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Abstract 

In this thesis, we use superconducting island arrays as a platform for studying vortex 

motion and quantum phase transitions. We investigate superconducting vortex dynamics and 

lattice structures in superconducting arrays by performing electrical transport measurements on 

Nb island arrays on Au at milli-kelvin temperatures and finite fields. At low fillings, we observe 

anomalous vortex dynamics that we attribute to a history dependent dissipative force as the vortex 

moves through the lattice. At higher fillings, vortex-vortex interaction becomes significant and is 

dominated by collective vortex motion. We find that the transition from pinned to vortex lattice 

flow is split into two transitions as the filling is shifted from the commensurate filling regime, 

where the vortex lattice has strong crystalline order, to an incommensurate filling, where the vortex 

lattice no longer matches potential wells of the SNS array.  We find that this behavior is consistent 

with domain wall motion in a polycrystalline vortex lattice at commensurate fillings. 

Superconducting island arrays can also be used to study phase transitions. Previous work 

in our group found that the onset of superconductivity in Nb islands was strongly dependent on 

the island spacing in the array. Performing follow up measurements, we find that the critical island 

temperature increases as the underlying Au is made thicker, indicating that this effect is dependent 

on the strength of electrical interactions between islands and is not due to normal metal 

suppression. Performing measurements on individual islands, we find that the vast majority of 

260nm islands undergo a transition at temperatures far lower than those in island arrays, to the 

extent that they cannot be observed in a Helium 4 cryostat, and that there is a broad distribution of 
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island critical temperatures observed. This suggests that the onset of superconductivity in rare 

ordered regions plays a significant role the onset of superconductivity in both the arrays samples 

and single islands. Lastly, we present work studying the superconductor to insulator transition in 

Sn island arrays on graphene as well as the technical difficulties involved. 
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Chapter 1. Introduction 

1.1 Motivation 

Superconducting island arrays can serve as highly tunable model 2D systems for studying both 

classical and quantum phase transitions. In this thesis, we present work on two different island 

array systems: Nb islands on Au and Sn islands on graphene.  The Nb island arrays provide a way 

of studying superconducting vortex dynamics and the superconductor to metal transition. The Sn 

arrays on graphene provide a platform for studying the superconductor to insulator transition. 

Throughout this work, we will examine the effects of disorder on these systems. 

The study of vortex matter is motivated by both technical goals and scientific interest. An 

important technical goal of vortex matter research is the creation of commercially viable 

superconducting powerlines. Since vortex motion results in dissipation of energy and a non-zero 

resistance across a sample, reducing vortex creep is important for increasing the critical currents 

in superconducting powerlines[1]. From a more fundamental perspective, superconducting vortex 

systems offer a way of studying classical states matter and phase transitions, exhibiting exotic 

glassy states[2] and offering novel modes of motion[3]. 

In this thesis, we perform transport measurements on Nb island arrays to study vortex structure 

and dynamics, controlling array filling with an applied magnetic (B) field. The triangular island 

arrays provide vortices with a periodic potential, resulting in an experimental realization of the 2D 

Frenkel-Kontorova model [4], which can also be applied to phenomena ranging from charge 

density waves[5] and to understanding friction [6] in addition to superconducting vortex matter. 

In chapter 3, we study anomalous vortex motion in the dilute vortex filling limit, providing 
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evidence for a history dependent dissipative force. In Chapter 4-5, we study vortex structure and 

motion in a more densely filled array where vortex interactions play a larger role. While the vortex 

lattice is crystalline when it is commensurate with island array pinning sites, disorder can be 

introduced by shifting the filling to an incommensurate value. We observe transport behavior 

consistent with domain wall motion and a polycrystalline rather than glassy state. Lastly, in chapter 

6, we investigate whether smoothly varying island density results in a strongly pinned vortex 

lattice. 

Another topic in this thesis is the pursuit of novel phase transitions and states of matter in 

2D systems. A key question in both the study of superconductor to metal transitions and 

superconductor to insulator transitions is whether a zero temperature 2D metallic state is possible. 

Standard theories indicate that it is not. Due to Anderson localization, the presence of any finite 

amount of disorder should prevent the quantum diffusion of electrons in 2D system, preventing a 

T=0 2D metallic state in a non-superconducting system[7]. Moreover, theory suggests a single 

quantum phase transition between a superconducting and an insulating state in thin disordered 

superconducting films[8], suggesting the absence of  an intermediate state. Nevertheless, a number 

of works have found evidence for an intermediate metallic state[9], raising questions about the 

effects disorder and competing states of matter have on a quantum phase transition. In chapter 6, 

we present work tuning the superconductor to metal transition in Nb islands on Au as well as the 

onset of superconductivity in granular Nb islands. Chapter 7 presents work performed on 

superconducting island arrays on graphene with the goal of studying the superconductor to 

insulator transition. 
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1.2 Vortex Matter and similar Dynamic Systems 

In this section, we provide background information for our study of vortices in SNS arrays, 

which is covered in chapters 3-6. While the first two subsections provide a summary of previous 

work in vortex matter and work in SNS, subsection 1.2.3 relates the motion of vortices in SNS to 

the 2D Frenkel-Kontorova model. At low driving forces, the dynamics of these arrays are 

determined by the motion of solitons, which can take the form of density wave, domain walls, and 

even individual defects depending on the state of the system. Examples of several different soliton 

motion regimes are shown in subsection 1.2.4 and more closely related colloids systems in 

subsection 1.2.5, which show a transition from what appears to be domain wall motion to 

quasiperiodic density wave motion. This is relevant to chapter 5, where we characterize the state 

of an incommensurately filled SNS array and the modes of motion observed, finding that it is 

polycrystalline and exhibits domain wall motion. 

1.2.1 Superconducting Vortices and Vortex Matter 

The concept of superconducting vortices formed over several decades. In 1935 Shubnikov 

discovered type II superconductivity[10], observing that magnetic field penetrated a 

superconductor above a critical field (Hc1), but that the zero resistance superconducting state 

persisted until a second critical field (Hc2). This coexistence of superconductivity and magnetic 

field penetration (type II superconductor behavior) was surprising, because previously observed 

type I superconductors expelled all magnetic flux until superconductivity was lost at a critical field 

(Hc). In 1950, the Ginzburg-Landau equations provided a theoretical framework for interpreting 

this phenomenon [11]. Under the assumption Shubnikov’s regime had both normal and 

superconducting domains, the energy of the superconductor-normal interface near the critical field 
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was calculated. The interface energy was found to be determined by a Ginzburg-Landau parameter, 

κ=λ/ξ, with λ being the London penetration depth and ξ the Ginzburg Landau coherence length[i]. 

κ<<1 leads to positive interface energy[ii] and type I superconducting behavior, as the interfaces 

are energetically unfavorable. κ>>1 leads to negative interface energy and type II superconducting 

behavior, as the energetically favorable interface would lead to coexisting superconducting and 

normal domains. Ginzberg and Landau, however, wrongly assumed that there would be a lamellar 

ordering of normal and superconducting domains. Abrikosov introduced the concept of a vortex 

in 1957, finding that normal domains would break apart to maximize the interface size until each 

contain a quantum of flux[12],Φ0= h/2e. This results in the flux passing through the 

superconductors in tubes consisting of a normal core surrounded by a supercurrent, called vortices. 

These vortices are mutually repulsive and, due to topology, must enter from the side of the film or 

be created via vortex-antivortex pair creation. 

                                                           
i The length scales that magnetic field and superconducting order change over respectively. 
ii Near critical field, the presence of magnetic field and the presence of superconducting order are both favorable 
conditions. Compared to the normal and superconducting regions, the superconductor-normal interface for κ<<1 

has an energetically unfavorable region of size ξ- λ, where B~0 and superconducting order is suppressed. In contrast, 

the interface for κ>>1 has an energetically favorable region of size λ - ξ where superconducting order approaches 

bulk value and a significant field penetrates the array. 
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The structures formed by vortices and how these change vortex dynamics is a central topic 

in chapter 4. In the absence of disorder, mutual repulsion between vortices causes the formation 

of a crystalline vortex lattices[12,13]  as shown in Figure 1.1[14]. The introduction of disorder 

(e.g. inhomogeneities in the film, which act as energetically favorable resting points) can alter this 

structure considerably. Generally, disorder manifests itself in the vortex lattice in two ways:  

interface structures, where disorder takes the form of boundaries separating ordered domains (e.g. 

polycrystalline structures), and bulk structures, where disorder results in a bulk disordered or 

quasiperiodic state. These two types of disorder can be seen in studies of disordered 

superconducting films, where an unexpected peak in vortex de-pinning current was observed as 

Figure 1.1.  Triangular Vortex Lattice imaged by Scanning 

Tunneling Microscopy (STM). STM measurements on NbSe2 

film in a 1T magnetic field. The black dots correspond to vortex 

normal cores. Taken from [14] 
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the temperature approached the critical temperature of the superconductor[15,16,17]. 

Additionally, the application of currents in these films resulted in enhanced pinning, with a more 

strongly pinned structure entering the array from the edges[18]. Small angle neutron diffraction 

experiments have found a quasiperiodic Bragg glass at temperatures below the peak[2] and 

polycrystalline order at the peak[19], indicating that the weakly pinned structures are Bragg glasses 

and the strongly pinned structures are polycrystalline. This means that the peak in de-pinning 

current is due to a transition from a glassy state into a polycrystalline state. 

 

 

Figure 1.2.  Superconductor Normal  Superconductor Array. (a) A square SNS array depicted as 

an array of Josephson Junctions with junctions marked as Xs and nodes marked as squares. (b) Each 

superconducting node has an order parameter phase shown as a single line arrow. A vortex has all 

order parameter phase arrows pointing away from the center and is a supercurrent (marked by double 

line arrows) moves around it. (c) A simulated vortex’s energy is plotted as a function of position, 

showing a periodic potential with energy minimums at the center of the cells and an energy barrier 

between each well. (d) Resistance vs Field taken in an SNS array. Dips correspond to when the 

vortex lattice is commensurate with the Energy wells of the array.  Taken from [24] 

(a) (b) 

(c) (d) 
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1.2.2 Vortices in SNS arrays 

We use a periodic superconductor-normal superconductor (SNS) array to study vortex 

matter. These SNS arrays take the form of superconducting island arrays on the normal metal. 

Superconducting islands interact via the superconducting proximity effect, discovered 

experimentally by Meissner[20,21,22], where superconducting order exists in a normal metal due to 

proximity with the superconductor-normal interface[23]. Due to the proximity effect, 

superconducting order can spread across the island arrays and the film, allowing it to be treated as 

a model superconducting film. 

Early work with SNS arrays focused primarily on the static properties of the arrays. The 

SNS arrays were modeled as Josephson junction arrays with equation  

, 0

2
1 cos

j

J i j

i j i

E E A dl


 
  

          
  ,(1.1) 

where ϕi is the phase of the superconducting order parameter at junction intersection i, EJ is the 

single junction energy, Φ0 = h/2e is the quantum of flux, and A is the vector potential from an 

externally applied magnetic field. While a resistively and capacitively shunted junction (RCSJ 

model), elaborated on in chapter 3, would be necessary to simulate the dynamics, this simple 

Josephson model is valid when the simulating static behavior of a vortex or the arrangement of 

vortices in an applied field (B). Treating a vortex as a circular arrangement of rotors around a point 

as shown in Figure1.2(b) with Kirchhoff’s circuit laws enforced, Rzchowski, Benz, Tinkham and 

Lobb were able to calculate the potential of a vortex as a function of position[24]. As shown in 

Figure 1.2(c), the potential of a non-interacting vortex is periodic in an SNS array with local 

minima in the center of a square of islands and a barrier in between each island. In the case of a 
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more densely populated lattice, solving the 2D XY model at a finite field using either mean field 

theory or montecarlo method found that the filling fraction of each plaquette was given by f=Φ/Φ0, 

where Φ is the flux through a unit cell, and that the vortex lattice had crystalline order when the 

vortex lattice was commensurate with the array pinning sites[25]. Since vortices were strongly 

pinned, this was visible experimentally in both de-pinning current peaks[26] and in dips in 

magneto-resistance[25,27], a focus in multiple papers. In contrast to these works, we focus on the 

dynamic motion of vortices in this thesis.  

1.2.3 Frenkel-Kontorova Model 

           

In order to understand the dynamics of a many vortex system, a different treatment is 

necessary than the ones presented in the previous section. Due to the periodic potential experienced 

by vortices, the Nb island arrays on Au studied in this thesis are experimental realizations of the 

2D overdamped Frenkel-Kontorova model. The Frenkel-Kontorova model[4] is a damped system 

of mutually repulsive particles in a periodic potential with equations of motion given by 

 
 

   
   

1

2
  sinapplied

N
i ji

i p i i

j int

x t x tx t
m x t F F x t U

a L


  



  
       

   
 , (1.2) 

Where m is mass, Fapplied is the driving force, Fp is the force from the potential, a is the period of 

the potential, ε is a stochastic force, and U(xi-xj) is the repulsion between vortices i and j. Vortex 

Figure 1.3.  1D Frenkel-Kontorova Model at slightly greater than ½ 

filling. Particles are shown in red. The periodic potential is shown as a black 

line. A kink in the lattice is visible in the center as a pair of particles in 

adjacent wells. 
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motion can occur by several mechanisms in this system, the most important being uniform lattice 

motion and soliton motion. Uniform lattice motion occurs when the driving force is sufficient to 

move the entire lattice. At lower driving forces, vortex motion can still occur via soliton 

motion[28]. Solitons can take the form of kinks in a soft lattice (shown in figure 1.3) or 

quasiperiodic density fluctuations in a stiff lattice, where lattice stiffness is determined by the ratio 

of the force from particle repulsion to that of the periodic potential well. While this type of 

transport is relevant to a number of systems, the closest studies to ours involve type II 

superconducting films decorated with artificial pinning center (APC) and colloids trapped in 

periodic potential wells discussed in sections 1.2.4 and 1.2.5 respectively.  

The role of damping, η, on vortex 

transport should also be mentioned. When 

discussing particles in a periodic potential, there 

are two limits that appear frequently: the 

overdamped case and the underdamped case. 

The overdamped case, which this thesis uses, has 

a strong dissipative force and mass that can be 

treated as zero. This means that a particle’s 

velocity is determined by the net forces on it at 

any time and momentum does not carry the 

particle over the periodic potential barrier. The 

underdamped system has a weak dissipative 

force and significant mass, meaning that momentum will carry the particle across the periodic 

array. Underdamped systems have the added complication of being hysteretic and exhibiting 

Figure 1.4.  Simulated Kink density growth in 

underdamped 1D Frenkel-Kontorov Model. Each line 

represents a particle’s position as a function of time. Early 

in the simulation, there is a kink and antikink pair. Due to 

the bistable behavior of the particles, kink density rapidly 

grows as time progresses. Taken from [29] 
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bistable behavior, with a stable pinned state and a stable moving state for a given driving force. 

This leads to avalanche behavior where moving solitons create other moving solitons, leading to a 

rapid growth of solitons in the system as shown in the simulation in figure 1.4[29]. While this 

underdamped case offers an interesting study of nonlinear dynamics, the avalanche behavior 

washes out most transport signatures of kink motion and appears as a transition from pinned to 

vortex lattice flow. An experimental study would require rapid imaging of an underdamped 

particle system. In contrast, the overdamped system lacks this avalanche behavior and will have 

transport signatures for each particle motion regime. 

 

1.2.4 Artificial Pinning Centers on Type II Superconducting films    

Figure 1.5.  Vortex imaging in an APC array on a superconducting film. Magnetic particles are 

placed on the film and become bunched around vortices, allowing vortices to be imaged. The square 

vortices are at pinning sites. The vortex marked in red is an interstitial vortex. Taken from [3] 



11 
 

Experimental research on APC decorated type II superconducting films has demonstrated 

a rich phase diagram with a variety of vortex 

transport modes, providing examples of soliton 

motion including domain wall motion (related to 

chapter 4). Usually constructed by introducing an 

ordered array of pinning sites, usually in the form 

of nanoscale holes in the superconducting film, 

these arrays are studied in a magnetic field by 

applying a current and measuring vortex motion 

as a voltage across the sample. The magnetic field 

introduces two types of vortices: pinned vortices 

that are trapped on artificial pinning sites and interstitial vortices that are in the superconducting 

film as shown in Figure 1.5[3]. Experimental measurements have consistently found a number of 

vortex transport regimes in this system as shown in Figure 1.6[30,31]. Molecular vortex 

simulations can explain this as 5 different transport regimes:  pinned vortices in region I, 1D 

interstitial vortex motion in region II, disordered motion in region III, 1D kink motion in region 

IV, and vortex flow in region V[32]. This is shown in Figure 1.7. In addition to these phases of 

motion, there may be an additional phase in between Region I and Region II featuring domain wall 

motion. Simulation at a slight offset from large commensurate values (such as f=4) show domain 

wall motion before the system transitions into interstitial flow [33], as shown in Figure 1.8(a) and 

(b). This, however, does not have an obvious feature associated with it in the experimental 

measurements shown in Figure 1.8. Moreover, the system involved is different enough from our 

periodic 2D potential to discourage direct comparison with our SNS arrays. 

Figure 1.6.  I-V Measurements on an APC 

array taken at incremental B fields.  The field 

ranges from from 110G (f=1.34) to 390G 

(f=4.75). The red line was taken at 310G (f=3.8), 

showing several distinct modes of vortex 

transport [30] 
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1.2.5 Colloids Trapped in Periodic Potentials 

Monolayer colloids in periodic[34] and quasiperiodic[35] potential wells present a system 

that is theoretically very similar to our SNS arrays, both in equations of motion and the type of 

potential well. In these studies, negatively charged particles are suspended on water and held in a 

periodic potential formed by an optical interference pattern. A driving force is then applied by 

flowing the underlying water layer, driving the particles with a Stokes drag force that is linear with 

(a) (b) (c) 

Figure 1.7.  Simulated Vortex Motion regimes of APC array. (a) 1D interstitial motion in region II. 

Interstitial vortices move in a straight line. Pinned vortices remain stationary. (b) Disordered vortex motion in 

region III. Interstitial vortices push pinned vortices out of pinning sites, resulting in more moving vortices. (c) 

Linear soliton motion in region IV. Vortices rearrange into lines, with interstitial vortices behaving as kinks 

facilitating vortex motion.  Taken from [32] 

Figure 1.8.  Simulated Vortex Motion in artificial pinning center array at f=4.035. 

(a) Domain Wall Motion at small driving currents. (b) Partial interstitial vortex flow at 

large driving currents. Taken from [33] 
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water layer velocity. Due to mutual repulsion and the presence of a periodic 2D potential, particles 

in this overdamped system should behave similarly to vortices in our SNS array.  

Related to this thesis, the periodic potential study observes the formation of domain walls 

when the filling is shifted below the commensurate value, as shown in Figure 1.8(c). Above a 

critical driving force, the domain wall structure breaks down and is replaced by moving 

compression zones in Figure 1.9(d).  Very coarse transport measurements, shown in Figure 1.9(b), 

show a difference between commensurate and incommensurate states. The commensurate state 

lacks domain walls and undergoes a visible transition from pinned to compression zone motion 

(which has a very similar transport signature to uniform flux flow) at F=70fN, while the 

incommensurate filling shows a much broader transition (possibly two) between F=12fN and 

F=30fN. While this type of imaging study demonstrates a transition from domain to quasiperiodic 

compression zones, the measurements are coarse in both driving force and filling. This makes it 

difficult experimentally characterize the transport properties or the manner in which domain walls 

are introduced as the filling is shifted away from commensurate values. 
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1.3 Superconducting Phase Transitions 

In this section, we provide background for our study of the superconductor to metal 

transition in chapter 7 and our work studying the superconductor to insulator transition using 

superconducting islands on graphene in chapter 8. Much of the work in this section is motivated 

by the fundamental question of whether a zero temperature 2D metallic state, which is predicted 

Figure 1.9.  Colloid System Structure and dynamics. (a) Colloids shown in green are trapped in 

a 2D periodic well. (b) Transport measurements showing mean velocity as a function of driving 

force. The green triangles represent a commensurately filled array with f=1. The red triangles 

represent an incommensurate filled array with f=0.91. The incommensurate array with f=0.91 at a 

driving force of (c) 19 fN and (d) 82fN. While (c) retains a polycrystalline structure, (d) breaks 

into quasiperiodic compression zones. Taken from [34] 
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to be excluded in conventional systems due to Anderson localization[7], is possible. Section 1.3.1 

provides an overview of the superconductor to insulator transition. A major issue is that theory 

predicts that 2D films should transition directly from a superconductor to an insulator as T=0 is 

approached, despite experimental measurements on inhomogeneous films that are consistent with 

an intermediate metallic state. Section 1.3.2 discusses the effect on disorder on superconducting 

films and whether disorder could result in an intermediate metallic state.  

1.3.1 Superconductor to insulator transition 

The superconductor to insulator transition (SIT) was originally observed in thin 

superconducting films by altering either thickness[36] or applied magnetic fields[37,38,39], 

undergoing a transition from a superconducting to an insulating state as shown in Figure 1.10 (a) 

and  Figure 1.10(b), which often occurs when the square film resistance approaches the quantum 

of resistance, RQ=h/4e2. This behavior was explained by Fisher as a transition from a 

superconducting state into a Bose insulator with localized Cooper pairs with a crossover tuned by 

shunt resistance and capacitance[8]. If the film is viewed as an array of Bose-Hubbard model sites, 

the commutation relationship between the phase of the order parameter, ϕ, and site filling, N, is 

equivalent to that between position and momentum. This means large quantum fluctuations in ϕ 

will result in well defined N and yield an insulating state. A well defined ϕ results in large quantum 

fluctuations in N and yield a superconducting state. While homogenous films undergo a direct 

quantum phase transition from a superconducting state into an insulating state, disordered granular 

systems appear to exhibit an intermediate metallic state[40].  
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1.3.2 Effects of Disorder on Quantum Phase Transitions 

How disorder alters a quantum phase transition is a key question. Depending on the type 

of disorder and the type of transition, disorder could dramatically alter a quantum phase transition 

(a) (b) 

Figure 1.10.  Superconductor to insulator transition in thin films (a) 

Superconductor to insulator transition in Bi shows a direct transition from  a 

superconducting to an insulating state. Taken from [36] (b) Superconductor to 

insulator transition in Ga appears to have intermediate metallic behavior. Taken 

from [40] 
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or have no effect. In the case of weak disorder, the Harris criterion determines the stability of a 

critical point against weak disorder[41]. Harris considered a system with a spatial correlation 

length given by ξ~R-ν, where R is the difference in temperature from the critical value (R=|T-Tc|). 

Assuming some spatial variation in Tc, δR(x), the variation in the mean R of a correlated region of 

volume Vξ = ξd (where d is the dimensionality of the system) goes as ΔR~ ξd/2~ R-dν/2 due to mean 

value theorem. For the clean variation to be preserved, ΔR~ R-dν/2<R as the system approaches the 

clean transition point and R0. This Harris criterion is satisfied when dν > 2, resulting in a 

transition that is robust against weak disorder. For dν < 2, Harris criterion is not satisfied and the 

transition is altered by weak disorder.  

 

Figure 1.11.  Phase diagram of dissipative transverse-field Ising spin 

Chain. Dissipation stabilizes rare regions so that they can order 

independently. The result is a transition from strongly ordered (SO) to 

strongly disordered SD with an intermediate smeared region.  [43] 
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If the system is not robust against disorder, rare region effects can alter the phase transition 

considerably. The idea for rare region effects came from the randomly diluted 2D Ising model, 

where each Ising spin site had a probability, p, of being removed.  While the melting temperature 

of the Ising lattice decreased as p increased due to the vacancies, Griffiths noted that there was a 

second, higher temperature, melting transition in rare regions that did not have missing Ising spins 

sites[42]. The effects of rare unusually well-ordered regions on a transition are determined by the 

dimensions of the rare regions, dRR, and the lower critical dimension of the transition, dc. If dRR<dc, 

the rare regions lack the dimensions to be in a different phase than the rest of the system and rare 

regions effects are weak. For dRR>dc, the rare regions transition independently from the rest of the 

system and each have their own critical point, smearing the phase transition as shown in Figure 

1.11 [43].  In the dRR=dc case, the rare regions lack static order and undergo quantum fluctuations, 

resulting in an infinite randomness phase transition with exponential scaling. This behavior was 

first observed in classical Ising chains[44], but also later in the transverse-field Ising spin chains 

Figure 1.12.  Phase diagram of random transverse-field Ising spin Chain. Left 

to right shows a quantum phase transition from a ferromagnetic ordered phase to a 

paramagnetic disordered phase at Δc. Griffiths points separate strong ordered(SO) 

and weak ordered (WO) as well as weak disordered (WD) from strong disordered 

(SD). Taken from [46] 
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[45,46]. Experimentally, rare region effects have been demonstrated in 2D superconducting films 

in magnetic field, tuning a superconductor to normal metal transition [47].  

Rare region effects are of interest in this thesis. In chapter 7, we show that the onset of 

superconductivity in Nb islands, both individually and in an array, is greatly influenced by 

unusually well ordered grains that become superconducting at much higher than average 

temperatures. 
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Chapter 2.  Measurement Setup 

This section initially discusses experimental measurement techniques used as well as 

modifications to cryogenic measurement systems that I have helped to make (with Stephen Gill). 

The modifications were necessary because electronic noise and improper thermalization can wash 

out physical phenomenon on samples or result in an impractical signal to noise ratio, preventing 

usable data. Section 2.3 shows chip mountings and socket holders used in our dilution refrigerator. 

2.1  Room Temperature Electronics 

Our two basic measurement setups are shown in Figure 2.1. AC and DC signals are 

produced by an SR830 and a DAQ respectively. These are then processed using analog electronics 

in a summing amplifier to yield either a current or a voltage. The measured signal is then amplified 

by a current preamplifier and then read out using the SR830 and DAQ. A good summing amplifier 

and a good preamp are essential for this, as they provide some common mode rejection and are 

capable of handling signals far smaller than the SR830 or DAQ. We typically us a model 1211 for 

a current preamp. Princeton 184 and model 1201 voltage preamps are typically used 

interchangeably for measurements. 
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We use battery powered summing amplifiers sum to sum the two voltage signals, which 

can also be configured to divide the voltages by as much as 1000. When properly constructed, the 

summing amplifiers can output stable voltages of around 5µV with a noise of approximately10nA. 

As shown in Figure 1a, the outside of the input BNC connectors is not sunk to the outside of the 

sum box like that of the output connectors. Instead, a buffer integrated chip (IC)  (AD622 in Figure 

2.2) takes the difference between the inner pin and the outer shield of the input BNC and sends 

this voltage into an inverted summing amplifier, whose diagram and basic properties are detailed 

in Figure 1b. The buffer chip is used for common mode rejection, eliminating many grounding 

issues. For a summing amplifier, the OP177 was chosen because it is a stable low noise op amp 

and the capacitor (which is optional) serves as a low pass filter. It is very important not to use 

carbon resistors, notorious for generating large amount of thermal noise, for measurement related 

electronics.  Instead, use metal film or foil resistor with low noise specifications. 

Figure 2.1. Diagram showing basic 2 point and 4 point measurements setups. A summing amplifier and a 

commercially available preamplifier provide common mode rejection as well as summing, dividing, and amplifying 

electrical signals.  
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 Applying a stable gate voltage has been a consistent problem in our group. This is partly 

due to the limitations of our silicon oxide gates, but also due to the use of a Keithley 2400 at 

voltages greater than 30V, often without filtering.  The Keithley 2400 requires a sizeable RC low 

pass filter (~10Hz) in order to be viable as a gate controller, which filters out most of this noise. 

An alternative might to be to make a 10 times amplifier for the DAQ, but this has not been tested. 

 

 

 

 

 

Figure 2.2. Circuit diagram of the summing amplifier. Relevant parameters shown. fc between 2 KHz and 

15KHz is desirable if capacitor is included. The ground is linked to the outside of the box and the exterior of the 

output BNC. 
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2.2  Cryostat Electronics 

 

While commercially made cryogenics systems are commonly used among research groups, 

these often require the addition of extensive filtering and line thermalization to perform optimally. 

On our Oxford systems, we use room temperature pi filters to filter high frequency (>10MHz) 

noise from our lines prior to entering the cryostat. The rest of the filtering is performed on the cold 

finger on the mixing plate of the cryostat.  

Figure 2.3. Diagram Showing the layout of a dilution refrigerator. We connect to BNC 

connectors on the breakout box at the top, which are linked to electrical lines that go all the 

way down to the sample at the bottom.  The yellow boxes represent plates of different 

temperatures (lower plates have lower temperatures) , with the lowest being the base plate at 

around 20mK. While some attempt has been made to thermalize these lines on each plate, this 

becomes difficult with the colder plates and the wiring that comes with these fridges is 

notorious for not being properly thermalized. Some groups replace this wiring and thermalize 

on each stage, but we rely on extensive filtering and thermalization on our coldfinger. The 

only other section modified is the breakout box at the top. 
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The first generation of cold finger that I made used thermally sunk metal film resistors 

(1kΩ-3kΩ), which were held in close fitting brass blocks using stycast as shown in Figure 2.4 (b). 

This type of filtering adds line resistance to avoid grounding issues and provides surface area for 

thermalization.  Additionally, as shown in Figure 2.4 (c), the metal film resistor consists of a metal 

film around a ceramic core and forms a parallel plate capacitor. This creates a compact low pass 

Figure 2.4. (a) Breakout box at the top of cryostat. Contains room temperature pi filters 

for filtering high frequencies. Box also serves as a common ground for instruments 

directly connected with BNC cables. (b) Cold resistors on the cold finger While initial 

versions used stycast, later versions like the one pictured use silver epoxy to hold the 

resistor in place. (c) Cross section of mounted cold resistors. Resistors held in place with 

silver epoxy have greater capacitance and are better thermally coupled to the brass plate 

than those using stycast. 

(a) (b) 

(c) 
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RC filter. While this is suitable for some cryogenic applications, the frequency cutoff of these 

filters was greater than 50kHz and the sample’s electron temperatures were 150-200mK. This was 

because Stycast is a poor thermal conductor and an electrical insulator, resulting in poor thermal 

and capacitive coupling between the resistor film and the metal block.  

The second generation cold finger used silver epoxy in place of stycast. This is both 

thermally and electrically conductive, meaning that the resistor’s thin layer of epoxy is the primary 

thermal barrier to the resistor and serves as a dielectric between a capacitor formed by the metal 

film and the silver epoxy (much closer parallel plates than with stycast separation). Using a 1 kΩ 

resistor, we were able to make a well thermalized RC low pass filter with a 5kHz cutoff. Since RC 

filters become less effective at high frequencies, we layered the line with Eccosorb, a commercially 

available epoxy that absorbs frequencies above 800MHz.  A comparison between the previous 

filter setup and this configuration in a He3 fridge resulted in a factor of 2 improvement in signal 

to noise ratios on superconducting island samples. 
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The third generation of cold finger we made included a silver epoxy filter in between 1 kΩ 

and 100Ω metal film resistors silver epoxied into a brass block. These filters consist of 1.5 meter 

long twisted pair wires covered in silver epoxy and wrapped around a copper rod. This provides 

additional thermalization for the lines, inductance to attenuate high frequency signals, and a skin 

effect similar to that found in copper powder filters. Similar filters have been benchmarked and 

have been found to have a cutoff frequency in the 100MHz range[48] and have been able to reduce 

sample temperature to around 20 mK. This is consistent with measurements of quantized 

conductance steps and a supercurrent in InSb nanowires by Stephen Gill, which indicate an 

electron temperature of under 50 mK. 

(b) (a) 

Figure 2.5. (a) A silver epoxy filter made by wrapping a twisted pair wire covered in silver epoxy 

around a copper rod. Only half of the silver epoxy filters made were could be used, the rest had at least 

one short to the epoxy. (b) The full filtering layout of a cold finger using silver epoxy filters. From left 

to right: eccosorb filtering, 1KΩ resistor block, silver epoxy filter, and a 100Ω resistor block. 
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 Lastly, we painted the interiors of our radiation shields and cold finger cans with black 

paint. This is common serves to absorb stray infrared radiation. It is uncertain if this has any effect 

on any devices in our group, but it is low cost and can be implemented quickly.  

 

 

 

 

Figure 2.6.  Silver epoxy filter benchmarks. (a) Attenuation vs frequency. Layered wires are wrapped 

together. Segmented are wrapped individually. Our silver epoxy filters are similar to the segmented 

filters (solid red line). (b) Temperature measurement made by measuring thermally excited tunneling 

through a quantum dot. With filters, the sample is approximately 20mK.(c) Without filters, the sample is 

at 80mK. Figure taken from [48] 
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2.3    Chip Holder 

             

A sample is connected to the cold finger wiring via a sample holder socket shown in Figure 

2.7 (a). The sample is silver painted to the sample holder and then the contact pads are wedge 

bonded to the sample holder pins as shown in Figure 2.7 (b) and (c). If a back gate is needed, a 

bond is placed on the Au back pad in order to use the 300nm SiO2 layer as a dielectric. This method 

allows for very fast sample turn around in the measurement system. 

Figure 2.7. Coldfinger and Socket (a) Lower Segment of Coldfinger, including 

socket holder. When fully prepared, this should be surrounded by another shielding 

can. (b) Top view of the chip holder. There are 32 pins that connect to the cold 

finger, corresponding to the 32 BNC connectors at the top. These are connected to 

the sample via a wedge bonder. A 4 point measurement with a back gate is shown 

wired. (c) Side view of the chipholder with connections to the socket shown. 

(a) 

(c) 

(b) 
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Chapter 3. Vortex Dynamics Dilute Non-Interacting 

Regime 

In this chapter, we focus on vortex motion in the dilute vortex filling regime where 

interactions are negligible. Performing current(I)-voltage(V) measurements on low resistance 

superconductor-normal-superconductor(SNS) arrays in finite fields, We observe significant 

deviations from predicted behavior, notably the absence of a differential resistance peak near the 

vortex de-pinning current and a broad linear I-V region with an extrapolated I intercept equal to 

the de-pinning current. Comparing these results to an overdamped molecular vortex model, we 

find that this behavior can be explained by the presence of a history dependent dissipative force. 

This points to more a more complicated non-equilibrium effect that is altering our dissipative term. 

This section is adapted from a previously published work[49]. 

3.1 Predicted Vortex Dynamics 

SNS arrays can be modeled using either a resistor-capacitor-superconductor junction 

(RCSJ) array model[50,51] or a molecular vortex model[52,53], which exhibit surprisingly similar 

behavior. While a static treatment of an SNS array is discussed in section 1.2.2, the dynamic 

treatment of the system is given here. The equations of motion for a superconducting island in an 

RCSJ array are given by 

0 0 sin( )
2 2

i ij ij c ij

j N

C
I I

R
  

 

    
     

    
 , (3.1) 

where C is the capacitance, RN is the normal resistance of the junction, Ii is the externally applied 

current (Ii = 0 for most islands. Ii = I and Ii = -I on islands touching the source and drain current 

leads respectively, where I is the applied current), Φ0 = h/2e is the quantum of flux, i and j are the 
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indices of adjacent islands, and 
0

2
j

ij i j

i

A dl


     
   where ϕi is the order parameter phase of 

island i and. An RCSJ array can exhibit two types of motion at low fields: a vortex motion regime 

above a vortex depinning current, Id, where only vortices move and a bulk order parameter phase 

motion regime above Ic where all phases are driven. As discussed in section 1.2.2, a vortex is a 

topological defect around which a 2π phase rotation. Vortices populate the arrays at finite magnetic 

fields, are affected by a periodic potential[54], and experience a driving force from an applied 

current with a de-pinning current that is much lower than the junction critical current (Id<<Ic). 

Array simulations[50,51] indicate that the vortex motion mode follows similar dynamics to the 

single junction case described by Ambegoar-Halperin[55]. This similar dynamic behavior is 

because the vortex moves through a periodic potential and has mass and damping terms determined 

by the junctions in the array. 

 Due to this equivalent dynamic behavior, vortex motion in SNS arrays can be modeled 

using a molecular vortex model. In the dilute, non-interacting regime, this takes the form of` 
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  

      
i

i i i

i

V x t
m x t x t

x
 


   


,  (3.2) 

where there is a mass term given by 
4

C
M

e
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and a dissipative term given by 
1
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.
 The 

potential V(xi(t)) takes the form 

  0cos 2p

x
V x V J x

a


 
   

 
,  (3.3) 

where a is the periodicity of the potential, Vp is the potential barrier height, J is the applied current 

density, and Φ0 is the quantum of flux. While having similar results to the rotor model, molecular 
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vortex models are often more easily interpreted as vortex locations do not have to be extracted 

from rotor positions.  

 

There are two different dynamic regimes to this model: the overdamped regime (low 

resistance arrays with  >>m) and the underdamped regime (high normal resistance arrays with 

m>> ). The underdamped case is hysteretic when current is swept up and down, exhibiting a bi-

Figure 3.1. Dynamics of a particle in a tilted washboard potential. (a) A periodic potential is 

tilted by a Lorenz force from an applied current. (b) The predicted I-V behavior of overdamped 

and underdamped vortex systems, shown in red and black respectively. (c) The velocity versus 

time of an overdamped (dark blue) and underdamped (red line). (d) The expected temperature 

dependence of dV/dI resulting from vortex motion in an overdamped array in the low filling limit. 

Note that there is a differential resistance peak that persists even at large temperatures. 
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stable regime where there is a stable vortex motion mode and a stable regime pinned mode. The 

behavior of an underdamped array when swept upwards is shown in Figure 3.1(b) in black, making 

a sharp transition from pinned to flux flow where 0/ Jix   . This is because, once vortices start 

moving, the large mass will keep the velocity roughly constant as shown in Figure 3.1 (c) and the 

periodic potential is ignored. 

Vortices in an overdamped arrays can be treated as massless particles, setting m=0. This 

system undergoes a transition from a pinned state into a vortex flow state at the depinning current, 

Id. Unlike the underdamped case, vortex motion does not immediately approach terminal velocity 

behavior after the de-pinning transition. Instead, vortices get caught on the flat areas of the tilted 

washboard and undergo significant velocity oscillations over time as shown in Figure 3.1(c), 

indicating that the periodic potential still plays an important effect in vortex motion. As shown in 

Figure 3.1(b), the I-V relationship takes the analytic form 

             2 2

dV N I I  , (3.4) 

which is nearly identical to that of the overdamped single junction array, only replacing the critical 

current with the de-pinning current and having a linear relation to the number of vortices, N.  Both 

the overdamped and underdamped systems should converge to    V I behavior at high currents. 

The transition from pinned behavior to this linear behavior necessitates a differential resistance 

peak near Id that is robust against temperature, as shown for the overdamped case in Figure 3.1(d). 

3.2 Measured Vortex Dynamics  

For reasons that have not been well understood, the majority of experimental measurements 

on SNS arrays do not match the above models[24,26]. While experimental measurements do find 
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predicted features like a constant flux flow resistance at large currents that is proportional to lattice 

filling (magnetic field), essential features like a differential resistance peak is strikingly absent. To 

address this, we perform a study of vortex dynamics in the dilute filling regime, where vortex-

vortex interactions should be minimal. 

 

In order to study the dynamic vortex behavior in the arrays, we took DC current-voltage 

(I-V) measurements, focusing on the dilute vortex population regime below f=1/10 (less than one 

in ten triangular island plaquettes filled). The applied current provides a Lorentz force and the 

vortex motion can be measured as a voltage across the arrays. The measurements are performed 

on triangular island arrays with 390 nm edge-to-edge spacing with Nb island diameter of 260nm 

unless otherwise stated. The Au film is 10 nm thick and the Nb islands are 70nm thick.  

Figure 3.2.  I-V Measurements of 390nm Spaced Islands with both de-pinning current 

and junction critical current visible. Measurements were taken at 17mK and 5 

millisecond pulsed I-V measurements were used to minimize joule heating. Below the array 

critical current, I
c
=16μA, the electrical properties are dominated by vortex motion. 
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Figure 3.2 shows dV/dI vs I extracted from pulsed I-V measurement, with 5 millisecond 

current pulses to minimize joule heating. Here, the junction critical current is Ic =15 μA and 

electrical transport below 15 μA is dominated by vortex motion, with dV/dI proportional to f. Since 

Joule heating is often an issue in mesoscopic samples, we compared both pulsed I-V measurements 

and continuous I-V to see if the difference in average power resulted in heating, finding that there 

was no significant difference at currents below 10μA. Additionally, we performed I-V 

measurements at varying temperatures, finding a zero B field transition temperature of 410 mK 

and that there is no significant low field temperature dependence of Id or Ic below 150 mK as 

shown in Figure 3.3 (a)-(b). This indicates that Joule heating is not significant when I<10 μA and 

that our arrays are in the low temperature limit when measured at 17 mK. Another question is 

whether quantum tunneling plays a significant role in vortex motion in our arrays. Previous 

studies[56,57] have observed quantum tunneling of vortices, but these had normal resistances on 

the order of 20kΩ and large amounts of hysteresis consistent with an underdamped array. The Nb 

islands on Au discussed in this thesis have a resistance of 31Ω, are not hysteretic, and are in the 

overdamped limit. This leads to classical vortex behavior and quantum tunneling does not make a 

significant contribution to vortex transport in our arrays. 
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The measurements shown in Figures 3.4(a) and 3.4(b) were performed at T = 17 mK and 

I<10μA. This places the array in the low temperature limit and the current range prevents 

significant Joule heating.  Figure 3.4(a) shows I-V curves and Figure 3.4(b) shows dV/dI curves as 

a function of magnetic field for an array of islands.  As shown in Figure 3.4(a), the array transitions 

from a pinned state (V=0) to a flowing vortex state (linear relationship between V and I at a de-

pinning current, Id). Viewed as dV/dI (Figure 3.4(b)), this is a transition is from dV/dI=0 to a 

constant dV/dI that is referred to as the flux flow resistance. The flatness of dV/dI in the flux flow 

regime is notable and a highly linear I-V relationship is exhibited, which implies the vortices are 

moving at a terminal velocity (Lorentz force balanced by dissipative force).  The flux flow 

resistance, Rff, is linear with magnetic field and is consistent with the  Bardeen-Stephen model 

[58], which predicts Rff ~ 2 f Rn for normal state resistivity Rn.   Figure 3.4(c) shows that Rff is 

linearly proportional to f, as expected.  

(a) (b) 

Figure 3.3.  Array properties as a function of temperature. (a) I
d
 and I

c
 temperature dependence 

for 390nm spaced (edge to edge) islands arrays at low field values as well as I
c
 temperature 

dependence for 440nm islands  at f=0.018. (b)  I-V Measurements performed in 390nm spaced island 

arrays at f=0.007 at different temperatures. 
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Contrary to theoretical predictions, we do not observe a differential resistance peak near Id 

or any inflection points in the I-V measurements on the approach to flux flow. These are essential 

features of previous models of the transition from pinned behavior. Indeed, any model (such as the 

tilted washboard model discussed) where the array transitions from pinned behavior (V ~ 0) at low 

currents to flux flow with    V I and an I intercept of 0 at large currents requires an inflection 

point where 2 2/ 0d V dI  . The need for a differential resistance peak can be seen in the predicted 

I-V for an overdamped array shown in Figure 3.1(b).  The simulated curve initially demonstrates 

(b) 

(c) 

(a) 

(d) 

Figure 3.4. Current-induced vortex de-pinning for 390 nm spaced islands at T = 17 mK. (a) I-V 

measurements performed using a swept DC current bias for I < I
c
 in different magnetic fields. Adjacent 

numbers indicate the frustration associated with each curve;  f = 1 corresponds to magnetic field B = 115 

gauss. (b) Differential resistance, dV/dI, extracted from I-V measurements in (a).  (c) The flux flow 

resistance R
ff
 vs f extracted from I-V curves. R

ff
 is normalized to the normal state resistance R

n
. (d) 

Measured I-V at f = 0.03 (black) compared with the prediction of the overdamped vortex model (dashed 

blue) in the low filling limit.  A linear fit is performed on the superconducting and flux flow regions of 

the measured curve (red dotted lines). These intersect at a nonzero I intercept.  
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V = 0 pinned behavior at low currents, but then rapidly increases in V at Id as it transitions to    V I

, necessitating a maximum slope near Id. 

The absence of the peak in differential resistance is not unique to our measurements and is 

commonly observed in studies of SNS array. It has been previously discussed as a consequence of 

broadening due to finite temperature[24]  and the effect of superposing DC and AC driving 

currents [59], but these explanations are not convincing for our system. The finite temperature 

explanation in Rzchowski et al.[24] uses a tilted washboard model similar to the one discussed at 

the start of this chapter. Simulations of this model are presented in Figure 3.1(d) and show that the 

peaks persist even when thermal fluctuations are sufficient for significantly nonzero dV/dI around 

I=0, which indicates a much higher temperature than our experiments. Similarly, since we use DC 

measurements, the AC driving current argument does not apply. It is also conceivable that vortex-

vortex interactions could suppress the peak[60] (via some collective effect), but we have focused 

on the dilute filling regime and large scale RCSJ array calculations have found behavior described 

by EQ 2 at comparable fillings (necessitating a peak). 

 Our data supports another explanation. As shown in Figure 3.4 (d), the measured linear 

flux flow region has a nonzero intercept in I and is offset from the simulated curve. Since the 

intercept occurs near Id, the measured I-V curves can smoothly approach flux flow without an 

inflection point. The lack of an inflection point can be generally attributed to additional dissipation 

in the system, suggesting that modifications to the dissipation term are necessary to properly model 

the system. 
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3.3 History Dependent Dissipative Force 

The dynamics of our system can be explained using a molecular vortex model built around 

the Langevin equation. Here, N vortices are treated as classical objects that are driven by an 

externally applied force [52, 53]. This classical treatment is valid in low resistance systems such 

as ours, which are overdamped and do not have significant quantum tunneling of vortices. Since 

this section is focused on the extremely dilute vortex regime, vortex interactions can be neglected 

and vortices can be expected to move in roughly a straight line. The dynamics can be described 

using a one-dimensional Langevin equation with a more general dissipative term [61] 
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where, m  controls the inertia of the vortices, xi(t) is the position of the i-th vortex at time t ,  V x  

is the effective potential felt by each vortex,  t  encodes the dissipative interactions between 

the vortex and the local environment, and i  is a stochastic force simulating thermal fluctuations. 

Due to the low resistance of the system, the vortex lattice is in the overdamped regime and m can 

be set to 0. The measured voltage is mainly the result of vortices traveling from one edge of the 

array and is proportional to the average velocity  
1 N

i
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   of the vortices.  

The effective potential V(x) is approximated by the equation 
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This potential models two properties of the system: a periodic potential of lattice constant, a, equal 

to the distance between islands and a linear potential that produces a Lorentz force, FI, proportional 



39 
 

to the applied current. barrierF sets the strength of the periodic potential and represents the maximum 

force from the periodic potential. As discussed in section 3.1, the vortex slows when moving across 

flat sections of the washboard potential, lowering the average velocity and measured voltage. As 

a vortex moves through the periodic potential, it slows when crossing potential peaks, lowering 

the average velocity and measured voltage. The mass term, m, suppresses these  x t oscillations. 

Increasing mass favors a sharp transition from pinned to    V I  behavior as well as hysteresis. 

Since we do not observe a sharp transition or hysteresis, m can be assumed to be negligible and is 

set to zero. This overdamped treatment is consistent with the low resistance of our system. 

 Dissipation is commonly given the form    1  ,t t   which assumes energy loss is due 

to instantaneous interactions with the array. As discussed in section 3.1, this leads to a current-

voltage relationship of the form 2 2

dV I I   (massless particles are greatly slowed on level 

regions of the washboard potential) and a differential resistance peak at I = Id. This current-voltage 

relationship only converges to    V I at high currents, where the driving force is much larger than 

that of the periodic potential and vortex velocity is given by 1/ .Iv F   The temperature 

dependence of V can be solved analytically [55] or simulated by adding a stochastic force, with 

the results shown in Figure 3.1(d). This model converges to    V I  at large currents, regardless of 

temperature; this can be contrasted to the experimental data, which shows a non-zero I intercept. 

In order to explain the flux flow behavior, we include a history dependent dissipative force 

in the function  t . An example of a dissipative force is a force whose response to a motion 

event drops off exponentially with time after that. Adding this to the dissipative force function 

leads to     1

1 2

/
  ,

t
t t e

    
   where 1,2  are free parameters and   is the timescale of the 
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dissipative force. The effects of a history dependent dissipative force on an overdamped particle 

are shown in Figure 3.5, where 2 1  10   and   is given in terms of 

2

2 1 ( )

2
a

p

a

V

 





 , which 

corresponds to the time taken by the large mass particle modeled in Figure 3.5 to move across one 

period of the potential at a current infinitesimally greater than Id. A   much shorter than the time 

taken to cross one period of the potential yields the same behavior as the purely instantaneous 

dissipative response, but longer   enhances  x t oscillations, leading to very different I-V 

behavior. When   is much longer than the period crossing time, the dynamic region is highly 

linear with an I intercept of Id, similar behavior to what we observe in our experiment.  
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The current-voltage relationship does not strongly depend on the form of the history 

dependent component of  t .      1

1 2 c  ct t t t t       yields similar behavior in the large 

tc limit and is less computationally intensive than the exponential expression.  The parameters 

2 1  0.4  and 14 c at  can be used to place the system in the long timescale dissipative force 

regime, removing the differential resistance peak. Changes in Id caused by low field Meissner 

currents and dilute limit vortex-vortex interactions are simulated by adding an edge barrier and a 

stochastic force, resulting in Figure 3.6(a) and Figure 3.6(b)]. This yields excellent qualitative 

agreement with between theory and experiment, suggesting that history dependent dissipation 

Figure 3.5. Simulated I-V behavior with a history dependent dissipative force. Curves 

showing the effects of the mass term and the timescale of the dissipative force, τ
β
, in a periodic 

potential. Three curves show the predictions for the low mass limit with different dissipative 

force timescales. τ
β
 = 0.1 τ

a
 is indistinguishable from the instantaneous dissipative force time 

constant case, but much longer time scales result in a linear region with an I intercept near I
d
.  



42 
 

could have a significant contribution to vortex dynamics in overdamped SNS arrays. While a 

similar mechanism has previously been considered to study a continuum theory of the plastic flow 

of vortices [60], the connection to the absence of a peak in the differential resistance was not 

discussed.  

                      

Although the microscopic sources of energy loss are not completely understood [62], one 

can roughly think of energy dissipation as due to quasiparticles interacting with normal electrons 

inside vortex cores; the quasiparticles may get excited from impurities in the superfluid, or could 

(a) 

(b) 

Figure 3.6. Simulated SNS array behavior as a function of frustration. (a) Simulated 

voltage vs current and (b) differential resistance vs current for a generalized Langevin 

equation with flat time dependent dissipation where τ
β
 ~ 14 τ

a
. Model includes an edge 

potential at low fillings. 
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leak out of the vortex cores when a current is applied [63].  Memory effects in our system could 

arise because of a delayed time-scale for the healing of the superfluid density along the path 

traversed by the vortices as they move through the system. The trail left behind by the vortices 

would then contribute to the dissipation measured in the experiment.  
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Chapter 4. Interacting Vortex Regime 

          4.1  Introduction 

How crystalline order is destroyed in the presence of disorder is a fundamental question in 

condensed matter physics and determines the structure of a wide range of systems, including solids 

and magnetic materials. Disorder can manifest itself in two ways: interface structures like domain 

walls in polycrystalline structures[64,65] or in bulk structures like disordered glasses[66]. Vortex 

systems provide excellent test-beds for studying the introduction of disorder into crystalline 

structures. A perfectly ordered type II superconducting film has a crystalline Abrikosov 

lattice[12,67] , but the introduction of disorder in the film can destroy this crystalline structure and 

result in unusual phases. This has been demonstrated in disordered superconducting films, which 

have a de-pinning current peak as temperature is increased towards the critical temperature, Tc. A 

combination of electronic transport measurements and neutron diffraction measurements have 

found that this peak can be explained as a transition from a weakly pinned quasiperiodic “Bragg 

glass” [66,68] into a polycrystalline state[17 ,18, 19, 69] as temperature increases and the vortex 

lattice relaxes. 

Superconductor-normal-superconductor (SNS) arrays offer a controlled way of studying 

disorder, allowing it to be tuned with magnetic field. While disorder in a film is random, SNS 

arrays provide a periodic potential defined by array geometry and have a potential well filling 

fraction that can be controlled using a magnetic field (B) [24]. Crystalline vortex structures form 

when the vortex lattice is commensurate with the array’s potential wells and can be identified via 

electrical transport measurements as dips in magnetoresistance [25] and peaks in de-pinning 

currents [26]. Disorder can be introduced into these systems by shifting the filling fraction away 
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from commensurate filling values. Since most studies of SNS arrays have focused on crystalline 

structures, the structure at incommensurate fillings is not well understood and it is not known if 

the system is glassy or polycrystalline in this regime. Here, we describe transport measurements 

of an SNS array, where we observe two-step vortex transitions at incommensurate fillings: first 

from pinned to lattice defect motion, then from lattice defect to bulk lattice motion. Comparing 

these measurements with a dynamic vortex model [51,52,53], we show that this two-step transition 

is indicative of domain wall motion in a polycrystalline vortex lattice and not a vortex glass. This 

section covers work that will soon be published. 

4.2 Measurement 

Samples are studied using four-point measurements in a dilution refrigerator at 17 mK, 

sweeping DC current and measuring voltage, with values such as dV/dI obtained by taking a 

numerical derivative. Vortices experience a periodic potential from the island array [24], where 

the local energy minimum is at the center of each island triangle, and an energy barrier exists at 

the array edges. As discussed in previous sections, the current applies a Lorentz force on the 

vortices. If sufficient to overcome the energy barrier, the Lorenz force will de-pin vortices and 

drive their motion, which is measured as a voltage across the sample. The number of vortices per 

island triangle is determined by the magnetic field and island spacing, and is characterized by the 

number of flux quantum per plaquette, or f=Φ/Φ0, where Φ is the flux through a unit cell and Φ0= 

h/2e is the quantum of flux. The devices studied are similar to those in sections 3, consisting of 

triangular arrays of superconducting Nb islands on normal metal films. The normal metal film 

(1nm Ti, 10nm Au) is patterned in a four-point measurement configuration. A triangular array of 

Nb islands that are 70 nm thick, 260 nm in diameter, and have 490 nm edge-to-edge spacing is 
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then patterned on top of the normal metal film using electron beam lithography and electron beam 

evaporation. 

 

4.3 Measurement of Lattice Flow Regime and Commensurate Fillings 

The dilute filling behavior of the arrays (i.e., at small f values) is shown in Figure 4.1, a 

plot of dV/dI as a function of f for different I (obtained by taking the derivative of an I-V 

measurement). In this regime, the array undergoes a current driven transition from pinned vortices 

(dV/dI=0) to flux flow (constant dV/dI) at a de-pining current, Id. The flux flow—or lattice flow—

regime occurs when all vortices are moving at a terminal velocity, where the Lorentz force is equal 

to a dissipative force, resulting in a linear relationship between I and V. This leads to a constant 

Figure 4.1.  dV/dI as a function of field at low fillings. Normalized differential 

resistance at different bias currents as a function magnetic field. As current 

increases at low fillings, there is a rapid transition from dV/dI=0 to a flux flow 

resistance proportion. As f is increased, the upper dV/dI lines branch off from R
ff
, 

startng at f ~ 0.08, due to the increasing importance of vortex-vortex interactions.  
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dV/dI that we refer to as the flux flow resistance, Rff. Rff scales linearly with filling fraction f, as 

the measured V is proportional to the total number of moving vortices. This is shown in Figure 4.1, 

where, for sufficient currents and low f values, the dV/dI curves fit to a single black line 

representing Rff. When plotted on a broader range in Figure 4.2, the extrapolated fit to Rff represents 

an upper limit to the dV/dI measured for a given f and indicates when all vortices are flowing. 

                

At larger f values, dV/dI no longer has a linear relationship with f for most applied currents. 

This is visible in Figure 4.1, when a number of curves start to diverge from the Rff fit at f  > 0.05; 

the effect is even more pronounced in Figure 4.2, where a pattern of peaks and dips emerge when 

f > 0.1. The departure from linear dV/dI occurs because greater vortex density results in stronger 

Figure 4.2. dV/dI as a function of field. Normallized differential resistance at different bias 

currents as a function magnetic field. At higher fillings, dips associated with commensurate 

fillings are visible at f=0.166, 0.25, 0.33, and f=0.5. Intermediate clusterings of lines 

associated with intermediate flow behavior are visible at f=0.2 and, to a lesser extent around, 

f=0.35.  
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vortex-vortex interactions. Vortex-vortex repulsion usually leads to weaker pinning as filling is 

increased. However, at special fillings—e.g., f = 1/12, 1/6, 1/4, 1/2—the vortex lattice is 

commensurate with the array potential wells, resulting in crystalline vortex orderings and strong 

pinning, as evidenced by dips in dV/dI and a greater de-pinning current at commensurate fillings. 

4.4 Two Step Transition at Incommensurate Filling 

 

Commensurately and incommensurately filled lattices exhibit different dynamic behavior. 

The dynamics as a function of current can be seen in Figure 4.3, which plots dV/dI vs I for the 

commensurate filling f=0.25  alongside the incommensurate pinning f=0.20. Driven from pinned 

to flux flow, the commensurate filling undergoes a single transition, while the incommensurate 

Figure 4.3. dV/dI as a function of current. When dV/dI is plotted as a function of 

current, the clustering of lines is visible as an intermediate flat region between two 

steps at f=0.20 . This is in contrast to the single step transition at f=0.25. 
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filling undergoes two distinct transitions separated by an intermediate region of constant dV/dI. 

Similar behavior can be seen in Figure 4.2, where incommensurate fillings have intermediate 

clusterings of lines, as exemplified at f= 0.20. In contrast the commensurate fillings transition 

rapidly into flux flow, resulting in peak reversals where low current dips turn into peaks at higher 

currents (e.g., as at f = 0.5). Similar peak reversals have been observed in previous works[25] and 

used as evidence for a vortex Mott-insulator to metal transition [27].  

In order to characterize incommensurate lattice dynamics, we plot the transition locations 

as a function of field and current in Figure 4.4. Since the transitions are associated with steps in 

dV/dI, they can be identified as d2V/dI2 peaks, or the bright regions of Figure 4.4. For 

commensurate fillings, depinning transitions occur at higher currents, as indicated by the arrows 

in Figure 4.4.  While dilute fillings and commensurate fillings only have a single transition (only 

one visible d2V/dI2 peak for a given f), incommensurate fillings often undergo a two-step transition 

with two visible d2V/dI2 peaks. This is evident in Figure 4.4, where the incommensurate fillings 

indicated by dashed lines have first transitions marked by blue circles and secondary transitions 

marked by red Xs.  
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The single transitions smoothly split into two transitions as filling is shifted away from 

commensurate values. This can be seen in Figure 4.4, where the single transition at f=1/6 smoothly 

splits into two diverging transition curves as the filling is increased, with the upper curve marked 

with an “X” and the lower curve marked with an “O” at f~0.21.  Another prominent splitting is 

also visible as the field is increased from f=1/4 and a less prominent secondary transition curve 

splits off as the filling is decreased from f=1/6, but only is visible over a short range of fillings. 

The smooth splitting as a function of filling indicates that this behavior is determined by lattice 

structure, with the vortex lattice transitioning from pinned regime to an intermediate vortex motion 

Figure 4.4. d2V/dI2 as a function of current and frustration. Transition steps can be mapped using 

d2V/dI2. Higher d2V/dI2 values (light blue, green, and red) correspond to a transition step. 

Commensurate fillings are marked with red arrows and undergo a single transition. Example 

incommensurate fillings are marked with a red dashed line and undergo two transitions, the first 

marked with a blue circle and the second marked with a red X. The first and second transition curves 

split apart as filling is shifted away from a commensurate value. 
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regime to a lattice flow regime. This splitting has not been previously discussed and presents 

implications regarding vortex structure and motion. 

4.5 Simulation 

To better understand the dynamic behavior in the different regimes, including the d2V/dI2 

peak splitting, we again use a molecular vortex model based on the Langevin equation, but include 

a vortex-vortex interaction term. This has equations of motion given by  

 
  

   
   

1

  applied

N
i i j

i i i

ji int

V x t x t x t
m x t F x t U

x L
  



  
         

 , (4.1) 

where m is a mass term related to capacitance, Fapplied is the Lorentz force (proportional to the 

applied current), V(xi(t)) is a periodic potential defined by the array, εi(t) is a stochastic force used 

to simulate finite temperature, and U(xi(t)-xj(t)) is the mutual repulsion between vortices. We 

simulate current sweeps at regular magnetic field intervals by varying the number of vortices per 

potential well and applying a driving force. The implementation and investigation of this molecular 

vortex model is complicated enough to warrant its own section, chapter 5, and this section is meant 

to summarize the major findings. It is also worth noting that some features, such as as dV/dI peaks 

at the de-pinning current, are not described by the model used here (the history dependent 

dissipation term is absent for the sake of simplicity and computational efficiency). Instead, the 

effect of this term is shown in chapter 5.  
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A basic one dimensional (1D) simulation can replicate the two-step transition for 

incommensurate fillings. Shown in Figure 4.5(a), the lattice undergoes a direct transition from 

pinned to flux flow at commensurate fillings, such as f=0.50. Due to the ordered arrangement of 

vortices [Figure 4.5(a) lower right inset], the vortex lattice moves in unison and exhibits dynamics 

similar to that of a single vortex. As additional vortices are added, defects enter the lattice [Figure 

4.5(a) upper left inset], separating ordered domains. These defects require a lower depinning force 

than the rest of the lattice and begin moving prior to the lattice depinning current, resulting in a 

transition from pinned to defect flow to lattice flow. A direct comparison of predicted dV/dI is 

provided in Figure 4.5 (b) for the different transport regimes. Notably, the distinct two-step 

transition occurs when defects occur on interfaces separating ordered regions, analogous to domain 

walls. In contrast,  higher values of disorder than shown in Figure 4.5 yield an amorphous state, 

exhibiting only a single transition [for a more detailed description, see chapter 5]. 

(a) (b) 

Figure 4.5.  One dimensional simulation of array (a) Simulated I-V behavior for commensurate (f=0.5) 

and incommensurate fillings (f=0.52,0.54). Right inset shows the half filling arrangement. Left inset shows 

an incommensurate filling with defects in the form of vortices in adjacent wells. (b) Simulated dV/dI 

measurements. At commensurate values, the system rapidly transitions from pinned to bulk vortex motion. 

As field is increased (f=0.52,0.54), defects are added. This results in a transition from pinned to defect 

motion to bulk vortex motion. 
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To simulate a 2D system, we use a periodic potential similar to the one produced by the 

triangular island array, incrementally sweep current at different vortex populations, and extract the 

vortex motion. As shown in Figure 4.6, this simulation reproduces the basic features of the data in 

Figure 4.4: de-pinning current peaks at commensurate fillings and a second d2V/dI2 peak that splits 

as the filling is altered from commensurate values. Similar to our measurements, the lowest 

commensurate filling with significant splitting is f=1/6, which is marked in red in Figure 4.6; the 

second transition is marked with a white arrow. Correspondence between measured and simulated 

transport data suggests this model could shed light on vortex lattice structure. Figure 4.7(a) shows 

Figure 4.6. 2D simulation of triangular array.  Simulated d2V/dI2. Depinning 

current peaks are visible at f=1/8 and f=1/6 . At f=1/6, a second transition splits 

off from the de-pinning current when current is increased and the area in 

between the two transitions is a defect motion regime. An incommensurate 

filling is shown wit a dashed line. A white circle shows the first transition. A 

white X shows the second transition.  
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vortex motion in the intermediate transport regime between the split transitions (f=0.20 and I=0.60, 

marked as a red dot in Figure 4.6), with black circles showing initial location and white circles 

showing ending location over a short period of time, roughly corresponding to the time taken for 

a vortex to cross from one well to another [for vortex lattice motion, see Figure 4.7(b)]. Vortex 

motion occurs primarily in defects, which appear as cracks that form between crystalline 

structures. This not only indicates that the intermediate transport regime involves defect motion, 

but shows a polycrystalline structure with defects appearing on the interfaces separating crystalline 

domains. These results suggest the intermediate transport regime involves domain wall motion.  

 

4.6 Conclusion 

Thus, the two step transition we observe at incommensurate fillings is consistent with a 

transition from pinned vortices to lattice defect motion to lattice flow. Molecular vortex model 

simulations suggest that this motion occurs on the edge of crystalline domains, providing evidence 

Figure 4.7. 2D simulated motion. The potential supplied by the SNS array is displayed in contours with 

maxima in yellow and minima in dark blue. Black circles are simulated vortices and red circles show their 

position a short time afterwards (with a black line showing the path in between). (a) Defect motion is simulated 

using parameters I=0.6 and f=0.20. Only a small number of vortices move at once, mostly on the interfaces 

between different crystalline structures. (b)Flux Flow is simulated using a value of I=2.2 and f=0.20. Unlike 

the defect motion regime, all vortices are in motion at once. 

(a) (b) 
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for domain wall motion and polycrystalline structure in this system. This disordered structure is 

unique compared to those typically explored in previous vortex matter studies, which dealt with 

glassy structures. 
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Chapter 5. Vortex Simulation with Interacting Vortices 

This section provides a detailed description of the simulations used in chapter 4, providing 

enough information so that they can be reproduced and a supplementary analysis of the results of 

the simulation. The basic equations of motion are given by EQ 4.1, which are then solved 

numerically via Euler’s method. The details such as the form that vortex repulsion takes and how 

the 2D model is implemented are contained here. Additional information about quasiperiodic vs 

domain structure is also presented here. 

 5.1 Simulating Vortex-Vortex Repulsion  

 

Figure 5.1.  Vortex-Vortex Repulsion as a function of distance The different 

functions discussed as repulsion terms are shown. The function U
0
(x) discussed in 

equation S1 is a decent approximation of the predicted repulsion terms for nearest 

neighbor and next nearest neighbor interactions. 
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 The magnitude of the vortex-vortex repulsion force is given by U(X)=K1(X/ Lint), where 

K1(x) a modified Bessel function of the second kind. In the long interaction limit (Linteraction>>a, 

where a is center to center island spacing), which is applicable for arrays, this approaches 

U(X)=C/X where C is a constant modifying the magnitude of the repulsion. In order to have the 

calculations scale in a reasonably efficient way, interactions between vortices over 10a away are 

ignored. To avoid artifacts from vortices entering and leaving interaction ranges of other vortices, 

we smoothly tapper the interaction range using the following form: 

  0

1
( )

10(1 e)| | 8
1 exp
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 
 
   

   
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   

 (5.1) 

 As shown in Figure 5.1, this is a reasonable approximation for nearest neighbor and next nearest 

neighbor interactions in the regime of interest, while effectively ignoring interactions further than 

that. 

5.2  One Dimensional Simulation 

 The one dimensional system is given by the potential, 
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Where  A controls barrier height and FI is the force resulting from the applied current. The 

differential equation for an overdamped vortex array is then solved using Euler’s method. This is 

an iterative method that repeats the following calculation over short periods of time, Δt, 
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     ( ) .i i ix t t x t x t t      (5.4) 

The free parameter of in this equation is the ratio between the periodic potential parameter, A, and 

the repulsion parameter B, a ratio that determines the stiffness of the lattice. The stochastic force,

 i t , is obtained using a random number generator with an exponential distribution of the form 

 | |
 exp i t

kT

 
 
 

 (5.5) 

The simulation seeds N vortices in 50 wells (f=N/50) and then performs a slow anneal from high 

temperature to low temperature to find a ground state configuration, imposing periodic boundary 

conditions. We then run the simulation starting with this ground state at varying currents. The 

results can be seen in Figure 5.2 with two lattice stiffness parameters: B/A=2 and B/A=6. A 

stiffness of B/A=2 results in broad two step regions around f=0.5 and f=1.0 (dark and light blue). 

In contrast, a stiffness of B/A=6 has a distinct two step transition only in relatively narrow range 

around f=0.5 and f=1.0.  
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Figure 5.2.  Simulated 1D dV/dI as a function of current and field. (a) B/A=2.0, which is 

used in Figure 3, has visible intermediate steps associated with defect motion near 

commensurate fillings, most prominently just above f=0.5 and just below f=1.0. (b) B/A=6.0 

has a much stiffer lattice, resulting in narrower regions with two steps. Instead, the stiffer 

lattice favors lattice motion. 

(a) 

(b) 
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The relationship between vortex lattice structure and the presence (or absence) of a two-

step transition is investigated in Figure 5.3, which shows the vortex structure at both B/A=2 and 

B/A=6. At the f values given, B/A=2 exhibits a prominent two step transition and B/A=6 either 

exhibits a less visible two step transition or has only a single step, providing a comparison between 

the two observed transport phenomena. B/A=2 [Figure 5.3 (a)(c)] results in well-defined defects 

that are limited in area to one or two wells: f=0.54 yields defects in the form of vortices in adjacent 

wells and f=0.9 yields defects in the form of empty wells in an otherwise filled lattice. In both 

cases, the defects can be interpreted as domain walls separating ordered domains, with f=0.54 

defects each separating two half-filled domains and the f=0.9 defects each separating two entirely 

filled lattices. 

 

 In contrast, B/A=6 defects are more difficult to identify spatially. Rather than appear as a 

pair of adjacent vortices or as an empty well, these defects are groupings of perturbed vortices that 

Figure 5.3.  Simulated 1D  vortex arrangement as a function of stiffness and repulsion. Blue lines represent 

the periodic potential, the red dots at the bottom of each graph show the x position of vortices, and the black dots 

show the potential energy of the vortices as well as x position. (a) f=0.54 and B/A=2.0 yields defects in the form 

of a pair of vortices in adjacent wells. These defects separate ordered regions with half the wells occupied. (b) 

f=0.54 and B/A=6.0 vortices do not sit in the wells and are not separated by integer well periods. Disorder 

appears to manifest in a quasiperiodic structure rather than in the interface between two ordered domains as in 

(a). (c) has defects appear as empty wells separating domains with every well filled. (d) Greater vortex-vortex 

repulsion once again yields a quasiperiodic structure. It is notable that (a) and (c) exhibit a two step transition in 

Figure 5.2 (a), but (b) and (d) undergo a single transition in Figure 5.2(b).  
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no longer rest in the center of the wells. As seen in Figure 5.3 (b)(d), the defects occur over a 

region 10 wells wide, with vortices either perturbed towards the center of the defect (f=0.54) or 

away from the center of the defect (f=0.90). At filling f=0.54, there are some segments of vortices 

that are unperturbed, allowing for a visible intermediate step. At f=0.9, the defects are close enough 

for the lattice to take on a quasiperiodic structure and there is only a single transition. Thus, the 

two step transition is a signature of distinct defects, which form on the interfaces between ordered 

domains. 

5.3 Absence of Differential Resistance Peak in Experimental Data 

While a differential resistance peak is predicted in the simulations, it is absent in 

experimental simulations. We have previously addressed the and the associated I-V behavior using 

a history dependent dissipative force. The inclusion of a history dependent dissipative force for a 

1D system with B/A=2 is shown in Figure 5.4. Here, the inclusion of the term removes the peaks 

on both the defect motion and the lattice motion steps. Since this does not fundamentally alter the 

types of vortex motion occurring, we do not include this term in any other section of this work for 

simplicity and to save computational resources. 
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5.4  Two Dimensional Simulation 

We create a potential with triangular barriers as well as exclusion zones where the superconducting 

islands would be using the form  

 
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Figure 5.4.  Simulated 1D dV/dI with history dependent dissipative force. The array 

undergoes a single transition from pinned to lattice flow for commensurate fillings. It undergoes 

a two step transition from pinned to defect motion to lattice flow for incommensurate fillings. 

The inclusion of a history dependent dissipative force removes the differential resistance peak at 

each step. Id0 is the de-pinning current for N=1. 
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      1 1 2 2, , IV x A CV x y C V x y F x    (5.8) 

where V1(x,y) is an exclusion zone for islands and V2(x,y) is the vortex barrier in between islands, 

with C1 and C2 setting the relative strengths of the two potentials. The Nshape parameter sets the 

shape of the vortex barrier as shown in Figure S5(a), with Nshape=1 resulting in a broad potential 

well. We instead use the parameter Nshape=4 to get a narrower well. Setting C1=150, C2=2/250, 

and σ=0.2; the potential can be seen in Figure 5.5 (b) with the path the vortices move shown in 

white. The vortices follow a path from the center of an island triangle and cross the barrier through 

the center of the edge of a triangle, demonstrating that they follow the intended path. 

 

Euler’s method is once again used, only broken up into x and y components. 
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Figure 5.5. 2D Potential Well. (a) The effect of N
shape

 on periodic potential. Higher values of N
shape

 yield 

narrower wells for vortices to rest in. (b) The resulting periodic potential is shown with wells in blue and 

islands in yellow. The path of vortices in a simulated lattice is shown in white. The exclusion potential 

around the islands results in vortices moving between the centers of the adjacent wells, which requires 

overcoming the potential provided by equation 5.8. 
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It is then solved by performing the following operations repeatedly with periodic boundary 

conditions 

     ( ) .i i ix t t x t x t t     (5.11) 

     ( ) .i i iy t t y t y t t     (5.12) 

Where rij is the distance between vortices i and j. N vortices are randomly seeded into 240 wells 

and then slowly annealed into a low energy configuration. The results when B/A=6 are shown in 

Figure 4.6  with the lattice and intermediate flow regimes shown in 4.7. 
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Chapter 6. Conformal Array: Non-Uniform Pinning 

Site Density 

Vortex motion is detrimental to many applications of superconductivity, as it leads to the 

dissipation of energy and a finite resistance. Enhanced vortex pinning is desirable in the pursuit of 

higher critical currents in the presence of a magnetic field. While random pinning sites are often 

used[70], ordered pinning site arrays offer significantly enhanced pinning at commensurate 

fillings[71]. For these commensurate filling effects to be of practical use, the field range they occur 

over must be broadened.  One way of achieving this in an SNS array is to vary the size of the 

triangular island plaquettes as a function of position, with the plaquettes becoming either larger or 

smaller in the direction of vortex motion. Since the array filling is determined by the plaquette size 

as well as magnetic field, the filling fraction varies as a function of position. Ideally, this would 

allow the formation of stripes of strongly pinned crystalline structures that serve as barriers to 

vortex motion, without tuning to a specific field as would be necessary for strong pinning in a 

uniform array. 
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One method, which has previously been used in artificial pinning center arrays[72,73], is 

to perform a conformal transformation on a triangular array and use this pattern to set the structure 

of the array. This is done by mapping the half disk ABCDEF in Figure 6.1(a) along with the 

contained island lattice onto the rectangle abcdef in Figure 6.1(b), which shows the conformally 

mapped array. This is attractive because it preserves the triangular structure locally, allowing a 

crystalline structure to form locally, but changes triangle size over a longer length scale.     

Figure 6.1.  Conformal Transformation of Triangular Array   The uniform array undergoes a 

transition mapping a disc (a)  onto a square (b). The ratio between the largest and smallest triangle 

lattice spacings is approximately the length ratio between curve ABC and curve FED. A greater 

number triangle sites and a smoother change in spacings can be provided by increasing the ratio 

between the mean disc radius, Rmean, and the triangle lattice unit cell, a. Taken from[72]. 
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We used a conformally mapped triangular array to set island centers and kept a constant 

edge to edge spacing between islands by varying the diameter, with the intent of providing constant 

coupling between islands throughout the array. This was accomplished by generating an island 

array script and entering it into a CAD program, which was then used for electron beam 

lithography with spacings between 340nm center to center and 1500nm center to center used 

(240nm edge to edge). This conformally mapped island array was placed on a chip with a 500nm 

center to center (240nm edge to edge) spaced uniform array for comparison and measured in a He3 

fridge. A comparison between the uniform array and the conformal array can be seen in Figure 

6.2. The Triangular array has the expected magnetoresistance oscillations associated with 

Figure 6.2.  Magnetoresistance Measurements   The uniform array undergoes 

magnetoresistance oscillations with the periodicity expected for a 500nm center to center 

array. The Conformal array remains in a superconducting state until the B-field suppresses 

superconductivity in the array. 
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enhanced pinning at commensurate fillings, with a periodicity of 27mT. The conformal array is 

zero resistance until the B field suppresses superconductivity across the array. 

 

I-V measurements were performed in increments of magnetic field as shown in Figure 6.3 

(a)(b), with a transition from zero resistance to finite differential resistance. Unlike the uniform 

array, the constant resistance of the dV/dI region is not proportional to the applied B-field. This 

does not necessarily mean that the array has exceeded the critical current, but could be due to the 

varying vortex density across the array, which could restrict vortex motion in a way that is not 

sensitive to magnetic field. The broad range of island spacings, however, makes this difficult to 

categorize and a narrower range might be sensible.  

Figure 6.3.  I-V measurements   The current dependence at low B-fields around the Meissner phase (a) 

and higher fields when enhanced pinning occurs (b). The resistances of the flat dV/dI appear to be 

independent of field.  

(a)  (b)  
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Plotting the de-pinning current as a function of B field shows 3 major peaks as shown in 

Figure 6.4. The central peak I is indicative of a Meissner regime around B=0, where flux is 

expelled from the array. When field increases, it becomes energetically favorable for vortices to 

populate the array, accounting for an initial drop in de-pinning current. The de-pinning current 

peaks to the side correspond the f=1/2 filling of the furthest spaced island centers. This is followed 

by a slowly diminishing de-pinning current with f=1/2 filling present in a closer spaced segment. 

The reasons for the decrease are difficult to characterize, largely due to the wide range of spacings. 

 

Figure 6.4.  De-pinning Current of Conformal Array The conformal array has a central peak 

associated with a Meissner phase, a weakly pinned dilute pinning regime adjacent to the central 

peak, and side peaks associated with the f=1/2 ordered phase entering the largest island 

triangles. 
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To better characterize this array, the following changes are necessary on the next iteration. 

Increasing maximum and minimum radius for the conformal transformation would obtain a more 

gradual shift in density, producing broader crystalline regions. Additionally, a narrower range of 

center to center spacings should be used. Varying triangle area by less than a factor of 2 (spacing 

by less than a factor of 1.4 (e.g. 1.3)), would produce broad enhanced pinning regions and a small 

gap in coverage between f=1/2 and f=1 barrier regimes. This ability to turn the strong pinning on 

or off would demonstrate that the enhanced pinning effect is present and that it’s due to stripes of 

crystalline vortex structures. Additionally, a large reason for doubt in the sample presented in this 

section is a wide variation of junction width, which was vastly different in 340nm and 1500nm 

center to center arrays. This width variation makes island coupling inconsistent and brings the 

results of this section into question. A small variation in island size would keep junction width 

variation on a reasonable level. A 500nm-650nm sample could produce data sufficient for a 

publication. 

 

 

 

 

 

 

 

 

 



71 
 

Chapter 7. Superconductor to Metal Transition in Islands 

and Island Arrays 

Previous work by Serena Eley studying the superconductor to metal transition in Nb island 

arrays found novel behavior in the Nb island transition[74], with the critical temperature of Nb 

islands strongly dependent on island spacing. In this chapter, we further study this transition in the 

arrays by studying the Au thickness dependence of arrays and the diameter dependence of 

individual islands. We find that, while arrays of 260nm islands become superconducting between 

5K and 9K, solitary 260nm Nb islands are typically not observed to superconduct above 1.5 K. 

This raises questions about how the presence of multiple islands, which should not yet be in a 

superconducting state, can stabilize superconducting order. 

Establishing that this effect is not due to suppression from normal metal in section 7.1, we 

present single island measurements in 7.2, and perform analysis in 7.3. We find that the onset of 

superconductivity in our islands is strongly influenced by unusually well ordered regions, called 

rare regions, and that superconductivity begins in these rare regions and then spreads throughout 

the islands and then the array. Section 7.2 is based on work that is in the process of being 

published[75]. 

7.1 Au thickness Dependence of T1 

  As shown in Figure 7.1, Nb island arrays on Au films undergo a two step transition into a 

superconducting state. During the first step, T1, the Nb islands become superconducting. During 

the second step, T2, the Array undergoes a BKT like transition into a superconducting state, where 

proximity coupling is strong enough for the islands to achieve global phase coherence of the 

superconducting order parameter.  
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 T1 in our Nb island arrays exhibits an unexpected dependence on island spacing. Since 

island diameter (260nm) and island thickness (70nm) are considerably larger than the dirty limit 

superconducting coherence length of Nb (ξsc ~ 27nm), suppression of Island Tc from Au via inverse 

proximity effect should not be significant. In order to verify this, we made Au four point patterns 

of varying thickness and then deposited island arrays using a single Nb evaporation. We then 

performed R vs T measurements using a 1K pot measurement system. 

 

Figure 7.1.  R vs T for Nb island arrays on Au. The islands are 70nm thick and 260nm in diameter. (a) 

Au thickness of 6nm. (b) Au thickness of 12nm. (c) Au thickness of 18nm. 

(a) (b) 

(c) 
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 The raw data from R vs T sweeps at fixed Au thickness and island spacing intervals can be 

seen in Figure 7.1 (a)-(c). Greater Au thickness and closer island spacing both result in higher T1 

and higher T2. This trend can be more easily seen in Figure 7.2(a), which shows T1 as a function 

of edge to edge spacing and Au thickness. Here, the arrays with the thinnest films are the most 

strongly dependent on spacing, while the T1-spacing slopes of the thickest arrays are the 

shallowest. This leads to T1 for the different thicknesses converging as spacing is decreased. This 

behavior is the opposite of what is expected for inverse proximity effect, which would result in 

lower temperature T1 transition. 

 

(a) (b) 

(c) 

Figure 7.2.  T
1
 dependence on thickness, spacing, and conductance.  (a) T

1
 vs edge spacing for different 

Au thicknesses. (b) Conductance vs thickness. (c) T1 vs Conductance at different spacings. 
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  To better understand this behavior, we consider the conductance of the film. As shown in 

Figure 7.2(b), Au film conductance is linearly dependent on thickness, but extrapolates to zero 

conductance at a nonzero thickness of 3.3nm. This suggests that there is a surface roughness of 

about 3nm and that the Au film becomes discontinuous and explains why the resistance changes 

drastically as the value is approached. As shown in Figure 7.2(c), there is a roughly linear 

relationship between T1 and conductance. This conductance and spacing dependence imply that 

the onset of island superconductivity throughout the array is determined by the electrical coupling 

between islands. While this dependence is expected during the T2 transition, where the SNS array’s 

phase coherence is destroyed when kbT2~(h/4e)Ic and the product IcRN is should be invariant for a 

given spacing and temperature[76], the onset of superconductivity in Nb islands was expected to 

be independent of this behavior. 

       

This coupling dependence was noted in Eley et al[74], where it was explained by giving 

each grain on an island its own superconducting phase. According to this model, the islands would 

Figure 7.3.  Grain Phase model incorpotating island interactions in onset of T
1
.  (a) The onset 

of superconductivity in an island is explained as phase coherence being established among all 

grains in an island, which occurs in region II. According to this model, both the grain interactions, 

J, and the interactions with an external, J’, serve to establish grain coherence in islands. Taken 

from [74] 
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enter a zero resistance state when phase coherence was established across an island and the arrays 

would become superconducting when phase coherence spread across the array. The coupling 

across islands in this model was important because interactions between islands aids in stabilizing 

the grain phase, facilitating the onset of phase coherence in the islands as shown in Figure 7.3. 

However, a major issue with this model is that islands should interact weakly because they lack 

grain coherence. This could be solved by assuming that an unusually well-ordered island acquires 

grain phase coherence at higher temperatures than the others, allowing the island to interact more 

strongly with other islands and allow grain phase coherence to spread to other islands in a 

percolative fashion. This type of strongly inhomogeneous XY model is very similar to the rare 

regions ising models discussed in Section 1.2. However, this rare regions mechanism does not 

necessarily only apply to the phase of the superconducting order parameter. It could also apply to 

the amplitude and the onset of superconducting order itself. 
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7.2 Diameter Dependence of a Single Nb island Tc 

 

To study the onset of superconductivity in the system, we measured the behavior of 

individual Nb islands deposited directly onto SiO2 and contacted in a 4 point configuration using 

10nm thick Au leads. These were then measured in a 4He cryostat, sweeping temperature. Figure 

7.4(a) shows a typical R vs T curves for a range of islands, with the island and the four point contact 

shown in the inset. The island Tc dependence on island diameter can also be seen in Figure 7.4(b), 

with several different Nb evaporations shown. The Nb island Tc is strongly dependent on diameter 

up to lengths of 1.5μm, a much longer length scale than anticipated. Additionally, we found that 

260nm Nb islands (which became superconducting at 9K when closely spaced in an array) did not 

superconduct above 1.5K.  

a b 

Figure 7.4. Superconducting transition for different island sizes (a) Resistance vs Temperature 

for various island diameters. Inset: False color optical image of island (orange) and leads (yellow). 

(b) T
c
 vs Diameter for different sets of island samples. E1, E2, and E3 denote different Nb 

evaporations. The blue triangles and red circles were made during the same evaporation, but the 

blue triangles have an underlying layer of Au, which did not significantly alter T
c
. 
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 Nb forms nanoscale grains when either sputtered or evaporated, with structure and grain 

size dependent on deposition parameters[77]. To examine if this is the cause of the diameter 

dependence of Tc, we perform Transmission Electron Microscopy (TEM) on islands by depositing 

Nb on TEM windows for a vertical image and taking an island slice for a horizontal image [78].  

Figure 7.5 (a)-(d) shows typical TEM images of our Nb, where black crystals (the “grains”) are 

surrounded by gray, amorphous-like material.  Conductive Atomic Force Microscopy (CAFM) 

Figure 7.5. TEM and Conductive AFM.    (a) Zoomed in TEM image showing 

crystalline Nb grains in black and amorphous-like Nb in grey. (b) TEM of a 130 nm 

diameter Nb island. TEM images in (a) and (b) were performed on 30 nm thick Nb. (c) 

Side view TEM (dark field) performed on 7 0nm thick Nb showing columnar grains. (d) 

TEM performed on a 2.5 μm diameter Nb island, which can be compared to (e) 

conductive AFM performed on 70nm thick Nb sheet. Highly conductive grains are in 

white (20 pA) and are separated by less conductive material shown in dark (15 pA).  
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shown in Figure 7.5 supports this, as highly conductive grains (shown in white) are observed  

embedded in a poorly conducting material.  

Previous studies have also investigated Tc suppression in crystalline Nb grains surround by 

amorphous Nb  having strongly suppressed superconductivity [79,80]. Perhaps the closest study, 

S. Bose et al[77], studied the Tc of magnetron sputtered Nb films as a function of average grain 

size, which could be controlled by altering the sputtering pressure. Bose et al. found that the Tc of 

Nb dropped dramatically as mean grain diameter decreased below 30nm and attributed this to 

suppression of superconductivity due to discretization of energy levels. In this picture, 

superconductivity persists even in islands that are much smaller than ξsc and superconductivity is 

only destroyed once the islands are sufficiently small that the discrete energy spacing of the system 

is larger than the superconducting gap. This condition is given by δE > Δ where 

     
2 22

~ ,
F

E
mk V


 (7.1) 

is the dicrete energy level spacing where kF is the Fermi wave vector and V is the grain volume. 

This criterion is valid when discussing tunneling measurements on isolated grains[81,82], but it 

predicts that only Nb grains smaller than 4nm.  This is completely inconsistent with the length 

scales measured by Bose et al, which are more consistent with the ξsc of the grains. This means 

that Tc in superconducting grains embedded in metal is suppressed due to inverse proximity effect, 

rather than discrete energy level spacing. 

7.3 Onset of Island Superconductivity Via Extremal Grains 

Since our islands show Tc dependence on length scales orders of magnitude larger than 

grain size and grain distribution remains constant as a function of diameter, the onset of 
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superconductivity could be determined by an extremal grains model where unusually large grains 

determine the onset of superconductivity. In contrast to a simple average, this would result in larger 

islands having higher Tc than smaller islands because they have more grains and, therefore, a higher 

probability of having an anomalously large, high-Tc grain. The quantitative model requires two 

inputs. The first is the probability distribution of grain sizes, denoted P(L) where L is the diameter 

of a particular grain; this distribution is determined experimentally as P(L)=β e(-βL) with 

β=0.424nm-1 (see Figure 3a). The second input is the transition temperature, Tc(L), which is given 

by83 

𝑇𝑐~𝑇𝑐
0√𝐿 − 𝜉𝑠𝑐 ,  (7.2) 

where 𝑇𝑐
0 is the bulk transition temperature and ξSC is the superconducting coherence length of Nb. 

Since this is the transition temperature of a grain embedded in a metallic matrix, formed by 

amorphous Nb, superconductivity occurs when the pairing energy scale Δ is greater than the 

Thouless energy ETh ~ ħD/L2, where D is the diffusion constant[84]. In other words, the time an 

electron dwells on a grain before diffusing out, tTh = ħ/ETh, must be longer than the time is takes 

to form superconducting correlations, tΔ = ħ/Δ. Taking the standard dirty-limit 𝛥 ≈ ħ𝐷 𝜉𝑆𝐶
2⁄  this 

criterion implies that Tc is suppressed when L ~ ξSC [as in Eq. (7.2)].  This mechanism is different 

from those found in superconducting grains embedded in insulators, where electrons do not diffuse 

out of the grain and Tc is only suppressed when Δ is on the order of the single-particle level spacing 

of the grain. 

We use and object finder to obtain the grain distribtution and density from the TEM images. 

The Nb films have an exponential distribution of grain diameters, a mean grain radius 2.3 nm and 
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a small number of large grains having radii over 20 nm (Figure 7.6(a)). The approximate grain 

density extracted from the fit in Figure 3a is 43 grains per 100nm2.  

We can generate a set of N grains a probability distribution, P(L), that was measured from 

the TEM images. A typical island of diameter d has N ~ ρπd2/4 grains of varying sizes, where ρ is 

the experimentally determined grain density. The largest grain radius, Lmax, can be extracted from 

the simulation, as shown in Figure 3(b). It is clear from this Figure that the probability of an island 

having a grain larger than the coherence length (~ 30 nm) drops dramatically below ~ 1 μm. The 

island Tc can then be obtained from Eq. (1) using L=Lmax and ξSC = 23 nm. The result of this 

simulation is shown in Figure 3(c) and fits very well to evaporations E1 and E2, which were 

performed using similar parameters to the TEM samples. Additionally, evaporations performed 

using different source conditions (E3-E6) can be horizontally scaled onto the simulation, indicating 

a similar trend. This provides excellent correspondence with experiment and requires no free 

parameters in the length scales, as they were experimentally obtained. 
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The extremal-grain model predicts not only the size-dependence of the typical transition 

temperature, but also a variance in Tc among islands of the same diameter. While the probability 

distribution of Lmax for islands of fixed diameter is predicted to follow a Gumbel distribution[ 

85,86], which is not sensitive to d, fluctuations of Tc are sensitive to d, due to the varying slope of 

Eq. (1). Large fluctuations in Tc occur when the mean value of Lmax is on the order of ξSC, while 

Lmax > ξSC leads to minimal fluctuations in Tc, as most islands have at least one grain that goes 

superconducting near the bulk transition temperature. We experimentally observe both large Tc 

a b 

Figure 7.6. Extremal grain model (a) Grain distribution extracted from Fig.1 (d) using an object finding 

program. The fit shows an exponential distribution. (b) Simulated maximum grain sizes as a function of 

island diameter using grain distribution and density extracted from (a). The red dashed line corresponds to ξSC 

used in (c).  (c) The simulated grain sizes are applied to EQ. 1 to obtain an estimate of Tc. Mean simulated Tc 

(red curve) is shown alongside data from  evaporations 1 and 2 (E1 and E2), which it matches closely. 

Evaporations with different purities can be scaled horizontally onto the curve (E3-E6). (d) Simulated T
c
 

variance vs mean T
c
 plotted against measurements. Each data point represents a value extracted from 5-10 

islands of the same diameter. 

d c 
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fluctuations for islands of the same diameter, and a trend of increasing fluctuations with decreased 

diameter, as shown in Figure 3(d). The simulation of expected fluctuations is shown on the same 

plot, and show similar trends for simulation and theory.  

While the extremal grain model agrees with experiment, it is important to rule out 

alternative explanations, particularly because the island normal resistance, RN, also scales with Tc 

(Figure 2a). We first consider the role of shunting resistance and normal metal suppression from 

the contacts by measuring Nb islands having underlying Au films, which provide a high 

conductance shunt across the island and greater normal metal suppression. As can be seen in the 

blue curve of Figure 2b, the Tcs of islands with underlying Au were similar to those of islands 

without underlying Au, indicating that neither suppression from normal metal contacts nor 

shunting resistance significantly altered Tc. Another concern is that the structure of the islands 

might depend on diameter, changing both Tc and RN. This is inconsistent with both TEM 

observations, which demonstrate that grain size distribution does not vary significantly with island 

diameter (see Supplement), and with measurements performed on small diameter island arrays 

coupled with underlying Au[74], which suggest that Tc is determined by the total volume of 

coupled Nb. The dependence of island resistance on diameter can be best explained by transport 

through a highly granular material, where most of the current passes through the most conducting 

paths. Since fewer of these highly conductive paths are available for small diameter islands, both 

the mean value and the variation in RN is greater for smaller diameter islands. This trend is 

discussed and modeled in the Supplement. While this may seem to imply that the application of a 

percolative model of superconductivity is relevant to our system, the islands discussed in this 

manuscript are orders of magnitude more conductive than the films previously studied with the 

percolative model and exhibit a completely different finite size trend for Tc [see appendix B].  
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Our results suggest a physical picture of the local nature of the superconducting state near 

the superconductor-metal transition: this state is inhomogeneous and is dominated by rare regions, 

as suggested in Refs. (83,87). By exploring mesoscopic systems, we have directly quantified the 

influence of rare regions on superconducting transport. We have found, remarkably, that even 

when grains are coupled strongly enough that the normal-state resistance is small, the 

superconducting transition can be captured via a model of effectively decoupled “grains.” In this 

sense, our mesoscopic superconducting islands behave like many other strongly random quantum 

systems, such as high-temperature superconductors[88,89]. 
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Chapter 8. Sn Island Arrays on Graphene 

In this section, we present work developing superconducting island arrays on graphene. 

Work in other groups has demonstrated a superconducting state[90] and a direct superconductor 

to insulator transition on granular superconductors deposited directly on graphene[91].  Weak 

magnetoresistance oscillations in graphene[92] and a superconductor to insulator transition 

without a scaling analysis[93] have also been demonstrated for ordered superconducting islands 

on graphene. In this section, we demonstrate a superconducting state and associated 

magnetoresistance oscillations in Sn island arrays on graphene. We then demonstrate a transition 

from an insulating state to one with a very weak supercurrent in a Sn array on graphene with 

underlying hexa-Boron Nitride (h-BN), along with magnetoresistance oscillations consistent with 

mesoscopic interference. 

Future technical goals for this project are to observe SIT scaling consistent with a quantum 

phase transition in an Sn island array. Once this is accomplished, the arrays could be designed to 

have stable rare regions to smear the transition or to have a rare regions of critical size to study a 

Griffiths singularity, both of which are discussed in section 1.2.   

8.1 Sample Fabrication 

 A schematic of a gate tunable graphene SNS array is shown in Figure 8.1. Graphene is 

initially transferred onto a 300nm SiO2 substrate, etched into a 4 point pattern using reactive ion 

etching (RIE), and contacted using Ti/Au normal leads. An array of superconducting islands is 

then added in the form of 100nm diameter Sn islands with 300nm center to center spacing. To 

supply a back gate, an additional electrical contact is made to the Si below the SiO2 substrate and 
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a voltage is applied to it. The details of the fabrication process, as well as design considerations 

and process development issues, is discussed below. 

              

  A 300nm SiO2 substrate is standard in graphene samples, allowing single and double layer 

graphene to be visible optically via interference[94] from reflected light. Additionally, the 300nm 

SiO2 layer is thin enough to allow electrical control over carrier density in graphene by applying a 

voltage to the underlying Si and using the SiO2 as the dielectric of a capacitor, with graphene on 

one side and Si on the other. Wedge bonding, which is necessary to connect the sample to the chip 

Figure 8.1.  Layout of a hall bar Graphene SNS Array. A graphene sheet (shown in 

blue) is contacted with Au pads in a hall bar configuration. An array of SN islands 

(shown as a transparent pink rectangle) is then placed on top of the graphene array. 

Measurements are performed by passing current between the leads marked I
+
 and I

-
. 

Standard four point measurements are performed by reading out V
xx

. Hall measurements 

are performed by reading out V
xy

.  Inset shows a hall bar patterned piece of graphene 

surrounded by alignment marks prior to being contacted with Au leads. 
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carrier, to a 300nm SiO2 substrate requires careful settings to avoid punching through.  These 

settings can be optimized using a sacrificial SiO2 chip prior to making attempts on a real sample. 

There are two types of graphene transfer methods that are available to us: exfoliated 

graphene and chemical vapor deposition (CVD) grown graphene. Exfoliated graphene involves 

separating layers of graphite using tape. Once sufficiently thin flakes are obtained, the carbon is 

transferred to the wafer by pressing the tape onto the 300nm SiO2 substrate, rubbing the tape with 

a thumb, and peeling away the tape. The chip is then searched and mapped using a microscope, 

identifying large single layer pieces. This has the advantage of producing higher quality graphene 

than CVD grown graphene, but did not produce enough large graphene pieces for this project. 

Instead, we switched to CVD grown graphene, where graphene is grown on a copper substrate. 

The copper is then dissolved and the CVD graphene is transferred onto the SiO2, covering most 

of the chip.  A lithography process then defines the graphene into a hall bar configuration and an 

RIE process (using mostly O2) removes the excess graphene. 

Two lithography steps are then used to contact the graphene with normal leads and then 

place a superconducting island array on top. The first process involves putting a layer of PMMA 

(950 A4, 4000 rpm) on the substrate, placing alignment marks using e-beam lithography in the 

approximate location of the graphene, developing the marks, and mapping the location of the 

graphene with respect to the marks optically. After aligning to the marks (which are visible 

optically and via SEM once developed), the contacts are drawn via e-beam lithography and 

developed. After a brief mill, the a sticking layer of 1nm Ti is placed before depositing Au and 

performing a liftoff process to remove excess material. The Chip is then coated with PMMA again 

(3 layers of 495 A2 and 1 top layer of 950 A2) and the islands are defined by e-beam lithography. 
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30 nm of Sn are deposited and excess materials are once again removed in acetone via a liftoff 

process.  

 

Sn is chosen because it wets to graphene, making a good interface and allowing islands to 

interact via proximity effect, with the onset of superconductivity in island arrays shown in Figure 

8.2. Sn is deposited at room temperature in a thermal evaporator. Limiting factors include low 

critical magnetic field and a tendency to form puddles. Attempts to form a uniform film by cooling 

the substrate to 77K during evaporation failed to get coupling between islands. Prior to using Sn, 

we attempted to use evaporated Nb and Nb with a Ti sticking layer. While these have been used 

for superconducting contacts on graphene[95] and have a high critical field (4T),  we have been 

Figure 8.2.  Onset of Superconductivity in Sn island array on graphene. R vs T measurements 

in 1K system. Sn islands become superconducting at around 4 K. As temperature is decreased, R 

increases near Dirac point and decreases at values away from the Dirac point. This demonstrate 

coupling between Sn islands. 
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unsuccessful in getting islands of this type to interface with graphene and did not observe a 

superconducting transition. Sn is deposited at room temperature in a thermal evaporation system.  

8.2 Sample Measurement 

Graphene samples were measured in an Oxford Triton dilution refrigerator using the 4 

point measurement setup described in chapter 2 and hall measurements were performed as shown 

in Figure 8.1. Differential resistance measurements can be performed adding a 17Hz 40nA AC 

signal to a DC signal using a sum box and varying the DC current, carrier density in the graphene 

can be controlled by applying a voltage to the underlying silicon, and magnetic field can be applied 

using a vector magnet. 

 

Preliminary R vs Vg sweeps were performed at different temperatures at B=0, as shown in 

Figure 8.3(a). While the array could be gated into a superconducting state, the resistance remained 

too low to do achieve a crossover into insulating behavior even near Dirac point, as resistance 

continues to increase with temperature. The B dependence or R is shown in Figure 8.3(b) at Vg=0, 

Figure 8.3.  Resistance measurements of Graphene array. (a) R vs V
g
 at different temperature when B 

= 0 T. Resistance increases as temperature increases and there is no crossover to insulating transition. (b) 

A dip associated with superconductivity occurs around B = 0 T, followed by a peak at B = 0.007T. The 

inset shows dV/dI as a function of current as B is shifted from B = 0T to B = 0.007T at V
g
=0, transitioning 

from a superconducting to insulating state.   

(a) (b) 
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showing the onset of array superconductivity at low fields, a spike in resistance, and then normal 

state behavior at higher fields. As shown in Figure 8.4 (a) and Figure 8.4(b), a weak crossover can 

be achieved by shifting B field to the value of the magnetoresistance peak in Figure 3(b), but it is 

not strong enough to do a scaling analysis. In order to get a more resistive dirac point and study 

the superconductor-insulator transition, damaging the graphene or using a hexa-boron nitride (H-

BN) substrate will be necessary. 

 

 Setting the gate away from the Dirac point, we observed magnetoresistance oscillations in 

R vs B sweeps as shown in Figure 8.5 at Vg=25. While this is suggestive of superconducting vortex 

effects, differential resistance measurements shown in Figure 8.6 (a-b) lack important signatures 

of vortex motion such as a flux flow regime with resistance linearly increasing with B field. 

Combined with much less pronounced de-pinning current peaks at commensurate fillings and the 

rapid suppression of superconductivity with increasing B field, this makes the magneto resistance 

Figure 8.4.  Layout of a hall bar Graphene SNS Array. (a) R vs V
g
 at different temperature when B = 

0.007 T. Insulating behavior is visible near Dirac point and superconducting behavior is visible at large V
g
. 

A crossover is visible at V
g
=3.5 V. (b) R vs T at B=0.007T at set V

g
 shows a crossover from 

superconducting to insulating regimes.  

(a) (b) 
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oscillations difficult to characterize. Indeed, similar studies have been able to extract only limited 

information in a similar regime [92]. 

  

  Hall  measurements were performed by sweeping magnetic field at different values of Vg. 

Due to the resistance of graphene being much larger than the hall resistance at the fields in 

question, a small misalignment in the hall leads or a small inhomogeneity can lead to a contributing 

signal that is symmetric around B=0 (a hall signal should be symmetric as a function of B around 

B=0.). Removing the asymmetric component by subtracting Rxy(-B) and Rxy(-B), we plot the hall 

resistance in Figure 8.6 (a). The slope of Rxy vs B as a function of Vg is shown in Figure 8.6(b), 

with a crossover from hole to electron carriers at Vg=1.5V. The extracted carrier density is shown 

in the inset. Due to inhomogeneities (e.g. due to charge inhomogeneities endemic to SiO2), there 

is a coexistence of hole carrier regions and electron carrier regions near the dirac point. The can 

be seen in the gradual crossover from negative to positive in Figure 8.6(b) or the divergence near 

n=0 in Figure 8.6(b) inset.  

(a) (b) 

Figure 8.5.  Magnetoresistance Oscillations and IV analysis. (a) Magnetoresistance measurements 

are shown at different temperatures for Vg=15V. (b) A 2D plot of dV/dI vs I and B. A small increase in 

de-pinning current is visible when f~1/2.   
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8.3 h-BN Graphene 

While it is tempting to view our system as a model 2 degree electron gas (2DEG) coupled 

to superconducting islands, the actual mobility of graphene placed on SiO2 is significantly worse 

than that of the GaAs typically used in 2DEG studies. Surface roughness, charge inhomogeneities, 

and impurities all contribute to adding disorder into graphene on SiO2, resulting in diffusive 

transport[96] and limiting the minimum carrier density near the Dirac point[97]. Due to the 

limitations posed by an SiO2 substrate, many of the early studies of ballistic transport in graphene 

were performed on suspended graphene[98]. More recently, high mobility has been obtained by 

using hexaboron nitride(h-BN)  as a substrate or by sandwiching graphene between h-BN layers. 

These samples approach the quality of traditional 2DEGs, with behaviors like the fractional hall 

effect being demonstrated in both suspended[99] and h-BN[100]. Whereas traditional 

semiconductor 2DEGs are extremely difficult to couple to superconductors, superconducting 

contacts have been demonstrated on h-BN sandwiched graphene using MoGe[101,102]. This 

(b) (a) 

Figure 8.6.  Hall bar measurements on Graphene SNS Array. (a) R
xy

 with symmetric component 

removed for various V
g
. (b) The slope of R

xy
 in (a) as a function of V

g
. A crossover from hole to electron 

carriers occurs at Vg=1.5V. Inset shows the extracted carrier density. Divergence near n=0 is due to 

coexistence of regions of holes and electrons near the Dirac point due to inhomogeneities. 
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provides a new area of physics that has only been recently explored, with interesting competition 

between hall and superconducting states that could lead to an experimental realization of Majorana 

fermions[103] and have applications in quantum information. The immediate technical goals in 

our use of h-BN, however, are much more conservative and are primarily concerned with obtaining 

a lower carrier density near the Dirac point. This would result in a broader range of accessible 

resistances. 

While cantilever processes similar to those used in the h-BN sandwiched graphene 

experiment are being developed in our group, obtaining h-BN graphene comparable to those used 

in the hall effect studies is a difficult technical problem. A simpler process involving directly 

exfoliated h-BN on SiO2 followed by a liquid transfer of CVD grown graphene on top, while still 

a relatively dirty 2D material, could provide an improvement over graphene on SiO2. A key 

problem with our system is that charge inhomogeneities in the SiO2 prevents the graphene from 

being gated uniformly towards the Dirac point, creating puddles with either electrons or holes as 

carriers. A more stable dielectric could solve this and provide a higher resistance near the Dirac 

point, allowing the sample to be gate tuned to the superconducting transition.  
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We performed a direct transfer of h-BN onto SiO2 using scotch tape exfoliation. A sheet 

of CVD grown graphene was then transferred on top and the chip was annealed at 200C in 

hydrogen and argon. 4 point patterns on top of h-BN were defined with e-beam lithography and 

excess graphene was cut away using reactive ion etching. A preliminary sample of graphene on h-

BN is shown in Figure 8.7 with room temperature measurements performed shown in the inset. 

The image is dirty looking, because the CVD graphene growth process had problems at the time 

and was no longer producing continuous films. It is difficult to tell if the more resistive graphene, 

as seen in the inset, was due to the use of an h-BN substrate or the more disordered graphene sheet. 

This increase in resistance, however, was desirable for achieving a transition to an insulating state. 

Another chip was contacted with normal leads and Sn islands as discussed at the start of this 

chapter.  

8.4 h-BN graphene Sn Island Array Measurements 

(a) (b) 

Figure 8.7.  h-BN Graphene Room Temperature Measurements. (a) Exfoliated h-BN with graphene 

transferred on top. Graphene squares (S1-3) marked in red are then defined by lithography and RIE before being 

contacted.(b) R vs Vg sweeps are performed on S1-3. S3, the thickest and most disordered square, is low resistance 

at the Dirac point and is the flattest curve. S1 and S2 are on flatter and thinner pieces of graphene, resulting 

sharper and more resistive Dirac peaks. This is due to less disorder and greater capacitance.  



94 
 

               

h-BN graphene was measured in a Triton dilution refrigerator. Figure 8.8 shows R vs Vg at various 

temperatures. The array is in the insulating regime near the Dirac point, with resistance increasing 

as temperature decreases. A crossover towards a superconducting state can be seen at Vg=-15V 

and the resistance decreases with decreasing temperature beneath this vale.  Figure 8.9 Shows 

resistance vs temperature for a range of Vg. Here, the array resistance increases dramatically as 

temperature is decreased near the Dirac point and falls slightly as temperature is decreased away 

from the Dirac point, showing only a weak supercurrent. Thus, the h-BN graphene island array is 

much more strongly in the insulating regime than the Graphene island array directly on SiO2, but 

does not have the same access to superconducting behavior. 

Figure 8.8.  R vs Vg of h-BN Graphene covered in superconducting islands. The Dirac 

peak is observed around Vg=0. Here resistance increasing as temperature is decreased, 

indicative of insulating behavior, and the resistance is much higher than the sample 

directly on SiO
2
. A crossover appears at Vg=-15, with values below this decreasing in 

resistance as temperature drops. 
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The array can be studied by performing current biased differential resistance measurements 

at different gate voltages, shown in Figure 8.10. At Vg near the dirac point, there is a sharp peak in 

dV/dI around I=0 before dV/dI flattens out as a function of current. At Vg=-40V, there is a broader 

dip in dV/dI around I=0 that is likely associated with the presence of a supercurrent, which is 

suppressed as I is increased. At intermediate values of Vg, the sharp central peak and the broader 

dip are both visible. This coexistence is not consistent with a transition from a superconductor to 

a bose-insulator and, combined with the weakness of superconductivity in the sample and the large 

Figure 8.9.  R vs T of h-BN Graphene covered in superconducting islands. The array shows 

a transition from insulating behavior near the Dirac point towards weak superconductivity at 

V
g
=-40V. While the system never reaches an R= 0 Ω, the presence of a supercurrent is visible as 

a decrease in resistance as temperature decreases. Also, the onset of superconductivity in the Sn 

islands is visible at V
g
=-40V as a jump in resistance at 4K.  
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amount of inhomogeneous disorder in the sample, could mean that the two are unrelated 

phenomena. For example, the central dV/dI peak could be a purely normal state effect, which could 

be tested by applying a magnetic field greater than Hc of Sn. 

          

To study the insulating behavior, we perform a voltage biased differential conductance 

measurement, applying a DC voltage bias summed with an AC measurement voltage and reading 

out the AC current response. This type of measurement can resolve features like gaps in density 

Figure 8.10.  Differential resistance measurements. Differential resistance 

measurements show a sharp dV/dI peak at I=0 near the Dirac point and a much broader dip 

in dV/dI at I=0 away from the Dirac point. The peak and the dip are visible together at 

intermediate values of V
g
. 
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of states, which could not be resolved in current biased measurements (which would only appear 

as a sharp dV/dI peak, much like the one in Figure 8.10). As shown in Figure 8.11, we observe a 

gap around V=0, within which conduction approaches 0. The width of this gap is extracted and 

plotted as a function of Vg in the inset, with the maximum value at the Dirac point and decreasing 

linearly as Vg is shifted away from the Dirac point.  This is not a coulomb blockade diamond, as it 

doesn’t repeat itself periodically, but can be explained by the formation of a bandgap in graphene. 

While pristine graphene should be gapless, strain and superlattice effects have been demonstrated 

to result in a gap. Due to disorder in the graphene, the underlayer of h-BN, and the periodic array 

of islands on top, there are too many variables to say exactly what is happening. 

 

Figure 8.11.  Differential conduction measurements. Differential resistance 

measurements show a gap where conduction approaches 0. The width of this gap is shown 

in the inset and is greatest near the Dirac point, linearly decreasing with gate voltage as it 

is shifted from this value. 
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To further characterize array behavior, we performed R vs B measurements at the Dirac 

point, shown in Figure 8.12. Since the fields in question are much larger than the critical field of 

Sn, the oscillations are not related to superconductivity. One possible explanation is that the 

oscillations are due to interference effects from the periodic Sn islands. If the islands create a 

boundary between the graphene underneath the island and the outlying graphene, the flux through 

the island will determine how the different paths interfere, similar to the Aharanov-Bohm effect. 

These mesoscopic interference effects around the islands should have a periodicity of 0.130 T and 

the relevant quantum of flux values are marked by blue dashed lines, corresponding to peaks in 

resistance. 
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Interpreting the results from the initial h-BN sample is difficult due to uncertainty in the 

quality of graphene and the transfer onto h-BN. While some of the behavior, such as the 

magnetoresistance, can be explained, the array is too disordered to get a clear signature. In order 

to characterize the array behavior, future work will require higher quality graphene and a more 

controlled transfer onto h-BN. This work will be performed by other graduate students in the 

future. 

 

Figure 8.12.  Magnetoresistance oscillations. R vs B  measurements at the Dirac 

point show resistance peaks that are repeatable at different temperatures. The top 

scale shows the flux going through an Sn island as a function of the normal quantum 

of flux (h/e). 
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Chapter 9. Conclusion 

 In this thesis, we have presented work on superconducting vortex dynamics, the 

superconductor-metal transition, and the superconductor to insulator transition. We studied 

anomalous vortex dynamics in Chapter 3 and have performed a detailed study of collective vortex 

motion in Chapters 4-5. We have also presented evidence for the rare region onset of 

superconductivity in Nb islands and island arrays in chapter 7 as well as the development of Sn on 

Graphene arrays for studying the superconductor to insulator transition in chapter 8. 

Future work on this project will be performed by Vincent Humbert and Rita Garrido-

Menacho. Possible vortex projects include conformal arrays like the one studied in chapter 6, 

which could be easily implemented in a narrower range of spacings, or with the addition of point 

disorder in the lattice. Additional work with the superconductor to insulator transition will involve 

the further development of superconducting island arrays on graphene using an h-BN substrate, 

with higher field superconductors such as MoGe and NbTiN available for testing in the Quantum 

cluster evaporator. Additionally, our group has experience working with topological insulators, 

making a superconducting island array on one a possibility. 
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Appendix A:  Numerically Solving Stochastic 

Differential Equations 

Euler’s method provides a convenient way to get approximate numerical solutions to 

stochastic differential equations (SDE) and is used for almost all dynamic vortex simulations in 

this thesis. Euler’s method is analogous to deduced (or “dead”) reckoning navigation, where a 

ship’s position is plotted based on starting position and velocity rather than relative position to 

identifiable landmarks. In Euler’s method, there is a known starting point and subsequent points 

are calculated based on some heading every timestep, Δt. Provided that Δt is sufficiently small, 

this method provides an accurate solution. The example of overdamped and underdamped 

molecular vortex models is shown below.  

The underdamped molecular vortex model’s analogous heading term is  ix t . The 

repeated calculations are as follows (if integral is confusing, replace the integral with simplest 

case,  ix  ): 

1.  
  

     
   

10

1
    .

t N
i i j

i i i

ji int

V x t x t x t
x t t x d t U

m x L
   



   
           

  

2.      ( ) .i i ix t t x t x t t      

3.      ( ) .i i ix t t x t x t t      

The solution is performed repeatedly. Initial conditions for  ix t  and  ix t  are important. We 

typically assume that the lattice is starting from a pinned position, with vortices arranged in a low 

energy configuration.  0ix t is found by annealing the lattice starting from high temperature to low 
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temperature, which is accomplished by obtaining  i t using a random number generator with an 

exponential distribution of the form  | |
 exp i t

kT

 
 
 

, where Y is the output and T is temperature. In 

the above section, which is single vortex physics, this is just a vortex resting at the bottom of a 

potential well.  0 0ix t   to approximate a pinned system. If initial velocity is nonzero, this might 

yield a different solution (I-V of underdamped is hysteretic). 

A.1 Overdamped Instantaneous Dilute Limit (non-interacting): 

1.  
  

 
1

.
i

i i

i

V x t
x t t

x

 
   

  

 

2.      ( ) .i i ix t t x t x t t      

Changing the dissipation term,  , effectively changes the time step, Δt (it is so dominant, it does 

not change the solution). Initial condition  ix t  also does not affect form of solution. Yields I-V 

behavior described by EQ 2. 

A.2 Overdamped History Dependent (Exponential Decay) Dilute limit.  

1.   
  

   2

1 0

/1
  .

t t
i

i i i

i

tV x t
x t e x d t

x 




 



 

    
  

  

2.      ( ) .i i ix t t x t x t t      

Once again, 1  is just a way of adjusting Δt. As discussed previously, the relevant parameter is 

compared to the time taken for a vortex to cross an array. 
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Appendix B: Percolative Network Simulations 

B.1 Random Resistor Network Simulations 

The diameter dependence of the resistance can be largely explained by transport dominated 

by percolative paths in an inhomogeneous film. Percolative behavior has been previously of 

interest in the study of doped semiconductors[104,105] and has been studied using random square 

resistor networks[106]. Tuning the probability of a connection between adjacent nodes existing, p, 

and a connection not existing, 1-p, the random network studies observe a phase transition at a 

critical probability, pc, from finite sized clusters exist for p<pc to an infinite cluster of linked nodes 

throughout the network for p > pc. The relevant length scale involved is the correlation length, ξ 

∝ |p-pc|-α, where α is a scaling constant.  This corresponds to the radius of the largest percolative 

clusters for p < pc and the radius of the largest holes in the infinite percolative cluster in p > pc.  

 

Figure B.1. Resistor Network Simulations (a) The resistance of a random resistor model with a 

probability, p, of there being a low resistance connection rather that a high resistance connection. (b) A 

histogram of resistance as a function of a square array’s width, L. The islands split into two groupings with 

increasing L, one with lower resistance that’s spanned by a low resistance network and another that’s split 

by a hole in the network. The two groupings are equal in number near pc, but the higher resistance 

grouping is dominant for p>pc and the lower resistance grouping dominates p<pc.  
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Our system corresponds more closely to the case of a good conductor in a poor conductor, 

which can be studied by giving the open links a large but finite resistance[107]. The resistance of 

this can be seen in Figure B.1 (a), with a crossover of pc ~ 0.6. Sample resistance is dominated by 

weak links between network clusters for p < pc and conductance through a single network cluster 

for p > pc.  The finite size behavior of this model results in either a network cluster spanning the 

array or a hole in a network cluster dividing the array. This leads to array resistance distribution 

splitting as the array width, L, decreases. This splitting is shown on a logarithmic scale in Figure 

B.1(b) at p=0.55. Due to proximity with pc, the upper and lower curves are approximately equal 

in magnitude, but the lower curve is suppressed for p<pc and the upper curve is suppressed for 

p>pc. Since we observe increasing resistance with decreasing island diameters, our data 

corresponds to the p<pc case involving weakly linked networks clusters. 

The relevant length scale of this system is the spacing of key current paths, which 

corresponds to the size of a low resistance network cluster, ξ. These clusters do not necessarily 

correspond to a single grain, which would yield finite size effects on the scale of tens of 

nanometers. Instead, the networks could correspond to clusters of Islands, as inhomogeneities in 

grain density exist on the scale of hundreds of on nanometers and may explain the large increase 

in resistance below 700nm. 

B.2 Percolative Network Model of Tc 
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Granular superconducting films have been previously modeled as percolative networks, 

where a linked network spanning the film results in superconductivity. In this model, adjacent 

grains are weakly coupled and interact via the Josephson effect, with links is broken when kT>>EJ 

(k is the Boltzmann constant, T is the temperature, and EJ is the Josephson energy)[108]. If the 

junction strength is assumed to be random, then the probability, p, of links being connected is a 

function of T. Figure B.2 shows the distribution of ps, the smallest value of p that will result in a 

linked network spanning an array, for different square array sizes. For large arrays, ps ~ pc, where 

the network size approaches infinity. For small arrays, there is a broad distribution of ps. This 

occurs because an array of size comparable to the characteristic network length could be spanned 

by a network for p<pc or split by a hole in the network for p>pc. Thus, this model predicts that a 

constrained system of grains, like the Nb islands, should have a distribution of Tc that includes 

values that are lower and higher than the large granular film Tc. This Tc distribution is expected to 

Figure B.2. Percolative Superconducting Network Model Simulation The 

distribution of p
s
 for random square arrays as a function of width. For large arrays, p

s
 

~p
c
. Decreasing array width broadens the distribution. 
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broaden as island size decreases, with increasing numbers of islands having Tc approaching 9K or 

0K. This is inconsistent with the Tc trend presented in this paper, which only finds a trend towards 

lower Tc as island size is decreased. 
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