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ABSTRACT

The work in this dissertation primarily focuses on the development of numer-

ical algorithms for electromagnetic modeling of large and complex objects.

First, a GPU-accelerated multilevel fast multipole algorithm (MLFMA)

is presented to improve the efficiency of the traditional MLFMA by taking

advantage of GPU hardware advancement. The proposed hierarchical par-

allelization strategy ensures a high computational throughput for the GPU

calculation. The resulting OpenMP-based multi-GPU implementation is ca-

pable of solving real-life problems with over one million unknowns with a

remarkable speedup. The radar cross sections (RCS) of a few benchmark

objects are calculated to demonstrate the accuracy of the solution. The

results are compared with those from the CPU-based MLFMA and mea-

surements. The capability and efficiency of the presented method are ana-

lyzed through the examples of a sphere, an aircraft, and a missile-like object.

Compared with the 8-threaded CPU-based MLFMA, the OpenMP-CUDA-

MLFMA method can achieve from 5 to 20 times total speedup.

Second, an efficient and accurate finite element–boundary integral (FE-

BI) method is proposed for solving electromagnetic scattering and radiation

problems. A mixed testing scheme, in which the Rao-Wilton-Glisson and the

Buffa-Christiansen functions are both employed as the testing functions, is

first presented to improve the accuracy of the FE-BI method. An efficient

absorbing boundary condition (ABC)-based preconditioner is then proposed

to accelerate the convergence of the iterative solution. To further improve the

efficiency of the total computation, a GPU-accelerated MLFMA is applied to

the iterative solution. The RCSs of several benchmark objects are calculated

to demonstrate the numerical accuracy of the solution and also to show that

the proposed method not only is free of interior resonance corruption, but

also has a better convergence than the conventional FE-BI methods. The ca-

pability and efficiency of the proposed method are analyzed through several
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numerical examples, including a large dielectric coated sphere, a partial hu-

man body, and a coated missile-like object. Compared with the 8-threaded

CPU-based algorithm, the GPU-accelerated FE-BI-MLFMA algorithm can

achieve a total speedup up to 25.5 times.

Third, a multi-solver (MS) scheme based on combined field integral equa-

tion (CFIE) is proposed. In this scheme, an object is decomposed into mul-

tiple bodies based on its material property and geometry. To model bodies

with complicated materials, the FE-BI method is applied. To model bodies

with homogeneous or conducting materials, the method of moments is em-

ployed. Specifically, three solvers are integrated in this multi-solver scheme:

the FE-BI(CFIE) for inhomogeneous objects, the CFIE for dielectric ob-

jects, and the CFIE for conducting objects. A mixed testing scheme that

utilizes both the Rao-Wilton-Glisson and the Buffa-Christiansen functions is

adopted to obtain a good accuracy of the proposed multi-solver algorithm.

In the iterative solution of the combined system, the MLFMA is applied to

accelerate computation and reduce memory costs, and an ABC-based pre-

conditioner is employed to speed up the convergence. In the numerical ex-

amples, the individual solvers are first demonstrated to be well conditioned

and highly accurate. Then the validity of the proposed multi-solver scheme

is demonstrated and its capability is shown by solving scattering problems

of electrically large missile-like objects.

Fourth, a MS scheme based on Robin transmission condition (RTC) is

proposed. Different from the FE-BI method that applies BI equations to

truncate the FE domain, this proposed multi-solver scheme employs both

FE and BI equations to model an object along with its background. To be

specific, the entire computational domain consisting of the object and its

background is first decomposed into multiple non-overlapping subdomains

with each modeled by either an FE or BI equation. The equations in the

subdomains are then coupled into a multi-solver system by enforcing the

RTC at the subdomain interfaces. Finally, the combined system is solved

iteratively with the application of an extended ABC-based preconditioner

and the MLFMA. To obtain an accurate solution, both the Rao-Wilton-

Glisson and the Buffa-Christiansen functions are employed as the testing

functions to discretize the BI equations. This scheme is applied to a variety

of benchmark problems and the scattering from an aircraft with a launched

missile to demonstrate its accuracy, versatility, and capability. The proposed
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scheme is compared with the MS-CFIE to illustrate the differences between

the two schemes.

Fifth, to further improve the modeling capability, an accelerated MS method

is developed on distributed computing systems to simulate the scattering

from very large and complex objects. The parallelization strategy is to par-

allelize different subdomains individually, which is different from the paral-

lelized domain decomposition methods, where the subdomains are handled

in parallel. The multilevel fast multipole algorithm is parallelized to enable

computation on many processors. The modeling strategy using the MS-RTC

method is also discussed so that one can easily follow the guideline to model

large and complex objects. Numerical examples are given to show the par-

allel efficiency of the proposed strategy and the modeling capability of the

proposed method.

Finally, the specific absorption rate (SAR) in a human head at 5G fre-

quencies is simulated by taking advantage of the MS-RTC method. Based

on the strong skin effect, the human head model is first simplified to reduce

the computation cost. Then the MS-RTC method is applied to model the

human head. Numerical examples show that the MS method is very effi-

cient in solving electromagnetic fields in the human head and the simplified

human head model can be used in the SAR simulation with an acceptable

accuracy.
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CHAPTER 1

INTRODUCTION

Numerical modeling becomes essential for analyzing today’s highly compli-

cated engineering electromagnetic (EM) scattering and radiation problems.

A variety of numerical methods have been developed in the past to ana-

lyze different types of problems [1–6]. If objects are large and impenetrable

or homogeneous, the method of moments (MoM) with acceleration of fast

algorithms is most efficient. One of the widely used fast algorithms in elec-

tromagnetic analysis is the multilevel fast multipole algorithm (MLFMA)

because it has a near optimal computational complexity of O(NlogN) [2, 4].

To further accelerate the efficiency of the MLFMA, parallel computation has

been applied to this algorithm to take advantage of computer hardware ad-

vancement [7–12]. In this dissertation, a multi-GPU accelerated MLFMA

is presented using OpenMP-CUDA (Compute Unified Device Architecture)

programming model. If objects contain inhomogeneous and/or anisotropic

materials, the finite element method (FEM) is preferred. Although the FEM

is able to solve problems with complicated materials, the truncation error

introduced by absorbing boundary conditions (ABCs) or perfectly matched

layers is undesirable when solving large unbounded problems, especially for

applications that require a high accuracy such as modeling and simulation

of low observable targets. Thus neither the MoM nor the FEM is both ac-

curate and efficient when the object is electrically large and highly complex.

The hybrid finite element–boundary integral (FE-BI) method is one of the

most popular methods to deal with such a problem because it is not only

powerful for modeling complicated geometries and inhomogeneous materials,

but also capable of providing an accurate solution by truncating the compu-

tational domain with boundary integral equations (BIEs) [1]. Consequently,

the FE-BI method has been widely used in the analysis of large-scale scatter-

ing, complex antenna, and deep cavity problems [13–34]. A GPU-accelerated

FE-BI method with a mixed testing scheme is proposed in this dissertation
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to improve the accuracy and efficiency of numerical solutions. However, if

a large portion of an object is modeled by the FEM, the efficiency of the

FE-BI method decreases because the poorly conditioned FEM subsystem

deteriorates the condition of the entire FE-BI system.

To improve the capability of modeling electrically large and highly complex

objects, domain decomposition methods (DDMs) and multi-solver schemes

have been developed [33,35–52]. One of the most advanced DDMs, the dual-

primal finite element tearing and interconnecting (FETI-DP) method [35,36],

is introduced by first tearing the computational domain into non-overlapping

subdomains where an incomplete solution of the primary field is evaluat-

ed independently, and then constructing the interface problem by applying

transmission conditions at the subdomain interfaces. After the solution to the

interface problem is obtained, the field inside the subdomains can be calculat-

ed independently. For the multi-solver schemes, the domain decomposition-

based multi-solver method [48, 49] is first proposed for the modeling of elec-

trically large objects by decomposing the object into many subregions and

applying the FE-BI(EJ) method [30] to the inhomogeneous subregions and

the BIE-based DDMs [44, 45] to perfectly electrical conducting and piece-

wise homogeneous subregions. However, the approach to constructing sys-

tem equations with two sets of degrees of freedom (DoFs) defined on the

surface of each subregion makes the system matrix expensive to store and

solve. Besides, the application of the MLFMA requires a special treatment

at the subregion interfaces. Moreover, when a block diagonal preconditioner

is applied to accelerate the iterative convergence, one has to solve either the

FE-BI(EJ) or BIE subsystems at each global iteration. As a result, even if

the iterative solution of the global system converges very quickly, the total

amount of computation is still very high.

To design an effective and efficient multi-solver scheme, one must deal with

the following major technical challenges:

1) Find robust and accurate individual solvers to model different types of

subregion problems,

2) Couple the individual solvers with a unified framework so that all the

possible combinations of the solvers can provide a stable and accurate

system equation, and
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3) Solve the system equation efficiently with fast algorithms and precondi-

tioners.

In this dissertation, two multi-solver schemes are proposed to analyze the

scattering from objects with complex materials and structures. One scheme

is based on combined field integral equations (CFIEs), denoted as MS-CFIE.

In this scheme, the object is decomposed into multiple bodies, and only one

set of DoFs is defined on the surface or in the volume of each body. The

interactions between the bodies are formulated by the CFIE through their

exterior regions. To model the interior region of each body, different methods

are used according to different material properties. To be specific, the FEM

is used to model inhomogeneous materials, a CFIE with a mixed testing

scheme is employed to model homogeneous materials, and the impedance

boundary condition (IBC) is applied to model both perfectly and imperfectly

conducting materials [50, 53]. To accelerate the convergence of an iterative

solution, the ABC-based preconditioner is applied to the combined system

of equations [24,54]. Also, the MLFMA with a common tree structure for all

bodies is employed to speed up the computation of matrix-vector products

and reduce the storage costs [4, 12].

The other scheme is based on Robin transmission condition (RTC), denot-

ed as MS-RTC. In this scheme, the entire computational domain consisting

of various objects and their background is decomposed into multiple non-

overlapping subdomains. Based on the material and geometry property, the

field in each subdomain is formulated by either a PDE (partial differential

equation) or a BIE with boundary conditions [55] such as impedance bound-

ary conditions (IBC) [56] and perfectly electrical conducting (PEC) boundary

conditions explicitly enforced. The RTC is then employed to couple multiple

PDEs and BIEs into a global system equation. To solve each subdomain

problem, either the FEM (instead of the FE-BI) or MoM (the method of

moments) with one set of DoFs defined in the volume or on the surface of

the subdomain is applied. To be more specific, the FEM is applied to model

subdomains with inhomogeneous and/or anisotropic materials and the MoM

is employed to model subdomains with homogeneous materials.

Different from the MS-CFIE, an impenetrable region such as PEC or IBC

region is not considered as a computational subdomain in the MS-RTC. The

effect of the impenetrable region is accounted for by applying proper bound-
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ary conditions to PDEs or BIEs in the interfaced subdomains. With this it is

straightforward to model open surfaces such as metallic structures with zero

thickness embedded in or attached to homogeneous materials. Note that the

MoM in this scheme is employed to model both the infinite background and

the piecewise homogeneous regions in the objects, which is different from the

traditional FE-BI method where the MoM is applied only to the truncation

boundary. Furthermore, in contrast to the MS-CFIE which couples different

bodies by the CFIE, this scheme couples different subdomains by enforcing

the field continuity between the subdomains through the Robin transmission

condition. Therefore the coupling matrices are sparse so that they are very

cheap to compute and store. Moreover, fast algorithms such as the MLF-

MA [4] can be applied independently to the MoM subdomains and DDMs

such as the FETI-DP [36] can be employed directly for the FEM subdomains.

Although the MS methods are highly accurate, flexible, and robust in mod-

eling large and complex objects, the computational cost will be prohibitively

high when it is applied to very large EM problems. To further improve the

modeling capability, an accelerated MS scheme is developed on distributed

computing systems. The parallel strategy for the MS schemes is to paral-

lelize subdomains individually, which is different from the parallelized DDM

method where all the subdomains are handled in parallel.

As an application of the MS schemes, this dissertation presents a mod-

eling approach for the simulation of the specific absorption rate (SAR) in

a human head at 5G frequencies. To perform simulation efficiently at such

high frequencies, one can simplify the human head model to minimize the

computational domain based on the strong skin effect. Then the MS-RTC

scheme is employed as a field solver to compute the EM fields. To quantify

the EM energy absorbed by human tissue, the SAR is calculated after the

fields are computed.

The rest of the dissertation is organized as follows. Chapter 2 presents the

GPU-accelerated MLFMA. Chapter 3 proposes a GPU-accelerated FE-BI

method with a mixed testing scheme. The MS-CFIE is presented in Chapter

4, which is followed by the discussion of the MS-TRC in Chapter 5. Chapter

6 proposes an accelerated MS scheme on distributed computing systems.

The simulation of the specific absorption rate (SAR) in a human head at 5G

frequencies is given in Chapter 7. Finally the conclusion and future work are

given in Chapter 8.
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CHAPTER 2

A MULTILEVEL FAST MULTIPOLE
ALGORITHM WITH MULTI-GPU

ACCELERATION

2.1 Introduction

Fast and accurate computation of electromagnetic scattering from large com-

plex objects is critical to stealth and anti-stealth technologies, radar system

design, automatic target recognition, and many other applications. Those

applications require full-wave analysis over a large computational domain,

which is always computationally intensive and very time-consuming. To ac-

celerate the computation and reduce the memory requirement, the multilevel

fast multipole algorithm (MLFMA) has been developed and widely used for

electromagnetic scattering analysis due to its O(NlogN) computational com-

plexity [2, 4].

Even with a near optimal computational complexity, the computational

cost of MLFMA is still prohibitively high when it is used for large elec-

tromagnetic problems. In practical applications, many of the problems are

required to be solved within a very short time. In order to further accelerate

the computation, parallel computation has been applied to the traditional

MLFMA [7–11] to take advantage of computer hardware advancement. In

2005, a hybrid parallel MLFMA based on the distributed memory system

using the message passing interface (MPI) was proposed [8]. The strategy is

rather straightforward. For finer levels in MLFMA, the groups at the same

level are partitioned into different processors and each processor gets approx-

imately the same number of groups. For coarser levels, the far-field patterns

(FFPs) at the same level are partitioned equally among all processors and

all groups are replicated for every processor. However, when the number of

processors increases, this parallelization strategy is not effective around the

transition levels where neither the number of groups nor the number of FFPs

is large enough to achieve a good parallel efficiency. To alleviate this prob-
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lem, a hierarchical partitioning strategy was later proposed by partitioning

the groups and their FFPs simultaneously at each level [10]. More recently,

a hybrid MPI-OpenMP implementation was developed to port MLFMA on a

hybrid shared/distributed memory architecture to solve problems with over

one billion unknowns [11].

All the above-mentioned parallelization strategies are implemented using

CPU parallel programming models such as MPI and OpenMP. Recently, the

graphics processing unit (GPU), which is basically a many-core computing

system, has received more and more attention from computational electro-

magnetics (CEM) community due to its low price and high computational

throughput [57,58]. There has been intensive research dedicated to develop-

ing a variety of GPU parallelized algorithms. For example, the differential-

equation-based methods such as the finite-difference time-domain (FDTD)

and the discontinuous Galerkin time-domain (DGTD) methods have been

implemented on GPUs [59–61]. The integral-equation-based methods such

as the method of moments (MoM) and the time-domain integral equation

(TDIE) method have also been accelerated by GPUs [62–64]. Besides, many

GPU-incorporated fast algorithms for the efficient evaluation of electromag-

netic fields have been proposed [65–70], such as the non-uniform grid inter-

polation method (NGIM), the box-based adaptive integral method (B-AIM),

the fast Fourier transform (FFT)-based method, the multilevel plane-wave

time-domain (PWTD) method, and the fast multipole method (FMM). For

the GPU-accelerated MLFMA, the CUDA (compute unified device archi-

tecture) implementation of a low-frequency MLFMA on a single GPU was

proposed with the essential idea of “one thread per observer” [71]. The ob-

server stands for a parent group in the aggregation phase, a child group in

the disaggregation phase, and a destination group in the translation phase,

respectively. However, that implementation strategy results in a low parallel

efficiency when the number of groups decreases at coarse levels.

In order to improve the parallel efficiency and solve large problems, this

chapter proposes a multi-GPU accelerated MLFMA, called OpenMP-CUDA-

MLFMA, which is developed by hybridizing OpenMP and CUDA parallel

programming models. In the OpenMP-CUDA-MLFMA, the groups and the

FFPs are parallelized hierarchically. For the computation of far-field interac-

tions, a global memory strategy and a pinned memory strategy are proposed

for different application situations. This algorithm is shown to have a very
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high efficiency when solving large electromagnetic scattering problems.

2.2 MLFMA Formulation and Implementation

In order to present the implementation strategy of the OpenMP-CUDA-

MLFMA clearly, it is necessary to have a brief review of the MLFMA for-

mulation and its numerical implementation.

Consider a three-dimensional (3-D) conducting object illuminated by an

incident field (Ei,H i). The electric-field integral equation (EFIE) and the

magnetic-field integral equation (MFIE) are given by

ηT (J)=−n̂×Ei(r) r ∈ S (2.1)

−1

2
J +K(J)=−n̂×H i(r) r ∈ S (2.2)

respectively, where J denotes the unknown surface current density and the

integral operators T and K are defined as

T (J)=ikn̂×
∫
S

(
I +

∇∇
k2

) eikR

4πR
· J(r′)dr′ (2.3)

K(J)=n̂× P.V.

∫
S

∇ eikR

4πR
× J(r′)dr′ (2.4)

where P.V. stands for the Cauchy principal value integration, S denotes the

surface of the conducting object, k and η denote the free-space wavenumber

and impedance, n̂ is the outwardly directed normal unit vector, I represnts

the identity operator, and R = |r−r′| denotes the distance between the field

and source points.

Both EFIE and MFIE can be solved for J . However, for a given closed

surface, both of them will suffer from the problem of interior resonance at

certain frequencies when the exterior medium is lossless [72]. To eliminate

this problem, we can combine (2.1) and (2.2) together to form the combined-

field integral equation (CFIE) which is given by

αn̂× ηT (J) + (1− α)η

[
1

2
J −K(J)

]
= −αn̂× [n̂×Ei(r)] + (1− α)ηn̂×H i(r) r ∈ S

(2.5)

7



where α ∈ [0, 1] is the combination parameter.

In order to numerically solve CFIE, the unknown current density can first

be expanded as

J =
N∑

n=1

Infn (2.6)

where N is the number of unknowns, fn denote the vector basis functions,

and In are the expansion coefficients yet to be determined. In this chapter,

the curvilinear Rao-Wilton-Glisson (CRWG) functions [73,74] are used as the

basis functions. The application of Galerkin’s method results in a system of

linear equations
N∑

n=1

ZmnIn = Vm m = 1, 2, ..., N (2.7)

in which

Zmn =α

∫
S

fm · [n̂× ηT (fn)]dr (2.8)

+(1− α)η

∫
S

fm ·
[
1

2
fn −K(fn)

]
dr

Vm =

∫
S

[αEi + (1− α)ηn̂×H i] · fmdr. (2.9)

For large problems, (2.7) can be solved iteratively, where MLFMA can be

employed to speed up the matrix-vector products and reduce the memory

requirement. The basic idea of MLFMA is to decompose the computation

of matrix-vector products into the near-field and far-field interactions. To

achieve such a decomposition, the entire object is first enclosed by a large

cubic box, then divided into non-empty subcubes called groups. Each sub-

cube is further subdivided into smaller cubes recursively until the length of

non-empty cubes at the finest level is about 0.25λ to 0.5λ. After the decom-

position, the system of linear equations can be written as

ZnearI +ZfarI = V (2.10)

in which Znear is a block matrix, and each block represents the interaction

between the testing functions in a group at the finest level and the basis

functions in the same group or a neighboring group. Subsequently, Zfar

is the remaining part of the MoM matrix which represents the interaction
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between groups that are well separated [8]. The Znear can be calculated

directly using the standard MoM at the finest level, and the computation

of ZfarI can be done in three phases called aggregation, translation, and

disaggregation. In the aggregation phase, the fields radiated by the sources

fnIn in each group at the finest level are first projected into the spectrum

space to obtain the radiation pattern, which is then aggregated to the center

of the group at the parent level. This procedure is executed repeatedly until

it reaches the coarsest level. It is easy to notice that the number of the groups

becomes smaller while the size of the spectrum sampling becomes larger in

the aggregation phase. In the disaggregation phase, the receiving patterns at

each level come from the two sources: one is the translation of the radiation

patterns at the same level; the other is the disaggregation of the receiving

pattern from the parent level. Thus, the translation and disaggregation can

be executed concurrently as follows [8,75]. At the coarsest level, the radiation

pattern is first translated to the receiving pattern for each group, which is

then distributed to the centers of the groups at the child level. At the same

time, the radiation pattern at the child level is translated to the receiving

pattern at the same level. Then the total receiving pattern at the child level

can be achieved by summing up the above two receiving patterns. After

the total receiving pattern is achieved, the next level’s disaggregation and

translation can be processed. This procedure is executed recursively until it

reaches the finest level.

2.3 Hybrid OpenMP-CUDA Parallel Programming

Model and GPU Architecture

Before the OpenMP-CUDA-MLFMA is presented in detail, the key fea-

tures of the hybrid OpenMP-CUDA parallel programming model and the

GPU/CUDA architecture are reviewed in this section.

The OpenMP programming model is based on the shared memory multi-

core CPU architecture [76], and CUDA is developed for the shared memory

many-core GPUs architecture [58]. A typical OpenMP-CUDA programming

model is shown in Fig. 2.1. In general the program consists of one or more

phases [58,76]. The serial phase of the program is first executed by the master

thread on the host (CPU). Then multiple GPUs labeled as devices take over
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the work in the parallel phase. Specifically, multiple CPU worker threads are

allocated by an OpenMP instruction, and each worker thread manages one

device, which is used to execute the data-parallel functions called kernels.

When a kernel is launched, a large number of GPU threads are generated to

exploit data parallelism. Those threads are organized into a two-dimensional

(2-D) grid of blocks, with each block built by 2-D or 3-D array of threads. All

of those threads generated by the kernel will carry out the same instructions

during the parallel phase. With enough threads in a kernel to execute the

same code simultaneously, the latency hiding mechanism [57, 58, 71] can be

fully utilized to make the parallel computation highly efficient. After every

device finishes its parallel computation, the CPU will pick up the runtime

and execute the instructions in the serial phase.

It should be emphasized that the significant computational efficiency of

GPU results from its specific hierarchical architecture and excellent memory

bandwidth. To elaborate the GPU acceleration of MLFMA, an understand-

ing of the hardware architecture of NVIDIA GPUs is necessary. Figure 2.2

shows the architecture of a typical CUDA-capable GPU [57, 58], which is

organized into an array of streaming multiprocessors (SMs). Each SM will

be assigned with a portion of total thread blocks when a kernel is invoked.

Off the chip, all the SMs in one device share a very high bandwidth memory

called global memory and a high speed read-only memory called constant

memory. The lifetime of variables in the global memory and constant memo-

ry is the entire application unless they are freed by the programmer. On the

chip, each SM contains a number of streaming processors (SPs) which share

control logic, cache, and shared memory. Each SP has its own small number

of registers which usually store the private and frequently accessed variables

because they can be accessed very quickly.

Usually the size of device memory and on-chip memories are not enough to

solve large problems. One remedy is to use multi-GPU, and the other is to use

pinned memory. Pinned memory is a special host memory, which is also called

page-locked memory. One important property of this memory is that the

operating system guarantees pinned memory will never be paged out to disk.

Besides, the pinned memory has approximately twice the performance of the

standard pageable memory when it is used for transferring data between

the host and the device. Moreover, the pinned memory with a mapped

memory syntax has a property that the system will automatically overlap
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data transfers with kernel execution. However, the transfer speed is restricted

by the peripheral component interconnect express (PCIe) transfer speed and

the system front-side bus speed [77]. Therefore, the full utilization of the

hierarchical memory and reduction of data communications are crucial in

GPU computation.

Recognizing that the GPUs are well-suited in dealing with massive data

parallelism and weak at executing with logical instructions while the CPUs

are optimized for sequential instruction performance, one should implement

a CEM code to execute the numerically intensive parts on the GPUs and the

sequential parts on the CPU. A well-investigated coordinating strategy can

make the GPU-incorporated MLFMA much more efficient than the purely

CPU-implemented MLFMA (CPU-MLFMA).

2.4 The OpenMP-CUDA-MLFMA Algorithm

The implementation of the OpenMP-CUDA-MLFMA algorithm contains two

main parts. One is the calculation of the near-field system matrix Znear, and

the other is the evaluation of the far-field interaction ZfarI, which includes

aggregation, translation, and disaggregation phases. For the near-field inter-

action ZnearI, the CUSPARSE (a set of basic linear algebra subroutines used

for handling sparse matrices) is used directly. In this section, the multi-GPU

implementation of the near-field system matrix assembly is first detailed.

Then we present the parallelization strategy for the calculation of the far-

field interaction. Finally, the pinned-memory multi-GPU implementation is

presented.

2.4.1 Near-Field System Matrix Assembly

In MLFMA, the computationally intensive parts before the iterative solution

include the calculation of radiation patterns of the basis functions Vs and

receiving patterns of the testing functions Vf, the calculation of translator T ,

and the assembly of the near-field system matrix Znear. Here, we focus on

the parallelization scheme for the assembly of the near-field system matrix.

Since the order of basis indices in each group at the finest level is sorted

so that the indices of basis functions in each group are continuous, the near-
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field system matrix Znear has the pattern shown in Fig. 2.3a. This block-

sparse matrix can be separated into two types of block matrices. The solid

ones in blue represent block diagonal matrices which come from self-group

interactions. The ones marked by red dash lines represent block off-diagonal

matrices which come from neighboring-group interactions.

In order to satisfy the requirements for memory coalescing on GPU [57,58],

the block matrices are stored in the COO (coordinates list) format which is

shown in Fig. 2.3b. The non-zero elements are stored in the array A. The

testing stream IA and the basis stream JA contain the information of the

testing and basis functions respectively. To implement the matrix assem-

bly on multiple GPUs, the non-zero array A is first separated equally into

different devices. An one-dimensional (1-D) grid of threads is allocated for

each device to compute a portion of non-zero elements. During the execu-

tion, each thread first fetches the data from the testing stream and the basis

stream in the global memory, then calculates a non-zero element following

the standard steps of MoM, and finally stores the value back to the global

memory. The independence of the non-zero elements ensures the efficiency

of the hierarchical parallelization regardless of the geometrical shape of the

object.

2.4.2 Parallelization on Far-Field Interaction

The parallelization strategy for calculating the far-field interaction ZfarI can

be implemented by parallelly computing the radiation patterns and receiving

patterns of the groups, denoted as S and B, in the aggregation, translation,

and disaggregation phases. The basic idea is “one thread per spectrum sam-

pling” and “one/several block(s) per group.” The hierarchical parallelization

by simultaneously partitioning groups and their FFPs ensures a high com-

putational throughput for the GPU calculation.

To be specific, take the aggregation phase for example. The 2-D grids and

blocks are allocated for the calculation at each level. Based on our CUDA

implementation and the GPU’s technical specifications [57], the size of the

thread block in the algorithm is set as the size of the spectrum at the finest

level for the optimal use of hardware resources. Because the mode number is

a function of kd [4], where d denotes the maximum diameter of a group and
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k denotes the wavenumber, the spectrum size at the (L−1)th level (finest

level) will be 6 × 12 if the length of cubes at the finest level is set to 0.3λ,

and the spectrum size is increased by a factor of 4 as it goes to coarser levels.

Figure 2.4 shows the thread allocation at the (L−2)th level in the aggregation

phase. The size of spectrum at this level is 12× 24, where 12 and 24 are the

number of spectrum samplings in the θ and ϕ directions respectively. Thus 4

blocks should be organized to represent one parent cube, in which one thread

is corresponding to one spectrum. At the (L−3)th level the spectrum size

is 24 × 48, then 16 blocks are assigned to represent one parent cube and so

on. In this way, there will be a sufficient number of threads allocated at each

level for the parallel computation, which leads to a high parallel efficiency.

There are two strategies to implement this parallelization idea. One is

called global memory strategy; the other is called pinned memory strategy.

The global memory strategy requires the radiation and receiving patterns to

be calculated and stored at all levels on a single GPU. Such strategy avoids

data transfer between the host and device during aggregation, which yields a

very high computational efficiency. However, the size of the global memory

will limit the size of problems that can be solved. The pinned memory strat-

egy calculates the radiation and receiving patterns on multiple GPUs, and

stores the results to the pinned memory on the host. The benefit of using

pinned memory is that we can solve larger problems because the pinned mem-

ory is much larger than the global memory. But the data communications

between the host and device become unavoidable. To develop the capabili-

ty of solving large problems, the pinned memory strategy is presented and

discussed in detail.

2.4.3 Multi-GPU Implementation Using Pinned Memory

Consider Si−1 at level i − 1 aggregated from Si at level i as shown in Fig.

2.5a. The Si stands for the array lined up with all the groups’ radiation

patterns at level i. To facilitate the computation, Si−1 is equally partitioned

into different devices by the number of the groups. The thread allocation

in each device is determined by the size of spectrum at level i − 1 and the

number of parent groups stored in the device. Each device accesses the

data from Si stored in the pinned memory, and calculates a part of Si−1.
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Then the results from all the devices are stored back to the pinned memory

consecutively. Each matrix-vector product using pinned memory has the

implicit data transfer between the host and device.

The multi-GPU implementation in the translation phase is similar to that

in the aggregation phase. Consider Si translating to Bi at the same level

i as shown in Fig. 2.5b. The Bi stands for the array which consists of all

the groups’ receiving patterns at level i. Si is equally divided into different

devices by the number of groups. The thread allocation in each device is

determined by the size of spectrum at level i and the number of groups

stored in the device. Similarly, each device accesses the data from Si stored

in the pinned memory, and calculates a portion of Bi. Then the results are

stored back to the pinned memory for the use of disaggregation.

The disaggregation phase of MLFMA is very similar to the aggregation

phase. As shown in Fig. 2.5c, the partition strategy, thread allocation rule,

and data communication process are all similar to the ones in the aggregation

phase.

2.5 Numerical Analysis

In this section, a variety of numerical examples are presented to demonstrate

the accuracy and efficiency of the OpenMP-CUDA-MLFMA. The CRWG

[73, 74] functions are used as basis and testing functions to discretize CFIE

(α=0.5). All the numerical examples are solved by the biconjugate gradient

stabilized method (BiCGStab) with a targeted relative residual error of 10−3.

The single-precision floating-point arithmetic is used. The CPU-MLFMA is

parallelized and executed by 8 threads on a workstation with a 4-core Intel

Xeon processor W3550 (with a clock speed of 3.06 GHz). According to our

tests, the 8-threaded computation can achieve around 6.5 times speedup as

compared to the single-threaded serial computation. The OpenMP-CUDA-

MLFMA is executed on a 4-GPU system equipped with 4 Nvidia Tesla C2050

GPUs.
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2.5.1 Validation of the OpenMP-CUDA-MLFMA

Scattering by a Cone-Sphere With a Gap

A benchmark model, which is a metallic cone-sphere with a gap at the joint,

is simulated to validate the OpenMP-CUDA-MLFMA. The object is 0.689-

m long, oriented in the z-direction, and illuminated by a 3-GHz plane wave.

Its surface is discretized into 5006 curvilinear triangular patches with 7509

unknowns. The HH-polarized monostatic radar cross section (RCS) in the

xz-plane is computed, and as can be seen in Fig. 2.6a, a good agreement be-

tween the CPU-MLFMA, the OpenMP-CUDA-MLFMA, and the measured

data is achieved. Figure 2.6b shows the real part of the current density in-

duced on the surface of the scatterer. The variation of the current density

can easily be observed.

Scattering by a NASA Almond

The next testing benchmark object is a NASA almond with a size of 25.24

cm × 9.75 cm × 3.25 cm. Illuminated by a 9-GHz plane wave, the almond

is discretized into 11134 curvilinear triangular patches, resulting in 16701

unknowns. Figure 2.7a shows the HH-polarized monostatic RCS in the xy-

plane calculated by the CPU-MLFMA and the OpenMP-CUDA-MLFMA.

The measured data are used as reference. Both results agree well with the

measured data. The real part of the current density induced by the incident

wave is shown in Fig. 2.7b.

In both the cone-sphere and almond examples, the OpenMP-CUDA-MLFMA

and CPU-MLFMA results are nearly identical to each other, which indicates

that there is no loss of accuracy in the GPU computation.

Scattering by a Missile-like Object

First we consider the electromagnetic scattering of a missile-like object which

has a 3-m-long body and 1-cm-thick wings. The nonuniform mesh is em-

ployed to discretize the object into 228158 curvilinear triangular patches,

leading to 342237 unknowns. Figure 2.8a shows the HH-polarized bistatic

RCS in the xz-plane, which demonstrates a good agreement between the

15



results from the OpenMP-CUDA-MLFMA and the CPU-MLFMA. The real

part of the current density induced on the surface of the missile-like object is

shown in Fig. 2.8b, in which the wave phenomenon can be observed clearly.

The speedup is summarized in Table 2.1, in which “CPU” and “GPU” repre-

sent the CPU-MLFMA and the OpenMP-CUDA-MLFMA, respectively. In

this example, the same parallelization scheme is applied to the calculation of

Vs and Vf, the translator factor T , and the assembly of Znear, which leads to

the same speedups for the pinned memory and global memory cases. For the

acceleration of the near-field system matrix assembly, a 60 times speedup is

achieved. The BiCGstab solution is parallelized using the pinned memory

and the global memory strategies respectively, which leads to 4.2 and 16.1

times speedup for the corresponding strategies. The global memory strat-

egy is faster than the pinned memory strategy because there are no data

communications between the host and device when calculating the far-field

interaction. However, the global memory has the limited size on GPU so

that it cannot solve larger problems. Therefore, our discussion is based on

the pinned memory strategy in the following larger examples.

Scattering by Conducting Spheres

In order to demonstrate the capability and efficiency of the OpenMP-CUDA-

MLFMA, the scattering from perfect electrically conducting (PEC) spheres

with diameters of 4λ, 6λ, 12λ, and 30λ are calculated. The multi-GPU

acceleration of the different parts in the MLFMA are investigated as shown

in Fig. 2.9a. As can be seen, excellent speedup is achieved in the near-

field system matrix assembly, which increases as the number of unknowns

grows. For different numbers of unknowns, the acceleration in the BiCGstab

solution remains the same because the data communications between the

host and device take the majority of the time, which is determined by the

PCIe and front-side bus speed. The total speedup increases a little bit as

the number of unknowns increases, because the BiCGstab solution will take

a larger portion of the total time. The total speedup achieved is between 10

and 14 times. The HH-polarized bistatic RCS for the 30λ sphere with over 1

million unknowns is shown in Fig. 2.9b. The results calculated by the CPU-

MLFMA and the OpenMP-CUDA-MLFMA agree well with the Mie series

solution. The detailed speedup for the 30λ sphere is presented in Table 2.2.
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The speedup for the near-field system matrix assembly is over 106 times,

which is significant. The speedup of the BiCGstab iterative solution is 2.8

times, which is restricted by the data communications between the host and

device.

Scattering by an Aircraft

To further illustrate the capability and efficiency of the proposed method,

a simplified aircraft is considered. The aircraft, with a length of 12.74 m,

a width of 15.06 m, and a height of 2.95 m, is illuminated by plane waves

with frequencies of 200 MHz, 400 MHz, 780 MHz, and 1.5 GHz respectively.

The speedup versus the number of unknowns is shown in Fig. 2.10a. In

the figure, similar speedups with those for the PEC sphere can be observed.

The total speedup is between 5.6 and 8.1 times. Figure 2.10b shows the VV-

polarized bistatic RCS calculated by the CPU-MLFMA and the OpenMP-

CUDA-MLFMA, respectively. The results are on the top of each other. The

real part of the current density induced on the surface of the aircraft is

shown in Fig. 2.10c from three different view angles. It is easy to observe

the current density variation on the surface of the aircraft. Table 2.3 gives

the detailed speedup performance for the computation at 1.5 GHz. The

speedup for the near-field system matrix assembly is over 124 times, and the

speedup of the BiCGstab iterative solution is 2.9 times. Comparing Table

2.3 with Table 2.2, it is easy to observe that for the problems with a similar

number of unknowns, the speedup for each part is similar. In other words, the

parallelization scheme is insensitive to the geometrical shape of the object.

2.6 Summary

In this chapter, an OpenMP-CUDA based implementation of MLFMA is pre-

sented for computing wave scattering problems of 3-D conducting objects on

GPU computing systems. For parallelization on a single GPU, a hierarchical

parallelization scheme is used by partitioning groups and their FFPs simulta-

neously. For multi-GPU implementation, a hybrid OpenMP-CUDA parallel

programming model is employed. The OpenMP-CUDA-MLFMA is first val-

idated by calculating the monostatic RCS for several benchmark problems.
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Larger problems are then solved to demonstrate the capability and efficien-

cy of the proposed algorithm. The near-field system matrix assembly using

multi-GPU has an excellent efficiency, which has a speedup independent of

the object geometry. For the parallelization of the far-field interaction, by the

analysis of the GPU architecture and the numerical results, it is revealed that

the global memory strategy is suitable for the fast solution of small problems,

and the pinned memory strategy can be employed effectively to accelerate the

computation of large problems. The total speedup of the OpenMP-CUDA-

MLFMA achieved is between 5 and 20 times as compared to the 8-threaded

CPU-MLFMA, which can be quite important for practical applications.

18



2.7 Figures and Tables

Figure 2.1: A typical OpenMP-CUDA parallel programming model.
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Figure 2.2: A typical CUDA-capable NVIDIA GPU architecture.
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(a)

(b)

Figure 2.3: Near-field system matrix assembly. (a) Pattern of the near-field
system matrix. (b) Process of matrix filling.
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Figure 2.4: Thread allocation for the aggregation phase at the (L-2)th level.
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(a)

(b)

(c)

Figure 2.5: Implementation of far-field interaction on multi-GPU. (a)
Parallel scheme for aggregation. (b) Parallel scheme for translation. (c)
Parallel scheme for disaggregation.

23



0 20 40 60 80 100 120 140 160 180
-70

-60

-50

-40

-30

-20

-10

0

10

M
on

os
ta

tic
 R

C
S 

(d
B

sm
)

Angle (Deg.)

 Measurement
 CPU-MLFMA
 OpenMP-CUDA-MLFMA

(a)

(b)

Figure 2.6: Scattering analysis of a cone-sphere with a gap at 3 GHz. The
total length of this object is 0.689 m. (a) HH-polarized monostatic RCS in
the xz-plane. (b) Real part of the current density with the incidence angle
θ = 0◦ and φ = 0◦ (in linear scale).
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Figure 2.7: Scattering analysis of a NASA almond at 9 GHz. The size of
this object is 25.24 cm × 9.75 cm × 3.25 cm. (a) HH-polarized monostatic
RCS in the xy-plane. (b) Real part of the current density with the
incidence angle θ = 90◦ and φ = 180◦ (in linear scale).
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Figure 2.8: Scattering analysis of a missile-like object. The length of the
body is 3 m, and the thickness of the wing is 1 cm. A 3 GHz plane wave is
incident from the angle θ = 0◦ and φ = 0◦. (a) HH-polarized bistatic RCS
in the xz-plane (step size is 0.25◦). (b) Real part of the current density
induced on the surface of the scatterer (in linear scale).
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Figure 2.9: Scattering analysis of the PEC spheres with diameters of 4λ,
6λ, 12λ, and 30λ. (a) 4-device speedup of the OpenMP-CUDA-MLFMA
versus the number of unknowns (the number of unknowns is 18162, 41316,
168333, and 1063155 respectively). (b) HH-polarized bistatic RCS of the
30λ PEC sphere (step size is 0.5◦).
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Figure 2.10: Scattering analysis of the aircraft at frequencies of 200 MHz,
400 MHz, 780 MHz, and 1.5 GHz. (a) 4-device speedup of the
OpenMP-CUDA-MLFMA versus the number of unknowns (the number of
unknowns is 20319, 70413, 269859, and 1001946 respectively). (b)
VV-polarized bistatic RCS in the yz-plane at 1.5 GHz (step size is 0.25◦).
(c) Real part of the surface current density at 1.5 GHz with the incidence
angle θ = 60◦ and φ = 270◦ (in linear scale).
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Table 2.1: Speedup of bistatic RCS calculation of a missile-like object at 3
GHz

CPU GPU (sec.) Speedup

(sec.) Pinned Global Pinned Global

Vs and Vf 17 7 2.4

T 4 1 4.0

Znear 3299 55 60.0

BiCGstab 7569 1811 469 4.2 16.1

Total Time 10889 1879 539 5.8 20.2

Table 2.2: Speedup of bistatic RCS calculation of a PEC sphere with
diameter of 30λ

CPU (sec.) GPU (sec.) Speedup

Vs and Vf 55 19 2.9

T 22 0.5 44.0

Znear 4490 42 106.9

BiCGstab 933 334 2.8

Total Time 5500 400 13.8

Table 2.3: Speedup of bistatic RCS calculation of an aircraft at 1.5 GHz

CPU (sec.) GPU (sec.) Speedup

Vs and Vf 52 19 2.8

T 44 1 44.0

Znear 3735 30 124.5

BiCGstab 1911 653 2.9

Total Time 5742 705 8.1
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CHAPTER 3

A FINITE ELEMENT–BOUNDARY
INTEGRAL METHOD WITH GPU

ACCELERATION

3.1 Introduction

The hybrid finite element–boundary integral (FE-BI) method has been de-

veloped and widely used in the analysis of unbounded electromagnetic scat-

tering and radiation from complicated structures and composite materials.

This method not only combines the capability of the finite element method

(FEM) in modeling highly complicated geometry and inhomogeneous materi-

als, but also eliminates the truncation error from absorbing boundary condi-

tions (ABCs) and perfectly matched layers by enforcing a rigorous boundary

condition through boundary integral equations (BIEs) [1, 72].

A variety of FE-BI formulations have been developed to solve three-dimensional

electromagnetic problems in the past [16, 18, 19, 22, 23, 26, 27, 30, 33, 34]. As

a common approach to constructing an FE-BI formulation, the solution do-

main of the electromagnetic problem is first divided into an interior and

an exterior region. In the interior region, the problem is formulated using

the FEM truncated by the Neumann boundary condition, which leads to an

underdetermined matrix equation in terms of the unknown volume electric

field and surface electric current. In the exterior region, the electric-field in-

tegral equation (EFIE), the magnetic-field integral equation (MFIE), or the

combined-field integral equation (CFIE) can be used to formulate another

underdetermined matrix equation in terms of the unknown surface electric

and magnetic currents. These two matrix equations are then coupled to-

gether to form a complete set of non-symmetric linear equations to solve for

the volume and surface unknowns concurrently. Among different formula-

tions, the FE-BI(CFIE) is widely used in real-life applications and proved

to be free of spurious interior resonance. However, the traditional approach

of discretizing the FE-BI(CFIE) produces a numerical solution with a poor
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accuracy, caused by the improper testing of the surface currents when the

tangential electric field is significant on the surface [1, 19].

To obtain a more accurate numerical solution, symmetric FE-BI formula-

tions have been developed [26,27]. For instance, to construct the FE-BI(EJ)

formulation, the MFIE is first substituted into the finite element formulation

for the interior problem. The EFIE is then used to formulate the exterior

problem and coupled with the interior formulation to form a complete set of

equations. The numerical solution of such a symmetric FE-BI formulation

is found to be very accurate, but the iterative convergence is quite slow due

to the mathematical property of the first-kind operators involved in the BI

part.

Recently, the Buffa-Christiansen (BC) function [78] has been adopted as

the testing function to discretize the integral equations for solving perfectly

electrical conducting (PEC) and dielectric problems [79–83]. The numeri-

cal accuracy of the second-kind integral equations can be improved by using

the BC testing functions, mainly because of the fact that the discretization

error from the identity operator is successfully suppressed [80]. To achieve

an FE-BI solution with a better numerical accuracy and a faster iterative

convergence, a mixed testing scheme together with a special precondition-

er are designed in this chapter for the FE-BI(CFIE) formulation. Specifi-

cally, the curl-conforming vector functions, the Rao-Wilton-Glisson (RWG)

functions [73, 74], and the BC functions are applied as the testing functions

to discretize the FEM formulation, the EFIE, and the MFIE, respectively,

which are then combined to obtain a complete FE-BI system. To reduce the

memory requirement and speed up the matrix-vector products (MVPs), the

multilevel fast multipole algorithm (MLFMA) [4] is employed for the BIEs.

Furthermore, an efficient preconditioner modified from the ABC-based pre-

conditioner [24] is proposed to accelerate the iterative convergence of the

FE-BI(CFIE) formulation.

Although the MLFMA accelerated BIE-related computation hasO(NslogNs)

computational and storage complexities, with Ns being the total number of

surface unknowns, the cost of the BIE-related computation is still prohibitive-

ly high for solving large electromagnetic problems. To alleviate this difficulty,

parallel computing techniques have been widely employed to reduce the to-

tal computation time. Among these techniques, parallel programming on

graphics processing units (GPUs) has received intensive attention because of
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GPU’s high computational efficiency. To combine the advantages of the fast

algorithm and the advancements of computer hardware, a GPU-accelerated

MLFMA for simulating scattering from PEC objects has been developed

on multi-GPU computing systems [12, 84]. To solve electromagnetic prob-

lems with complex structures and composite materials efficiently, a GPU-

accelerated FE-BI algorithm with the MLFMA (GPU-FE-BI-MLFMA) is

presented in this chapter.

3.2 FE-BI Formulation

In this section, the hybrid FE-BI formulation for electromagnetic problems

is constructed and discretized into the matrix equation, with a proper choice

of testing functions. The MLFMA is then applied to the proposed FE-BI

method to accelerate the computation and reduce the memory requirement.

3.2.1 Matrix Equation

Consider an arbitrarily shaped inhomogeneous object characterized by rel-

ative permittivity and permeability (εr, μr), which is illuminated by an ex-

ternal incident field (Einc, H inc) and excited by an internal source Jsrc. To

solve this electromagnetic problem using the FE-BI method, the object is

enclosed by an artificial surface S, which divides the problem into an interior

and an exterior region. The fields in the interior region satisfy the vector

wave equation

∇×
(

1

μr

∇×E

)
− k2

0εrE = −jk0J̄src (3.1)

and the Neumann boundary condition

n̂×
(

1

μr

∇×E

)
= −jk0n̂× H̄ (3.2)

with H̄ = Z0H and J̄src = Z0Jsrc, where k0 and Z0 denote the free-space

wavenumber and impedance, respectively, and n̂ represents the outwardly

directed unit normal vector. The weak-form of the boundary-value problem
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defined by (3.1) and (3.2) can be obtained as

∫
V

[
1

μr

(∇×Ni) · (∇×E)− k2
0εrNi ·E

]
dV

+jk0

∮
S

n̂ · (Ni × H̄)dS = −jk0

∫
V

Ni · J̄srcdV (3.3)

where E and H̄ are the unknown electric and magnetic fields in the domain

V enclosed by S, and Ni denotes the curl-conforming testing functions such

as edge basis functions [1].

For the exterior region, the fields satisfy the EFIE and the MFIE, which

are given by

E=Einc − L(J̄) +K(M ) (3.4)

H̄=H̄ inc −K(J̄)− L(M ) (3.5)

where J̄ and M denote the unknown surface electric and magnetic current

densities, respectively; and the integral operators L and K are defined as

L(v)≡jk0

∮
S

(
I +

∇∇
k2

)
e−jk0R

4πR
· v(r′)dS ′ (3.6)

K(v)≡
∮
S

v(r′)×∇e−jk0R

4πR
dS ′ (3.7)

where I is the identity operator and R = |r − r′|. Testing the EFIE with

T E
i yields

∮
S

T E
i ·EdS +

∮
S

T E
i · L(J̄)dS

−
∮
S

T E
i · K(M )dS =

∮
S

T E
i ·EincdS (3.8)

and testing the n̂×MFIE with TM
i yields

∮
S

TM
i ·

(
n̂× H̄

)
dS +

∮
S

TM
i ·

[
n̂×K(J̄)

]
dS

+

∮
S

TM
i ·[n̂×L(M )] dS=

∮
S

TM
i ·

(
n̂×H̄ inc

)
dS. (3.9)

To avoid the problem of interior resonance, the CFIE is adopted to formu-

late the exterior problem, and its mixed testing scheme can be obtained by
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summing up (3.8) and (3.9). Hence, the current densities and fields can be

globally solved from (3.3) and a combination of (3.8) and (3.9). To couple FE

and BI equations on conformal meshes, we can expand the unknown current

densities and fields as

J̄=

NS∑
j=1

H̄S
j Tj (3.10)

M=−
NS∑
j=1

ES
j Tj (3.11)

E=

NS∑
j=1

ES
jNj +

NI∑
j=1

EI
jNj (3.12)

H̄=

NS∑
j=1

H̄S
j Nj (3.13)

where Tj and Nj are the RWG and the edge basis function [1], respectively;

NS and NI denote the number of degrees of freedom (DoFs) on and inside

S, respectively; ES
j , E

I
j, and H̄S

j are the expansion coefficients yet to be de-

termined. By substituting (3.10)-(3.13) to (3.3), (3.8) and (3.9), the coupled

system equation can be obtained as

⎡
⎢⎣

KII KIS 0

KSI KSS B

0 P Q

⎤
⎥⎦
⎧⎪⎨
⎪⎩

EI

ES

H̄S

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

bI

bS

binc

⎫⎪⎬
⎪⎭ (3.14)

where

KXY
ij =

∫
V

[
1

μr

(
∇×NX

i

)
·
(
∇×NY

j

)
−k2

0εrN
X
i ·NY

j

]
dV (3.15)

in which X and Y can be either I or S, and

Bij=jk0

∮
S

n̂ ·
(
NS

i ×NS
j

)
dS (3.16)

Pij=α

∮
S

(
n̂× T E

i

)
·
[
1

2
Tj + n̂× K̃(Tj)

]
dS

+β

∮
S

(
n̂× TM

i

)
· L(Tj)dS (3.17)

Qij=β

∮
S

TM
i ·

[
1

2
Tj + n̂× K̃(Tj)

]
dS
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+α

∮
S

T E
i · L(Tj)dS (3.18)

bIi=−jk0

∫
Ω

N I
i ·J̄srcdV (3.19)

bSi=−jk0

∫
Ω

NS
i ·J̄srcdV (3.20)

binci =α

∮
S

T E
i ·EincdS + β

∮
S

TM
i ·(n̂× H̄ inc)dS (3.21)

where K̃ is the principal value of the operator K, and α and β are the

combination factors chosen as α = β = −2jk0. For brevity, we write (3.14)

symbolically as

([A] + [G]){x} = {b} (3.22)

where [A] denotes the finite element sparse matrix assembled from (3.15) and

(3.16), [G] denotes the boundary integral full matrix assembled from (3.17)

and (3.18), {x} represents the unknown solution vector, and {b} is the known

excitation vector given by (3.19)-(3.21).

Compared with the traditional approach to constructing the FE-BI(CFIE)

[1,72], the proposed method first discretizes the FE equation, the EFIE, and

the MFIE individually, and then combines them into a complete system,

which provides freedom to choose proper testing functions for different equa-

tions.

3.2.2 Choice of the Testing Functions

To obtain an accurate solution from the FE-BI(CFIE) algorithm, the oper-

ators contained in the diagonal block [Q] in (3.14) have to be well tested by

carefully choosing the testing functions T E
i and TM

i .

In general, there are two kinds of vector functions which can be chosen as

testing functions: the divergence- and the curl-conforming functions. The

typical divergence-conforming functions are the RWG [73, 74] and the BC

function [78], which are denoted as f r and fb, respectively. The typical

curl-conforming functions can be obtained by rotating the RWG and the BC

function with respect to the normal direction, which are denoted as n̂ × f r

and n̂ × fb, respectively. If we choose T E
i = TM

i = f r
i , the resulting FE-BI

solution has a poor numerical accuracy, and becomes even worse when it
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deals with dielectric objects or objects with a thick coating [1, 19, 72]. One

reason for this inaccuracy is the troublesome evaluation of the divergence

of curl-conforming basis functions, which results in a contour integral in the

third term of (3.17) [1,80]. The other reason is that f r is not a good testing

function for the operator n̂×K in (3.18) [79–83]. To remove these problems,

a simple approach is to set the coefficient β to zero, which reduces the FE-

BI system to the FE-BI(EFIE) with the EFIE tested by f r. Although the

FE-BI(EFIE) method can provide an accurate solution, it suffers from the

interior resonance corruption [1,72]. A better way to overcome this problem

is to choose proper testing functions for both the EFIE and the MFIE based

on the mathematical properties of the integral operators.

Mathematically, the proper basis and testing functions for an integral op-

erator should be in the domain and the dual of the range of the integral

operator, respectively [85]. Because the operators n̂ × L and n̂ × K map a

space of divergence-conforming functions onto itself, their dual of the range

is the space of the curl-conforming functions [78, 86]. In the finite-element

space, if f r is chosen as the basis function, a good candidate to expand the

dual of the range of n̂ × L and n̂ × K is n̂ × f r and n̂ × fb, respective-

ly [78,80,82,87]. Hence, to test the I, K̃, and L operators in (3.18) well, the

testing functions should be chosen as T E
i =f r

i and TM
i = n̂×fb

i . As a result,

Pij, Qij, and binci can be rewritten as

Pij=−α

2

∮
S

f r
i · (n̂× f r

j )dS + α

∮
S

f r
i · K̃(f r

j )dS

−β

∮
S

fb
i · L(f r

j )dS (3.23)

Qij=−β

2

∮
S

fb
i · (n̂× f r

j )dS + β

∮
S

fb
i · K̃(f r

j )dS

+α

∮
S

f r
i · L(f r

j )dS (3.24)

binci =α

∮
S

f r
i ·EincdS + β

∮
S

fb
i ·H̄ incdS. (3.25)

It can be observed from (3.23) that no contour integral exists anymore when

the Gauss divergence theorem is applied to its third term [80]. Therefore,

with the proposed testing scheme, not only the contour integral in the eval-

uation of the matrix [P ] is avoided, but also the I, K̃, and L operators in

the matrix [Q] are all well tested.
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3.2.3 Application of the MLFMA

To reduce the computational and storage complexities, the MLFMA [4] is

applied to evaluate the matrix entries and accelerate the MVPs. The near-

field interactions in the BIE-related matrices are the same as those given in

(3.23) and (3.24), and the far-field interactions can be calculated by

Pij=− jk0
4π

∮
V P

fmi · αmm′(k̂, r̂mm′)Vsm′jd
2k̂ (3.26)

Qij=
jk0
4π

∮
V Q

fmi · αmm′(k̂, r̂mm′)Vsm′jd
2k̂ (3.27)

where

V P
fmi=

∮
S

e−jk0·rim
[
αk̂ × f r

i (rim)

+β(I − k̂k̂) · fb
i (rim)

]
dS (3.28)

V Q
fmi=

∮
S

e−jk0·rim
[
α(I − k̂k̂) · f r

i (rim)

−βk̂ × fb
i (rim)

]
dS (3.29)

Vsm′j=

∮
S

ejk0·rjm′f r
j (rjm′)dS ′ (3.30)

and the translation operator is given by

αmm′(k̂, r̂mm′)=
−jk0
4π

L∑
l=0

(−j)l(2l + 1)h
(2)
l (k0rmm′)

·Pl(k̂ · r̂mm′) (3.31)

where h
(2)
l denotes the spherical Hankel function of the second kind, Pl de-

notes the Legendre polynomial of degree l, and L represents the number of

multipole expansion terms.

3.3 Efficient ABC-Based Preconditioner

To solve a linear system of equations with a very large number of unknowns,

iterative methods are usually employed due to their lower computational and

memory costs compared with direct methods. Unfortunately, due to the poor
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condition of the FE-BI system matrix, it is impractical to apply an iterative

method to solve the matrix equation directly. To achieve a highly conver-

gent solution, an efficient preconditioner is required. For the FE-BI(CFIE)

formulation, such an efficient preconditioner can be constructed by replacing

the integral equations with their local approximations

E≈Einc − L′(J̄) +K′(M ) (3.32)

H̄≈H̄ inc −K′(J̄)− L′(M ) (3.33)

on the truncation surface, where the operators L′ and K′ denote only the

self-patch interactions. By using the RWG function as both the testing and

basis functions, and scaling (3.32) and (3.33) by a factor of −2jk0, the pre-

conditioner can be obtained as

([A] + [M ]) =

⎡
⎢⎣

KII KIS 0

KSI KSS B

0 P ′ Q′

⎤
⎥⎦ (3.34)

where [A] is the same as that given in (3.22), [M ] denotes the sparse ma-

trix obtained from the discretization of the locally approximated integral

operators, and

P ′
ij=−2jk0

∮
S

(n̂× f r
i )·

[
1

2
f r
j + n̂× K̃′(f r

j )

]
dS

−2jk0

∮
S

(n̂× f r
i )· L′(f r

j )dS (3.35)

Q′
ij=−2jk0

∮
S

f r
i ·
[
1

2
f r
j + n̂× K̃′(f r

j )

]
dS

−2jk0

∮
S

f r
i · L′(f r

j )dS (3.36)

where K̃′ is the principal value of the operatorK′. From the spectrum analysis

of the integral operators, it can be seen that the last two terms in (3.35) and

the second term in (3.36) are negligible because their contributions to the

spectrum vanish if the testing and basis functions lie in the same plane.

Therefore, the P ′ and Q′ matrices can be further simplified as

P ′
ij=jk0

∮
S

f r
i · (n̂× f r

j )dS (3.37)
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Q′
ij=−jk0

∮
S

f r
i · f r

jdS − 2jk0

∮
S

f r
i · L′(f r

j )dS. (3.38)

With all the approximations and simplifications, the proposed preconditioner

([A]+[M ]) eventually becomes a symmetric sparse matrix. This precondition-

er can also be obtained by scaling the original ABC-based preconditioner [24]

by a factor of jk0 and adding back the locally approximated operator L′ to

Q′. It is well known that the spectrum distribution of the L operator clus-

ters at origin and infinity [86,88]. By adding back the L′ term, the modified

ABC-based preconditioner is closer to the FE-BI system than the original

ABC-based preconditioner in terms of the spectrum distribution.

To demonstrate the effectiveness of the modified ABC-based precondi-

tioner, the scattering from a conducting sphere with a dielectric coating

(εr = 4.0 − j1.0) is considered as an example. The total diameter of the

sphere is 0.6846 m, and the coating thickness is 0.047 m. Illuminated by

a 300-MHz plane wave, the object is discretized using curvilinear tetrahe-

drons with an average mesh size of 0.1 m, which leads to a total of 7, 297

unknowns. With the BI surface chosen to be the same as that of the

object, the spectrum distributions of the unpreconditioned FE-BI system

([A] + [G]), the FE-BI system with the original ABC-based preconditioner

([A] + [G])([A] + [L])−1 [24], and the FE-BI system with the modified ABC-

based preconditioner ([A]+ [G])([A]+ [M ])−1 are presented and compared in

Fig. 3.1a. As can be seen from the figure, the FE-BI system with the modi-

fied preconditioner has eigenvalues clustered within a smaller region centered

around (1, 0) in the complex plane. The convergence history of the itera-

tive solution using the biconjugate gradient stabilized method (BiCGSTAB)

shown in Fig. 3.1b indicates that the system with the modified ABC-based

preconditioner has a better convergence than the one with the original ABC-

based preconditioner. From the inset of Fig. 3.1b, it can be seen that the

bistatic RCS obtained using the proposed mixed testing scheme is on top of

the Mie series solution.

To achieve the same convergence residual as that of the unpreconditioned

system, the right preconditioner is adopted in this chapter. By applying

([A] + [M ]) as the right preconditioner on (3.22), the preconditioned system

equation can be obtained as

([A] + [G])([A] + [M ])−1{u} = {b}. (3.39)
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Once the auxiliary unknown vector {u} is obtained, the unknown vector

{x} can be recovered by one more application of the preconditioner matrix

{x}=([A]+ [M ])−1{u}. The application of the preconditioner can be carried

out by solving a matrix equation

([A] + [M ]){y} = {u} (3.40)

with either a direct or an iterative solver. If a direct solver is used, the

LU decomposition is applied to ([A] + [M ]), and the forward and back sub-

stitutions are performed to solve the matrix equation. However, for large

problems, the LU decomposition will result in a large storage and computa-

tional cost. Therefore, an iterative method is preferred for large problems.

To differentiate the two iterative processes, the one performed on the precon-

ditioned FE-BI system is called the outer iteration, and the one applied to

(3.40) is called the inner iteration. Similar to the FE-BI matrix ([A] + [G]),

the preconditioner ([A] + [M ]) has a poor condition. Therefore, another pre-

conditioner has to be used to accelerate the convergence of the inner iteration.

Different preconditioners for the inner iteration, such as the incomplete LU

(ILU) decomposition, the approximate inverse (AI), and the Jacobi precon-

ditioners [89], will be discussed in the following sections.

3.4 GPU Acceleration

Although the proposed FE-BI-MLFMA algorithm with the ABC-based pre-

conditioner is capable of solving electromagnetic problems accurately and

efficiently, the computation can be further accelerated by GPU parallel com-

puting techniques. The GPU-accelerated FE-BI-MLFMA algorithm contains

three major parts. The first part is the assembly of the BIE-related matrices.

The second part is the iterative solution, which includes the acceleration of

the inner and outer iterations. The third part is the evaluation of the scat-

tered fields.

The assembly of the BIE-related matrices can be parallelized on multi-

ple GPUs by hybridizing OpenMP and NVIDIA’s CUDA (compute united

device architecture) parallel programming models [58]. Since the MLFMA

is applied, only the near-field interactions in the matrices [P ] and [Q] need
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to be assembled. For each matrix, as can be seen in Fig. 3.2, a massive

number of GPU threads in each device are assigned to carry out the assem-

bly of a portion of the matrix, and each thread computes one entry in the

matrix [12, 84].

To accelerate the iterative solution using GPUs, special care should be

taken on the evaluation of the far-field interaction of the BIE-related part,

which includes the aggregation, the translation, and the disaggregation phas-

es. These procedures can be accelerated by computing the radiation patterns

S and the receiving patterns B on each level in parallel. To achieve a max-

imum parallel efficiency on all the levels, the implementation strategy of

“one thread per spectrum sampling” and “one/several block(s) per group”

is adopted to ensure the groups and their far-field patterns partitioned si-

multaneously [12, 84]. Another important issue is to develop an inner it-

eration scheme which can be parallelized efficiently on GPUs. Here, the

GPU-accelerated BiCGSTAB with the ILU0, the AI, and the Jacobi pre-

conditioners are employed to solve (3.40) [90–92]. The ILU0 preconditioner

requires roughly the same amount of memory as the input matrix ([A]+[M ]),

but the forward and back substitutions make it inefficient for parallel process-

ing on GPUs. The AI preconditioner is an incomplete approximation of the

inverse of the input matrix based on the minimization of the Frobenius norm.

In contrast to the ILU-based preconditioners, the AI preconditioner is ap-

plied using MVPs, which makes it very suitable for GPU parallelization. The

Jacobi preconditioner is very cheap to generate and apply, but the iterative

convergence is slow when the input matrix is ill-conditioned. The comparison

of the convergence and efficiency between these three preconditioners will be

given in Section 3.5.

Fast evaluation of the scattered fields is critical to the calculation of the

RCS and radiation patterns. Since the basis functions can be regarded as

the current sources from which the scattered fields are generated, a one-

dimensional grid of threads is allocated on the GPU, and each thread is

related to one basis function. To evaluate the scattered field at a specific

observation angle, each GPU thread calculates the corresponding scattered

field in parallel, and one CPU thread superposes all the calculated scattered

fields in series to avoid write conflicts on the GPU. To further accelerate

the scattered field evaluation, the OpenMP parallel technique is employed

to generate multiple CPU threads, and each CPU thread manages one GPU
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device to calculate a portion of the scattered fields [84].

3.5 Numerical Analysis

In this section, the accuracy of the proposed FE-BI algorithm is first in-

vestigated. The interior resonance test is then performed using a coated

conducting sphere. After that, different approaches of applying the modified

ABC-based preconditioner are discussed in detail. Last, the efficiency and

capability of the proposed GPU-FE-BI-MLFMA algorithm are demonstrat-

ed. All of the computations are performed on a workstation equipped with

a 4-core Intel Xeon W3520 CPU (with a memory of 18 GB) and 2 GeForce

GTX 660 GPUs (with a global memory of 2 GB for each).

3.5.1 Accuracy Test

In this test, the RCS is calculated to study the numerical accuracy of the

proposed FE-BI(CFIE) method, and the system of linear equations is solved

by a direct method. The numerical error is measured in terms of the relative

root-mean-square (RMS) error of the RCS results [83].

A Conducting Sphere with a Dielectric Coating

A dielectric coated PEC sphere with a total radius of 0.5 m is illuminated

by a 300-MHz plane wave. The 0.25-m-thick dielectric coating layer has

a relative permittivity of εr = 4.0− j1.0. Curvilinear tetrahedrons with an

average mesh size of 0.05 m are used to discretize the coating layer, which

results in 37, 915 FE DoFs and 4, 455 BI DoFs. The bistatic RCS is depicted

in Fig. 3.3a, which shows that the results obtained by the FE-BI(EJ) and the

proposed FE-BI(CFIE) methods all agree well with the Mie series solution.

However, the result obtained from the traditional FE-BI(CFIE) method (the

CFIE is tested by the RWG) is not as accurate as the proposed FE-BI(CFIE)

method. The corresponding RMS errors are given in Table 3.1, from which

it can be seen that the proposed and the FE-BI(EJ) methods have a similar

accuracy, and both of them give more accurate results than the traditional

FE-BI(CFIE) method.

42



A Dielectric Sphere

The next testing example is a lossless dielectric sphere with a relative per-

mittivity of εr=2.0 and a radius of a=1 m. Illuminated by a 110-MHz plane

wave, the object is discretized into curvilinear tetrahedrons with an average

size of 0.15 m, which results in 10, 182 FE DoFs and 1, 806 BI DoFs. From

the bistatic RCS shown in Fig. 3.3b, it can be seen that the results from the

FE-BI(EJ) and the proposed FE-BI(CFIE) methods are all in good agree-

ment with the Mie series solution, and the traditional FE-BI(CFIE) method

gives a much less accurate result, which can also be observed from the RMS

errors presented in Table 3.2.

A Dielectric Cuboid

As discussed in Section 3.2, the difference between the proposed FE-BI(CFIE)

and the traditional FE-BI(CFIE) is the testing function for the MFIE. To

illustrate the reason for the accuracy improvement, we calculate the RCS

of a lossless dielectric cuboid using the FE-BI(EFIE) and the FE-BI(MFIE)

methods with the same mesh discretization. For the FE-BI(EFIE), f r is

applied as the testing function for the EFIE. For the FE-BI(MFIE), f r and

n̂×fb are employed to test the n̂×MFIE, respectively. The lossless dielectric

cuboid has a size of 1.2 m × 0.5 m × 0.2 m with εr=2.0, and is illuminated

by a plane wave of 310 MHz. The bistatic RCS is presented in Fig. 3.3c. It

can be observed that the result from the FE-BI(MFIE) becomes as accurate

as the one from the FE-BI(EFIE) after using n̂×fb to test the n̂× MFIE.

Therefore, having the MFIE well tested by using the BC function leads to

the accuracy improvement for the FE-BI(CFIE) method.

Finally, three observations can be made from the presented examples in

this section.

1) The results calculated by the proposed FE-BI(CFIE) method are as accu-

rate as the ones calculated by the FE-BI(EJ) method, and much more ac-

curate than the ones calculated by the traditional FE-BI(CFIE) method.

2) The traditional FE-BI(CFIE) method has the problem of inaccuracy when

it deals with dielectric objects or objects with a thick coating. In these cas-

es, nontrivial tangential electric and magnetic fields exist simultaneously
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on the truncation surface. If the tangential magnetic fields on this surface

are not negligible compared with the tangential electric fields, then tradi-

tional FE-BI(CFIE) method cannot provide an accurate solution because

the n̂× MFIE cannot be well tested by f r.

3) The FE-BI(MFIE) method with the n̂× MFIE tested by n̂×fb is as

accurate as the FE-BI(EFIE) method with the EFIE tested by f r. Hence,

the accuracy of the FE-BI(CFIE) method can be improved by using the

mixed testing scheme.

3.5.2 Interior Resonance Test

Next, the interior resonance of the FE-BI(CFIE) method with the mixed

testing scheme is studied. Theoretically, the FE-BI(CFIE) method has been

proved to be free of spurious interior resonance corruption with the aid of

the CFIE [93, 94]. As a numerical validation, the condition number of the

proposed FE-BI(CFIE) method is calculated over a frequency band, and the

accuracy of the solution is studied at the interior resonant frequency. The

object considered is a conducting sphere with a dielectric coating (εr=4.0).

The total radius of the sphere is 1.0 m, and the coating thickness is 0.05 m.

The lowest analytical resonant frequency of a spherical cavity formed by the

outside surface of the coated sphere is 130.92 MHz. To capture the numerical

resonant frequency, a frequency search is applied using the FE-BI(EFIE),

the FE-BI(EJ), and the FE-BI(CFIE) methods under a discretization with

an average mesh size of 0.15 m. As shown in Fig. 3.4a, the numerical

resonant frequency captured by the FE-BI(EFIE) method is 130.96 MHz,

and there is no resonant frequency observed for the FE-BI(CFIE) and the

FE-BI(EJ) methods. It can also be observed that the FE-BI(CFIE) method

with the mixed testing scheme has the smallest condition number among all

the methods.

The bistatic RCS is calculated using the FE-BI(EFIE) and the proposed

FE-BI(CFIE) methods at the numerical resonant frequency. It is evident

from Fig. 3.4b that the accuracy of the FE-BI(EFIE) method is significantly

compromised because of the spurious interior resonance corruption, while the

result of the proposed FE-BI(CFIE) method remains very accurate. At such

a frequency, the iterative solution of the proposed FE-BI(CFIE) method
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takes only 4 iterations to converge to a targeted relative residual error of

10−3 by using the modified ABC-based preconditioner. Therefore, it can be

concluded that the mixed testing scheme does not deteriorate the immunity

of the interior resonance corruption of the FE-BI(CFIE) method.

3.5.3 Application of the Modified ABC-Based Preconditioner

To apply the ABC-based preconditioner ([A]+[M ]), one can solve (3.40) using

either a direct or an iterative method. For the direct method, ([A] + [M ])

is first decomposed into a lower and an upper triangular matrix, and solved

by the forward and back substitutions. For the iterative method, the ILU0,

the AI, or the Jacobi preconditioned BiCGSTAB method with a targeted

relative residual error of 10−3 is applied to solve (3.40).

To find the most efficient and effective way of applying the modified ABC-

based preconditioner on GPUs, a comparative study is performed using a

cylinder with 30 fins as a numerical example. This object has an impedance

surface with a normalized surface impedance of ηr=0.5, and is embedded in a

larger dielectric cylinder with εr=2.0− j1.0. Illuminated by a 1.0-GHz plane

wave, the whole object is discretized into 379, 234 FE DoFs and 32, 628 BI

DoFs. The average construction and solution times and the average iteration

counts for different methods are presented in Table 3.3. Compared with the

iterative methods, the direct method is expensive in the construction phase,

and cheap in the solution phase. However, the direct method will require a

larger storage and a higher computational cost when the problems become

large, and the solution is very difficult to parallelize on GPUs. Therefore,

we consider only the iterative methods for the GPU calculation. It can be

seen from the table that the AI preconditioned iterative method is most

efficient in the solution phase, and the Jacobi preconditioned one is cheapest

in the construction phase. The ILU0 preconditioned iterative method is

not well suited for GPU parallelization because it requires the forward and

back substitutions. With the aid of the modified ABC-based preconditioner,

the outer iteration converges in 5 steps. As shown in Fig. 3.5, the HH-

polarized bistatic RCS calculated by the CPU- and GPU-FE-BI-MLFMA

and the discrete body-of-revolution (DBOR) algorithm [95] agree well with

each other.
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3.5.4 Efficiency and Capability

Next, the efficiency and capability of the proposed algorithm are demonstrat-

ed by applying all the techniques discussed in this chapter. The BI surface is

chosen as the surface of the objects. The preconditioned BiCGSTAB method

is applied with a targeted relative residual error of 10−3.

A Large Coated Sphere

First, the scattering from a large coated sphere with a total diameter of

25λ0 (λ0 being the free-space wavelength) is simulated. The thickness of

the coating dielectric is 0.1λ0, and the relative permittivity of the coating is

εr=2.5−j0.5. The object is discretized into curvilinear tetrahedrons with an

average mesh size of 0.1λ0, which results in 2, 697, 315 FE DoFs and 738, 099

BI DoFs. From the HH-polarized bistatic RCS shown in Fig. 3.6a, it is

evident that the numerical result of the proposed method has a good agree-

ment with the Mie series solution. The corresponding RMS error is 1.47%.

The convergence history of the iterative solutions with the ABC-based pre-

conditioners is given in Fig. 3.6b. Obviously, the iterative solution with

the modified preconditioner converges faster than the one with the original

preconditioner. The corresponding inner iteration with the Jacobi precondi-

tioner takes an average of 180 and 143 iterations to converge, respectively.

The total memory cost is about 12.6 GB.

A Partial Human Body

The radiation of a 1.5-GHz dipole beside a partial human body, as shown

in Fig. 3.7a, is considered. The partial human body with a brain and t-

wo eyeballs has a total height of 392.3 mm and a total width of 539.6 mm.

The relative permittivities εr and mesh sizes h of different parts are listed in

Table 3.4. The nonuniform mesh is employed to discretize the object into

1, 049, 558 FE DoFs and 52, 935 BI DoFs. The power pattern radiated by a

dipole located at x=0 mm, y=100 mm, and z=250 mm is calculated by the

CPU-FE-BI-MLFMA and the GPU-FE-BI-MLFMA, respectively. The com-

putational costs are summarized in Tables 3.5 and 3.6, which show that the

total speedup achieved is 16.4 and 18.7 times, respectively, using two differ-
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ent preconditioners for the inner iteration. The total memory cost is 7.6 GB

with the Jacobi preconditioner and 7.9 GB with the AI preconditioner. The

normalized radiation patterns are shown in Fig. 3.8. To demonstrate the ad-

vantage of the modified ABC-based preconditioner, the convergence history

of the iterative solutions is given in Fig. 3.7b. It is shown that the iterative

solution with the modified preconditioner takes far fewer iterations than the

one with the original preconditioner. For the inner iteration with the AI

preconditioner, the solution of the modified and the original preconditioners

take an average of 180 and 167 steps to converge, respectively.

A Dielectric Coated Missile-Like Object

A missile-like object with a 3-m-long body and 1-cm-thick wings is illu-

minated by a 1.5-GHz plane wave. With a normalized impedance surface

(ηr = 0.5) and a 11-mm-thick coating layer (εr = 4.0− j1.0), the object is

discretized into curvilinear tetrahedrons with an average mesh size of 10 m-

m, which results in 915, 833 FE DoFs and 187, 635 BI DoFs. The VV- and

HH-polarized bistatic RCS are presented in Fig. 3.9a, which demonstrates a

good agreement between the results from the CPU-FE-BI-MLFMA and the

GPU-FE-BI-MLFMA. The computational costs are summarized in Tables

3.7 and 3.8, from which it can be seen that a total speedup of 23.6 and 25.5

times is achieved, respectively. The total memory cost is 7.8 GB with the

Jacobi preconditioner and 8.1 GB with the AI preconditioner. The conver-

gence histories of the iterative solutions are presented in Fig. 3.9b, which

shows again that the modified ABC-based preconditioner has a much faster

convergence. For each outer iteration, the inner solutions of the modified

and the original ABC-based preconditioners take an average of 104 and 211

iterations to converge when the AI preconditioner is applied to the inner it-

eration. Therefore, the modified ABC-based preconditioner is more efficient

than the original one.

3.6 Summary

In this chapter, a GPU-accelerated FE-BI(CFIE) method was presented for

three-dimensional electromagnetic analysis of complicated objects in free
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space. First, a mixed testing scheme was applied to improve the accuracy of

the numerical solution, so that the proposed FE-BI(CFIE) method can be as

accurate as the FE-BI(EJ) method, and much more accurate than the tradi-

tional FE-BI(CFIE) method. The proposed FE-BI(CFIE) method was also

numerically shown to have a better condition than the conventional methods

and be free of the interior resonance corruption. To accelerate the iterative

convergence, a modified ABC-based preconditioner was proposed. Compared

with the original ABC-based preconditioner, this modification not only made

the preconditioner symmetric, but also improved the effectiveness significant-

ly. To further speed up the computation, a GPU-accelerated FE-BI algorithm

was developed. Extensive numerical experiments were conducted to validate

the numerical accuracy and demonstrate the computational efficiency and

capability. Through the numerical results, the proposed GPU-accelerated

FE-BI(CFIE) method was shown to be accurate, robust, and efficient for

practical applications.
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3.7 Figures and Tables
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Figure 3.1: A comparison of the ABC-based preconditioners through a
dielectric coated sphere. (a) Spectrum distribution of ([A] + [G]),
([A] + [G])([A] + [L])−1, and ([A] + [G])([A] + [M ])−1. (b) Convergence
histories of the BiCGTAB solution with a targeted relative error of 10−5.
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Figure 3.2: Assembly of matrices [P ] and [Q] on GPU.
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Figure 3.3: Bistatic RCS of (a) a dielectric coated PEC sphere, (b) a
lossless dielectric sphere, and (c) a lossless dielectric cuboid.
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Figure 3.4: Interior resonance test of the proposed FE-BI(CFIE) method.
(a) Condition numbers as a function of frequency in a small band around
the analytical resonant frequency. (b) Bistatic RCS at the numerical
resonant frequency.
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Figure 3.5: HH-polarized bistatic RCS of a dielectric coated cylinder with
fins at 1.0 GHz.
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Figure 3.6: Scattering from a dielectric coated sphere with a total diameter
of 25λ0. (a) HH-polarized bistatic RCS. (b) Convergence histories of the
BiCGSTAB method with a targeted relative error of 10−3.
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Figure 3.7: Radiation of a 1.5-GHz dipole beside a partial human body. (a)
A partial human body with a brain and two eyeballs. (b) Convergence
histories of the BiCGSTAB method with a targeted relative error of 10−3.
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Figure 3.8: Normalized power pattern (in linear scale) of a 1.5-GHz dipole
beside a partial human body. (a) In the yz-plane. (b) In the xy-plane.
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Figure 3.9: Scattering from a dielectric coated missile-like object at 1.5
GHz. (a) Bistatic RCS calculated by CPUs and GPUs, respectively. (b)
Convergence histories of the BiCGSTAB method with a targeted relative
error of 10−3.
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Table 3.1: RMS errors of the bistatic RCS of a dielectric coated PEC sphere

FE-BI(EJ) FE-BI(CFIE)1 FE-BI(CFIE)2

VV-pol. (%) 1.50 4.52 1.43

HH-pol. (%) 1.48 7.91 1.40
1 The CFIE is tested by the RWG.
2 The mixed testing scheme is applied to the CFIE.

Table 3.2: RMS errors of the bistatic RCS of a lossless dielectric sphere

FE-BI(EJ) FE-BI(CFIE)1 FE-BI(CFIE)2

VV-pol. (%) 1.95 21.19 2.01

HH-pol. (%) 1.11 25.47 1.11
1 The CFIE is tested by the RWG.
2 The mixed testing scheme is applied to the CFIE.

Table 3.3: Construction and solution costs for different preconditioners

LUD ILU0 AI Jacobi

Const.1(sec.) 17.2 0.49 7.8 0.039

Sol.1(sec.) 0.71 39.4 7.8 14.1

Iterations1 N/A 175 65 159

Const.2(sec.) N/A 0.18 7.7 0.0007

Sol.2(sec.) N/A 14.2 1.3 2.1

Iterations2 N/A 189 62 164
1 The 4-threaded Intel MKL pardiso routines are
used in the LUD, and the 4-threaded CULA S-
parse host routines are used in the ILU0, the AI,
and the Jacobi.

2 The CULA Sparse device routines are used on
one GPU.
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Table 3.4: Material information and mesh size of a partial human body

Brain Eyes Body

εr 37.5−j9.52 54.0−j17.2 15.0−j10.0

h (mm) 3.2 2.7 5.0

Table 3.5: Computational costs of the power pattern calculation of a
1.5-GHz dipole beside a partial human body

Assy. Precon.1 Sol. RCS Total

CPU2(sec.) 5746.0 0.09 2210.8 125.9 8082.8

GPU3(sec.) 170.0 0.03 319.3 2.2 491.5

Speedup 33.8 3.0 6.9 57.2 16.4
1 The Jacobi preconditioner is applied.
2 The code is executed by 8 threads on an Intel Xeon W3520 CPU.
3 The code is accelerated by 2 GeForce GTX 660 GPUs.

Table 3.6: Computational costs of the power pattern calculation of a
1.5-GHz dipole beside a partial human body

Assy. Precon.1 Sol. RCS Total

CPU2(sec.) 5746.0 23.7 1100.0 125.9 6995.6

GPU3(sec.) 170.0 23.0 177.0 2.2 373.2

Speedup 33.8 1.0 6.2 57.2 18.7
1 The AI preconditioner is applied.
2 The code is executed by 8 threads on an Intel Xeon W3520 CPU.
3 The code is accelerated by 2 GeForce GTX 660 GPUs.
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Table 3.7: Computational costs of the bistatic RCS calculation of a coated
missile-like object at 1.5 GHz

Assy. Precon.1 Sol. RCS Total

CPU2(sec.) 5868.6 0.07 920.0 218.9 7007.6

GPU3(sec.) 161.0 0.02 130.8 4.4 296.4

Speedup 36.5 3.5 7.1 49.8 23.6
1 The Jacobi preconditioner is applied.
2 The code is executed by 8 threads on an Intel Xeon W3520
CPU.

3 The code is accelerated by 2 GeForce GTX 660 GPUs.

Table 3.8: Computational costs of the bistatic RCS calculation of a coated
missile-like object at 1.5 GHz

Assy. Precon.1 Sol. RCS Total

CPU2(sec.) 5868.6 18.4 549.6 218.9 6655.5

GPU3(sec.) 161.0 18.8 76.7 4.4 260.9

Speedup 36.5 0.98 7.2 49.8 25.5
1 The AI preconditioner is applied.
2 The code is executed by 8 threads on an Intel Xeon W3520
CPU.

3 The code is accelerated by 2 GeForce GTX 660 GPUs.
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CHAPTER 4

A MULTI-SOLVER SCHEME BASED ON
COMBINED FIELD INTEGRAL

EQUATIONS

To analyze electrically large and/or highly complex objects, a multi-solver

scheme based on combined field integral equations (CFIEs) is proposed in

this chapter. In this scheme, an object is decomposed into multiple bodies.

The choice of the individual solver for each body is based on the material

property and geometry. The FE-BI method is applied to model bodies with

complicated materials. The MoM is employed to model homogeneous or

conducting bodies. To couple the individual solvers together, the CFIE is

applied to the exterior regions of each body.

4.1 Formulation

Consider an object immersed in free space with permittivity ε0 and perme-

ability μ0 and illuminated by an external incident field (Einc, H̄ inc=Z0H
inc),

where Z0 is the free-space impedance, as shown in Fig. 4.1. The object is

decomposed into multiple bodies Ωs (s=1, ..., Nb) according to its material

property. The surface of Ωs is denoted as Ss, where the equivalent surface

electric current j̄s and magnetic current ms are defined. For each body, there

is an exterior region denoted as region 0 and an interior region denoted as

region s. The scattered electric and magnetic fields in region d (d = 0, s)

generated by the currents j̄s and ms on Ss can be written as

Esca
d (j̄s,ms;Ss)= −ηrdLd(j̄s;Ss) +Kd(ms;Ss) (4.1)

H̄sca
d (j̄s,ms;Ss)= −ηrdKd(j̄s;Ss)− Ld(ms;Ss) (4.2)

where j̄s = Z0n̂s×Hs, ms = Es× n̂s (n̂s is the unit normal vector pointing

to region 0), ηrd =
√
μrd/εrd, and the integral operators Ld and Kd are defined
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as

Ld(v;Ss)=jkd

∫
Ss

(
I +

∇∇
k2
d

)
e−jkdR

4πR
· v(r′)dS ′ (4.3)

Kd(v;Ss)=

∫
Ss

v(r′)×∇e−jkdR

4πR
dS ′ (4.4)

where I is the identity operator, kd is the wavenumber in region d of Ωs,

and R = |r− r′|. Note that in (4.1) and (4.2) a homogeneous dielectric with

a relative permittivity εrd and permeability μrd is assumed for the interior

region (d=s).

In the following subsections, we first present the formulation to model the

exterior and interior regions of a body. Then we give the dual formulation.

Finally, we discuss the choice of testing functions and solution strategies.

4.1.1 EM Modeling in the Exterior Region

All the bodies share the same exterior region, which is free space. Thus

we can formulate the electromagnetic fields in region 0 for all the bodies

uniformly. The currents j̄s and ms on surface Ss satisfy the electric field

integral equation (EFIE) and the magnetic field integral equation (MFIE) in

region 0 as follows

−ms − n̂s ×Esca
0 (j̄s,ms;Ss)

= n̂s ×Einc + n̂s ×
∑
q �=s

Esca
0 (j̄q,mq;Sq) (4.5)

ηr0j̄s − n̂s × H̄sca
0 (j̄s,ms;Ss)

= n̂s × ηr0H̄
inc + n̂s ×

∑
q �=s

H̄sca
0 (j̄q,mq;Sq). (4.6)

Testing the EFIE with n̂s × T α
0 yields

−〈n̂s × T α
0 ,ms〉Ss − 〈T α

0 ,E
sca
0 (j̄s,ms;Ss)〉Ss

= 〈T α
0 ,E

inc〉Ss +
∑
q �=s

〈T α
0 ,E

sca
0 (j̄q,mq;Sq)〉Ss (4.7)
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and testing the MFIE with T β
0 yields

ηr0〈T β
0 , j̄s〉Ss − 〈T β

0 , n̂s × H̄sca
0 (j̄s,ms;Ss)〉Ss

= ηr0〈T β
0 , n̂s × H̄ inc〉Ss

+
∑
q �=s

〈T β
0 , n̂s × H̄sca

0 (j̄q,mq;Sq)〉Ss (4.8)

where the surface integral 〈•, •〉S is defined as

〈u,v〉S =

∫
S

u · vTdS (4.9)

in which u and v are column vectors containing vector functions, and the

superscript T denotes the transpose of a column vector. The choice of the

testing functions T α
0 and T β

0 will be discussed later in Section 4.1.4.

To obtain the matrix equation which can be solved numerically, the un-

known currents are expanded as

j̄s=T T
s hs (4.10)

ms=−T T
s es (4.11)

where Ts is a column vector consisting of the basis functions, es and hs are

column vectors consisting of the expansion coefficients yet to be determined.

To avoid the problem of spurious interior resonance, the CFIE is used to

formulate the exterior problem. Hence, the matrix equation obtained by

combining (4.7) and (4.8) with substitution of (4.10) and (4.11) can be writ-

ten as

[Ps0] {es}+ ηr0 [Qs0] {hs}
=
{
bincs

}
−
∑
q �=s

[Ce
sq]{eq} − ηr0

∑
q �=s

[Ch
sq]{hq} (4.12)

where

[Ps0]=α0〈n̂s × T α
0 ,

1

2
Ts + n̂s × K̃0(Ts;Ss)〉Ss

+β0〈n̂s × T β
0 ,L0(Ts, Ss)〉Ss (4.13)

[Qs0]=α0〈T α
0 ,L0(Ts;Ss)〉Ss
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+β0〈T β
0 ,

1

2
Ts + n̂s × K̃0(Ts;Ss)〉Ss (4.14)

[Ce
sq]=α0〈n̂s × T α

0 ,
1

2
Tq + n̂s × K̃0(Tq;Sq)〉Ss

+β0〈n̂s × T β
0 ,L0(Tq, Sq)〉Ss (4.15)

[Ch
sq]=α0〈T α

0 ,L0(Tq;Sq)〉Ss

+β0〈T β
0 ,

1

2
Tq + n̂s × K̃0(Tq;Sq)〉Ss (4.16)

{bincs }=α0〈T α
0 ,E

inc〉Ss + β0ηr0〈T β
0 , n̂s × H̄ inc〉Ss (4.17)

where K̃0 is the principal value of the operator K0, and α0 and β0 are com-

bination factors, which are both chosen as 1 in this chapter.

4.1.2 EM Modeling in the Interior Region

To model the electromagnetic fields in the interior region of a body, the most

suitable formulation will be considered based on the material property of the

body.

Conducting Bodies

To model an imperfectly conducting body, the IBC is widely used to approx-

imately describe the relation between j̄s and ms on surface Ss as

n̂s ×ms − zsj̄s = 0 (4.18)

where zs is the normalized surface impedance. Testing the IBC equation

(4.18) with T γ
s leads to

〈T γ
s , n̂s ×ms〉Ss − zs〈T γ

s , j̄s〉Ss = 0 (4.19)

where the choice of T γ
s will be discussed in Section 4.1.4. By substituting

(4.10) and (4.11) into (4.19), the matrix equation can be obtained as

[Us] {es} − zs [Vs] {hs} = 0 (4.20)
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where

[Us]=〈n̂s × T γ
s ,Ts〉Ss (4.21)

[Vs]=〈T γ
s ,Ts〉Ss . (4.22)

When (4.20) is coupled with (4.12), a CFIE(IBC) matrix is obtained. By

letting zs = 0, the CFIE(IBC) can be used to model a perfectly electric

conducting (PEC) object.

Homogeneous Dielectric Bodies

If body s is a homogeneous dielectric object, the currents j̄s and ms on

surface Ss satisfy the EFIE and MFIE in region s given by

−ms + n̂s ×Esca
s (j̄s,ms;Ss)=0 (4.23)

ηrsj̄s + n̂s × H̄sca
s (j̄s,ms;Ss)=0. (4.24)

By discretizing (4.23) and (4.24) in a similar manner as given in Section 4.1.1,

the matrix equation for the interior region can be obtained as

[Ps] {es}+ ηrs [Qs] {hs} = 0 (4.25)

where

[Ps]=αs〈n̂s × T α
s ,−

1

2
Ts + n̂s × K̃s(Ts;Ss)〉Ss

+βs〈n̂s × T β
s ,Ls(Ts, Ss)〉Ss (4.26)

[Qs]=αsηrs〈T α
s ,Ls(Ts;Ss)〉Ss

+βsηrs〈T β
s ,−

1

2
Ts + n̂s × K̃s(Ts;Ss)〉Ss (4.27)

in which K̃s is the principal value of the operator Ks, and αs and βs are

combination factors chosen as αs = −1 and βs = 1. Again, the choice

of the testing functions T α
s and T β

s will be discussed in Section 4.1.4. A

CFIE(Dielectric) matrix can be obtained by coupling (4.12) with (4.25).
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Inhomogeneous Bodies

To model an inhomogeneous body with complicated structures and materials,

the FEM can be applied to the interior region. The resulting matrix equation

can be written as

[Ks] {Es}+ [Bs] {hs} = 0. (4.28)

By coupling (4.28) with (4.12), the FE-BI(CFIE) matrix is obtained. The

expressions for [Ks] and [Bs] can be found in [54].

4.1.3 Dual Formulation

Based on the formulation above, the matrix equation for body s can be

written uniformly as

[As][T ]s{x}+
∑
q �=s

[Csq][T ]q{x} = [T ]s{b} (4.29)

where [As] denotes the MoM matrix for body s as

[As] =

[
Us −zsVs

Ps0 ηr0Qs0

]
or

[
Ps ηrsQs

Ps0 ηr0Qs0

]
(4.30)

or the FE-BI matrix for body s as

[As] =

[
Ks Bs

Ps0 ηr0Qs0

]
(4.31)

and [Csq] is the coupling matrix between bodies s and q, which can be ex-

pressed as

[Csq] =

[
0 0

Ce
sq ηr0C

h
sq

]
. (4.32)

Furthermore, [T ]s is a Boolean matrix to extract the DOFs defined in body

s, and {x} denotes the unknown vector of the global system. The FE-BI

unknown vector in body s is [T ]s{x} = {Es, hs}T and the MoM unknown

vector in body s is [T ]s{x}={es, hs}T. Finally, {b} represents the excitation

vector of the global system, and the excitation vector for body s is given by

[T ]s{b}.
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By applying the simple substitutions es → hs, hs → −es, E
inc → H̄ inc,

H̄ inc → −Einc, ηrd → 1/ηrd, zs → ys, the dual equation of (4.29) can be

obtained as

[Ad
s ][T ]s{xd}+

∑
q �=s

[Cd
sq][T ]q{xd} = [T ]s{bd} (4.33)

which can be used to solve scattering from a multibody system with perfectly

magnetic conducting (PMC) bodies by letting ys=0.

Solving the global matrix obtained by summing up (4.29), (4.33), or their

combinations over all the bodies, the fields in the bodies and the currents on

their surfaces can be computed. As can be seen, the proposed multi-solver

scheme integrates three solvers: the CFIE(IBC) for conducting bodies, the

CFIE(Dielectric) for homogeneous dielectric bodies, and the FE-BI(CFIE)

for inhomogeneous bodies. With the unified CFIE coupling scheme for the

exterior regions, the electromagnetic problem of a complex object can be

solved by applying the most suitable equations to the interior regions of the

decomposed bodies. When the proposed multi-solver scheme is applied to

a composite object with multiple conducting and dielectric junctions, there

is no need to assign special junction basis functions or apply special testing

procedures at the junctions. Before we conclude this section, it is worth

mentioning that the CFIE(Dielectric) requires less memory than the one

published in [45]. To model a dielectric body using the MoM, if the number

of DOFs used in the CFIE(Dielectric) is N1, then the memory cost is N2
1 . In

contrast, the total number of DOFs referred in [45] is N1+N0, which results

in a memory cost of N2
1 +2N2

0 (referring to (52) in [45]), where N1 and N0

are the numbers of the interior and exterior DOFs, respectively. When a fast

algorithm such as the MLFMA is applied to accelerate the computation, the

memory saving is scaled with N0logN0.

4.1.4 Choice of Testing Functions

To achieve an accurate solution of (4.29) or (4.33), it has to test the operators

in the matrices [Ps], [Us], [Qs0], and [Ch
sq] well by applying proper testing

functions. In the discrete space, if the Rao-Wilton-Glisson (RWG) function

[73,74] is chosen as the basis function, the testing functions should be chosen

as T α
0 = f r

s and T β
0 = n̂s×fb

s in order to test the I, K̃, and L operators in

(4.14) and (4.16) well, where f r
s and fb

s denote column vectors consisting of
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the RWG and the Buffa-Christiansen functions [78], respectively. To test the

I, K̃, and L operators in (4.26) well, the testing functions should be chosen

as T α
s =fb

s and T β
s =f r

s×n̂s. To test the I operator in (4.21) well, the testing

function can be chosen as T γ
s =fb

s . The detailed discussions on the choices

of basis and testing functions can be found in [54] and [80,83,96].

4.1.5 Iterative Solution

Iterative methods are preferred for the solution of a multi-solver system with

a very large number of unknowns, because they have lower computational

complexities and memory requirements compared to direct methods. To ac-

celerate the computation and reduce the memory requirement, the MLFMA

is applied to the MoM, BI, and coupling matrices in the proposed multi-solver

scheme. The application of the MLFMA with the mixed testing scheme can

be referred to [54]. In the proposed multi-solver scheme, we adopt the so-

called common MLFMA tree strategy, in which all the bodies share the same

octree structure that is determined by the largest wavenumber among all the

bodies. Although this strategy is not optimal when the bodies have high

contrast materials, it can avoid a special treatment in the calculation of the

near-field interactions on body interfaces as given in [44]. To accelerate the

computation, other fast algorithms or other implementations of fast algo-

rithms can be employed easily in the proposed framework without changing

the multi-solver formulation.

To further accelerate the iterative solution, a preconditioner based on

ABCs is adopted [24, 54]. The preconditioner can be obtained by substitut-

ing the global operator L with a locally approximate operator L′, replacing

n̂×fb with f r, and neglecting all the interactions that contain the global

operator K̃ in (4.29) and (4.33). By doing so, the spectrum distribution of

the obtained ABC-based preconditioner is similar to that of the multi-solver

system. The application of the preconditioner can be carried out by solving

the preconditioning matrix directly or iteratively as detailed in [54].
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4.2 Numerical Analyses of Individual Solvers

To obtain a robust and accurate multi-solver algorithm, it is essential to in-

vestigate the conditions and accuracy of the individual solvers. The detailed

discussion on the FE-BI(CFIE) can be found in [54]; here only the properties

of the CFIE(IBC) and CFIE(Dielectric) are discussed. In this chapter, the

CFIE(IBC) and the CFIE(Dielectric) are obtained from a combination of

the dual formulations in (4.29) and (4.33), so that the electric and magnetic

fields are well tested in both the interior and exterior regions by applying the

mixed testing scheme. All of the computations in this chapter are performed

on a cluster node equipped with a 20-core Intel Xeon E5-2680 v2 CPU and

a 250-GB memory.

4.2.1 Condition of the Individual Solvers

The CFIE-based methods have been proven theoretically to be free of spu-

rious interior resonance corruption [93, 94, 97] and verified numerically in

published papers [54, 98, 99]. In this section, we study the condition with

respect to the material property and mesh density.

CFIE(IBC)

A conducting sphere with a radius of 1 m is considered. The surface of the

sphere is discretized into curvilinear triangles with a mesh size of 0.15 m.

The condition number of the system matrix obtained from the discretization

of the CFIE(IBC) at 130 MHz is shown in Fig. 4.2, in which the condition

number is displayed as a two-dimensional function of z=R+jX. The real

part of the normalized surface impedance, R, varies from 10−5 to 1.0, and is

shown as the horizontal axis. The imaginary part of the normalized surface

impedance, X, also varies from 10−5 to 1.0, and is shown as the vertical axis.

It is found from the figure that the condition numbers for all normalized

surface impedance z are smaller than 81. At the PEC limit, the condition

numbers stay around 20.

To study the condition with respect to the mesh density, the same conduct-

ing sphere with a normalized surface impedance z=0.1 + j0.1 is considered.

The condition number of the system matrix obtained from the discretization
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of the CFIE(IBC) is calculated and plotted in Fig. 4.3. From the result, it

can be observed clearly that the CFIE(IBC) has a very small condition num-

ber, which increases linearly with respect to the mesh density. This can be

explained through the analysis of the CFIE(IBC) formulation. The diagonal

blocks of the system matrix consist of the well tested I, L, and K̃ operators,

and the off-diagonal blocks have eigenvalues clustered at zero. Hence the en-

tire matrix behaves like a matrix consisting of well tested I and L operators.

The detailed discussion can be found in [53].

CFIE(Dielectric)

The object considered is a homogeneous dielectric cube with a size of 0.3 m

× 0.3 m × 0.3 m. The surface of the cube is discretized into triangles with a

mesh density of 10 segments per dielectric wavelength corresponding to 300

MHz. The PMCHWT, N-Müller, and the CFIE(Dielectric) are applied to

solve the scattering from the cube. As can be seen in Fig. 4.4, among three

solvers, the CFIE(Dielectric) is most stable as the relative permittivity varies

from 4 to 36. The increase in the condition numbers around εr=24 is due to

a physical resonance of the dielectric cube [99].

To investigate the condition versus mesh density, the same dielectric cube

with εr = 4 is considered. The condition number of the system matrix ob-

tained from the discretization of the CFIE(Dielectric) is calculated and giv-

en in Fig. 4.5. Again, the result shows that the condition number of the

CFIE(Dielectric) increases linearly with respect to mesh density. The anal-

ysis on the blocks of the CFIE(Dielectric) matrix indicates that the system

matrix behaves like a matrix consisting of well tested I and L operators.

4.2.2 Accuracy of the Individual Solvers

The first testing example is a conducting sphere with a radius of 1 m and a

normalized surface impedance z=0.5. The sphere is discretized into curvi-

linear triangles with an average size of 0.1 m and illuminated by a 300-MHz

plane wave. The bistatic radar cross section (RCS) results calculated by

the CFIE(IBC) and SDIE [53] are compared with the Mie series solutions.

The relative root-mean-square (RMS) errors [83] are given in Table 4.1, from

70



which it can be seen that the proposed CFIE(IBC) and the SDIE have a

similar accuracy.

To show the accuracy of the CFIE(IBC) at limit cases, we set zs = 0 in

(4.29) and ys=0 in (4.33) for the same sphere. The bistatic RCS of the cor-

responding PEC sphere is identical to that of a PMC sphere with a switched

polarization. All results agree very well with the Mie series solutions. The

RMS errors for the PEC-VV and the PMC-HH cases are 0.22%, and the ones

for the PEC-HH and the PMC-VV cases are 0.10%.

The second testing example is a lossless dielectric sphere with a relative

permittivity of εr=2 and a radius of 1 m. Illuminated by a 110-MHz plane

wave, the surface of the sphere is discretized into curvilinear triangles with

an average size of 0.15 m. The bistatic RCS is calculated and compared with

the Mie series solutions. The RMS errors of the VV- and HH-polarized cases

are 0.21% and 0.48%, respectively, which demonstrate the accuracy of the

CFIE(Dielectric) method with the mixed testing scheme.

4.3 Numerical Examples of the Multi-Solver Scheme

The numerical analyses in Section 4.2 showed that the individual solvers have

good conditions and a high accuracy. In this section, the accuracy, flexibili-

ty, and capability of the proposed multi-solver scheme will be demonstrated

through several numerical examples. The global systems in the following

examples are solved by the biconjugate gradient stabilized (BiCGSTAB)

method with a targeted relative residual of 10−3 unless indicated other-

wise. To accelerate the computation and reduce the memory requirement,

the MLFMA is employed for all the BI- and SIE-related computation.

4.3.1 A Dielectric Sphere

A homogeneous dielectric sphere with εr = 2 is illuminated by a 300-MHz

plane wave. As shown in Fig. 4.6, the sphere is decomposed into two bod-

ies, and each body is discretized separately with a mesh size of 0.1 m. The

CFIE(Dielectric) is applied to model body I. To model body II, either the

CFIE(Dielectric) (case 1) or the FE-BI(CFIE) method (case 2) is applied.

The global system is solved iteratively using the ABC-based precondition-
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er, which converges in 10 iterations in case 1 and 8 iterations in case 2,

respectively. The calculated bistatic RCS of the two cases and the Mie se-

ries solutions are given in Fig. 4.6, which demonstrates the accuracy of the

proposed multi-solver sheme.

Next, the same dielectric sphere is equally partitioned into eight bodies as

shown in Fig. 4.7a, and illuminated by a 131-MHz plane wave. Each body

is discretized separately with a mesh size of 0.15 m, and modeled by the

CFIE(Dielectric). With the application of the ABC-based preconditioner, the

solution takes 13 iterations to converge, and the surface current distribution

is shown in Fig. 4.7b. For comparison, the dielectric sphere is simulated by

the CFIE(Dielectric) without partition, and the current distribution is given

in Fig. 4.7c. As can be seen, a good agreement is achieved between the two

simulations.

4.3.2 A Composite Sphere

A composite sphere is illuminated by a 131-MHz plane wave from the z

direction. As shown in Fig. 4.8, the sphere with a radius of 1 m is made

of two hemispheres. One is a dielectric with εr=2 and the other is made of

PEC. The sphere is decomposed into two bodies according to the material

property, and each body is discretized separately with a mesh size of 0.15

m. The CFIE(IBC) is used to model the PEC body. To model the dielectric

body, either the CFIE(Dielectric) (case 1) or the FE-BI(CFIE) (case 2) is

employed. The global system is solved iteratively with the application of the

ABC-based preconditioner, which converges in 11 iterations in both cases.

The bistatic RCS and the electric current distribution of the two cases are

presented in Figs. 4.8 and 4.9, respectively, from which a good agreement

can be observed.

4.3.3 A Composite Cylinder

A composite cylinder shown in Fig. 4.10a is partitioned into three bodies.

Body I is a 0.1-m-thick dielectric coating layer with εr = 1.5, body II is

a conducting cylinder with z = 0.1, and body III is a dielectric cylinder

with εr = 2. The conductor is modeled by the CFIE(IBC), and the two
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dielectric materials are modeled by the CFIE(Dielectric). The surface of

each body is discretized into curvilinear triangles with an average size of

0.05 m, which results in 36,672 DOFs in total. Illuminated by a 500-MHz

plane wave from the z direction, the bistatic RCS of the composite cylinder

is calculated by solving the multi-solver system, as shown in Fig. 4.10b. The

iterative solution takes 11 steps to converge with the application of the ABC-

based preconditioner. The ABC-based preconditioner is solved iteratively

with the approximate inverse (AI) preconditioner, which takes an average

of 14 iterations to converge to a relative error of 10−3. The RCS results

are compared with the FE-BI(CFIE) solutions [54], and a good agreement

is observed for both VV- and HH-polarized cases. The current distributions

on three bodies are shown in Fig. 4.11. As can be seen, the current pattern

on the surface of the inner cylinders is consistent with the one on the inner

surface of the coating layer.

4.3.4 A Multilayer Dielectric Sphere

The scattering from a multilayer dielectric sphere illuminated by a 300-MHz

plane wave is calculated to show the capability in modeling high-contrast

dielectric materials. The partially homogeneous sphere is composed of 6 di-

electric layers with different relative permittivities, which from inside out are

16, 4− j0.03, 15, 5− j0.02, 14, and 6− j0.01, respectively. The corresponding

radius of each layer is 0.1 m, 0.2 m, 0.3 m, 0.4 m, 0.5 m, and 0.6 m. The

following two cases are considered: 1) All the dielectric layers are modeled

by the CFIE(Dielectric); 2) Layers 1-3 are modeled by the FE-BI(CFIE) and

layers 4-6 are modeled by the CFIE(Dielectric).

In the two cases, the sphere is meshed into triangular or tetrahedral ele-

ments with an average size of 0.025 m, which results in 141,468 and 189,636

DOFs in total, respectively. The global systems are solved iteratively with

the applicaiton of the ABC-based preconditioner, which take 141 and 148

iterations to converge to a relative error of 10−3 for the two cases. The total

computation times for the two cases are 5.8 and 5.0 hours, respectively. The

bistatic RCS of the dielectric sphere is given in Fig. 4.12. The RMS errors

are 3.4% (VV) and 2.8% (HH) for case 1, and 3.5% (VV) and 3.1% (HH)

for case 2. The current distributions on the surface of each layer are plotted
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in Fig. 4.13, from which it can be found that the current densities between

surfaces have a large difference.

4.3.5 Two Missile-Like Objects

To demonstrate the capability of the proposed multi-solver scheme, two

missile-like objects with complex materials and structures are considered.

Missile I is a 3-m-long object with six 1-cm-thick fins. Missile II is a 4.7-

m-long object with four thrusts. Based on the material properties, missiles

I and II are partitioned into ten bodies as shown in Fig. 4.14a and seven

bodies as shown in Fig. 4.14b, respectively, and the details of the bodies are

presented as follows.

Body I-A: a 4-cm-thick radome layer with εr=4.

Body I-B: a 6-cm-thick radome layer with εr=3.

Body I-C: a circular patch antenna sitting on a radome layer with εr =

1.5−j0.008.

Body I-D: a missile body with a conducting surface of z=0.1 and a 0.01-

m-thick coating layer of εr=2−j.

Bodies I-E: six conducting fins with z=3+j0.3.

Body II-A: a dielectric nose with εr=3− j0.003.

Body II-B: an inner part of the nose, which consists of a dielectric layer

with εr=2−j0.1 and an enclosed PEC object.

Body II-C: a conducting missile body with z=0.5.

Bodies II-D: four conducting thrusts with z=2+j0.1.

Illuminated by a 5-GHz plane wave from the z direction, the scattering from

the two missile-like objects is solved by the multi-solver algorithm at the mo-

ment when missile I is going to intercept missile II. The individual solvers and

DOFs for each body are shown in Table 4.2. Curvilinear tetrahedral meshes

are employed for the bodies with the FE-BI(CFIE) solver, and curvilinear
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triangular meshes are employed for the bodies with the CFIE(Dielectric) and

CFIE(IBC) solvers.

The global system with a total of 5,956,148 unknowns is solved with the

application of the ABC-based preconditioner. The solution takes 26 itera-

tions to converge to a relative error of 5× 10−3. The total computation time

is 64 hours (23% for assembly and 77% for solution), and the peak memo-

ry consumption is 160 GB. The current distribution on the surfaces of the

two missiles is shown in Fig. 4.15, from which the current variation can be

observed clearly. The current magnitude on the IBC area is much smaller

than that in the dielectric area. Figure 4.16 provides the current distribution

at the interface between the head and the body of missile I, from which it

can be seen that the current pattern at the interface of the two parts are

consistent with each other. The VV- and HH-polarized bistatic RCS results

are calculated in the xz-plane and yz-plane, which are presented in Fig. 4.17.

4.4 Summary

In this chapter, a CFIE-based multi-solver algorithm was presented for elec-

tromagnetic modeling of electrically large and highly complex objects. To

analyze such a problem, the object was decomposed into multiple bodies

according to its material property and geometry. For the interior region of

each body, different equations were used to model different materials. To

couple these equations in different bodies, the CFIE was applied to uni-

formly model the exterior region of each body. As a result, the proposed

multi-solver scheme which consists of the CFIE(IBC), CFIE(Dielectric), and

FE-BI(CFIE) is capable to model electromagnetic problems with conducting,

homogeneous, and inhomogeneous materials. To obtain accurate numerical

results, a mixed testing scheme was applied to discretize the multi-solver

system into matrix equations. In the proposed algorithm, the ABC-based

preconditioner was employed to speed up the iterative convergence and the

MLFMA with a common tree structure was employed to compute the MoM,

BI, and coupling matrices. The numerical experiments were conducted to

first show the numerical accuracy and condition of the individual solvers,

and then to demonstrate the accuracy, flexibility, and capability of the multi-

solver algorithm. Through the numerical examples, the proposed CFIE-based
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multi-solver scheme was shown to be powerful for electromagnetic modeling

of highly complex objects.
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4.5 Figures and Tables

Figure 4.1: Arbitrarily shaped object decomposed into two regions.
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Figure 4.2: Condition number of the system matrix obtained from the
discretization of the CFIE(IBC) for an IBC sphere at 130 MHz. The
condition number is displayed as a two-dimensional function of Rs and Xs,
which are the real and imaginary parts of the normalized surface
impedance, respectively, zs = Rs + jXs.
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Figure 4.3: Condition number of the system matrix obtained from the
discretization of the CFIE(IBC) versus the mesh density. The object is an
IBC sphere with a radius of 1.0 m and a normalized surface impedance
z=0.1 + j0.1.
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Figure 4.5: Condition number of the system matrix obtained from the
discretization of the CFIE(Dielectric) versus the mesh density. The object
is a dielectric cube with a size of 0.3 m × 0.3 m × 0.3 m and εr=4 .
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Figure 4.6: Bistatic RCS of the dielectric sphere at 300 MHz. Case 1: both
bodies I and II are modeled by the CFIE(Dielectric). Case 2: body I is
modeled by the CFIE(Dielectric) and body II is modeled by the
FE-BI(CFIE).
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(a)

(b)

(c)

Figure 4.7: Current distribution on the surface of a dielectric sphere with
εr=2 at 131 MHz. (a) The sphere is partitioned into eight bodies. (b)
Simulation of eight bodies with each modeled by the CFIE(Dielectric). (c)
Simulation of a sphere without partition using CFIE(Dielectric).
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Figure 4.8: Bistatic RCS of the composite sphere at 131 MHz. Case 1: the
dielectric and PEC bodies are modeled by the CFIE(Dielectric) and
CFIE(IBC), respectively. Case 2: the dielectric body is modeled by the
FE-BI(CFIE), the PEC body is modeled by the CFIE(IBC).
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Figure 4.9: Current distribution on the surface of the PEC hemisphere in
(a) case 1 and (b) case 2.
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Figure 4.10: (a) A composite cylinder. Bodies I and III are two different
dielectric materials, and body II is a conductor. (b) Bistatic RCS of the
composite cylinder at 500 MHz.
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(a)

(b)

Figure 4.11: (a) Current distribution on body I. (b) Current distribution on
bodies II and III.
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Figure 4.12: Bistatic RCS of the 6-layer sphere with a high dielectric
contrast at 300 MHz.
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(d) (e) (f)

Figure 4.13: Current distribution on the layer with (a) εr=16, (b)
εr=4− j0.03, (c) εr=15, (d) εr=5− j0.02, (e) εr=14, and (f) εr=6− j0.01.
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Figure 4.14: Decomposition of the missiles-like objects. (a) Missile I
partitioned into ten bodies. (b) Missile II partitioned into seven bodies.
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Figure 4.15: Current distribution on the surfaces of the two missiles
illuminated by a 5-GHz plane wave from the z direction. The currents
around the heads and thrusters are enlarged for a better illustration.
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(a)

(b)

Figure 4.16: Current distribution at the interface between the body and the
head of missile I. (a) Body part. (b) Head part. The slight difference
between the convex surface in (a) and concave surface in (b) is from the
angle of plot.
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Figure 4.17: Bistatic RCS of the two missiles at 5 GHz in the (a) xz-plane
and (b) yz-plane.
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Table 4.1: RMS errors of the bistatic RCS of an IBC sphere at 300 MHz

SDIE CFIE(IBC)

VV-pol. (%) 1.98 1.70

HH-pol. (%) 1.58 0.75

Table 4.2: Individual solvers and DoFs for missile-like objects at 5 GHz

Body(ies) Solver DoFs

I-A CFIE(Dielectric) 511,188

I-B CFIE(Dielectric) 241,110

II-A CFIE(Dielectric) 366,138

I-E CFIE(IBC) 330,732

II-C CFIE(IBC) 901,956

II-D CFIE(IBC) 1,078,248

I-C&D, II-B FE-BI(CFIE) 2,526,776 1

1 Total number of DoFs in bodies I-C, I-D, and II-B,
in which a single FE-BI(CFIE) solver is applied.
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CHAPTER 5

A MULTI-SOLVER SCHEME BASED ON
ROBIN TRANSMISSION CONDITIONS

In the last chapter, we discussed the multi-solver scheme based on com-

bined field integral equation (MS-CFIE) [50, 51], where the entire object is

decomposed into multiple bodies based on its material property, with the

inhomogeneous bodies modeled by the CFIE-based finite element–boundary

integral (FE-BI) method [54] and the conducting and homogeneous bodies

modeled by CFIE-based boundary integral equation (BIE) methods. The

different solvers are uniformly coupled by the CFIE applied to the exterior

region of the bodies.

In this chapter, we propose a new multi-solver scheme based on Robin

transmission conditions (MS-RTC) for large-scale electromagnetic modeling

and simulation. The entire computational domain consisting of the object

and its background is first partitioned into multiple non-overlapping subdo-

mains with each modeled by either a PDE (partial differential equation) or a

BIE. These equations are then coupled into a multi-solver system by applying

the Robin transmission condition at the subdomain interfaces.

5.1 Formulation

This section presents the detailed formulation of the MS-RTC scheme. The

modeling of general objects by coupling PDEs with BIEs through Robin

transmission conditions is first introduced, which is followed by the FEM and

MoM analysis for the PDEs and BIEs, respectively. Finally, the approach to

solving the MS-RTC system is discussed.
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5.1.1 Modeling of General Objects

Consider an arbitrarily shaped object immersed in free space with permit-

tivity ε0 and permeability μ0. As shown in Fig. 5.1, the object consists of

multiple regions which can have different material properties. According to

the material property of the object, the entire computational domain Ω ⊆ R
3

can be decomposed into non-overlapping subdomains Ωs (s=0, 1, ..., Ns) with

Ω0 denoting the free-space subdomain. The surface of each subdomain is de-

noted as Ss and the portion that interfaces with its neighboring subdomains

is denoted as Γs. The impenetrable regions which do not belong to the com-

putational domain are represented by R
3 \ Ω.

If subdomain s contains inhomogeneous and/or anisotropic materials (ε̄r,

μ̄r), a partial differential equation with proper boundary conditions [1] can

be applied to model the subdomain, which can be written as

∇×
(
μ̄−1

r ·∇×Es

)
− k2

0 ε̄r ·Es = −jk0J̄src in Ωs (5.1)

n̂s×Es = 0 on ΓPEC (5.2)

n̂s×Es×n̂s = zsn̂s×H̄s on ΓIBC (5.3)

n̂s×
(
μ̄−1

r ·∇×Es

)
= −jk0n̂s×H̄s on Γs (5.4)

where k0, Z0, and zs denote the free-space wavenumber, free-space impedance,

and normalized surface impedance, respectively. Furthermore, H̄s =Z0Hs,

J̄src=Z0Jsrc, and n̂s represents the unit vector normal to Ss(= ΓPEC∪ΓIBC∪
Γs) and pointing toward the interior of Ωs.

If the subdomain is a large homogeneous object described as (εr, μr), a

surface integral equation is employed to model the field in the subdomain.

The scattered electric and magnetic fields in subdomain s generated by the

surface electric current j̄s = n̂s × H̄s and magnetic current ms = Es × n̂s

on Ss can be written as

Esca
s (j̄s,ms;Ss)= −ηrLs(j̄s;Ss) +Ks(ms;Ss) (5.5)

H̄sca
s (j̄s,ms;Ss)= −ηrKs(j̄s;Ss)− Ls(ms;Ss) (5.6)

where ηr =
√
μr/εr and the integral operators Ls and Ks [2] are defined as

Ls(v;Ss)=jk

∫
Ss

(
I +

∇∇
k2

)
e−jkR

4πR
· v(r′)dS ′ (5.7)
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Ks(v;Ss)=

∫
Ss

v(r′)×∇e−jkR

4πR
dS ′ (5.8)

in which I is the identity operator, k is the wavenumber in subdomain s,

and R = |r− r′|. The electromagnetic fields satisfy the electric field integral

equation (EFIE) and the magnetic field integral equation (MFIE) [2] given

by

−ms − n̂s ×Esca
s (j̄s,ms;Ss) = n̂s ×Einc on Ss (5.9)

ηrj̄s − n̂s × H̄sca
s (j̄s,ms;Ss) = ηrn̂s × H̄ inc on Ss (5.10)

and the IBC [56] given by

ms + zsn̂s × j̄s = 0 on ΓIBC (5.11)

where Einc and H̄ inc denote the incident fields excited by the sources in Ωs

with R
3 filled with the same medium as Ωs. By letting zs = 0 in (5.11),

the PEC boundary condition can be obtained. By default, the free-space

subdomain Ω0 is modeled by a boundary integral equation unless indicated

otherwise. It is noted that although the subscripts of the material-related

variables are omitted for brevity in the preceding formulation, the material

in each subdomain can be different.

To couple all the subdomains together, the Robin transmission condition

[1] is applied to the subdomain interfaces, which is written as

j̄s − es = −j̄q − eq on Γq
s (5.12)

where es = n̂s×Es×n̂s, and Γq
s denotes the interface between subdomains

s and q. The MS-RTC global system can be constructed by coupling (5.1)–

(5.4) or (5.9)–(5.11) with (5.12) over all the subdomains. By solving the

global system numerically, the electromagnetic fields in Ωs or the equivalent

currents on Ss can be obtained. Before proceeding to the discussion of the

numerical methods, it is convenient to define the bilinear form B(•, •)Ω, the
volume integral 〈•, •〉Ω, and the surface integral 〈•, •〉S as

B(a, b)Ω=
∫
Ω

[
(∇×a)·μ̄−1

r ·(∇×b)T−k2
0a·ε̄r ·bT

]
dV (5.13)
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〈a, b〉Ω=
∫
Ω

a · bT dV (5.14)

〈a, b〉S=
∫
S

a · bT dS (5.15)

where a and b are column vectors containing vector functions, and the su-

perscript T denotes the transpose of a column vector.

5.1.2 FEM Analysis in 3-D Subdomains

For the subdomains modeled by PDEs, the FEM can be applied to solve for

the fields numerically. The weak form of the boundary-value problem (BVP)

defined by (5.1)–(5.4) [1] can be obtained as

B(Ns,Es)Ωs+
jk0
zs

〈Ns,Es〉ΓIBC

+jk0〈Ns, j̄s〉Γs = −jk0〈Ns, J̄src〉Ωs (5.16)

where Ns is a column vector containing the curl-conforming vector functions

in Ωs. In this chapter, Ns is chosen as a column vector consisting of the

edge-based vector functions [1]. Testing the transmission condition (5.12) by

Ns with a scaling factor of −jk0/2 and adding it to (5.16), the weak form of

the BVP with the TRC can be rewritten as

B(Ns,Es)Ωs +
jk0
zs

〈Ns,Es〉ΓIBC

+
jk0
2
〈Ns, es〉Γs +

jk0
2
〈Ns, j̄s〉Γs

=
jk0
2

∑
q∈N (s)

〈Ns, eq〉Γq
s
+

jk0
2

∑
q∈N (s)

〈Ns, j̄q〉Γq
s

−jk0〈Ns, J̄src〉Ωs (5.17)

where N (s) denotes the neighbors of subdomain s. Testing (5.12) again

with n̂s×Ns defined on Γs and scaling it with a factor of jk0/2 yields the

discretized RTC as

− jk0
2
〈n̂s×Ns, es〉Γs +

jk0
2
〈n̂s×Ns, j̄s〉Γs

= − jk0
2

∑
q∈N (s)

〈n̂s×Ns, eq〉Γq
s
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− jk0
2

∑
q∈N (s)

〈n̂s×Ns, j̄q〉Γq
s
. (5.18)

By coupling (5.17) with (5.18), a subdomain-level FEM system can be ob-

tained [1].

To discretize the FEM subsystem, the fields and currents are expanded as

j̄s=f r
s
Ths (5.19)

es=NT
s es (5.20)

Es=NT
s E

I
s +NT

s es (5.21)

where f r
s = n̂s×Ns denotes a column vector consisting of the Rao-Wilton-

Glisson (RWG) functions. Furthermore, hs, es, and EI
s are unknown vectors

containing the expansion coefficients to be determined in the FEM subdo-

main s. By substituting (5.19)–(5.21) into (5.17) and (5.18), the FEM sub-

domain equation can be obtained as

[Fs][T ]s{x}+
∑

q∈N (s)

[Csq][T ]q{x} = [T ]s{b} (5.22)

where [T ]s is a Boolean matrix to extract the DoFs defined in subdomain s,

{x} denotes the unknown vector of the global system, and the FEM unknown

vector in subdomain s is given by [T ]s{x}={EI
s, es, hs}T. Furthermore, {b}

represents the excitation vector of the global system, and the subdomain

excitation vector is given by [T ]s{b}=jk0〈Ns, J̄src〉Ωs . Finally, the subdomain

matrix and the coupling matrix can be written as

[Fs]=

⎡
⎢⎣

KII
s KIS

s 0

KSI
s KSS

s + Us Vs

0 Ws −Us

⎤
⎥⎦ (5.23)

[Csq]=

[
−Usq −Vsq

−Wsq −Tsq

]
(5.24)

where

[KXY
s ] = B(NX

s ,N
Y
s )Ωs +

jk0
zs

〈Ns,Ns〉ΓIBC
(5.25)
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with X and Y being either I or S, and

[Usq]=
jk0
2
〈Ns,Nq〉Γq

s
(5.26)

[Vsq]=
jk0
2
〈Ns,f

r
q〉Γq

s
(5.27)

[Wsq]=
jk0
2
〈f r

s ,Nq〉Γq
s

(5.28)

[Tsq]=
jk0
2
〈f r

s ,f
r
q〉Γq

s
(5.29)

and [Us], [Vs], [Ws], and [Ts] can be calculated by (5.26)–(5.29) with q = s.

From these expressions, it is clear that [Fs]=[Fs]
T and [Csq]=[Cqs]

T.

5.1.3 MoM Analysis on 3-D Subdomain Surfaces

For the subdomains modeled by BIEs, the MoM can be applied to solve for

the equivalent surface currents numerically. Testing (5.9) and (5.10) with

the rotated divergence-conforming vector functions n̂s × Ts defined on the

surface Ss yields

−〈Ts, K̃s(ms)〉Ss+ηr〈Ts,Ls(j̄s)〉Ss

+
1

2
〈Ts, es〉Ss = 〈Ts,E

inc〉Ss (5.30)

〈Ts,Ls(ms)〉Ss+ηr〈Ts, K̃s(j̄s)〉Ss

+
ηr
2
〈n̂s×Ts, j̄s〉Ss =ηr〈Ts, H̄

inc〉Ss (5.31)

where es= n̂s×ms and K̃s is the principal value of the operator Ks. To apply

the boundary condition on ΓIBC, Equation (5.11) is tested by n̂s × Ts and

scaled with 1/
√
zs before being added to (5.30). To apply the transmission

condition on Γs, Equation (5.12) is substituted into the third term of (5.30),

which is finally rewritten as

−〈Ts, K̃s(ms)〉Ss + ηr〈Ts,Ls(j̄s)〉Ss +
1

2
〈Ts, j̄s〉Γs

+

(
1√
zs

− 1

2

)
〈n̂s×Ts,ms〉ΓIBC

+
√
zs〈Ts, j̄s〉ΓIBC

=−1

2

∑
q∈N (s)

〈Ts, eq〉Γq
s
− 1

2

∑
q∈N (s)

〈Ts, j̄q〉Γq
s
+〈Ts,E

inc〉Ss . (5.32)
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A similar treatment to (5.31) yields

−〈Ts,Ls(ms)〉Ss−ηr〈Ts, K̃s(j̄s)〉Ss−
ηr
2
〈n̂s×Ts, es〉Γs

− 1√
zs
〈n̂s×Ts, es〉ΓIBC

−
(ηr
2
−√

zs

)
〈n̂s×Ts, j̄s〉ΓIBC

=−ηr
2

∑
q∈N (s)

〈n̂s×Ts, eq〉Γq
s
− ηr

2

∑
q∈N (s)

〈n̂s×Ts, j̄q〉Γq
s

−ηr〈Ts, H̄
inc〉Ss . (5.33)

In the above equations, the testing column vector Ts can be set to either

f r
s or fb

s (a column vector containing the Buffa-Christiansen (BC) functions

[80, 83, 96, 100]). Summing up (5.30) with Ts = fb
s and (5.33) with Ts = f r

s

forms an equation denoted as CFIE(1). Summing up (5.31) with Ts = fb
s

and (5.32) with Ts = f r
s forms another equation denoted as CFIE(2). The

subdomain-level MoM system can be obtained by coupling CFIE(1) with

CFIE(2).

To discretize the MoM subsystem, the fields and currents are expanded as

j̄s=f r
s
Ths (5.34)

es=NT
s es (5.35)

ms=−f r
s
Tes (5.36)

where es and hs are the unknown vectors containing the expansion coefficients

to be determined in the MoM subdomain s. By substituting (5.34)–(5.36) in-

to the CFIE(1) and CFIE(2), the MoM subdomain equation can be obtained

as

[Ms][T ]s{x}+
∑

q∈N (s)

[Csq][T ]q{x} = [T ]s{b} (5.37)

where the MoM unknown vector in subdomain s is [T ]s{x}={es, hs}T, and
the subdomain excitation vector can be represented by [T ]s{b}= {bes, bhs}T,
in which

{bes}=−jk0ηr〈f r
s , H̄

inc〉Ss + jk0〈fb
s ,E

inc〉Ss (5.38)

{bhs}=jk0〈f r
s ,E

inc〉Ss + jk0ηr〈fb
s , H̄

inc〉Ss . (5.39)
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Finally, the subdomain matrix and the coupling matrix can be written as

[Ms]=

[
Qs+ηrUs+

2√
zs
Rs −ηrPs+(ηr−2

√
zs)Ss

Ps+( 2√
zs
− 1)Ss ηrQs+Us+2

√
zsRs

]
(5.40)

[Csq]=

[
−ηrUsq −ηrVsq

Wsq Tsq

]
(5.41)

where

[Ps]=jk0〈f r
s , K̃s(f

r
s)〉Ss − jk0〈fb

s ,Ls(f
r
s)〉Ss (5.42)

[Qs]=jk0〈f r
s ,Ls(f

r
s)〉Ss + jk0〈fb

s , K̃s(f
r
s)〉Ss

+
jk0
2
〈fb

s ,Ns〉Ss (5.43)

[Rs]=
jk0
2
〈Ns,Ns〉ΓIBC

(5.44)

[Ss]=
jk0
2
〈Ns,f

r
s〉ΓIBC

(5.45)

and the other matrices are the same as those defined in Section 5.1.2. When

the proposed MS-RTC is applied to a composite object with multiple con-

ducting and dielectric junctions, there is no need to assign special junction

basis functions or apply special testing procedures at junctions.

Before we conclude the discussion of the multi-solver formulation, it is

worth pointing out several special cases: 1) If only one FEM subdomain and

the background subdomain Ω0 exist, the MS-RTC is reduced to an FE-BI

method with two sets of DoFs on the BI surface, denoted as FE-BI2(CFIE),

which permits the application of non-conformal meshes and basis functions

with different orders on the inner and outer surfaces of the geometrical bound-

ary. 2) If the MoM is applied to all the subdomains, the MS-RTC is reduced

to a CFIE-based BIE method with the capability of modeling piecewise ho-

mogeneous objects with PEC and IBC boundary conditions. This method is

a good candidate to model metallic patches with zero thickness attached to

homogeneous materials. 3) If the MS-RTC is used to model an impenetrable

object, only the background subdomain Ω0 is necessary. By applying the IBC

boundary condition to the BIE in subdomain Ω0, it can model nonuniformly

coated objects easily.
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5.1.4 Iterative Solution

Assembling the FEM subdomain equation (5.22) or the MoM subdomain

equation (5.37) for all the subdomains forms a global system matrix [A]{x}=
{b}, which can be solved by either a direct or an iterative method. To solve

the MS-RTC system with a very large number of unknowns, an iterative

method with fast algorithms and preconditioners is preferred.

To reduce the computational complexity and memory costs, the MLFMA

with the mixed testing scheme [54] is applied to evaluate the matrix entries

and accelerate the computation of matrix-vector products. The near-field

interactions in the block matrices [Ps] and [Qs] are the same as those giv-

en in (5.42) and (5.43). The calculation of the far-field interactions in each

subdomain can be found in [54]. It is noted that because the Robin transmis-

sion condition is applied to couple different subdomains, the MLFMA tree

structures in subdomains are completely independent so that it is flexible to

choose the size of the groups and the number of multipole expansion terms

based on the material properties for different subdomains, and there is no

special treatment needed at the interfaces between the subdomains.

To achieve a highly convergent solution of the proposed scheme, it is re-

quired to apply an efficient preconditioner to the global system. Since two

individual methods are involved in the proposed MS-RTC, a global precon-

ditioner can be constructed by considering both the FEM and MoM subsys-

tems. The preconditioner for the FEM subsystem is the same as (5.22). To

construct a preconditioner for the MoM subsystem, the integral operators Ls

and K̃s in (5.30)–(5.33) are first approximated by local operators L′
s and K̃′

s

that only take into account the self-patch interactions, and then discretized

by Galerkin’s method with Ts=f r
s . The MoM subsystem preconditioner can

then be written as

[M ′
s][T ]s{x}+

∑
q∈N (s)

[Csq][T ]q{x} = [T ]s{b} (5.46)

where [M ′
s] has the same block matrices as the ones in [Ms] except that [Ps]

and [Qs] are replaced with [P ′
s] and [Q′

s] expressed as

[P ′
s]=jk0〈f r

s , K̃′
s(f

r
s)〉Ss + jk0〈n̂s × f r

s ,L′
s(f

r
s)〉Ss (5.47)

[Q′
s]=jk0〈f r

s ,L′
s(f

r
s)〉Ss − jk0〈n̂s × f r

s , K̃′
s(f

r
s)〉Ss
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+
jk0
2
〈f r

s ,f
r
s〉Ss . (5.48)

Through the spectrum analysis for the local operators L′
s and K̃′

s, it is easy

to find that all the terms in the right-hand side of (5.47) and the second term

in the right-hand side of (5.48) are negligible because their contributions to

the spectrum vanish when the testing and basis functions lie in the same

plane. Therefore, the matrices P ′
s and Q′

s can be simplified as

[P ′
s]=0 (5.49)

[Q′
s]=jk0〈f r

s ,L′
s(f

r
s)〉Ss +

jk0
2
〈f r

s ,f
r
s〉Ss . (5.50)

The preconditioning matrix for the MS-RTC system can be formed by as-

sembling (5.22) or (5.46) for all the subdomains. This matrix can also be

obtained by approximating the CFIEs in the MS-RTC system with absorb-

ing boundary conditions (ABCs) [54], thus the resulting preconditioner is

called the extended ABC-based preconditioner. To show the effectiveness

of this preconditioner, a cuboid illuminated by a plane wave at 131 MHz is

considered. As shown in Fig. 5.2a, the cuboid is 1.0 m × 2.0 m × 0.5 m

in size and consists of two subdomains. The first subdomain has a lossless

dielectric material with εr=2, which is discretized into tetrahedrons with an

average size of 0.15 m. The second one is an IBC subdomain with zs = 0.5,

whose surface is discretized into triangles with an average size of 0.15 m. The

resulting number of unknowns is 4,972. The spectrum distributions of the

unpreconditioned MS-RTC system, the ABC-based preconditioner, and the

preconditioned MS-RTC system are presented in Fig. 5.2b. As can be seen

from the figure, the unpreconditioned system and the preconditioner have

similar spectrum distributions, and the preconditioned system has eigenval-

ues clustered within a small region centered around (1,0) in the complex

plane. To apply the ABC-based preconditioner, one can solve the precondi-

tioning matrix either directly or iteratively [54].

The MS-RTC algorithm is summarized as follows. The entire object with

its background is first partitioned into multiple non-overlapping subdomains.

To model the FEM and MoM subdomains, equations (5.22) and (5.37) are

applied, respectively, and then coupled to form a global system. Finally,

the global equation is solved iteratively with the extended ABC-based pre-
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conditioner which is constructed by assembling (5.22) or (5.46) for all the

subdomains.

5.2 Numerical Examples

In this section, several examples are presented to demonstrate the accuracy,

versatility, and capability of the proposed MS-RTC scheme. The differences

between the proposed MS-RTC and MS-CFIE presented in [51] are empha-

sized again through the numerical examples.

5.2.1 A Dielectric Sphere

To test the condition and accuracy of the MS-RTC with respect to partition,

a lossless dielectric sphere with a relative permittivity of εr=2 and a radius

of 1 m is illuminated by a 131-MHz plane wave. The following four cases are

considered:

The entire sphere is modeled by the FEM.

The entire sphere is modeled by the MoM.

The sphere is equally partitioned into two subdomains with each modeled

by the MoM.

The sphere is equally partitioned into eight subdomains with each modeled

by the MoM.

With a mesh size of 0.15 m in each case, the system matrices are solved

directly. The bistatic radar cross section (RCS) is calculated and compared

with the Mie series solutions, respectively. The condition number of the

systems and the relative root-mean-square (RMS) errors [83] are given in

Table 5.1. It can be seen that the results from four cases are all in good

agreement with the Mie series solution. Thus the accuracy can be guaranteed

when objects are partitioned into subdomains. It is also shown from cases

2 to 4 that the condition numbers of the system matrices have only small

changes when the MoM is applied to all the subdomains. Thus the condition

of the proposed scheme is very stable with respect to the number of partitions.
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Figure 5.3 demonstrates that the electric currents at the interface of the two

subdomains in case 3 are identical to each other. Also the electric currents

at the surface of eight subdomains in case 4 are continuous and the current

pattern is consistent with that on the surface of subdomain Ω0 as shown in

Fig. 5.4.

Case 4 of this problem is also solved by the MS-CFIE with a total number

of 9,384 unknowns, in which the biconjugate gradient stabilized (BiCGSTAB)

method with the ABC-based preconditioner takes 13 iterations to converge to

a relative residual error of 10−3 [51], while the MS-RTC takes 11 iterations to

reach the same relative residual error. The memory costs with the application

of the MLFMA are 516.1 MB and 811.0 MB for the MS-RTC and MS-CFIE,

respectively. Both the MS-RTC and MS-CFIE can provide highly accurate

and convergent solutions, but the modeling approaches are different. In the

MS-CFIE, the sphere is equally divided into eight bodies with each modeled

by the CFIE-based BIE method. The coupling between bodies is based on

global interactions. In contrast, the MS-RTC partitions the sphere with

its background into nine subdomains. The coupling between subdomains is

based on local interactions. Thus the memory cost in the MS-RTC is smaller

even though it has more DoFs than the MS-CFIE.

5.2.2 A Conducting Sphere with a Dielectric Coating

To show the two special cases mentioned in Section 5.1.3, a dielectric coated

conducting sphere with a total radius of 0.5 m is illuminated by a 300-MHz

plane wave. The 0.25-m-thick dielectric coating layer has a relative permit-

tivity of εr=4− j. The following two cases are considered:

The coating layer is modeled by the FEM.

The coating layer is modeled by the MoM.

The coated sphere is meshed into tetrahedral or triangular elements, both

with an average size of 0.05 m. The resulting system matrix is solved by the

generalized minimal residual (GMRES) method [101] without restart or any

preconditioner. The calculated bistatic RCS and the Mie series solutions are

given in Fig. 5.5a. The RMS errors for case 1 are 1.4% and 1.3% for the

VV- and HH-polarized cases, respectively, and the ones for case 2 are 0.7%
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and 0.4% for the VV- and HH-polarized cases, respectively. The convergence

history of the scheme in the two cases and the FE-BI(EJ) method published

in [30] are compared and shown in Fig. 5.5b. It is evident that the MoM

(case 2) has the best convergence, and the FE-BI2(CFIE) method (case 1)

has a better convergence than the FE-BI(EJ) method in [30]. It is noted

that the material property of the conducting sphere is modeled by the PEC

boundary condition to the PDE (case 1) or the BIE (case 2) in the coating

layer.

5.2.3 A Mixed IBC/PEC Cylinder

A mixed IBC/PEC cylinder is considered to demonstrate the capability of

modeling nonuniformly coated objects. The cylinder has a length of 10λ0

and a diameter of 1λ0, where λ0 is the free-space wavelength. Half of the

cylinder is coated with zs =2 + j0.1, and the other half is a perfect electric

conductor. The system is solved by the GMRES method without restart or

any preconditioner. The current distribution on the surface of the cylinder

is given in Fig. 5.6a, from which the current variation along the cylinder

can be easily observed. The bistatic RCS is calculated by the MS-RTC and

the self dual integral equation (SDIE) method [53], respectively. The RCS

results solved by the two methods are shown in Fig. 5.6b. With the solution

from the SDIE method used as the reference, the RMS differences between

the two solutions are 2.5% and 0.7% for the VV- and HH-polarized cases,

respectively. The convergence history of the MS-RTC and the SDIE method

is shown in Fig. 5.6c, which indicates that the proposed scheme for IBC

problems has a better convergence than the SDIE method.

5.2.4 Two Separate Spheres

To demonstrate the versatility in assigning different methods to different

subdomains, an example of two separate spheres is studied. As shown in

Fig. 5.7, the radii of the two spheres are both 1λ0. The subdomains I

and II have a relative permittivity of εr = 1.5, while subdomain III has a

relative permittivity of εr=2. The IBC hemisphere has a normalized surface

impedance zs=0.5. The following three cases are considered:
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Subdomains I, II, and III are modeled by the MoM. The mesh size is 0.1λ0,

which results in 41,460 DoFs.

Subdomains I and II are modeled by the FEM, and subdomain III is modeled

by the MoM. The mesh size is 0.1λ0, which results in 73,257 DoFs.

Subdomains I, II, and III are modeled by the FEM. The exterior surfaces

of subdomains I and III are meshed with an average size of 0.1λ0. The

volumes are meshed with an average size of 0.06λ0. The number of DoFs is

102,134.

The BiCGSTAB method [102] with the extended ABC-based preconditioner

and the MLFMA acceleration is applied to solve the systems in all the three

cases. The numbers of iterations with a targeted relative residual error of

10−3 are 9, 7, and 6, respectively. The ABC-based preconditioners can be

solved easily by a direct or an iterative method. The bistatic RCS results in

the three cases are in good agreement with each other as can be seen in Fig.

5.7.

To compare the MS-RTC and MS-CFIE in the modeling of this example,

the scattering problem is solved by the MS-CFIE by assigning the FE-BI

solver to subdomains I and II and the CFIE-based solvers to subdomain III

and the IBC region. Different from the MS-RTC, the IBC region is modeled

by an IBC solver. The RCS result shown in Fig. 5.7 agrees well with the

those from the MS-RTC. With the result from the MS-CFIE used as the

reference, the RMS differences for cases 1, 2, and 3 are 2.7%, 1.6%, and

2.9%, respectively. The detailed comparison between the MS-RTC in case 2

and the MS-CFIE is presented in Table 5.2. It shows that the two schemes

have a similar memory usage although the MS-RTC has more DoFs than the

MS-CFIE. Also, the MS-RTC takes fewer iterations and computation time

than the MS-CFIE to solve the global system.

5.2.5 An Aircraft with a Launched Missile

To show the capability of the proposed MS-RTC, an aircraft with a launched

missile is simulated at 2 GHz. As can be seen in Fig. 5.8a, the aircraft, with

a length of 12.74 m, a width of 15.06 m, and a height of 2.95 m, consists

of a nose, a cockpit, and a body. The aircraft nose is made of a two-layer
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radome (εr1=3− j0.03 and εr2=2− j0.002) and a conducting array, which is

shown in Fig. 5.8b. The surface of the cockpit is coated with zs=2 + j0.2.

The surface of the aircraft body is coated with zs = 2 + j0.2 (in grey) and

zs = 0.4 + j0.04 (in green). The missile with a head and a body is 4.17 m

in length and 0.254 m in diameter. The missile head is made of a three-

layer radome (εr1 = 3 − j0.03, εr2 = 4 − j0.06, and εr3 = 2 − j0.002) and a

patch antenna array, which is shown in Fig. 5.8c. The surface of the missile

body is coated with zs = 2 + j0.2 (in grey) and zs = 0.4 + j0.04 (in green).

To solve the scattering using the MS-RTC, the object is first decomposed

into subdomains based on the material properties, and then assigned with a

suitable method with proper boundary conditions. The details are given as

follows.

Subdomain I: missile head consisting of layers 1 to 3 modeled by the FEM.

Its volume is discretized into curvilinear tetrahedrons with an average size

of 6.5 mm, which results in 776,341 DoFs.

Subdomain II: layer 1 in the aircraft nose modeled by the FEM. Its volume

is discretized into curvilinear tetrahedrons with an average size of 6.5 mm,

which results in 3,601,665 DoFs.

Subdomain III: layer 2 in the aircraft nose modeled by the MoM. Its surface

is discretized into curvilinear triangles with an average size of 10 mm, which

results in 359,502 DoFs.

Subdomain IV: the default subdomain which is the free space. This subdo-

main is modeled by the MoM, and its surface is discretized into curvilinear

triangles with an average size of 15 mm, which results in 4,818,132 DoFs.

The BiCGSTAB method with the extended ABC-based preconditioner is

applied to solve the MS-RTC system with a total of 9,555,640 unknowns.

The solver takes 16 and 14 iterations to converge to a relative residual error

of 10−3 for the VV- and HH-polarized cases, respectively. The ABC-based

preconditioner itself is also solved iteratively using the BiCGSTAB method

with an approximate inverse preconditioner [92,103], which takes an average

of 118 iterations to converge to 10−3. The application of the ABC-based

preconditioner takes 19% of the total solution time. The equivalent electric

current distributed over the entire surfaces of the aircraft and the missile is
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shown in Fig. 5.9. It is easy to observe the current variation from the figures.

More detailed views are provided in Fig. 5.10, from which the continuity of

the current distribution across the nose and body and the consistency of

the current patterns at the interfaces between subdomains II and III can be

observed. For the FEM subdomains I and II, the electric field distributions

are shown in Fig. 5.11. The VV- and HH-polarized bistatic RCS results are

calculated in both the xz-plane and yz-plane, which are presented in Fig.

5.12.

As can be seen from this example, the patch arrays were easily modeled

by applying the IBC or PEC boundary conditions to the BIE in layer 2 of

the aircraft nose and the PDE in layer 3 of the missile head. However, when

the MS-CFIE is used to solve this scattering problem, one has to cut out a

region that encloses the patch arrays and model the region using the FE-BI

method.

5.3 Discussion

From the theoretical investigation and numerical demonstration in the pre-

ceding sections, it is clear that the MS-RTC is able to perform an EM anal-

ysis on large-scale and complex objects. The features and advantages of the

proposed scheme are summarized as follows.

1) To model individual subdomains, either the FEM or the MoM is chosen

to model the interior region of each subdomain. An impenetrable region

such as PEC or IBC region is not considered as a computational domain.

The material property of the impenetrable region is enforced by applying

the corresponding boundary conditions to the PDEs or BIEs in the com-

putational domain. Therefore, it is easy to deal with subdomains with

complicated boundary conditions. In contrast, in the methods presented

in [46, 49], and [51], impenetrable regions have to be modeled by sur-

face integral equations. Consequently, problems such as those involving

a dielectric subdomain with a partially conducting boundary can only be

modeled by the FE-BI solvers.

2) The inter-subdomain coupling strategy is different from the ones applied

in [44–46, 49], and [51]. To couple multiple subdomain equations in this
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work, the Robin transmission condition is applied to avoid global inter-

actions between the DoFs at the subdomain interfaces. The resulting

coupling matrices are sparse. Also, the application of the Robin trans-

mission condition provides the flexibility to use non-conformal meshes

and different orders of basis functions in different subdomains, and the

capability to apply FEM-based DDMs to FEM subdomains.

3) The MLFMA data structures for each subdomain are completely indepen-

dent so that the size of the cubes and the number of multipole expansion

terms are very flexible to choose based on the material property of each

subdomain, and there is no special treatment needed at the interface be-

tween subdomains. This is different from the strategy used in [44] where

a buffer region is required when near-field interactions are calculated be-

tween the subdomains, and the strategy used in [51] where a common

MLFMA tree is applied.

4) The ABC-based preconditioner is extended and applied to precondition

the proposed MS-RTC systems. The application of the ABC-based pre-

conditioner can be carried out by solving a purely sparse preconditioning

matrix either directly or iteratively, whereas the block diagonal precondi-

tioner used in [44–46] and [49] consists of partly sparse and partly dense

FE-BI and fully populated BIE subdomain matrices.

5) When the proposed MS-RTC is applied to a composite object with mul-

tiple subdomain junctions, there is no special junction basis function or

special testing procedure needed.

Although the MS-RTC scheme has the aforementioned desirable properties,

it is worth pointing out that the MS-RTC and MS-CFIE [51] schemes are

parallel and complementary to each other, and their application and perfor-

mance depend on specific problems. The MS-RTC scheme is more suited for

modeling objects with complicated materials and open structures, whereas

the MS-CFIE scheme can alleviate the difficulties of modeling extremely large

objects by decomposing the object into multiple bodies with each modeled

by a suitable solver.
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5.4 Summary

This chapter presented a flexible MS-RTC scheme for numerical simulation

of large-scale complex EM problems. In this scheme, the object and it-

s surrounding background were decomposed into multiple non-overlapping

subdomains, each of which was solved by either the FEM or MoM. The field-

s in subdomains were connected through the Robin transmission condition.

Both the RWG and BC functions were applied to test the MS-RTC system in

order to obtain a good accuracy of the solution. Furthermore, the MLFMA

was applied to accelerate the computation and reduce the memory costs in

each subdomain independently, and the ABC-based preconditioner was ex-

tended and employed to accelerate the global iterative convergence. Three

special cases in the MS-RTC were discussed and applied to solve scattering

problems. The differences between the MS-RTC and MS-CFIE were elab-

orated in the chapter. Numerical examples clearly demonstrated that the

MS-RTC is a highly accurate, efficient, flexible, and robust numerical simu-

lation tool that is powerful and capable for EM analysis of electrically large

and highly complicated objects.
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5.5 Figures and Tables
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Figure 5.1: Arbitrarily shaped object with multiple subdomains.

109



� �

����� �����

�����

(a)

0 40 80 120 160 200
-2

0

2

4

6

Unpreconditioned system
Preconditioner
Preconditioned system

Im
ag

in
ar

y
ax

is

Real axis

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
-1.5

-1.0

-0.5

0.0

0.5

1.0

(b)

Figure 5.2: (a) Geometry of a cuboid with two subdomains. (b) Spectrum
distributions of the unpreconditioned MS-RTC system, the ABC-based
preconditioner, and the preconditioned MS-RTC system.
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(a)

(b)

Figure 5.3: Current distribution at the interface in case 3. (a) The first half
of the sphere. (b) The second half of the sphere.
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(a)

(b)

(c)

Figure 5.4: Current distribution in case 4. (a) A sphere is partitioned into
eight subdomains. (b) Current distribution on the surface of subdomain Ω0.
(c) Current distribution on the surfaces of the eight subdomains Ω1 to Ω8.
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Figure 5.5: (a) Bistatic RCS of the coated sphere at 300 MHz calculated by
different methods. (b) Convergence history of the GMRES method without
restart or any preconditioner for the MS-RTC in the two cases and the
FE-BI(EJ) method.
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Figure 5.6: (a) Current distribution on the IBC/PEC cylinder. (b) Bistatic
RCS of the IBC/PEC cylinder calculated by the MS-RTC and the SDIE
method. (c) Convergence history of the GMRES method without restart or
any preconditioner for the MS-RTC and the SDIE method.

114



 Case 1 (HH)
 Case 2 (HH)
 Case 3 (HH)
 MS-CFIE (HH)

0 20 40 60 80 100 120 140 160 180
-15

-10

-5

0

5

10

15

20

25

30

35

B
is

ta
tic

 R
C

S 
(d

B
sm

)

Observation Angle (Degrees)

Figure 5.7: Bistatic RCS of the two separate spheres calculated by different
methods.
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Figure 5.8: (a) An aircraft with a launched missile. (b) Aircraft nose which
consists of a two-layer radome and a patch antenna array. (c) Missile head
which consists of a three-layer radome and a patch antenna array.
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(a)

(b)

Figure 5.9: Equivalent electric current distribution on the entire surface of
the aircraft with a launched missile. (a) Top view. (b) Bottom view.
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(a)

(b)

(c)

Figure 5.10: Detail of the equivalent electric current distribution on the
aircraft nose. (a) The exterior surface with the area across the nose and
body enlarged, (b) layer 1, and (c) layer 2.
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(a)

(b)

Figure 5.11: Electric field distribution in (a) layer 1 of the aircraft nose and
(b) the missile head.
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Figure 5.12: Bistatic RCS of an aircraft with a launched missile at 2 GHz
in the (a) xz-plane and (b) yz-plane.
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Table 5.1: Condition and accuracy of different cases for modeling a
dielectric sphere at 131 MHz

Case 1 2 3 4

Unknowns 15,600 7,224 9,816 12,936

Cond. Num. 921 24 26 28

RMS Err. (%) 1.0 0.4 0.96 1.4

Table 5.2: Comparison of the MS-RTC and MS-CFIE in solving the
scattering of two separate spheres

MS-RTC MS-CFIE

Unknowns 73,257 58,310

Iterations 7 13

Memory (GB) 1.02 0.99

Solution (s)1 555.8 973.9
1 Multi-solver systems are solved on a work-
station with a 4-core Intel Xeon W3520
CPU.
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CHAPTER 6

A PARALLELIZED MULTI-SOLVER
SCHEME AND ITS APPLICATIONS

6.1 Introduction

Electromagnetic (EM) modeling and simulation of electrically large and high-

ly complex objects are critical for applications related to radar scattering and

antenna radiation. To solve such a problem, the hybrid finite element and

boundary integral method is widely used. This method is not only capable of

modeling complicated geometries and inhomogeneous materials but also able

to eliminate the truncation error by enforcing a rigorous boundary condition

through boundary integral equations [1].

Recently, a multi-solver algorithm based on Robin transmission conditions

(MS-RTCs) has been proposed to significantly improve the modeling capa-

bility [55]. In this algorithm, an arbitrarily shaped object with its back-

ground is decomposed into multiple non-overlapping subdomains. The finite

element method (FEM) is used to model subdomains with inhomogeneous

and/or anisotropic materials, and the method of moments (MoM) is ap-

plied to model homogeneous subdomains. To couple different subdomains,

Robin transmission conditions are employed to enforce the field continuity

between neighboring subdomains. Assembling all the subdomain matrices

and coupling matrices yields a global system matrix, which is solved itera-

tively with preconditioners and fast algorithms. Specifically, a preconditioner

based on absorbing boundary conditions (ABCs) is applied to accelerate the

convergence of the global solution. The multilevel fast multipole algorithm

(MLFMA) is employed to accelerate the computation of MoM subdomains.

Although the MS-RTC method is highly accurate, flexible, and robust in

modeling large and complicated objects, the computational cost will be pro-

hibitively high when it is used for very large EM simulations. To further

improve the efficiency of the MS-RTC method, an accelerated MS-RTC al-
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gorithm is developed on distributed computing systems in this chapter. First,

a modeling strategy using the MS-RTC method is presented so that read-

ers can easily follow the guideline to decompose objects into subdomains,

assign suitable solvers, and apply the MS-RTC algorithm to solve real EM

problems. Based on the modeling strategy, the parallelization strategy is

proposed, which is followed by numerical examples.

6.2 Modeling Strategy Using the MS-RTC Scheme

To model a complex object using the MS-RTC scheme, the first step is to

study the material properties in the different parts of the object. As shown in

Fig. 6.1, the object is decomposed into three parts according to the material

properties of each part. If the part is inhomogeneous, the FEM is applied to

model it. If the part is a impenetrable material, the MoM can be employed

to model. If the part is a homogeneous material, either the FEM or MoM

can be used to model this part. It is preferred to use the MoM if this part

is large. For the default region which is the free space, the MoM is applied.

On the surface of each part, the boundary condition can be PEC, IBC, or

RTC. Therefore, it is straightforward to model open surfaces such as metallic

structures with zero thickness embedded in or attached to homogeneous ma-

terials. As can be seen, the subdomain sizes are not similar, and the solvers

applied to subdomains have different computational complexities.

6.3 Parallel Algorithm

6.3.1 Overall Strategy

The parallelization strategy for the MS-RTC algorithm is to parallelize indi-

vidual subdomains, which is different from conventional parallelized domain

decomposition methods (DDMs), where an object is usually partitioned into

a large number of subdomains in order to achieve a good parallel efficiency

and all the subdomains are computed with the same solver. For the MS-RTC

algorithm, an object is partitioned into a small number of subdomains based

on the material properties and geometries. For example, it is preferable to
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apply a single MoM solver to a large homogeneous dielectric region without

partitioning this region further into smaller subdomains to avoid additional

unknowns generated on the subdomain interfaces. Therefore, the number of

subdomains in the MS-RTC algorithm is typically much smaller than that in

the DDMs. Since the subdomains in the MS-RTC algorithm are modeled by

different solvers which have different computational complexities, it is diffi-

cult to control and balance the computation workload among processors. To

tackle this difficulty, it is preferred to parallelize subdomains individually in

order to obtain a good parallel efficiency. Such a strategy can take advantage

of the well-developed parallelized algorithms and apply them directly to each

subdomain.

6.3.2 Assembly of System Matrix

In the MS-RTC algorithm, the individual solvers are either the FEM or the

MoM. Hence, the parallelization of the system matrix assembly includes the

parallelization of the assembly of the FEM subdomain matrices, the MoM

subdomain matrices, and the coupling matrices. Among these matrices, the

assembly of the MoM subdomain matrices is most time-consuming. Hence,

the parallelized MLFMA based on the message passing interface (MPI) tech-

niques is applied to accelerate the assembly of MoM matrices. As shown

in Fig. 6.2, in each MPI process, multiple OpenMP threads are allocated

to further accelerate the computation. The hybridization of the MPI and

OpenMP parallel programming models can reduce the memory duplication

and communication overhead in the MPI applications. The assembly of the

sparse FEM and coupling matrices is very fast, hence they are parallelized

using OpenMP technique in this work. The pseudocode for system matrix

assembly is given in Algorithm 1. The detailed expression for the matrices

Fs, Ms, and Csq can be found in Chapter 5.

6.3.3 Solution of Global System

To solve the global system iteratively, matrix-vector products (MVPs) have

to be computed at each iteration. The MPI-based MLFMA is employed to

accelerate the MVPs in the MoM subdomains. Because the Robin transmis-
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Algorithm 1 Assembly of the MS-RTC System Matrix

1: function systemAssembly(F,M,C) � Where F - FEM subdomain
matrices, M - MoM subdomain matrices, C - coupling matrices

2: F = 0, M = 0, C = 0
3: for s = 0 to Ns do
4: if s is the FEM subdomain then
5: Compute Fs � Fs is the FEM subdomain matrix which is

computed using OpenMP programming model
6: else � s is the MoM subdomain
7: Compute Ms � Ms is the MoM subdomain matrix which can

be computed using the MPI-based MLFMA

8: for q = s do
9: Compute Csq � Csq is the coupling matrix between

subdomain s and q

sion condition is used to couple the subdomains, the MLFMA tree structures

in different subdomains are completely independent so that the group sizes

and the number of multipole expansion terms are chosen based only on the

subdomain’s material property [55]. The parallelization approach adopted in

this work is based on a hybrid strategy with an introduction of a transition

level, which has been shown to yield a satisfactory parallel efficiency [104].

For the finer levels below the transition level, the far field patterns (FFPs)

of a group are replicated in each processor while the groups are partitioned

equally among all processors; for the coarser levels above the transition level,

the groups are replicated in every processor, and the FFPs are partitioned

equally among all processors. The MVPs in the FEM subdomains are accel-

erated using the OpenMP parallel technique. All the subdomains are paral-

lelized and computed individually. The pseudocode for system matrix-vector

products is given in Algorithm 2.

To summarize the overall procedure, it is worth to present the flowchart

of the MS-RTC scheme. As can be seen in Fig. 6.3, when the program

starts, either the FEM or the MoM solver is assigned to each subdomain

until all the subdomains are associated with a solver. Once a subdomain

is assigned with a solver, the subdomain system will be computed. After

all the subdomain systems are computed, a global system will be formed to

solve. Within a subdomain, the computation is parallelized using the MPI

or OpenMP programming model.
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Algorithm 2 Matrix-vector products for the MS-RTC system

1: function systemMVPs(M,F,C, v, r) � Where M -
MoM subdomain matrices, F - FEM subdomain matrices, C - coupling
matrices, v - input vector, r - output vector

2: r = 0
3: for s = 0 to Ns do
4: if s is the FEM subdomain then
5: rs = rs + Fsvs � Fsvs is parallelized using OpenMP

programming model
6: else � s is the MoM subdomain
7: rs = rs +Msvs � Msvs is accelerated by the MPI-based

MLFMA
8: for q = s do
9: rs = rs + Csqvq

6.4 Numerical Examples

In this section, the scattering from an aircraft with a launched missile is

first computed to validate the implementation of the parallelized MS-RTC

method. Then several large and complex examples are given to show parallel

efficiency, and the modeling and computational capability of the proposed

method. Due to the limited memory for each core and a long time for serial

computation, the parallel efficiency with respect to the baseline execution

time Tq on q cores is defined as

Efficiency =
qTq

pTp

× 100% (6.1)

where Tp is the execution time using p cores.

The computations are carried out on CISCO Arcetri cluster, with each

node quipped with up to 28 2.80-GHz Intel Xeon E5-2680 processors. Intel

MKL Pardiso solver based on distributed computing systems is applied to

solve the preconditioner.

6.4.1 An Aircraft with a Launched Missile

To validate the implementation of the parallelized MS-RTC method, an air-

craft with a launched missile as presented in Chapter 6 is simulated at 2
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GHz. The OpenMP-based MS-RTC and MPI-based MS-RTC methods with

the same decomposition and solver assignment strategy are applied to solve

this problem. The OpenMP-based MS-RTC method is performed on a sin-

gle node with 20 OpenMP threads, and BiCGSTAB method takes 179 min

to converge to a relative residual error of 10−3. The MPI-based MS-RTC

method uses 150 MPI processes with 1 OpenMP thread for each process.

The iterative solution takes 36 min to converge to the same residual error.

The speedup is about 5 times. The radar cross section of the object is cal-

culated and shown in Fig. 6.4. As can be seen, the two results are in good

agreement with each other. The relative root-mean-square difference be-

tween two results is 0.11 %. The difference is caused by the different parallel

implementations of the MS-RTC algorithm.

6.4.2 A Missile-like Object

Next, a missile-like object with a 3-m-long body having a surface impedance

of zs=0.4 + j0.04 and 1-cm-thick fins having a surface impedance of zs=3+

j0.3 is illuminated by a 8-GHz plane wave. As shown in Fig. 6.5, the radome

layer with εr = 3 is modeled by the MoM (495,252 DoFs); the enclosed patch

antenna sitting on a dielectric layer with εr = 1.5 − j0.008 is modeled by

the FEM (413,966 DoFs); and the surrounding free space is modeled by the

MoM (3,185,076 DoFs). The preconditioned BiCGSTAB method is applied

to solve the MS-RTC system with 4,094,294 DoFs in total, which takes 17

iterations to converge to a targeted relative residual error of 10−3. The

current distribution is shown in Fig. 6.6, and the parallel efficiency of the

two MoM solvers is given in Fig. 6.7. The computation is performed using

16, 32, 48, and 64 MPI processes and 1 OpenMP thread for each process,

respectively, with the baseline computation of 16 processes. In the 32- and 64-

process cases, since there are few nonempty cubes in the radome subdomain,

the communication and computation overheads are comparable. Therefore,

the MVP in this subdomain has a low parallel efficiency. The total parallel

efficiency is 73.3%.
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6.4.3 Human Head with a Cell Phone

To demonstrate the capability of the parallelized MS-RTC method, large and

complex examples are given in the following sections. As shown in Fig. 6.8,

the first example is the human head excited by a dipole in the cell phone at

60 GHz. The head has a size of 257 mm × 222 mm × 182 mm with a relative

permittivity of εr = 8.0− j10.8. It is modeled by the MoM method, and its

surface is discretized into curvilinear triangles with an average size of 0.3

mm, which results in 10,885,284 DoFs. The phone is a dielectric coated IBC

object with εr = 3.0 − j0.03 and zs = 0.4 + j0.04, which is modeled by the

FEM method. Its volume is discretized into curvilinear tetrahedrons with

an average size of 0.3 mm, which results in 8,497,137 DoFs. The free space

is modeled by the MoM method, and its surface is discretized curvilinear

triangles with an average size of 0.3 mm, which results in 12,161,664 DoFs.

The BiCGSTAB method is applied to solve the MS-RTC system with

a total of 31,544,085 unknowns, which takes 16 iterations to converge to

a relative residual error of 10−2. The preconditioner used in the iterative

solution consists of the FEM subdomain matrices and the diagonal entries of

the MoM subdomain matrices. The detailed computation times and parallel

efficiency are given in Table 6.1. The baseline computation is using 20 MPI

processes and 10 OpenMP threads for each process. For the assembly, the

parallel efficiency is between 70% and 80%. The total parallel efficiency for

900 cores is 52.8%. The equivalent electric current distribution on the human

head and electric field distribution in the cell phone are shown in Fig. 6.9.

It can be seen that the energy is concentrated around the ear at such a high

frequency.

6.4.4 Three Aircraft

Next, three aircraft as shown in Fig. 6.10 are simulated at 3 GHz. Each

aircraft has a length of 12.74 m, a width of 15.06 m, and a height of 2.95

m. Aircraft I with its launched missile is modeled as a composite object.

The detailed material information can be referred to Chapter 5. Aircraft

II and III are modeled as a coated object with zs = 0.4 + j0.04. To solve

the scattering using the parallelized MS-RTC method, the objects are first

decomposed into subdomains based on the material properties, and then
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assigned with a proper numerical method with boundary conditions. The

details are given as follows.

1) Subdomain I: missile head consisting of layers 1 to 3 modeled by the FEM.

Its volume is discretized into curvilinear tetrahedrons with an average size

of 6.5 mm, which results in 1,535,183 DoFs.

2) Subdomain II: layer 1 in the aircraft nose modeled by the FEM. Its volume

is discretized into curvilinear tetrahedrons with an average size of 6.5 mm,

which results in 7,353,049 DoFs.

3) Subdomain III: layer 2 in the aircraft nose modeled by the MoM. Its

surface is discretized into curvilinear triangles with an average size of 10

mm, which results in 615,540 DoFs.

4) Subdomain IV: the default subdomain which is the free space. This sub-

domain is modeled by the MoM, and its surface is discretized into curvi-

linear triangles with an average size of 15 mm, which results in 29,795,982

DoFs.

The BiCGSTAB method with the extended ABC-based preconditioner is

applied to solve the MS-RTC system with a total of 39,299,754 unknowns.

The solver takes 16 iterations to converge to a relative residual error of 10−3.

The equivalent electric current distributed over the entire surfaces of the

aircraft and the missile is shown in Fig. 6.11. It is easy to observe the

current variation from the figures. More detailed views are provided in Fig.

6.12, from which the continuity of the current distribution across the nose and

body and the consistency of the current patterns at the interfaces between

subdomains II and III can be observed. The detailed computation times

and parallel efficiency are given in Table 6.2. The baseline computation is

using 20 MPI processes and 10 OpenMP threads for each process. For the

assembly, the parallel efficiency is between 74% and 89%. The total parallel

efficiency for 900 cores is 49.5%.

6.4.5 An Aircraft Carrier

Lastly, the scattering from an aircraft carrier at 300 MHz is considered. As

shown in Fig. 6.13, an aircraft carrier has a length of 322 m, a width of 75
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m, and a height of 35 m. The surfaces of the carrier body and control tower

are coated with zs=0.4+ j0.4 and zs=2+ j0.2, respectively. There are three

aircraft sitting on the carrier, and one aircraft taking off from the carrier.

The aircraft with εr=2 is 12.74-m long, 15.06-m wide, and 2.95-m high. The

three-layer radome (εr=1, 2, and 4, respectively from inside out) on the top

of the control tower has a diameter of 4 m. The detailed modeling strategy

for different objects is given as follows.

1) Subdomain I: the three-layer radome is modeled by the FEM. Its volume

is discretized into curvilinear tetrahedrons with a varying size from 0.03

to 0.06 m, which results in 4,746,143 DoFs.

2) Subdomains II-V: four dielectric aircraft are modeled by the MoM. Their

surfaces are discretized into curvilinear triangles with an average size of

0.07 m, which results in 798,168 DoFs in total.

3) Subdomain VI: the default subdomain which is the free space. This sub-

domain is modeled by the MoM, and its surface is discretized into curvi-

linear triangles with an average size of 0.1 m, which results in 43,360,746

DoFs.

The BiCGSTAB method is applied to solve the MS-RTC system with a total

of 48,968,921 unknowns, which takes 21 iterations to converge to a relative

residual error of 10−2. To reduce the computation and memory cost of the

preconditioner, the preconditioner used for the iterative solution is created

by combining the FEM subdomain matrices and the diagonal entries in the

MoM subdomain matrices. The equivalent electric current distributed over

the entire surfaces of the aircraft and the aircraft carrier is shown in Fig.

6.14. It is easy to observe the current variation from the figures. The electric

field distribution in the radome is provided in Fig. 6.15. The wave pattern

is obvious and the maximum value is located around the monopole antenna.

The detailed computation times and parallel efficiency are given in Table

6.3. The baseline computation is using 30 MPI processes and 10 OpenMP

threads for each process. For the assembly, the parallel efficiency is between

66% and 80%. The total parallel efficiency for 900 cores is 46.8%.
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6.5 Summary

An accelerated multi-solver (MS) method was developed on distributed com-

puting systems to simulate the scattering from large and complex objects. In

this method, the targeted object with its background was decomposed into

multiple subdomains which were modeled by either the finite element method

or the method of moments. The parallelization strategy for the MS method

was to parallelize different subdomains individually, which was different from

the parallelized domain decomposition methods, where the subdomains were

handled in parallel. The multilevel fast multipole algorithm was parallelized

to enable computation on many processors. Numerical examples were giv-

en to show the parallel efficiency and modeling capability of the proposed

strategy.

Through the numerical examples, the factors affecting the parallel efficien-

cy and workload balance can be analyzed. It can be seen that the models

in the examples consist of different materials and complex structures and

geometries. To solve the problems accurately, the meshes are required to

resolve the detailed structures and material properties, which results in non-

uniform meshes for the overall models. Also, due to the complex geometry of

the models, the number of nonempty cubes at the same level in the MLFMA

varies significantly, which decreases the parallel efficiency.
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6.6 Figures and Tables

Figure 6.1: Modeling strategy using the MS-RTC scheme.
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Figure 6.2: Hybrid MPI-OpenMP parallel programming model.
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Figure 6.3: Flowchart for the MS-RTC scheme.
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Figure 6.4: Bistatic RCS of an aircraft with a launched missile at 2 GHz.
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Figure 6.5: Decomposition of the missile-like object.
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Figure 6.6: Equivalent electric current distribution on the entire surface of
the missile.
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Figure 6.7: Parallel efficiency of the two MoM solvers for a missile-like
object. The baseline computation is using 16 processes.
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Figure 6.8: Human head with a cell phone.
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(a)

(b)

Figure 6.9: (a) Equivalent electric current distribution on the human head.
(b) Electric field distribution in the cell phone.
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Figure 6.10: Three aircraft with a launched missile.
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(a)

(b)

Figure 6.11: Equivalent electric current distribution on the surfaces of the
aircraft. (a) Top view (log scale). (b) Bottom view (linear scale).
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(a)

(b)

(c)

Figure 6.12: Detail of the equivalent electric current distribution on aircraft
I. (a) The exterior surface with the area across the nose and body enlarged,
(b) layer 1, and (c) layer 2.
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Figure 6.13: Aircraft carrier model.
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(a)

(b)

Figure 6.14: Equivalent electric current distribution on an aircraft carrier.
(a) Top view (linear scale). (b) Side view (log scale).
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Figure 6.15: Electric field distribution in the radome.
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Table 6.1: Parallel efficiency for the simulation of the human head with a
phone at 60 GHz, with a total number of DoFs being 31,544,085.

Number of Processes 20 40 62 90

Number of Cores 200 400 620 900

Assembly (min.) 186.7 127.4 84.2 51.4

Precond. Prep. (min.) 13.9 8.5 6.8 5.7

MV (min.) 123.2 88.8 75.9 66.4

Precond. Appl. (min.) 29.3 28.6 25.8 25.2

Total (min.) 353.1 253.3 192.7 148.7

Parallel Efficiency (%) baseline 69.7 59.1 52.8
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Table 6.2: Parallel efficiency for the simulation of the three aircraft at 3
GHz, with a total number of DoFs being 39,299,754.

Number of Processes 20 40 62 90

Number of Cores 200 400 620 900

Assembly (min.) 219.6 123.2 87.2 65.4

Precond. Prep. (min.) 18.7 15.9 12.4 11.0

MV (min.) 98.8 92.1 64.6 50.6

Precond. Appl. (min.) 37.8 42.7 33.5 41.3

Total (min.) 374.9 273.9 197.7 168.3

Parallel Efficiency (%) baseline 68.4 61.2 49.5
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Table 6.3: Parallel efficiency for the simulation of the aircraft carrier at 300
MHz, with a total number of DoFs being 48,968,921.

Number of Processes 30 62 75 90

Number of Cores 300 620 750 900

Assembly (min.) 84.0 54.0 50.8 40.8

Precond. Prep. (min.) 29.8 17.4 15.5 14.3

MV (min.) 112.1 102.5 90.5 92.0

Precond. Appl. (min.) 66.8 62.1 62.1 61.5

Total (min.) 292.7 236.0 218.9 208.6

Parallel Efficiency (%) baseline 60.0 53.5 46.8
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CHAPTER 7

ELECTROMAGNETIC SIMULATION OF
SPECIFIC ABSORPTION RATE AT 5G

FREQUENCIES WITH A MULTI-SOLVER
METHOD

7.1 Introduction

As the ownership of mobile devices such as smartphones and pads increases

rapidly, the potential human health hazards caused by the electromagnet-

ic (EM) radiation from electronic devices have received intensive attention.

When the EM energy absorbed by human tissues exceeds a certain limit,

there can be a harmful impact on the nervous system, blood and immune

system, and others. Therefore, the assessment of the radiation impact on

human health becomes important in the electronic design [105]. To quantify

the EM energy absorbed by human tissues, specific absorption rate (SAR) is

widely used.

Numerical simulation is an effective way to assess the SAR during the elec-

tronic design process. To evaluate SAR values, a full-wave EM analysis is

performed first, and then followed by the SAR calculation. For the full-wave

analysis, the methods based on partial differential equations such as the finite

difference and the finite element methods are usually used because of their

flexibility in modeling inhomogeneous materials and complicated geometries.

However, due to the complexity of media and structures of tissues and organs

in the human body, the efficiency of the numerical simulation is decreased

when the simulation is performed at very high frequencies such as those for

5G applications. To perform simulation efficiently, one can first simplify the

model to minimize the computational domain at very high frequencies based

on the strong skin effect, then apply the multi-solver method based on the

Robin transmission conditions (MS-RTC) [55] to maximize the capability

of modeling electrically large and complex objects. In this chapter, such a

modeling approach which includes the numerical method and the simplifica-

tion criteria is discussed and justified, and the SAR results calculated by the
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MS-RTC on the simplified human model are provided.

7.2 Modeling

7.2.1 Problem Description

The problem to be addressed here is the SAR evaluation in a human head

with a dipole excitation at 60 GHz. Shown in Fig. 7.1a, the human head with

a brain and two eyeballs has a total height of 260.5 mm and a total width

of 150.0 mm. The relative permittivities and conductivities of different body

tissues can be found in [106]. To evaluate the SAR distribution in the human

head, EM fields are first computed by a numerical method, and then the SAR

distribution is calculated using

SAR =
σ |E|2
ρ

(7.1)

where |E| is the electric field strength at a given frequency and location, σ is

the local conductivity inside in the human model, and ρ is the local density

of the head tissue [107].

7.2.2 EM Field Computation

The EM modeling of a human head at a very high frequency is difficult

because the discrete representation of a human head usually results in a

tremendous number of degrees of freedom (DoFs) to be simulated. There-

fore, an accurate and efficient numerical solver is required to simulate the EM

fields in the human head. In this chapter, the MS-RTC method is employed

to model the human head. Specifically, the human head model with its back-

ground is partitioned into multiple non-overlapping subdomains. The finite

element method is applied to model the subdomains with inhomogeneous

materials and the moment method is employed to model the subdomains

with homogeneous materials. To couple different solvers, the Robin trans-

mission condition is applied to enforce the field continuity between different

subdomains. To accelerate the computation, the multilevel fast multipole

algorithm (MLFMA) and a preconditioner based on an absorbing boundary
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condition are applied. For a detailed discussion on the MS-RTC method, the

reader is referred to [55].

To demonstrate the EM modeling of the human head using the MS-RTC

method, a homogeneous human head with a relative permittivity of εr = 8.0−
j10.8 is considered. The phone is a two-layer dielectric coated PEC object

with εr = 1.0 and 4.0, respectively from inside out. The head and the cell

phone are excited by a dipole in a cell phone at 3 GHz. As shown in Fig. 7.2a,

the human head is decomposed into two portions. The portion close to the

cell phone is modeled by the FEM, and the other is modeled by the MoM. The

cell phone is modeled by the FEM. The preconditioned BiCGSTAB method

with the MLFMA acceleration is applied to solve the combined system with

176,887 unknowns, which takes 10 iterations to converge to a targeted relative

residual error of 10−3. The surface current distribution is plotted in Fig. 7.2b,

which shows that the energy is concentrated around the ear.

7.2.3 Simplified Human Head Model

When the SAR distribution is evaluated at a very high frequency, it is es-

sential to minimize the computational domain in order to reduce the compu-

tational cost. To reduce the computational domain, the human head model

can be simplified with the consideration of the strong skin effect at very high

frequencies. Since dry skin has a relative permittivity of εr = 7.9 and a con-

ductivity of σ = 36.4 S/m at 60 GHz [106], the corresponding skin depth

is 0.386 mm. Therefore, the field strength will decay to 0.67% after 5 skin

depths (1.9 mm) and 0.091% after 7 skin depths (2.7 mm). Consequently,

the human head model given in Fig. 7.1a can be simplified to a human head

shell, which contains only the human skin. To further reduce the computa-

tional domain, only the lit region is retained in the lateral direction, which is

shown in Fig. 7.1b. The mass density used in the simulation is 1020 kg/m3.

7.3 Numerical Results

To justify the proposed simplification, a spherical body tissue with a radius

of 5 mm is simulated using a dipole excitation at 60 GHz. To reduce the

computational domain, a portion of the interior tissue is hollowed out, which
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results in a spherical shell with a thickness of 1.5 mm. Further, only the lit

region of the spherical shell is retained and modeled by the MS-RTC method.

The SAR distribution in the original spherical tissues and simplified model

are shown in Figs. 7.3a and 7.3b, respectively. As can be seen, there is very

little effect on the SAR distribution when the model is carefully simplified

according to the proposed approach at such a high frequency. As shown in

Fig. 7.3c, the SAR values along the y-axis agree well between the two results.

The relative difference between the two maximum values is 1.5%.

To evaluate the SAR distribution in the human head at 60 GHz, a dipole is

placed close to the ear to radiate EM fields. To compute the fields, the multi-

solver method is applied to the simplified model with an average thickness

of 3.0 mm. Modeled by the finite element method, the simplified model is

discretized into tetrahedrons with an average size of 0.15 mm, which results

in 21,342,571 DoFs. The surrounding free space is modeled by the moment

method with its surface discretized into curvilinear triangles with an aver-

age size of 0.2 mm, which results in 4,964,682 DoFs. The preconditioned

BiCGSTAB method with the MLFMA acceleration is applied to solve the

system equation with 26,307,253 unknowns in total, which takes 11 iterations

to converge to a targeted relative residual error of 10−3. The preconditioner

is also solved iteratively, which takes an average of 20 iterations to converge

to 10−3.

The SAR distribution in the simplified model is shown in Fig. 7.4. As can

be seen, most of the energy absorbed by the human head is concentrated

around the ear. It can also be seen from Fig. 7.4b that the energy can

only penetrate into the skin by a very short distance due to the very strong

skin effect. Based on the observation of the simulation results, the simplified

human head model is sufficient to represent the original problem for the SAR

evaluation.

7.4 Summary

An electromagnetic modeling approach was presented for the simulation of

the specific absorption rate (SAR) in a human head at 60 GHz. Based on

the strong skin effect, the human head model was simplified to reduce the

computation cost. The multi-solver method based on the Robin transmission
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condition was employed to compute electromagnetic fields in the simplified

human head. The SAR was calculated after the electromagnetic fields were

computed. Numerical examples showed that the multi-solver method was

very efficient in solving electromagnetic fields in the human head and the

simplified human head model can be used in the SAR simulation with an

acceptable accuracy.
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7.5 Figures

(a) (b)

Figure 7.1: (a) Human head model with a brain and two eyeballs. (b)
Simplified human head model.
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(a) (b)

Figure 7.2: A homogeneous human head excited by an excitation of a
dipole in a cell phone. (a) Model. (b) Current distribution.
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Figure 7.3: SAR distribution in a spherical model. (a) Original model. (b)
Simplified model. (c) SAR values along the y-axis, which is shown as the
white lines marked in (a) and (b).
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(a) (b)

Figure 7.4: SAR distribution in the simplified human head model. (a) On
the skin. (b) In a cutting plane.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

In this thesis, multi-solver frameworks were studied for fast and accurate nu-

merical analysis of electromagnetic (EM) scattering and radiation problems.

To develop multi-solver schemes for modeling of electrically large and com-

plex objects, a variety of advanced numerical algorithms and parallel com-

puting techniques were investigated and applied.

First, a GPU-accelerated multilevel fast multiple algorithm (MLFMA) was

developed on multiple GPU computing systems to improve the efficiency of

the traditional MLFMA by taking advantage of GPU hardware advance-

ment. The linear systems can be solved efficiently with the multi-GPU

accelerated MLFMA, which paves a way to solve very large EM problems

using boundary-integral-equation-based methods. Compared with the 8-

threaded CPU-based MLFMA, the OpenMP-CUDA-MLFMA method can

achieve from 5 to 20 total speedup ratios.

Second, to model large and complex objects efficiently and accurately, a fi-

nite element-boundary integral (FE-BI) method was proposed. For the accu-

racy improvement, a mixed testing scheme, in which the Rao-Wilton-Glisson

and the Buffa-Christiansen functions were both applied as testing functions,

was presented. For the efficiency improvement, an efficient absorbing bound-

ary condition (ABC)-based preconditioner was proposed to accelerate the

convergence of the iterative solution, and the GPU-accelerated MLFMA was

applied to speed up the iterative solution. Compared with the 8-threaded

CPU-based algorithm, the GPU-accelerated FE-BI-MLFMA algorithm can

achieve a total speedup of up to 25.5 times.

Third, a multi-solver scheme based on combined field integral equation

(MS-CFIE) was proposed to solve large and complex electromagnetic problems.

In this algorithm, an object was partitioned into multiple bodies based on its

material property and geometry. The FE-BI method was applied to model

bodies with complicated materials, and the method of moments (MoM) was
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applied to model bodies with homogeneous or conducting materials. Numer-

ical examples showed that the proposed multi-solver scheme was accurate

and flexible to solve scattering problems of electrically large and complex

objects.

Fourth, a multi-solver scheme based on Robin transmission condition (MS-

RTC) was presented. In this scheme, the entire computational domain con-

sisting of the object and its background was decomposed into multiple non-

overlapping subdomains. For the subdomains with inhomogeneous materi-

als and complex geometries, the FEM was applied. For the homogeneous

or impenetrable subdomains, the MoM was applied. To couple different

subdomains, the Robin transmission condition was employed at the subdo-

main interfaces. This scheme was demonstrated to have a good accuracy,

versatility, and capability through a variety of numerical examples.

Fifth, to improve the modeling capability of multi-solver schemes, a par-

allelized MS-RTC scheme was proposed on distributed computing systems.

The parallelization strategy for the MS method was to parallelize different

subdomains individually, which as different from the parallelized domain de-

composition methods, where the subdomains were handled in parallel. The

assembly of system matrices was parallelized by hybridizing MPI and Open-

MP. The iterative solution was accelerated by MPI-based MLFMA on many

computing processors. Numerical examples were given to show the parallel

efficiency of the proposed strategy and capability of the proposed method.

Finally, as an application of the MS schemes, the simulation of the specific

absorption rate (SAR) in a human head at 5G frequencies was performed. In

order to simulate such a problem, the human head model was simplified based

on the strong skin effect at such a high frequency. The MS-RTC method was

employed to compute electromagnetic fields. Numerical examples showed

that the multi-solver method was very efficient in solving electromagnetic

fields in the human head and the simplified human head model can be used

in the SAR simulation with an acceptable accuracy.

The proposed MS schemes provide very general frameworks where differ-

ent numerical methods are coupled to solve complex problems. While many

aspects of the MS schemes have been studied and discussed in this disser-

tation, there are still a few research directions that can be pursued in the

future to further improve the modeling capability.
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1) Domain decomposition methods can be easily incorporated into individ-

ual solvers in the MS-RTC method. For example, the dual-primal finite

element tearing and interconnecting method can be applied to the FEM

subdomains.

2) Non-conformal mesh can be used at the interfaces of subdomains. Differ-

ent mesh densities and order of basis functions can be applied to different

subdomains so that the mesh generation becomes easier and more flexible.

3) The ABC-based preconditioner was proved to be very effective for pre-

conditioning the MS systems. In this dissertation, the MPI-based direct

solver and OpenMP-based iterative solver are used. Parallelized iterative

solvers on distributed computing systems are worth studying in the fu-

ture. Other effective preconditioners for the proposed MS schemes are

also open to discussion.

4) The MS schemes can be extended to EM problems at low frequencies.

To avoid the low-frequency breakdown problem, tree-co-tree splitting and

loop-star decomposition techniques can be applied to the FEM subdomains

and the MoM subdomains, respectively.

161



REFERENCES

[1] J.-M. Jin, The Finite Element Method in Electromagnetics, 3rd ed.
Hoboken, NJ: Wiley, 2014.

[2] J.-M. Jin, Theory and Computational Electromagnetic Fields, 2nd ed.
Hoboken, NJ: Wiley, 2015.

[3] J.-M. Jin and D. J. Riley, Finite Element Analysis of Antennas and
Arrays. Hoboken, NJ: Wiley, 2008.

[4] W. C. Chew, J.-M. Jin, E. Michielssen, and J. M. Song, Eds., Fast and
Efficient Algorithms in Computational Electromagnetics. Norwood,
MA: Artech, 2001.

[5] R. F. Harrington, Field Computation by Moment Methods. New York:
Macmillan, 1968.

[6] A. Taflove and S. C. Hagness, Computational Electrodynamics: The
Finite-Difference Time-Domain Method, 3rd ed. Norwood, MA:
Artech House, 2005.

[7] S. Velamparambil, W. C. Chew, and J. M. Song, “10 million unknowns:
Is it that big?” IEEE Antennas Propag. Mag., vol. 45, no. 2, pp. 43–58,
2003.

[8] S. Velamparambil and W. C. Chew, “Analysis and performance of a
distributed memory multilevel fast multipole algorithm,” IEEE Trans.
Antennas Propag., vol. 53, no. 8, pp. 2719–2727, 2005.

[9] X.-M. Pan and X.-Q. Sheng, “A sophisticate parallel MLFMA for s-
cattering by extremely large targets,” IEEE Antennas Propag. Mag.,
vol. 50, no. 3, pp. 129–138, June 2008.
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tegral equations in electromagnetic scattering and radiation problems,”
Engineering Analysis with Boundary Elements, vol. 32, no. 3, pp. 196–
209, 2008.

[89] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed.
Philadelphia, PA: Society for Industrial and Applied Mathematics,
2003.

[90] M. Naumov, “Incomplete-LU and Cholesky preconditioned iterative
methods using CUSPARSE and CUBLAS,” 2011.

[91] NVIDIA CUSPARSE Library, Oct. 2012.

[92] CULA Sparse Reference Manual, May 2013.

[93] J. R. Mautz and R. F. Harrington, “H-field, E-field, and combined-
field solutions for conducting bodies of revolution,” Arch. Elektron.
Ubertragungstech. (Electron. Commun.), vol. 32, no. 4, pp. 159–164,
1978.

[94] F. Boeykens, H. Rogier, J. Van Hese, J. Sercu, and T. Boonen, “Rigor-
ous analysis of internal resonances in 3-D hybrid FE-BIE formulation-
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