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Abstract

This thesis reports on laboratory and in-field experimental results for a single robotic manipulator

on a moving platform with unmodeled dynamics that aim to validate theoretical predictions for the

dependence on control parameters of an L1 adaptive control strategy. The experiments verify ex-

pected bounds on the tracking error in terms of the bandwidth of a filter introduced in the control

loop. Moreover, the results provide insight into different discretizations of the continuous-time

formulation, suggesting that a partial discretization introduced by Cao and Hovakimyan is most

suitable for a hardware implementation. A second set of experimental results, obtained from an

implementation of the L1 control framework for synchronization and consensus in networks of

robotic manipulators, similarly validate theoretical predictions on the sensitivity to network com-

munication delays and network topology.
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Chapter 1

Introduction and Definitions

1.1 Literature review

Robotic manipulators on dynamic platforms have been proposed for use in agricultural applica-

tions such as harvesting cucumbers (van Henten et al., 2009; van Henten et al., 2010), radicchios

(Foglia and Reina, 2006), melons (Edan et al., 2000), and peat moss (Johnson et al., 2009). In

planetary exploration, autonomous robotic platforms with manipulators cooperate to build struc-

tures on unmodeled planetary surfaces (Huntsberger et al., 2003; Stroupe et al., 2005). In the

construction field, assistive robots are used to install the hazardous parts of the external wall of

tall buildings (Lee et al., 2007). Mobile robots employ vision systems for discriminating weeds

from crops (Slaughter et al., 2008), in some cases using manipulators that require an appropriate

control.

The technology transition from controlled to uncertain environments requires the use of obsta-

cle detection systems, path planning algorithms, and robust controllers that overcome the uncertain

dynamics induced in the platform. For example, work by (Ball et al., 2016) uses vision-based ob-

stacle detection and navigation in farm environments. Extensive reviews of systems for guidance

of agricultural autonomous vehicles can be found in the recent literature (Wilson, 2000; Reid et al.,

2000; Slaughter et al., 2008; Cheein and Carelli, 2013). Path planning research includes sample-

based algorithms for obstacle-dense environments (Karaman and Frazzoli, 2011; Frazzoli et al.,

2002; LaValle, 1998) and also exploration algorithms (Yamauchi, 1997). Care must be taken in

the control of the moving platform, for example to avoid tipping over in inclined terrain (Morales

et al., 2013). This thesis focuses on the adaptive control of manipulators installed on dynamic
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platforms that move across uncertain terrain.

The literature on adaptive control of manipulators includes designs based on MRAC (Des-

Forges, 1979; Nicosia and Tomei, 1984; Tomizuka, 1986), the linear-in-parameter property (Craig

et al., 1987; Slotine and Li, 1987; Ortega and Spong, 1989), and the passivity of rigid robot dy-

namics (Niemeyer and Slotine, 1991; Berghuis and Nijmeijer, 1993; Ortega et al., 2002). Control

strategies designed principally for either fixed-base or free-floating manipulators exist, e.g., (An-

tonelli and Leonessa, 2008). This thesis focuses on the adaptive control of manipulators installed

on dynamic platforms that are disturbed by the interaction with the environment.

The first part of this thesis is based on (Nguyen and Dankowicz, 2015) which designs a

continuous-time L1 adaptive control scheme to achieve predictable performance with guaranteed

robustness for a manipulator mounted on a dynamic platform with unknown dynamics. An im-

portant property of this adaptive control scheme is that detailed knowledge of the model of the

manipulator-platform is not needed, nor is measurement of the platform motion. The thesis de-

scribes the implementation in actual hardware and reports on an extensive data collection aiming

to validate predicted performance bounds for the continuous-time control scheme, as well as an

alternative discrete-time implementation from (Hovakimyan and Cao, 2010). Other existing ex-

perimental research includes (Bennehar et al., 2015), which presents a parallel manipulator using

the L1 controller.

Cooperative control of networked robots is of increasing relevance to industry. The range

of applications is vast and includes cooperative robots in planetary missions building structures

(Huntsberger et al., 2003; Stroupe et al., 2005), underwater docking of multiple vehicles (Majid

et al., 2014), and swarms of terrestrial and aerial vehicles used for inspection of natural disasters

or polluted areas (Zhou et al., 2015). Research in cooperative control of networked manipulators

includes formulations based on convergence in contraction theories (Chung and Slotine, 2007;

Chung and Slotine, 2009), neural networks (Wang, 2013b; Wang, 2013c; Wang, 2013a; Wang,

2014), or adaptive sliding-mode control schemes (Chen, 2015; Zhao et al., 2015). When the coop-

erating manipulators are mounted on a dynamic platform, the overall system model is complicated
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and large perturbations are introduced, making results for fixed platforms challenging to apply.

The second part of this thesis aims to validate the theory in (Nguyen and Dankowicz, 2016)

(see also (Nguyen and Dankowicz, 2014; Nguyen and Dankowicz, 2015)), which develops an

adaptive controller using the L1 architecture for the cooperative control of networked manipulators

on a moving platform in the presence of communication delays. This controller again needs no

detailed knowledge of the system model, while guaranteeing robustness and fast adaptation. Both

consensus and synchronization problems are considered. Although the platforms are not translated,

and therefore there is no perturbation from the terrain, the manipulators are still influenced by the

platform motion induced by the robot actuators.

The remainder of this chapter discusses the L1 controller formulation, two different imple-

mentations of this formulation in hardware, and the experimental setup. Chapter 2 contains a few

simulation results showing the effects of discretization of the L1 controller. Chapter 3 focuses

on experimental results for a single robot on a dynamic platform, and experimental validation of

the performance bounds. The network implementation and associated experimental results are

discussed in Chap. 4. Finally, Chap. 5 closes with some concluding comments.

1.2 L1 adaptive controller architecture and discretization

This section summarizes the definition and key properties of a family ofL1 controllers. It describes

two different discretization of the architecture suitable for implementation in physical hardware.

All the controller formulations shown in this section have been developed in the references (Hov-

akimyan and Cao, 2010) and (Nguyen and Dankowicz, 2015), and are included here for complete-

ness.
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1.2.1 Physical system definition

As defined in (Nguyen and Dankowicz, 2015), we assume a physical system consisting of a fully

actuated manipulator on an unactuated moving platform governed by the equation

 Maa(q) Map(q)

MT
ap(q) Mpp(q)

 q̈ +

 Naa(q, q̇)

Npp(q, q̇)

 =

 u

0

+

 Daa(q, t)

Dpp(q, t)

 , (1.1)

where qa represents the generalized degrees of freedom ot robotic manipulator, qp represents the

platform degrees of freedom and qT =
[
qTa , q

T
p

]
. The matrices Maa, Map, and Mpp are all positive-

definite, symmetric, and bounded. The column vectors Naa and Npp contain the corresponding

nonlinearities, the components of u are the time-dependent control input, and Daa and Dpp repre-

sent the bounded time-dependent unknown disturbances to the manipulator and the platform.

Given a desired trajectory qd(t) for the system, define a sliding variable

r = q̇a − q̇d + λ(qa − qd). (1.2)

If the controller is successful in driving r −→ 0, then

qd(t)− qa(t) ∼ e−λt. (1.3)

Equation (1.1) can be used to write

ṙ = Amr + u+ η(t, q, q̇, q̈p, u), r(0) = r0. (1.4)

where Am is a Hurwitz matrix that may be designed to achieve a desired behavior of the controlled

system, and η(t, q, q̇, q̈p, u) contains nonlinearities, time dependent disturbances, and the inertias of

the system. The objective of the L1 controller is that the control input u cancels the contributions

of η.
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1.2.2 L1 adaptive controller

Like other adaptive controllers, the L1 adaptive controller is composed of a state predictor, one

or several adaptive laws, and a control law (c.f. Fig. 1.1). The state predictor estimates the state

of the system, the adaptive laws update the adaptive parameters based on the error and in the

state predictor estimation, and the control law computes the control inputs based on the adaptive

parameters.

Figure 1.1: Block diagram for an adaptive L1 controller.

The L1 adaptive controller is characterized by the use of a low-pass filter in the control law,

removing the highest frequencies from the control input. This makes it possible to have very high

gains in the adaptation laws, achieving quick adaptation without letting high frequency signals

reach the physical system.

The L1 controller is originally defined as set of continuous-time differential equations and

projection operators, as described in Section 1.2.3. These equations need to be discretized in

order to be implemented on a microcontroller in an implementation. The reader should realize

that a naive discretization is very likely to give numerical problems as the adaptation laws have

very high gains. A different approach is given in Section 1.2.5, where the time history of the

adaptive parameters over one time step is estimated a priori, eliminating the need to integrate

the corresponding equations. Rigorous proofs of the stability of the continuous-time controller is

given in (Nguyen and Dankowicz, 2015), and for the discretization from Section 1.2.5 is given in
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(Hovakimyan and Cao, 2010), respectively. Key results are summarized in the next sections.

1.2.3 Continuous formulation

This section presents a control framework for the stabilization of the dynamics of a manipulator

operating on a moving platform as described in Section 1.2.1, following the L1 controller archi-

tecture described in (Nguyen and Dankowicz, 2015).

The system state is first estimated by the state predictor

˙̂r = Amr + u+ θ̂‖r[0,t]‖L∞ + σ̂ + Aspr̃, r̂(0) = r̂0, (1.5)

where r̂ is the state estimate, r̃ = r̂ − r is the estimation error, Asp is a Hurwitz matrix can be

designed to shape the convergence, and ‖r[t0,t1]‖L∞ denotes the L∞ norm of r(t) on the interval

[t0, t1]. The adaptive estimates θ̂ and σ̂ are obtained from the projection-based adaptive laws

˙̂
θ = Γ Proj

(
θ̂,−P r̃‖r[0,t]‖L∞ ; θb, ε

)
, θ̂(0) = θ̂0, (1.6)

˙̂σ = Γ Proj
(
σ̂,−P r̃;σb, ε

)
, σ̂(0) = σ̂0, (1.7)

in terms of the adaptive gain Γ, the projection tolerance ε, and the positive-definite matrix P ,

obtained as the solution to the Lyapunov equation A>spP + PAsp = −Q, in terms of some chosen

positive definite matrix Q. The projection operator Proj(·, · ; ·, ·), as defined in the Appendix of

(Hovakimyan and Cao, 2010) and shown below, ensures that ‖θ̂(t)‖∞ ≤ θb and ‖σ̂(t)‖∞ ≤ σb,

provided that θ̂0 and σ̂0 satisfy these same bounds.

Proj(a, y; ab, ε) =


y if f(a) ≤ 0 or ∇f>y ≤ 0

y − ∇f(a)
‖∇f(a)‖2 (∇f)>y(a))f(a) if f(a) > 0 and ∇f>y > 0

(1.8)
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where

f(a) =
(ε+ 1)a>a− a2b

ε a2b
(1.9)

Finally, the control law is

u̇ = −k
(
u+ θ̂‖r[0,t]‖L∞ + σ̂

)
, u(0) = 0, (1.10)

where k is the bandwidth of the low-pass filter rejecting high frequency components from the

adaptation laws. For large values of k, u cancels the contribution of θ̂‖r[0,t]‖L∞ + σ̂, which means

that the state predictor is approximately given by ˙̂r = Amr+u+θ̂‖r[0,t]‖L∞ +σ̂+Aspr̃, r̂(0) = r̂0.

If in addition θ̂‖r[0,t]‖L∞ + σ̂ is a close approximation of η then r would be driven to 0 as desired.

This is the trade-off, between perfect cancellation and the introduction of noise in the system and

unstabilize the system.

As an illustration of a possible application, Fig. 1.2 shows the framework for using this con-

troller to stabilize the end effector of a robotic manipulator. The platform orientation is measured,

and a desired trajectory in joint space is computed to compensate for changes to this orientation.

This trajectory is fed into theL1 controller through the input r. The Control Law and Low-pass Fil-

ter blocks correspond to Eq. (1.10), obtaining u, while the Predictor obtains r̂ in (1.5), Adaptation

computes θ̂ and σ̂ in Eqs. (1.6) and (1.7), and Tracking Error does so for r in Eq. (1.2).

The reference (Nguyen and Dankowicz, 2015) establishes a bound on the performance of the

controller, under certain operating conditions. To this end, a non-adaptive reference system with

states rref and control input uref is defined, assuming no model uncertainty. The stability of this

reference system follows from Theorem 3.1 of (Nguyen and Dankowicz, 2015). For sufficiently

large k, there exists a positive scalar ρref , such that ‖rref (0)‖∞ < ρref implies that ‖rref‖L∞ <

ρref and ‖uref‖L∞ is finite. Lemma 3.1 of (Nguyen and Dankowicz, 2015) then establishes

∥∥rref (t)− eAmtr0
∥∥
L∞

= O
(
k−1
)
, (1.11)
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where r0 = rref (0). This means that, for large enough values of τ0 or when r0 = 0,
∥∥rref,[τ0,∞]

∥∥
L∞

decreases as O (k−1).

Predictor

Adaptation

Control 

law

_

Robot 

dynam ics

Track ing 

error

Desired 

tra jectory

Feedb ack

+

Low-pass 

Fi lter

Disturbances

Platfo rm 

dy nam ics

Stabil izat ion 

schem e

Figure 1.2: Block diagram for the end effector control of a moving-base manipulator.

Similarly, the results in Theorem 4.1 of (Nguyen and Dankowicz, 2015) establish that for the

k and r0 already chosen, and λ ≥ 1, exist θb, σb, and ε such that for sufficiently large Γ, ‖rref −

r‖L∞ and ‖uref − u‖L∞ are order O(1/
√

Γ), proving the stability of the adaptive controller under

those conditions. Similarly, Theorem 2 in (Nguyen et al., 2016) suggests that under equivalent

conditions, there exist β1, β2, and β3 such that

‖(rref − r)[τ0,∞]‖L∞ ≤ β1‖r̃0‖e−β2τ0 + β3/
√

Γ (1.12)

for arbitrary τ0, and nonzero initialization errors r̃0.

In the case that r̂0 = r0 = 0, Eqs. (1.11) and (1.12) imply the following asymptotic estimate is

obtained:

‖r‖L∞ ≤ O(1/k) +O(1/
√

Γ). (1.13)

This result will be investigated in the experiments in the following chapters.
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1.2.4 Euler-like discrete formulation

For an experimental implementation of the proposed control architecture, consider the following

discretization of Eqs. (1.5-1.10) in terms of the sampling interval T :

r̂(i+1) = r̂(i) + T
(
Amr

(i+1) + u(i) + θ̂(i) max
0≤j≤i

‖r(j+1)‖∞ + σ̂(i) + Asp(r̂
(i) − r(i+1))

)
, (1.14)

θ̂(i+1) = Clamp
(
θ̂(i) + TΓ Proj

(
θ̂(i),−P (r̂(i+1) − r(i+1)) max

0≤j≤i
‖r(j+1)‖∞; θb, ε

)
, θb

)
, (1.15)

σ̂(i+1) = Clamp
(
σ̂(i) + TΓ Proj

(
σ̂(i),−P (r̂(i+1) − r(i+1));σb, ε

)
, σb

)
, (1.16)

u(i+1) = u(i) − Tk
(
u(i) + θ̂(i+1) max

0≤j≤i
‖r(j+1)‖∞ + σ̂(i+1)

)
(1.17)

where r̂(0) = r̂0, θ̂(0) = θ̂0, σ̂(0) = σ̂0, and u(0) = 0, and the clamping operator

Clamp(x, xb) :=


x if ‖x‖ ≤ xb

xb x/‖x‖ if ‖x‖ > xb

(1.18)

ensures that the implementation respects the bounds on θ̂ and σ̂.

Note that although this discretization may appear similar to the explicit Euler discretization, it

differs in two ways. First, the measured value of r(i+1) is used to update the control state to time

i + 1. Secondly, the equations are updated sequentially: r̂(i+1) is used to update θ(i+1) and σ(i+1),

and these are next used to update u(i+1).

The experimental results in Chap. 3 show that the bound in Eq. (1.13) applies to this imple-

mentation, although the discretization error renders the system unstable for large values of k.

1.2.5 The Cao and Hovakimyan discretization

The reference (Cao and Hovakimyan, 2009) (see also Section 3.3 of (Hovakimyan and Cao, 2010))

introduces an alternative formulation of the differential adaptive laws in terms of a piecewise con-

stant signal with explicit updates that depend only on the prediction error. This removes all the
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complexity introduced by the high adaptation gain and the projection operators. A possible imple-

mentation is as follows, in terms of the sampling interval T :

r̂(i+1) = r̂(i) + T
(
Amr

(i+1) + u(i) + σ̂(i)
)
, (1.19)

σ̂(i+1) = (A−1m (e−AmT − 1))−1e−AmT (r̂(i+1) − r(i+1)), (1.20)

u(i+1) = u(i) − Tk
(
u(i) + σ̂(i+1)

)
, (1.21)

where r̂(0) = r̂0, σ̂(0) = 0 and u(0) = 0. We refer to this discretization below as the Cao and

Hovakimyan discretization.

Note that the term (A−1m (e−AmT − 1))−1e−AmT is a result of an assumed relationship between

Γ and T . The proof of stability and the performance bounds in Section 3.3 of (Hovakimyan and

Cao, 2010) generalize the observations made for the continuous-time formulation. For example,

Theorem 3.3.1 establishes that ‖r − rref‖L∞ can be made arbitrarily small by picking sufficiently

small T and sufficiently large k.

As will be observed in the sections describing the physical experiments, this implementation

presents several advantages when implemented on a real system. These include reduced complex-

ity, fewer parameters to adjust and the less numerical stiffness.

1.2.6 Network of manipulators

Following (Nguyen and Dankowicz, 2016), a network of manipulators is defined by a weighted

directed graph. Each manipulator i is represented by a node of the graph. It feeds its measured

data αi to the manipulators at the other ends of its outgoing edges. Let the set of incoming edges

of each manipulator i be denoted by Si. Then,the signal βi, given by

βi(t) =
∑
j∈Si

aj,i(±α∗j (t)− αi(t)), (1.22)
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is available for the controller governing the ith manipulator. Here, aj,i is the weight of the edge

from j to i. In the case of a bipartite consensus, edges can be positive or negative, as denoted by

the symbol±. Fig. 1.3 shows an example of a positive-only network. For convenience, let ai,j = 0

if there is no edge from manipulator i to j.

1 2

34

1

1

1

1

Figure 1.3: Example of a manipulator network, depicted as a directed graph. Numbers next to
edges represent weights.

The notation α∗j (t) denotes a signal received from the ith robot at time t. This corresponds

to an earlier measurement whose later reception is caused by an potentially unknown network

communication delay. In (Nguyen and Dankowicz, 2016), this delay is assumed to be the same in

all edges.

1.2.7 Extension to synchronization before tracking

The synchronization-before-tracking strategy in (Nguyen and Dankowicz, 2016) can be imple-

mented using the Cao and Hovakimyan discretization of the L1 controller from Section 1.2.5,
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together with Eq (1.2):

r+i = q̇+a,i − q̇+d,i + λ(q+a,i − q+d,i), (1.23)

r̂+i = r̂i + T
(
Am,ir

+
i + ua,i + σ̂i

)
, (1.24)

σ̂+
i = (A−1m,i(e

−Am,iT − 1))−1e−Am,iT (r̂+i − r+i ), (1.25)

u+a,i = ua,i − Tk
(
ua,i + σ̂+

i

)
(1.26)

u+s,i =
∑
j∈Si

aj,i
(
r∗j − r+i

)
, (1.27)

u+i = u+a,i + u+s,i (1.28)

for each manipulator i, where a + superscript represents the new values of each variable in the

currently computed time step, r∗j is the delayed signal received from robot j, and r̂(0)i = r̂0,i and

u
(0)
a,i = 0. The synchronization signal u+s,i (c.f. Eq. (1.22), with αj = rj and using only positive

edges) is added to the control input u+a,i to obtain the total control input u+i .

For the corresponding continuous-time system, Theorems 1 and 2 and Corollary 1 in (Nguyen

and Dankowicz, 2016) establish a bound similar to (1.13):

‖r − r̄(t, r0)‖L∞ ≤ O(1/k) +O(1/
√

Γ) (1.29)

where r̄(t, r0) is bounded by an exponentially decaying function. The experiments in this thesis

will confirm that tracking can happen even with large network delays. Proposition 1 in (Nguyen

and Dankowicz, 2016) shows that, for the case of perfect cancellation, it is possible to design

Am,i so that r = 0 is globally asymptotically stable independently of the communication delay.

Proposition 2 in the same paper shows that, for the case with no delay, it is possible to design Am,i

to achieve synchronization before tracking. In other words, ri → rj faster than ri → 0, for all pairs

of robots i, j, and generic initial conditions. In the experiments in Chap. 4 several combinations

of Am,i values will be tested to validate this predictions. Finally, a stability map similar to that
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reported in (Nguyen and Dankowicz, 2016) will be experimentally characterized.

1.2.8 Extension to consensus

Next, consider the consensus strategy in (Nguyen and Dankowicz, 2016). In this case, Eq. (1.23)

is replaced by

r+i = q̇+a,i −
∑
j∈Si

aj,i
(
±q∗a,j − q+a,i

)
+ ci(qd − qa,i) (1.30)

and Eq. (1.28) is replace by

u+i = u+a,i. (1.31)

This notation is consistent with (1.22) with αj = qa,j . The coefficients ci = 0 for all i, except for

the leader manipulator that seeks to track the desired trajectory qd. When there is no leader, ci = 0

for all i and the manipulators will seek a dynamically determined consensus.

In the case of the continuous-time formulation, Theorems 3 and 4 in (Nguyen and Dankowicz,

2016) show that Am,i and k exist so that

‖ri − r̄(t, r0)‖L∞ ≤ O(1/k) +O(1/
√

Γ) (1.32)

where r̄(t, r0) is bounded by an exponentially decaying function, and ‖ui‖L∞ is bounded for all

robots. This relationship will be explored for different network topologies in the experiments in

Chap. 4.

Eq. (1.30) allows for the possibility of negative edges. As predicted by (Nguyen and Dankow-

icz, 2016) and as will be explored experimentally, a bipartite consensus can occur is such a graph

if it is structurally balanced. In this case, there are two groups of nodes with all inter-connections

negative and all intra-connections positive. The consensus values of one group are the negatives
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of the consensus values of the other group.

1.3 Implementation

1.3.1 Hardware setup

Figure 1.4: One of the robotic manipulators used in the experiments is mounted on a wooden
platform that is suspended relative to the floor via four coil springs at its corners.

The manipulator used in all experimental setups is a CataLyst-5 from Thermo Scientific,

mounted on different platforms, such as the one in Fig. 1.4. In the network setups, several identical

manipulators are used, mounted on different independent platforms. The CataLyst-5 manipulator

is a standard five-degrees-of-freedom robotic arm, which uses three degrees of freedom for deter-

mining the position of the end effector and three for its orientation (the first degree of freedom
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affects both). The motor control of the robotic arm is realized using chain and gear mechanisms

driven by DC motors, as shown in Fig. 1.5. The torques generated by the motors are modulated by

a PWM duty cycle of the input current, parameterized by u. Optical encoders measure rotations

of the chain sprockets corresponding to the angles of each link relative to an absolute, base-fixed

reference frame, rather than relative angles between links at each joint (see Section 1.3.2).

Figure 1.5: Chain and gear mechanism that transmits the motor torques to the manipulator joints.

A control PCB is designed with a Texas Instruments TMS320F28335 microprocessor and 5

Advanced Motion Controls ZBDC12A PWM amplifiers to control the motors. The measurements

from the optical encoders are acquired through an I2C bus for use in the control feedback. The

sampling and control frequency of the microprocessor is set to 1000 Hz, implying that the sampling

interval T ≥ 0.001 s in all experiments. The system is also outfitted with an ADXL335 3-axis

accelerometer (as a part of a Sparkfun SEN-10736 Inertial Measurement Unit), which computes

the platform orientation.

15



In the experimental implementation of the adaptive control design, the geometry and mass

distribution of the manipulator are assumed to be unknown, as is also the case with the platform

dynamics. The transfer function from the duty cycle to the actual torque at the motor shafts is also

unmodeled.

1.3.2 Robotic arm kinematics

The CataLyst-5 manipulator is designed so that its degrees of freedom are as independent from

each other as possible. For this purpose, the actuated and measured degrees of freedom of the

robot are attached to five chains that run inside the links. Specifically, with reference to Fig. 1.6,

let αi, βi, and γi be the ZYX Euler angles of link iwith respect to the base frame (i.e., the platform),

corresponding to yaw, pitch and roll, respectively, for each of the three links. Then q(a,1) = α1,

q(a,2) = π/2+β1 and q(a,3) = β2. Indeed, this implies that the third joint’s relative-to-previous-link

angle, which results from the difference of chains 3 and 2, equals q(a,3) − q(a,2) + π/2. Similarly,

q(a,4) = −β3, so that the fourth joint’s relative-to-previous-link angle is −q(a,4) − q(a,3). Finally,

q(a,5) = γ3 − 2β3.

Due to this arrangement of the degrees of freedom, the end effector orientation only depends

on three degrees of freedom, namely q(a,1), q(a,4), and q(a,5). Notably, the yaw, pitch, and roll angles

of the end effector relative to the base-fixed reference frame are given by qa,1, qa,4, and qa,5−2qa,4,

respectively.

1.3.3 Network setup

Three CataLyst-5 manipulators were available for the network experiments. The network was

initially designed over TCP-IP WiFi, using a Raspberry PI 3 as a serial port relay for each of

the robots. A Python3 program serves the relay function, together with another Python3 program

running in the operation control laptop, which computes the data sent to each manipulator.

One of the main limitations in the system is the data transmission rate achievable by the serial
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Figure 1.6: Schematic of the robot links and the degrees of freedom as measured and actuated by
the hardware. Note that all the angles are absolute, not referred to the previous link.

port through an FTDI system, which is limited to approximately 10 real values every 16 millisec-

onds using the maximum available baud rate. This maximum throughput has been determined

experimentally; sending data at another frequency makes it arrive at multiples of 16 ms. Sending

more data or sending it more often results in the system collecting large chunks of data and sending

them in one transaction, every few hundred milliseconds, rendering the system unsuitable for real

time application. In practice, this means that only two to three values per joint can be transmitted

every 16 ms and the minimum delay is unknown and on the order of 16 ms. To reduce the amount

of data transmission needed, the network data is preprocessed by the operation control laptop and

only the sun in Eq. (1.22) is transmitted. The processing pattern in the operation control laptop

simulates the different network topologies, by adding up and sending only the inbound connections

for each of the manipulators.

Another limitation in the network implementation comes from the use of TCP-IP as commu-

nication protocol. Although TCP provides reliable communication, due to its design, the possible

network delays are not bounded, and experiments carried out in the lab show that the nominal net-
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work delay is around 20 ms, but it can be larger in some cases of normal operation, depending on

the network load; it can even be several seconds if connection is lost and needs to be reestablished.

A major issue with TCP is the protocol overhead when sending small messages very often that can

collapse the transmission medium. Standard algorithms to avoid this are active in the TCP stack,

such as Nagle’s algorithm (Nagle, 1984), which has the terrible side effect of accumulating a cer-

tain number of messages before sending a TCP packet with them, as seen in (Minshall et al., 2000).

This can be disabled by using the TCP_NODELAY flag, reducing the trip time but increasing the

network load. Although the full network implementation has been tested, in the experiments in

Chap. 4 the TCP part of the network has been bypassed by using a direct USB connection to a

single computer, avoiding the uncertainty in the delay produced by it in the experiments.

1.3.4 Graphical user interface

A Graphical User Interface (GUI) has been designed for use in the network experiments, allowing

the modification of parameters just by clicking in buttons and typing in a textbox. Figure 1.7

depicts the design, in which the left panels contain information about the status of the network and

the controllers, and the right side allow for the modification of parameters and sending commands

to the robots.

The interface has been designed in Python3 with clearly labeled controls. The top toolbar

allows for easy execution of sequential experiments and logging of data for subsequential analysis.

The data can be plotted instantaneously with a single click. The safety features include the ability

to stop all robots with one click, as well as to trigger an automatic shutdown if connection is lost

to the receiver.
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Figure 1.7: Graphical User Interface (GUI) for the network configuration and data collection.
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Chapter 2

Simulation

This chapter explores some issues related to the controller discretization introduced in Chap. 1.1.

The analysis may be useful for building intuition in advance of the experimental study reported

in later chapters. A simplified second-order plant with only one degree of freedom is used. Sim-

ulations are performed in Simulink and the implementation is based on the examples provided in

(Hovakimyan, 2017).

2.1 Choosing a discretization

The choice of discretization is critical for the solution of systems of ordinary differential equations

(ODEs). There is extensive literature about numerical integration of ODEs and the different solvers

available (Moin, 2010). There are two relevant properties of a numerical solver, precision and

stability. High precision does not always imply stability and, conversely, some stable methods

might not be very precise. The usual choice for the solution of ODEs is the Dormand-Prince (4,5)

pair, based on a fifth-order explicit Runge-Kutta formula (Dormand and Prince, 1980). This is

implemented in the function ode45 in MATLAB, which uses an adaptive step size. In most cases,

this function delivers very accurate results. It has been used to generate the continuous solution

referenced in this chapter by solving for the time history of the internal state of the controller, as

well as the state of the robot mechanism.

In a hardware implementation, the state of the robot mechanism is an exogenous signal used

to drive the computation of the control input. In the typical case of the discretization of an ODE,

the value of the exogenous signal at time t − δt and the state at that time are used to compute
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the state at time t. In contrast, in the discretization of a controller applied to a physical system, a

measurement of the plant at time t and the internal state of the controller at t− δt may be used to

compute the internal state of the controller at time t and the control input at that time. The control

input is the held fixed until the next time step.

In the presence of an exogenous signal, the implementation of an ODE solver for a controller

in real hardware is constrained by the hardware measurement sampling rate. For instance, consider

the state predictor in Eq. (1.5). Here, the exogenous signal r contains the joint angle measurements

and velocity estimates, which are only available every 1 ms, when a new encoder measurement

happens. Evaluation of the ODE between measurement times requires interpolation which may

have an effect on the precision of the integrator. For this reason, we restrict ourselves to fixed-

step-size solvers with no evaluation between measurements. Even in this case, numerical stability

problems may arise when the derivatives are large compared to the step size.

As seen in the experimental results reported in this thesis, the combination of the ODE in-

tegration method and the controlled hardware system may results unstable dynamics. Two very

different instability phenomena observed in the experiments. The first instability occurs when the

value of k is too small. This is a possible violation of the stability condition in Theorem 3.1 of

(Nguyen and Dankowicz, 2015), which requires k to be larger than some critical value. In this

case, the system becomes unresponsive, with occasional large overshoots that eventually bring the

robot out of safe operation. The second instability occurs when either k or T is too large. This

instability is not predicted by the analysis of the continuous system. It is likely due to the effects

of the discretization, as the derivatives are very large in these cases, compared to the sampling

interval. The system progressively becomes oscillatory as k or T increase, making loud noises and

eventually shaking the platform.

Although not reported here, other methods of discretization that those introduced in chapter 1

have been implemented and tested in experiments. These include the explicit Euler method, and

the Bogacki-Shampine third-order explicit Runge-Kutta method from (Bogacki and Shampine,

1989), both with constant step size. The Euler method gave very similar results to those obtained
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with the discretization in Section 1.2.4. To evaluate the ODE in between measurement sampling

times in the Bogacki-Shampine, both interpolated measurements and a step size equal to three

times the sampling rate were used. No notable qualitatively improvement was observed in spite of

the increase in the implementation complexity.

2.2 Continuous formulation and Euler discretization

Figure 2.1 shows the Simulink model used for the simulation of the formulation in Section 1.2.3.

The blocks Control Law, Adaptive Law and Predictor correspond to the Eqs. (1.5 - 1.10). The

block Sliding Window is Equation (1.2) and RinfNorm computes ‖r[0,t]‖L∞ . The block Platform is

depicted in Fig. 2.2 and corresponds to

q̈ = −0.05 q̇ − 0.1 q + u. (2.1)

The desired trajectory is a sinusoid with amplitude 2 and frequency 1 rad/s. The values used for

the controller parameters are Am = −10, Asp = −0.1, λ = 1, P = 1, Γ = 2000 and σb = θb = 60.

The simulation was run for the continuous-time case (integrated using ode45) and in two discrete

cases, using the explicit Euler, with time steps of 0.001 and 0.0005, respectively. In each case, the

integrator was used for both the platform and the controller.

Figure 2.3 shows the dependence of ‖r‖L∞ on the bandwidth k for each discretization. We

observe that, in the case of integration with ode 45, ‖r‖L∞ always decreases with increasing values

k. In contrast, for the Euler integrator, the error quickly diverges beyond a critical value of k. As

the step size increases, this critical value of k decreases. A similar divergence is observed in the

experimental results in the next chapters.
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Figure 2.1: Schematic of the Simulink simulation model used.

Figure 2.2: Schematic of the simulated Platform block.
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Figure 2.3: Simulation results. The value of ‖r‖L∞ is plotted for each value of k. Each curve
represents a different discretization method, including ode45 and Euler with integrating time steps
of 0.001 and 0.0005. In the discrete cases, the curve terminates at the value of k for which the
response diverges.
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2.3 Cao and Hovakimyan formulation

Figure 2.4 shows the Simulink model used for the simulation of the formulation in Section 1.2.5.

The blocks Control Law, Adaptive Law, and Predictor correspond to the Eqs. (1.19 - 1.21), and

the block Sliding Window is Eq. (1.2). The block Platform and the desired trajectory are the same

as in the previous section. The values used for the controller parameters are Am = −10 and λ = 1.

The simulation was run for three discrete cases, with integrating time steps of T = 0.001, 0.005

and 0.010.

Figure 2.4: Schematic of the Simulink simulation model used for the Cao and Hovakimyan dis-
cretization.

Figure 2.5 shows the dependence of ‖r‖L∞ with k and each discretization. We observe that the

error decreases with increasing values of k until a critical value is reached, beyond which the error

quickly raises and diverges. The reader should note that the Cao and Hovakimyan formulation
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Figure 2.5: Simulation results. The value of ‖r‖L∞ is plotted for each value of k. Each curve
represents a different discretization time step.

remains stable for values of k and time step size T ten times higher than the Euler discretization,

which suggests that this method is more suited to the integration of the L1 controller in fixed-time-

step-size systems.
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Chapter 3

Field Robotics Experimental Results

A possible application of robotic manipulators installed on dynamic platforms is manipulation of

equipment or interaction with the environment while driving over uneven terrain. For example,

a vehicle designed for crop inspection could carry a manipulator with the inspection equipment

installed on the end effector. The experiments in this section have been designed to validate the

control strategies for such an application. Section 3.1 explores the implementation and perfor-

mance of the Euler-like controller discretization defined in Section 1.2.4, while Section 3.2 does

so with the Cao and Hovakimyan discretization defined in Section 1.2.5, better suited for digital

control applications. Finally, Section 3.3 compares the two proposed strategies and discusses the

lessons learned.

3.1 Validation of the Euler-like discretization scheme

In the following subsections, we use the Euler-like discretization of the continuous controller from

Section 1.2.4 to experimentally validate the performance bounds expected for the continuous for-

mulation of theL1 controller from Section 1.2.3. As shown below, the experimental results validate

the theory within a particular region of parameter space, while discretization and measurement er-

rors result in a violation of the expected bounds outside of this region.

3.1.1 Experimental set-up

Three experiments were carried out both in the field and in the lab, comparing the controller

capabilities in each case. In these experiments, the control framework is applied to the five-degree-
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of-freedom manipulator, described in Section 1.3.2, mounted on a wheeled platform as shown in

Fig. 3.1. In the lab, the platform is stationary. When the experiments are carried out in the field, an

operator pulls and pushes the platform in a continuous movement along an approximately straight

line across an 8 meter long sloping and bumpy terrain (Fig. 3.2). This motion of the platform

disturbs the dynamics of the manipulator.

Figure 3.1: The robotic manipulator used in the experiments in Chapter 3 is mounted on a wheeled
platform. Here, measurements from the platform IMU and the robot optical encoders are processed
by the control board and used to compute the desired trajectory qd(t).

A subset of the experiments requires measuring the platform orientation in order to compute a

desired configuration of the end effector. In these cases, the orientation is measured every 20 ms

by an attached Sparkfun SEN-10736 9DOF Razor Inertial Measurement Unit (IMU). The IMU

is composed of a triple-axis accelerometer, a triple-axis gyroscope, and a triple-axis magnetome-

ter. The IMU communicates with the manipulator control board via a level converter board that

interfaces between the UART port on the IMU and the RS-232 port on the manipulator control

board.
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Figure 3.2: An operator pulls and pushes the cart continuously in a straight line through a sloped
and bumpy grass field about 8 meters long. In the image the sloped terrain and the cart are visible.

Calibration of the magnetometer is crucial. The estimation of the magnetic field is highly

sensitive to the surrounding magnetic disturbances, such as parts made of iron and electronic com-

ponents. We apply the sensor-fusion algorithm presented in (Mahony et al., 2008), and available

in the software package Razor AHRS v1.4.2, to estimate the yaw, pitch, and roll angles of the plat-

form. For large angles of rotation, uncorrected offsets in the gyro readings on the order of a few

degrees per second result in drifts during integration of the angular velocity signal. To compensate

for such drifts, a PI control algorithm may be used to drive the predicted yaw, pitch, and roll angles

to values that are consistent with estimated values from the magnetometer and accelerometer. In

our implementation, we use PI gains equal to a tenth of their default values in the Razor AHRS

v1.4.2 package.
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3.1.2 Proposed adaptive controller implementation

The discrete implementation of the proposed adaptive controller is shown in Eqs. (1.14 - 1.17)

using the tracking error

r(i) = q̇(i)a − q̇
(i)
d + λ(q(i)a − q

(i)
d ), (3.1)

where q(i)d = qd
(
iT
)

and q̇(i)d = q̇d
(
iT
)
. Here q(i)a =

(
q
(i)
a,1, q

(i)
a,2, q

(i)
a,3, q

(i)
a,4, q

(i)
a,5

)>
consists of the

responses of five identical first-order low-pass filters with bandwidth 500 Hz to inputs obtained

from each of the optical encoders associated with the motor degrees of freedom of the robotic arm.

The filter attempts to mitigate the adverse effects of low sensor resolution on the approximation of

derivatives. The value of q̇(i)a in Eq. (3.1) is obtained from the finite difference approximation

q̇(i)a =
q
(i)
a − q(i−1)a

T
. (3.2)

The controller is initialized with r̂0 = 0, σ̂0 = 0 and θ̂0 = 0.

In the experiments described in this chapter, T = 0.001 s, θb = 30, σb = 30, ε = 0.3,

Asp = 850I, Q = 510I3, λ = 1, and Am = −10I3. These values were tuned for the in-lab

experiments and maintained constant through all the experiments. This allows easy comparison of

the different results. Only the value of k is changed between experiments in order to evaluate the

dependence on the filter bandwidth.
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3.1.3 Sinusoidal desired trajectory in platform frame

In this experiment, the desired trajectory is sinusoidal in the platform frame, independently of the

platform motion, and given by

qd =



0.5(1− cos(t))

0.5(1− cos(0.5t))

0.3(1− cos(0.75t))

−0.3(1− cos(0.75t))

0.3(1− cos(0.5t))


. (3.3)

Note that the period of this motion is 8π s = 25.1327 s.

Although the control loop runs with a sampling period of 1 ms, it is not possible to send the state

of the system from the control board to the computer at such a rate through the serial connection.

For short runs, it may be possible to store all relevant data in the microcontroller itself. As an

example, a characteristic time history for ‖r(t)‖∞, sampled every 1 ms, is shown in Fig. 3.3. The

erratic nature of the signal results in a rapid rise of the measured ‖r[0,t]‖L∞ norm. The stepwise

increase of the discretization of the error norm ‖r[0,t]‖L∞ is mostly contained in the first half of

each experiment. In order to capture the predicted asymptotic trend, we use the discretization of

‖r[per/2,per]‖L∞ as a representation of the controller performance, where the notation [per/2, per]

refers to the second half of the period. In addition, to address the limitations of the data collection

system and to impose a heuristic filtering of the norm signal, the reported data uses a sampling rate

of 50 ms.

The full experiment was conducted over the course of 52 periods. Initially, and after each

period, the counter i is set to 0. At the beginning of the experiment θ̂(0), σ̂(0), r̂(0), and u(0) are

initialized to 0. Each time a new period begins, they are initialized to their final values in the

previous time series. The value of k is held fixed during four consecutive periods of the desired

trajectory, allowing for sets of data to be collected for each of 13 different values of k. The results
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Figure 3.3: Characteristic time history for ‖r(t)‖∞ (solid) and corresponding discretization of
‖r[0,t]‖L∞ (dotted), using data sampled every 1 ms. The setup corresponds to Section 3.1.4, with
k = 9.25.

of laboratory and field tests are shown in Fig. 3.4, where different values of the discretization of

the error norm ‖r[per/2,per]‖L∞ for a given k correspond to data collected during the second half of

each period of the desired trajectory, as explained above.

We observe that the error norm at first decreases when k is increased, analogously to the bound

in Eq. (1.13). The similarity between the data collected in the laboratory and those from field

experiments show that the controller is able to handle the perturbations from the uneven terrain

without a big increase in the tracking error. As indicated in the figure, larger values of k are asso-

ciated with greater variability in the measured error norms. Interestingly, the analysis in (Nguyen

et al., 2015) suggests a similar destabilizing effect beyond some critical value of k due to time

delays and unmodeled dynamics.
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Figure 3.4: Variations in the discretization of the error norm ‖r[per/2,per]‖L∞ for different values of
the filter bandwidth k for the desired trajectory given in Eq. (3.3). The bars represent the mean and
standard deviation across four data points for each value of k. (a) Lab experiment with stationary
platform; (b) Field experiment with platform pushed and pulled across uneven terrain.

3.1.4 Sinusoidal desired orientation in the inertial ground frame

In this section, the objective is to make the end effector follow a desired trajectory in an inertial

frame. To this end, let

yd(t) =
π

9
sin

(
2π

3
t

)
, pd(t) =

π

9
sin

(
4π

3
t

)
, rd(t) =

π

6
sin

(
2π

3
t

)
(3.4)

be the yaw, pitch, and roll angles of the end effector in the ground frame. Let y(i)p , p(i)p and r(i)p

denote the yaw, pitch, and roll angles of the platform with respect to the stationary frame (as

updated by the IMU in the cart every 20 iterates, cf. Fig. 3.1). Assuming that q(i)d,2 = q
(i)
d,3 = 0 for

all i, the discretized desired trajectory q(i)d can be analytically obtained from the following equality
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of the rotation matrices:

R1

(
q
(i)
d,5 − 2q

(i)
d,4

)
R2

(
q
(i)
d,4

)
R3

(
q
(i)
d,1

)
︸ ︷︷ ︸

Rotation to end effector from cart

=

= R1

(
r
(i)
d

)
R2

(
p
(i)
d

)
R3

(
y
(i)
d

)
︸ ︷︷ ︸

Rotation to end effector from ground

(
R1(r

(i)
p )R2(p

(i)
p )R3(y

(i)
p )
)>

︸ ︷︷ ︸
Rotation to ground from cart

, (3.5)

where Ri(θ) denotes the matrix corresponding to a rotation from frame A to frame B by an angle

θ about the common i-th basis vector, such that ~vB = Ri(θ)~vA for all ~v. An analytical expression

for the desired velocities q̇(i)d is also derived from the previous expression.

As was discussed in the previous section, occasional large peaks in ‖r(t)‖∞ may result from

measurement and discretization errors, for example those produced in the velocities (3.2) by the

low resolution of the measurement of q(i)a,4 and q(i)a,5, or those introduced by new measurements of

the IMU every 20 ms. This is evident in the time history in Fig. 3.5 with data recorded every 1 ms.

Although the omission of such data, as a result of collecting data only every 50 ms, might skew

the results, the sharpness of these peaks shows that their source is the sensor design rather than the

control architecture, whose performance we seek to quantify.

During full data collection, a series of 52 independent 24-seconds-long experiments were run,

four for each of 13 values of the bandwidth k. The controller is initialized at the beginning of each

experiment with i = 0, θ̂(0) = 0, σ̂(0) = 0, r̂(0) = 0 and u(0) = 0. The results of laboratory and

field tests are shown in Fig. 3.6.

We again observe a critical value of the bandwidth, kcrit ≈ 5, below which ‖r[per/2,per]‖L∞

decreases as k is increased, consistent with the bound given in Eq (1.13). For values of k below

kcrit, the trend of the in-lab experiments matches that in the field. For values of k above kcrit,

however, the controller is frequently found to behave poorly, having relatively larger tracking

errors.
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‖r(t)‖∞, here sampled every 1 ms. The setup corresponds to Section 3.1.4, with k = 5.5.
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Figure 3.6: Variations in the discretization of the error norm ‖r[per/2,per]‖L∞ for different values of
the filter bandwidth k for the desired trajectory given in Eq. (3.4). The bars represent the mean and
standard deviation across four data points for each value of k. (a) Lab experiment with stationary
platform; (b) Field experiment with platform pushed and pulled across uneven terrain.

3.1.5 Maintaining a constant orientation in the inertial ground frame

In the third and final experiment, the platform is translated across sloped, uneven terrain along an

’S’-shaped path while the controller attempts to maintain constant end effector orientation relative
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to the inertial ground frame, with yd(t) = pd(t) = rd(t) = 0, for some fixed k. Here, the controller

is initialized with θ̂(0) = 0, σ̂(0) = 0, r̂(0) = 0 and u(0) = 0, and data collection is initiated

after 1 minute. Fig. 3.7 shows a typical comparison between the yaw, pitch, and roll angles of

the platform and the end effector, respectively, relative to the inertial ground frame. As the peak-

to-peak variations in the platform yaw angle are considerably larger than in the other degrees of

freedom, the controller’s ability to compensate for the platform dynamics is more pronounced for

the end effector yaw angle. Nevertheless, the control scheme appears able to maintain minimal

rotary movements of the end effector at all times.
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Figure 3.7: Estimated yaw, pitch, and roll angles for the platform and the end effector. The plat-
form orientation is obtained directly from the IMU, while the end effector orientation is obtained
by composition of the output of the platform IMU and the joint angles measured by the optical
encoders.

3.2 Comparison with Cao and Hovakimyan discretization

A different implementation of the controller, following the Cao and Hovakimyan discretization in

Section 1.2.5, is shown in this section. This controller is simpler to analyze, has fewer parameters

to tune, and is better suited for discrete implementations with fixed controller sampling interval.
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3.2.1 Experimental set-up and adaptive controller definition

For the sole purpose of comparison, the experiments described here were only carried out at the

lab. The experiment is analogous to that in Section 3.1.3, where the robot is given a sinusoidal

desired trajectory in the platform frame and the platform remains stationary.

The controller implements the discretization in Eqs (1.19-1.21) with λ = 50, Am = 5I3 and

k = 1. The controller parameters were manually adjusted to minimize the tracking error and

oscillation in the control signal u. Since there are relatively fewer parameters to adjust (λ, Am and

k), the search was very quick and a low value of the tracking error was achieved within one hour

of tuning (versus the several weeks it took for the controller in Section 3.1).

3.2.2 Methodology for data acquisition

An automated configuration utility was implemented in the robot controller, so that several values

of the parameters could be sequentially tested. This allowed for an extensive and quick two-

dimensional sweep, varying both the controller sampling interval T and the filter bandwidth k.

Before each run, the controller was reset to i = 0, u(0) = 0, r̂(0) = 0, σ̂(0) = 0, and the robot

was then driven to qa = 0, leaving the robot there long enough for it to stop completely. Controller

instability was automatically detected using an empirical condition
∥∥σ(i)

∥∥
∞ > σmax, and the robot

status was reset to the initial position for the next experiment.

38



3.2.3 Results for the experiment using all joints

In the first set of experiments, the desired trajectory was given by

qd =



0.5(1− cos(0.6πt))

0.5(1− cos(0.3πt))

0.3(1− cos(0.45πt))

−0.3(1− cos(0.45πt))

0.3(1− cos(0.3πt))


. (3.6)

Each experiment was executed for 11.669 s with σmax = 1200.
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Figure 3.8: Values of k and T used in the experiments in Section 3.2.3 with a qualitative eval-
uation of each run. High frequency oscillations are observed through huge noise or vibration.
Unresponsive controller means stationary robot for some time and sudden overshoots.

The values of k and T used in the experiments are depicted in Fig. 3.8, together with a qualita-

tive observation on whether the experiment ran successfully. For high values of k, high frequency

oscillations are observed as the robot makes a loud noise or vibrates visibly. For very low values

of k, the controller is unresponsive, with the arm staying still for some period of time and suddenly

overshooting. The experiment was run 3 times for each tuple (k, T ).
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Figure 3.9 shows the discretized L∞ norm for each of the five components of r. Prior to

the onset of instability, the first four joints show a 1/k dependence of the tracking error on the

bandwidth. Instability is in all cases triggered by the fifth joint, which exhibits a less-clearly-

defined initial decrease with k. The critical value of the bandwidth, kcrit, decreases with the

sampling interval T . For T . 14 ms, there is no value of k for which ‖r‖L∞ is bounded.

3.2.4 Results for the experiment using only the first joint

To further characterize the dependence on k and T , an experiment using only the first joint was

carried out. This joint has the best motor and encoder and thus suffers less from perturbations and

poor measurement resolution. The desired trajectory is the sinusoid qd,1 = 0.5(1−cos(1.8πt)), and

the duration of each experiment was two periods. The values attempted are depicted in Fig. 3.10

and σmax = 120.

The results in Fig. 3.11 again confirm a 1/k dependence of the norm ‖r1‖L∞ as a function

of the bandwidth k, prior to the onset of instability. The critical value of the bandwidth, kcrit,

quickly decreases as T increases, leaving no value of k for which stable behavior is observed once

T & 40 ms. Notably, the critical value of T is significantly higher than found for the fifth joint in

the previous section. Figure 3.12 shows the dependence of ‖r1‖L∞ on T for k = 0.35.
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Figure 3.9: Results of ‖ri,[0,texp]‖L∞ for each joint as a function of the filter bandwidth k and the
controller sampling interval T in milliseconds (colors). Error bars show the standard deviation,
while the points are at the mean.
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3.3 Discussion

This chapter has proposed and experimentally validated a stabilization scheme for the end effector

of a manipulator, which is mounted on a mobile platform with unknown dynamics. Effective

stabilization supports the use of this mechanism, for example, in drive-by inspection and treatment

for agricultural applications.

The dependence of the performance bound on the bandwidth of a low-pass filter and the con-

troller sampling interval were studied both in the lab and in the field. The limitation in the con-

troller performance for very high values of the low-pass filter bandwidth was shown in the experi-

mental results. Increasing this parameter above a critical value leads to a quick degradation in the

performance, no longer following the expected bounded behavior.

Two discretizations of the L1 controller were compared. The experiments performed in the lab

show that the Cao and Hovakimyan discretization in Section 3.2 has less variability (lower standard

deviation) than the Euler-like discretization in Section 3.1. This together with the fact that it has

many fewer parameters makes the Cao and Hovakimyan discretization much easier to implement

and tune. This discretization allows for a sampling interval up to 7 ms, before becoming unstable,

having a very smooth motion for T = 1 ms. Other discretizations, such as the third order scheme

in (Bogacki and Shampine, 1989), were tested with no significant improvements.

The most important lesson learned in these experiments is that it is highly advisable to use

the Cao and Hovakimyan discretization in all experimental setups, as hardware behaves better

using this formulation. The added complexity of the Euler-like formulation generates significant

implementation problems. The fact that the ‖r[0,t]‖L∞ norm is used in the controller means that any

unexpected perturbation will degrade the controller performance for the remainder of the execution

time. Additionally, an initial condition mismatch, which has no effects in the far future in the

Cao and Hovakimyan formulation, will damage the whole future performance in the Euler-like

formulation.

For future experiments, measuring the joint velocity directly would remove much of the diffi-
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culty related to the low resolution of the joint position measurement, which introduced significant

noise in the finite difference approximation of the velocity.
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Chapter 4

Robot Networks in the Presence of
Communication Delays

The next sections show experimental results for a network of manipulators, as described in (Nguyen

and Dankowicz, 2016), using the formulations developed in Sections 1.2.7 and 1.2.8. The network

was implemented as described in Section 1.3.3, with certain limitations on the minimum delay

achievable, around 16 ms. The dependence of the network performance on the delay was explored,

by adding a known ammount of extra delay (on top of the minimum unknown delay around 16 ms)

to all links. The robots are mounted in three different platforms. Robot 1 is mounted in a cart

that is not allowed to roll. Robot 2 is mounted in a platform suspended by four springs, allowing

some oscillatory movement induced by the arm motion. Robot 3 is mounted in a cart with two

wheels unlocked, allowing small movements.

Two cooperation strategies were implemented with different network topologies. Synchroniza-

tion before tracking, described in Section 4.1, tries to make the robots quickly synchronize their

respective joint angles while they all slowly approach a given desired trajectory. Consensus, in

Section 4.2, tries to make the robots approach a common configuration, with no predefined desired

trajectory. In both cases, the results of hardware experiments were compared to the numerical

results in (Nguyen and Dankowicz, 2016).

A computer Graphical User Interface (GUI) was developed to assist with running these ex-

periments in an easy and safe manner (see Section 1.3.4). The interface allows the user to select

desired trajectories and values for the parameters without re-flashing the code to the robot con-

troller boards on each run, since this would take a prohibitively long time, given that there are

three robots and only one programmer available. The GUI also provides an easy shutdown of all

robots with one click, and an automatic safety shutoff in case of a lost or broken connection.

46



4.1 Synchronization

The controller defined in Section 1.2.7 was used in several experiments, seeking to reproduce the

numerical results in (Nguyen and Dankowicz, 2016). Only the first three degrees of freedom of

each manipulator were controlled. This avoids the extra data communication, as well as problems

with low sensor resolution in the last two degrees of freedom. The different network topologies

used are depicted in Fig. 4.1. The network weights used for synchronization are all equal to 1.

1 

3 

2 
(a) Circular.

1 

3 

2 
(b) Fully connected.

1 

3 

2 
(c) 1 � 2 → 3 .

Figure 4.1: Different network topologies used in synchronization before tracking and consensus
without leader.

4.1.1 Achievability of synchronization and tracking

For homogeneous networks with identical robots, (Nguyen and Dankowicz, 2016) predicts that

synchronization before tracking is possible if the matrices Am,i are the same for all robots and if

there are no communication delays. To verify this prediction, let the initial conditions for each of

three robots be given by

q(1)a (0) = {0.5, 0.4, 0.3} for robot 1 ,

q(2)a (0) = {−0.1, 0.5, 0.0} for robot 2 ,

q(3)a (0) = {0.4,−0.1,−0.1} for robot 3 ,

(4.1)
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and consider the circular network topology in Fig. 4.1 (a). Let the desired trajectory be given by

qd = 0, and let the controller parameters be given by T = 1 ms, λ = 40, k = 5 and Am,i = aiI3

for different combinations of ai. Here no additional delay is added to the network.

For each experiment, data was collected once, and the experiment was manually stopped once

the joint angles were qualitatively close to the desired trajectory. Figure 4.2 shows a comparison of

the time series for the first joint of the networked manipulators. When a1 = a2 = a3, synchroniza-

tion is achieved before tracking. However, in the two cases where a1 6= a2 6= a3, synchronization

does not happen.

To evaluate the tracking capabilities of the networked controller for different values of k, the

experiment was run with the desired trajectory given by

qd =


0.5(1− cos(3πt/5))

0.5(1− cos(3πt/10))

0.3(1− cos(9πt/20))

 , (4.2)

with no additional communication delay, and no tracking error in the starting condition, qa(0) =

qd(0). The network topology is again circular and the controller parameters are T = 1 ms, λ = 40,

and Am,i = 4I3. The results in Fig. 4.3 show a similar trend to that in Fig. 3.11 for a single robot.

For low values of k the tracking error decays as 1/k, matching the numerical results in Fig. 8 in

(Nguyen and Dankowicz, 2016) and the expected behavior from Eq. (1.29). However, for large

values of k the error induced by the discretization is very large. The flattening on the rightmost

side of Fig. 8 in (Nguyen and Dankowicz, 2016) is not visible in this experiment, although it might

appear if a lower controller sampling interval T was used, as this might allow higher values of k

to be used before diverging. The current hardware available does not support a smaller sampling

interval.
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(a) Joint 2 for the case a1 = a2 = a3 = 4.
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(b) Joint 2 for the case a1 = a2 = a3 = 4.
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(c) Joint 2 for the case a1 = 4, a2 = 10, a3 = 20.
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(d) Joint 2 for the case a1 = 4, a2 = 10, a3 = 20.
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(e) Joint 2 for the case a1 = 1, a2 = 8, a3 = 50.
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(f) Joint 2 for the case a1 = 1, a2 = 8, a3 = 50.

Figure 4.2: Time series for a circular network topology with qd = 0, in the synchronization before
tracking case.
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Figure 4.3: Dependence of the tracking error on the filter bandwidth for a circular network with
sinusoidal desired trajectory.
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4.1.2 Effect of different network topologies and network delays

The experiments described in this section again consider a constant qd = 0 with T = 1ms, λ = 40,

k = 5, identical Am,i = 4I3, and using the fixed initial condition in (4.1).

The results for a circular network topology are shown in Fig. 4.4; for the fully connected net-

work in Fig. 4.5 and for the 1 � 2 → 3 network in Fig. 4.6. The reader should note that

synchronization happens before tracking in all the cases, with little influence from the network

topology. As all the incoming connections add up their influences in us, the synchronization con-

troller us has more influence, relative to the tracking controller ua, for robots with more incoming

connections. This can be observed in the better synchronization performance of the fully con-

nected topology (Fig. 4.5). Differences in the behaviors of each joint may be a result of different

mechanical properties (motors and inertias) and the fact that joints 2 and 3 are influenced by grav-

ity.

Different network delays have an effect in synchronization. Nguyen and Dankowicz (2016)

predicts that synchronization should take place only with a network delay close to 0. It is clear

that very large delays will not allow synchronization as each robot will not get information from

the other robots before converging to the desired trajectory. To illustrate the effects of different

network delays, Fig. 4.7 shows the time series for the first joint for different values of the added

network delay δTs ∈ {0, 100, 500} ms. These confirm the theoretical predictions. When the delay

is large, it generates notable perturbations in the tracking, but the system remains stable.

Similar results are obtained for the case of a sinusoidal desired trajectory as shown in Fig. 4.8.

Synchronization is clearly achieved before tracking, as expected. As seen in Fig. 4.9 the controller

remains stable for large network delays, although tracking is severely compromised during the first

seconds.
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(b) Joint 1.
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(c) Joint 2.
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(d) Joint 2.
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(f) Joint 3.

Figure 4.4: Time series for the circular network topology with qd = 0, in the synchronization
before tracking case, with identical parameters as were used to generate Figs. 4.2 (a) and (b).
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Figure 4.5: Time series for the fully connected network topology with qd = 0, in the synchro-
nization before tracking case, with identical parameters as were used to generate Figs. 4.2 (a) and
(b).
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(d) Joint 2.
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Figure 4.6: Time series for the 1 � 2 → 3 network topology with qd = 0, in the synchro-
nization before tracking case, with identical parameters as were used to generate Figs. 4.2 (a) and
(b).
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(a) Network delay smaller than 16 ms.
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(b) Network delay smaller than 16 ms.
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(c) Network delay of 100 ms.
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(d) Network delay of 100 ms.
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(e) Network delay of 500 ms.
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(f) Network delay of 500 ms.

Figure 4.7: Time series for the first joint in the fully connected network topology with qd = 0, for
different values of the network delay, in the synchronization before tracking case.
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Figure 4.8: Time series for the circular network topology in the synchronization before tracking
case, using the same parameters as in Fig. 4.3, for k = 5.
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(e) Network delay of 500 ms.
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(f) Network delay of 500 ms.

Figure 4.9: Time series for the first joint in the circular network topology, for different values of
the network delay, using the same parameters as in Fig. 4.8, in the synchronization before tracking
case.
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4.1.3 Stability map

To construct a stability map for the synchronization before tracking strategy, experiments were

performed on the circular topology with qd, T and λ identical to the values used to generate Fig. 4.3,

with no initial tracking error, and with identical Am,i = aI3 for a range of values of a. Specifically,

for k = 1 and k = 8, respectively, and for different values of the added network delay δTs, a

was initialized at 5 and, after letting the motion settle for 10 seconds, increased or decreased by

multiplication by 0.75 or 1.25. The experiment was stopped when the motion was no longer stable,

generating the stability boundary shown in Fig. 4.10.
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Value of a in Am = aI3 where instability first happens
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Figure 4.10: Stability map obtained experimentally with a network of three robots in the syn-
chronization before tracking case. The center region between the two boundaries corresponds to
parameter values with stable response.

Note that neither k nor the network delay Ts have any noticeable effect on the stability, as was

also seen in the numerical results in (Nguyen and Dankowicz, 2016).
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4.2 Consensus

This section reports on results from several experiments using the controller defined in Sec-

tion 1.2.8 that reproduce the numerical results in Figs. 13-16 in (Nguyen and Dankowicz, 2016).

For the same reasons as in Section 4.1, only three degrees of freedom of the manipulators will be

used, avoiding problems that could distract the reader from the network behavior we are interested

in. Here the controller parameters are T = 1 ms, k = 5, Am = 5I3 and there is no added net-

work delay. Unless otherwise noted, the edge weights are 50, corresponding to the value of λ in

the single manipulator setup (Section 3.2), which plays a similar role in the calculation of r. The

experiments use several network topologies, with or without a leader. In all the experiments in this

chapter, data was collected once for each topology, and the experiment was manually stopped once

the robots reached consensus or were close to the desired trajectory of the leader.

4.2.1 Pure consensus without leader

The expected results in this section are similar to those in Fig. 13 in (Nguyen and Dankowicz,

2016). In this section there is no leader and no desired trajectory, so ci = 0 for all i. Two topologies

from Fig. 4.1 are used, with the initial configuration in Section 4.1.1. One anticipates that gravity

will have an asymmetric effect on the final consensus angles of joints 2 and 3. Also, for joint 1,

if two robots are in a symmetric flow of information, such as robots 1 and 2 in Fig. 4.1 (c), the

consensus is expected to take place close to the average of their initial positions, as the two robots

should behave approximately in a symmetric way. Figure 4.11 shows the time series for each joint

angle for the case of a circular topology. Consensus is quickly achieved, in a similar manner to the

numerical results in the cited paper. The results are very similar when a different topology is used;

as an example Fig. 4.12 shows the time series for the 1 � 2 → 3 network topology.

Next, we report on the experimental results using the same initial conditions and the two net-

work topologies in Fig. 4.13. In this case, a minus sign indicates an edge weight of −50. Figure

14 in (Nguyen and Dankowicz, 2016) predicts that a bipartite consensus be achieved. Indeed, as
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Figure 4.11: Time series for a circular network topology, in leaderless consensus.

seen in Fig. 4.14 a bipartite consensus appears in the earlier part of the time series, but a slow drift

towards qa,i = 0 is then observed. As shown in Fig. 4.15, this effect disappears when using the

1 � 2 → 3 network topology (Fig 4.13 (b)), suggesting that the source of the drift is the

asymmetry of the network. In the 1 � 2 → 3 topology, 1 and 2 create a symmetric net-

work with one robot on each side of the bipartite consensus. Robot 3 does not send information

back to 1 or 2 , so it does not perturb their consensus.
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Figure 4.12: Time series for the 1 � 2 → 3 network topology, in the case of leaderless
consensus.
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(b) 1 � 2 → 3 .

Figure 4.13: Different network topologies used in bipartite leaderless consensus experiments. A
+ marks a positive weight, while -© represents a negative weight for a connection.
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Figure 4.14: Time series for the circular network topology, in the case of bipartite leaderless
consensus.
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Figure 4.15: Time series for the 1 � 2 → 3 network topology, in the case of bipartite
leaderless consensus.
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4.2.2 Consensus with a leader and a desired trajectory

This final section reports on experiment performed on the network topologies in Fig. 4.16, where

the shaded robot follows a desired trajectory qd with c1 = 50, and the remaining robots seek

consensus, so that ci = 0 for i 6= 1.

In the first experiment (modeled on Fig. 15 in (Nguyen and Dankowicz, 2016)), qd = 0. Fig-

ure 4.17 shows the results for the leader-follower network topology in Fig. 4.16 (a). Very similar

results are achieved for the circular network topology (Fig. 4.16 (b)), as seen in Fig. 4.18.

1 

3 

2 
(a) Leader-follower.

1 

3 

2 
(b) Circular.

1 

3 

2 
(c) 1 → 2 � 3 ← 1 .

Figure 4.16: Different network topologies used in consensus with a leader. The shaded robot is the
leader.

In the second experiment, modelled on Fig. 16 in (Nguyen and Dankowicz, 2016), qd is given

by the sinusoidal desired trajectory in Eq. (4.2). Figure 4.19 shows the results for a leader-follower

network topology in Fig. 4.16 (a). Very similar results are obtained with the 1 → 2 � 3 ← 1

network topology (Fig. 4.16 (c)) in Figure 4.20. These results match qualitatively the numerical

predictions in the cited paper. Since the 1 → 2 � 3 ← 1 topology is symmetric for

robots 2 and 3 , they achieve almost the same consensus angles, and their corresponding time

histories overlap. This is very similar to what happens to robots 1 and 2 in Fig. 16 of (Nguyen and

Dankowicz, 2016).
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Figure 4.17: Time series of the results for consensus on a leader-follower network topology 1 →
2 → 3 in which the leader is 1 , with qd = 0.
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Figure 4.18: Time series of the results for consensus on a circular network topology on which the
leader is 1 , with qd = 0.
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Figure 4.19: Time series for the 1 → 2 → 3 topology in the case of consensus with robot 1
as leader, with a sinusoidal qd.
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Figure 4.20: Time series for the 1 → 2 � 3 ← 1 topology with robot 1 as leader, with a
sinusoidal qd.
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Chapter 5

Conclusions

An extensive experimental program has been carried out to investigate realizations of several L1

control strategies for single and networked robotic manipulators. Provided that care is taken in the

choice of realization, the L1 control formulation is found to be robust with fast adaptation, without

a detailed model of the manipulator. The lesson learned from the experiments in Chap. 3 is that it

is highly advisable to use the Cao and Hovakimyan discretization in (Cao and Hovakimyan, 2009)

(and Chap. 3.3 of (Hovakimyan and Cao, 2010)) in all experimental setups, as hardware behaves

better using this formulation. Nevertheless, for some range of values of the filter bandwidth, both

discretizations show trends consistent with theoretical predictions from analysis of the continuous-

time system.

A possible improvement to the experimental setup used in this thesis would be the use of a

direct measurement of the velocity, as the differentiation of a noisy signal in a small sampling time

leads to large relative error. Furthermore, there is opportunity to investigate changes the control

design to achieve a higher degree of stabilization the end effector in task space. Future experiments

could also consider an agricultural inspection task with a larger manipulator running through a

large crop field, or a seed refilling vehicle with a feed mechanism integrated in a manipulator

(Li et al., 2016). Inspection tasks often require aggressive stabilization of the end effector. This

requires IMUs with higher sampling rate and would greatly benefit from a kinematic design that

decouples inertial forces from the end effector orientation, such as gimbals.

The reported experimental study of synchronization and consensus in networks of robotic ma-

nipulators validates the control strategies in (Nguyen and Dankowicz, 2016). The experimental

results, obtained for different topologies of three robots, agree qualitatively with the predictions
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from simulations in (Nguyen and Dankowicz, 2016) for four robots. Even though there was no

external motion imposed on the platforms, these experiments give valuable information about the

performance of the controller in a homogeneous network and the insensitivity to network time de-

lay. The results from Chap. 3 show that robots are able to respond to disturbances from the terrain

and the results in Chap. 4 show that the network does not make the system unstable. This gives

confidence that the combination will result in a stable controller for networked manipulators on

platforms excited by external disturbances.

Future research on larger networks with more manipulators will probably encounter rich in-

teraction between the robots, depending on the different network topologies. Heterogeneous net-

works also provide an interesting future research topic, including manipulators with different mass

properties, or even completely different robotic mechanisms. The theory assumes that the distur-

bances on the platform are bounded, and that all the robots are mounted in the same platform,

which is so massive that its dynamics dominate, instead of being influenced by the manipulators.

Different platform couplings could be researched, including examples where the influence of the

dynamics of the manipulator on the platform is large. In addition, it would be worth researching

other higher level strategies for consensus and synchronization, such as planning a path leading to

the desired consensus while using separate L1 controllers to follow the individual paths.

A different branch of possible future research includes more complex cooperation tasks for

networked robots, in applications as diverse as space exploration (Stroupe et al., 2005), in-flight

seed refilling (Li et al., 2016), or underwater docking (Majid et al., 2014). Examples of such

tasks include coordinated handling of an object or interaction with the environment, as well as

transferring objects between robots.
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