 5e12

-5

-4

-3

-2

-1

 0

 1

 0.1  1

d
 l

o
g
 n

(r
)/
d
 l

o
g
 r

r (Mpc h
-1

)

<cv>=7.4

Msub < 1e12

Msub > 1e12

Msub > 5e12

Figure 3.1: In both panels, the different curves show the logarithmic slope of the number
density profile d log n/d log r as a function of radius r within cluster-sized halos of virial mass
Mhost = 1− 4× 1014h−1M� from the MDPL2 simulation, for various populations within the
host halos. The dashed line corresponds to all dark matter particles, while the solid lines
show subhalos of different mass, as denoted in the legend. The splashback radius occurs at
the location of the steepening feature in these profiles. Subhalos with less than 1% of the
host mass have similar splashback radii as the full set of DM particles, while more massive
subhalos have smaller splashback radii, consistent with the effects of dynamical friction. The
left panel shows host halos with cvir < 4, while the right panel shows host halos with cvir > 6,
illustrating the significant dependence of dynamical friction effects on host concentrations.
Subhalo masses are expressed in units of h−1M�.
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between high-mass and low-mass subhalos might be due to systematic differences in the

accretion times for those subhalo samples (caused by resolution effects, for example), but we

have checked that the distribution of accretion redshifts as defined in the Rockstar catalog

is nearly identical for low-mass and high-mass subhalos. This precludes the difference in rsp

from arising from mass-dependent selection effects which can convert the radial dependence

of mean accretion redshift into an apparent radial dependence of subhalo mass. Another line

of evidence for dynamical friction as the explanation for the trend of rsp with mass is the

concentration dependence of the effect. As Fig. 3.1 shows, the decrease in rsp is stronger for

hosts with higher concentration cvir. This is expected for dynamical friction, since increasing

cvir raises the central density, which increases the drag rate as seen in Eqn. (3.1).

The splashback feature therefore offers a direct method to observe the effects of dynamical

friction. It is straightforward to estimate how dynamical friction will affect the splashback

radius, using the spherical collapse model of [4]. We modify their model somewhat, adding

an extra term to the equation of motion to account for dynamical friction,

dvr
dt

= −GM(r)

r2
− ηG

2Msubρ(r)

|vr|3
vrf(vr/σ). (3.2)

Here, Msub is the mass of the subhalo (we neglect tidal stripping), vr is its radial velocity,

M(r) is the host halo mass enclosed within radius r, ρ(r) is the local density at radius r,

the phase space factor is taken to be that for a Maxwellian distribution, f(x) = erf(x) −

2π−1/2x e−x
2/2 [54], and η is the unknown proportionality constant from Eqn. (3.1). Since

we do not have a first principles calculation of η, we treat it as a free parameter that is fit

to the simulation data. We find that η ≈ 1.4 provides a reasonable fit for the cluster-sized

host masses we have considered. For simplicity, in this toy model we assume radial orbits

for subhalos, which is unphysical but reduces the number of dynamical variables. Because

radial orbits pass through the host center r = 0 where the NFW profile diverges, we instead

approximate the host profile using a cored isothermal profile, with rcore = 0.1× rvir. Figure
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3.1 shows this is a reasonable approximation to the host profile well inside the splashback

radius, since at about 0.1 rsp the density profile slope (black dashed line) rapidly transitions

from -2 to 0. The splashback location for the particles are in good agreement with predictions

from the previous model and with simulations.

This simple toy model reasonably reproduces the location of the splashback feature for

different subhalo mass bins and for different host accretion rates Γ = d logMvir/d log a, as

shown in Fig. 3.2. In particular, low-mass subhalos comprising . 1% of their host halo’s

mass do not appear to experience significant drag from dynamical friction. However, it

might be interesting to construct a more realistic model that more accurately describes the

structure of the host halo, since the MDPL2 results suggest that dynamical friction effects

on the splashback radius depend significantly on the concentration of the host halo (see Fig.

3.1).

In principle, therefore, measurement of the splashback radius for different galaxy masses

could be used to constrain the amount of dynamical friction experienced by those galaxies,

which in turn constrains the initial masses (at infall) of the subhalos hosting those galaxies.

A comparison of those infall masses to the present-day masses, inferred from galaxy-galaxy

lensing of satellites [66, 67], then reveals the mass loss from tidal stripping suffered by satel-

lites. Such a measurement would not only help inform our understanding of dynamics within

galaxy clusters, but would also provide new insights on the halo occupation of satellites, di-

rectly testing models like subhalo abundance matching [68].

3.3 Dynamical friction in observed clusters

[69] recently observed the splashback feature in SDSS redMaPPer clusters [70, 71]. Building

on that work, we conduct a similar measurement to search for signatures of dynamical

friction in clusters. We use redMaPPer clusters with richness 10 < λ < 20 in the redshift

range 0.15 < z < 0.33, and compute the projected number density n(R) of SDSS galaxies
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Figure 3.2: Shift in the location of splashback due to dynamical friction in subhalos with
Msub > 0.01Mhost in bins of different accretion rate Γ = d logMhost/d log a (left vs. right) and
for bins of different host mass Mhost (top vs. bottom). Halo masses are expressed in units
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with measured photometric redshifts. In Fig. 3.3 we plot the logarithmic derivative of the

projected number density, d log n/d logR, for galaxies in various bins of absolute magnitude

in the i band, Mi. To determine the absolute magnitude, we ignore the measured photometric

redshift for each galaxy, and instead assume the galaxy is at the redshift of the redMaPPer

cluster when converting the observed apparent magnitude to absolute magnitude [69]. We

also use the angular diameter distance at the cluster redshift to translate angular separation

into projected physical separation. We count galaxies in bins of projected separation R, and

then compute the logarithmic slope d log n/d logR using a cubic Savitzky-Golay filter over

11 points [72], accounting for the covariance of the bins. We have used a lower richness

cluster sample than [69], since for a given galaxy population, dynamical friction is expected

to be stronger for hosts of lower mass. We have confirmed, however, the result of [69] that

host clusters with λ > 20 do not exhibit signficant evidence for dynamical friction, since

there is no significant trend of rsp with satellite galaxy luminosity in their sample.

For the lower richness sample used here, Fig. 3.3 shows that the brightest galaxies with

Mi < −21.5 have a significantly smaller splashback radius than fainter galaxies. If we assume

that rsp is given by the location of the steepest slope of the projected profile (which can

somewhat underestimate the value of the 3D splashback radius), we can determine rsp from

the Savitzky-Golay fit. The probability that radius r is the location of the steepest slope,

P (r), may straightforwardly be determined by integrating over the probability distribution

of the Savitzky-Golay coefficients,

P (r) =

∫
P (a0, a1, . . . , an) (3.3)

×δ
(
d2 log n

d(logR)2

)
Θ

(
d3 log n

d(logR)3

)
dn+1a,

where a0, a1, . . . , an are the n+ 1 Savitzsky-Golay coefficients at location r, whose posterior

distribution P (a0, . . .) is assumed to be a Gaussian distribution with covariance determined

from the data covariance as in [69]. This expression states that the probability that radius r
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is the splashback radius is given by the probability that the derivative of the slope vanishes,

d2 log n/d(logR)2 = 0, enforced by the Dirac δ-function, and the 2nd-derivative of the slope

is positive, enforced by the Heaviside function Θ(d3 log n/d(logR)3). We find that rsp =

0.42± 0.04h−1 Mpc (proper, not comoving) for the Mi < −21.5 sample, while rsp = 0.55±

0.04h−1 Mpc for the −19.43 < Mi < −20 sample. The probability that rsp is smaller for the

bright sample than the faint sample is readily determined from the probality distributions

for the splashback radii for the two luminosity bins, P (r−21.5) and P (r−20), each computed

from Eqn. (3.3). We find that
∫
P (r−21.5)P (r−20)Θ(r−20−r−21.5)dr−21.5dr−20 = 99.3%, giving

nearly 3σ confidence that brighter satellites have smaller rsp than fainter satellites in the

same clusters. This trend qualitatively agrees with our analytical and numerical predictions.

A quantitative comparison with theoretical predictions would require constructing a mock

galaxy catalog from simulations and running the redMaPPer algorithm to find clusters and

their member galaxies, which is beyond the scope of the present work. However, we can

perform a very crude comparison as follows. [73] find that the mean halo mass for richness λ is

M200m = 1014.3h−1M�(λ/40)1.33, while [74] find a mean relation M200c = 1014.19M�(λ/30)1.31,

although the scatter about the mean relation appears quite large, ∼ 0.7 dex at λ ≈ 20.

Assuming this mean relation of [73], our sample with 10 < λ < 20 should roughly correspond

to halos with M200m = 3 − 9 × 1013h−1M�. We have selected halos in this mass range at

z = 0.25 (the median redshift of our sample) from the MDPL2 simulation, and in Fig. 3.3 we

plot the logarithmic slope of the projected number density, d log n/d logR, for neighboring

halos and subhalos in various bins of Macc, the mass at accretion. (For isolated halos, Macc =

Mvir.) As the figure shows, subhalos within these hosts show a range of rsp spanning the range

seen in the redMaPPer satellites. By matching splashback radii between observed satellite

galaxies and simulated subhalos, we can estimate the typical infall masses of those satellites,

and a comparison with their present-day lensing masses [66, 67] would be an interesting test

of whether dynamical friction in real clusters proceeds similarly to the behavior found in

simulations.
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3.4 Discussion

In this paper, we have shown that the splashback radius may be used to detect the effects

of dynamical friction in galaxy clusters. We showed that the friction observed in simula-

tions may be understood quite simply using the 1-D model of [4]. We showed that SDSS

redMaPPer clusters exhibit significant evidence for dynamical friction, and we argued that

this result places interesting constraints on the subhalo occupation distribution of satellite

galaxies in those clusters.

Besides probing the subhalo occupation distribution of cluster satellites, observations of

dynamical friction can also help constrain more fundamental physics. We have estimated

the amount of dynamical friction that occurs within cold dark matter (CDM) cosmologies,

in which gravity follows Einstein’s general relativity and dark matter consists of collisionless

particles. Departures from the CDM model could produce significant deviations in the

splashback radius of massive galaxies. For example, some previous works have found that

dynamical friction can be significantly strengthened in MOND-like theories without particle

dark matter [75], which may be interesting to explore in more recent variants of modified

gravity models [76]. Similarly, certain self-interacting dark matter models can also predict

an effective drag of satellites [77] that could be studied using the splashback feature. Given

the detection of the splashback feature in SDSS clusters, and improvements from deeper

imaging surveys like DES and HSC, splashback may provide a new window onto a variety

of physics.
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Chapter 4

Splashback as a probe for Cosmology

In light of the recent detection of the steepening of slope of the density profile of clusters

near the virial radius, known as the splasback feature, we study how different cosmologies

effect the location and shape of the feature. As the location of splashback depends on the

accretion rate of a halo and the redshift at which it forms, limited sensitivity to background

cosmology makes it a robust probe for the accretion history of halos.

4.1 Introduction

ΛCDM has been highly successful in explaining a vast array of observable properties of

our universe and its evolution. However there still exist considerable discrepancies between

simulations of ΛCDM cosmologies and observations. For example at small scales, the missing

satellite problem, the core-cusp problem and the too big to fail problem are some of the known

disagreements between simulations and observations. Solving these problems often requires

introduction of non-gravitational interactions in the dark matter. Apart from these small

scale issues, there are several alternate theoretical models that make the same predictions as

ΛCDM on large scales, for example, it is well know that modifying gravity on large scales can

reproduce the accelerated expansion of the universe. Therefore, a lot of motivation exists to

explore cosmologies beyond ΛCDM, and find observable tests to disentangle these models

from ech other.

The formation and evolution of dark matter halos gives us key insights into some of the

fundamental questions of cosmology. The inner structure and assembly of these highly non-
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linear, virialized objects are not only related to the individual density perturbations in the

early universe that collapsed to form them but also to the environment in which they grow.

In theory they have been studied extensively through pioneering works by [2], [21],[78] who

dealt with the self-similar collapse of density perturbations, and also through increasingly

advanced, high resolution N-Body simulations.

The density profile of dark matter halos in simulations are well fitted by NFW like power

law profiles. However, recent work by [26] has shown that the profile deviates significantly

from the NFW in regions at the outskirts of the halo. The slope of the density profile

becomes much steeper than -3 in a narrow, localized region around the virial radius of the

halo. [26] and [79] argue that this deviation is a density cautic, i.e. a narrow region of

locally enhanced density, occuring at the first apocentric passage of matter that falls into

the halo for the first time, known as the splashback radius. Diemer and Kravtsov and More

2015 provide empericial fitting functions for this feature as function of accretion rate and

halo mass, while [79] and [80], characterize this feature using simple physical models. The

location of this feature is fundamentally a function of the accretion rate of the halo and the

background cosmological parameters, i.e. it depends also on the redshift at which the halo is

formed. Therefore, the splashback radius is a scale within the halo which not only gives us

the accretion history but also, owing to its dependence on cosmology, may serve as a cosmic

ruler.

Recently [81] have observed this feature in the number density profiles of galaxies in

redMapper clusters using the SDSS data. While the shape of the feature matches the data

from N-body simulations of ΛCDM with collisionless dark matter, it is puzzling that the

splashback feature occurs at a smaller radius than expected showing an offset of about 20%

with simulations. As galaixes reside in massive subhalos within their host halos, it is not

surprising that they might splashback at a smaller radius owing to the loss of orbital energy

due to dynamical friction [82], however as the location of the feature does not show much

dependence on galaxy magnitudes this possibility can be safely ruled out for high mass halos,
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as dynamical friction only becomes important for subhalos with Msub > 0.01Mhost. For other

possible systematic error related explanations refer More et al. 2016. This discrepancy from

simulations therefore leaves room for speculation as to how different cosmologies may affect

the location of the splashback feature.

In this paper we have looked into how splashback behaves when we fold in deviations

from the ΛCDM. In section 2.2 we explore how our model changes by varying the equation

of state for dark energy, in section 4.3 we study splashback in modles of modified gravity

and in section 6.2 we study the effects of introducing self-interactions of dark matter.

4.2 Splashback and the Dark energy equation of state

In Adhikari et al. 2014 [79] we described a simple model to predict the location of the

splashback feature. The spherical collapse of a top hat density perturbation in an expanding

universe has been used to study the formation of virialized halos. In general halos can be

thought of being composed of collapsed shells of dark matter particles orbiting in a halo

potential. The spherical collapse model assumes the mass within a shell remains constant

until the shell is virialized. However, post turn around, as shells begin to orbit they cross

each other and the mass within a shell does not remain constant.

In our paper we made a simple extension to the spherical collapse model, we continue

to assume spherical symmetry but with the mass inside the shell changing with time and

radius. The mass of the halo grows as Mtot ∝ as and we assume an NFW profile for the

mass interior to the radius r,

M(< r) = Mtot
fNFW(r/rs)

fNFW(R/rs)
, (4.1)

where R is the radius of the halo which grows like R ∝ a1+s/3, rs is the NFW scale radius,

and fNFW(x) = log(1 + x)− x/(1 + x). The NFW concentration c ≡ R/rs sets the slope of

the mass profile at the halo boundary, and we choose c such that the outer slope is given by
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d logM/d log r = 3s/(3 + s) at r = R [2, 3, 8].

In Adhikari et al. 2014[79] we looked at the position of splashback in a λCDM universe,

where the equation of motion of the shell is given by the Friedmann equation,
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Figure 4.1: Overdensity enclosed within the splashback radius as a function of accretion rate
s = d logM/d log a. Large ∆ corresponds to small radius within the halo. The blue, green
and red curves correspond to DE equation of state parameters w=-0.5, -1, -2 respectively.

r̈ = −GM
r2

+
Λ c2

3
r, (4.2)

We evolve the orbits of the shell using spherical collapse until they reach ri = rta/2

and thereon we assume that the shell is orbiting in a time changing mass profile. As in

the spherical collapse model, we find the overdensity at splashback, ∆s. In our model,

∆s depends only on the halo’s accretion rate s, along with the values of the background

cosmological parameters ΩM and ΩΛ at the time the halo is observed.

The overdensity at splashback naturally depends on the expansion rate of the background

universe. In the time elapsed between turn around and splashback, the background universe

has expanded at a certain rate depending on the cosmology we assume. Previously we inves-

tigated the behavior of splashback in a universe with the cosmological constant. However,

it is simple to modify our model to introduce a dark energy equation of state where the
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PDE = −wρ and w 6= 1. The rate of expansion of the back ground universe is given by,

ä

a
= H0

√
Ωma−3 + ΩDEa−3(1+w) (4.3)

and the equation of motion of the shell is modified to

r̈ = −GM
r2

+
H2

0

2
(1 + 3w)r−2−3w, (4.4)

For comparison Fig 4.1 shows the dependence of splashback overdensity on the accretion

rate for a ΛCDM universe and for a universe with w = −0.7. The difference in the enclosed

overdensity at a given accretion rate between models of the universe with w = −1.0 and

w = −0.7 becomes larger at low redshifts which is expected as Λ domination begins at

late times. The overdensity at splashback is higher for higher |w|. This behavior can be

understood by considering again the rate at which the universe expands between turnaround
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and splashback. If we hold fixed the value of ΩDE at 0.7 today, then for a universe where

−1/3 > w > −1 dark energy dominates at an earlier epoch than it does for a w = −1

universe. However at the time of turn around ΩDE is higher that what is was for a ΛCDM

universe, and therefore the background universe dilutes faster than it would have for a

universe with cosmological constant between the turnaround and splashback, making the

overdensity larger at splashback. The opposite is true for w < −1.
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Figure 4.3: (Left y-axis) Local density slope as a function of r/r200m for stacked N-body
halos at z = 0 with mass Mvir = 1 − 4 × 1014h−1M� with average accretion rate Γ = 1.5.
Different colors correspond to different cosmologies. The blue curve corresponds to nDGP
with H0rc = 0.57, and the red curve corresponds to ΛCDM. The vertical black dashed line
shows the expected position of splashback for the accretion rate bin. The quantity ∆F shows
the strength of the modfication as a function of distance from the centre of the halo.

To test the accuracy of our model we ran N-body simulations of cosmologies with different

equation of state parameter for dark energy. For this purpose we modified the background

evolution equations in Gadget2 to allow for varying w. We used 10243 particles in a 1 Gpc

47



h−1 box . The softening length was chosen to be a quarter of a scale radius for a halo with

1000 particles. [26], which is of the order of 1/30L/N . We adopt the Planck cosmology for

our simulations where Ωm = 0.27, ΩL = 0.73, Ωb = 0.0469, h = 0.7. Fig 4.2 shows the

comparison of our predictions from the toy model to the N-body simulations. Our model

correctly captures the movement of splashback with changing w. We use w = −0.5 and

w = −2, to amplify the effect of changing the EoS.

Even though Fig 4.1 shows that the enclosed density changes by about 20% when w goes

from -1 to -0.7, the change in the splashback radius is not as large, ∆encl is a steeper function

of the accretion rate, Γ than the splashback radius, rsp. This shows that near the region of

interest w = −1, the splashback radius is a weak function of w.
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4.3 Alternate models of Gravity

Modified gravity models have been invoked as an alternative to dark energy to understand

the large scale accelerated expansion of the universe. In these models gravity is modified

on large scales but on small scales, in higher density environments, general relativity must

be restored to be consistent with stringent observational tests of GR from the solar system.

Most theories therefore admit a nonlinear process or ”screening mechanism” to suppress

the modifications to gravity in high density regions. Therefore, transition regions between

the two regimes, screened and unscreened are interesting for tests of modified gravity. Here

we focus on the f(R) and the DvaliGabadadzePorrati(DGP) model that have two different

classes of screening mechanisms, namely Chameleon screening and Vainshtein screening and

see how they effect the splashback feature.

The modifications to gravity can be parametrized by an enhancement of the gravitational

constant in the unscreened region by a factor of 4/3. If the transition region lies in the

outskirts of a halo, during infall the particles are in a region of enhanced gravity, but during

the course of their first orbit they are partly in the screened region of the halo. We might

expect that the varying gravitational field during the orbit of a particle may induce significant

displacement of the splashback radius. In the next section we briefly describe the gravity

models and the simulations we use to test this effect.

4.3.1 nDGP-Vainshtein screening

DGP falls in the class of modified gravity theories that have an extra scalar degree of

freedom, which mediates the modified gravitational force. The screening is achieved by

non-linear self-couplings of the scalar field. Nonlinearity causes the gravitational fields of

particles to interfere therefore in high density regions for collections of particles the deviation

from GR are weakened compared to individual, isolated particles. This process is known

as the Vainshtein mechanism. To study the effects to the outer density profile we choose
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the nDGP model, i.e. the normal branch of the DGP theory. Unlike sDGP, which is the

self-accelerating branch of DGP, this has the exact expansion history as ΛCDM, therefore we

simulate this model to disentangle the effects of modified gravity. The Friedmann equation

in the nDGP model is given by,

H2 = −H0

rc
+

8πGρm
3

+
8πGρdm

3
(4.5)

where rc is the scale at which gravity transitions from 5D on large scales to 4D on small

scales. The background evolution is tuned to match the ΛCDM expansion. The Poisson

equation and the scalar field equation are given by,

∇2Ψ = ∇2ΨN +
1

2
∇2φ (4.6)

∇2φ+
r2
c

3β(a)a2

[
(∇2φ)2 − (∇i∇jφ)(∇i∇jφ)

]
=

8πGa2

3β(a)
ρδ (4.7)

where φ is the scalar field Ψ is the Newtonian potential, ΨN = 4πGρδ is the Newtonian

potential in GR, δ is the density contrast. And the parameter β(a) is given by,

β(a) = 1 + 2Hrc

(
1 +

Ḣ

3H2

)
(4.8)

As rc becomes large the modifications to gravity become weaker and the Vainshtein screening

mechanism becomes more efficient. In the spherically symmetric case, we can define a

Vainshtein radius for a halo with an NFW profile. This is the radius the halo is screened

and the Newtonian force is recovered. The Vainshtein radius depends on the mass of the

halo and the cross-over scale rc,

r? =

(
16Gm(r)r2

c

9β2

)1/3

(4.9)

The Poisson equation in modified gravity models become highly nonlinear with products
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of the second-order derivatives of the scalar field, making them difficult and expensive to

solve numerically. ECOSMOG-V [83] is the state of the art code to simulate cosmologies

with modified gravity. It is an AMR code based on RAMSES that solves for the scalar field

φ using the Newton-Gauss Siedel elimination method. For a detailed review of the code

performance refer to [84, 83].

We have run N-body simulations with 5123 particles on a 400 Mpch−1 starting with an

initial redshift of z = 49, with initial conditions generated using N-GenIC [85]. We run

these with the best-fit Plank cosmology parameters, Ωm = 0.301, ΩΛ = 0.699, h = 0.677,

ns = 0.9611. Of the three nDGP models simulated in [84], we simulate the one with the

largest modification to gravity where, H0rc = 0.57 to maximize it’s effects on splashback. As

the growth of structure in DGP is different from ΛCDM, we normalize the initial conditions

of our simulations, such that σ8 is the same for both the nDGP and the corresponding ΛCDM

case. Fig.4.3 shows the comparison between the slopes of the density profile for cluster sized

halos, stacked based on accretion rate, for halos in ΛCDM and nDGP with H0rc = 0.57.

This value for nDGP parameter was chosen such that the Vainshtein radius for cluster sized

halos lies in the splashback region. The plot also shows strength of the modification to

gravity in the halo, which is given by the ratio of the fifth force, F5 = 1/2 dφ/dr and the

usual gravitational force, FG. We plot,

∆F =
F5

FG∆M

− 1 (4.10)

∆M is the linear theory value of the ratio of the two forces, 1/3β. ∆F approaches -1 in

screened regions and 0 in unscreened regions. Fig 4.3 shows that the splashback is in the

transition region. We find that there is no effect on the shape or location of the feature in

the nDGP model. We also find that for group sized halos where the vainshtein radius is

smaller than the splashback radius, there is no change in the splashback feature.

This result is somewhat surprising, given that the particles are transitioning from a region
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of 4/3G to G in the course of their orbits. The halo potential should be growing differently

in the modified gravity scenario,cha however one possible reason for the similarity of profiles

may be the fact that comparing halos of similar accretion rates, negates the effect of the

difference in the growth of halo potential. However, stacking simply on narrow mass bins

does not create an effect either.

4.3.2 f(R)-Chameleon screening

Another commonly used modification to gravity is the f(R) model. Here also the modifi-

cation to gravity is mediated by a scalar field. Screening is achieved by nonlinear coupling

between the scalar field and matter, making the mass of the scalar field very high in dense

regions thus reducing its compton wavelength. This mechanism is known as Chameleon

screening. In f(R) models the Einstein Hilbert action is modified by a general function of

the scalar curvature R.

S =

∫
d4x
√
−gR + f(R)

16πG
(4.11)

This introduces an additional degree of freedom as fR = df/dR. The compton wavelength

of the field is given by Λc =
√

3dfR/dR, and within the Compton wavelength gravity is

modified by a factor of 4/3.

For our purposes we adopt the [86] f(R) model given by,

f(R) = −m2 c1(−R/m2)n

c2(−R/m2)n + 1
(4.12)

where n,c1,c2 are model parameters, c1/c2 = 6ΩΛ/Ωm to match the ΛCDM background

evolution, and m = ΩmH
2
0 . The model is parametrized by the background value of the

derivative of the the field, |fR0| = −nc1/c
2
2[3(1 + 4ΩΛ/Ωm)]−(n+1) [87].

The coupled Poisson equations in f(R) gravity are given by,
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∇2φ =
16πGa2

3
δρ+

a2

6
δR(fR), (4.13)

∇2δfR = −a
2

3
[δR(fR) + 8πGδρ], (4.14)

where φ is the potential, δfR = fR(R)− f(R̄), R is the scalar curvature δR = R− R̄ where

the barred quantities are the background values.

As in the case for DGP, the coupled Poisson equations are much more difficult to solve

than the linear Poisson equation in GR. We use ECOSMOG [83] to simulate f(R) universe.

We run N-body simulations with 5123 particles in a 400 Mpc h-1 from z=49 to z=0. We

use |fR0| = 10−3, to maximize the effect. Much larger values of fR will leave the entire

halo unscreened and the dynamics will be similar to the GR case G enhanced by a factor

of 4/3. The cosmological parameters are similar to the model adopted for the DGP model.

σ8 = 0.94 for |fR0| = 10−4, this is the value of σ8 that all ΛCDM and DGP are adjusted to.

Observationally |fR0| is constrained to be less than 10−6, we have run simulations with

|fR0| = 10−4 and higher to enhance the effects of the modificiation to gravity gravity. Larger

values of |fR0| leave cluster sized halos unscreened, and therefore there should be no effect on

the dynamics of particle orbits barring an enhancement of gravity by a factor of 4/3. Fig 4.4

shows the slope of the density profile as a function of r for cluster sized halos stacked based

on accretion rate. Again we do not see a significant effect on the location of the splashback

radius in the case of f(R) gravity.

4.3.3 Effect on subhalos

Apart from looking at dark matter particles we also looked at subhalos in different modified

gravity simulations. The main motivation for this was the fact that in chameleon theories we

may have small objects that are unscreened i.e the infalling galaxies may not be completely

screened an therefore they may fall in at different velocities, therefore the dependence of
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Figure 4.5: (Left) Local number density slope for subhalos as a function of r for stacked
N-body halos at z = 0 with mass Mvir = 1 − 4 × 1014h−1M� in f(R) and GR. The black
dashed line corresponds to splashback for DM particles.

splashback on the mass of the infalling subhalo may be different than in the Lambda CDM

case. Attached is a plot made using data from Baojiu Li’s simulations. These are for

fR = 10−5, 1 Gpc h−1 boxes, I am looking at cluster sized host halos. For subhalos the

resolution isn’t great, we can only trust subhalos with masses greater that 8 × 1012M�h
−1

Fig 4.5 shows the comparison of splashback for subhalos in f(R) and GR.

4.4 Self-Interacting Dark matter

Dark matter self interactions have long been used to explain discrepancies between obser-

vations at small scales and CDM simulations. In general they naturally alter the structure

of dark matter halos by producing cored density profiles and halos that are rounder in their
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mass Mvir = 1.3 × 1015h−1M�. The two colors show two different models for dark matter
interactions, the two simulations begin from the same initial conditions.

central regions. Non-gravitational, self-interactions can cause particles to lose energy. Es-

pecially ones that have radial orbits and have traveled deep into the halo’s potential. As a

result of this loss of energy we may expect the particles may splashback at different locations

after their first pericenter passage.

To begin with we consider hard-sphere isotropic, elastic scattering. We study simulations

by James Bullock and Oliver Elbert, with interaction cross-sections of σ = 1cm2/g. These

are zoom in cluster simulations with clusters of mass Mcluster = 1015M�h
−1 with a force

resolution of 4kpc.. Fig.7.1 shows the slope as a function of radius for the cluster. The

outer profile for the clusters look almost exactly similar to each other, the only differences

arise in the central concentration of the halos. The location and shape of the splashback

feature does not change. However this result is not surprising. In isotropic scattering at

every interaction there is a large exchange of momentum, and particles are deviated off

their original trajectory in some random direction. The particles with altered energy don’t

move coherently to create a density caustic. The only effect we might expect is a smearing
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out of the splashback feature in SIDM halos for large enough cross sections. However,

due to the large momentum exchange during interactions, the dark matter particles within

subhalos often gain enough momentum to escape its potential causing subhalos to evaporate.

The oberservation of subhalos in large clusters therefore has put stringent upper limits on

isotropic scattering cross-section for self interactions, at these low cross sections no significant

effect can be observed in the structure of the splashback feature in simulations.

The same momentum transfer cross-section can arise from having rare collisions with

large momentum transfer or having frequent collisions with a small momentum transfer at

each interaction. In the second scenario as particles have a high probability of interaction

the effect of collisions can be described as a net drag force where the decceleration is given

by,

~f =
σTρv

2
rel

2mDM

v̂rel (4.15)

where ρ is the ambient density of the medium through which the particle is moving,

vrel is the particle’s relative velocity with the background and σT , is the integrated transfer

cross-section given by,

σT =

∫ 1

0

dθcms(1− cos θcms)
dσ

dΩcms

(4.16)

where, θcms is the scattering angle in the centre of mass frame. The cross section is

highly peaked in the forward direction. These are small angle scattering with low momentum

transfer, therefore the particles in their orbit are not thrown out of their path in a random

direction. A cumulative effect of many interactions leads to a net decceleration and a loss

in energy, therefore the particles are expected to splashback at a smaller radius than they

do in cold dark matter scenarios for such anisotropic self interactions.

Anisotropic interactions warrant a method of simulation different from the simulations

of isotropic cross-sections in [88]. As preliminary tests we implement this interaction using
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a momentum-conserving scheme on a grid-based PM N body code and run simulations for

different values of σT/mDM . As expected, we find that the splashback moves inwards as

a function of the transfer cross-section. However, these are preliminary simulations that

are of low resolution and are not converged. To this end we are currently implementing

this interaction using L-Gadget to study the signatures of anisptropic scattering on halo

structures.

4.5 Discussion

In this paper we have looked at the space of theoretical models beyond ΛCDM and seen it’s

effect on the splashback radius. It appears that the splashback radius is a scale in the halo

that is surprisingly robust in different cosmological models as a probe for the accretion rate

of a halo. It shows a weak dependence on the equation of state parameter. The equation

of state parameter would have to vary dramatically to reproduce the 20% offset detected in

More et al. 2016 [69]. The splashback feature in dark matter particles also does not show

very strond dependence on the model for gravity. Both Chameleon and Vainshtein theories

do not show a movement in the position by there may be some change in the shape of the

feature which is a topic for further investigation.

Intriguingly the splashback radius for subhalos in f(R) theories seems to effect the lo-

cation of splashback. While the subhalos compared in the f(R) and GR simulations have

masses that are likely to experience dynamical friction the size of the effect seems significantly

different in the two cases.

Isotropic self-interacting dark matter also does not effect splashback. The only mecha-

nism that seems te be a plausible candidate to create differences in splashback positions are

anisotropic dark matter self interactions a topic which is currently being investigated.

The splashback radius is emerging as a novel tool for understanding halo formation and

growth of structure. More recently the splashback radius has also been detected in DES
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data. In DES, this feature is not only detected in the galaxy distribution within clusters but

also for the first time in its stacked lensing profile. We are also working closely with DES

group helping in the interpretation and comparison of the data with theoretical predictions

from simulations and simple toy models.
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Chapter 5

Three point galaxy-galaxy lensing as a
probe for dark matter halo shapes

We propose a method to measure the ellipticities of dark matter halos using the lens-shear-

shear 3-point correlation function. This method is immune to effects of galaxy-halo mis-

alignments that can potentially limit 2-point galaxy-galaxy lensing measurements of halo

anisotropy. Using a simple model for the projected mass distributions of dark matter halos,

we construct an ellipticity estimator that sums over all possible triangular configurations of

the 3-point function. By applying our estimator to halos from N-body simulations, we find

that systematic errors in the recovered ellipticity will be at the . 5% fractional level. We

estimate that future imaging surveys like LSST will have sufficient statistics to detect halo

ellipticities using 3-point lensing. 1

5.1 Introduction

In the cold dark matter model of cosmological structure formation, galaxies are believed to

form inside of virialized objects called dark matter halos. The properties of these halos, like

their internal structure or abundance, are related to the background cosmology and to the

physics of dark matter particles. One example of this is the ellipticity of dark matter halos.

In CDM cosmologies, halos are found to be triaxial, with axis ratios of the order of 0.5:1,

with a significant scatter from object to object [89, 90, 91, 92]. Alternative models, like

self-interacting dark matter (SIDM) can produce significantly different shapes. Pure SIDM

1This chapter was previously published in the Journal of Cosmology and Astroparticle Physics as S.
Adhikari, C. Y. R. Chue and N. Dalal, Three-point galaxy-galaxy lensing as a probe of dark matter halo
shapes, JCAP 1501 (2015) 009, [1407.1128].This chapter matches the published version.
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simulations generally produce halos with rounder shapes than CDM simulations [93, 94, 88],

although the effects of baryons can modify these results [95].

Therefore, measurements of the shapes of dark matter halos may be used to probe the

nature of dark matter. Accordingly, multiple groups have attempted to measure halo shapes

using a variety of probes. In our own Galaxy, several groups have attempted to model the

dynamics of the Sagittarius tidal stream in order to infer the underlying shape of the Milky

Way’s halo [96, 97, 98, 99, 100]. In other galaxies, halo shapes have been probed using

strong lensing and stellar dynamics [101, 102] on small scales, and satellite dynamics on

larger scales [103].

Another probe of dark matter halo properties is weak gravitational lensing. The average

radial profiles of dark matter halos have been inferred with high precision through mea-

surement of the two-point cross-correlation between galaxies and tangential shear, called

galaxy-galaxy lensing [104, 105, 106]. Circularly averaged statistics are insensitive to halo

ellipticity, but in principle, anisotropy could be constrained by measuring shear not only

as a function of radius r, but position angle θ as well. Unfortunately, because dark mat-

ter halos are dark, we cannot determine the orientations of halos, making it impossible to

measure shear profiles as a function of position angle relative to the halo principal axes. We

can, however, measure shear as a function of the position angle relative to the lens galaxies’

principal axes. If halos are perfectly aligned with their central galaxies, then such mea-

surements may be used to determine the average halo ellipticity. This is the approach that

has been used by most previous work [107, 108, 109, 110]. This previous work, however,

has yielded inconclusive results. For example, [110] report an average projected ellipticity

of e = 0.38 ± 0.26, which is consistent both with CDM predictions and with completely

isotropic halos. Currently, statistical errors are a principal limitation of this measurement,

but with the vastly increased sample sizes provided by future imaging surveys like LSST, the

statistical errors may be reduced sufficiently to detect the expected signal. More worryingly,

this method is likely limited by potentially severe systematic effects. First, the assumption

60



that galaxies and their halos are perfectly aligned may be unrealistic [111]. [112] has argued

that significant misalignments between galaxies and halos may be quite typical; the median

misalignment angle in their simulations was ∼ 38◦. Random misalignments act to wash

out the halo anisotropy signal from galaxy-galaxy lensing. Even worse, they complicate

the interpretation of any measured anisotropy signal. Without knowledge of the misalign-

ment distribution, we will not know how to translate stacked lensing signals into constraints

on halo axis ratios. This effect is also not the only possible systematic. For example, if

lens galaxies and background source galaxies are both lensed by foreground structures, this

common lensing will tend to align their observed shapes, thereby contaminating the halo

anisotropy signal [113]. Because of these systematic limitations, an alternative approach for

measuring halo shapes with galaxy-galaxy lensing may be required – ideally, a method that

does not require galaxies to align with their host halos. Such an approach is suggested by

the recent work of [114], who find that halo ellipticities affect galaxy-galaxy lensing 3-point

correlation functions. Although most previous work on galaxy-galaxy lensing has focused

on 2-point statistics, higher order correlation functions are now becoming measurable in

modern imaging surveys [115, 116]. In this paper, we explore how halo ellipticities may be

determined from measurements of the galaxy-shear-shear 3-point function.

5.2 Mass model

The 3D density profiles of halos in dissipationless CDM simulations have axis ratios of order

q ≈ 0.5, slowly varying with radius [90, 91]. Similarly, the 2D projected surface density Σ is

anisotropic, with axis ratios closer to q ∼ 0.7, again slowly increasing with radius. Because

q is nearly constant with radius, we can write Σ ∝ R−η, where R = (x2 + y2/q2)1/2 is an

ellipsoidal radial coordinate, and η is the logarithmic slope of the projected surface density.

We will find it convenient below to work with the multipole moments of the density profile.
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Figure 5.1: (a): Plot of the multipole moments of stacked halos. The solid curves show
the isotropic component (monopole, κ0) of the surface density profile and the dashed curves
show the cos 2θ component (quadrupole, κ2). The convergence κ is proportional to surface
density Σ. (b): Radial dependence of ellipticity, which we define as ε(r) ≡ κ2/(η κ0), for
three different mass bins. The blue, red and green colors correspond to three different mass
bins. Note that, although the multipole moments vary by orders of magnitude, the ellipticity
remains nearly constant across much of the range of interest.
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In the limit of small ellipticity, we can write the multipole expansion of Σ in terms of q,

Σ(r, θ) ∝ r−η
[
1 + ε η cos 2θ +O(ε2)

]
≡ Σ0(r) + Σ2(r) cos 2θ + . . . (5.1)

where the multipole Σm(r) is the coefficient of the eimθ component of the azimuthal behavior,

and we use ε = (1−q2)/ [2(1 + q2)] to parameterize the ellipticity. For the typical axis ratios

found in simulated halos, ε ∼ 0.2, so we neglect higher order terms in the expansion.

We therefore model the mass distributions of halos as the sum of a monopole and

quadrupole, and further assume that

ε ≈ Σ2(r)

η(r)Σ0(r)
(5.2)

where η = d log Σ0/d log r. In Figure 5.1, we plot ε as defined in Eqn. (5.2), measured

from stacked profiles of projected halos taken from the Bolshoi simulation [39]. We measure

multipole moments from the particle positions, using

Σm(r) =
∑
i

mpδ(r − ri) eimθi
2πri

, (5.3)

where mp is the particle mass, and ri and θi are the radius and azimuthal angle for particle i.

After computing Σ0(r) and Σ2(r) for each halo, we then stack the halos to compute 〈Σ0〉(r)

and 〈|Σ2|〉(r), and then ε. As expected, the ellipticity is fairly constant with radius, except

very near the halo center where η = d log Σ0/d log r → 0. Because ε is nearly constant with

radius, then the radial dependence of the quadrupole may be predicted from the monopole,

whose mean 〈Σ0(r)〉 may be determined from real galaxy halos using galaxy-galaxy lensing

2-point statistics. Specifically, the mean tangential shear 〈γ+〉 profile around halos is related
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to the mean monopole via [117]

〈γ+〉 =
∆Σ(r)

Σcrit

=
Σ̄0(< r)− Σ0(r)

Σcrit

, (5.4)

where the lensing critical density Σcrit is defined as

Σcrit =
c2

4πG

Ds

DdsDd

, (5.5)

and Dd and Ds are the angular diameter distances to the lens and the source respectively,

while Dds is the angular diameter distance from the lens to the source. Eqn. (5.4) can be

inverted (up to a mass-sheet degeneracy) to obtain the mean monopole profile Σ0(r) from

the observed mean tangential shear profile 〈γ+〉(r) via

Σ0(r)− Σ0(rmax)

Σcrit

= 2

∫ rmax

r

〈γ+〉(R)
dR

R
(5.6)

− [〈γ+〉(r)− 〈γ+〉(rmax)] .

Here, rmax is the largest radius over which the stacked tangential shear profile 〈γ+〉 has been

measured.

For circularly symmetric lenses, the tangential shear is the only nonzero component of the

shear. When the surface density is anisotropic, however, the other component (γ×) becomes

nonzero. In the same way that we can decompose the surface density into angular multipoles

Σm(r), we can similarly decompose the shear into multipoles γ(m)(r). The relation between

the density and shear multipoles is straightforward. For convenience, we follow conventional

notation and define the convergence as κ = Σ/Σcrit, and define a 2D lensing potential ψ via

∇2ψ = 2κ (5.7)

where the gradient is with respect to sky coordinates. In polar coordinates, this equation
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becomes

κ(r, θ) =
1

2

[
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

]
ψ. (5.8)

The two components of the shear are given by

γ+ =

[
− ∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

]
ψ (5.9)

γ× =

[
−2

r

∂2

∂r∂θ
+

2

r2

∂

∂θ

]
ψ (5.10)

Next, let us decompose these fields into angular multipoles

ψ (r, θ) =
∞∑

m=−∞

ψm(r)eimθ (5.11)

κ (r, θ) =
∞∑

m=−∞

κm(r)eimθ.

Explicitly,

m = 0 : κ0(r) =
1

2π

∫ 2π

0

κ(r, θ)dθ (5.12)

m ≥ 1 : κm(r) =
1

π

∫ 2π

0

κ(r, θ) cosmθ dθ.

Solving the 2-d Poisson Eqn. (5.8), we obtain the multipole moments of ψ,

ψ0(r) = ln r

∫ r

0

r′κ0(r′)dr′ +

∫ ∞
r

r′ ln r′κ0(r′)dr′

ψm(r) = − 1

2m

[
r−m

∫ r

0

r′(m+1)κm(r′)dr′

+ rm
∫ ∞
r

r′(1−m)κm(r′)dr′
]
. (5.13)

Then, using Eqns. (5.9) and (5.10), we may obtain the multipole moments of the two shear

components. Because we keep only m = 0 and m = 2, and because we assume that

65



κ2(r) = ε η(r)κ0(r), we have

γ
(0)
+ (r) =

2

r2

∫ r

0

r′κ0(r′)dr′ − κ0(r) (5.14)

g+(r) =

[
−κ0(r)η(r) +

3

r4

∫ r

0

r′3κ0(r′)η(r′)dr′

+

∫ ∞
r

κ0(r′)η(r′)

r′
dr′
]

(5.15)

g×(r) =

[
3

r4

∫ r

0

r′3κ0(r′)η(r′)dr′

−
∫ ∞
r

κ0(r′)η(r′)

r′
dr′
]
, (5.16)

where we have defined, for the purpose of convenience, the functions g+ and g× such that

the quadrupole components of the shear are γ
(2)
+ = ε g+(r) cos 2θ and γ

(2)
× = ε g×(r) sin 2θ.

Note that, by definition, γ
(0)
× = 0.

Given this model for the mass distributions of lenses, we can predict the shear at all

locations around the lenses. The one unknown parameter is the ellipticity ε, which defines

the amplitude of the quadrupole moment κ2 in terms of the monopole moment κ0, which we

assume may be determined using Eqn. (5.6). Because we have an expression for the shear

at all locations, we can construct an estimator for the quantity ε.

5.2.1 Three-Point Estimator

As discussed in §6.1, [114] have shown that lensing 3-point functions are sensitive to halo

ellipticities. However, they also show that lensing 3-point functions are also sensitive to many

other terms, making it difficult to disentangle the signal in the bispectrum generated by halo

ellipticity. Fortunately, given our model for halo mass distributions, it is straightforward for

us to construct an estimator to measure halo ellipticity from lensing correlation functions.

Following [114], we focus on the lens-shear-shear 3-point function. Measurement of this

correlation function involves stacking the shear measured from pairs of source galaxies behind
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Figure 5.2: Lens-shear-shear three point correlation function. We correlate the shear at sky
positions ~r1 and ~r2 relative to foreground lens galaxies, and construct an estimator summing
all such triangular configurations in the sky.

foreground lens galaxies. Because the number density of source pairs is low, especially at

the small radii of interest for measuring internal halo properties (r < rvir), we assume that

shape noise in the source galaxies dominates measurement uncertainties. That is, we neglect

the signal covariance compared to Poisson fluctuations in source counts. Because Poisson

noise is white noise, the optimal estimator is then simply proportional to the expected signal

from our model.

We therefore estimate the average lens ellipticity by summing over all lens-source-source

triangles, weighting each triangle with a filter F that is given by the predicted model shear

for each configuration of galaxies. Figure 5.2 illustrates the geometry on the sky. Suppose

that we have measurements of the shear at positions ~r1 and ~r2 relative to the center of the

lens halo. When we sum over all possible ~r1 and ~r2, the filter which weights each triangle is

F(~r1, ~r2) ∝ γ(2)(~r1)⊗γ(2)(~r2). Because the orientation angle of the lens halo is unknown, the

filter must depend on the relative position angle of the sources, not their absolute position

angles: F(~r1, ~r2) = F(|~r1|, |~r2|,∆θ12). We compute F by averaging all possible triangles with

one vertex at the center of the lens, and a constant opening angle, ∆θ12, between position

vectors to the lensed galaxies, of magnitude |~r1| and |~r2| (see Fig. 5.2). Since each shear has

67



2 components, the filter F is a 2× 2 matrix, with components

Fij (r1, r2,∆θ12) = 〈gi(~r1)gj(~r2)〉 (5.17)

=

∫
r′1r
′
2dr
′
1dr
′
2dθ
′
1dθ
′
2gi(~r1)gj(~r2)δr′1δr′2δ∆θ′12∫

r′1r
′
2dr
′
1dr
′
2dθ
′
1dθ
′
2 δr′1δr′2δ∆θ′12

,

where indices i, j run over +,×, and we define ∆θ12 = θ2−θ1 = cos−1(~r1 ·~r2/r1r2), along with

δr′α ≡ δ(r′α−rα) and δ∆θ′12
≡ δ(∆θ′12−∆θ12). The integral in (5.17) covers the projected area

in the sky, where r ranges from some rmin to rmax, and θ ranges from 0 to 2π. Simplifying

using the δ functions, we obtain

F++ =
1

2
g+(r1)g+(r2) cos 2∆θ12

F+× =
1

2
g+(r1)g×(r2) sin 2∆θ12

F×+ = −1

2
g×(r1)g+(r2) sin 2∆θ12

F×× =
1

2
g×(r1)g×(r2) cos 2∆θ12 (5.18)

Eqns. (5.18) specify the elements of the filter weighting each possible triangle in the 3-

point correlation function. We then evaluate our estimator by summing over all triangles,

weighting the shear by F. Explicitly, we evaluate

fobs = 〈γ(~r1) · F(r1, r2,∆θ12) · γ(~r2)〉 , (5.19)

where the expectation value implies averaging over all possible ~r1 and ~r2. Note that, because

of the angular dependence of F, Eqn. (5.19) is only sensitive to the quadrupolar component

of the shear.

In order to translate fobs into an estimate for the ellipticity ε, we need to know what

result Eqn. (5.19) will give as a function of ε. We can compute this by inserting the predicted
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model shear into the equation. Specifically, let us define

fmodel = 〈g(~r1) · F · g(~r2)〉 (5.20)

=
1

2

〈
g2

+(r1)g2
+(r2) cos 2θ1 cos 2θ2 cos 2∆θ12

+ g2
+(r1)g2

×(r2) cos 2θ1 sin 2θ2 sin 2∆θ12

− g2
×(r1)g2

+(r2) sin 2θ1 cos 2θ2 sin 2∆θ12

+ g2
×(r1)g2

×(r2) sin 2θ1 sin 2θ2 cos 2∆θ12

〉
=

1

2

{
π

A

∫ rmax

rmin

[
g2

+(r) + g2
×(r)

]
rdr

}2

=
1

2

{∫ rmax

rmin

[
g2

+(r) + g2
×(r)

]
rdr

r2
max − r2

min

}2

.

Then

ε =

√
fobs

fmodel

(5.21)

This defines our estimator for the ellipticity ε. To reiterate, the ingredient in our expression is

the radial profile of the average monopole density profile 〈κ0〉(r), which may be reconstructed

from the stacked tangential shear profile 〈γ+〉(r). Given κ0(r), we may then determine the

functions g+ and g× which enter the estimator. In the next section, we apply this estimator to

samples of halos from N-body simulations, to gauge how well we can measure halo ellipticities

for realistic objects.

5.3 Results

In §5.2, we proposed a 3-point estimator for halo anisotropy. In this section, we assess how

well this estimator measures average halo ellipticities. First, we use simulated halos from

cosmological N-body simulations to quantify systematic errors caused by the fact that the

structure of realistic halos will not be as simple as our monopole+quadrupole mass model.

69



0.1

0.2

0.3

0.4

0.5

ε
(r

)

M=10
12.6

 - 10
12.8

 MO•  h
-1

M=10
12.4

 - 10
12.6

 MO•  h
-1

M=10
12

 - 10
12.2

 MO•  h
-1

M=10
11.6

 - 10
11.8

 MO•  h
-1

0

0.5

1.0

1.5

2.0

2.5

3.0

0 0.2 0.4 0.6 0.8 1.0

η
(r

)

r/rvir

0 0.2 0.4 0.6 0.8 1.0

r/rvir

0 0.2 0.4 0.6 0.8 1.0

r/rvir

0 0.2 0.4 0.6 0.8 1.0

r/rvir

Figure 5.3: The top panels show the comparison between the average ellipticities of halos
in various mass bins (solid curve), compared to the ellipticity determined from the 3-point
estimator (dashed line). The bottom panel shows the local slope of the isotropic component
(monopole) of the halos. The red curve corresponds to the smoothed slope of the 3D profile,
and the green curve corresponds to the local slope of the projected 2D profile. The dashed
curves show the slope of the NFW profile in 2D and 3D for reference. These slopes were
measured from the stacked profiles after they were smoothed using a 6th order Savitzky-
Golay filter over 17 nearest bins [5]. In the low mass bins, we observe significant departures
from NFW slopes at large radii, possibly indicating the effects of nearby halos.
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Secondly, we quantify the statistical error associated with the finite number of lens-source-

source triples. Because each source galaxy provides an extremely noisy estimate of the shear,

large numbers of triples are required to suppress this statistical shape noise.

5.3.1 Comparison with N-body simulations

We have applied our estimator (Eqn. 5.19) to halos from the publicly available Bolshoi sim-

ulation [39]. Using the BDMW catalog provided by the MultiDark database 2, we selected

halos with virial masses in the range 1011.7 − 1012.7M�h
−1. We downloaded particles within

5rvir of the halo center, to account for the mass within the halo as well as the nearby neigh-

borhood. For each halo, we construct three projections, along the simulation box axes, to

construct convergence and shear maps. From these shear maps, we then apply our estimator

to measure the halo ellipticity ε. Figure 5.3 shows the results of our measurement across

several mass bins. For comparison, the figure also plots the ellipticity directly measured from

the projected mass profiles. In all cases, we find good agreement, despite several potential

systematics discussed below.

First, our mass model assumes that ellipticity ε is constant with radius, meaning that the

shape of the quadrupole κ2(r) of the mass distribution may be determined from the shape

of the monopole profile κ0(r). For individual galaxies, the mass distributions are unknown.

Galaxy-galaxy lensing can be used to reconstruct the mean monopole profile 〈κ0〉(r), but

individual halos will have radial profiles that vary from the mean. Because our estimator is

not linear in the shear, this scatter in radial profiles can bias our measurement. To estimate

the size of this potential bias, we generated artificial halos with radial profiles consistent

with the Bolshoi halos (i.e. same Mvir and cvir) but with specified values of ε. For the range

of concentrations found in the mass range we have considered, we find a fractional bias in

the reconstructed ε of ∼ 3− 6%.

A second potential source of systematic errors arises from projections of other halos. Our

2http://hipacc.ucsc.edu/Bolshoi/MergerTrees.html
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Figure 5.4: Example of line of sight projection effects. The halo at the origin has massive
neighbors projecting nearby, which generate a large quadrupole moment that is unrelated to
the halo’s own ellipticity. Colors correspond to convergence κ, for a lens redshift of zl = 0.3
and source redshift of zs = 0.5.

mass model assumes that all shear is generated by the halos hosting the stacked galaxies.

In reality, however, not all halos are isolated: other objects can project near the objects we

are stacking and contaminate our measurement. Figure 5.4 shows one such example. Such

projections can produce very large quadrupoles (and other multipoles) near certain halos,

and because our estimator is not linear in the shear, this contamination can bias our results.

In general, there are two types of projections relevant to our measurement: galaxies that

are correlated with the foreground lenses, and uncorrelated galaxies that randomly project

into the line of sight. It is straightforward to correct for the uncorrelated projections. We

could, for example, simply stack on random sky points instead of lens galaxies, and subtract

this from our estimator. Mitigating the effects of correlated structures is not as easy. Perhaps

the simplest approach would be to stack only galaxies that are relatively isolated, i.e. galaxies

that are clearly central galaxies (not satellites), and that have no comparably bright galaxies

nearby the line of sight. Such an approach should remove much of the contamination from

nearby, correlated structures, but may not remove the contamination completely. Therefore,

we need to estimate the effects of such contamination.
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Figure 5.5: Effect of including satellites (subhalos) in our sample. The black solid curve
shows the average ellipticity of halos estimated from N-body simulations in the mass bin
1012.4− 1012.6M�h

−1 using central galaxies only. The dashed lines show the ellipticity deter-
mined by the three-point estimator, applied to samples with various degrees of contamination
by satellites. If satellites are not excluded (red line), the estimated ellipticity is significantly
biased. Removing the satellites in the most dense environments eliminates much of the bias.

The largest source of contamination from correlated structures comes from satellite galax-

ies. Our estimator assumes that the lens galaxies are central galaxies within their halos,

however a large fraction of galaxies (∼ 20%) will be satellites living in massive hosts like

clusters or groups. The quadrupole moments around satellite galaxies are much larger than

those near central galaxies. To estimate this effect, we use subhalo abundance matching to

find subhalos which could host galaxies that are similar to the central galaxies in our sample.

We use the Rockstar catalog from MDR1 and find all halos and subhalos with similar Vacc,

the circular velocity at time of accretion. For objects with Vacc ≈ 245km/s, about 20% were

subhalos rather than isolated halos. When we apply our estimator to the full sample of

halos and subhalos, we find a large bias in the recovered ellipticity, ε ≈ 0.6 instead of 0.2,

as shown in Figure 5.5. Therefore if uncorrected, satellite contamination would significantly

compromise our ability to measure halo ellipticity.

However, most of the contamination arises from satellites in the most massive hosts,

and those satellites are the easiest to identify as satellites, since their local neighborhoods
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have a large galaxy overdensity. Removing those objects should therefore be relatively

straightforward. Figure 5.5 shows how the contamination is reduced if we are able to remove

various fractions of the satellite population. Here, we have ranked the satellites based on local

overdensity. Removing 50% of the satellites removes the vast majority of the contamination,

while removing 75% of the satellites gives a recovered ellipticity very close to the ellipticity

for no satellites at all. Therefore, even a crude identification of satellite galaxies should

suffice to eliminate most of the potential contamination.

The other type of contamination to consider is that from nearby halos. Fortunately, it

appears that any bias due to projections of nearby correlated halos may not be large. In

our calculations, we have not corrected for projections of nearby halos in any way. Our

measurement is therefore contaminated by projections of other halos within 5 rvir (as in

Figure 5.4). Arguably, this should account for most of the correlated objects. The galaxy

auto-correlation function behaves close to ξ(r) ∝ r−2 in 3D [118], so the number of galaxies

with 3D radius r > 5rvir that project onto small radius should be about ∼ 1/5 of the number

of galaxies with 3D radius r > rvir projecting onto small radius. Because we have extracted

particles out to 5rvir, we should account for about ∼ 80% of the correlated projections.

Our calculations should therefore include most of the effect of projections of correlated

structure, and as Figure 5.3 illustrates, the effect of those projections on the stacked profiles

of central galaxies is likely to be small. Only in the lowest mass bin (M ≈ 1011.7M�h
−1) do

we observe any effects of the 2-halo term, and even there the recovered ε from the 3-point

estimator is consistent with the halo ellipticity measured over the radial range where the

1-halo term is dominant. Nevertheless, when measuring halo ellipticity for real lenses, it will

be important to restrict the analysis to the regime where the 1-halo term dominates, which

may be determined by modeling the stacked tangential shear profile 〈γ+〉.

Another potential source of systematic error can arise due to the ‘twisting’ of halos. It is

known that the principal axes of the isodensity surfaces in N-body halos are not constant with

radius, but instead twist in orientation between small radii and large radii. Our simplistic
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mass model does not account for twisting of the principal axes, so a significant twisting could

bias our results. To quantify how much twist we can tolerate, we created artificial halos in

which we rotate the direction of the principal axes following a logarithmic spiral in radius.

We found that twist biases the estimated ellipticity by 10% when the halo axes rotate by

more than π radians within one virial radius of the halo. In N-body simulations, halos do

not show such high degrees of twist within their virial radius. Typically the rotation of the

major axis is . π/6 within one virial radius [92], and for such low twist angles, the bias

generated by twist is negligible. Therefore, it is safe to conclude that the twisting of halos

does not significantly affect the measurement of ellipticity with the 3-point correlator based

on our simple mass model, as we might have guessed based on the good agreement between

the estimated ellipticity and true ellipticity of our N-body halos. Overall, our analysis of

N-body halos suggests that systematic errors due to our simplistic mass model will not

significantly bias our measurement of halo anisotropy.

5.3.2 Shape noise

In most regimes of weak lensing, the shear signal due to weak gravitational lensing is orders

of magnitude weaker than the noise introduced by the intrinsic distribution of galaxy shapes

and orientations. To estimate the magnitude of the errors induced by shape noise, let us

first define the shape noise per galaxy ~N = {N+,N×}. Each component of ~N is assumed to

be a Gaussian random variable with covariance

〈NiNj〉 = σ2
εδij (5.22)

where the indices i and j correspond to the tangential and cross components of the noise,

and σε = 0.25 [119]. The number density of source galaxies is n(~x) =
∑

i δ(~x − ~xi), with
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mean number density n̄. Then the 2-point correlation of the shape noise is

〈Ni(~x1)Nj(~x2)〉 = σ2
εδij

δ(~x1 − ~x2)

n̄
(5.23)

Within an area A, where the number of galaxies is approximately N = n̄A, the signal

expectation value derived in Eqn. (5.20) is

S = 〈γ · F · γ〉 =
π2ε2

2A2

{∫ [
g2

+(r) + g2
×(r)

]
r dr

}2

(5.24)

In comparison, the noise variance is

σ2
N = 〈(N · F · N )2〉 − (〈N · F · N 〉)2

=
σ4
επ

2

n̄2A4

{∫ [
g2

+(r) + g2
×(r)

]
r dr

}2

(5.25)

where the expectation value is computed by both summing over all possible triangles in

the sky and also by taking the ensemble average of the Gaussian noise field. In the second

equality, we have used Eqn. (5.23) and Wick’s theorem. Therefore the expected signal to

noise per lens galaxy for the constructed estimator is

S

σN
=
πε2n̄

2σ2
ε

∫ [
g2

+(r) + g2
×(r)

]
r dr. (5.26)

As we might expect, the signal to noise ratio (SNR) per lens scales quadratically in the

shear. Therefore the signal should be easiest to detect for more massive galaxies that produce

stronger shear, as long as the abundance of galaxies does not fall steeply with mass. To get

a sense of the expected SNR, we can perform a rough estimate by approximating the halo

profile as isothermal (Σ0 ∝ r−1), which Figure 5.3 shows is not a terrible approximation over

the radial range of interest. To be concrete, suppose that the monopole profile is κ0(r) =

b/(2r). Plugging this into Eqn. (5.26), we find that S/σN ≈ [πb2n̄ε2/(8σ2
ε)] log(rmax/rmin)
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per lens. Taking ε = 0.2, σε = 0.25, n̄ = 12 arcmin−2 as appropriate for DES, b = 1

arcsecond, and rmax/rmin = 20 gives S/σN ≈ 0.0025, meaning that with 106 such lenses,

we could detect the expected ellipticity at ∼ 2.5σ. LSST will have more than twice the

effective number density of sources [119], more than doubling the signal to noise of the

3-point estimator. At this point, it is perhaps worth comparing this estimate with the

corresponding signal/noise ratio for a 2-point estimator. Repeating the argument of §5.2

for the analogous 2-point estimator, we find that per lens, (S/σN)2pt =
√

2(S/σN)3pt, for

halos that are perfectly aligned with their galaxies on the sky. Since the SNR per lens is

much less than 1, this illustrates that 2-point estimates of halo anisotropy will have much

greater statistical sensitivity than 3-point estimators. As noted above, however, this superior

statistical power may be irrelevant if systematic effects due to halo misalignments remain

uncertain.

5.3.3 Other systematics

Above, we discussed potential systematic errors which could arise if our simple mass model

failed to describe actual halos adequately, due to effects such as twisting or satellite contami-

nation. Besides these systematics in the mass model, our proposed measurement will also be

liable to possible observational systematics associated with the lensing measurement. One

obvious observational source of systematic error is point spread function (PSF) anisotropy.

The PSF determines how the actual shape of a galaxy on the sky is related to the observed

shape of a galaxy, measured by a camera on a telescope possibly beneath the distorting

effects of the Earth’s atmosphere. Our ability to measure the PSF is frequently a limiting

factor in our ability to measure the true shapes of weakly lensed galaxies, which degrades

our ability to measure shear. In principle, this could be disastrous for the halo ellipticity

measurement we have proposed. For example, if the PSF were uniformly anisotropic across

the virial radius of a lens halo, leading to a spurious, uniform shear, this would exactly mimic

the ellipticity signal we are seeking to detect. In practice, however, mitigating such effects in
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galaxy-galaxy lensing measurements should be straightforward, as long as the shape of the

PSF is not strongly correlated with the number of foreground lens galaxies. For example,

we can assess the extent of such PSF anisotropies by stacking on random sky points instead

of lens galaxies. Even if PSF anisotropies are present, the ellipticity signal should appear as

an excess correlation with lens galaxies, above what is seen around random sky points. As

discussed in §5.3, the same test would also help remove the effects of masses uncorrelated

with the lens galaxies.

Another potential astrophysical contamination of the signal arises from intrinsic align-

ment between galaxies [120, 121, 122, 123, 124, 125, 126]. Galaxies that form and evolve

in the same local environment may be systematically aligned with each other due to long

range tidal effects [127], consequently replicating the correlation that is produced by gravi-

tational lensing. This effect can manifest itself in two ways, (i) nearby source galaxies can be

preferentially aligned with each other, and (ii) lens-source pairs can be physically associated

with each other, if (for example) a fraction of source galaxies are satellites of the lensing,

foreground galaxy. Both these problems can be mitigated using redshift information, for

example by excluding galaxy pairs with similar redshifts. Observationally, the contamina-

tion of galaxy-galaxy lensing due to alignments from lens-source correlations produced by

photometric redshift errors has been shown to be exceedingly small in SDSS [128]. Stacking

on random points, as discussed above, would also help to quantify and remove the effect of

alignments of pairs of source galaxies.

Magnification of lenses could also produce a systematic effect on the signal. Our estimator

correlates the number density of foreground galaxies, ng, to the shear at two positions in the

sky, γ1 and γ2. The foreground galaxies (lenses) are lensed by matter distribution between

the observer and the lens along the line of sight. This causes a modification of the clustering

of lenses due to cosmic magification along the line of sight. The variation from the unlensed

number density is, to lowest order, linear in the lensing convergence, κ< [115]. In addition

the shear itself has a contribution from the matter density, integrated along the line of
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sight to the redshift of the source. The combined effect therefore contributes to the 3-point

correlator, 〈n′gγ′1γ′2〉, terms like 〈κ< γ1< γ2<〉. These third order shear correlations have been

measured to be less than 10−7 [129, 130] for aperture scales of θ ∼ 1′ and source redshift

zs ∼ 1, while [115] predict an upper bound to the effect of magnification of lenses on three

point statistics of 10−8 for sources at zs ∼ 0.4. Therefore, it appears that this effect will not

significantly contaminate the measurement of halo ellipticity.

Photometric redshifts can also lead to systematic errors for our estimator. Redshift errors

produce errors in Σcrit, which become density errors when converting from shear γ to ∆Σ.

Because our ellipticity estimator is nonlinear, this can bias the inferred ellipticity. Assuming

that photometric redshift errors of source galaxies do not correlate with projected separation

to the lens galaxies, then a fractional systematic error in Σcrit of size δ = δΣcrit/Σcrit produces

a fractional error in the ellipticity of order δ. For modern surveys, systematic errors in

photometric redshifts are expected to be at the level of . 1% [131, 132, 133], indicating that

this source of bias will likely be subdominant compared to other systematics.

Another potential systematic is the effect of baryons, which can act to modify the halo

axis ratios on small scales . 0.25rvir [134, 135]. Judging from Figure 5.3, our estimator is

most sensitive to the ellipticity at somewhat larger radii, suggesting that baryonic effects will

be limited. In principle, we can suppress any baryonic effects on our estimator by restricting

the range of integration (rmin and rmax in Eqns. (5.17)-(5.19)) to exclude small-scale regions

that may be contaminated [136]. Alternatively, given sufficient signal to noise, one could try

to measure the ellipticity as a function of radius by subdividing the sample, for example by

comparing triangles at large vs. small separation. Besides constraining any radial variation

in ellipticity, 3-point lensing could also probe any twist, i.e. misalignments between the

principal axes at small radii vs. large radii. We defer such possibilities to future work.
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5.4 Discussion

We have shown that the lens-shear-shear three-point correlation function can be used to

extract the ellipticity of dark matter halos, without the need to align the light profiles of

galaxies that are being stacked. Using a simple model of the projected surface density profiles

of dark matter halos, we constructed an estimator for halo ellipticity that sums over all

triangular configurations of the 3-point function. We validated our estimator using simulated

halos from the Bolshoi cosmological simulation, showing that the shear-derived estimator

yields results consistent with the ellipticity measured directly from the particle data. We

investigated potential sources of systematic error, and argued that they should be small, at

the ∼ 5% level, well below theoretical uncertainties. We also estimated the signal to noise

ratios expected for imaging surveys, and found that deep imaging surveys should be able

to detect halo ellipticities. The total signal to noise scales with the number of lens-source-

source triplets as N
1/2
t ∝ n

1/2
l ns, meaning that deep imaging surveys with large effective

number densities of sources will be most sensitive. Ongoing surveys like PanSTARRS, DES,

and HSC may be able to detect halo ellipticities at the ∼ 2σ level, while future surveys

like Euclid or LSST should have sufficient sensitivity for a significant (> 3σ) detection.

The same surveys will, of course, be able to measure 2-point galaxy-galaxy lensing with

far greater signal to noise than 3-point lensing. However, if 2-point estimators are limited

by systematic uncertainties, as suggested by theoretical work on galaxy-halo misalignments

[112], then 3-point lensing could prove to be a useful probe of halo anisotropy. Indeed, a

comparison of the ellipticity determined by the 2-point estimator vs. the 3-point estimator

could be used to determine the typical misalignments between galaxies and their halos. If

a galaxy is misaligned with its halo by angle θmis, then the ellipticity determined from the

2-point estimator is lowered by a factor cos(2θmis). Therefore, the average misalignment

angle may be inferred as ε2pt/ε3pt = 〈cos(2θmis)〉.

In this paper, we have investigated one particular application of the measurement of
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3-point correlation functions. As theoretical work has shown [115], high-order correlation

functions contain significant amounts of information above and beyond that encoded in

better studied 2-point functions. The advent of deep, wide-area imaging surveys is now

making the measurement of these high-order correlations practical across a range of spatial

scales, suggesting that this will be a fruitful area of research for years to come.
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Chapter 6

The curious incident of the blue
galaxy that crossed splashback at
night time
The fraction of quenched or red galaxies in clustered environments is much higher than its

average value in the field. Two competing theories of galaxy evolution both claim to repro-

duce the observed spatial distribution of red galaxies, the first through invoking quenching

by intracluster processes and the second by age matching galaxies to older subhalos. In this

paper we use the kinematic properties of galaxies in clusters to probe new signatures of the

underlying mechanism that sets this behavior. We study the line of sight velocity distribu-

tion of subhalos in Nbody simulations and compare the dynamics of populations separated

based on the duration of their lifetime in the halo and their overall age since formation.

We find that the galaxy populations separated by their age in the host halo most closely

resemble the kinematical behavior of red and blue galaxies around RedMaPPer clusters in

SDSS. Red galaxies are consistent with having fallen in early while blue galaxies have been

accreted later.

6.1 Introduction

In hierarchical structure formation galaxies form by condensation of baryons inside dark

matter halos. These halos are often accreted onto larger structures where they reside as

subhalos and orbit in the potential of the host. Galaxy overdensities in the sky are therefore

associated with massive clusters or groups that have accreted substructure that host these

galaxies. One striking characteristics of these massive structures is that the galaxies that

compose them appear to be mostly early type, elliptical galaxies that are red and have little
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or no active star formation. The red fraction in these galaxy clusters is much higher than

the average in the field and increases towards decreasing cluster centric radius. It is a long

standing puzzle as to how large overdensities in the dark matter field lead to a supression

of star formation which is a baryonic processs. Fig 6.1 shows the projected number density

of galaxies around RedMaPPer clusters in the SDSS galaxy catalog DR7. The redfraction

rises steeply as a function of radius and is much higher than the density of blue galaxies.

There are primarily two broad classes of theories that attempt to explain the high red

fraction around massive dark matter halos. The first class of theories claim that the quench-

ing of star formation occurs due to astriphysical processes in the potential of the cluster. A

cluster halo is a fairly inhospitable environment for a galaxy, as it enters the strong grav-

tiational field of the host halo the accretion shock at infall [137, 138] and processes like

strangulation[139], harassment, ram-pressure stripping [140, 21], tidal disruption all tend t,o

strip gas from galaxies, quenching star formation. Therefore longer a galaxy resides inside

a cluster, lesser is the amount of cold gas available to condense into stars. The galaxy even-

tually ceases to form stars and begins to appear red. Additionally the probability of galaxy

mergers within a clustered environment is also higher, which also leads to heating of the gas

in galaxies creating aother possible avenue for blue galaxies to turn red. Suppression of star

formation by intra cluster process reproduces the observed statistics of quenched galaxies.

[141]. Comparing the quiescent fraction from the COSMOS survey around groups selected

in the SDSS DR7 catalog with N-body simulation that follow the star formation histories of

satellites at z=0 [141] find that the observed queiscent fraction can be reproduced if satellites

remain actively star forming 2-4 Gyrs after infall and followed by an exponential decay in

star formation.

Apart from quenching of star formation inside galaxy clusters due to astrophysical pro-

cesses Hearin et al. [142] showed that the statistics of red and blue galaxies around dark

matter halos can also be constructed simply from age matching models. The underlying idea

here is that if we assume that all galaxies internally shut off star formation at a certain time
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Figure 6.1: The top panel shows the projected number density of spectroscopic galaxies
around RedMaPPer clusters between 0.1 < z < 0.2.(Bottom) The deprojected, 3d number
density of galaxies.
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in their lifetime and turn red, older galaxies will appear redder. As galaxies evolve with their

host halo older galaxies therefore tend to live in older halos. From the statistics of density

perturbations in the early universe it is known that older subhalos tend to live in clustered

regions. Density perturbations that collapse to form subhalos in clusters are initially lying

on a background longer wavelength pertrubation that will ulitimately form the cluster and

therefore collapse earlier. In Hearin et al. the observed distribution of red and blue galaxies

was reproduced using age-matched mock subhalo catalogs. This scenario therefore does not

require any intracluster processes to quench star formation at all it naturally predicts an

abundance of red galaxies in clustered environments.

Given the existence of evidence for conflicting models there exits enough motivation

exists to look for new signatures that will help distinguish between the two scenarios.The

recent detection of the splashback radius [69, 143] also adds a new dimension to this picture.

The splashback radius is associated with a sharp drop off in density in the outskirts of a

halo. Theoretically this drop off occurs at the first apocentric passage of a particles or

subhalos after it begins to orbit inside the halo [4, 26, 144]. This radius forms the boundary

between the “virialized” or multi streaming region and the infall region of the halo. In

the spherical approximation, there are no objects that have completed an orbit in the halo

potential. Baxter et al. [143] use the cross correlation between the SDSS galaxy catalog

and RedMaPPer cluster and measure the red fraction around galaxy clusters. they find

that the red fraction changes sharply at the splashback radius of the halo approaching the

background value almost immediately beyind splashback. This seems to indicate that the

quenching of galaxies closely follows the cluster boundary. While this may hint at the fact

that cluster physics is responsible for galaxy quenching, it is not clearly ruled out that age

matching can not produce similar sharp transitions in red fraction.

Chamberlain et al. [145] propose an alternative method to probe the ages of satellites

in their host. Based on N-body simulations they show that spatial correlations of subhalos

beyond their tidal radius persist for subhalos that have recently been accreted on to the host.
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These correlations only disappear after a subhalo has been orbiting inside a halo for several

dynamical times and can therefore act as a clock indicating the time after infall into the

halo. Fang et al. [146] measured this signal in edMagic galaxies around RedMapper clusters.

They find that signicant fraction of the reddest galaxies have fallen in recently making an

argument in favor of galaxies being quenched even prior to their infall into the host.

Studies so far however have concentrated mostly on the spatial distribution quenched

galaxies to make conjectures about the physics that sets their behaviour. In this paper we

study the merits of using kinematics as a probe to distinguish between the two scenarios.

In particular we use the line of sight distribution of galaxies to distinguish between the

different evolution models. The simple argument is that if the environment of clusters, i.e.

intracluster physics is responsible for galaxy quenching the effect will be much stronger for

objetcs which are on plunging orbits, that reach far inside the halo, as compared to objects

which are on orbits with higher angular momentum. Objects that is on such tangential

or grazing orbits may therefore be less effected by tidal stripping, ram pressure-stripping,

harrassment which are all stronger near the cluster center. Therefore we may expect that

galaxies that are on such radial orbits switch of star formation and create the population of

red galaxies, where as galaxies that avoid such orbits still appear blue and star forming. If

this were the distribution of velocities of blue and red galaxies would be different.

In observations we can measure the line of sight velocity distribution. In an annulus in

projected distance from the cluster center objects that are on tangential or high angular

momentum orbit have a higher velocity dispersion with a deficit of galaxies with 0 line of

sight velocities. The distribution of velocities for such galaxies should appear doubly peaked

or bimodal with peaks corresponding to objects redshifted and blue shifted with respect to

the observer. Where as radial orbits should for a distribution peaked at vlos = 0 km/s.

As galaxies reside inside subhalos we begin by analyzing N-body simulations of cold

dark matter to study the kinematics of subhalos inside clusters for different populations of

subhalos in section I. In section II & III we use the spectroscopic galaxy catalog of SDSS DR7
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to measure the line of sight velocity distribution of galaxies around RedMaPPer clusters.

6.2 Simulation results

To understand the dynamics of galaxies we study subhalos in N-Body simulations. We

compare them to mock galaxy catalogs created from the MDPL2 simulations. These simu-

lations have 38403 particles in a 1Gpch−1 with a mass resolution of 1.51× 109M�h
−1. The

associated halo catalogs were made using the phase space halo finding algorithm Rockstar.

We look at orbits of subhalos inside host halos with masses greater than 1014M�h
−1 at

z=0. This mass was chosen to match the mass from the RedMaPPer cluster with richness,

20 < Λ < 100 which was callibrated using lensing. We only consider subhalos with peak

velocities vpeak > 200 km/s

Mainly we make two separate kinds of subhalo catalogs. One where we associate a

subhalo with blue or red color based on a the age or formation time of the subhalo. This is

in keeping with the idea that simple age matching catalogs can reproduce the behavior of

red and blue galaxies in observations. And the other kind where subhalos are characterized

as blue or red based on how long they have been inside the cluster cluster or how small their

impact parameter to the host halo center is. For age matching we choose parameters like

the concentration of the halo at accretion, cac. This is evaluated from the Rockstar merger

history of subhalos. For age inside a halo we use aacc, the time at which a subhalo is accreted

into the host halo, current concentration today, ctod.

Our ultimate goal is to find an observable signature that will help distinguish between

the two models. Therefore we must keep in mind that an observer only has access to the

projected distribution of galaxies and velocities in the sky. To isolate the effect of the

cluster we would ideally like to remove the contamination of our measurements by randomly

projected structure along the line of sight to the cluster. Assuming that the halo is isotropic

one powerful method to deproject and get the complete distribution function of objects
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Figure 6.2: Comparison between deprojected histogram and actual 3D distribution of sub-
halos between 0.6 and 0.9 Mpc h−1 around cluster mass halos of 1−2×1014M�h

−1. The top
panel shows the LOS velocity histograms and the bottom panel shows the number density
profiles.
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associated with the true three dimensional radius at the projected radius R is to use the

Abel integral transform. Given a the projected distribution function of subhalos, Σ(R, vlos)

we can obtain the 3D, deprojected distribution function as,

ρ(r, vlos) = − 1

π

∫ ∞
r

dΣ(R, vlos)

dR

1√
R2 − r2

dR (6.1)

where r is the 3 dimensional cluster centric radius. The 2D projected function is obtained

as a sum of delta functions at the position of each galaxy.

Σ(R, vlos) =
∑
i

δ(R−Ri)δ(vi − vlos)
2πRi

; (6.2)

Therefore the total number of objects in a 3D radial bin extending from of r = a to r = b

with velocity vlos is given by 4π
∫ b
a
ρ(r, vlos)r

2dr. Substituting 6.2 into this expression,

∆N(vlos) =
∑
i

−2

πRi

∫ b

a

dr

∫ ∞
r

dδ(R−Ri)

dR

r2

√
R2 − r2

dR (6.3)

Doing the integration over r first followed by integration by parts we obtain,

∆N(vlos) =


g(Ri/a)− g(Ri/b) Ri/a > 1, Ri/b > 1

g(Ri/a) + 1 Ri/a > 1, Ri/b < 1

0 Ri/a < 1

where

g(x) = tan−1 1√
x2 − 1

− 1√
x2 − 1

(6.4)

Using this expression we can evaluate the weighted sum to obtain the actual distribution

of LOS velocities in the 3D radial bin.

It must be noted that in general the Abel transform works for scalar quantities. The

line of sight velocity, however is a component of a vector. Our deprojection scheme is only

valid if we consider that the velocity dispersion around the halo is isotropic While this is
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not in general true for halos as they are usually triaxial, stacking over a group of halos, all

randomly oriented, can somewhat alleviate this problem.

Fig 6.2 illustrates the validity of the method of deprojection. In the top panel of Fig

6.2, the red curve shows the deprojected velocity histogram of subhalos within hosts of mass

1014−2×1014M�h
−1at 0.6 < R < 0.9 Mpch−1 obtained from the 2D, projected distribution

of subhalos using eqn 5.

The deprojected LOS velocity histogram at a given R corresponds to subhalos at the 3D

radius r = R. For these subhaloes the line of sight lies in a plane tangential to the radius

vector connecting them to the centre of the halo. Therefore the LOS velocity histogram is

the distribution of the component of the tangential velocities along directions in the tangent

plane to the radius vector.

To check how well our scheme works we evaluate the quantity obtained by deprojection

directly using the 3D position of the subhalos. We extract all subhalos that are in the 3D

radial bin 0.6 < r < 0.9 Mpc h−1. Suppose a subhalo has a tangential velocity magnitude vt.

Along any given line of sight in the tangent plane to the radius vector it can only contribute

to LOS velocity bins, vilos, when vilos < vt. Let us say we have a velocity bin extending from

vimin to vimax . The line of sight on the plane that will measure an LOS velocity of vimin makes

an angle of θmin = cos−1(vimin/vt) with the direction of ~vt and the line of sight along which

the observer measures vimax makes an angle of θmax = cos−1(vimax/vt). Therefore all line

of sights between θmax and θmin will contribute to the ith velocity bin. Integrating over all

directions in the plane the probability of finding a line of sight between the θ interval is given

by ∆θ/π, where ∆θ = θmin−θmax. Therefore every subhalo contributes a weight of ∆θ/π to

the velocity bins where vimin < vt and vimax < vt. Following the same arguments the weights

for bins with vimin < vt and vimax > vt can be worked out simply. We evaluate this weighted

sum over all subhalos in the 3D radial bin to obtain the black curve in the top panel of Fig

6.2. We find that the deprojected curves mostly agrees with the actual 3D curve with some

differences due to anisotropy. The bottom panel of Fig 6.2 shows comparison bewteen the
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deprojected number density profile obtained from the 2D profile and the actual 3D number

density measured from the simulation. Evidently for scalar quantities the reconstruction

is almost an exact fit. Given we now have a fairly good method to extract information

about the deprojected distributions we now proceed to measure the line of sight velocity

distribution for our different subhalo populations.

In top row of Fig 6.3 we show the stacked line of sight velocity histograms for subhalos

around clusters of mass 1014M�h
−1 − 2× 1014M�h

−1. The subhalos have been divided into

blue and red based on the time at which they were accreted on to the host halo. The crossing

time for a subhalo falling in with ∼ 1000km/s is about 1.2 Gyrs for these halos. The halos

that have been accreted late or after a = 0.85 are called blue while those accreted early, or

before a = 0.85 are called red. Since the time gone by since a = 0.85 is abot 2.2 Gyrs, most

of these halos have made a pericentric passage. It must be noted that halos that are within

the splashback radius of the halo, i.e. 1.2 Mpc h−1 have been assigned red and blue colors

based on their accretion time, however those that are ouotside this radius have been assigned

a random color based on a background red fraction of 0.5. Splitting on accretion time shows

that the two sets of subhalos show very different kinematics. Halos that have been accreted

late show a LOS velocity distribution that is much broader than halos accreted early. Their

velocity distribution also shows a double peaked feature that is consistent with halos that

are on tangential orbits and therefore in the line of sight projection in a radial annulus they

show a blue shifted and a redshifted feature. This shows that halos that have spent more

time inside the cluster are on radial orbits. As the halo grows substructure accreted late

tend to have larger impact parameters and therefore angular momentum.

In the second row of Fig 6.3 we divide the subhalos based on the concentration measured

from the rockstar merger tree at the time when they were accreted into the halo. For halos

that are entering a host for the first time, the concentration of their density profile is related

to their age or formation time. Halos that have high concentrations, are slow accreting

and hence for a given mass today halos with high concentration have assembled their mass
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Figure 6.3: The left two panels show the LOS velocity histograms at 0.6Mpch−1 < R < 0.9
Mpch−1 of subhalos with V peak > 200km/s around host halos with mass 1014M�h

−1 <
M < 2 × 1014M�h

−1. The first column shows the projected and the second column shows
the deprojected histograms. The last column shows the projected number density of the
subhalos around their host halos. The different rows each correspond to a different criteria
of splitting the subhalos into red and blue. In the top panel suhalos have been split into
red and blue based on the time at which they were accreted into the host halo. In the
second row they have been split based on their concentration at accretion, in third based
on their pericenters and in the last column they have been split based on their present day
concentration.
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earlier and are older, while halos with low concentration are fast accreting and younger. The

second row of Fig 6.3 shows that the kinematics of young and old halos once they have been

accreted on to the cluster are not significantly different from each other even though the

differences in their average radial number profile is consistent with observed blue and red

galaxies.

The two examples demonstrate that the kinematics of subhalos can be used to distinguish

between two separate conjectures about the evolution of galaxies inside clusters. Assigning

colors to subhalos based on their accretion time corresponds to the idea that the cluster

environment alters the behavior of substructure that falls into it where as assignment on

colors based on their concent density ration at infall is similar to the idea of age-matching

reproducing the difference in the number density profile of blue and red galaxies around

halos. Apart from cac and aac we divide subhalos into different populations based on their

current concentration, c0 (Fig 6.3 third row)and distance of closest approach or pericenter,

rp (Fig 6.3 last row). The concentration was obtaied from the rockstar catalog. For the

pericenters we used the merger history of the subhalos to measure its orbit inside the host.

Subhalos that are on orbit with large pericenters also show evidence of kinematics different

from the those with smaller pericenters. However it must be noted that the publicly available

MDPL2 snapshots do not have a very high time resolution.

It is known that for a spherical system in equilibrium the density profile and the velocity

dispersion profile is determined completely by the Jeans equation if the anisotropy parameter

β is known. Therefore it is worth asking if the velocity dispersion profile in the line of sight

direction is giving us new information. It is important to note that if physical processes

within the cluster strip gas off of orbiting galaxies that lead to a cessation of star formation

making blue galaxies red, in this case the number of galaxies is not conserved and therefore

it is not obvious if the density profile and the velocity dispersion is related in a straight

forward way. This us evident when we compare the last two panels of Fig 6.3. In both cases

the prjected number density profile of blue and red galaxies different slopes between 0.6 and
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0.9 Mpc h−1 however the line of sight velocity distributions of the two populations is nearly

identical when subhalos are subdivided based on their present day concentration, c0, where

as that is not the case when they are subdivided based on their time of acceretion on to the

host.

6.3 Data

To use the kinematic information of galaxies in clusters to distinguish between different

scenarios we require very precise measurements of the line of sight velocity. For this purpose

we use the spectroscopic galaxy sample from the eighth data release of Sloan Digital Sky

Survey(SDSS). We use the SDSS derived RedMaPPer cluster catalog [70, 71]. Again as

we are primarily interested in relative velocities of galaxies inside clusters we only use the

RedMaPPer clusters that have spectroscopic redshifts. Our sample has a total of 1498

clusters with spectroscopic redshifts 0.1 < z < 0.2 and richness 20 < Λ < 100. Additionally

we choose a lower threshold in the miscentering probability of the central galaxies, Pcen >

0.8, this leaves us with 860 clusters. The cross-correlation of galaxies and clusters was

measured by stacking the number of spectroscopic galaxies as a function of radius around

cluster centers identified using the RedMapper algorithm [70]. The galaxy sample consists of

1200160 galaxies. We select red and blue galaxies based on their galaxy colors (g − r). The

magnitudes of the galaxies have been k-corrected using the technique defined in [147, 148].

Apart from the division of galaxies into quenched and active based on the galaxy colors we

also look at a catalog of galaxy morphologies in SDSS. We use the to Meert et al. [149]

catalog to characterize a galaxy as a disky or elliptical.
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6.4 Observation results

Our main goal is to measure the distribution of line of sight velocities around the sample of

clusters selected using RedMaPPer clusters. The pairwise velocity of galaxy and cluster was

calculated using their spectroscopic redshifts. For the cluster the redshift is measured from

the spectra of its central galaxy. The pairwise line of sight velocity is given by,

∆vlos =
zg − zc
1 + zc

(6.5)

A galaxy is classified as red if (g − r) > 0.8 − 0.03(Mr + 20) where Mr is the absolute

magnitude in the r band, the rest of the galaxies are classified as blue.

Fig 6.1 shows the projected number density of different population of galaxies around

our cluster sample. The bottom panel shows the deprojected, 3D number density profile

of galaxies. The deprojection was done in the method described above for the simulation.

the splashback radius for this sample of clusters measured using spectroscopic galaxies only

is at 0.67 Mpch−1. The splashback radius acts as the boundary between the virialized and

infall regions of the halo. Theoretically this separates a population into objects that have

completed atleast one entire orbit in the halo potential vs. those that have never had a

pericentric passage and are still in infall. This distinction is important in our context given

it serves as an approximate boundary to the cluster’s influence.

Fig 6.4 shows the normalized LOS velocity histograms of blue and red galaxies in three

different radial bins from the halo center. The first bin extends from 0.4 < R < 0.8 where R

is the projected distance from the halo center. This bin has subhalos that are immediately

inside the splashback radius. The splashback feature has a finite width which is why it

extends to radii slightly beyond it. The second bin between 0.8 < R < 1.2 must correspond

to subhalos mostly in the infall region. We also show the velocity histogram far outside

the halo out to 2Mpc h−1. The red and blue curves correspond to red and blue galaxies as

defined in the previously. The top panel shows the projected LOS histogram. To remove
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Figure 6.4: Velocity histograms around redMaPPer clusters of blue and red galaxies. Top
panel shows the projected velocity histograms. The bottom panel shows the deprojected
profiles.

the contribution from galaxies that are projected in the line of sight along the radial shell

extending from 0.3 to 0.6 we deproject our the histograms as was done in the case of the

simulations.

We note that the velocity ditribution for the two galaxy populations are remarkably

similar in the outskirts of the galaxy clusters. At smallest radial bin inside of splashback

there is a distinct difference between the blue and red population. The blue galaxies are

clearly exhibiting a separate dynamical behavior as compared to the red ones. The dispersion

in their velocity distribution is larger than that in the red population consistent with being

on orbits with large angular momentum.

To quantify the conjecture that the two populations have been drawn from different

distribution functions we use a procedure similar to the Kolmogorov-Smirnov test. This is

a model independent or non-parametric test the null hypothesis that two populations have

been drawn from the same underlining distribution functions. We construct a test similar to
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the KS test for our binned sample. We evaluate the cumulative distribution function(CDF)

for the two samples and measure the maximum difference between the CDF of the blue and

red galaxies. We also construct catalogs of galaxies with randomly assigned blue and red

colors each with a different red fraction corresponding to the radial bins in the actual data.

We reevaluate the velocity histograms in the different radial bins using the random catalog

with the appropriate red fraction and reconstruct the CDFs to get the maximum difference

between the red and blue distributions. We generate monte carlo realizations of the catalog

or randoms to measure the ditribution of the value of the maximum difference. This is our

test sample where the red and blue galaxies are being drawn from the same population. We

find how often the difference computed in the test sample is as large as the real data. We

find that for the innermost radial bin between 0.4 < R < 0.8 the deprojected distribution

of red and blue galaxies are different from each other at greater than 99% confidence. Our

method of estimating the significance level of the data from relative measurements of the

maximum difference is independent of the number of line of sight velocity bins used.

6.5 Discussion

The kinematic behavior of blue and red galaxies are significantly different from each other

in the inner regions of a cluster, i.e within the splashback radius. In the infall region of a

cluster the red and blue galaxies fall in with a velocity distribution which is indistinguishable.

Infalling galaxies have a distribution which is consistent with radial motion. However inside

the boundary the blue galaxies appear to be on orbits with higher angular momentum. For

the blue galaxies in the bin 0.3 < R < 0.7 we can arguably also measure the bimodality in

the histogram which implies galaxies on tangential orbits.

The difference in the red and blue is most closely imitated in simulations when subhalos

are classified into different colors based on their accretion time ac. HIn the simulations we

find no difference in kinematic behavior of two population of subhalos that have different
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concentrations at accretion that is related to their formation time. This seems to imply that

longer a subhalos that fall into the cluster early are mostly on radial orbits. To draw an

analogy with observations we can infer that the population of galaxies that are on radial

orbits have fallen into the halo earlier than ones that are on tangential orbits. Implying

that red galaxies were accreted earlier than blue galaxies. The red galaxies have presumably

existed in the cluster for multiple dynamical timescales. These results therefore seem to

provide evidence in favor of models of galaxy evolution inside clusters that claim satellite

quenching occurs due to intra cluster processes. Although age matching models of Hearin

et al. reproduce the observed spatial distribution of blue and red galaxies based on the

simulations it appears that the velocity ditribution cannot be reproduced by simply age-

matching of old halos to red and young ones to blue. This result also seems to be in

apparent tension with [146] who measure the infall time of satellites SDSS cluster from

the correlations between satellites in that persisting on angular scales beyond the tidal

radius of the satellites. They find a significant amount of correlation even for the reddest

galaxies implying they weren’t quenched inside the cluster. It will be interesting to extend

the treatment in [146] to include blue galaxies and compare their relative ages to the red

population.
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Chapter 7

Conclusions and Future work

7.1 Self interacting dark matter (SIDM)

Collisionless or cold dark matter has been highly successful in explaining the large scale

structure of the universe. However, non-gravitational interactions of dark matter particles

are often invoked to explain discrepancies between N-body simulations of CDM and obser-

vations on non-linear scales within dark matter halos. Scattering of dark matter by itself is

one such form of interaction.

i) Spatial offsets in mass and light

If we allow for self-interactions in hierarchical structure formation, particles in subhalos that

orbit within their host halos experience a force from interactions with the host particles.

The stars within the galaxies that reside in these subhalos, on the other hand, are truly

collisionless. This gives rise to a spatial separation in the centroids of the light and mass in

the direction of the relative motion of the subhalo and its host. This effect was measured

by [? 150] using HST data to obtain constraints on cross-section of self-interaction. These

offsets, however, are not produced by isotropic scattering of dark matter. They require in-

teractions where the probability for scattering is peaked in the forward direction and there

is low probability for large-angle scattering.

ii) Shrinking of splashback radius

Apart from creating spatial offsets, another interesting effect of anisotropic scattering is the

shrinking of the so-called, splashback radius for dark matter halos. Recently [69] detected

the splashback radius in clusters with SDSS data. Intriguingly, they find that the splash-
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back radius measured in observations is smaller than what was predicted from simulations

of ΛCDM by nearly 20%. Self-interaction causes dark matter particles to lose energy and

splashback at a smaller radius than in the absence of dissipative forces, providing a likely

explanation for this discrepancy.

iii) Simulations

Simulations of SIDM have mostly concentrated on isotropic scattering. Given the multiple

evidence for new physics, I am interested in simulating cosmologies with self-interacting dark

matter with anisotropic scattering. The cumulative effect of a large number of interactions,

with low momentum transfer, leads to a net decceleration which depends on the density

at the location of the particle and its net relative velocity with the surrounding. Estima-

tion of local densities are most easily modelled in grid based codes or codes with smooth

particle hydrodynamics. I am currently modifying Gadget-2, an SPH code to study signa-

tures of anisotropic self-interactions in halos. Having high resolution N-body simualations

of SIDM will help us better interpret these intriguing departures from the cold dark matter

paradigm. As preliminary tests Fig.2 shows the shrinking of the splashback radius with

increasing cross-section of interaction, σ/m.

7.2 Mass accretion history of dark matter halos

It is well known that the assembly history of halos is closely related to its density profile.

For example halos that have low concentrations, have higher accretion rates and assemble

their mass at late times, whereas it is the exact opposite for halos with high concentration.

The mass accretion history of halos is also fundamental to understand some of the most

robust predictions of ΛCDM like assembly bias- the fact that clustering of halos depends

their mass accretion histories(MAH) and formation times. Further, the recently observed

splashback radius is also a strong function of the accretion rate of a halo and the redshift at

which it forms. Constraining the accretion history can therefore make the splashback radius
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a potential probe for the background cosmic evolution.

Recently we have reconstructed the MAH of halos using their cross-correlations with

the present day mass profiles. Fig.1 shows such an example for 1014M�h
−1 halos from the

Multidark siulations. This illustrates that the present day density profiles of halos contains

information about its accretion history. The accretion history of a halo can be determined

from the shape of the initial density perturbation and its linear evolution. Therefore, if we

can somehow reconstruct the profile of the initial density perturbation from the present day

mass profile, we can predict its mass evolution.

The final, collapsed mass profile of a halo can be fairly well estimated from its initial

density profile [8]. The simple physics setting the shape of the mass profile is determined by

the adiabatic contraction of dark matter shells, where the adiabatic invariants, are specified

by the linear density profile of the initial peak. As one of my proposed projects during

my postdoctoral studies, I will be interested to reverse this method, i.e. investigate how to

reconstruct the initial density profile, and therefore the MAH of a halo using only its final

mass profile with simple arguments about the distribution of the adiabatic invariants with

time and the mass deposition of shells with a distribution of pericenters.

Given the vast volume of observational data available today from large scale galaxy

surveys like DES and LSST, it is the perfect time to study and test our understanding of

the structure of dark matter halos. HST observations capable of weak lensing measurements

will also be greatly useful to study individual systems, Hubble frontier fields and CLASH are

two such notable examples. Another powerful way to probe the inner structure of clusters

is through X-ray studies, therefore such methods will add value to projects like XMM and

Chandra.

During my graduate studies I have mostly concentrated on dynamics of halo formation

and its implications for cosmology. This has given me the opportunity to familiarize myself

with a variety of tools to approach a problem. I have enjoyed understanding complicated,

non-linear processes by simple analytical models that give us valuable physical insight. Fur-
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ther, I have also learnt to write and manipulate different types of structure formation codes

like, Gadget, Ramses and ECOSMOG- a cosmological code for modified gravity. I have

thoroughly enjoyed being a part of these exciting times for cosmology and look forward to

be able to contribute to the field in years to come.
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[10] E. Salvador-Solé, J. Viñas, A. Manrique and S. Serra, Theoretical dark matter halo
density profile, Monthly Notices of the Royal Astronomical Society 423 (2012)
2190–2202.

[11] A. A. El-Zant, Y. Hoffman, J. Primack, F. Combes and I. Shlosman, Flat-cored dark
matter in cuspy clusters of galaxies, The Astrophysical Journal Letters 607 (2004)
L75.
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