
MICROCOMPUTER NETWORK

BY

PETER SHAW MOLDAUER

e.s., University of Illinois, 1979

THESIS

Submitted in partial fufillment of the requirements
for the degree of Master of Science in Electrical Engineering

in the Graduate College of the
Unive'rsity of Illinois at Urbana-Champaign, 1981

Urbana,Illinois

iii

ACKNOWLEDGEMENT

I would like to express my deepest appreciation to my thesis

advisors, Prof. Ricardo Uribe and Prof. Michael Schlansker, for

their guidance and assistance in this project. For inspiration

during the conception of this project, I would like to thank

Michael Pogue.

Special thanks to Jim Graf for finding software problems and

to David Wachter, Steve Schmitt and Prof. Ricardo Uribe for helping

build the microcomputer network.

1.

2.

3.

TABLE OF CONTENTS

INTRODUCTION •• , , , • , , , , , , , , , , • ·, , , • 1

3

7

SYSTEM OVERVIEW' , , , , , , • , , , , , • , , , , , , , , , , , , , , , • • • • • • • • • • •

SYSTEM HARDWARE • , , , , , • , , , , , , , , , , , , , , , , • , , , , • • • • • • • • • • •

3.1.

3.2.

3.3.

3.4.

Node Microcomputer , . , .. , • , , .• , , .•.• , , , • , , 7

Terminal Interface , , , , , , , , , , , 17

Arbitrator ... , . , .. , , .•.............• , , , , , ... 19

Backplane, Rack and Power Supply 30

4. SYSTEM SOFTWARE , , , , , •• , , , , , , , , , , •• , , , , , , • , , , , , , , , , , , , , 35

4.1.

4.2.

4.3.

8748 Monitor

Arbitrator Monitor
.

36

37

Programming .•.. , • , . , , , . , ... , , , . , , .. , , • 41

5. CONCLUDING REMARKS • • • • ••• • • • • • • • • • •• • • • • • • • • • • • • • • ! • • • 43

APPENDIX A

APPENDIX B

8748 MONITOR LISTING • , , , , •• , • , , ••••• •, •••• ,, •• 1.\5

SUBROUTINES IN 8748 MONITOR

APPENDIX C -- ARBITRATOR SOFTWARE LISTING

64

81

89 REFERENCES

iv

LIST OF ILLUSTRATIONS

2.1.1 SYSTEM BLOCK DIAGRAM

3.1.1 NODE MICROCOMPUTER

.

..

3.1.2 NODE MICROCOMPUTER BUS INTERFACE

3.1.3 NODE MICROCOMPUTER BOARD LAYOUT

..

.

6

9

15

16

3, 2, 1 TERMINAL INTERFACE BO ARO •••• , , , •••• , • , , • , , ••••••• , , , • • 18

3.3.1 ARBITRATOR CENTRAL PROCESSOR 21

3,3,2 ARBITRATOR MEMORY ••• , , , , •• , • , •• , , , ••••• , , , , , • , •••• , ••• 22

. 3.3.3 ARBITRATOR ADDRESS DECODE

3.3.4 ARBITRATOR SERIAL I/0

3.3.5 ARBITRATOR I/0 INTERFACE

23

25

28

3,3,6 ARBITRATOR BOARD LAYOUT ,,,,,, ,, ,,, •••• , ,,,,, ••••••••• , 29

v

vi

LIST OF TABLES

TABLE 3.4.1 BUS SIGNAL CONNECTIONS •••••••••••••••••••••••••• 32

TABLE 4.2.1 REQUEST CODES ••••••• , •••• , •••• , • , , , , •• , •• , , , ••• , 39

TABLE 4.2,2 ACKNOWLEDGE CODES ••••••••••••••••• , • , , , , , , , , • , • � 39

1

CHAPTER 1

INTRODUCTION

The microcomputer network is a powerful processing machine

that is const·ructed using a number of small microcomputers. ach

microcomputer is based on a single chip microcomputer supplemented

with memory and peripherals. The network was designed to be a

general purpose machine to model the interactions of several

programs running asynchronously. The requirements of such a model

are easily met by the microcomputer network, sufficient memory

space is available, the basic execution rate is variable, and a

random number generator is included. The microcomputer natwork is

general enough for a wide range of applications, therefore a

section on programming the network is included.

2

The next chapter is an overview of the network. Chapt'er

three covers the design and construction of the network hardware.

The software that runs on the network is discussed in chapter four

along with a section on programming the network. A list of

references is included for specific information on devices used in

the design.

3

CHAPTER 2

SYSTEM .OVERVIEW

Since the micr ocomputer network is a general purpose

processing machine, the hardware is capable of supporting many

diverse applications. The software in the system allows access to

all of the major attributes of the network. The network is

constructed such that each functional unit in the network is

physically located on an individual board or card. The network is

a collection of three different types of cards; the arbitrator

microcomputer, the node microcomputer, and the terminal interface

board. A

microcomputer,

typical configuration

one terminal interface

microcomputer boards. The processing

includes one

board, and

done by the

performed in the node microcomputer boards.

arbitrator

several node

network· is

The node

microcomputers are completely independent, there is no shared

memory in the system. Each node microcomputer is capable ot

executing any segment ot code independently ot the rest ot the

4

network. communications between nodes in the network is done

serially. A maximum of sixteen active boards are supported by the

system allowing a system of fourteen nodes, one terminal interface

and an arbitrator.

The arbitrator microcomputer is responsible for handling all

of the network reconfiguration capability. All node microcomputer

boards and terminal interface boards are connected through the

backplane with the arbitrator microcomputer. The arbitrator

microcomputer is not available to the system user for programming,

as it does not have any means of accepting or transmitting

information to or from the user. The software that the arbitrator

processor executes is fixed in its memory and is invoked only

through certain sequences of commands from a node processor or a

terminal interface board.

Since the node microcomputer is responsible for all

processing power in the network, it is the most generalized part of

the network. The node microcomputer consists of a general purpose

microcomputer supplemented with memory and input/output (I/0)

devices. No direct access to the node processor exists in the

network. All communication with the external world occurrs through

a terminal interface board. Software on the node processor board

includes a basic serial I/0 based monitor supplemented with useful

subroutines. The node processor is constructed in such a manner as

-to allow both hardware and software expansion.

5

Til.e terminal interface board allows the external world to

access the operations of the network. To the network, the terminal

interface board appears to be a node processor board, but its- sole

purpose is to connect to a device that communicates serially.

A block diagram of the microcomputer network is shown in

figure 2.1.1. The communications between nodes is done through the

serial data bus. The arbitrator processor controls each node

serial input multiplexer. Each node has a separate request and

acknowledge signal which provide handshaking with the arbitrator. I

'

!
I

I
I

I

i
I

! l
'---+-_JI '

I
'

: ! I 1 1

111 I I
I I ' I '

i.- � .�W I
�J:=·=tJt:::Ui I

0

i

···· 1

s'Ebl.J I
-

-

-

1--··I

Sbll !

!
I

:1; ••
"

H
Q

-.

7

CHAPTER 3

SYSTEM HARDWARE

The microcomputer network is a collection of three types of

circuit boards; node microcomputers, terminal interfaces and one

arbitrator. This chapter discusses the boards individually, and

includes a discription of the rack, backplane and power supply.

F.a.ch board is discussed briefly and this is followed by · sections

detailing the functional blocks associated with the board.

Schematics of the logic design are included in the discription.

3.1 Node Microcomputer

The node microcomputers contain all the circuitry necessary

to be complete microcomputer systems. Each node has a central

processor that controls the actions of that node. This processor

is an Intel 8748 single chip microcomputer. Additional circuitry

8

is provided to facilitate expansion of system memory, generation of

random numbers, serial communications and system bus interface.

Provisions for extension of support hardware remain for

possible applications involving interface with the external

environment; only one of the two eight bit ports on the 8748

processor has been used in the design of the node microcomputer.

In addition, several addressable locations have been decoded but

remain undedicated.

3.1.1 Central Processor

The 8748 single chip microcomputer is the heart of the node

microcomputer. Internal to the 8748 are many of the functional

blocks necessary for microcomputer operation. The 8748 processor

iS a single chip microcomputer from the Intel 8048 family of

microcomputers. The family includes the 80�8 (with inte·rnal

factory programmed read only memory (ROM)), the 8035 (with

provisions for external

(EPROH)), and the

erasable programmable

8748 (with internal

microcomputer is shown in figure 3.1.1.

read only memory

EPROM). The node

-- --

1
•

-·

' •
�
<

••
••

�= �-
��
.�

N !::: §
• :•
r ••
• ·�
' Zz

{
O

c>
<

0
•

•

,

�•
-�
fl
"

�
�

'

!

!

')..

d
z

-

a

�

�

-
�
..;

�

10

The 8048 family of microcomputer have all of the circuits

for simple applications internal to the processor. The center of

the 8048 is the accumulator, an eight bit register which is the

source or destination for most operations. An eight bit arithmetic

logic unit performs the arithmetic and logical operations specified

in the instruction stream. Both random access memory (RAM) a�d ROH

have been designed into the 8048, there are 1024 bytes of ROM

internal to the chip (except on 8035). The RAM that is in the chip

is used to pr-ovide for all working registers, stack memory and user

data memory. Two banks of working registers are allocated in the

64 byte RAM. Either of the two banks can be activated by software

control. The processor stack is also allocated in the internal

RAM. When subroutine calls or interrupts are processed, the return

address and certain processor flags are stored in the stack. Up to

eight levels of subroutines are provided in the internal RAM. A

timer circuit is also built into the 8048 family to allow for

counting or timing.

The last major functional block that is internal to the 8048

microcomputer is the multitude of I/0 pins available to the user.

Two eight bit ports can be used as inputs or outputs or

combinations thereof. Two test inputs that can be selected as the

cdndition code for a branch instruction are also available to the

uaer. The BUS port, a true bi-directional data bus, is used for

external reads, writes and instruction fetches. It may optionally

be used as a static port if desired. When used as a bi-directional

11

data bus, the address is multiplexed out the BUS port immediately

prior to the data transfer.

3.1.2 External Memory

In the design of the node microcomputer, the quantity of

internal memory was found insufficent for a reasonable size

application. Therefore, the memory was supplemented externally. A

convenient method of storing programs is in EPROM. Provision for ,

2048 bytes of additional program memory was realized with a socket

for a 2716 EPROM. Another fundamental shortcoming of the 8048

family is the lack of executable RAM. The node microcomputer has

sockets for 3072 bytes of external RAM usin_g three Intel 8185 RAMs.

The largest executable address space of the 8048 family is 4096

bytes, or twelve bits of address specification. A switch has been

placed on the node microcomputer board to allow the programmer to

choose which type of memory occupies the top half of executable

memory. The programmer may select between a. system with 3K ROM and

1K RAM o'r a system with 1K ROM and 3K RAM.

-- ---

12

3.1.3 Serial Interface

The serial communications interface is realized with an

Intel 8251 universal synchonoua asynchronous receiver transmitter

{USART). The 6251 is capable of handling full duplex serial

transactions independently·of the 8748 microcomputer. The USART's

address was not maximally decoded, allowing the processor to

interact with the USART while destroying as few registers as

possible. The output line of the USART is directed to the system

bus for use by other node microcomputers. The input line of the

USART is connected to any of the outputs of the other node

microcomputers by the control of the arbitrator processor. This

will be explained in the bus interface section.

3,1.4 Random Number Generator

A concept that was found useful in the design of application

software was a random number generator. The choice between a

software implementation and a hardware realization was studied.

Either implementation of the random number generator was found to

give a sequence generator, this mearu, that the sequence of "random"

numbers would repeat after some finite sequence length; and each

cycle through the sequence generates the same numbers in the same

13

order. The minimal instruction set of the 8048 family favored the

hardware realization since the address space of the machine is

small. In the hardware a 24 bit binary sum generator was chosen.

An eight bit tap was taken from the internal state and used as the

random number generator output. The circuit for this method was

breadboarded and the length of the sequence tested. The basic

circuit was found to have a sequence length of around 750,000

numbers. This circuit gives a reasonable sequence length, but when

an asynchronous frequency is also added to the sum, the length of

the sequence, if finite, becomes very long (over 5,000,000

numbers). The asynchronous frequency was realized by summing the

processor clock (ALE) with the feedback from the shift register and

clocking the register with the bus clock.

3.1.5 Processor Clock

The node microcomputer was designed without a crystal

oscillator in order that the basic execution rate be variable.

This concept allows the user to set each node to a different

operating speed, and ensures that a long sequence is maintained in

the random number generator. The variable frequency clock was

realized with a voltage controlled oscillator; the frequency is

then a function of the position of the clock rate potentiometer on

the front Cif the node microcomputer card.

14

3.1.6 System Bus Interface

Each node has the circuitry necessary to initiate an

interaction with any other node in the system, or the arbitrator.

The node microcomputer can perform a request to have its serial

port connected to the serial port on the arbitrator processor.

When the arbitrator acknowledges this request, the node

microcomputer may submit any valid interconection or status request

to the arbitrator through the serial link. The arbitrator

processor has complete control over every node microcomputers

serial input connection and therefore can interconnect any node as

the request specifies. The system bus interface controls the only

output feature of the node microcomputer's front panel, a light

emmiting diode. It allows the user to see each time a node has

become in communication with the arbitrator.

In addition to the interconnection aspect of the system bus

interface, the node microcomputers receive all the critical timing

signals pertaining to the serial communic�tions from the bus. The

basic system bus clock is used by the node microcomputers to

satisfy the USARTs requirement for a high speed clock and to clock

the shift register used to generate the random numbers. The baud

clock is used by the node microcomputers to synchronize the serial

communications. The bus interface is shown in figures 3.1.2 and

3.1.3.

!

'

�� .. _

1.ililf i

• • •

•
. -
•
!

,f.,--j,

�
� �

/,
• i

I

! I 1
1 I

i I
••

'I ! i

I

I j

�l�
-, �

�
- �" "

i • 0
-�

i� $,t.�" �"<..;;..'i

, - a "" . '
�

,,
�l!i

,.

L..,) 7�

" l

Ii

6
z

I

-

.:-1
I

,.,1

•

.1

,., "(" ,,., . .:; I .,,... <...

[,c·ol l,,,-e I l�ce·,1
1
-- �

i- ;----i r-----1 l �,.;.,..� ; [osu,t, ;

I -" ;· '! � l '.'t1nfvl.1 �--------

= G;J c;J l "" I
·• cce .J ("" I (..,.," I l '""" I [:;;J

l .,,,, I c:J l """ I
-j m •

J (sml�(mm,i j

�1l1-----�.---�-l __ ''_"_" __ l_� _ ___ '-_''_' ___ "�-'_-,_._"_'·_I _ _J�

i
!
m .
..;

17

3,2 Terminal Interface

The terminal interface board is a functional subset of the

node microcomputer. It contains only the bus interface section of

the node microcomputer. This terminal board allows a normal EIA

compatible serial terminal to be connected to any of the processor

boards in the multi processor network. The front panel is slightly

different than that of the node, as there is no clock rate

potentiometer or memory select switch. The acknowledge light is

functionally equivalent to the one on the node microcomputer board.

'nle pushbutton on the terminal interface board generates an

arbitrator request, this allows the user to force access to the

network to run a program on a node microcomputer or examine the

status of the network, The terminal interf'ace board is shown in

figure 3.2.1.

• ,
i
l '

!
I f,l

!

'' �[
' ,_:_,

11
' "�

��

��
a

j
},

. '
'

� !

/. ' '' '
• • '•

i l� ' '
!
I' '7

Li J -. '

T'

!

I
Ml
•

I!

-.
"'

19

3.3 Arbitrator

The arbitrator processor is a self-contained microprocessor

board based on Intel's 8085 eight bit microprocessor. The

arbitrator generates all the critical timing signals for the entire

multiprocessor system and

interconnection: capability.

also provides the arbitration and

this allows multiple simultaneous

serial interactions between independent node microcomputers. The

arbitrator processor has a defined set of posssible actions, and is

therefore not available for system expansion. Also the physical

card on which the arbitrator resides is densely populated.

3.3.1 Central Processor

The 8085 microprocessor which controls the arbitrator is an

advanced version of the industry standard 8080 microprocessor. The

instruction set of the chip is extensive and powerful. This

processor chip was chosen for the arbitrator because of the ease of

programming, speed of execution and simplicity of interface. The

8085 CPU has an eight bit external data path and addresses 65,536

bytes of memory. The 8085 also addresses up to 256 different input

or output devices, although this feature is not used in the

arbitrator. Control signals for the memory interface are generated

20

internally to the 8085 CPU. The arbitrator central processor is

shown in figure 3.3.1.

3.3.2 External Memory

The single _board arbitrator processor contains all the

memory necessary for operation of the system. The program which

the 8085 CPU executes is stored in a 2048 byte EPROM (Intel 2716),

variable storage and stack storage are allocated in a 1024 byte RAM

constructed of two 1024 by four bit RAMS (Intel 2142). The EPROM

occupies locations COOCH through O?FFH and the RAM occupies

locations 3COOH through 3FFFH. Either memory is available for

processor reads or instruction fetches and the RAM is available for

processor writes. The external memory is shown in figure 3.3.2 and

the arbitrator address decoding is shown in figure 3.3.3.

"

I I I
I

I
"

• l.,.1,:-� - v,l�"l

i"'; '£ $ 1"",:) -
1"

�· I' <:r sl,

J -
I �;;.�.a

-«<<:I:
b�AZ <<"'-'"'-

'

'ts "i-

��-·I I

I

� !
-, I I

: I, I
I

I' ' I
. I ; ' I '
I : I

- ' -

j
t, \'ii ,. , I

.r; t, S! tj

I

-; " '1:, ''<t=-+++++-_J

�""1'

" J
_gg..--c,<l'-'""''..t.l. --.;..:�

I

1 £ :...
..;[�.J!-< �...;r. <.t ..;< ><£ .,fo

I
I

I

�! �
,,1-,---

I
11
I

ci
· z

.

�

l!

f
I

I_

r�
� �

I
.

'
I'

I
'

I

Ii ��

tf

I
I

> I I "
al
·-
' '

----,

, "0

(;) _,. ...

-

. ' -''�--1
_j a ,J j

"
1,
.>e 1'

"'<

,I,

• •
�s

llli

r:: � "r -

\l - N"'

r
..-c

� ip

·�"�
!

00

8
00 �
00

I

!

�
i '

! m ' .
I

m

- - .
m

l I,
.... \i, '"

0

24

3.3.3 Serial Interface

The aerial communications interface is realized with an

Intel 8251 USART. The 8251 is capable of handling full duplex

serial transactions independently of the 8085 processor. The USART

occupies a memory address for simplicity of system address

decoding. The physical address is decoded to be 20008. The output

line of the USART is directed to the system bus for use by the node

microcomputers. The input line of the USART is connected to the

output of any of the node microcomputers by a multiplexer on the

arbitrator processor. A four bit I/0 port on the arbitrator

controls the input multiplexer. The bit rate (BAUD rate) is

generated in an Intel 8253 programmable interval timer. This

allows the BAUD rate to be dynamically changed. The �rbitrator

processor supplies the network with all the clocks necessary for

the serial communications. The arbitrator serial I/0 is shown in

figure 3,3,4,

�r �r1i1i111irii
I I I I I I I I I i I I I I

;.i(:!1�·-I N ri:,..Jln "it!1(1j

I I I L.�.;.._-+-���d;
I
I '

! i t i

i i=a/ i-���l--���-..!11

" ,,
�.,.,r"' '--1 I I I
� , , I I I I !

-,;; � I I ' ' i
-�,--_�,�. -+�-+-, �����

I
�· '= I !
. ' . ,

I.. '

' ! ! '

1111All

{&fl.�.:

� dz

26

3.3.4 Input/Output Interface

The I/0 capabilities of the arbitrator processor include a

sixteen bit input port, a four bit output port and a four bit input

port. Also the lowest four bits of the address bus and a five bit

data bus are connected to each card in the multiprocessor system

rack. The sixteen bit input port allows the arbitrator processor

to poll the request lines from the node microcomputers. One

request line comes to the port from each of the sixteen node

microcomputers. These requests are not bussed on the

multiprocessor backplane (see backplane).

is a latched output that drives a

The four bit output port

four to sixteen line

demultiplexer. The sixteen demultiplexer outputs are sent to the

node microcomputers.

requesting node microcomputer.

lines are used to acknowledge a

The four bit input port is used by

the arbitrator to determine in which location of the card rack the

arbitrator has been placed.

The arbitrator processor can read latched data and latch new

data into the node microcomputer�s select latch. This is done when

the 8085 CPU accesses any location from 1000H to 100FH; the low

four bits of the address bus, ADR0-ADR3 select one of the node

microcomputers and the read and write lines, NRD/ and NWR/, perform

the desired transaction U3ing the data bus, DAT0/-DAT4/. When a

write is performed, the low four bits of the data bus are gated out

27

onto the system backplane. When a read is performed, the four bits

of data are gated from the node microcomputer onto the low four

bits of the 8085 data bus. The fifth data bit, DAT4/, is used to

determine whether the addressed node microcomputer is in the rack,

and is not significant when the arbitrator writes to a node

microcomputer. The arbitrator I/0 interface is shown in figure

3.3.5 and the bus connections and board layout are shoi<nl in figure

3.3.6.

,. ",, I"'"' "'' ,<i :I
. ..:.,-::,-:-�
·�I,,-,,-,

I I I I

I l!I I!;'"
'!:! '

- I

i

! l l'
ll�11 i

'

' !

I

I I
I I
I I

l I
I I
I
I I

I ; ;

' '

''

i I
: \ '1

i II :
I : , l

I \ i J

'
� IJ �.

OS 0"

� J·� . - " ... �"

11
1I-

ii >

n Jc
[CJ I'

Ii �

D u -

"' I
i:;;;;;,i

u.

l .cili:l ra JR� • ! I'll.,..." .. ! ':'.:!� 1
,:, .0 A .0 ,:i <IA �...,\II"' "I•

••• ,tA.C..111\--�>)::>o� •-NMl�I �¢.<t;,cl� �F�a��iii)1i if �u
"" ::- � I!) 't:. � le� ,l!! !:',\- ..

l·r.=i
I I I �·4?.

I 1,1�z. I

I ...,,�,nl
I "''l.nJI

I :,.i,sovl
I

"'

�

� lffi'i?Q, I
I c;;;;f;] I-· I

� lxm,, I��

lrtum 11 mm I � lr'l=I

1���1 � � I ;l<!,si!S'I

� l[LJ[D
A " "' "'

H

is�

�
<

H
<
=
H
H ro
=
<

� .
M

..;
.

0
H �

30

3.4 Backplane, Rack and Power Supply

This section completes the discussion of the microcomputer

network hardware. The three types of boards plug into connectors

on the backplane and the backplane then routes the signals from the

boards to the appropriate destination. The rack supports and

encloses the backplane and the boards used in the system. The

power supply is external to the rack and supplies all the energy

neces�ary for network operation •
•

3. 4. 1 Backplane

All of the cards that make up the multiprocessing system are

interconnected through the backplane. There are two different

types of backplane connections; common and individual. The signals

that are common to every card in the system can be divided into

three groups; data, address and s.erial data lines.

The arbitrator provides four control signals that are

available at every card location; NRD/, NWR/, Clock and Baud clock.

The data bus, DAT0/-DAT4/, is a bidirectional data path between the

arbitrator processor and any selected node microcomputer. There

are two address busses in the system; ADR0-ADR3 and B0-B3. The ADR

bua is driven by the arbitrator processor and indicates which node

31

is to be accessed, the B bus, which is hard wire coded at each

connector, io used by

location that it occupies.

any node microcomputer to dete2"'Illine the

Sixteen serial lines are bussed on the

backplane. Each of these serial lines is driven by one of the

three types of cards. The aerial data out of any USART is gated

onto bus signal Trans Dat. This bus signal is hard wired to one of

the serial lines on the backplane. A card location will have the

Trana Dat signal connected to the serial line corresponding to its

B address.

There are only two signals that are individual to each card

location, a request line and an acknowledge line. The request and

acknowledge lines are sent through a flat cable between the

arbitrator processor and each card location.

Two additional lines are bussed on the backplane. These

lines provide all necessary power to the cards for system

operation. Since all cards are built to require only one voltage

level, five volts and ground potential are bussed to each card

location in the rack. The bus signal connections in the system are

listed in table 3.4.1.

' '

32

TABLE 3.4.1 BUS SIGNAL CONNECTIONS

Pin Signal Pin Signal

1 +5 volts D.C. A +5 Volts D.C.

2 Clock B Baud Clock

3 Request/ c Acknowledge/

4 n.c. D n.o.

5 n.c. E n.c.

6 NRD/ F NWR/

7 ADRO H BO

8 ADR1 J 81

9 ADR2 K B2

10 ADR3 L 83

11 DAT1/ M DATO/

12 DAT3/ N DAT2/

13 Trans Dat p DAT4/

14 SD1 R SDO

15 SD3 s SD2

16 SD5 T SD4

17 SD7 u SD6

18 SD9 v SD8

19 SD11 w SD10

20 SD13 x SD12

21 SD15 y SD14

22 Ground z Ground

33

3.4.2 Rack

The rack comprises two rack sections, and each of the two

are functionally equivalent. Each rack section has edge connectors

and card guides for ten cards. Up to nine node microcomputers and

the arbitrator ca_n be run in one rack section, while expansion to

fifteen node microcomputers requires use of both sections. The

rack is built from parts of previous computer systems and is

compatible with the standard nineteen inch rack mount.

3.4.3 Power supply

Since the system was intentionally designed using only

circuits that require a single five volt power supply, only one

voltage level is neces-sary for operation. Each node microcomputer

will use around one ampere of the five volt supply during stressful

conditions. The arbitrator requires about one ampere. The

terminal interface board uses only three hundred miliamperes. The

supply used during debug and test sessions was a POWER-ONE model

5-12 five volt power supply that is capable of delivering twelve

amperes of current. This supply is adequate for a system of one

arbitrator, one serial interface and eight node processors. A

system that contains the maximum number of cards should have a

34

supply that is capable of delivering around twenty amperes at a

five volt level.

35

CHAPTER 4

SYSTEM SOFTWARE

The software for the network may be divided into three

groups; resident programs that run on the node microcomputer,

resident programs that run on the arbitrator, and u.ser generated

programs. The 8748 monitor is the resident node microcomputer

program, it is burned into the EPROM on the 8748 microcomputer

chip, and contains programs for construction and testing of user

code along with network interaction subroutines. The arbitrator

software controls the interconnection of the network and is burned

into the 2716 EPROM on the arbitrator board. User programs are

written for the 8748 node microcomputer and r_eside in the 2716

EPROM on the node microcomputer board.

36

4.1 8748 Monitor

The 8748 monitor is the basic operating software for the

node microcomputer card. When a node microcomputer is reset, the

8748 microcomputer begins executing the 8748 monitor. The monitor

contains initialization routines, basic input/output routines, and

routines that allow network interaction. In addition to routines

available to the programmer, the 8748 monitor has several useful

commands which may be invoked through the serial port.

The listing for the node microcomputer monitor is in

appendix A. There are four basic commands of the 8748 monitor:

examine and modify, read file, write file, and execute subroutine.

The examine and modify command allows the user to examine any

external program memory location and optionally modify that

location. The read file command allows the node microcomputer to

receive and store in memory any file in Intel hex format. The

write command allows any continuous region of program memory to be

output in Intel hex format. The last command is the execute

command which allows the user to force the execution of a program

or subroutine.

37

During system initialization, the 8251 USART on the node

processor card is programmed for full duplex serial operations and

a prompt is sent out on the aerial line. The monitor then waits

for one of the four basic commands to be invoked. After completion

of any one command the monitor then waits again for a new command.

The 8748 monitor has several basic input and output

subroutines that are available to the user; these are listed in

detail in appendix B. These routines include a character input

command and a character output, input and hex conversion, hex

conversion and output, packing and unpacking of hex numbers, and a

twelve bit variable input. Also subroutines are available for

gaining status information about the interconnection of the

network, requesting to become interconnected with a specific device

in the network, and becoming disconnected from the network.

4.2 Arbitrator Monitor

Two programs were written for the arbitrator processor. The

first of these programs was a simple serial I/0 based monitor that

allowed hardware debug of the arbitrator processor board. The

second program is the arbitrator software. The simple serial

monitor is based on a 8080 single board computer monitor. It

allows the user to perform basic tests from a video terminal. The

instruction repertoire includes the following comm.ands: examine and

38

modify memory, examine and modify processor register, execute user

program, display memory, and move memory. The listing for the

arbitrator software is in appendix c.

The arbitrator software is a dedicated program that allows

the nodes of the network to become interconnected. The flow of the

program is as follows: on power-up or reset the arbitrator

initializes all internal variables and then enters the main program

loop. The arbitrator will sample all the incoming request lines

and then it will satisfy each request that is active before

sampling the request lines again. When a request line has been

found active, the arbitrator will calculate the port number of the

requesting node. The serial lines of the arbitrator and the

requesting nodes will be set to a circular communication path. The

arbitrator will acknowledge the requesting node. The node

microcomputer then submits a processor request byte serially to the

arbitrator. Finally the arbitrator will determine what action has

been requested. Three basic requests can be satisfied; status

request, interconnection request and disconnection request.

Request and acknowledge codes are listed in tables 4.2.1 and 4.2.2

respectively.

When a status request is performed, the node microcomputer

sends, as a para.meter, the node location that it is requesting

status from. The arbitrator then determines the interconnection or

the port indicated and sends back this information. When an

TABLE 4.2.1 REQUEST CODES

OXH - No action.

2NH - Request status of node N.

3NH - Request connect to node N.

4XH - Disconnect from network.

TABLE 4.2.2 ACKNOWLEDGE CODES

OXH - No action.

2NH - Status acknowledge,

node is connected to node N.

3NH - Connect to node N.

4XH - Disco_nnect acknowledge.

5NH - No connect, node N busy.

6NH - Status acknowledge,

node N not in system.

7NH - No connect, node N not in system.

note: all numbers given in hex (hence H).

X means don't care.

N is hex for any node 0-F.

39

40

interconnection request is made, the node microcomputer sends as a

parameter the node to which it requests connection. The requested

node could be either in use, not in the rack or available for

colllmunications. An appropriate response is then sent back to the

requesting node, and if the node was available, the node will be

connected when the acknowledge signal becomes inactive. If the

requested node is not available, the arbitrator waits for another

request, either a new connection, a status check or a

disconnection. When a node microcomputer requests to become

disconnected from the network, the arbitrator disconnects the

requesting node and then deactivates the corresponding acknowledge

line.

41

4. 3 Programming

The user must configure the system by designing sOftware f'or

the node microcomputer. The size constraints on the software are

those of the memory address space. A socket for 2048 bytes of

EPROM is available for program storage. The address for this EPROM

is 800H through FFF'H in the 8748 node microcomputers. During

program debug, the user may prefer RAM in this 2048 byte region.

This is easily done with the switch on the node microcomputer front

panel. System subroutines in the 8748 monitor on the 8748 chip are

available to the user and are listed in appendix B. The 8748

monitor does not use interrupts, but it does allow the user to

specify interrupt service routines. Upon detection of an

interrupt, the 8748 microcomputer saves the execution address and

jumps to either of two locations, depending on whether the

interrupt is external or generated by the internal timer. In

either case, the 8748 monitor will switch to the alternate register

bank and save the accumulator in alternate register 7. If the

interrupt is external, program execution will continue at location

7FOH in external RAM. If the interrupt is from the internal timer,

execution will continue at location 7F4H in external RAM. The user

must place either a jump to a service routine or the actual service

routine at these locations in external RAM. Upon completion of the

service routine, the accumulator must be restored and the normal

register bank selected.

42

Locations 7F'OH through 7F7H may be used for variable storage

only if interrupts are not used, but it is suggested that these

locations not be used for anything except interrupt vectors. The

monitor does use additional memory locations for storage, the top

two bytes of data storage internal to the 8748 microcomputer are

uaed during the hex file read command and will be changed each time

this command is invoked. Also locations 7F8H through 7FFH in

external program memory are reserved for monitor use and may not be

changed by the system user. The user may then allocate program

memory and variable storage from locations 40DH through 7EFH and

from locations 800H through FFFH in external program memory.

Variable storage is also available at locations 20H through 308 in

the internal data memory.

CHAPTER 5

CONCLUDING REMARKS

The microcomputer network haa been constructed and tested.

The possible applications of this project are many and varied. The

individual boards were all tested before the network was assembled,

and were found totally functional. The existing system software

has also been tested in the individual boards. When the

integration of' the network was co_mplete, the node microcomputers

were loaded with test routines to check the reconfiguration

capabilities of the network. These routines were also found

functional and therefore proved the network operational.

A system consisting Of one arbitrator processor, one

terminal interface board, and seven node microcomputers now is

running and available for application.

the microcomputer network would

A possible application for

be an environment with a

restriction on physical size, yet requiring control of a number of

44

output devices and sensing of a number of input devices. The

microcomputer network would be a good choice for controlling a

totally self-contained robot system. Each node microcomputer could

be assigned the control of a different aspect of the system. One

could control the motion of the system while another might control

one or two types of position sensors. With each node microcomputer

assigned a different task, the actions of the system would be a

result of the interactions of the nodes in the microcomputer

network.

Additional functions could easily be added to the

microcomputer network. The network will satisfy the requirements

of the originally intended application, and addition of nodes

interrupting each other, ayatem self startup or other features were

not included

applications.

because they might interfere with certain

45

APPENDIX A

8748 MONITOR LISTING

LINE ADDR Bl B2 83 B4 ERROR

2
•

3
4

5 ;

6 oo3A PRMPT
7 07FA CL INST
8 OOFl USAB
9 0001 USOB

JO OOFO UDAB
11 0002 RDRDY
12 0004 TXE
13 0001 TRRDY
14 003E OFST
15 0000 CR
16 0020 SP
17 OOOA LF

18 003F ERCR
19 07FO INTRPT
20 07F4 CTINT
21 0025 CMD
22 OOCE MODE
23 ooco SRST
24 0041 ERST
25
26
27

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EOU
EQU
EQU
EQU
EQU
EOU
EQU
EQU
EQU
EQU
EQU

8048 MACRO ASSEMBLER VER 2.0 PAGE

;8748 MONITOR FOR NODE MICROCOMPUTER

;PROMPT CHARACTER
O?FAH
OFlH ;UART STATUS AND MASK
OlH ;UART STATUS OR MASK
OFOH ;UART DATA AND MASK
02H ;RECEIVER READY MASK
4 ;TRANSMITTER EMPTY MASK
OlH ;TRANSMITTER READY MASK
3EH ;UJCATlt:iN WHERE OFFSET FOR READ IS STORE
ODH ; ASCII CARRIAGE RETURN
20H ;ASCII SPACE
OAH ;ASCII LINE FEED
'? ' ;ERROR CHARACTER
O?FOH ;ADDRESS OF INTERRUPT SERVICE ROUTINE
07F4H ;ADDRESS OF TIMER INTERRUPT ROUTINE
025H ;UART COMMAND INSTRUCTION
OCEH ;UART MODE INSTRUCTION
OCOH ;START UART RESET
041H ; END UART RESET

"'
m

LINE ADDR Bl 82 83 84 ERROR

29 ORG

30 0000 44 35 • JMP

31 0002. 00 NOP

32 0003 05 SEL
33 0004 AF MOV

34 0005 E4 FO JMP

35 0007 05 SEL
36 0008 AF MOV

37 0009 E4 F4 JMP

33

39 0008 04 2B JTBL: JMP
40 0000 04 3A JMP

41 OOOF 04 94 JMP

42 0011 04 65 JMP
43 0013 04 76 JMP
44 0015 04 86 JMP

45 0017 04 90 JMP
46 0019 04 BD JMP

47 OOIB 04 ca JMP

48 0010 44 2/\ JMP
49 OOIF 44 54 JMP

50 0021 44 84 JMP

51 0023 44 AC JMP
52 0025 44 87 JMP

53 0()27 24 A5 JMP

54 0029 44 C4 JMP

55

8048 MACRO ASSEMBLER VER 2.0 PAGE

OOOOH
!NIT

RBl ;SWITCH TO ALT REGESTERS AND SAVE A
R7,A
I NTRPT ;SERVICE JNTERUPT
RBl ;SWITCH TO ALT REGS AND SAVE A
R7,A
CTINT ;SERVICE TIMER INTERRUPT

:JUMP TABLE FOR ROUTINE ENTRY
CIN ;CHARACTER INPUT RCJUT!NE
COUT ;CHARACTER OUTPUT ROUTINE
CRLF ;SEND CARRIAGE RETURN-LINE FEED
OUTHEX ; INPUT HEX CHARACTER
INBYTE ;INPUT TWO HEX CHARACTERS
OUTBYTE ;OUTPUT TWO HEX CHARACTERS
INAO ;GET ADDRESS OR DATA SPECIFICATION
XREAO ;READ EXTERNAL RAM
XWRITE ;WRITE TO EXTERNAL RAM
ERROR ;ENTER- MONITOR WITH ERROR
PROMPT ;ENTER MONITOR WITH NO ERROR
CTA ;CONNECT TO ARBITRATOR
OCNCT ;DISCONNECT FROM NETWORK
CNNCT ;CONNECT TO SPECIFIED NOOE
WRJO ;WRITE SUBROUTINE
WFCNCT ;CONNECT TO SPECIFIED NODE BUT

;WAIT TILL NOOE AVAILABLE

2

�

�

LINE ADDR Bl Ba 83 84 ERROR

57
58
59
60
61
62
63
64 0028
65 0020
66 002F
67 0030
63 0032
69 0034
70 0036
71 0037
72 0039
73
74
75
76
77

78

79 003A
60 003C
61 003E
02 003F
03 0040
8·1 0042
85 0044
86 0046
87 0047
88 0048

9A Fl

OA 01
80
53 02
C6 2F
9A FO
80
53 7F
83

9A Fl

SA 01
AA
80
53 01
C6 3F
9A FO
FA
90
83

..
•

8048 MACRO ASSEMBLER VER 2.0 PAGE

* CIN - GETS CHARACTER FROM U.SART TO A REGISTER
DESTROYS - OUTPUT FROM P2

CIN: ANL
ORL

CIN05: MOVX
ANL
JZ

ANL
MOVX
ANL
RET

P2, ��USAB
P2,#USOB
A,@RO
A,#RDRDY
CIN05
P2, #UDAB
A,@RO
A,#7FH

;ADDRESS STATUS OF USART PORT
;READ USART STATUS
;JS CHARACTER IN?
;LOOP TILL CHARACTER
;ADDRESS DATA OF USART PORT
;PUT DATA IN ACCUMILATOR
;MASK PARITY

* COIJT - OUTPUTS CHARACTER IN A REGISTER TO USART
DESTROYS - R2, OUTPUT FROM P2

;
COUT: ANL

ORL
MOV

COUT05: MOVX
ANL
JZ

ANL
MOV
MOVX
RET

P2,#USAB
P2,#USOB
R2,A
A,@RO
A,�ITRRDY
COUT05
P2,#UDAB
A,R2
@RO,A

;ADDRESS STATUS OF USART PORT
;SAVE CHARACTER IN R2
;READ USART STATUS
;IS TRANSMITTER READY ?

;POINT TO DATA
;GET CHARACTER TO A REGISTER
;OUTPUT CHARACTER

3

..,.
""

LINE ADDR Bl B2 B3 B4 ERROR

90
91
92

93

94

95

96

97
98
99

100
101
1 O?.
103
1 OS
105
106
107
108
109
110

111

112

113

114

115
116

117
110

119

120
121
122
123

124
125

126

127
128
129

JOO

0049
004A
004C
004E
0050
0052
0054
0056
0057
0058
005A
005C
005E
0060
0062
0063
0064

0065
0067
0068
006A
006C
0060
006F
0071

0072

0074

85

14 28
14 3A
03 C6
f6 57
03 OA
E6 63
83
FA
03 B9

F6 63
03 06
E6 63
03 OA
83
95

83

53 OF
AA
03 F6
F6 71

FA
03 30
04 3A
FA
03 37
04 3A

•

* INHEX -

'

INHEX: CLR
CALL
CALL
AOO
JC
AOD
JNC
RET

JNH05: MOV
ADD
JC
ADD
JNC
ADD
RET

I NHl o: CPL
RET

* OUTHEX

OUTHEX: ANL
MOV

ADD
JC
MOV

ADD
JMP

OH05: MOV
ADD

JMP

8048 MACRO ASSEMBLER VER 2.0

GETS CHARACTER FROM USART AND CONVERTS TO HEX
RETURNS HEX IN A REGISTER
RETURNS WITH FO SET

0

.IF NOT VALID HEX CHARACTER
DESTROYS - R2,0UTPUT FROM P2

FD

CIN
COUT
A,UOC6H
INH05
A,iWAH
INHlO

A,R2
A,tWB9H
INHlO
A,#06H
INH10
A, tWAH

FD

PAGE 4

OUTPUTS THE LOWER FOUR BITS OF THE A REGISTER AS HEX CHAR.
DESTROYS - R2,0UTPUT FROM P2

A,#OFH
R2,A
A,#OF6H
OH05
A,R2
A,#30H
COUT
A,R2
A,n037H
COUT

;MASK OFF UPPER FOUR BITS
;SAVE IN R2
;SUBTRACT 10
;IF NOT LESS THAN 9 JUMP
;GET HEX
;ADO 30H TO MAKE ASCII NUMBER
; JUMP TO CO.UT, RETURN FROM THERE
;GET HEX
;ADJUST FOR ASCII LETTER
;JUMP TO COUT, RETURN FROM THERE

..

�

LINE ADDR Bl 82 B3 84 ERROR 8048 MACRO ASSEMBLER VER 2.0 PAGE 5
•

132
133

134 ; ' IN8YTE - GETS TWO ASCII CHARS FROM PORT AND PACKS INTO A REGISTER
135 ; DESTROYS - R2,R3,R7
136 ; OUTPUTS UPDATED CHECKSUM IN R7
137

138 ;

139 0076 14 49 JNBYTE: CALL JNHEX ; GET A HEX CHA,R
140 0078 B6 85 JFO 1805 ; IF INVALID, EXIT
141 007A 47 SWAP A

142 0.078 AB MOV R3,A ;STORE IN UPPER OF R3
143 007C 14 49 CALL INI-IEX
144 007E 86 85 JFO 1805 ; GET SECOND HEX
145 0080 4B ORL A,R3 ;OR TOGETHER THE TWO HEX CHARS.
146 0081 AB MOV R3,A ;STORE IN R3
147 0082 2F XCH A,R7
148 0083 6F ADD A,R7
1 <!9 0064 2F)(CH A,R7 ; UPDATE CHECKSUM
150 0065 83 1805; RET

151

152
153 ; *" OUTBYTE OUTPUTS BYTE IN A REGISTER AS TWO ASCII CHARS.
154 ; DESTROYS - R2,R3,R7
155 ; OUTPUTS UPDATED CHECKSUM IN R7
156

157

158 0086 2F OUTBYTE:XCH A,R7
169 0087 6F ADD A,R7
100 0088 2F)(CH A,R7 ; UPDATE CHECl(SUM
161 0069 AB MOV R3,A ;SAVE IN R3
162 ob a A 53 FO ANL A,#OFOH ;MASK OFF FIRST HEX
163 oooc 47 SWAP A

164 0080 14 65 CALL OUTHEX ;PRINT FIRST HEX
165 Oll8F FB MOV A,R3 ;GET BYTE
166 0090 53 OF ANL A,#OFH ; MASK OFF SECOND HE)(
167 0092 04 65 JMP OUTHEX ;JUMP TO OUTHEX, RETURN FROM THERE

"'

0

LINE ADDR Bl 82 83 84 ERROR

169
170
171
172
173
17�1
175
17G
177
170
179
180
181
182
183

184
185
106
167
183
169
190
1 91
192

193

194
195
196
197
198
199
200
201
20,�
203
204
205
200
207
208
209
210
211
212.
?.13
21'1
-< rn
21f,

0094
0096
0093
009A
009C

0090
009E
009F
OOAO
OOA2
OOA4

OOA6
OOA8
OOAA
OOA8

OOAC
OOAE
OOBO
0081
0082
0083
0085
0086
0087
OOB8
OOB/1.
noim
000(;

23 OD
14 3A
23 OA
14 3A
83

27
AB
AC
14 AC
66 AB
14 AC
86 AA
04 A4

85
03

14 49
86 BC
AF
FC
47
53 OF
A8

FC
47
53 FO
4F

AC
83

8048 MACRO ASSEMBLER VER 2.0 PAGE

* CRLF - PRINTS CARRIAGE RETURN LINE FEED ON CONSOLE

�cRLF: MOV

CALL
MOV

CALL
RET

A, *�CR
COUT
A,ttLF
COUT

* INAD - GETS THREE HEX DIGITS· FROM INPUT STREAM ANO RETURNS
WITH TWELVE BIT ADDRESS/DATA IN R3 ANO R4

!NAO:

AD05:

AD Jo:

ADJ5:
AD20:

FO IS SET IF FIRST CHARACTER IS TERMINATOR
TERMINATOR IS RETURNED IN R2

DESTROYS - R2,R3,R4

CLR
MOV

MOV

CALL
JFO
CALL
JFO
JMP

CLR
RET

A
R3,A
R4,A
FILL
AD20
FILL
AD15
ADlO
FO

;GET NEXT CHAR AND SHIFT INTO R3:R4
;EXIT IF TERMINATOR IS FIRST CHAR
;GET SUBSEQUENT CHARS
�EXIT IF TERMINATOR
;LOOP TILL TERMINATOR
; E}(I T NORMALLY
;EXIT IF FIRST CHAR TERMINATOR

6

* FILL - GETS ONE HEX NUMBER ANO SHIFTS IT INTO THE 12 BIT NUMBER IN R
DESTROYS - R2,R3,R4,R7

•

FILL·:

Fi 05:

CALL
JFO
MOV

MOV

SWAP
ANL

MOV

MOV

SWAP
ANL

ORL
MOV

RET

INHEX
Fl05
R7,A
A,R4
A
A,#OFH
R3,A
A,R4
A
A,ttOFOH
A,R7
R4,A

� GET NE}(T CHAR
;RETURN IF TERMINATOR
;STORE IN R7
;GET LOW EIGHT BITS

;PUT HIGH NIBBLE INTO R3

;GET LOW EIGHT

'-"
....

LINE ADDR Bl 82 B3 84 ERROR

218

219

220 .

221

222

223
224

2?..5
226 0080 FE

227 OOBE 53 OF
228 ooco AE

229 ooc1 9A FO
230 OOC3 OA
231 OOC4 4E

232 OOC5 3A

233 OOC6 80

234 OOC7 83

235

236

237

238

239

240

241

242 ooca 2E

243 OOC9 53 OF
244 OOCB 9A FO
245 ooco AB

246 OOCE OA

247 OOCF- 48

248 0000 3A

249 0001 2E

250 OOD2 90

251 0003 83

252

253
254

8048 MACRO ASSEMBLER VER 2,0 PAGE

; * XREAD - READS EXTERNAL MEMORY

; LOWCADDRESS) IN RO

; HIGH(ADDRESSJ IN R6

; CONTENTS READ INTO A REGISTER

XREAD: MOV A,R6
ANL A,'!i'OFH ;GET HIGHIAOORESSJ
MOV R6,A
ANL P2,#0FOH
IN A,P2
ORL A,R6
OUTL P2,A ;PUT HIGHCADORESSJ ON ADDRESS BUS
MOVX A,@RO ;READ DATA
RET

; * XWRITE - WRITES DATA IN A REGISTER TO EXTERNAL MEMORY
LOW(ADDRESSJ IN RO

; HIGH(AOORESS) IN R6

; DESTROYS - R2

XWRITE: XCH A,R6 ;SAVE DATA IN R3
ANL A,#OFH
ANL P2,#0FOH
MOV R3,A
IN A,P2
ORL A,R3
OUTL P2,A ;HIGHCADDRESSJ TO P2
JWH A,R6 ;GET DATA BACK
MOVX @RO,A ;WRITE DATA
RET

7

"'
N

LINE ADDR Bl 82 B3 B4 ERROR 8048 MACRO ASSEMBLER' VER 2.0 PAGE 6

256 0004 44 2A SC25: JMP ERROR
257

256

259 ' * SCMD
260 •

261

262 0006 14 90 SCMO: CALL !NAO ;GET ADDRESS
263 0008 BG 04 JFO SC25 ;ERROR EXIT
264 OOOA FA MOV A,R2 ;GET "fERMI NATOR
265 OODB 03 OD XRL A,#CR
266 0000 96 04 JNZ SC25 ;ERROR JF NOT CR
267 OODF FB MOV A,R3 ;GET MSB OF ADDRESS
260 OOEO AE MOV R6,A ;PUT IN R6
269 OOEl FC MOV A,R4 ;GET LSB OF ADDRESS
270 OOE2 A6 MOV RO,A ;PUT IN RO
271 OOE3 14 94 sco5: CALL CRLF
272 00E5 FE MOV A,R6
273 OOE6 14 65 CALL OUTHE)(;PRINT MSB OF ADDRESS
274 OOE8 Fa MOV A,RO
275 OOE9 14 66 CALL OUTBYTE ;PRINT LSB OF ADDRESS
276 OOEB 23 20 MOV A,#SP
277 OOED 14 3A CALL COUT
270 OOEF 14 3A CALL COUT ;PRINT TWO SPACES
279 OOF1 23 20 sc10: MOV A, t�SP
280 OOF3 14 3A CALL COUT ;PRINT A SPACE
281 00F5 14 BD CALL){READ ;GET CONTENTS OF MEMORY
282 OOF7 14 86 CALL OUTBYTE ;PRINT CONTENTS
283 OOF9 23 20 MOV A,#'-'

264 OOFB 14 3A CALL COUT
285 OOFO 14 90 CALL INAD ;GET SUBSTITUTION
266 OOFF B6 04 JFO SC15 ;JUMP IF NO SUBSTITUTION
267 0101 FC MOV A,R4 ;GET LSB OF DATA TO A REGISTER
288 0102 14 cs CALL xim1TE ;REPLACE MEMORY
269 0104 FA sc15: MOV A.R2
290 0105 03 OD XRL A,*ICR ;WAS TERMINATOR CR?
291 0107 C6 lF JZ SC20 ;RETURN IF CR
292 0109 FA MOV A,R2
293 OlOA 03 20 XRL A,*tSP
29'1 OlOC 96 67 JNZ RC20 ;ERROR IF NOT SP OR CR
295 OlOE FB MO\/ A,RO
296 OlOF 03 01 ADD A,UOlH ; I NC ADDRESS
297 OJ 11 AB MOV RO,A
298 0112 FE MOV A,R6 �

299 0113 13 00 ADDC A,ttOOH w

300 0115 AE MOV RS.A
301 0116 Fa MOV A,RO
302 0117 53 07 ANL A,tW7H ;WHEN ADDRESS IS 8*N, THEN NEW LINE
303 0119 96 10 JNZ SC30
304 OllB 04 E3 JMP SC05
305 0110 04 Fl SC30: JMP SCIO
30G OJ lF 83 sc20·. RET

LINE ADDR Bl B2 B3 64 ERROR

308
309
310
311

312
313
314
315
316
317
318
319
320
321
322
323

324
325

326
327

328
329
330

331
332

333
334

335
836
337
338

339
340
341
342
343

344
345

346
347

3,10
3ll9
350
351
352
353
354

355

356
357

358
359

0120
0122
0123
0125
0127
0128
012A
012C
012E
012F
0130
0131
0132
0133
0135
0137
0139
0138
013C
0130
013F
0140
0142
0143
0145
0146
0148
014A
014C
0140
014E
014F
0150
0151
0152
0153
0155
0157
0150
015A
0158
015C
015E
015F
0161
0163
0164
0165
0167
01(>9
Ol

f

iB

14 90
FA
03 3A
C6 3B
FA
03 OD
96 67
88 3E
FB
AO
18
FC
AO
14 28
14 3A
03 3A
96 33
27
AF
14 76
AO
14 76
AE
14 76
A8

14 76
96 69
89 3F
Fl
68
AB

C9
Fl
7E

AE
14 76
14 ca
F8

03 01
AB
FE

13 00
AE
ED 53
14 76
27
6F

C6 33
44 2A
14 76
83

•

8048 MACRO ASSEMBLER VER 2.0 PAGE 9

i * RDCMD - READS INTEL HEX
RDCMO: CALL !NAO

MOV A, R2
XRL A,#':'
JZ RCIO
MOV A, R2
XRL A, #CR
JNZ RC20
MOV RO, #OFST
MOV A,R3
MOV @RO, A

INC RO
MOV A, R4

MOV @RO,A
Reos: CALL CIN

CALL COUT
XRL A,#.':'

JNZ RC05
RClO! CLR A

MOV R7,A
CALL INBYTE
MOV R5,A
CALL INBYTE
MelV R6,A
CALL I NBYTE
MOV RO, A
CALL INBYTE
JNZ RC25
MOV Rl,#OFST+l
MOV A,@Rl
ADD A,RO
MOV RO,A
DEC Rl
MOV A,@Rl
AOOC A,R6
MOV R6,A

RCI 5: CALL I NBYTE
CALL XWRITE
MOV A, RO
ADO A,ttOlH
MC'JV RO,A
MOV A, R6
AODC A, ��OOH
MOV R6,A
OJNZ R5,RC15
CALL INBYTE
CLR A
ADD A,R7
JZ RC05

RC20: JMP ERROR
RC25: CALL I NB Y TE

RET

FILE
;GET OFFSET

;STORE OFFSET

;LOOP TILL RECORD MARK

;CLEAR CHECKSUM
;GET LENGTH
;STORE LENGTH IN RS
;GET MSB OF ADDRESS
;STO'RE IN R6
;GET LSB OF ADDRESS
;STORE IN RO
; GET RECORD TYPE
;EXIT IF ENO OF FILE

;GET LSB OF OFFSET

;ADD OFFSET TO ADDRESS

;GET MSB OF OFFSET
;ADO OFFSET TO ADDRESS

;READ DATA FROM PORT
;WRITE DATA INTO MEMORY
;INCREMENT ADDRESS

;REPLACE ADDRESS
;LOOP IF CHARACTERS LEFT
;GET CHECKSUM

;EXIT IF BAD CHECKSUM
; READ CHECJ<SUM FOR EN·o OF Fl LE RECORD

¥!

LINE ADDR Bl 82 83 84 ERROR 8048 MACRO ASSEMBLER VER 2.0 PAGE 10

361
36'2
363 ; * WRITE - WRITES MEMORY TO USART IN INTEL HEX FORMAT
364
365

• ;

366 016C 14 9D WRCMD: CALL INAD ;GET STARTING ADDRESS
367 016E 86 F8 JFO WR35
368 0170 FB MOV A,R3 ;PUT STARTING ADDRESS INTO RO:R6
369 0171 AE MOV R6,A
370 0172 FC MDV A,R4

371 0173 AB MOV RO,A
372 0174 FA MOV A,R2 ;GET TERMINATOR
373 0175 03 20 XRL A,#SP ;If SPACE THEN ENO ADDRESS
374 0177 C6 BD JZ WR05
375 0179 FA MOV A,R2
376 017A 03 53 XRL A,#'S' j IF 'S' THEN SWATH
377 017C 96 FB JNZ WR35 ;IF NOT SP OR ·s· THEN ERROR
378 017E 14 90 CALL INAD ;GET SWATH
379 0180 BG F8 JFO WR35
380 0182 FA MOV A,R2
381 0183 03 00 XRL A,#CR
382 0185 96 F8 JNZ WR35 ;IN TERMINATOR NOT CR, THEN ERROR
383 0187 FC MOV A,R4 ;PUT R3:R4 INTO R4:R5
384 0188 AO MOV R5,A
38S 0189 FB MOV A,R3
386 018A AC MOV R4,A
387 0188 24 A5 JMP WRlO
388 0180 14 90 WR05: CALL INAO ;GET END ADDRESS
389 018F BG FB JFO WR35
390 0191 FA MOV A,R2
391 0192 03 00 XRL A,#CR
392 0194 96 FB JNZ WR35 ;ERROR IF TERMINATOR NOT CR
393 0196 FE MOV A,R6 ;SUBTRACT START ADDRESS FROM END ADDRESS
394 0197 37 CPL A ;AND PUT RESULT IN SWATH REGISTERS R4:R5
395 0198 17 INC A
396 0199 A9 MOV Rl ,A
397 019A FB MOV A,RO
398 0198 37 CPL A

399 019C 17 INC A
400 0190 17 INC A
401 019E 6C ADD A,R4
402 019F AD MOV R5,A
403 OlAO F9 MOV A,RJ
,404 01Al 76 ADDC A,R3 �

405 01A2 . AC MOV R4,A
�

406 01A3 E6 FS JNC WR35
407 OJA5 14 94 WRJO: CALL CRLF ;POSITION TO NEW LINE
408 01A7 23 3A MDV A,#':'
409 01A9 14 3A CALL COUT ;PRINT RECORD MARK
410 DIAB 27 CLR A
411 OlAC AF MOV R7,A ; CLEAR CHECKSUM
412 OlAD FD MOV A,R5 ;GET LSB(SWATHl

LINE ADDR Bl 82 B3 84 ERROR 8048 MACRO ASSEMBLER VER 2.0 PAGE 11

414 OlAE 03 FO ADD A, f!OFOH ;SUBTRACT SIXTEEN
415 OlBO AD MOV R5,A ;REPLACE SWATH
416 0161 FC MOV A,R4 ;GET MS8(SWATHJ
417 0182 13 FF ADOC A,:ttOFFH
418 0184 AC MOV R4,A ; REPLACE SWATH
419 0185 E6 BB • JNC WR15 ;IF LESS THAN SIXTEEN LEFT, JUMP
420 0187 23 10 MDV A,ttlOH ;SET A REGISTER TO 11
421 0189 24 co JMP WR20
422 0188 27 WRJ5: CLR A

423 OlBC AC MOV R4,A ;CLEAR MSBISWATHl
424 0180 20 XCH A,R5 ;GET REMAINDER AND CLEAR LSB(SWATHJ
425 OlBE 03 10 ADD A,:ttlOH ;ADD 16 TO REMAINDER
426 01co C6 ES WR20: JZ WR30 ; IF NONE LEFT, WRITE END OF FILE
427 01c2 A9 MOV Rl ,A ;STORE COUNT IN Rl
428 01C3 14 86 CALL OUTBYTE ;PRINT BYTE COUNT
429 01C5 FE MOV A,R6 ;GET MSBCADDRESS)
430 OJC6 14 86 CALL OUTBYTE ;PRINT MS8(ADDRESSJ
431 OJC8 F8 MOV A,RO
432 OJC9 14 86 CALL OUTBYTE ;PRINT LSBCADORESS)
433 OlCB 27 CLR A

434 OlCC 14 86 CALL OUTBYTE ;PRINT RECORD TYPE
435 DICE 14 BO WR25: CALL XREAD ;READ CONTENTS OF MEMORY
436 0100 14 86 CALL OUTBYTE ;PRINT DATA
437 0102 28 XCH A,RO ;POINT TO NEXT ADDRESS
438 0103 03 01 ADD A,#OlH
439 0105 28 XCH A,RO
440 0106 2E XCH A,RG
441 -0107 13 00 ADDC A,#OOH
442 01 (jg 53 OF ANL A.�iOFH
443 0108 2E XCH A,RG
444 OlDC E9 CE DJNZ Rt ,WR25 ;LOOP TILL LINE OUTPUTED
445 OlDE FF MDV A,R7 ;GET CHECKSUM
446 OlDF 37 CPL A

447 OlEO 17 INC A

448 01El 14 86 CALL OUTBYTE ;PRINT CHECKSUM
449 OJE3 24 AS JMP WRIO ;NEXT LINE
450 01E5 27 WR30: CLR A

451 01E6 14 86 CALL OUTBYTE ;PRINT RECORD LENGTH
452 01E8 27 CLR A

453 01E9 14 86 CALL OUTBYTE ;PRINT ADDRESS
454 DIES 27 CLR A

455 OlEC 14 86 CALL OUTBYTE
456 OlEE 23 01 MOV A,#OlH
457 OJFO 14 86 CALL OUTBYTE ;PRINT RECORD TYPE
458 01F2 FF MDV A,R7 �

459 01F3 37 CPL A
�

460 01F4 17 INC A

461 OJF5 14 86 CALL OUTBYTE
462 01F7 83 RET

463 01F8 44 2A WR35: JMP ERROR

LINE ADDR Bl B2 B3 B4 ERROR 8048 MACRO ASSEMBLER VER 2.0 PAGE 12

465
•

466

467 ; * EXECUTE
468

469 ;

470 OlFA 14 9D EXEC: CALL !NAO ;GET ADDRESS
471 OJFC BG FB JFO WR35 ;ERROR IF WRONG FORMAT
472 OlFE FA MOV A,R2
473 OlFF 03 OD XRL A,#CR ;TERMINATOR==CR?
474 0201 96 2A JNZ ERROR
475 0203 DA IN A,P2
476 0204 53 FO ANL A, #OFOH
477 0206 43 07 ORL A,#,HIGH.CLINST
478 0208 3A OUTL P2,A
479 0209 F8 MOV A,R3
480 020A 72 10 J83 EX05
481 020C 23 E5 MOV A,#OE5H ; SEL MBO COMMAND
482 020E 44 12 JMP EXIO
483 0210 23 F5 E)(05: MOV A,#OF5H ;SEL MBl COMMAND
484 0212 BB FA EXJO: MOV RO,#. LOW. CLINST
485 0214 90 MOVX @RO,A ;STORE SEL MB COMMAND
486 0215 FB MOV A,R3
487 0216 47 SWAP A

488 0217 97 CLR c

489 0218 F7 RLC A

490 0219 43 14 ORL A,#l4H ;CREATE CALL INSTRUCTION
491 021B 18 INC RO ;STORE AT LOCATION CLINST+J
492 021c 90 MOVX @RO,A
493 0210 18 INC RO ;POINT TO NEXT LOCATION
494 021E FC MOV A,R4
495 021F 90 MOVX @RO,A ;STORE PAGE ADDRESS
496 0220 18 INC RO

497 0221 23 44 MOV A, #44H
498 0223 90 MOVX @RO,A ;STORE RETURN INSTRUCTION
499 0224 18 INC RO

500 0225 23 30 MDV A,#.LOW.ER05
501 0227 90 MOVX @RO,A
502 0228 E4 FA JMP CLI NST ;JUMP TO CALL INSTRUCTION

LINE AODR Bl 82 63 84 ERROR 8048 MACRO ASSEMBLER VER 2.0 PAGE 13

504

505

506 • ; * ERROR
507 ;

508 022A 23 3F ERROR: MOV A,#ERCR
509 022C 14 3A CALL COUT

510 022E 14 94 CALL CRLF
511 0230 23 08 ER05: MOV A,#-08H
512 0232 07 MOV PSW,A
513 0233 44 54 JMP PROMPT
514

515

516 ; • !NIT
517

518 ;

519 0235 23 co !NIT: MOV A,#SRST
520 0237 3A OUTL P2,A ;RESET USART

521 0238 23 41 MOV A,#ERST
522 023A 3A OUTL P2,A
523 0238 23 CE MOV A,#MODE ; USART MODE WORD

524 0230 90 MOVX @RO,A ;SEND USART MODE WORD

525 023E 23 25 MOV A,#CMD ;USART COMMAND WORD
526 0240 90 MOVX @RO,A ;SEND USART COMMAND WORD

527 0241 9A FE ANL P2,#0FEH
528 0243 80 MOVX A,@RO ;READ USART ONCE
529

530

531 ; * SIGNON
532

533 ;

534 0244 14 94 SGNON: CALL CRLF
535 0246 14 94 CALL CRLF
536 0248 23 20 MOV A,#SP
537 024A 14 3A CALL COUT
538 024C 23 55 MOV A,#'U'

539 024E 14 3A CALL COUT
540 0250 23 50 MOV A,#'P'
541 0252 14 3A CALL COUT
542

543

544 ; * PROMPT
545 ;

546 ;

547 0254 14 94 PROMPT: CALL CRLF
548 0256 23 3A MOV A, i�PRMPT
549 0258 14 3A CALL Cf'JUT

LINE AODR Bl 82 83 84 ERROR

551

552 •

553

554

555

556 025A 14 2B
557 025C 14 3A
558 025E AC

559 025F 03 53
560 0251 96 67
561 0263 14 06
562 0265 44 54
563 0267 FC

564 0268 03 52
565 026A 96 70
566 026C 34 20
567 026E 44 54
568 0270 FC

569 0271 03 57
570 0273 96 79
571 0275 34 6C
572 0277 44 54
573 0279 FC

574 027A 03 47
575 027C 96 82
576 027E 34 FA
577 0280 44 54
578 0282 44 2A

; * COMMAND

;

COMO: CALL
CALL
MOV

XRL

JNZ

CALL
JMP

CMD05: MOV

XRL

JNZ

CALL
JMP

CMDl o: MOV

XRL

JNZ

CALL
JMP

CMDJ5: MOV

XRL

JNZ

CALL
JMP

CMD20: JMP

8048 MACRO ASSEMBLER VER 2.0

CIN

COUT
R4,A
A,��' S'

CMD05
SCMO
PROMPT
A,R4
A,#'R'

CMD10
RDCMD
PROMPT
A,R4
A,#'W'

CMD15
WRCMO
PROMPT
A,R4
A,#'G'
CMD20
EXEC
PROMPT
ERROR

PAGE 14

"'
�

LINE ADOR Bl B2 83 B4 ERROR

560

561

562

563

564

565

566

567

568

569

590

591

592

593
594

595

596

597

596

599

600

601

602

603

604
605

606
607

606
609

610

611
612
613
614
615

616
617

618
619
620
621

622

0284
0286
0288
028A

028C
028E

028F
0291
0293
0294
0296
0298
0299
0296
029C

•

54 A2
9A BF
56 88
8A 40

54 A2
83

9A Fl
8A 01
60
53 02
96 99
63
SA FO
60
83

8048 MACRO ASSEMBLER VER 2,0

REQUEST BYTES
OX NO ACTION
2N - REQUEST STATUS OF NODE N
3N CONNECT TO NODE N
4X DISCONNECT FROM NETWORK

ACKNOWLEDGE BYTES
OX NO ACTION
2P STATUS ACK, NODE IS LISTENING TO NODE P
3P CONNECT TO NODE P
4X DISCONNECT
SP CONNECT NOT POSSIBLE, NODE BUSY
6P STATUS ACI<, NO NODE
7P CONNECT NOT POSSIBLE, NO NOOE

PAGE

� CTA - CONNECT TO ARBITRATOR

;

;
CTA: CALL WFT

ANL P2,#0BFH ;REQUEST ARBITRATOR
CAo5: JTl CA05 ;LOOP UNTIL ACKNOWLEDGE

ORL P2,#40H ; RESET REQUEST

CALL WFT ;WAIT FOR END OF TRANSMISSION
RET

;

;
' CHKIN - CHECKS INPUT FROM USART

CHKIN! ANL P2, #USAB
ORL P2,#USOB
MOVX A,@RO ;READ USART STATUS
ANL A,#RDRDY
JNZ CJN5 ";JUMP IF CHAR IN

RET ;EXIT IF NO CHAR
CINS: ANL P2,#UDAB

Mavx A,@RO ;READ CHARACTER
RET

15

0

LINE ADOR Bl B2 B3 B4 ERROR

624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666

0290
029F
02A1

02A2
02A4
02A6
02A7
02A9
02AB

02AC
02AE
0280
0282
0284
0286

0267
0289
02BA
02BC
02BE
02CO
02C2
02C3

54 8F
C6 90
83

9A Fl
BA OT
80
53 04
C6 A6
83

54 8<l
23 40
14 3A
54 90
46 84
83

54 84
FF
53 OF
43 30
14 3A
54 so·
AA
83

•
•

GNSP:

•

WFT:

WT05:

•

'

OCNCT:
DCN05:

DCNTO:

•

•

CNNCT:

8048 MACRO ASSEMBLER VER 2.0 PAGE

GNSP - GETS CHAR FROM INPUT, LOOPS UNTILL NON-SPACE

CALL
J2
RET

CHI< IN
GNSP

;CHECK INPUT
;LOOP IF NULL

WFT -WAIT FOR .END OF TRANSMISSION

ANL
ORL
MOVX
ANL
J2
RET

DCNCT

CALL
MOV
CALL
CALL
JNTI

RET

CNNCT

CALL
MOV
ANL
ORL
CALL
CALL
MOV
RET

P2,#USAB
P2, #USOB
A,@RO
A,#TXE
WT05

;MASK TRANSMITTER EMPTY

DISCONNECT NODE FROM NETWORK

CTA
A,#40H
COUT
GNSP
DCNTO

;REQUEST ARBITRATOR
;DISCONNECT BYTE

;GET RESOPNSE
;WAIT FOR ENO OF ACKNOWLEDGE

CONNECT TO PORT IN REG R7

CTA
A,R?
A,#OFH
A,#30H
COUT
GNSP
R2,A

;REQUEST ARBITRATOR
;GET REQUESTED PORT NUMBER

;REQUEST TO CONNECT TAG
;SEND REQUEST
;GET RESPONSE, WAIT FOR NON-NULL
;STORE RESPONSE IN R2
;RETURN TO USER ROUTINE

16

�

....

LINE ADDR Bl B2 B3 84 ERROR

666 •

669

670

671

672

673 02C4 54 87
674 02C6 53 FO
675 02C8 03 30
676 02CA 96 CF
677 02CC 46 cc
678 02CE 83

679 02CF 54 AE
660 0201 68 50
661 0203 E6 03
662 0205 44 ·c4
683

664

665 0207

ASSEMBLER ERRORS = 0

; ' WFCNCT

;
WFCNCT: CALL
WFC5: ANL

XRL
JNS

WFC7: JNTl
RET

WFCJO: CALL
MO\f

WFC15: DJNZ
JMP

END

6046 MACRO ASSEMBLER VER 2.0 PAGE 17

WAIT FOR CONNECTION TO BE MADE

CNNCT ;REQUEST ARBITRATOR AND SUBMIT REQUEST
A,#OFOH ; MASK OFF LOl·/ER ti I BBLE
A,#30H ;COMPARE TO SUCCESSFUL ACK
WFC10 ;JUMP IF NO SUCCESS
WFC7 ;WAIT FOR END OF ACKNOWLEDGE

OCN05 ;GIVE TIME FOR OTHERS TO bCNCT
R0,#80
RO,WFC15
WFCNCT

�

"'

•

A005 OOAO A010· OOA4
Cf\05 0288 CHl<IN 028F
CIN5 0299 CLINST 07FA
t:11010 0270 CM015 0279
COMO 025A COUT 003A
CRLF 0094 CTA 0284
DCNIO 0284 OCNCT 02AC
ERROR 022A ERST 0041
EXEC OlFA FI05 OOBC
JB05 0085 INAO 0090
INH10 0063 INHEX 0049
JT8L 0008 LF OOOA
OH05 0071 OUTBYT 0086
PROMPT 0254 RC05 0133
RC20 0167 RC25 0169
SC05 OOE3 SCIO OOFl
SC25 0004 SC30 01 lD
SP 0020 SRST ooco

UDAB OOFO USAB OOFI
WFC15 0203 WFC5 02C6
WFT 02A2 WR05 0180
WR20 01CO WR25 OlCE
WRCMD 016C WT05 02A6

SYMBOL TABLE

AD15
CIN
CMD
CMD20
COUT05
CTINT
ER05
EX05
FILL
I N8YTE
!NIT
MODE
OUTHEX
RCIO
ROCMO
SC15
SCMD
TRRDY
USOB
WFC7
WR10
WR30
XREAD

8048 MACRO ASSEMBLER VER 2.0

OOAA A020 OOAB
002B CIN05 002F
0025 CM005 0267
0282 CNNCT 0267
003F CR 0000
07F4 OCN05 02AE
0230 ERCR 003F
0210 EXlO 0212
OOAC GNSP 0290
0076 INH05 0057
0235 INTRPT 07FO
OOCE OFST 003E
0065 PRMPT 003A
0138 RC15 0153
0120 RORDY 0002
0104 SC20 011F
0006 SGNON 0244
0001 TXE 0004
0001 WFClO 02CF
02CC WFCNCT 02C4
01A5 WR15 0188
OJE5 WR35 OlFS
OOBO XWRJTE DOCS

PAGE IS

�
w

64

APPENDIX B

SUBROUTINES IN 8748 MONITOR

65

There are a number of useful subroutines in the 8748 monitor

that are accessable to the user. A jump table_ at the beginning of

the monitor program allows direct entry to these subroutines. On

the following pages are descriptions of the available routines and

the entry and exit parameters as well as the calling procedures and

register and port modification are listed.

The following is a list of the subroutines and a brief

description of their purpose:

CHARIN

CHARO UT

CRLF

OUTHEX

INBYTE

OUTBYTE

INAD

XREAD

XWRITE

ERROR

PROMPT

CTA

DCNCT

CNN CT

WFCNCT

Input a single character from the console.

Output a single character to the console.

Output a carriage return and line feed.

Convert four bits to hex and output.

Input two hex digits and pack into one byte.

Output one byte as two hex digits.

Input an address or data field.

Read contents of' external RAM.

Write into external RAM.

Print error character and enter monitor.

Enter monitor.

Connect to arbitrator.

Disconnect from network.

Request connection to specified node.

Same as CNNCT but wait for connect

66

CHARIN Input a single character from console

This routine will get a single character from the serial

line and will leave the character in the accumulator. This routine

will always wait for a character to be sent in through the USART.

ENTRY PARAMETERS -

EXIT PARAMETERS -

AFFECTED -

EXAMPLE:

CHARIN EQU

CALL

OOOBH

CHARIN

none

A reg � character received.

output from P2

location of routine

get character

character now in A reg.

67

CHAROUT Output a single character to the console

This routine will take the contents of the accumulator and

send it out on the serial line. The routine will allways wait for

the serial line to become ready for the written character.

ENTRY PARAMETERS -

EXIT PARAMETERS -

AFFECTED -

EXAMPLE:

CHAROUT EQU OOODH

A reg = character to be output.

A reg = character output.

R2, P2(lower)

location of routi_ne

MOV A,U20H ASCII space character

CALL CHAROUT print space on console

CRLF Output a carriage return and line feed.

68

This routine will cause a carriage return and a line feed to

be sent out on the serial port. This routine will wait for the

serial line to become ready before sending the carriage return or

line feed.

ENTRY PARAMETERS -

EXIT PARAMETERS -

AFFECTED -

EXAMPLE:

CRLF EQU

CALL

OOOFH

CRLF

none

none

A, R2, P2(lower)

; location of routine

; send to console

69

OUTHEX convert four hex bits to ASCII and output

This routine takes the lower four bits of the accumulator

and converts them into an ASCII character and then calls CHAROUT to

send this byte to the console. This routine waits for the serial

line to become ready before the byte is output.

ENTRY PARAMETERS -

EXIT PARAMETERS -

AFFECTED -

EXAMPLE:

OUTHEX EQU

MOV

CALL

0011H

A,#D2H

OUT HEX

A reg = lower four bits are number to be

converted.

none

R2, P2(lower)

; location of routine

number two

convert to 032H and output

70

IN BYTE Input two hex digits and pack into one byte

This routine will wait for two ASCII digits to be sent in

through the serial port and convert each digit to a hex character

and pack the two hex characters into one byte. If an ASCII

character is input that cannot be converted, a flag is set and the

exit parameter is no longer significant. This routine will also

add the packed byte to the contents of register 7 and place this

sum back into register 7, This addition is used for checksum

calculation on hex file input.

ENTRY PARAMETERS -

EXIT PARAMETERS -

AFFECTED -

EXAMPLE:

INBYTE EQU

MOV

CALL

JFO

0013H

R?,IJO

INBYTE

ERROR

R7 present checksum for hex file

input.

A reg = packed byte

FO = 0 when conversion valid

FO = 1 when conversion invalid

R7 = updated checksum

R2,R3,P2(lower}

; location of routine

;

; clear checksum

get two hex digits

; error ir non-valid

A reg is now packed byte

71

OUT BYTE Output one byte as two hex digits

This routine takes the accumulator and unpacks the upper and

lower four bits, converts these two numbers into ASCII and outputs

the two ASCII characters out through the serial port. The entry

parameter is added to register 7 and the resulting sum is placed

back into register 7 for checksum calculation.

ENTRY PARAMETERS - A reg= two hex numbers packed into one

byte.

R7 = present checksum

EXIT PARAMETERS R7 = updated checksum

AFFECTED - R2,R3,P2(lower)

EXAMPLE:

OUTBYTE EQU 00158 location of routine

MOV R7,#0 ; clear checksum

MOV A,-fl:5EH byte to be output

CALL OUT BYTE • call routine'

• R7: 5EH'

a 35H and then a 45H

; are sent out the serial

port

INAD Input an address or data field

72

This routine allows address specifications to be entered

into the processor and may also be used for data substitution

routines. This routine will allow numbers to be entered on the

console and each number is converted to four bits and shifted into

a twelve bit buffer. If a character that is not a valid hex number

is entered, the routine returns control. The lower eight bits of

the number are in R4 and the upper four bits are in RJ. If a

invalid hex caracter is entered on the first entry, then flag O

will be set on return.

ENTRY PARAMETERS -

EXIT PARAMETERS -

AFFECTED -

EXAMPLE:

INAD EQU

• CALL

JFO

00178

INAD

FIRST

none

R3 - upper four bits of address

R4 = lower eight bits of address

FO � 0 when first character is not

terminator

FD = when first character i•

terminator

A reg, R2,R7

; location of routine

invoke routine

; if first character i•

; terminator

; address is in R3:R4

73

XREAD Read contents of external RAM

This routine allows easy access to the external random

access memory an the node microcomputer card. The address of the

location to be read is in R6:RO and the contents of this location

is placed in the accumulator.

ENTRY PARAMETERS - RO = lower eight

location.

bits of memory

R6 = upper four bits of memory location

EXIT PARAMETERS -

AFFECTED -

EXAMPLE:

A reg = contents of memory location

P2(lower)

XREAD EQU 0019H

MDV R6,-#04H

location of routine

MDV RO,#OOH address location 400H

CALL XREAD invoke routine

A reg now contains

contents of location 4008

74

XWRITE Write into external RAM

This routine allows easy access to external random access

memory, The address of the location desired is placed into R6:RO

and the desired contents should be placed in the accumulator before

the call.

ENTRY PARAETERS -

EXIT PARAMETERS -

AFFECTED -

EXAMPLE:

XWRITE EQU 001BH

MOV R6 ,#04H

MOV RO,/IOOH

MOV A,#5AH

CALL XWRITE

A reg = desired contents of memory

location specified

R6 = upper four bits of memory address,

RO = lower eight bits of memory address.

none

R2,P2(lower)

location of routine

;

memory address is 4DOH

desired contents are 5AH

; place 5AH in memory

location 4DOH

---------------· ___ " __ _

75

ERROR Print error character and enter monitor

This routine is the erroneous entry point to the monitor.

The error character will be sent to the console and the execution

will resume at the command prompt routine.

ENTRY PARAMETERS -

EXIT PARAMETERS -

AFFECTED -

EXAMPLE:

ERROR EQU 001DH

JMP ERROR

none

no exit from routine

irrelevant

location of routine

enter monitor after

sending error character

to console

76

PROMPT Entry point for monitor

This location may be called when a program desires to

terminate and give control to the command interpreter in the

monitor. The prompt character is issued and the processor will

wait for a command to be entered.

ENTRY PARAMETERS -

EXIT PARAMETERS -

AFFECTED -

EXAMPLE:

PROMPT EQU 001FH

JMP PROMPT

none

no exit from routine

irrelevant

location of routine

reenter monitor

CTA Connect to arbitrator

77

This routine will cause the node executing to request

communication with the arbitrator and will wait for an acknowledge

before returning control to the calling program.

CTA

ENTRY PARAMETERS -

EXIT PARAMETERS -

AFFECTED -

EXAMPLE:

EQU 0021H

CALL CTA

none

none

A reg, P2(lower)

; location of routine

node will be in

communications with

arbitrator processor

DCNCT Disconect from network

78

This routine forces the arbitrator processor to disconnect

the node microcomputer from the network.

ENTRY PARAMETERS -

EXIT PARAMETERS -

AFFECTED -

EXAMPLE:

DCNCT EQU 23H

CALL DCNCT

none

none

A reg, R2, P2(lower)

; location of routine

; disconnect node

from network

79

CNN CT Request connection to specified node

This routine allows inter-network connection to the node

specified in register 7. The arbitrator's acknowledge to the

request is returned in register 2.

ENTRY PARAMETERS

EXIT PARAMETERS -

AFFECTED -

EXAMPLE:

CNN CT EQU 00258

MDV R7,#3

CALL CNN CT

R7 · = node to which connection is

desired.

R2 = arbitrator acknowledge byte.

A reg, P2(lower)

location of routine

; request to connect

to node number three

invoke routine

if R2 = 83H, then

request was succsessfull

WFCNCT Same as CNNCT but wait for connect

This routine allows inter-network connection to the node

specified in register 7. This routine will not return until the

connection has been made. The user must check the status of the

requested port before calling this routine, and if the port is not

in the rack, this routine should not be invoked.

ENTRY PARAMETERS -

EXIT PARAMETERS -

AFFECTED -

EXAMPLE:

WFCNCT EQU 0029H

MOV R7,#3

CALL WFCNCT

R7 = node to which connection is desired

none

A reg, R2, RO, P2(lower)

location of routine

request to connect

; to node number three

invoke routine

now connected to

node number three

81

APPENDIX C

ARBITRATOR SOFTWARE LISTING

6080 MACRO ASSEMBLER, VER 2,0 ERRORS = 0 PAGE 1

0000
4000
200C
2000
2001
2000
0001
0004
0002
OOCE
0025
OOFF
200C
200E
1000
2000
2007
2006
OOB6
0006

0000
0003
0005
0008
OOOA
0000
0010
0013
0015
0016
0019
OOIC
0010
0020
0023
0026
0026
0028
002C
0020
002F

310040
3ECE
320120
3E25
320120
3A0020
210600
3EBG
320720
70
320620
7C
320620
3AOE20
3."20C20
lEOO
CD660l
IC

78
FElO
C22800

� ORG
EOU

EQU

EQU

EQU

EQU

EQU

EQU
EQU

STACK
RQPO
RQPl
URTSTAT
URTDATA
TRRDY
TXEMPTY
RD ROY
MODE
COMANO
RSTAKB
ACl(PTA
PRTNUM
DVPTB
ARB PA
CNTSTAT
CNTPARM
CNTCNT
BDCNST
'

; INIT
'

INIT:

fN05:

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EOU

LXI

MVI
STA
MVI
STA
LOA
LXI

MVI
STA
MOV
STA
MOV
STA
LOA
STA
MVI
CALL
INR
MOV
CPI

JNZ

OOOOH
4000H
200CH
200DH
2001H
2000H
I
4
2
OCEH
25H
OFFH
200CH
200EH
lOOOH
2000H
2007H
2006H
OB6H
a

SP,STACK
A,MODE
URTSTAT
A,COMAND
URTSTAT
URTDATA
H,BDCNST
A,CNTCNT
CNTSTAT
A,L
CNTPARM
A,H
CNTPARM
PRTNUM
ACKPTA
E,O

STS

E
A,E

IOH
IN05

; SYSTEM STACK
;REQUEST PORT ZERO
; REQUEST PORT ONE
;USART STATUS ADDRESS
;USART DATA ADDRESS
; TRANSM I TTER READY MASK
;TRANSMITTER EMPTY MASK
;RECEIVER READY MASK
; USART MODE BYTE
;USART COMMAND BYTE
;BYTE TO RESET ALL ACKNOWLEDGES
;ACKNOWLEDGE PORT ADDRESS
;ADD�ESS OF ARBITRATOR PORT NUMBER
;DEVICE PORT BASE ADDRESS
;ARBITRATOR PORT ADDRESS
;COUNTER TIMER STATUS ADDRESS
;COUNTER TIMER PARAMETER ADDRESS
;COUNTER CONTROL WORD
;BAUD RATE CONSTANT

;SEND USART MODE WORD

;SEND USART COMMAND WORD

; READ USART ONCE
;LOAD BAUD RATE CONSTANT INTO HL
;LOAD COUNTER CONTROL WORD TO A

;LOAD BAUD RATE CONSTANT

;SET EACH DEVICE TO TALK TO SELF
;SET NEXT PORT NUMBER

;COMPARE PORT TO 16
;LOOP UNTIL ALL PORTS TALK TO SEL�

00

N

8080 MACRO ASSF.MBLER, VER' 2. 0 ERRORS = 0 PAGE 2

;GNPR GET NEW PROCESSOR REQUEST

;

0032 3AOC20 GNPR: LDA ROPO ;GET CURRENT REQUESTS FROM PO
0035 SF MOV E,A ;STORE
0036 3AOD20 LDA ROPT ;GET REQUESTS FROM PT
0039 57 MOV D,A
003A 010100 LXI B, 1
0030 7B GN05: MOV A,E ;GET LSB OF REQUESTS
003E Al ANA c ;MASK OFF BIT
003F CC6300 CZ SPTA ;IF PORT IS REQUESTING SATISFY REQUEST
0042 79 MOV A,C ; PUT MASK I N ACC
0043 81 ADD c ;MULTIPLY MASK BY TWO
OQ44 4F MOV C,A ; RESTORE MASK
0045 3Ed8 MVI A, 8
0047 04 INR B
0048 BB CMP B
0049 C23DOO JNZ GN05 ;LOOP TO MASK OFF NEXT BIT
004C 010100 LXI B, I
004F 7A GNJo: MOV A,O ;GET MSB OF REQUESTS
0050 Al ANA c ;MASK OFF BIT
0061 3E08 MVI A,B
0053 CC6300 CZ SPTA ;IF PORT IS REQUESTING, SATISFY REQUEST

0056 79 MOV A., c ;MULTIPLY MASK BY TWO
0057 81 ADD c

ooi>a 4F MOV C,A
0059 3E08 MVI A,8
0058 04 INR B
005C BB CMP B
0050 C24FOO JNZ GNTO ;LOOP TO MASK OFF NEXT BIT
0060 C33200 JMP GNPR ;GET NEW REQUESTS

00

w

8080 MACRO ASSEMB�ER, VER 2.0 ERRORS = 0 PAGE 3

0063
0064
0065
0066
0067
0068
0060
OOGE
0071
0072
0073
0076
0077
0076
0079
007A
0070
007E
0080
0081
0084
0085
0088
0088
oo8c
008F

0092
0095
0096
0098
00913
009C
009E
OOAO
OOA3
00A5
00A8

E5
05

C5
F5

B7

21oc20
CA7100
?-10020
7E
Al
C21001
Fl

F5

BO
47
5F

CD5C01
E60F
5F

C06801
5B
3AOE20
C05001
78

320020
320C20

C03901
4F

E6FO
CA9200
79
E6FO
FE30
CAABOO
FE20
CAF900
C3EOOO

•

;SPTA
;
SPTA!

SP051

;GPRB
.

GPRB:

SET PORT AND ARBITRATOR TO TALK TO EACH OTHER

PUSH
PUSH
PUSH
PUSH
ORA

LXI

JZ

LXI

MOV

ANA

JNZ

POP

PUSH
ORA

MOV

MOV

CALL
ANI

MOV

CALL
MOV

LOA

CALL
MOV

STA

STA

H

D

B

PSW

A
H,RQPO
SP05
H,RQPl
A,M
c

RS TACK
PSW

PSW

B

B,A
E,A
RDPT
OFH
E,A
STS

E,B
PRTNUM
STPT
A,B
ARBPA
ACKPTA

;SAVE PROCESSOR STATE

- ;SET FLAGS
;GET ADDRESS OF REQUEST PORTO
;IF ENTERED WITH A=O, THEN JUMP
;ELSE, GET ADDRESS OF REQUEST PORT
;GET CONTENTS OF REQUEST PORT TO A
;�OMPARE TO MASK IN C
;IF NOT ZERO, THEN PORT NOT REQUESTING
;RESTORE PREVIOUS AF

;GET REAL PORT NUMBER
;STORE REQUESTING PORT NUMBER IN B
;AND IN E
;READ WHO PORT IS CONVERSING WITH
;MASK OFF LOWWER NIBBLE
;STORE IN E
;SET OTHER PORT TO SELF
;RESTORE REQUESTING PORT NUMBER
;PUT ARBITRATOR PORT NUMBER IN REGISTER A
;SET PORT TO ARBITRATOR
;RESTORE REQUESTING PORT NUMBER
;SET ARBITRATOR TO PORT
;ACKNOWLEDGE PCRT

GETS PROCESSOR REQUEST BYTE

CALL
MOV

ANI

JZ

MOV

ANI

CPI

JZ

CPI

JZ

JMP

CIN

C,A
OFOH
GPRB
A,C
OFOH
030H
CeJNECT
020H
STATUS
DISCON

;READ CHARACTER FROM SERIAL PORT
;STORE REQUEST WORD INC

;LOOP IF NULL CHARACTER
;RESTORE REQUEST WORD

;COMPARE TO CONNECT REQUEST
;CONNECT IF REQUEST TO CONNECT SET
;COMPARE TO STATUS REQUEST
;INVESTIGATE STATUS
;DISCONNECT IF ANY OTHER BYTE

Z'.

8080 MACRtJ ASSEMBLER, VER 2. 0 ERRORS = 0 PAGE 4

001\B
OOAC
OOAE
OOAF
0080
0083
OOB5
0088
DOBB
OOBD
OOBE
OOCl
00C2
OOC5
OOC6
ooca

OOCB
OOCE
OOCF
0000
0003

0006
0007
0009
oooc

OOOF
OOEO
OOE2
OOE5

ODES
ODEA
OOEB
OOEE
OOFl
OOF2
OOF3
OOF6

79
ESOF
4F

5F

CD5C01
E:610
C20FOO
C05COI
E60F
69
C20600
78

CD5001
79
F630
C02801
C04501
58
79
C05001
C31001

79
F650
CD2B01
C39200

79
F670
C02B01
C39200

3E40
BO
co2eo1
CD4501
78

5F

CD6801
C31D01

;CONECT - SET TWO PROCESSORS TO TALK TO EACH OTHER
;
CONECT: MOV

ANI

Mbv
MOV
cALL
ANI

JNZ

CALL
ANI

CMP

JNZ

MOV
CALL
MOV
ORI

CALL
CALL
MOV
MOV
CALL
JMP

;

A,C
OFH
C,A
E,A
RDPT
IOH
NTINRK
RDPT
OFH
c
PRTBSY
A,B
STPT
A,C
30H
COUT
WAIT
E,B
A,C
STPT
RS TACK

;PRTBSY - REQUESTED PORT IS BUSY

PRTBSY: MOV
ORI
CALL
JMP

A,C
050H
COUT
GPRB

:PUT REQUESTED PORT NUMBER IN A
;AND IN C
;AND IN E
;READ CONNECTION OF PORT REQUESTED
;IS CARO IN RACK?
; IF CARD NOT PLUGGED IN, REQUEST NOT POSSIBLE
;READ CONNECTION OF PORT REQUESTED
; MASK OFF TRASH

;JUMP IF PORT NOT CONNECTED To SELF
;RESTORE REQUESTING PORT NUMBER
;SET REQUESTED PORT TO REQUESTING PORTS NUMBER
;GET REOUESTED'S NUMBER TO A
;SEND CONNECT PCISIBLE
;SEND REPLY
;WAIT FOR END OF TRANSMIT
;PUT REQUESTING PORTS NUMBER IN E
;GET REQUESTEDS PORT NUMBER IN A
;SET REQUESTING PORT TO REQUESTED PORTS NUMBER
;RESET ACKNOWLEDGES

;GET REQUESTED PORTS NUMBER
;PUT REQUESTED PORT NUMBER IN PORT FIELD
;SEND NO CONNECT-PORT BUSY
;GET AN OTHER PROCESSOR REQUEST BYTE

;NTINRK � REQUESTED PORT IS NOT IN RACK

NTINRK: MOV
ORI

CALL
JMP

,

A,C
070H
COUT
GPRB

;GET REQUESTED PORTS NUMBER
;ASSEMBLE ACKNOWLEDGE
;SEND NO CONNECT-NO PORT
;GET AN OTHER PROCESSOR REQUEST BYTE

;DISCON - DISCONNECT PROCESSOR FROM ANY ONE
,

,

DISCON: MVI
ORA

CALL
CALL
MOV
MOV
CALL
JMP

A,40H
•

COUT
WAIT
A,B
E,A
STS
RS TACK

;SEND DISCONNECT ACKNOWLEDGE

;PUT REQUESTING PORT NUMBER IN A

;CONNECT PORT TO ITSELF
;CLEAR ACKNOWLEDGES

00

�

8080 MACRO ASSEMBLER, VER 2.0 ERRORS = 0 PAGE 5

;STATUS - SENDS STATUS OF PORT INDICATED TO PROCESSOR

OOF9 79 STATUS: MOV A,C ;GET PROCESSOR REQUEST BYTE
OUFA 5F �MOV E,A
OOFD CD5C01 CALL RDPT ; READ PORT I ND I CA TED
OOFE E610 AN! JOH
0100 CA1001 JZ ST05
0103 CD5C01 CALL RDPT
0106 E60F ANI OFH
0108 F660 ORI 60H
OJOA CD2B01 CALL COUT
0100 C39200 JMP GPRB
0110 C05C01 ST05: CALL RDPT
0113 E60F AN! OFH ;MASK LOWER NIBBLE
0115 F620 ORI 20H ;OR IN STATUS ACKNOWLEDGE INFO
OJ 17 CD2B01 CALL COUT ; SEND STATUS ACl<NOWLEDGE

01 lA C39.:>:00 JMP GPRB ;GET NEW PROCCESOR REQUEST BYTE

;RSTACK - CLEARS ALL ACKNOWLEDGES
;

0110 3AOE20 RSTACK: LOA PRTNUM
0120. 320C20 STA ACKPTA ;ACKNOWLEDGE ARBITRATOR
0123 320020 STA ARBPA
0126 Fl POP PSW ;RESTORE PREVIOUS ENVIRONMENT

0127 Cl POP B

0128 DI POP D
0129 El POP H
OJ2A C9 RET

;COUT SENDS CHARACTER TO SERIAL PORT

0126 F5 cour: PUSH PSW
012C 3AOT20 cos: LOA URTSTAT
012F E60J AN! TRRDY
0131 CA2C01 JZ C05
0134 Fl POP PSW
0135 320020 STA URTDATA
0138 C9 RET

.

;CIN RECEIVES CHARACTER FROM SERIAL PORT

;

0139 3A0120 CIN: LOA URTSTAT 00

Ol3C £602 AN! RDRDY �

013£ CA3901 JZ CIN
0141 3/\0020 LOA URTDATA
0144 cg RET

8080 MACRO ASSEMBLER, VER 2.0 ERRORS = 0 PAGE 6

;
;WAIT WAITS FOR END OF TRANSMISSION FROM USART

0145 F5 WAJT: PUSH PSW
0146 3A0120 wos: . LDA URTSTAT
0149 E604 ANI TXEMPTY
0148 C/1.,1(;01 JZ W05
014E ,., POP PSW
014F C9 RET

.

;Sf PT SETS PORTCEl TO LISTEN TO PORT(Al
.

0150 ES STPT: PUSH H

0151 D5 PUSH D
0152 1600 MVI D,O
0154 210010 U<I H, DVPTB
0157 19 OAO D
0158 77 MOV M,A
0159 01 POP 0
015A El POP H

0158 C9 RET
;
;RDPT READS PORT(El INTO A

;
015C F5 RDPT: PUSH H

0150 05 PUSH 0
OISE 1600 MVI D,0
0]60 210010 LXI H,DVPTB
0163 19 DAO D
0164 7E MOV A,M
0165 01 POP 0
0166 El POP H

0167 co RET

;STS SETS PORT CE l TO SELF
;

0168 F5 SJS: PUSH PSW
0169 7B MOV A,E
OJ6A C0500I CALL STPT
0160 Fl POP PSW
016E C9 RET

.
. ;END

END
�

r�o PROGRAM ERRORS

8080 MACRO ASSEMBLER, VER 2 ,0 ERRORS � 0 PAGE 7

SYMBOL TABLE

> 01
'

A 0007 ACK PT 200C ARBPA 2000
BDCNS oooa c 0001 cos 012C
CMTCN OOB6 CtHPA 2006 CNTST 2007
Cf.lNEC OOAD COUT 0126 D 0002
DVP11\ 1000 E 0003 GN05 003D

GNPR 0032 GPRB 0092 " 0004
ll'H T 0000 t: L 0005 M 0006

NTINR OOOF PRTBS 0006 PRTNU 200E
ROPT O J

5C RO ROY 0002 RQPO 200C
RSTAC 0110 RSTAK OOFF :i< SP 0006
SPTA 0063 STACK 4000 STATU OOF9
STPT 0150 STS 0168 TRRDY 0001
URTOt\ 2000 URTST 2001 W05 0146

8
C

I N
COMAN
DISCO
GN10
!N05
MOOE
PSW
RQP1
SP05
ST05
TXEMP

WAIT

0000
0139

0025

OOES

004F
0026
OOCE
0006
2000
007)
0110
0004

0145

"'
"'

89

REFERENCES

1 • Intel Corporatlon, COMPONENT DATA CATALOG, 1980.

2. Intel Corporation, MCS-48 USER'S MANUAL, August, 1980.

3. Intel Corporation, MCS-85 USER'S MANUAL, September, 1978.

4. Texas Instruments Incorporated, THE TTL DATA BOOK, Second

Edition, 1976.

5. Advanced Micro Devices, AM2900 FAMILY DATA MANUAL, 1978.

