
ADSL
PUBLICATIONS
FOR EDUCATIONAL PURPOSES ONLY

VOLUME 1·7
NUMBER 17.2

LEGO ROBOTS: A NEW EDUCATIONAL TOOL FOR ECE 291

BY

RAJEEVGOEL

B.S., University of Illinois, 1993

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1995

Urbana, Illinois

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

THE GRADUATE COLLEGE

MAY 1995

WE HEREBY RECOMMEND THAT THE THESIS BY

RAJEEVGOEL

ENTITLED LEGO ROBOTS: A NEW EDUCATIONAL TOOL FOR ECE 291

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THEDEGREEOF _______ MA __ S_TE __ R_O_F~S=C~I_E_N_C_E __________________ ___

u~~
Director of Thesis Research

N·N~f4.o
Head of Department

Committee on Final Examinationt

Chairperson

t Required for doctor's degree but not for master's.

0 -517

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
GRADUATE COUEGE DEPARTMENTAL FORMAT APPROVAL

THIS IS TO CERTIFY THAT THE FORMAT AND QUALITY OF PRESENTATION OF THE

THESIS SUBMITTED BY RAJEEV GOEL AS ONE OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE ARE ACCEPTABLE TO THE DEPARTMENT OF

ELECTRICAL AND COMPUTER ENGINEERING.

MAY 1. 1995
Date of Approval Depanmental Representative

ACKNOWLEDGMENTS

I would like to thank Professor W. Kent Fuchs, my thesis advisor, for providing the

inspiration for this project. He trusted my judgment and gave me the responsibility I needed to

succeed He was extremely supportive and enthusiastic at all times. I will always value his

brilliant ideas and his constructive criticism.

I would like to thank Dr. Ricardo Uribe for all of the advice he has ever given me, both

technical and otherwise. I will forever have a great deal of respect for the amount of practical

experience he possesses. He has helped me in every way from debugging my circuits to dealing

with people. I also thank Dr. Uribe for creating the Advanced Digital Systems Laboratory

(ADSL)~ a noncompetitive environment in which motivated students can express their creativity

and rise to their highest potential.

iii

TABLE OF CONTENTS

Page

1. INTRODUCTION 1
1.1 MIT's 6.270 Course ... 2
1.2 ECE 291 at the University oflllinois .. .3
1.3 Overview of the Results ... 4

2. LEGO ROBOTS ... 6
2.1 "Woody"-- Infrared Controlled Robot Using the 6.270 Microcontroller Board 7
2.2 The Search for an 8088 Compatible Microcontroller .. 1 0

3. SPRING 1994 LEGOBOT CONTEST: CAPTURE THE TORCH 13
3.1 The Microcontroller and Programming Language ... 13
3.2 Contents of the LegoBot Kits ... 15
3.3 Contest Task and Rules ... · 17
3.4 Contest Results ... 19

4. FALL 1994 LEGOBOT CONTEST: EIGHT BALL 25
4.1 The Vesta SBC88A Microcontroller and Additional Hardware 25
4.2 Contest Task and Rules 32
4.3 Contest Results ... 34

5. ENGINEERING OPEN HOUSE 1995 ... 38
5.1 "Cliff'-- Infrared Controlled Robot Which Received Commands from a PC38
5.2 Results of Engineering Open House 1995 .. .43

6. SPRING 1995 LEGOBOT CONTEST: BASKETBALL. .. .44
6.1 Contest Task ... 44
6.2 Improvements Over Previous Semester .. .45

7. CONCLUSIONS 47
7.1 Advantages and Limitations 47
7.2 Additional Resources ... 48
7.3 Future Considerations .. 49

APPENDIX A. SOURCE CODE FOR "WOODY" .. 52
A.1 Listing ofWOODY.C 52
A.2 Listing ofWOODY.ASM .. 56

APPENDIX B. SOURCE CODE FOR "NORM" 58

iv

APPENDIX C. SOURCE CODE FOR "CLIFF" .. 62
C.l Listing ofCLIFF.C ... 62
C.2 Listing of CLIFF .ASM ... 67
C.3 Listing ofCLIFF.PDS .. 69

APPENDIX D. SOURCE CODE FOR "SAM" .. 71

APPENDIX E. LEGOBOT CONTEST HANDOUT: CAPTURE THE TORCH 78
E.l Introduction ... 78
E.2 The Task .. 79
E.3 The Playing Field .. 80
E.4 The Torch .. 82
E.S Parts List ... 82
E.6 Rules and Restrictions .. 83
E.7 The Microcontroller and Software .. 84
E.8 Helpful Tips and Hints .. 85
E.9 Resources .. 85

APPENDIX F. LEGOBOT CONTEST HANDOUT: EIGHT BALL 87
F.1 lntroduction .. : .. 87
F.2 The Task .. 88
F.3 The Pool Table .. 90
F.4 Rules and Restrictions ... 91
F.5 Resources .. 92
F.6 Parts List ... 92
F.7 Sample Code ... 94

APPENDIX G. LEGOBOT CONTEST HANDOUT: BASKETBALL. 98
G.1 Introduction .. 98
G .2 The Basketball Game ... 99
G .3 The Basketball Court .. 1 00
G .4 Additional Rules and Regulations .. 1 02

APPENDIX H. LEGOBOT HANDOUT: USING THE MICROCONTROLLER 1 03
H.l Introduction .. 1 03
H.2 Connecting Devices to the Microcontrolier ... ! 04
H.3 Reading the Value of a Digital Sensor ... 1 05
H.4 Reading the Value of an Analog Sensor ... 106
H.S Writing to the Motor Ports ... 1 07
H.6 Downloading Your Program to the Microcontroller .. 1 08
H. 7 Serial Communication .. 1 09
H.8 The Sensors .. 111
H.9 The Motors ... 114
H.lO Resources .. 114

LIST OF REFERENCES .. 116

v

LIST OF FIGURES

2.1 Infrared Signal From a Remote Control Unit ... 9

3.1 Circuit Diagram for the Torch ...•.......... 18

3.2 Circuit Diagram for 100Hz and 125Hz IR Transmitters ... 20

4.1 Circuit Diagram for Additional Hardware on the Vesta Microcontroller 26

4.2 Pulse Width Modulation ... 29

4.3 Circuit Diagram for Pool Table IR Transmitters .. 34

4.4 Circuit Diagram for IR Test Module .. 34

5.1 Circuit Diagram for Cliff .. 39

5.2 Circuit Diagram for IR Transmitting Expansion Card .. .41

E.l Top View of Playing Field for "Capture the Torch" .. 81

E.2 The Torch .. 82

F. I Top View of Pool Table .. 90

G.l Top and Side Views of Basketball Court .. 101

H.1 Microcontroller Port Locations ... 1 05

vi

1. INTRODUCTION

"If the colleges were better, if they really had it, you would need to get the police at the gates to

keep order in the onrushing multitude. See in college how we thwart the natura/love of learning

by leaving the natural method of teaching what each wishes to learn, and insisting that you shall

learn what you have no taste or capacity for. The college, which should be a place of delightful

labor, is made odious and unhealthy, and the young men are tempted to frivolous amusements to

rally their jaded spirits. I would have the studies elective. Scholarship is created not by

compulsion, but by awakening a pure interest in knowledge. The wise instructor accomplishes

this by opening to his pupils precisely the attractions the study has for himself The marking is a

system/or schools, not for the college; for boys, not for men; and it is an ungracious work to put

on a professor. "

--Ralph Waldo Emerson

Within the scope of engineering at the college level, most professors and students have

witnessed at first-hand the phenomenon that a student' s learning is more effective, complete, and

permanent if the student is allowed to discover how the world works for himself or herself, as

opposed to being told how it works. This is why universities are gradually increasing the number

of laboratory courses available in their engineering ·curricula. Unfortunately, often the original

intent of these laboratory courses is lost when the discoveries are made for the students instead of

by the students. For example, the students are told in advance exactly what steps to perform and

what results to expect from their experiments. Because of this, the learning is more passive than

active. This is the problem that the "LEGO Robots" project attempts to solve.

1

The goal is to allow teams of students to design, construct, program, and debug their own

mobile autonomous LEGO robots to accomplish a specific task. Through these means, the

students shall discover for themselves which techniques work well and which techniques fail.

They will learn to devise their own informal experiments to test their various control algorithms,

and they will learn to evaluate the results of these experiments critically. They will experience

the entire engineering design process involved in taking a product from its conception to its

delivery. It is expected that the skills that they gain and the concepts that they' learn will stay

with them forever and help them in their future engineering careers.

1.1 MIT's 6.270 Course

The inspiration for bringing LEGO robots to the University of Illinois (Urbana

Champaign) was a course at the Massachusetts Institute of Technology, which was originally

started in 1987 by Michael B. Parker. The students taking this course, called 6.270, were

originally involved in a programming competition in which they wrote programs to control

computer-simulated robots. The course eventually evolved into a competition in which the

students built their own mobile autonomous robots from LEGO parts. Every year, there was a

different task, usually in the form of a game or modified sport, which the robots had to be

designed to accomplish.

Fred Martin and Randy Sargent, graduate students at MIT, designed a custom printed

circuit board, which served as a microcontroller for the LEGO robots. The board used a

Motorola M68HC11 microprocessor and had convenient ports for four de motors, a servo motor,

and several different types of sensors. Eventually the board also supported a small LCD screen

and gradually gained other features. Today, the students can program their robots in the C

2

programming language by using "Interactive-C" which was also developed at MIT specifically

for use within the 6.270 course.

The MIT 6.270 course has been a great success every year since its beginning, and today

it is one of the most well-known courses around the world. 1 Many universities have realized the

great potential of a course where students have the opportunity to build LEGO robots and have

started similar programs in their engineering departments.2 The University of Illinois (Urbana-

Champaign) is now among the growing number.

1.2 ECE 291 at the University of Illinois

In the Spring of 1994, the Department of Electrical and Computer Engineering at the

University of Illinois had its first LEGO robot contest as part of a course, ECE 291, called

"Computer Engineering II." This is an undergraduate level course in which the students study

machine-level programming, use of computers for real-time data acquisition, control of input and

output devices, and design and implementation of complex computer programs. These topics are

covered thoroughly in both the lecture and laboratory sections of the course.

The laboratory portion is divided into six machine problems, or MPs. For each of the

first five MPs, the students are given a detailed specification for a program which they must

individually design and implement. The code is written in Intel 8088 Assembly language and C,

and is run on Intel-based PCs. The ECE 291laboratory is currently equipped with 15 to 20 Intel

Pentium machines on which the students design, write, debug, and demonstrate their programs.

1 More infonnation about the M.I.T. 6.270 course can be found from the anonymous FTP site
"cherupakha.media.mit.edu" or on the World Wide Web at URL
"http://www.mit.edu:8001/courses/6.270/home.html".

2 Infonnation about the University of Maryland Robotics Competition can be found on the World Wide Web at the
URL "http://www .cs.umd.edu/projects/amrl!Robot-Comp/index.html" .

3

For the sixth MP, the students choose their own final project; they can pick from a list of

ideas or they can use their creativity to invent their own. Depending on the professor and the

semester, the students may have the option of working on the fmal project alone or they may

work in groups of two, three, or four. MP6 usually lasts from three to four weeks. Beginning in

the Spring 1994 semester, one of the options for MP6 was to design and implement a mobile

autonomous LEGO robot to accomplish a given task. At the end of MP6, the LEGO robots from

that semester would battle each other in a fun, noncompetitive, high-spirited, and exciting

contest, called the ECE 291 LegoBot contest.

1.3 Overview of the Results

At the time of this writing, ECE 291 students are participating in the LegoBot contest for

the third consecutive semester. The LegoBot contests from each of the previous two semesters

were very successful. The participants gave excellent feedback on the project, describing both

the areas they especially liked and also the ways it could be improved. Almost all of them

mentioned that they enjoyed building and programming their robots, and that they learned more

by doing this project than they have learned all semester in other courses. While most aspects of

the contests were highly successful, there were several areas which failed. As the LegoBot

contest evolves from semester to semester, the glitches will be gradually ironed out until the

project runs smoothly and flawlessly.

The remainder of this thesis is organized in a chronological fashion. Chapter 2 describes

LEGO robots and the preliminary research and preparation that went into setting up a LEGO

robot contest at this university. Chapter 3 describes in complete detail the Spring 1994 LegoBot

contest including contest rules, robot designs, successes, and failures. Chapter 4 does the same

4

for the Fall 1994 LegoBot contest. Chapter 5 describes Engineering Open House 1995 and the

robots which were presented there. Chapter 6 briefly describes this semester's (Spring 1995)

contest which is currently in progress. Finally, Chapter 7 will summarize the overall results of

the project and demonstrate the great potential for using LEGO robots as an educational "tool. It

will also provide suggestions for related future work.

Throughout this thesis, where appropriate, one will find discussions on the

implementations of four different LEGO robots, named Woody, Norm, Cliff, and Sam. These

robots were built only for experimentation and demonstration purposes; they did not participate

in any ofthe contests. This thesis can be interpreted as a journal of what was accomplished each

semester and how it was accomplished. It is hoped that this information will be useful to those

who will be organizing the ECE 291 LegoBot contest in the future semesters. The appendices

contain duplicates of documents that were distributed to the students in various semesters; by

obtaining the electronic form of this thesis on diskette, one can easily reuse these handouts.

5

2. LEGO ROBOTS

A LEGO robot is a mobile machine constructed primarily from LEGO parts designed to

accomplish a_ specific task. LEGO parts refer to the colored bricks, plates, gears, axles, wheels,

pulleys, and other parts which are included in the LEGO Technic line of products.3 These parts

can lock together easily to form virtually any type of structure or machine and can be taken apart

easily as well. The attraction for using LEGO to build small robots is that it is easy and does not

require any tools except creativity of the mind. LEGO kits can be found in most toy and

department stores. Depending on the kit, they come with complete instructions on how to build

miniature devices and structures such as a house, a car, a motorcycle, a fire truck, a crane, an

elevator, and a conveyor belt. The possibilities are literally endless.

The most interesting LEGO robots are those which are autonomous, meaning that they do

not require any external control or intervention to perform the task. All of the control logic (i.e.,

rnicrocontroller plus software) is mounted on the robot itself eliminating the need for wires

stretching between the robot and a stationary computer, for example. Also there may be no form

of wireless communication between the robot and any human or computer which is not part of

the robot. All of the power sources (i.e., batteries) must be mounted on the robot as well, in

order to qualify it as autonomous. The robots that are designed to participate in the ECE 291

LegoBot contest must be autonomous.

3 LEGO Dacta, the educational branch of the LEGO company, manufactures the LEGO Technic line of products.
For a catalog, contact LEGO Dacta I 555 Taylor Road I Enfield, CT 06082 I (800) 527-8339.

6

2.1 "Woody"-- Infrared Controlled Robot Using the 6.270 Microcontroller Board

The purpose in designing and building this first robot, called Woody, was to gain some

basic experience with LEGO robots. Woody was a nonautonomous LEGO robot which simply

responded to commands sent to it via infrared signals. The IR signals were generated using a

Sony television remote control device. The microcontroller board I used to control the robot was

the same one used at MIT in their 6.270 course.

Professor Fuchs had ordered three unassembled 6.270 microcontroller boards from an

individual on a robotics mailing list4 who had volunteered to gather parts and sell them for a

small profit in the form of a kit. Since the board came unassembled, the first step was to put it

together. This involved learning how to solder, identify various components, and test for short

circuits. Using the instructions in the 6.270 course notes [1], the assembly of the microcontroller

board went quickly and smoothly.

For the motor power supply, three 2 V Gates rechargeable batteries, which came with the

6.270 microcontroller boards, were wired together. In addition, I made a custom serial cable to

allow communication between the microcontroller and the desktop computer, which, in this case,

was a Sun workstation. To test the board, I downloaded the Sun version of the Interactive-C

software from MIT's FTP site,5 along with documentation and a test program written inC which

tested all of the microcontroller's features. The board worked perfectly the first time it was

tested.

4 This electronic mailing list focuses on discussions about small mobile robots and microcontrollers. The list name
is "robot-board@oberon.com". To subscribe, send mail to "listserv@oberon.com".

3 Interactive-C can be downloaded from the anonymous FTP site "cherupakha.media.mit.edu".

7

The next step was to build the robot. Each of the kits that contained the unassembled

6.270 boards also included four de motors and a servo motor. While a walking LEGO robot is

indeed possible, it introduces many issues such as balance which greatly complicate the physical

design. The simplest designs for mobile robots usually look much like tricycles or cars. · Woody

took the shape of a four-wheel wagon.

The servo motor, mounted in the front of the robot, controlled the rack-and-pinion

steering mechanism. I attempted several different configurations for the drive wheels. A single

motor driving both the left and right wheels did not work well because of the different speeds

required when the robot had to turn. In retrospect, a differential gearbox run by a single de motor

would have been the ideal solution, because it would have allowed the two wheels to turn at

different speeds when necessary. Eventually, however, separate motors were used to drive the

left and right wheels of the vehicle. Thus, the software for the microcontroller had to adjust the

speeds of the two motors individually (in addition to the angle of the servo motor) in order to

make the vehicle go straight, turn right, or tum left. Using the 6.270 board, the directions of the

de motors could also be controlled through software, allowing the vehicle to go forward or

backward.

The fmal stage was to write the software for the microcontroller to interpret the encoded

IR signal and drive the motors appropriately. A portion of the IR signal coming from a standard

remote control device is shown in Figure 2.1, with the 40 kHz carrier removed. Since the IR

receiver modules6 used have built-in circuitry to remove this carrier, this also is the exact

waveform which is fed directly into the microcontroller.

6 TheIR receiver modules used were the Sharp GPIU52X.

8

The start code is followed normally by 32 bits of data, 8 of which are shown in Figure

2.1. Each bit is separated by a 0. 7 ms high pulse. A "0" bit is represented by a low time of

approximately 0.5 ms, and a "1" bit is represented by a low time of approximately 1.5 ms. Since

there is a significant difference between the times for a "0" and a "1," it is quite straight-forward

to regularly sample the waveform in software and determine each bit by counting the number of

cycles the waveform stays low.

9.0ms

start code

0.7ms
~

0 0

0.5 ms
~

0

1.5 ms
~

Figure 2.1. Infrared signal from a remote control unit

0

I wrote the original program in C to do just this, but it ran too slowly; it could not sample

the waveform frequently enough to decode it reliably. Fortunately, the Interactive-C software

also supported Assembly language programs. When the code to sample the waveform and store

it in memory was rewritten in Assembly, it ran faster and returned enough data such that the 32-

bit pattern could be decoded. The code which recognized which button was pressed and drove

the motors accordingly was written in C.

The Interactive-C libraries came with subroutines to control the direction and speed of the

de motors and to control the angle of the servo motor. The only remaining challenge was to

determine a threshold value for the number of cycles below which the bit would be read as a "0"

and above which it would be read as a "1." I decided to let the microcontroller determine this

threshold automatically using a subroutine I wrote called "calibrateremote" in the C portion of

the code. The subroutine expected the user to press a certain button on the remote control for

which the bit pattern was already known. By sampling the waveform and comparing it with the

9

known bit pattern, the subroutine could determine an appropriate threshold value and print it out

on the LCD screen of the microcontroller. At the end of this project, the robot could move in six

different directions based on commands sent to it using the remote control. The source code for

both the C portion of the program and the Assembly portion are given in Appendix A. ·

2.2 The Search for an 8088 Compatible Microcontroller

As mentioned, the goal of the project was to incorporate a LEGO robot contest into the

final few weeks of ECE 291. Since during the first 12 weeks of the semester the students learn

and practice low-level programming in 8088 Assembly language and C, it would be most

convenient if they could program their LEGO robots in the same languages for MP6. This would

eliminate the overhead of learning an entirely new language just for the purposes of the final

project.

One option was to design and lay out an 8088-based microcontroller board complete with

motor drivers and sensor inputs, starting from scratch; after all, this is exactly what the MIT

6.270 course organizers had done with the Motorola M68HC11 microprocessor. Under the time

constraints, however, this seemed unfeasible. Another option was to purchase 8088-based

microcontrollers that were specially designed to be used in robotics applications; a long

comprehensive search revealed that no such board existed. The final option was to purchase a

general-purpose microcontroller and then add extra hardware to interface to the motors and

sensors.

Thus the search began for a suitable microcontroller board with an 8088 compatible

processor. The microcontroller had to be small so that it could be supported easily by small

LEGO robots. It had to have low power consumption at 5 V since it would be running off

10

batteries. It had to have plenty of digital inputs and outputs and also had to have AID (analog-to

digital) support. Professor Fuchs, Jonathan Kua, and I contacted several companies which made

microcontroller boards and SBCs (single board computers) and requested detailed information on

their products; the partial results of this research effort are summarized in Table 2.1.

Many of the microcontroller boards surveyed were not suitable for use in robotics

applications, even if extra hardware had been added to them. Several of them did not have

latched inputs and outputs, meaning that the only way to interface to the board was through the

system bus; this would have unnecessarily complicated the additional circuitry. Most of the

8088 compatible microcontroller boards were modeled directly after the IBM desktop PC, which

has neither AID support nor a large number of easy-to-use digital inp~t/output ports. A couple of

rnicrocontrollers, however, did support the necessary features: Micromint RTC-V25 and Vesta

SBC88A. We chose the latter because of price and exceptional software support for both C and

Assembly language programs. An order for one Vesta SBC88A microcontroller was placed so

that we could evaluate it further and determine whether it was indeed suitable for use in

controlling LEGO robots.

11

I-'
~

--···r-··J'- ------ I

AMD, AM186EM Sparrow

Ampro, CoreModule/PC

Ampro, CoreModule/XT

Ampro, LittleBoard/PC

Basicon, MC-2N

HTE, 188SBC

Kila Systems, KS-2

Kila Systems, KS-3

Kila Systems, KS-6

Megatel, PCI+i

Megatel, PCI+v
Megatel, WCPU/104

Micromint, RTC-V25

Micro/sys, SBC2186

Micro/sys, SBC2040

MMT, Inc., MMT-188EB
New Micros, NMIS-0025

R.L.C., PC-186EB
R.L.C., MICRO-CI88EB

R.L.C., MINI-C186EB

Vesta, SBC88A

Vesta, Micro88A

Vesta, Tiny188A

WinSystems, SAT-V40

Ziatech, ZT88CT01

Z-World, Little Giant

.
80C186

8088

V20

V40

V25

80CI88

V40

V40

V53

V40

V40 ·

80C88

V25

80CI86

V40

80CI88
V25

80Ct86

80C188

80C186

8088 '

8088

80188

V40

V40

Zl80

Table 2.1. Comparison of 8088 Compatible Microcontroller Boards

f - , - f , . I - f . ' . I . f • I ------------ ·----
? ? ? 256K ? ? ? ? SOC 186 compatible AMD processor, no NO

9.8 3.6"x3.8" SV, IISmA 256K 1 8 8088-compatible processor, PC/104 bus

9.8 3.6"x3.8" SV, 280mA 256K 1 8 8 NEC V20 compatible w/ 80C88, 1 parallel port, $290

7.16 5.7''x8.0" 5V, 700mA 256K 2 8 7 $450

? 3.0"x4.0" SV,? 32K 2 10 11 5 21 digital 110 lines, NO on separate board, $275

? IO"x8.4" 12V, 6.3W 512K 2 16 22 23 ? HiTech Equipment Corp., D/A, 45 110 lines, $749

7.27 6.2"x3.9" 5V, 200mA 768K 2 1 12 12 ? 8088 compatible, 24 110 lines, bus available, $187

8 6.2"x3.9" 5V, 200mA 256K 2 12 12 ? 8088 compatible, 24110 lines, bus available, $211

12 8.0"x3.9" 5V,400mA 256K 2 8 8 ? 8088 compatible, 16 110 lines, bus available, $289

10 4.0"x6.0" 5V,400mA 704K 3 8 Compatible with 80C88, parallel port, bus available

16 4.0"x6.0" 5V,400mA 704K 3 8 8 Compatible with 80C88, parallel port, bus available

4.77 3.6"x3.8" 5V,300mA 640K PC/104 bus available

10 3.5"x5.0" SV, 350mA 256K 2 8 16 16 ? NEC V25 compatible with 80C88, 32 110 lines, $339

10 4.5"x7.5" SV, 575mA 512K 2 3 bus available

8 4.7"x8.0" 5V, 280mA 512K 2 6 4 7 8 $425 with NO and extra RAM

? 4.0"x4.0" 5V, l25mA 256K 2 ? 12 12 ? Midwest Micro-Tek, Inc., 24 110 lines, $348
? 2.0"x4.0" 5V,45mA 64K 2 12 12 New Micros, Inc., 3 parallel ports, $115

10 8.3"x6.0" 5V,450mA 512K 2 16 16 5 R.L.C. Enterprises, Inc., PC/104 bus, 32 110 lines

10 3.0"x6.7" 5V, 250mA 512K 2 3 R.L.C. Enterprises, Inc., PC/104 bus

10 5.6"x5.8" 5V, 350mA 512K 2 3 R.L.C. Enterprises, Inc., PC/104 bus !

4 5.5"x4.5" SV,350mA 24K 1 8 23 23 Vesta Technology! Inc., $134 · ~~;

"

8 5.3"x3.0" 5V, IOOmA 512K 2 Vesta Technology, Inc., NO on separate board, $218

8 3.9"x6.3" 5V, 125mA 128K 2 4 NO and 110 on separate board, $506 w/ options

8 4.5"x7.0" 5V, 350mA 2M 3 8 12 12 8 NEC V40 compatible with 80C88, 24110 lines, $430

8 4.5"x6.5" 5V,430mA 1M I 24 24 8 48 digital I/0 lines, $375

9.2 4.8"x5.6" 5V,? ? 4 8 8 8 ? Z-World Engineering, D/A, bus available, $395

3. SPRING 1994 LEGOBOT CONTEST: CAPTURE THE TORCH

In the middle of the Spring 1994 semester, we began planning the very first ECE 291

LegoBot contest to take place at the end of the semester in the months of April-May. It was in

our best interest to have only a few participants in this frrst contest in order to leave plenty of

room for mistakes and experimentation. To keep it easily manageable, we decided to have two

teams of two students each. In future semesters after we had gained some experience, the

number of participants allowed in the contest would gradually increase to allow the contest to

grow at a steady rate. The LEGO parts used for this semester's robots came directly from

Professor Fuchs' personal supply and were returned to him after the contest was finished.

3.1 The Microcontroller and Programming Language

One of the most important aspects of the ECE 291 LegoBot contest is the microcontroller

and programming language used. At this time, we had not yet evaluated the Vesta SBC88A

rnicrocontroller board nor had the opportunity to design any add-on hardware for it Therefore,

the best choice was to use MIT's 6.270 microcontroller boards for this first contest. The

participants would have to learn either C or Motorola 68HC 11 Assembly language on their own

in order to program their robots. Since there were only four participants, however, this was not a

problem; in addition to being given copies of portions of the 6.270 course notes, they could

receive plenty of individual assistance from the contest organizers, Kevin Safford and me. As

part of the preparation for the contest, Kevin assembled the second 6.270 microcontroller board.

13

Including the one I had assembled for controlling my first robot, Woody, we now had two

working 6.270 boards for use in the contest.

As far as development platforms were concerned, the MS-DOS based PC seemed to be

the obvious choice since the ECE 291 laboratory was equipped with enough of them and also

since most students had their own PCs at home. Furthermore, the MS-DOS version ofiC

(Interactive-C), the software used to communicate with the 6.270 board, was well-supported by

MIT and relatively bug-free. Once this decision had been made, IC was installed on the

machines in the ECE 291laboratory, and copies were made on 3-112" floppy diskettes to be

included in the kits. One of the nice features ofiC is that it comes with simple library

subroutines, which can be used to read data from the sensors and control the motors. A small

sample of such routines is listed below. 7

void motor (int rn, int p)
void alloff ()
void servo on ()
void servo off ()
int servo_deg (float angle)
int digital (int p)
int analog (int p)
int dip switch (int sw)
void beep ()
int start_process (...)
int kill_process (...)

As implied by the last two functions listed, IC allows multitasking. One could, for

example, have a process which continuously checks the status of a particular sensor, and sets a

global variable based on it. Meanwhile, the main process could be continuously checking that

global variable and controlling the motors based on that information. One of the drawbacks of

7 One should consult the 6.270 course notes for more complete and detailed information about IC's capabilities.

14

the version ofiC that was available at the time was that it only supported a subset of the ANSI C

language. For example, it did not support complex data structures such as pointers. Newer

versions ofiC, however, do support most of the standard C language.

3.2 Contents of the LegoBot Kits

The next set of decisions to be made involved the parts to be included in each of the

LegoBot kits that would be provided to the two teams. In addition to the LEGO parts, the four

de motors, the servo motor, the microcontroller board, and the diskette containing a copy ofiC

for MS-DOS, we had to consider what other types of actuators and sensors should be included.

As far as actuators were concerned, we decided that the four de motors and the servo

motor would be sufficient to allow creative yet simple robot designs. However, since the 6.270

package ordered also had come with solenoids, these were included in the LegoBot kits as well.

The solenoids had a magnetic shaft and a spring; when a voltage was applied across the two

leads of a solenoid, the shaft would get "sucked" into the solenoid, and when the voltage drop

was removed, the spring would push the shaft out again. One possible application of this type of

actuator might be to open and close a claw or gripper on the robot. These solenoids could be

wired directly into the motor ports and could be controlled through software in the same way that

the motors were controlled. For power supplies, we would provide a 6 V AA battery pack to

drive the microcontroller and a 6 V Gates battery pack to drive the motors, just as in the 6.270

course.

The only sensors that carne with the 6.270 board were the GPI U52X infrared receiver

modules. Aside from these, we had to select a set of sensors which would be included in the

15

LegoBot kits. It was important to give the teams a reasonable variety of both digital and analog

sensors. Digital sensors, when wired correctly, can be read into the program as simply 0 or 1.

The analog sensors, on the other hand, return an analog voltage between 0 V and 5 V, which is

then converted by the processor to a digital value between 0 and 255. We wanted to have as little

redundancy as possible among the different types of data the sensors could provide to the

rnicrocontroller. For example, it did not make much sense to include two different types of

phototransistors (light sensors) in the kits ifthey both were essentially capable of returning the

same type of information. Availability, easy-of-use, and cost were also important considerations

in selecting appropriate sensors. Based on these criteria, we decided to give each team various

quantities of each of the following types of sensors: infrared receivers (digital), microswitches

(digital), a condenser microphone (digital), reflectance sensors (analog), phototransistors

(analog), and potentiometers (analog).

The infrared receivers simply respond with 0 or 1 based on whether or not they are

currently receiving light in theIR range. The microswitches are low-force switches, which are

ideal for detecting collisions with other objects. The condenser microphone could be used to

detect sound; the robots would·have to use this to "listen" for the starting signal, which was the

sound of a gunshot. A reflectance sensor determines how reflective a surface is in the infrared

range. For example, a white surface would be very reflective whereas a black surface would not

reflect any infrared light. The reflectance sensors must be placed physically close to the

reflective surface (less than 1/8") in order to work properly. A phototransistor measures the

amount of visible light reaching it. Finally, a potentiometer measures angle of rotation. It could,

for example, be used to determine the current position of a robot arm.

16

The generic 3-pin digital and analog sensor ports on the 6.270 microcontroller board were

designed to interface easily to any type of sensor. The ports essentially operated on the principle

that if the board provides the sensor with power (5 V) and ground, then the sensor should be able

to provide the board with the appropriate data (on the third pin). Therefore, some of the-sensors

we selected interfaced easily to the digital and analog ports of the board. Other sensors,

however, such as the reflectance sensors and the phototransistors required that we solder resistors

with certain values directly to them so that they could be plugged into any of the analog input

ports and give appropriate voltages between 0 V and 5 V. Circuit diagrams showing how each

sensor was wired are given in Chapter 4.

All of the parts that were contained in the Spring 1994 LegoBot kit are listed in the

handout which was distributed to the LegoBot participants. This handout is duplicated in

Appendix E. For the motors and most of the sensors, we glued them to appropriate LEGO pieces

before giving them to the participants. The intent was that all the kits would be consistent so

they could be used every semester. Otherwise, each team might have attached the motors and

sensors to the LEGO in their own way, which might not be convenient for a team with the same

kit next semester. Therefore, we glued LEGO gears and plates to parts such as the motors and

potentiometers in a way that they could be mounted on the robot and still interface easily to the

surrounding LEGO parts (other gears, axles, and bricks).

3.3 Contest Task and Rules

In order to have a successful LegoBot contest, an interesting task for the robots to

accomplish was necessary. It had to be challenging, but at the same time simple enough that the

17

participants could design a successful robot in the four-week time period. One of the goals was

to have a contest in which the robots would have to use data from almost all of the sensors which

were provided. We were also striving for a contest in which the robots would be forced to

interact with each other.

The task we fmally decided upon was called "Capture the Torch." The two robots would

start at opposite comers of a 4' x 4' table. In the center of the table was a "torch," which was

essentially a light bulb on a stick. The torch was stuck into a hole in the center of the table. The

objective for the robots was to find the torch, pick it up out of the hole, and deposit it in the

opponent's comer. The first robot to accomplish this would win that round. A more detailed

description of the task and the rules is given in Appendix E.

The torch contained a small flashlight bulb, a power switch, and two AA batteries. A

circuit diagram is shown in Figure 3 .1.

light bulb

_ 3.0V
~STswitch

Figure 3.1. Circuit Diagram for the Torch

The playing field was designed to allow the robots to gather a large variety of information

so that they could determine their position on the field. The table was surrounded by walls so

that the robots could use the microswitches (bump sensors) to detect the edge of the field. The

surface of the field had been painted with different colored rings to help the robot determine with

the reflectance sensor how far it was from the center (see Figure E. I). Also on two opposite

comers of the field, there were infrared transmitters to help cue the robots as to which direction

18

they were facing. The transmitters we used were the infrared beacons that came with the 6.270

board. The beacon is basically a small printed circuit board with eight infrared LEDs and eight

red LEDs. The beacon at one corner of the field would emit IR at 100 Hz and the one at the

other corner would emit at 125Hz. The Interactive C software came with routines which could

be used to easily determine which of these two frequencies of IR the robot was receiving. Since

the IR receiver modules only detect IR on a 40 kHz carrier signal, we had to superimpose this

carrier frequency on top of the 1 00 Hz or 125 Hz signal in order for the robots to be able to detect

it

The circuitry used to drive theIR beacons is shown in Figure 3.2. A 556 dual timer is

used to generate the 1 00 Hz and 125 Hz waveforms. These signals are sent into the Master Reset

pin of the 74LS390 decade counters, which are configured as divide-by-fifty counters. Since the

clock speed for the counters is 2 MHz, they will output signals modulated at 40 kHz as shown in

the figure. This waveform is then fed into a simple noninverting amplifier stage so as to provide

enough current to drive all the LEDs. The LM386N-1 is actually an audio amplifier, but any

operational amplifier would have sufficed. The LM386N-1 was used only because of availability

at the time. We used four AA batteries (6 V) to drive the circuitry and the LEDs.

3.4 Contest Results

Before MP6 officially began, I introduced the concept ofLEGO robots to the ECE 291

class and described the project, giving the students a flavor for what was involved. I gave a brief

description of the contest rules for the Spring 1994 semester, and also demonstrated to the class

the nonautonomous LEGO robot which I had built called Woody (see Section 2.1). The class

19

Vee Vee

7.27 kn NE556N 5.8kn
dual timing circuit

3.3kn 2.64 kn
Discharge A DischargeS

Threshold A ThresholdS

Control A ControlS

Reset A ResetS

Output A OutputS

Trigger A TriggerS

I 1~F

.Il..JLS"L .fLJL__fl_
100Hz 125Hz

oscillator

100 n

470

redl.ED

MLED71

Figure 3.2. Circuit Diagram for 100Hz and 125Hz IR Transmitters

20

seemed excited, and it was immediately obvious that there would be considerable interest in this

type of project. Since we had already decided that only four students would be involved in the

LegoBot contest this semester, not everyone interested was able to participate. Dan Moore and

Jason Wessel formed one team; Michael Landauer and Ted Briggs formed the other team. The

two teams were given their kits, and they began work on their LEGO robots.

At the end of the four-week period, both teams had built successful robots programmed

entirely in C. The contest took place in class on the same day as the rest of the class

demonstrated their MP6 projects. It was originally intended that there would be three rounds of

competition between the two robots, and the robot that won the best two out of the three rounds

would be declared winner of the contest. However, in each of the first two rounds, both robots

got entangled with each other in the middle of the table, and neither was able to complete the

goal. At this point, we decided to do away with the formal contest, and simply have informal

individual demonstrations. Since both robots were able to successfully carry the torch to the

opposite corner in the absence of another robot on the table, the contest was declared a tie. All

four participants had gained valuable experience in the use of embedded microcontrollers, and

they all mentioned having learned a lot by doing the LegoBot project.

Despite the success of this very first ECE 291 LegoBot contest, many problems were

discovered throughout the semester which would have to be corrected. The following are brief

descriptions about some of the troubles encountered.

• The task for the robots ended up being more of a hardware challenge rather than a

software challenge, as it was intended. The final software for both of the robots was quite

21

short and simple. A trivial algorithm, which requires almost no sophistication in terms of

closed feedback loops and intricate control mechanisms, is outlined below:

1.) Spin until light is detected.

2.) Move forward for a predetermined amount of time.

3.) Pick up torch.

4.) Move forward for a predetermined amount of time.

5.) Drop the torch.

• The table, which was 4' x 4' in size, was too small for two robots to play at the same

time. It took very little time for the robots to travel from a comer to the center, and it was

too difficult for the robots to get around each other once they became entangled.

• Originally, it was planned that the top of the torch would be round as shown in Figure

E.2. However, the torch we constructed ended up with a square-shaped top instead. This

made grabbing the torch slightly more difficult for the robots, because the distance from

the edge of the torch to the stick varies depending on the angle from which the robot is

approaching.

• The robot designers encountered other problems with the torch as well. It was originally

powered from five AA batteries which made it especially heavy. Later the power supply

was reduced to two AA batteries to reduce the weight. In addition, the torch was slightly

unbalanced, causing it to fall unpredictably when the robots grabbed it. Also, the light

bulb on the torch was not bright enough, especially when the robots were operating in a

well-lit room.

22

• One of the most frustrating physical problems with the contest was that there was too

much friction between the stick of the torch and the hole in the playing field. This meant

that unless the torch was perfectly vertical, it required a considerable amount of force to

lift the torch out of the hole.

• The IR transmitters on the two comers of the playing field were not mounted securely

and kept falling off. Fortunately, in the end, the robots did not need to use their IR

receivers to navigate around the table.

• Most of the various sensors given to the teams were not used due to the simplicity of the

algorithm required to solve the task. The environmental information provided by the

torch and the playing field was found to be redundant and often unnecessary. For

example, the teams did not make use of the micro switches (bump sensors),

potentiometers, infrared receivers, or reflectance sensors.

• I was unable to find an easy way to interface the condenser microphone element to the

microcontroller. Rather than having the robots start each round automatically when they

detected the sound of a gunshot, the teams ended up starting their robots manually by

pressing the "reset" button on the microcontroller.

• Many of the parts given in the kit were incessantly breaking and coming apart during the

development. For example, the LEGO gears and plates would not stay glued to the

motors and sensors. Also the male header pin connectors kept coming unsoldered as the

teams would continuously bend and twist the wires to fit them into the ports of the

microcontroller.

23

• There was very little space in the ECE 291laboratory to store the playing field. The

teams would have to move it out into the hallway every time they needed to work with it.

24

4. FALL 1994 LEGOBOT CONTEST: EIGHT BALL

In the Fall1994 semester, ECE 291 was taught by Professor Michael C. Loui. Professor

Loui was amenable to letting the students participate in the LegoBot contest again as part of the

final project, MP6. He was extremely supportive and enthusiastic. Early in the semester, we had

ordered enough parts and equipment to put together six complete kits so that we could have four

teams taking part in the project. This would leave two kits unclaimed for use as spare parts and

for experimentation purposes. Since Professor Loui decided to have all of the students work in

groups of four for MP6, we ended up having a total of 16 participants for the Fall 1994 LegoBot

contest.

4.1 The Vesta SBC88A Microcontroller and Additional Hardware

One of the goals for this semester was to use the 8088-based Vesta SBC88A

microcontroller board. Since it was only a general-purpose microcontroller, it did not have any

motor drivers or PWM circuitry on it. These items had to be added in the form of an add-on

board, which would sit directly on top of the microcontroller, connecting to its ports. The

complete circuit diagrams for this additional hardware are shown in Figure 4.1. In these

diagrams, all logic is powered from V cc, which is 5-6 V obtained from four AA batteries, the

same source which powers the microcontroller board. The motors are driven off V motop which is

obtained from three 2 V (total6 V) Gates rechargeable cells, the same ones used for the LegoBot

contest the previous semester.

25

1 MHzclock
oscillator

CLK

CP

74F579
8-bit counter

1/07-1100

8-bit latch, motor 1

Vesta output port 2H

Vee

1kn

Vee

1 kn

Vee

1 kn

Vee

1 kn

Vee

1 kn

Vee

1 kn

Vee

1 kn

1-of-4 decoder

"OoO,D;"O;

74LS04

74LS373
8-bit latch, motor 3

74LS32

74LS32

74LS32

74LS32

74LS32

74LS32

8-bit latch, servo

motor11eft

motor21eft

motor31eft

servobase

Figure 4.1. Circuit Diagram for Additional Hardware on the Vesta Microcontroller

26

LE

Vmotor

1 k!l 1 k!l

motor 1 output port

Vmotor

1 k!l 1 k!l

74LS05

74LS05

74LS04
motor 2 output port

74LS04

Vmotor

1 kn 1 k!l

motor 3 output port

Vmotor

servo motor
servobase

Figure 4.1 (cont.). Circuit Diagram for Additional Hardware on the Vesta Microcontroller

27

Vee

Reflectance Sensor x 4

1kn

Phototransistor x 2

Collector

Emitter Vesta analog input ports 4-5 C>

Potentiometer x 2

Vesta analog input ports 6-7 C>

Infrared Receiver x 2
r-->----fVee

~ o:==J Vesta input port 20H (bits 0-1) C>

L-~========-=o r:::::>-=-.

Vee
Microswitch x 4

DIP Switch x 4

10kn

1.....-------C> il
Tf ~-------C> r:::::>-=-.

Vee

10 kn

\IL__ ---J ____ e> L - e> r:::::>-=-.

Figure 4.1 (cont.). Circuit Diagram for Additional Hardware on the Vesta Microcontroller

28

The majority of this hardware is designed to control the speed of the de motors. This is

done by using a well-known technique called Pulse Width Modulation (PWM). The theory

behind PWM is that by turning the motors on and off rapidly, the motors actually spin at a lower

speed since the average power being supplied is reduced. By varying the width of the pulse

being applied to the motor drivers, we can control the speed of the de motors. The duty cycle is

the width of the pulse divided by the total period. Examples are shown below in Figure 4.2. The

waveforms in this diagram have a frequency of I 00 Hz, but PWM frequencies can range from

I 00 Hz to 20 kHz depending on the motor.

25% duty cycle

50% duty cycle
-

J u u u 75% duty cycle

0.01 ms

Figure 4.2. Pulse Width Modulation

To generate these PWM waveforms, we first store 8-bit values into the 74LS373 latches;

these values represent the duty cycle for each of the three de motors. A 0 corresponds to a I 00%

duty cycle (motor is on full speed) and a 255 corresponds to a duty cycle of almost 0%. The

program running in the microcontroller can store values into these latches by writing the 8-bit

value to port I OH and then writing the appropriate address (0, I, 2, or 3) out to port 20H. The

74LS139 will make sure the value is stored in the appropriate latch. The capacitors were

necessary to eliminate false latching due to glitches in the output port 20H.

29

If we compare the latched value for a motor with the value coming out of a free running

8-bit counter (74F579), the output of the comparator will be a PWM waveform. For example, if

the latched value is 127, then the value coming from the counter will be greater than 127 half of

the time and less than 127 the other half of the time. Therefore, the duty cycle of the signal

coming from the comparator will be approximately 50%. The frequency of this signal will be

exactly 11256 of the frequency of the counter's clock. The counter's clock, in this case, is

running at 20 kHz, which is obtained by dividing down a 1 MHz clock oscillator. This is done

with a 74LS390 decade counter in a divide-by-fifty configuration.

The outputs of the comparators are fed into the motor driver stage, once they have been

checked against the values that control the motor direction (Vesta output ports OH through 5H).

The motor drivers consist ofH-bridges with bipolar PNP and NPN transistors that allow a motor

to be driven in both directions. If two transistors diagonally across from each other are both on

simultaneously and the other two are off, the motor spins in one direction. If the opposite two

transistors are turned on, the motor spins the other way.

It is important that a PNP and an NPN transistor, whose collectors are connected, do not

tum on simultaneously to avoid short circuits between power and ground. Thus the logic has

been designed such that this can not happen. The base of the PNP transistor has to be pulled up

to V motor in order for the transistor to be off, and it must be at 0 V for the transistor to be on. This

is the reason for the open collector inverters (74LS05). Since the NPN transistor operates on the

opposite voltages (0 V for off and V motor for on), we can feed the same voltage into its base so

that corresponding PNP and NPN transistors can never be on simultaneously. However, we use

a separate 74LS04 inverter to avoid "fighting" signals.

30

The servo motor also operates on the PWM concept. Different pulse widths cause the

servo motor to turn to different angles. Specifically, a pulse width of approximately 0. 7 ms

causes the servo to go to one extreme while a pulse width of2.0 ms causes it to turn to the other

extreme (180 degrees of rotation). The frequency of the pulses should ideally be 50 Hz, but here

we use 80 Hz to minimize the number of components in the circuit. The servo motor has three

lines coming from it: power, ground, and control. Since the servo has only one control line, we

do not require a full H -bridge circuit here; a single NPN transistor suffices. The output port 6H

from the Vesta microcontroller turns the servo motor on and off.

The additional hardware to interface with the sensors was minimal. Diagrams of all six

types of sensors are shown in Figure 4.1 , along with the interface circuitry on the add-on board.

Convenient 2-pin, 3-pin, and 4-pin ports were put on the board, so the users could plug in only

the sensors which they needed.

The Vesta SBC88A microcontroller came with MS-DOS based software to download

programs to the microcontroller and debug it in real time. This software, called "C_thru_ROM,"

is produced by Datalight.8 With it, one can download an executable file created using any

version of Microsoft Assembler (MASM) or version 6.0 or earlier of Microsoft C/C++. The

software communicated with the microcontroller board through a 4800 baud serial connection.

The only special consideration is that the program must be linked with an object file which was

provided (ST.OBJ); this object file contains the unique startup code required to run a program on

the microcontroller as opposed to running it on a desktop PC. Brief instructions on how to

download a program to the microcontroller are given in Appendix F.

8 For more information, contact Datalight I 307 N. Olympic Ave., Suite 201 I Arlington, WA 98223 I (206) 435-
8086.

31

In addition, one could link the program with a library containing special input and output

routines for the microcontroller. This library had a "printf' routine which would send the data

through the serial port out to the desktop PC. As long as the C_thru_ROM software was still

running and the serial cable still connected, the data would show up on the screen. This turned

out to be extremely useful for debugging purposes.

For demonstration purposes, a robot called Norm was built using the Vesta

microcontroller and the new hardware. This nonautonomous robot was designed to perform the

same function as Woody: respond to infrared commands from a remote control unit. The source

code to control this robot was written entirely inC and is listed in Appendix B. The program

waits for an IR signal, decodes it, and sets the left and right motors to .the appropriate state

(forward, backward, or stop) depending on which button was pressed. This allowed the robot to

move in any of eight different directions. The hardware for the robot simply involved two

motors and an infrared receiver all connected to the completed microcontroller board.

4.2 Contest Task and Rules

After brainstorming with Jonathan Kua and Steve Sawatzky to come up with a more

interesting contest task than the one from the previous semester, we decided on a game of pool

known as Eight Ball. In the real game, there are seven solid colored balls, seven striped balls,

and one black eight ball. In our modified version, there would be seven red balls, seven green

balls, and one black eight ball. The game involved one robot trying to place the green balls into

the pockets and the other robot trying to place the red balls into the pockets. At the end of the

time limit (3 min), the robot which had more of its own balls in the pockets won the round. Both

32

robots had to try to avoid pocketing the black eight ball until all of its own balls were sunk. The

robots would play on a specially designed pool table with large pockets and stiff wooden beams

as side walls.

The complete contest rules are given in Appendix F, which contains a copy of the exact

handout distributed to the students. The handout also contains a list of all the parts and

equipment distributed to the teams, including the companies they were ordered from. The add

on boards, which attached to the microcontroller, were built and wired by hand since there were

insufficient resources available to have printed circuit boards made. The parts used in the add-on

board are included in the list of parts. In addition, the handout gives some sample source code

for interfacing to the motors and sensors. Finally, it contains brief instructions for using the

microcontroller board.

The pool table had six pockets: one on each of the four comers and one in the middle of

each of the two sides (see Figure F.l). An infrared transmitter was mounted on each of the

pockets to aid the robots in finding the pockets. Since the IR receivers only detect signals

modulated at 40 kHz, a small circuit had to be designed to drive the IR transmitters on the pool

table with this carrier frequency. This simple circuit is shown in Figure 4.3. Also, to quickly test

whether the IR transmitters were working, another small board containing an IR receiver and a

visible LED was built. This is shown in Figure 4.4, The NOR gate is used to both invert the

signal and provide enough current to drive the LED; any gate (NAND gate or inverter, for

example) would have sufficed.

33

MLED930
oscillator

Figure 4.3. Circuit Diagram for Pool Table IR Transmitters

r=D-
74LS02 ! '"" LEO

Figure 4.4. Circuit Diagram for IR Test Module

4.3 Contest Results

From the ECE 291 class ofFall1994, sixteen students grouped into teams of four were

selected to participate in the LegoBot contest. The people on these teams are named below.

Yellow Team: Todd Baker, Jake Battle, Jay Monkman, Gary Tsai

Red Team: K.ian-Teik Beh, Matthew Bryan, Ben Cho, Zachary Zuzzio

Green Team: Ryan Akkerman, Kwun Ho, John Knapowski, Dennis Koutsoures

White Team: Chris Bertelsen, Amr Haggag, Kurt Lewinski, Kevin Sawatzky

Each team was given one complete kit including the microcontroller board with the add-on

hardware.

Each team was able to design a creative LEGO robot, which solved the task in its own

unique way. The Yellow Team built a robot which was extremely fast compared to the others. It

did not detect collisions; rather it simply backed up on its own after a certain timing delay

assuring it would never get caught in a comer. This robot had a gate which was normally in the

up position. When a ball entered the gate, it would close the gate, detect the color of the ball, and

34

either open the gate to dispose of it or run full speed towards a pocket to allow the ball to fall

through the bottom. The Green Team built a robot whose special feature was to start the contest

off by backing up directly towards the triangle of balls. Since it had a large rear bumper, most of

the balls of its own color would fall into the comer pocket. Furthermore, it would have protected

nearly all of the balls so that the opponent robot could not access them. The Red Team's robot

had a tunnel going through the robot. The balls would enter the tunnel and the robot would

check the color of the ball. If the ball was its own color, it would close a small gate causing the

ball to travel with the robot, and proceed to drop it in a pocket. If the ball was any other color, it

would simply keep moving forward and the ball would exit from the rear untouched. Finally, the

White Team designed a robot which had a mechanism to shoot the balls from a distance. It

would normally line itself up with the strongest IR signal, and then shoot the ball. It was also

programmed to travel along the wall until it reached a pocket, just in case IR could not be

detected.

The actual LegoBot contest took place on a Friday afternoon in a large open classroom.

All of the ECE 291 students and teaching assistants were invited to watch the event; in addition,

several of the participants had invited their own guests. Thus there was a large crowd of people

present, adding to the excitement of this occasion, which was the culmination of four weeks of

hard work. By random selection, it had been decided that the Red and Yell ow teams would

battle each other first, after which the Green and White teams would battle. The losers of those

rounds would compete once after that, and fmally the two winners would battle for the

championship. In the first round, the Yellow Team accidentally knocked the eight ball into a

pocket, ending the round early and allowing the Red Team to move on. In the second round, the

35

Green Team was disqualified because their robot kept false starting; it would begin moving

before the IR transmitters had been turned on. Since they were disqualified, the losers' round

was canceled. And in the fmal round, the Red Team won over the White team simply by placing

more of its own balls into the pockets. Overall the contest was a great success, and afterwards

everyone stayed to hold "grudge" matches against each other and to do individual

demonstrations.

Once again, despite the success of the Falll994 LegoBot contest, we encountered several

frustrating problems over the course of the four weeks. These are briefly described below.

• Since the teams were allowed to use up to $10 in additional parts, several of them

generated the idea of placing IR transmitters on their own robots in order to "confuse" the

opponent. Since the IR signal is used to start the contest, IR transmitting robots could

potentially cause the whole contest to be a disaster. Therefore, a special rule was added

late in the semester to avoid this problem.

• Since almost all of the chips on the microcontroller board were TTL chips, the AA

batteries used to power the electronics were being consumed very quickly. Some teams

went through two or three sets of batteries per day. In the future, it will be necessary to

use CMOS boards, if possible, to reduce power consumption.

• Again, the gears and LEGO pieces kept coming unfastened, especially from the motors.

Also, connectors occasionally came unsoldered from the wires and sensors.

• Another problem we encountered was with the servo motor. It was discovered that the

servo motor would not operate correctly if any of the de motors were on simultaneously.

36

This was due to noise generated by the de motors which could not be filtered out even

with the use of capacitors.

• Two of the teams were using the LEGO chain links to construct a tanklike vehicle. It

turned out that there were not enough of these pieces to build a complete tank with the

track drive on both sides of it. Therefore, the teams had to share parts.

• The wires attached to the sensors were often not long enough to reach from the sensors to

the microcontroller. This was an easy problem to fix by making extension cables with

the appropriate number of wires.

• For an unknown reason, the C_thru_ROM software could not download programs

quickly to the Vesta microcontroller from the Pentium machines. It worked fine on 386

or slower PCs. Since the ECE 291 laboratory is equipped with Pentiums, this was a

major problem. Fortunately, we managed to keep one 386 in the laboratory for the

students to use when downloading their programs.

• The microcontroller add-on board had too much metal exposed, especially from the

bipolar power transistors. This made it easy to accidentally create a short circuit while

trying to plug in the sensors and motors.

• The pool table was kept propped up against the wall in the hallway outside of the ECE

29llaboratory. When the teams had to use it, they would have to place it flat on the

ground. There was very little space in the hallway and also very little light, especially

when all four teams were working simultaneously.

37

5. ENGINEERING OPEN HOUSE 1995

At the same time as preparations were being made for the Spring 1995 LegoBot contest, I

was putting together a LEGO robots exhibit for the Engineering College's annual Engineering

Open House. This is an event in which students from all engineering departments and societies

display their projects and compete for awards in various categories. We had kept the four LEGO

robots from the previous semester intact, so that they could be used as part of our exhibit. In

addition, I had designed a new robot called Cliff which was also on display during Engineering

Open House.

5.1 "Cliff' - Infrared Controlled Robot Which Received Commands from a PC

This robot, like Woody and Norm, was able to receive infrared commands, decode them,

and act on them. In this case, however, the infrared signals were being transmitted by an

expansion card in a PC instead of a person holding a remote control unit. Indirectly, though, the

user was still controlling the robot; the Microsoft Windows software interface on the PC had nine

buttons which the user could click with the mouse to make the robot travel in different directions.

This software on the PC communicated directly with the expansion card to transmit the

appropriate infrared signals.

The M68HC11EVBU microcontroller board on the robot was responsible for decoding

the infrared signal and controlling the motor drivers. The program for the microcontroller is

given in Appendix C. Figure 5.1 contains a circuit diagram which shows exactly how the motor

drivers and infrared receiver were interfaced to the microcontroller board. I used two MPM3004

38

Sharp GP1 U52X
Infrared Receiver

Vmotor

Vmotor

EVBU port D (bit 4)

Figure 5.1. Circuit Diagram for Cliff

39

left motor output port

right motor output port

parts from Motorola, each of which contains a full H-bridge sufficient to drive a single de motor

in either direction.

The expansion card for the PC is designed to wait idly until a 16-bit data value is written

to the 110 address 0300H. When this data is received from the ISA bus, it is parallel loaded into

a 16-bit shift register (two 74LS323's). At this point, the data is serially shifted out one bit at a

time through the pulse code modulation logic which creates the proper waveform to represent the

bit pattern. A series of 555 timers is used to generate the proper timing delays. For example, the

first 555 timer is used to generate the 9.2 ms start code present in the infrared encoding scheme;

this timer is only used once for every 16-bit word that is transmitted. The second timer generates

a 0.5 ms pulse for every "0" bit, and a 1.5 ms pulse for every "1 ." Finally, the last timer

generates a 0. 7 ms delay in between the pulses which represent the bits. Each timer

automatically triggers the next timer in sequence until the 74LS161 counter determines that all

16 bits have been transmitted.

The final step in the sequence is to superimpose a 40 kHz carrier frequency on top of the

generated waveform. This is done using a 74LS390 decade counter clocked at a frequency of

2 MHz. The decade counter divides the clock by 50 to generate the 40 kHz signal. This signal is

transmitted through the high current infrared LEDs, part number MLED81 . These LEDs were

mounted so that when the expansion card was inserted into the PC, they would transmit from the

back of the computer. The complete circuit diagram for the expansion card is shown in Figure

5.2. The program for the PAL which is used to handle the combinational logic is given in

Appendix C.

40

ISAbus 'Rm
ISA bus 5015-508 V
ISA bus 507-SOO

B8-B1 OIR, t ,,B8-B1 OIR1 t
74LS245 I 74LS245 I

Octal bus transceiver #1 Octal bus transceiver #2

li;:::=====:t-~A':;:80-Aic1~-----------1 A8-A1 .----...;:ou1b=i~t-c::>
~Vee

10kn

1/0ri/00,..._._....;~;;.;..;...1.....&..:::0~7-..;;;C~P..&-.
74LS323

8-bit shift register #1

: . •
; • .

ISA bus SA7-SAO

ISA bus, SA 15-SAS

U07-U001r ~, , OSO 07 ~CP

•
•

I 74LS323 I
8-bit shift register #2

220 n x 16

trig555_~

t P7-PO 07-00 r 1 P7-PO 07-00

74LS684 I 74LS684 I
8-bit comparator #1 8-bit comparator #2

~I ~ IL.-.-.-\~
U:======~ ~-----------~~

10knx16•
0 t OOH

-- 74LS125 I
3-state buffer 03H

DIP switch x 16

10
ISA bus, 1/0 CS16

Figure 5.2. Circuit Diagram for IR Transmitting Expansion Card

41

555 timer #1
trig555_1 reset >-..=..........;;;.,_ __ ~ trigger

control

:::r::: 0. 1 i!F

555tlmer#2
reset

1--<.._---f trigger
discharge t----+-------,

outbit

control

I 0. 1 i!F

1.6kn

threshold t----...
output

555 timer #3
reset

'----u-...... -----1 trigger
control

:::r::: 0. 1 i!F

Vee

10kn

oscillator

discharge 1------..
threshold 1-----...

output

PAL

5.6kn

9Hl

Figure 5.2 (cont.). Circuit Diagram for IR Transmitting Expansion Card

42

The Microsoft Windows program which communicated with the expansion card had a

simple user interface with nine buttons. The user could click any of these buttons with the

mouse to transmit a specific 16-bit value through the infrared transmitting expansion card. The

robot would then interpret this data and act appropriately. The source code for this Windows

program is given in Appendix C.

5.2 Results of Engineering Open House 1995

Members from all four of the Fall1994 LegoBot teams were present during the entire

Engineering Open House. They took turns demonstrating their LEGO robots for the visitors

while Cliff was demonstrated at a different table as part of the same exhibit. Several local

elementary and middle school teachers brought their classes to come watch the demonstrations

and see our exhibit. Many of them expressed interest in wanting to purchase LEGO kits for their

schools so that their students could have similar experiences building simple mechanical devices.

Overall, Engineering Open House went very well; our exhibit won first place in the Central

Exhibits Category.

43

6. SPRING 1995 LEGOBOT CONTEST: BASKETBALL

At the time of this writing, the Spring 1995 LegoBot contest, organized by Jonathan Kua,

is in progress. This semester, there are eight teams of three ECE 291 students each. The same

Vesta SBC88A microcontroller board is being used to control the LEGO robots. However, Nate

Myers has designed a new add-on board to interface the motors and sensors to the

microcontroller board, and this new board is being used by the teams this semester.

6.1 Contest Task

The game for the LEGO robots to play this semester is a modified version of basketball.

The contest specification and rules document was written by Doug Gerwitz, and is contained in

Appendix G. The robots have to retrieve ping-pong balls from a ball dispenser in the center of

the basketball court, and score points with them in one ofthree different ways: by placing or

rolling the ball into the hole beneath the basketball hoop, by placing the ball through the

basketball hoop from within the three-point line, or by shooting the ball through the basketball

hoop from outside the three-point line.

John Knapowski and I have built an autonomous LEGO robot, named Sam, which solves

part of the task outlined in the specification. The primary purpose of this robot was to determine

if the task was indeed reasonable in terms of difficulty and complexity. Since at the time we

designed this robot the new hardware was not ready, we used the microcontroller boards from the

previous semester. The robot uses one de motor on each of the left and right wheels for driving

and steering. It uses a third de motor on the catapult launching mechanism.

44

Once the robot is fed a ball into its launching mechanism, it spins clockwise until the rear

of the robot is lined up with a basketball hoop. It uses the phototransistor to detect the light

source mounted on the backboard of the hoop. Once it is lined up, it travels straight backward

until the reflectance sensors detect the black surface marking the three-point area. Since we

placed one reflectance sensor on each comer of the robot, it can go through a simple algorithm to

line itself up such that each of the two rear reflectance sensors end up just outside the three-point

line. This guarantees that the robot is aiming almost directly towards the basket. At this point,

the robot simply turns the launcher motor on to activate its catapult (located at the front of the

robot), sending the ping-pong ball through the basket. A microswitch detects when the catapult

has gone far enough, at which point the motor is automatically turned off. The source code for

Sam is given in Appendix D.

6.2 Improvements Over Previous Semester

Several people have made contributions to the organization of the LegoBot contest this

semester: Dennis Culley, Doug Gerwitz, myself, John Knapowski, Jonathan Kua, Matt Merten,

and Nate Myers. This team was led and managed by Jonathan Kua, whose Master's thesis will

describe this semester' s events in more detail. As a team, we have designed the contest,

organized the kits, constructed the basketball court, and most importantly designed new hardware

to interface the motors and sensors to the Vesta microcontroller.

This add-on board, designed by Nate Myers, boasts several improvements over that of the

last semester. For example, by using all CMOS technology, the board consumes less power,

which saves on AA batteries. The add-on board has several new features such as power

45

switches, a reset switch, and a hexadecimal LED display which has proved useful for debugging

purposes. Furthermore, since the new hardware is on a printed circuit board, there is no longer a

risk of making wiring errors when constructing the boards. A copy ofNate's report, including

circuit diagrams and detailed descriptions, can be found in the Advanced Digital Systems

Laboratory.

46

7. CONCLUSIONS

"The best way to make theoretical knowledge that we consider important valuable to a student is

to give him or her a chance to put it to use. When we discover the gap of "messiness " that lies

between theory and practical applications, we should not ignore it or toss it away as

uninteresting, but encourage ourselves and our students to dive in and explore the complexity of

putting ideas into practice. " [2]

--Dr. Fred G. Martin

One can clearly see that using LEGO robots as an educational tool in ECE 291 has been a

success over the past three semesters. The students are gaining first-hand experience with

engineering design and troubleshooting. They are learning about microcontrollers and embedded

control systems. They are developing their skills in working with a team on a group effort. Most

importantly, however, they are enjoying the experience.

7.1 Advantages and Limitations

The LEGO robots project is versatile enough that it can be used every semester with a

different task for the robots to accomplish or a different game for them to play. Often the

projects in traditional laboratory courses remain the same from semester to semester; this can

become rather repetitive and uninteresting for the instructors and teaching assistants. However,

this is not the case with LEGO robots. Every semester, the designs are guaranteed to be unique

and creative, and the final contest will always be an exciting crowd pleaser.

47

Since the microcontroller board used in the LEGO robots project is based on the Intel

8088 microprocessor, it is code-compatible with Intel x86 based desktop PCs. This provides the

advantage that students can write software for the microcontroller using already familiar

languages and development tools. Since the use oflntel based PCs is so widespread in today's

industries and homes, the students are gaining the skills that engineering companies are looking

for in their future employees.

While learning about embedded control and microcontrollers should be a part of every

Electrical and Computer Engineering student's background, one must understand that a LEGO

robot is a very specific application of embedded control. It should not be implied that every

student must participate in this project in order to learn about such systems. In a higher level

course such as ECE 291, students should always be allowed to use their creativity to invent their

own projects.

7.2 Additional Resources

A page on the World Wide Web has been created to describe the LegoBot contest at the

University of Illinois. The URL for this page, which can be viewed with any web browser such

as NCSA Mosaic or Netscape, is:

http://www.ece.uiuc.edu/-ece291/legobot/legobot.html

Currently this web page contains short MPEG motion video clips, created by Professor Sridhar

Iyer, from the Fall 1994 LegoBot contest. These clips show successful LEGO robots sinking the

pool balls into the pockets and demonstrating other interesting behaviors.

48

In addition, a VHS video tape has been made which shows clips from the Fall 1994

LegoBot contest and also from Engineering Open House 1995. The video is approximately 15

minutes in length and may be used in the future as an introduction of the LEGO robots project to

new students. Copies were distributed to the participants of the Fall1994 contest as a souvenir

for their hard work.

There have been several books and articles written (3-8] which discuss the use of robots

in an engineering design course. These works explain the educational value of tools such as

robots and also describe engineering design from a pedagogical standpoint.

7.3 Future Considerations

As described in Chapters 3 and 4, there are many aspects of the LegoBot contest which

were less than perfect during the Spring 1994 and Fall 1994 semesters. However, even after

these minor wrinkles are ironed out, there is plenty of room for major improvements and

enhancements to the whole LEGO robots project. Future undergraduate and graduate students

are more than welcome to consider these ideas and implement solutions to these problems. Only

then will the LegoBot contest continue to grow and expand and become more sophisticated with

each semester.

The Vesta SBC88A microcontroller, while quite suitable for controlling LEGO robots,

lacks some important features. For example, it does not currently have battery-backed RAM.

This means that every time the power to the rnicrocontroller is shut off or disconnected, the

program stored in memory is erased. Thus, the students have to download their program every

time they power up their LEGO robot. Also, even if the program did remain in the RAM, there

49

is currently no way to start execution of the program automatically without having to connect the

microcontroller board to a PC and use the C _ thru _ROM software to begin execution. This

problem could potentially be solved by programming a special EPROM, which automatically

jumps to the beginning of the user code if a certain switch is depressed upon power-up, but

jumps to the beginning of the kernel program if the switch is not depressed.

An interesting tool to provide to the LEGO robot builders might be a LEGO CAD

software package. Such a package would allow the user to put together virtual LEGO pieces in

the CAD program and simulate how the robot will operate. One could view the robot from

different angles, and print out schematics of how to build it. This could also be used, for

example, to test gear ratios before actually constructing the robot. Such LEGO CAD software

packages do currently exist, though their sources are unknown.

Several types of sensors are available which can be interfaced to the microcontroller for

use on a LEGO robot. Some of these sensors are certainly more sophisticated and expensive

than others, but nevertheless may be worth investigating. Compasses can be used to detect the

direction the robot is facing. Ultrasonic or infrared range finders can be used to determine the

distance to the nearest object. CCD cameras can be used in a variety of ways to help the robot

discover its surroundings. A voice recognition chip could potentially be used to start the

LegoBot contest; the judge could say "1 - 2- 3 -GO!" and the robots would start automatically.

Bend sensors might be of some use also, depending on the task to be accomplished. Another

possible enhancement might be to add a speech synthesizer module to a robot which would allow

the robot to speak words and phrases during the contest.

50

Finally, there are several possible enhancements to be made to the robot named Cliff.

This robot was capable of receiving infrared commands from a desktop PC equipped with a

special expansion card. The next obvious step would be to allow the robot to communicate back

to the PC, letting it know the status of its sensors. In this way, one could write software to run on

the PC to completely control the robot and allow it to accomplish a nontrivial task. Furthermore,

the PC could track the exact movements of the robot and determine its relative position. This

information could be used to plot the path of the robot on the computer monitor and help the

robot maneuver through obstacles using motion planning algorithms [9]. This type of setup

would even be useful to autonomous robot designers for testing their algorithms before porting

them to the microcontroller.

51

APPENDIX A. SOURCE CODE FOR "WOODY"

This appendix contains the source code for a robot called Woody. The robot responds to

infrared commands sent to it via a Sony television remote control unit. A description of its

functionality is given in Section 2.1.

A.l Listing ofWOODY.C

The following is a listing of the file "WOODY.C" which contains the main program loop

and major subroutines for Woody, written in the C programming language.

I*
I*
I*
I*
I*

int

int
int

WOODY.C *I
Rajeev Goel *I
March 1994 *I
Robot car responds to *I
Sony remote control *I

COMMAND SET [] =
{99, Ob00101011, Ob01111001, Ob01011011, Obll001010,

1, Ob01111111, Ob01111011, Ob11111011, Obll011111,
2, Ob00111111, Ob01111001, Ob11111011, Ob11001111,
3, Ob01011111, Ob01111010, Ob11111 011, Ob11010111,
4, Ob00011111, ObOllllOOO I Ob11111011, Ob11000111,
5, Ob01101111, Ob01111011, Ob01111011, Ob11011011,
6, Ob00101111, Ob01111001, Ob01111011, Ob11001011,
7, Ob01001111, Ob01111010, Ob01111011, Ob11010011,
8, ObOOOOllll, Ob01111000, Ob01111011, Ob11000011,
9, Ob01110111, Ob01111011, Ob10111011, Obll011101};
I* the command numbers and 32-bit patterns to match *I

NOM COMMANDS 10;
POWERBUTTON = 9 9;

I* total # commands in above array *I
I* command # for "Power" button *I

void waitforescape () {

}

I* Waits until the "Escape" button has been pressed and released. *I

while (!escape_button ());
while (escape_button ());

int getbit (int commandindex, int bitnumber) {

52

}

I* Searches for a particular bit in the above defined COMMANDSET. *I
I* "commandindex" is the index of the command to search (0 -> *I
I* NUMCOMMANDS - 1). "bitnumber" is the bit number from the left *I
I* to check (0 -> 31). Returns 0 if the bit is zero and >0 if the *I
/* bit is one. *I

int bitindex;
int byteindex;

byteindex c bitnumber I 8;
bitindex = bitnumber \ 8;
return COMMANDSET [commandindex * 5 + byteindex + 1] &

(Ob10000000 >> bitindex);

int remotecommand () {
I* Waits until the IR detector receives a command, then decodes *I
/* the command. Returns the matched command number from the array *I
I* COMMANDSET, or -1 if the command could not be matched. *I

int

int
int

int

int

int

int

bitstream [100];

bitstreamptr;
HIGHEST1 = 55;

LOWESTO = 60;

thistest;

testcommand;

testbit;

bitstreamptr = (int) bitstream;
readbitstream (bitstreamptr);

testcommand c 0;

I* array of durations of high
I* and low periods in IR signal
I* pointer to above array
I* the highest duration which
I* will be considered a logic 1
I* the lowest duration which
I* will be considered a logic 0
I* the result (boolean) of the
I* current test
I* which command are we trying
I* to match right now
I* which bit are we testing

I* read IR signal into array
I* this routine is in WOODY.ASM

while (testcommand < NUMCOMMANDS)
{ I* test for all known commands *I

testbit c 0;
thistest = 1;

*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I

*I
*I

while ((testbit <= 31) && (thistest)) { I* test all 32 bits *I

}

if (getbit (testcommand, testbit)) {

}

if (bitstream [testbit * 2] >= LOWESTO)
thistest = 0;

else {

}

if (bitstream [testbit * 2) <= HIGHEST1)
thistest = 0;

testbit++;

if (thistest)

53

}

}

return COMMANDSET [testcommand * 5] ;
testcommand++;

return -~;

void calibrateremote (int calibratebutton) {

}

I* This routine returns values by which one can set the "LOWESTO" *I
I* and "HIGHEST1" constants in the "remotecommand" routine above. *I
l* "calibratebutton" is the command number of a known command. *I

int bitstream [100] i I* array of durations of high
I* and low periods in IR signal

int bitstreamptr; I* pointer to above array
int highest1; I* of all the logic 1's, the

I* duration of the longest
int lowestO; I* of all the logic O's, the

I* duration of the shortest
int loop; I* loops through all 32 bits
int commandindex; I* where in the array is this

I* command
int checkbit; I* bit from the known pattern

print£ ("Waiting for command #td\n", calibratebutton);
bitstreamptr = (int) bitstream;

*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I

readbitstream (bitstreamptr); I* read in IR signal into array *I
I* this routine is in WOODY.ASM *I

highest1 = 0;
lowesto = 1000;
commandindex = 0;
while (COMMANDSET [commandindex * 5] !z calibratebutton)

commandindex++;
for (loop = o ; loop <= 31 ; loop++)

checkbit = getbit (commandindex, loop) ;
if (checkbit) {

}
else

}
}

if (bitstream [loop * 2] > highest1)
highest~ = bitstream [loop * 2] ;

if (bitstream [loop * 2] < lowestO)
lowestO = bitstream [loop * 2] ;

print£ ("Highest 1 = \d Lowest 0
waitforescape ();

td\n", highest1, lowestO);

void main () {
I* This program reads IR commands from a Sony TV remote control. *I
I* The left motor should be plugged into Motor1, the right motor *I
I* into Motor2. The IR detector should be plugged into Digital *I
I* Input o. There is also a Servo motor to control the steering. *I

54

I* Use the number keypad on the remote control (1-9) to control *I
I* the direction of motion of the robot car. Press "Power" to *I
I* stop all motors, and disable any more commands. The Frob Knob *I
I* controls the speed of the car. *I

int
int

lastcommand c -1;
speed;

printf ("Remote-bot at
servo_on ();

your command ... \n") ;

servo_deg (90.0);
led_outO (1) ;
while (lastcommand != POWERBUTTON) {

lastcommand = remotecommand ();
speed = (frob_knob () I 3) + 15;
if (lastcommand •c POWERBUTTON) {

}

print£ ("Power is off.\n");
all off () ;
servo_off ();
led_outo (O);

if (lastcommand < 0)
print£ ("Unknown command. \n") ;

if (lastcommand == 1) {
print£ ("Forward left\n");
servo_deg (30.0);

}

motor (1, speed I 2);
motor {2, speed);

if (lastcommand == 2)
print£ ("Forward straight\n");
servo_deg (90.0);
motor (1, speed);
motor (2, speed);

}
if (lastcommand == 3) {

}

print£ ("Forward right\n");
servo_deg (150.0);
motor {1, speed);
motor (2, speed I 2);

if (lastcommand •= 4) {
printf ("Stop left\n");
servo_deg (30.0);
alloff ();

}
if {lastcommand •• 5) {

}

printf ("Stop straight \n") ;
servo_deg (90.0);
alloff ();

if (lastcommand == 6) {
print£ {"Stop right \n") ;
servo_deg (150.0);

55

alloff ();
}
if (lastcommand •z 7) {

printf ("Back left \n") ;
servo_deg (30. 0);
motor (l., -speed I 2) i

motor (2, -speed);
}
if (lastcommand == 8) {

printf ("Back straight\n");
servo_deg (90.0);

motor (l., -speed);
motor (2, -speed) ;

}
if (lastcommand = .. 9) {

printf ("Back right\n");
servo_deg (1.50.0);

motor (l., -speed);
motor (2, -speed I 2) i

}
}

}

A.2 Listing ofWOODY.ASM

The following is a listing of the file "WOODY.ASM" which contains source code to

sample an infrared waveform and store it in memory. It is written in Motorola 68HC11

Assembly language.

* WOODY.ASM

* Rajeev Gael

* March 1.994

* Robot car responds to Sony

* remote

PORTA
BIT ZERO

control

EQU
EQU

$1.000
\00000001.

ORG MAIN START

transitcount:
FCB 0

dummyinteger:
FDB 0

*I
*I
*I
*I
*I

address for Port A, 8 digital inputs
we want to look at input 0, IR detector

of transitions the incoming signal makes

used for temporary storage

* This subroutine waits until a signal is detected by the IR detector *I
* and then stores the lengths of the high periods and low periods *I
* in an array. The starting address of the array is given in *I

56

* Accumulator D. The routine returns the number of transitions made */
* by the signal in Accumulator D. */

subroutine readbitstream:
ADDD #2
STD dummyinteger
LDX dummyinteger
CLR transitcount

LDAA PORTA
ANDA #BITZERO

waitforsignal:
LDAB PORTA
ANDB #BITZERO
CBA
BEQ waitforsignal

readabit:
LDY #0

waitforchange:
INY
CPY
BEQ
LDAA
ANDA
CBA
BEQ
LDAB
ANDB
STY
INX
INX
INC

LDAA
CMPA
BEQ
BRA

#2000
returnfromread
PORTA
#BIT ZERO

waitforchange
PORTA
#BITZERO
o,x

transitcount

transitcount
#100
returnfromread
readabit

returnfromread:
LDAB transitcount
CLRA
RTS

skip over first two bytes of array

store starting address into ACCX
transitcount = 0

read incoming signal into ACCA

read incoming signal into ACCB

compare ACCB with ACCA
repeat until not equal (signal has changed)

ACCY = 0 (duration of the pulse)

ACCY = ACCY + 1
compare ACCY with 2000
if ACCY has reached 2000, quit
read incoming signal into ACCA

compare ACCB with ACCA
repeat until not equal (end of pulse)
read new signal into ACCB

store pulse duration ACCY into address ACCX
ACCX = ACCX + 2 since integer c 2 bytes

transitcount = transitcount + 1

compare transitcount with 100

if it's reached 100, then quit
otherwise continue reading the signal

ACCD = transitcount

return to caller

57

APPENDIX B. SOURCE CODE FOR "NORM"

This appendix contains the source code for a robot called Norm. The robot responds to

infrared commands sent to it via a Pioneer CD player remote control unit. A brief description of

its functionality is given at the end of Section 4.1. The following is a listing of the file

''NORM.C".

I* NORM.C *I
I* Rajeev Goel *I
I* November ~994 *I
I* Robot car responds to *I
/* Pioneer remote control *I

void setmotorspeed (int motor, int speed)
I* This routine sets the speed of a motor to a value between 0 and 255, *I
I* with 0 being the fastest. *I
{

}

int i;

outp (Ox~O, speed);
outp (Ox20, motor + 3);
for (i = o ; i < ~oo ; i++);
outp (Ox20, 0);

void motoroff (int motor)
I* This routine simply turns the specified motor off.
{

}

outp ((motor - ~) * 2, 0);
outp ((motor-~) * 2 + ~. 0);

void motorforward (int motor)
I* This routine simply sets the specified motor running forward.
{

}

outp ((motor-~) * 2, 0);
outp ((motor-~) * 2 + ~. ~);

void motorbackward (int motor)

*I

*I

I* This routine simply sets the specified motor running backward. *I
{

}

outp ((motor - ~) * 2, ~);

outp ((motor- ~) * 2 + ~. 0);

58

II binary codes for buttons on the remote control unit
#define LEFTFORWARD
#define FORWARD
#define RIGHT FORWARD
#define LEFT
#define STOP
#define RIGHT
#define LEFTBACKWARD
#define BACKWARD
#define RIGHTBACKWARD

void main (void)
{

char
unsigned char
unsigned char
unsigned char
unsigned char

"0000000011111111"
"1000000101111111"
"1000000001111111"
"0100000010111111"
"1100000100111111"
"1100000000111111"
"0010000011011111"
"0000000111111111"
"0110010110011011"

command [SO] ;
irsignal [100] ;
c1, c2;
count, count2;
edges;

II
II
II
II
II
II
II
II
II

Button "1"
Button "2"
Button "3"
Button "5"
Button "6"
Button "7"
Button "9"
Button "0"
Button "Program Memory"

setmotorspeed (l, 0);
setmotorspeed (2, 0);
motoroff (l);
motoroff (2);

II set left motor to full speed
II set right motor to full speed
II turn left motor off
II turn right motor off

while (l)
{

II printf ("Waiting for signal. .. \n");

cl = inp (OxlO);
c2 = c1;

II wait until IR sensor reading changes

while (c2==cl)
c2 ... inp (OxlO);

edges = 0;
count = 0;

II initialize variables

II read IR data until too many edges have been detected or until
II IR signal hasn't changed for a long time
while ((edges< 100) ~~ (count< 255))
{

}

c1 = c2;
count = 0;
while ((c2••Cl) ~~ (count< 255))
{

}

c2 = inp (OxlO);
count++;

irsignal [edges] • count;
edges++;

II printf ("IR signal detected.\n");

connnand [0) c 0;

59

II save old value of IR
II reset counter
II wait until IR changes

II read new value of IR
II increment counter

II store time in array
II next position in array

II initialize variables

II

count = 0;
count2 = 0;

while {count < edges)
{

if {irsignal [count) > l)
{

II eliminate all time values
II which are only l for this
II considered noise

irsignal [count2) = irsignal [count) ;
count2++;

count++;
}

edges = count2; II initialize variables
count= 37; II skip over the first 37 time values ...
count2 = 0; II these will all be the same regardless which

II button was pressed

while {count < edges) II decode data stored in the array
{

}

if {irsignal [count) < B)
command [count2) c '0';

else
command [count2) 'l';

printf {"\3d, ", irsignal
count+z2;

count2++;

command [count2) = 0;

II if pulse width is less than 8,
II the bit is a o,
II otherwise
II the bit is a l

[count));
II skip the next value because the
II time between bits is irrelevant

II printf {"\s\n", command);

if {!strcmp {command, LEFTFORWARD))
{

}

motoroff {l);
motorforward {2);
printf {"Left Forward. \n");

if {!strcmp {command, FORWARD))
{

}

motorforward {l);
motorforward {2);
printf {"Forward. \n");

if {!strcmp {command, RIGHTFORWARD))
{

}

motorforward {l);
motoroff {2);
printf {"Right Forward. \n");

60

II forward, turning left

II left motor off
II right motor forward

II straight forward

II left motor forward
II right motor forward

II forward, turning right

II left motor forward
II right motor off

}

}

if (!strcmp (command, LEFT))
{

}

motorbackward (1) ;
motorforward (2);
printf ("Left. \n");

if (!strcmp (command, STOP))
{

}

motoroff (1) ;
motoroff (2);
printf ("Stop.\n");

if (!strcmp (command, RIGHT))
{

}

motorforward (1);
motorbackward (2);
printf ("Right. \n") ;

if (!strcmp (command, LEFTBACKWARD))
{

motoroff (1) ;

motorbackward (2);
printf ("Left backward. \n");

}

if (!strcmp (command, BACKWARD))
{

}

motorbackward (1);
motorbackward (2);
printf ("Backward. \n");

if (!strcmp (command, RIGHTBACKWARD))
{

}

motorbackward (1) ;
motoroff (2);
printf ("Right backward. \n");

II spin CCW in place

II left motor backward
II right motor forward

II stop

II left motor off
II right motor off

II spin CW in place

II left motor forward
II right motor backward

II backward, turning left

II left motor off
II right motor backward

II straight backward

II left motor backward
II right motor backward

II backward, turning right

II left motor backward
II right motor off

II go back to beginning and wait for new IR signal

exit(O); II program never actually gets here!

61

APPENDIX C. SOURCE CODE FOR "CLIFF"

This appendix contains listings of files used in the development of a LEGO robot called

Cliff. This robot responded to infrared commands sent to it from an expansion card in a PC.

Details on the operation of Cliff can be found in Section 5.1.

C.l Listing of CLIFF.C

The software interface on the PC was in the form of a Microsoft Windows program

written in C. The user could click on the buttons in the window with the mouse to make the

robot move in different directions. This program was responsible for communicating with the

expansion card to send the appropriate infrared commands to the robot. The following is a

listing of the file "CLIFF.C".

I* CLIFF.C *I
I* Rajeev Goel *I
I* March 1995 *I
I* Windows program which sends infrared *I
I* commands to a LEGO robot , based on *I
I* buttons which the user clicks. *I

#include <windows.h>
#include <stdio.h>
#include <conio . h>
#include "resource.h"

#define BUTTONWIDTH
#define BUTTONHEIGHT
#define BUTTONS PACING
#define WINDOWWIDTH
#define WINDOWHEIGHT

32
32
10
250
250

#define WINDOWCENTERX ((WINDOWWIDTH I 2) - 1)
#define WINDOWCENTERY ((WINDOWHEIGHT I 2) - 11)

#define LEFTBUTTON (WINDOWCENTERX - (3*BUTTONWIDTHI2)
#define TOPBUTTON (WINDOWCENTERY - (3*BUTTONHEIGHTI2)
#define MIDDLEBUTTON (WINDOWCENTERX - (BUTTONWIDTH I 2))

- BUTTONSPACING)
- BUTTONS PACING)

#define CENTERBUTTON (WINDOWCENTERY - (BUTTONHEIGHT I 2))
#define RIGHTBUTTON (WINDOWCENTERX + (BUTTONWIDTH I 2) + BUTTONSPACING)
#define BOTTOMBUTTON (WINDOWCENTERY + (BUTTONHEIGHT I 2) + BUTTONSPACING)

62

HWND
HWND
HWND
HWND
HWND
HWND
HWND
HWND
HWND
HWND
BIN STANCE

hWndGlobal;
hWndForwardStraight;
hWndBackwardStraight;
hWndStop;
hWndStopRight;
hWndStopLeft;
hWndForwardRight;
hWndForwardLeft;
hWndBackwardLeft;
hWndBackwardRight;
hinstGlobal;

LRESULT CALLBACK myWndProc (HWND hwnd 1 UINT uMsg 1 WPARAM wParam 1

LPARAM lParam)
/* message handler for main application window */
{

LPDRAWITEMSTRUCT
HI CON

lpdis;
hi con;
offset; int

switch (uMsg)
{

case WM CREATE:
break;

case WM DRAWITEM:
II draws the appropriate icon on the face of the buttons
lpdis s {LPDRAWITEMSTRUCT) lParam;
if {lpdis->itemState & ODS_SELECTED)

offset = ~;
else

offset = 0;

if (lpdis->hwnditem •= hWndForwardStraight)
hicon = Loadicon {hinstGlobal 1 MAKEINTRESOURCE {FS_ICONl +

offset));
if (lpdis->hwnditem •• hWndForwardLeft)

hicon • Loadicon {hinstGlobal 1 MAKEINTRESOURCE (FL_ICON~ +
offset));

if (lpdis->hwnditem •• hWndForwardRight)
hicon • Loadicon (hinstGloball MAKEINTRESOURCE (FR_ICONl +

offset));
if (lpdis->hwnditem == hWndBackwardStraight)

hicon • Loadicon (hinstGlobal 1 MAKEINTRESOURCE (BS_ICONl +
offset));

if {lpdis->hwnditem •= hWndBackwardLeft)
hicon = Loadicon (hinstGloball MAKEINTRESOURCE (BL_ICONl +

offset));
if (lpdis->hwnditem =• hWndBackwardRight)

hicon • Loadicon (hinstGloball MAKEINTRESOURCE {BR_ICONl +
offset));

if {lpdis->hwnditem •• hWndStop)
hicon = Loadicon (hinstGlobal 1 MAKEINTRESOURCE (SS_ICONl +

63

offset));
if (lpdis->hwndltem •= hWndStopLeft)

hlcon • Loadlcon (hinstGlobal, MAKEINTRESOURCE (SL_ICONl +
offset));

if (lpdis->hwnditem •= hWndStopRight)
hlcon = Loadicon (hinstGlobal, MAKEINTRESOURCE (SR_ICONl +

offset));
Drawicon (lpdis->hDC, 0, 0, hlcon);
Destroyicon (hlcon) ;
return 0;

case WM COMMAND:
II if a button is clicked, send an IIO write to expansion card
if (HIWORD(wParam) c= BN_CLICKED) {

}

if ((HWND) lParam == hWndForwardStraight)
outpw (Ox300, OxOOSO);

if ((HWND) lParam == hWndBackwardStraight)
outpw (Ox300, OxOOAO);

if ((HWND) lParam == hWndStop)
outpw (Ox300, OxOOOO);

if ((HWND) lParam == hWndForwardLeft)
outpw (Ox300, OxOOlO);

if ((HWND) lParam •= hWndForwardRight)
outpw (Ox300, Ox0040);

if ((HWND) lParam == hWndBackwardLeft)
outpw (Ox300, Ox0020);

if ((HWND) lParam == hWndBackwardRight)
outpw (Ox300, OxOOBO);

if ((HWND) lParam •= hWndStopLeft)
outpw (Ox300, Ox0090);

if ((HWND) lParam == hWndStopRight)
outpw (Ox300, Ox0060);

return 0;

case WM KEYDOWN:
case WM CHAR:

II also allow user to use arrows on the numeric keypad
switch (wParam)
{

case VK_UP:
outpw (Ox300, OxOOSO);
break;

case VK_DOWN:
outpw (Ox300, OxOOAO);
break;

case VK_LEFT:
outpw (Ox300, Ox0090);
break;

case VK_RIGHT:
outpw (Ox300, Ox0060);
break;

case VK_HOME:
outpw (Ox300, OxOOlO);

64

}

}

}

break;
case VK END:

outpw (Ox300, Ox0020);
break;

case VK PRIOR:
outpw (Ox300, Ox0040);
break;

case VK NEXT:
outpw (Ox300, OxOOSO);
break;

return 0;

case WM CLOSE:
DestroyWindow (hWndGlobal);
return 0;

case WM DESTROY:
PostQuitMessage (0);
return 0;

return DefWindowProc (hwnd, uMsg, wParam, lParam);

void CreateButtons (void)
/* Create nine different button windows within main application window */
{

hWndForwardStraight = CreateWindow ("BUTTON", "Forward",
BS_PUSHBUTTON I WS_CHILD I WS_VISIBLE I BS_OWNERDRAW,
MIDDLEBUTTON, TOPBUTTON, BUTTONWIDTH, BUTTONHEIGHT,
hWndGlobal, NULL, hinstGlobal, NULL);

hWndForwardLeft = CreateWindow ("BUTTON", "Forward",
BS_PUSHBUTTON I WS_CHILD I WS_VISIBLE I BS_OWNERDRAW,
LEFTBUTTON, TOPBUTTON, BUTTONWIDTH, BUTTONHEIGHT,
hWndGlobal, NULL, hinstGlobal, NULL);

hWndForward.Right = CreateWindow ("BUTTON", "Forward",
BS_PUSHBUTTON I WS_CHILD I WS_VISIBLE I BS_OWNERDRAW,
RIGHTBUTTON, TOPBUTTON, BUTTONWIDTH, BUTTONHEIGHT,
hWndGlobal, NULL, hinstGlobal, NULL);

hWndStop -= CreateWindow ("BUTTON", "Forward",
BS_PUSHBUTTON I WS_CHILD I WS_VISIBLE I BS_OWNERDRAW,
MIDDLEBUTTON, CENTERBUTTON, BUTTONWIDTH, BUTTONHEIGHT,
hWndGlobal, NULL, hinstGlobal, NULL);

hWndBackwardStraight = CreateWindow ("BUTTON", "Forward",
BS_PUSHBUTTON I WS_CHILD I WS_VISIBLE I BS_OWNERDRAW,
MIDDLEBUTTON, BOTTOMBUTTON, BUTTONWIDTH, BUTTONHEIGHT,
hWndGlobal, NULL, hinstGlobal, NULL);

hWndBackwardLeft -= CreateWindow ("BUTTON", "Forward",
BS_PUSHBUTTON I WS_CHILD I WS_VISIBLE I BS_OWNERDRAW,
LEFTBUTTON, BOTTOMBUTTON, BUTTONWIDTH, BUTTONHEIGHT,
hWndGlobal, NULL, hinstGlobal, NULL);

hWndBackward.Right .., Crea teWindow ("BUTTON" , "Forward" ,
BS PUSHBUTTON WS_CHILD I WS_VISIBLE I BS_OWNERDRAW,

65

}

RIGHTBUTTON, BOTTOMBUTTON, BUTTONWIDTH, BUTTONHEIGHT,
hWndGlobal, NULL, hinstGlobal, NULL);

hWndStopRight = CreateWindow ("BUTTON", "Forward",
BS_PUSHBUTTON I WS_CHILD I WS_VISIBLE I BS_OWNERDRAW,
RIGHTBUTTON, CENTERBUTTON, BUTTONWIDTH, BUTTONHEIGHT,
hWndGlobal, NULL, hinstGlobal, NULL);

hWndStopLeft a: CreateWindow ("BUTTON", "Forward",
BS_PUSHBUTTON I WS_CHILD I WS_VISIBLE I BS_OWNERDRAW,
LEFTBUTTON, CENTERBUTTON, BUTTONWIDTH, BUTTONHEIGHT,
hWndGlobal, NULL, hinstGlobal, NULL);

void Initinstance (void)
/* Register window class and create main application window . */
{

}

WNDCLASS wndClass;

wndClass.style = 0;
wndClass.lpfnWndProc = myWndProc;
wndClass . cbClsExtra = 0;
wndClass . cbWndExtra = 0;
wndClass.hinstance = hinstGlobal;
wndClass.hicon = NULL;
wndClass . hCursor = LoadCursor (NULL, IDC_ARROW);
wndClass.hbrBackground = GetStockObject (LTGRAY_BRUSH);
wndClass.lpszMenuName = NULL;
wndClass.lpszClassName .. "IRROBOT";
RegisterClass (&wndClass);

hWndGlobal = CreateWindow ("IRROBOT", "Infrared Robot Controller",
WS_CAPTION I WS_POPUP I WS_SYSMENU I WS_VISIBLE I WS_MINIMIZEBOX,
CW_USEDEFAULT, CW_USEDEFAULT, WINDOWWIDTH, WINDOWHEIGHT,
NULL, NULL, hinstGlobal, NULL);

CreateButtons ();

int PASCAL WinMain(HINSTANCE hinstCurrent, HINSTANCE hinstPrevious,
LPSTR lpszCmdLine, int nCmdShow)

/* contains message loop */
{

MSG msg;

hinstGlobal .. hinstCurrent;

Initlnstance ();

while (GetMessage(&msg, NULL, 0, 0)) {
TranslateMessage(&msg); /* translates virtual key codes */
DispatchMessage(&msg); /*dispatches message to window */

}
return (int) msg.wParam; /* return value of PostQuitMessage */

}

66

C.2 Listing of CLIFF.ASM

The robot itself was controlled by a M68HC11EVBU microcontroller board. The

software running on this microcontroller was responsible for decoding the infrared signal and

activating the appropriate motors. The following is a listing of the file "CLIFF.ASM".

* CLIFF.ASM
* Rajeev Goel
* March l.995

*I
*I
*I

* HC11 program which decodes infrared
* signals and drives the robot in one
* eight different directions. Each

*I
*I
*I

* command consists of 16 bits. The *I
* first 8 bits are the command code and
* the last 8 bits are the data.

*I
*I

PORTA EQU $1000
PORTE EQU $1004
PORTC EQU $1003
PORTD EQU $1008
PORTE EQU $100A

EXTDEV EQU $00A8
IODEV EQU $00A7
HOSTDEV EQU $00A9
OPTION EQU $1039
PACTL EQU $1026
DDRD EQU $1009

INIT EQU $FFA9
OUTSTR EQU $FFC7
OUTA EQU $FFB8
OUTPUT EQU $FFAF
OUT2BS EQU $FFC1
OUT1BS EQU $FFBE
OUTCRL EQU $FFC4
IN CHAR EQU $FFCD

IRBITS EQU \'00110000
MAXPULS EQU $500
THRESH EQU $60
SETMOTR EQU $00

IRCODE RMB l.6
IRCODE2 RMB 16
IRBYTE1 FCB 0
IRBYTE2 FCB 0

8-bit I/O
8-bit I/O
8-bit I/0
6-bit I/0
A/D input

port
port
port
port
port

A
B
c
D
E

(unused)
(unused)

(unused)

options register
control for port A
data direction for port D

subroutine to initialize I/0 device
subroutine to send string to terminal
subroutine to send character to terminal
subroutine to write I/O device
subroutine to output hex format to term
subroutine to output hex format to term
subroutine to send CR/LF to terminal
subroutine to read character from terminal

mask for port D where IR sensor is located
maximum duration allowed for any pulse
threshold between a 0 bit and a 1 bit
incoming command to set motor states

67

IRREAD:

IRLOOP:

DECODE:

DECOD2:

DECOD1:

ORG $0100

LDAA
STAA
LDAA
STAA
LDAA
STAA

JSR
BEQ
LDX

JSR
BEQ

JSR
BEQ
STAB
INX

JSR
BEQ
STAB
INX
CPX
BEQ

JMP

LDX
CLRB
CLRA
LSLD
XGDY
LDAA
INX
INX
CMPA
XGDY
BLO
INCB
CPX
BNE
STAA
STAB

CMPA
BNE
STAB
JSR
JSR
LDAB
STAB

#\10010000
OPTION
#\10000000
PACTL
#\'00001111
DDRD

IREDGE
IRREAD
#IRCODE

IREDGE
IRREAD

IREDGE
IRREAD
O,X

IREDGE
IRREAD
o,x

#IRBYTE1
DECODE

IRLOOP

#IRCODE

o,x

#THRESH

DECOD1

#IRBYTE1
DECOD2
IRBYTE1
IRBYTE2

#SETMOTR
PRINT1
PORTA
DELAY
DELAY
#\00000000
PORTA

set up options and port directions

wait for IR receiver to detect something

initialize memory pointer

wait for another IR edge
if not detected, start over

wait for another IR edge
if not detected, start over
store the pulse width into the array
increment the pointer

wait for the next edge
if not detected, start over
store the pulse width into the array
increment the pointer
have we received all 16 bits yet?
if so, decode the data

otherwise grab another bit

initialize array pointer
initialize registers ACCA and ACCB

logical shift left of ACCD
exchange register X with ACCD
read pulse width into ACCA
increment pointer to the next bit

determine whether bit is a 0 or a 1
exchange back
if pulse width not less than threshold,
then add 1 to the current accumulator
have we decoded all 16 bits?
go back and decode the next bit
store decoded word into ACCA and ACCB

is it the command to set motor status?

store data byte into port A, motor port
delay for about half a second

turn all the motors off again

68

PRINTl.:

PRINT2:

IREDGE:

IREDGl.:

IREDG2:

DELAY:
DELAY2:
DELAYl.:

JMP

LDX

JSR
JSR

LDX

JSR
CPX
BNE
JMP

LDAA

ANDA

LDY

LDAB

ANDB

INY
CPY
BEQ
CBA

BEQ
XGDY
RTS

LDAA

LDAB

DECB
BNE
DECA
BNE
RTS

IRREAD

#IRBYTEl.
OUT2BS
OUTCRL

#IRCODE
OUTlBS
#IRBYTEl
PRINT2
IRREAD

PORTD
#IRBITS
#0
PORTD
#IRBITS

#MAXPULS
IREDG2

IREDGl.

#$FF
#$FF

DELAYl

DELAY2

C.3 Listing of CLIFF .PDS

wait for the next IR command

output the command to the terminal
in hex format

output carriage return, line feed

output the individual pulse widths
to the terminal in hex format

wait for the next IR command

store current value of IR sensor

reset counter
wait until IR sensor changes

increment counter
check to see if counter exceeds the

maximum pulse width
(compare ACCB to ACCA)

store counter value into ACCB
return from subroutine

delay for 255 x 255 counts

; return from subroutine

The expansion card which transmitted the infrared signals contained one PAL to handle

all of the combinational logic. This logic is described below in the file "CLIFF.PDS".

;PALASM Design Description

;---------------------------------- Declaration Segment ------------
TITLE Control for IR transmitter/receiver board interface w/ ISA bus
PATTERN
REVISION 1.0
AUTHOR Rajeev Goel
COMPANY University of Illinois
DATE 02/08/95

69

CHIP irboard1 PALCE22V10

;---------------------------------- PIN Declarations ---------------
PIN l. PEqQ_684_1 INPUT
PIN 2 PEqQ_684_2 INPUT
PIN 3 IOW ISA INPUT
PIN 4 IOR ISA INPUT
PIN 5 Output_SSS_1 INPUT
PIN 6 Output_SSS_2 INPUT
PIN 7 0Utput_SS5_3 INPUT
PIN 8 TC 161 INPUT
PIN l.2 GND INPUT
PIN 24 vee INPUT
PIN 23 CP 323 COMBINATORIAL OUTPUT
PIN 22 S1 323 COMBINATORIAL OUTPUT
PIN 2l. so 323 COMBINATORIAL OUTPUT
PIN 20 E 245 COMBINATORIAL OUTPUT
PIN l.9 Dir 245 COMBINATORIAL OUTPUT
PIN l.S Trigger_555_1 COMBINATORIAL OUTPUT
PIN l.7 Trigger_SS5_2 COMBINATORIAL OUTPUT
PIN l.6 CP 161 COMBINATORIAL OUTPUT
PIN l.S IR out COMBINATORIAL OUTPUT

;----------------------------------- Boolean Equation Segment ------
EQUATIONS
CP_323 = (PEqQ_684_1 + PEqQ_684_2 + IOW_ISA) * /Output_555_2
S1_323 a /(PEqQ_684_1 + PEqQ_684_2 + IOW_ISA)
S0_323 a /(PEqQ_684_1 + PEqQ_684_2 + IOW_ISA) + Output_555_2
E_245 • PEqQ_684_1 + PEqQ_684_2
Dir_245 = /IOR_ISA
Trigger_S5S_l. c PEqQ_684_1 + PEqQ_684_2 + IOW_ISA
Trigger_SS5_2 = Output_555_1 + (Output_555_3 * /TC_161)
CP 161 = Output_SS5_2 + (Output_555_1 * /(PEqQ_684_1 + PEqQ_684_2 + IOW_ISA))
IR_out = /(Output_555_l. + Output_555_3)

;----------------------------------- Simulation Segment -----------
SIMULATION

;---

70

APPENDIX D. SOURCE CODE FOR "SAM"

This appendix contains the source code for a robot called Sam, written by John

Knapowski and Rajeev Goel. This robot solved part of the task for the Spring 1995 LegoBot

contest. It was able to find a basket, line itself up for a direct shot, and shoot a ping-pong ball

into the basket from behind the three-point line. A brief description of the algorithm is given in

Section 6.2. The code is written in C and is intended to run on a Vesta SBC88A microcontroller

board with the add-on board designed for the Fall 1994 semester. The following is a listing of

the file "SAM.C".

I* SAM.C *I
I* Rajeev Goel & John Knapowski *I
I* April 1995 *I
I* Robot car shoots a ping-pong *I
I* into basket from behind the *I
/* three-point line. *I

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define

OPEN
CLOSED
FRONT BUMP
ARM BUMP
FRONT SPIN BUMP - -
BACK_SPIN_BUMP
LEFT PHOTO
RIGHT PHOTO
FRONT_RIGHT_REF
FRONT LEFT REF - -
BACK_RIGHT_REF
BACK LEFT REF
IR SENSOR
POWER DIP
WHICH_HOOP_DIP

SEARCH_IR
ALIGN IR
SEARCH_HOOP
ALIGN HOOP1
ALIGN HOOP2
SHOOT
GOTO HOOP
UNKNOWN

l

0
1

2
3
4

1

2
l

2
3
4

1
l

2

1

2
3

4

7

5

6
8

71

II microswitch state
II microswitch state
II microswitch port

II microswitch port
II microswitch port
II microswitch port
II phototransistor port
II phototransistor port
II reflectance sensor port
II reflectance sensor port
II reflectance sensor port
II reflectance sensor port

II infrared receiver port
II DIP switch number
II DIP switch number

II modes of operation

'#define FAST 0 II motor speeds
'#define SLOW 120
#define MEDIUM 50
#define REALSLOW 160

'#define PHOTO_THRESHHOLD 100
'#define FOUND_LIGHT(sens) (sens>PHOTO_THRESHHOLD)
'#define REFL THRESHHOLD 230
'#define MILLISECONDS 20
'#define SEARCH DELAY (200 * MILLISECONDS)
'#define ALIGN DELAY (1000 * MILLISECONDS)
'#define SHOOT DELAY (2000 * MILLISECONDS)
'#define DOWN ARM DELAY (700 * MILLISECONDS) - -
#define ON_ ORANGE (sens) (sens<•REFL_THRESHHOLD)
#define ON _BLACK (sens) (sens>REFL_THRESHHOLD)

void delay (unsigned int howmuch) II busy wait
{

int delay;

for (delay=O delay<howmuch
}

void robot_stop ()
{

}

outp (OxOO, OxOO);
outp (Ox01, OxOO);
outp (Ox02, OxOO);
outp (Ox03, OxOO);

void arm_stop ()
{

}

outp (Ox04, OxOO);
outp (OxOS, OxOO);

void arm_up ()
{

}

outp (Ox04, Ox01);
outp (OxOS, OxOO);

void arm_ down ()
{

}

outp (Ox04, OxOO);
outp (OxOS, Ox01);

void robot_forward ()
{

outp (OxOO, OxOO);
outp (OxOl, OxOl);
outp (Ox02, OxOO);

delay++);

II turn drive motors off

II turn catapult motor off

II raise the catapult quickly

II lower the catapult arm

II turn both drive motors spinning forward

72

outp (Ox03, OxOl);
}

void robot_backward ()
{

}

outp (OxOO, OxOl);
outp (OxOl, OxOO);
outp (Ox02, OxOl);
outp (Ox03, OxOO);

void robot spin right {)
{ - -

}

outp (OxOO, OxOl);
outp (OxOl, OxOO);
outp (Ox02, OxOO);
outp (Ox03, OxOl);

void robot_spin_left {)
{

}

outp (OxOO, OxOO);
outp (OxOl, OxOl);
outp {Ox02, OxOl);
outp (Ox03, OxOO);

void robot_forward_right
{

outp (OxOO, OxOO) ;
outp {OxOl, OxOO);
outp {Ox02, OxOO);
outp {Ox03, OxOl);

}

void robot_forward_left
{

outp {OxOO, OxOO);
outp {OxOl, OxOl);
outp (Ox02, OxOO);
outp (Ox03, OxOO);

}

{)

{)

void robot_backward_right ()
{

}

outp (OxOO, OxOO);
outp {OxOl, OxOO);
outp {Ox02, OxOl);
outp (Ox03, OxOO);

void robot_backward_left {)
{

outp {OxOO, OxOl);

II turn both drive motors backward

II right motor back, left motor forward

II left motor back, right motor forward

II left motor forward, right motor stop

II right motor forward , left motor stop

II left motor backward, right motor stop

II right motor backward, left motor stop

73

}

outp (Ox01, OxOO);
outp (Ox02, OxOO);
outp (Ox03, OxOO);

void set_robot_speed (unsigned char speed)
I* set the speed of both of the drive motors: O=fastest, 255sslowest *I
{

}

int delay;

outp (Ox10, speed);
outp (Ox20, 4);
for (delay=O ; delay<10
outp (Ox20, 5);
for (delay=O ; delay<10
outp (Ox20, OxOO);

delay++);

delay++);

void set_arm_speed (unsigned char speed)
I* set the speed of the catapult arm: O=fastest, 255=slowest *I
{

}

int delay;

outp (Ox10, speed);
outp (Ox20, 6);
for (delay=O ; delay<10
outp (Ox20, OxOO);

delay++);

unsigned char get_bump_sensor (unsigned char which_bump_sensor)
I* read status of a particular microswitch, bump sensor *I
{

return (1 && ((OxOB << which_bump_sensor) & inp (Ox10)));
}

unsigned char get_IR_sensor (unsigned char which_IR_sensor)
I* read status of a particular IR receiver module *I
{

return (1 && ((Ox01 << (which_IR_sensor)) & inp (Ox20)));
}

unsigned char get_reflectance_sensor (unsigned char which_reflectance_sensor)
I* read value of a particular reflectance sensor, O=reflective, 255sdark *I
{

}

int delay;

outp (Ox10, which_reflectance_sensor- 1);
outp (Ox30, OxOO);
for (delay=O ; delay<1000 ; delay++);
return inp (Ox30);

unsigned char get_light_sensor (unsigned char which_light_sensor)
I* read value of phototransistor, O=dark, 255=light *I

74

{

}

int delay;

outp (Ox10, which_light_sensor+3);
outp (Ox30, OxOO);
for (delay=O ; delay<1000 ; delay++);
return inp (Ox30);

unsigned char get_DIP_switch (unsigned char which_DIP_switch)
I* read position of a particular DIP switch *I
{

}
return (1 && ((Ox01 << (which_DIP_switch-1)) & inp (Ox10)));

int main (void)
{

int mode;
int light_sensor;
int right_reflectance_sensor;
int left_reflectance_sensor;

mode = SEARCH _HOOP;
while (1)

II start robot off searching for hoop

{
if (get_DIP_switch (POWER_DIP)

II
•= OPEN)

{

}
else
{

robot_ stop () ;
mode = SEARCH _HOOP;

II
II

if "power" DIP switch is open,
stop the robot, and reset the
program.

switch (mode)
{

case SEARCH_HOOP:
set_robot_speed (SLOW) ;
robot_spin_right (); II spin clockwise
delay (SEARCH_DELAY); II delay for short period
robot_stop (); II stop the robot
light_sensor = get_light_sensor (LEFT_PHOTO) ;
if (FOUND_LIGHT (light_sensor)) II if light detected,

mode .. GOTO_HOOP; II goto next phase
break;

case GOTO_HOOP:
set_robot_speed (SLOW) ;
robot_backward ();
right_reflectance_sensor ..

II travel straight backward

get_reflectance_sensor (BACK_RIGHT_REF) ;
if (ON BLACK (right_reflectance_sensor))
{ - II until black surface

}

mode .. ALIGN_HOOP1;
break;

75

II (3-point region)
II is detected.

left reflectance sensor =
get_reflectance_sensor (BACK_LEFT_REF) ;

if (ON_BLACK (left_reflectance_sensor))
mode • ALIGN_HOOPl;

break;

case ALIGN HOOPl:
set_robot_speed (REALSLOW) ;
right_reflectance_sensor =

get_reflectance_sensor (BACK_RIGHT_REF) ;
left_reflectance_sensor •

get_reflectance_sensor (BACK LEFT_REF) ;
if (ON_BLACK (right_reflectance_sensor) &&

ON_BLACK (left_reflectance_sensor))
robot_forward ();

if (ON_BLACK (right_reflectance_sensor) &&
ON_ORANGE (left_reflectance_sensor))
robot_forward_left ();

if (ON_ORANGE (right_reflectance_sensor) &&
ON_BLACK (left_reflectance_sensor))
robot_forward_right ();

if (ON_ORANGE (right_reflectance_sensor) &&
ON_ORANGE (left_reflectance_sensor))
mode c ALIGN_HOOP2;

break;

case ALIGN HOOP2:
set_robot_speed (REALSLOW) ;
right_reflectance_sensor =

get_reflectance_sensor (BACK_RIGHT_REF) ;
left reflectance sensor =

get_reflectance_sensor (BACK_LEFT_REF) ;
if (ON_BLACK (right_reflectance_sensor) &&

ON_BLACK (left_reflectance_sensor))

}

set_robot_speed (REALSLOW) ;
robot_forward ();
delay (ALIGN_DELAY) ;
robot_stop ();
mode • SHOOT;

if (ON_BLACK (right_reflectance_sensor) &&
ON_ORANGE (left_reflectance_sensor))
robot_backward_right ();

if (ON_ORANGE (right_reflectance_sensor) &&
ON_BLACK (left_reflectance_sensor))
robot_backward_left ();

if (ON_ORANGE (right_reflectance_sensor) &&
ON_ORANGE (left_reflectance_sensor))
robot_backward ();

break;

case SHOOT:
delay (SHOOT_DELAY) ;

76

}
}

}
}

set_arm_speed (FAST) ;
arm_up () ;
while (get_bump_sensor (ARM_BUMP));
arm_stop () ;
mode = UNKNOWN;
break;

case UNKNOWN:
break;

77

APPENDIX E. LEGOBOT CONTEST HANDOUT: CAPTURE THE TORCH

The following is a refonnatted version of the handout which was given to the Spring

1994 LegoBot Contest participants. It contains a description of the task, a parts list, and some

programming tips. In addition, the participants also received portions of the 6.270 course notes

to help them in using the 6.270 microcontroller board and the IC software package.

E.l Introduction

The goal of this project is to have fun. Hopefully, as a side benefit, everyone involved

will also learn about and gain valuable practical experience in embedded control systems and

mobile autonomous robots. There will be two teams of two participants each. Each team will

design and program a mobile autonomous robot to accomplish the task of the competition, which

is described further below. The robots will be constructed primarily from LEGO parts. The

embedded control system to be used is the MIT 6.270 rev. 2.21 microcontroller board, using a

Motorola M68HC11 microprocessor.

Embedded control refers to a control system (in this case, a microcontroller) which is

embedded inside of the physical system which it is designed to control. Thus the microcontroller

is programmed to accomplish certain specific tasks; and is not meant to be used as a general

purpose computer such as a desktop PC.

Sometimes it can be a difficult task within itself simply to decide what defines a "mobile

autonomous robot." A "robot" must be equipped with sensor(s) to gather infonnation about the

environment. Based on continuous input from such sensor(s), the robot proceeds to take actions

78

in order to accomplish specific tasks. By "mobile," of course, we simply mean that the robot

moves. And by "autonomous," we mean that no outside intervention is allowed once the robot

begins its task. In other words, the robot must gather all of its information and decide what to do

using only devices which are actually a part of the robot itself and which move with the robot. A

system in which a desktop PC is sending commands to the motors through a serial cable is an

example of a NON-autonomous robot.

E.2 The Task

This semester's "environment" is a 4' x 4' playing field with short walls along the edges.

The two teams will initially position their robots at opposite comers of the field. In the center of

the field will be a small device containing a light bulb which we will call the "torch." The torch

will have a rod coming out of the bottom, and this rod will be stuck into a hole in the center of

the field. The task of each robot is to somehow place the torch in the opponent's comer. In

general, this will require the robot to accomplish four subgoals:

1) Find and move to the center of the field where the torch stands.

2) Lift the torch out of its hole.

3) Find and move to the opponent's comer.

4) Drop the torch.

The task is considered to be accomplished if any part of the torch touches the area of the field

defmed by the opponent's comer. The team whose robot accomplishes the task first is the ~er

of that round. The winner of the contest will be determined by the best of three rounds.

79

Each round will begin with a gunshot. If either of the robots makes any motions before

the gunshot, the round will be restarted. The round ends when either one of the robots completes

the task or after two minutes have elapsed (whichever comes first). If after two minutes, one of

the robots is still in possession of the torch, that robot loses the round. Therefore, it is important

to drop the torch within two minutes even if not in the opponent's corner. The robot is

considered in possession of the torch if it is in any way touching the torch.

If at the end of two minutes, neither robot is in possession of the torch, yet neither robot

has accomplished the task, the winner will be determined based on the most points acquired.

Points will be given as follows:

+5 points for responding in some way to the gunshot

+5 points for moving outside of own corner (any part of the robot)

+ 1 point for whichever robot is closer to the torch for each inch that it is closer

+ 1 0 points for reaching/touching the torch at least once

+ 1 0 points for lifting the torch out of the hole

+ 1 0 points for reaching the opponent's corner with the torch in possession

+ 10 points for aesthetic quality and creativity of robot.

E.3 The Playing Field

A top view diagram of the playing field is shown in Figure E.1. The two corners will be

solid white. The rest of the field will be colored in shades of gray as shown. Two IR

transmitters emitting at different frequencies will also be placed at opposite corners of the field to

aid the robots in determining their location.

80

4 feet

IR transmitter (100Hz)

---- wall is 3.5"
~ high, 0.5''

thick

......

IR transmitter (125Hz) < >
1.25 feet

Figure E.l. Top View of Playing Field for "Capture the Torch"

Before the first round begins, a coin will be tossed to determine which comer your robot

will start in. Thereafter, the robots will switch comers each round. Once the coin is tossed, you

may not make any adjustments to your robot. Your robot will then be placed in its comer at a

random orientation such that no part of the robot extends over the boundary of the comer.

Therefore, you may not assume in your software that the robot will be initially facing any

particular direction.

81

E.4 The Torch

A diagram of the torch is shown in Figure E.2. It contains a 6 V, 250 rnA light bulb

which emits white light in all directions. This will help you locate the torch and also locate your

opponent's robot if it is carrying the torch. At the beginning of the round, the torch will be

placed standing up in the hole in the center of the field. It will be loose enough to allow your

robot to easily pick it up out of the hole, but tight enough to prevent it from coming out simply

by pushing on it from the side.

I --

' diameter of disc = 3"

Figure E.2. The Torch

E.S Parts List

You will receive the following parts for use in the design of your robot:

• one 6.270 M68HC11 microcontroller board with serial cable
• one 6 V rechargeable battery pack for motors (three 2 V Gates cells)
• one 6 V AA battery pack for microcontroller (four 1.5 V AA cells)
• one manual motor switch board
• assortment of LEGO parts including wheels, gears, and axles
• wire and connectors

82

• four 4.5 V Polaroid motors
• one Futaba FP-S 148 servo motor
• one solenoid
• two GPIU52X IR sensors (good for sensing IR transmissions from corners of field)
• two OPB730F reflectance sensors (ideal for detecting the color of the field surface)
• two MRD370 phototransistors (excellent for detecting light coming from torch)
• four microswitches (wonderful for detecting collisions with wall)
• one Radio Shack 270-092 microphone (superb for detecting sound of gunshot)
• two single-tum, 1 00 ill potentiometers

In addition. a battery charger will remain in the ECE 291laboratory for your use. Simply

plug your battery pack into the battery charger board, and turn on the power supply. In "Slow"

mode, it is okay to leave it unattended, as long as you check it after the expected charge time. In

"Fast" mode, keep a close eye on the batteries and unplug them when they become warm to the

touch.

If either of the teams would like to use additional part(s) not listed above, it must first get

the approval of all organizers of the contest. Then the part(s) will be provided to both teams for

use in their designs, so as to eliminate any chance of an unfair disadvantage.

E.6 Rules and Restrictions

1.) The size of the robot is restricted as follows. At the beginning of a round, when the robot is

being placed in its corner, it must be able to completely fit inside an open-top box which is

11" by 7". There are no restrictions on the height or the weight of the robot.

2.) You may use only the above listed parts to construct your robot. Use of additional parts

requires prior approval.

83

E. 7 The Microcontroller and Software

The teams will develop their software on IBM PC-compatible machines using IC

(Interactive-C) by Fred Martin and Randy Sargent at MIT. This software has been installed on

all the PCs in the ECE 291laboratory. The executables are in the directory "\ic". You will write

your code inC and/or 68HC11 assembly. A copy of the 6.270 manual will be given to you for

your reference. Chapter 6 is titled "Robot Control" and is an excellent chapter to read before you

start writing your software. Chapter 7 explains how to use IC (Interactive C). IC is a subset of

the C language, and therefore does not support all of the data structures that ANSI C supports.

Therefore, you will need to read Chapter 7 to find out exactly what you can and cannot do with

IC. IC does, however, support multitasking and makes it very easy to program the robot to

execute many processes "simultaneously."

Here are some relevant specifications about the 6.270 microcontroller board you might

find useful:

• eight digital input ports
• 20 analog input ports
• four bi-directional motor output ports
• two digital output ports
• four additional digital outputs OR two additional motor outputs (with braking ability)
• one servo motor output port
• one IR output port
• 32 Kbytes battery-backed RAM for your software
• 2x 16 character LCD display
• two push-button switches
• four DIP switches
• one Frob Knob (potentiometer) for use as an analog input

84

E.8 Helpful Tips and Hints

1.) Any decent software should be designed with all constants clearly labeled and defmed at the

top of the file. Use constants for each port that you use, and label them according to what

that port is being used for. Example: "#defme leftwheel3". In this way, the constants can

easily be looked up or changed.

2.) Comment your code as you proceed.

3 .) Since the behavior of the sensors may vary and fluctuate slightly depending on the

conditions, make sure you have a quick and easy (yet sophisticated and reliable) way of

recalibrating your software to account for this.

4 .) Before you even begin building the robot, try to determine where the microcontroller and the

battery packs will sit. The motor battery pack is quite heavy, and will destroy your robot's

balance if not placed properly.

5.) Before attaching wheels and motors, make sure your geartrain is well-built and smooth. In

other words, ensure that the gear teeth mesh together comfortably (not too tight, not too

loose). Also make sure there is not too much friction or too much play in the gears.

6.) Have fun!

E.9 Resources

The following resources are available for your use if you have questions, comments,

suggestions, problems, etc.:

ParticiPants·
Dan Moore
Jason Wessel

332-4747
332-4252

85

mooredan@uxa.cso.uiuc.edu
jwessel@uiuc.edu

Michael Landauer
Ted Briggs

Or~nizers:
Rajeev Goel
Kevin Safford

Prqfessor:
Professor W. Kent Fuchs

332-4128
332-4104

332-2271
328-5448

mlandaue@ux4.cso.uiuc.edu
tbriggs@uiuc.edu

jeev@uiuc.edu
safford@uiuc.edu

fuchs@crhc.uiuc.edu

M!TAnonvmous ETP site: cherliPakha.media.mit.edu
When you FTP to this site as "anonymous," and go into the "/pub/6270" directory,
you will fmd the documentation for the 6.270 board and IC, among other things.

Robotics Newsgroup: como. robotics
Type "nn comp.robotics" for a discussion of current problems and discoveries in
robotics. Many of the active users of this newsgroup have 6.270 boards and build
robots out ofLEGO, just like you.

6. 2 70 Mailing List: robot -board@ oberon. com
This mailing list is for users of the 6.270 board and the Miniboard. Fred Martin,
the original organizer of the 6.270 course at MIT, frequently responds to questions
and problems via this mailing list. To subscribe, send mail to
"listserv@oberon.com". The body of your message should be "subscribe robot
board your name" and nothing else.

86

APPENDIX F. LEGOBOT CONTEST HANDOUT: EIGHT BALL

The following is a reformatted version of the handout which was given to the Fall 1994

LegoBot Co~test participants. It contains a description of the task, a parts list, and instructions

on how to write programs for and download code to the Vesta SBC88A microcontroller.

F.l Introduction

The goal of this project is to learn about and gain valuable practical experience in

embedded control systems and mobile autonomous robots. Your team of three or four members

will be given a kit containing various LEGO parts, motors, sensors, and a microcontroller. You

will design and program a mobile autonomous robot to accomplish the task described below, and

at the end of the semester your robot will compete against robots designed by other teams. The

robots will be constructed primarily from LEGO parts.

Embedded control refers to a control system (in this case, a microcontroller), which is

embedded inside of the physical system it is designed to control. Thus the microcontroller is

programmed to accomplish certain specific tasks, and is not meant to be used as a general

purpose computer such as a desktop PC. The embedded control system to be used is the Vesta

SBC88A microcontroller board, which uses an Intel 8088 microprocessor. The microcontroller

is supplemented with some extra hardware to drive the motors and control their speed.

Convenient ports have been added to facilitate the connection of motors and sensors.

A "robot" is a piece of machinery equipped with sensor(s) to gather information about its

environment. Based on continuous input from these sensor(s), the robot proceeds to take actions

87

in order to accomplish specific tasks. By "mobile," of course, we simply mean that the robot

moves. By "autonomous," we mean that no outside intervention is allowed once the robot begins

its task. In other words, the robot must gather all of its information and decide what to do using

only devices which are actually a part of the robot itself and which move with the robot. A

system in which a desktop PC is sending commands to the motors through a serial cable is an

example of a NON-autonomous robot.

F.2 The Task

This semester's task takes place on a specially designed pool table. Each round of the

contest involves a battle between two robots. Before each 3-minute round, one robot will be

assigned to the red balls and the other robot to the green balls. The task is for each robot to sink

as many of its own balls as possible within the time limit. The robot that has more of its own

balls sunk at the end of the round wins that round.

1.) Both robots will start out motionless in their designated comers. The beginning of the

round will be signaled by theIR transmitters (at each of the six pockets) being turned on. If

either robot moves before the signal, it is considered a false start and the round will be

restarted. If a robot false starts three times, it automatically loses that round.

2.) There may be no human (or other life forms) intervention of any kind once the round has

begun.

3.) Except in the event of early termination or sudden death overtime, all rounds last exactly 3

minutes. At the end of this time, the robot that has more of its own balls sunk wins the

round.

88

4.) A robot may only sink a ball by placing it in one of the six pockets.

5.) If a robot sinks its opponent's ball, it is counted as a sink for the opponent.

6.) If a ball leaves the perimeter of the table in any way, that ball is out of play and is not

considered sunk.

7.) If a robot puts the 8-ball out of play at any time, the round ends immediately, and that robot

loses.

8.) If a robot sinks the 8-ball before all seven of its own balls are sunk, the round ends

immediately, and that robot loses.

9.) If a robot sinks the 8-ball after all seven of its own balls are sunk, the round ends

immediately, and that robot wins.

10.) If at the end of3 minutes, both robots have an equal number of balls sunk, the round will

continue without interruption for a maximum of 2 more minutes. This period is called

"sudden death overtime." Sudden death overtime ends as soon as any single ball is sunk.

11 .) In sudden death overtime, the robot whose ball is sunk first wins the round.

12.) If the 8-ball is the first ball to get sunk during sudden death overtime, then the robot who

sunk it wins if all of his balls have already been sunk, and loses otherwise.

13.) If sudden death overtime lasts 2 minutes without any balls being sunk, the winner of the

round will be determined by the judges based on creativity and aesthetic appeal of the

robots.

89

14.) A maximum of one minute will be allowed in between rounds for teams to make any

repairs, should they be necessary. A team whose robot is not ready when the round is

about to begin will be automatically disqualified.

F.3 The Pool Table

A top view diagram of the pool table in its initial configuration is shown below in Figure

F. I. The dimensions of the pool table, as shown above, are 8' by 4'. The surface ofthe table will

be green. The 8-ball is painted solid black, with only two small white circles at opposite ends of

the ball. The remaining balls are painted solid green or solid red, and contain no markings.

Other than in color, the balls will resemble standard billiard balls (same size, same weight).

Red starting comer\. , .

Pockets · . ·.
. ~:

Figure F. I. Top View of Pool Table

At the beginning of each round, a coin will be flipped and a member from one of the two

competing teams will be asked to call "heads" or "tails." If he calls correctly, his team will either

choose a ball color for their robot, or choose the order in which the two robots will be placed on

the board. Since each team can place its robot on the table in any orientation within the starting

comer, it may be advantageous for a team to place its robot after the opponents have placed

90

theirs. The other team will make the remaining decision. If he calls the coin incorrectly, of

course, the roles will be reversed.

Each team will place its robot in its designated starting comer in the order established.

No part of the robot may extend beyond the perimeter of the marked square in its starting

configuration. The round will be started with a gunshot which the robots must detect using the

microphone element.

An IR (infrared) transmitter is mounted at each of the six pockets oriented such that the

signal is transmitted toward the center of the board. Each team is given two IR receivers which

can detect this signal if oriented correctly.

F.4 Rules and Restrictions

In order to have a fair and fun contest, and to preserve the life of the robot kits, the teams

must adhere to the following restrictions when constructing their robots:

1.) Only the parts given in the kit may be used to construct the robot. Use of additional parts

requires prior approval from the contest judges. The sum of the costs of all additional parts

may not exceed $10. Save all your receipts; the judges may request to see them.

2.) Tape, glue, or any other forms of adhesive may not be used in the construction of your robot.

3.) LEGO parts may not be broken or damaged in any way.

4.) LEGO parts may not be removed from the motors and sensors to which they have been

glued.

5.) Any form of intentional permanent damage to the pool table, the balls, or any of the teams

kits or robots will not be permitted.

91

6.) Do not leave your kit unattended in any location which is accessible to more than a few

people. The parts in the kits are expensive and can be stolen easily.

F.S Resources

The following resources are available for your use if you have questions, comments,

suggestions, problems, etc.:

Organizers:
Rajeev Goel
Jonathan Kua

Prq.fessor:

328-8196 or 333-1693
332-4071 or 244-7180

Professor Michael C. Loui

ECE 291 TA 's:
Dennis Culley
Brandon Long
Chuck Fuoco
A. Monte Krol
Doug Stirrett

Robotics Newsgrouo: como. robotics

jeev@uiuc.edu
kua@crhc. uiuc.edu

Type "nn comp.robotics" for a discussion of current problems and discoveries in
robotics. Many of the active users of this news group have built LEGO robots.

F .6 Parts List

The following is a complete list of parts contained in each ECE 291 LegoBot kit:

~ fw:t
1 LEGO ROBOT KIT I containing ...

1 LEGO 9851 (Connectors, Piston Rod)
1 LEGO 9852 (Chain Links)
2 LEGO 9853 (Gear Set)

Supplier
6270 Technologies9

9 6270 Technologies is a company started by Pankaj (PK) Oberoi, the purpose of which is to distribute parts used in
MIT's 6.270 course. For information contact: 6270 Technologies I One Kendall Square, #312 I P.O. Box 9171 I
Cambridge, MA 02139 I (617) 492-5425 I pkoberoi@delphi.com.

92

1 1EGO 9854 (Gear Racks)
1 1EGO 9855 (Tires, Pulley Wheels)
1 1EGO 9856 (Cross Axles)
2 1EGO 9857 (Plates)
1 1EGO 9858 (Red/Blue Beams)
1 1EGO 9862 (Universal Joints)
.33 1EGO 9869 (Base Plate)

· 1 1EGO 9871 (Yellow Beams)
1 SHARPIR containing 4 GP1U52X IR sensors 6270 Technologies
1 ACTUATOR set containing 4 motors and a servo 6270 Technologies
1 GATES set containing three 2V Gates cells 6270 Technologies
4 741S373 (8-bit latch) ECE Storeroom10

4 74LS684 (8-bit comparator) ECE Storeroom
1 74F579 (8-bit counter) ECE Storeroom
1 741S139 (Dual4-to-1 multiplexer) ECE Storeroom
2 74LS04 (Hex inverter) ECE Storeroom
1 74LS05 (Open-collector hex inverter) ECE Storeroom
2 741S02 (Quad NOR gates) ECE Storeroom
1 74LS390 (Dual decade counter) ECE Storeroom
2 1 0 k W resistor packs ECE Storeroom
2 1 k W resistor packs ECE Storeroom
4 220 W resistors ECE Storeroom
1 1 MHz crystal clock ECE Storeroom
100 strips of 3M connectors ECE Storeroom
5 strips of male header ECE Storeroom
5 strips of female header D' 'k II 1g1 ey
1 4-switch SPST DIP switch ECE Storeroom
2 small microswitches with rollers ECE Storeroom
2 large microswitches with rollers ECE Storeroom
4 OPB730F reflectance sensors ECE Storeroom
2 MRD3 70 phototransistors ECE Storeroom
2 single-tum, 100 kW potentiometers ECE Storeroom
1 Radio Shack 270-092 microphone Radio Shack
2 light bulbs Radio Shack
7 TIP122 NPN power transistors ECE Storeroom
6 TIP127 PNP power transistors ECE Storeroom
2 Vector prototyping boards ECE Storeroom
1 Vesta SBC88A microcontroller board Vesta Technology, Inc. 12

1 serial cable ECE Storeroom
1 battery pack for microcontroller (4 AA batteries) ECE Storeroom

10 The ECE Storeroom supplies electronic parts and equipment for the University of Illinois. It is located at 60
Everitt Lab /1406 W. Green St. I Urbana, IL 61801 I (217) 333-1916 I stores@ece.uiuc.edu.

11 Digikey I (800) 344-4539.
12 Vesta Technology, Inc. I 7100 W. 44th Ave., Suite 101 I Wheat Ridge, CO 80033 I (303) 422-8088.

93

F.7 Sample Code

It is recommended that you study the following sample C source code to obtain a general

idea of how to program the Vesta SBC88A microcontroller. The code in this section has NOT

been tested thoroughly and, therefore, probably contains bugs. Note that inC, a "ox" in front of

a number simply means that the number is represented in hexadecimal notation.

void all_motors_off ()
{

II This code should always get executed before anything else.
outp (OxOO, OxO~); II ports 0 and ~ control motor 1

outp (OxO~, Ox01);
outp (Ox02, Ox01) ; II ports 2 and 3 control motor 2
outp (Ox03, OxOl);
outp (Ox04, OxO~); II ports 4 and 5 control motor 3

outp (OxOS, OxOl);
outp (Ox06, OxOO); II port 6 controls the servo motor

}

void motor_forward (unsigned char whichmotor)
{

}

II whichmotor can be either 1, 2, or 3
outp (whichmotor * 2 - 2, OxOO);
outp (whichmotor * 2 - 1, Ox01);

void motor_backward (unsigned char whichmotor)
{

}

II whichmotor can be either 1, 2, or 3
outp (whichmotor * 2 - 2, Ox01);
outp (whichmotor * 2 - 1, OxOO);

void motor_off (unsigned char whichmotor)
{

}

II whichmotor can be either 1, 2, or 3
outp (whichmotor * 2 - 2, Ox01);
outp (whichmotor * 2 - ~. Ox01);

void set_motor_speed (unsigned char whichmotor, unsigned char speed)
{

II whichmotor can be either 1, 2, or 3
II speed is a number from 0 - 255, with 0 being full speed.

94

}

void
{

}

void
{

}

int delay;

ou~p (Ox10, speed);
outp (Ox20, whichmotor + 3);
for (delay • o ; delay < 10 ; delay++) ;
outp (Ox20, OxOO);

servo on ()

outp (Ox06, Ox01); II note this change from the original!

servo off ()

outp (Ox06, OxOO); II note this change from the original!

void set_servo_angle (unsigned char angle)
{

}

II angle is a number within the range of 140 - 240. Do
II not attempt to set an angle outside of this range .

int delay;

outp (Ox10, angle);
outp (Ox20, Ox07);
for (delay = 0 ; delay < 10
outp (Ox20, OxOO);

delay++);

unsigned char get_DIP_switch (unsigned char whichswitch)
{

}

II whichswitch can be either 1, 2, 3, or 4
return (Ox01 << (whichswitch- 1)) & inp (Ox10);

unsigned char get_bump_sensor (unsigned char whichbump)
{

}

II whichbump can be either 1, 2, 3, or 4
return (Ox08 << whichbump) & inp (Ox10);

unsigned char get_IR_sensor (unsigned char whichiR)
{

II whichiR can be either 1 or 2
return (Ox01 << (whichiR 1)) & inp (Ox20);

}

unsigned char get_reflectance_sensor (unsigned char whichreflectance)
{

II whichreflectance can be either 1, 2, 3, or 4,
II accessing AID channel 0, 1, 2 or 3

95

}

int delay;

outp (Ox10, whichreflectance - 1);
outp (Ox30, OxOO);
for (delay ~ o ; delay < 10 ; delay++);

II need to wait 200 microseconds for A/D conversion
return inp (Ox30);

unsigned char get_light_sensor (unsigned char whichlight)
{

}

II whichlight can be either 1 or 2, accessing A/D channel 4 or s

int delay;

outp (OxlO. whichlight + 3);
outp (Ox30, OxOO);
for (delay • 0 ; delay < 10 ; delay++);

II need to wait 200 microseconds for A/D conversion
return inp (Ox30);

unsigned char get_potentiometer (unsigned char whichpot)
{

}

II whichpot can be either 1 or 2, accessing A/D channel 6 or 7

int delay;

outp (Ox10, whichpot + 5);
outp (Ox30, OxOO);
for (delay ~ 0 ; delay < 10 ; delay++) ;

II need to wait 200 microseconds for A/D conversion
return inp (Ox30);

To compile,~ download, and run a C program called pool. c, perform the following

steps. It is recommended that you create batch files for yourself so that you do not have to type

these lengthy commands every time.

1.) Make sure that your path contains the following directories:
C:\C600\BIN
C:\C600\BINB
C:\CTR20\BIN

Also make sure that your LIB environment variable contains these directories:
C:\C600\LIB
C: \CTR20\LIB

96

There is a program called SETENV. BAT in the C : \ CTR2 o directory which sets these
variables for you.

2J cl /Zi /Od /c pool.c

3.) link st+pool,pool,, sctr_m /map /co /noe;
The file st. obj must be in your current directory for this to work. It has been placed in the
C : \ CTR2 o directory for your convenience.

4.) Apply power to your microcontroller by plugging the AA battery pack into port J7. Also
make sure the serial cable is connected between the microcontroller port 16 and the COMl
port of the PC.

5.) rdeb /BP=nnn /sbc=FFFF /coml /B4800 pool
Replace nnn with the number of lines of source code in your program. These command line
options work for the machines in the ECE 291laboratory. If you are running on a slower
machine such as a 386, try sbc=2000 instead of sbc=FFFF.

6.) If the software does not begin downloading, type:
load pool

7.) When it is done downloading, type g to run the program on the microcontroller. At this
point, you may disconnect the serial cable. Remember that the motor battery pack must be
plugged in to drive the motors.

, 8.) To save on batteries, remove power from the microcontroller whenever it is not in use (i.e.,
when you are editing your code).

To assemble, link, download, and run an assembly program called pool. asm, perform

the same steps as above, except replace steps 2 and 3 with the following:

2.) masm pool. asm;

3.) link pool,pool /map /co /noe;

97

APPENDIX G. LEGOBOT CONTEST HANDOUT: BASKETBALL

The following is a reformatted version of the handout which was given to the Spring

1995 LegoBot Contest participants. It contains a description of the task which the LEGO robots

had to accomplish. This specification was written by Doug Gerwitz.

G.l Introduction

With a team of two other ECE 291 students you will learn about embedded real-time

control systems by designing and building a robot that will successfully perform the task outlined

below. The robots will be constructed from LEGO parts, motors, sensors, and an Intel 8088-

based microcontroller. Various sensors are available that acquire information about the robot's

environment. The microcontroller has access to environmental information through the hardware

input ports which are directly connected to the sensors. Based on this input, a software program

stored in the microcontroller's memory will determine the robot's actions. These actions are

executed by sending signals from the microcontroller to the robot's motors via hardware output

ports. Since the motors require high-current and non-TTL level voltages, the microcontroller is

unable to power the motors directly. Therefore, a custom-built board has been provided to drive

the motors. Details about this board's operation will appear in additional handouts.

In this contest, the robots are completely autonomous. Robots gather information from

their sensors, and control programs use this information when determining a course of action.

Therefore, once the contest begins, nobody is allowed to touch their robot or send signals to it via

a remote control, serial cable, or by any other means.

98

G.l The Basketball Game

The objective in LegoBot Basketball is simply to score more points than the opponent.

The scoring system is described in Table G .1. The contest is a series of single-elimination

rounds. Each round is a battle between exactly two robots. A round begins with the flip of a

coin. If a team calls the coin correctly, they will shoot towards basket # 1 during the first half and

basket #2 during the second half. A DIP switch will be provided on the microcontroller so that

this information can be set before the round begins. The team must ensure that their robot is

fully capable of playing either basket.

Each robot is placed on the court so that it is on the same half as its opponent's basket.

Any initial orientation is acceptable. The only restriction is that the robot may not be placed

inside of the jump circle. Both teams must place the robots at the same time so that neither team

has an positional advantage.

Play will begin when the starting gun (a toy cap-gun) is fired. Teams will be provided

with a microphone capable of detecting this signal. The first half lasts for two minutes. Since

placing the robot on the court might cause the microphone to register a start signal, it might be a

good idea to have a DIP switch on the robot that enables/disables the microphone.

The referee signals when each half is over by blowing a whistle. Balls that are still

touching the robot when the whistle is blown can not count for points. However, "buzzer

beaters" are allowed. Balls that are no longer touching any part of the robot when the whistle

sounds but eventually enter the basket (without external intervention) do count.

99

At half-time, teams are allowed to pick up their robots. Modifications are not permitted

on the robot during half-time. Teams are only allowed to change DIP switch settings during

half-time. During the second half, each robot will shoot towards the opposite basket. The robots

are then placed again on the table (opposite the basket they are shooting at and outside the jump

circle) and await the cap-gun that starts the second half. Half-time will last exactly one minute.

Approximately 20% of the balls dispensed are orange "bonus" balls. When sunk, these

balls count 3 times the value of a white ball.

Table G.l . Scoring System

.QllQI: "la~-l.lll" "dunk" "lhr~~-llQinl~r"
white 1 3 5

orange 3 9 15

Balls that are sunk into your opponent's basket count for your opponent. A "lay-up" occurs when

a Ping-Pong enters the hole beneath a basket without traveling through the rim. A "dunk" occurs

when a robot is inside the three-point arc and the Ping-Pong ball travels through the rim (the rim

is 6" above the hole and the hole is at table level.) "Three-pointers" occur when all parts of the

robot are behind the three point arc and the Ping-Pong ball travels through the rim.

G.3 The Basketball Court

The robots play on a "basketball court" 4' wide by 8' long (see Figure G. I). As in

basketball, there are two baskets located on opposite sides of the court. The rims are 8" in

diameter and 6" above the surface of the court. Below each basket there is a hole in the court

that balls can fall through. Backboards extend 6" above the rim. The interior of the three-point

100

arcs are painted black and are located 12" from the center of the rim. The walls surrounding the

court will be 2" high.

~ light source

s·J ~-rim t ball dispense<
J,. IR transmitter

SIDE VIEW

Figure G.l. Top and Side Views of Basketball Court

Each basket has a light source behind it so that robots can find it more easily. In front of

each basket's light source, there will be a polarizer. When light shines through two polarizing

films, it will be transmitted if the two films are aligned in the same direction. If their alignments

are perpendicular, no light is transmitted. This property of polarizing films can be used to

differentiate between the baskets.

Basket #1 will have a light source that is polarized 45 degrees clockwise (with respect to

the vertical). Basket #2 will have a light source that is polarized 45 degrees counterclockwise.

Each team will be given two phototransistors and two polarizing films.

In the center of the court there will be a "basketball dispenser." This is where both robots

will fmd the "basketballs" used in the contest. Basketballs in the contest will be simulated by

101

The add-on hardware has enough circuitry to support the following input and output devices:

3 de motors
1 servo motor
2 infrared receivers
2 phototransistors (light sensors)
4 reflective object sensors
2 potentiometers
4 DIP switches
4 micro switches (bump sensors)

The remainder of this document describes how to use the microcontroller to control the motors

and receive input from the sensors.

H.2 Connecting Devices to the Microcontroller

Figure H. I shows a top-view diagram of the microcontroller board. Use this diagram to

plug the motors and sensors into the correct ports. All of the ports are either 2-pin, 3-pin, or 4-

pin ports. Ports where one of the pins is highlighted are directional, and one should take care to

plug the device in correctly. The highlighted pin denotes pin 1; the devices also have some sort

of marking to denote pin 1.

In the early stages of your design, try to place the microcontroller in an easily accessible

location on the robot since you will be modifying the connections often. Also try to place the

microcontroller as close to the center of the robot as you possibly can so that the length of the

wires which reach out to the sensors and motors can be kept at a minimum. Keep in mind that

your robot must be large enough and sturdy enough to support the microcontroller, the motor

battery pack, and the AA battery pack.

104

Property of ECE O.pl
University of llllnola
Ur1Mna~lgn

WIUSCd

servomotor
(output port 20H, bits 4-7)

DC motor I
(output port JOH, bits 0-3)
(direction: output port OH)

B
DCmotor2

(output port 1 OH, bits 4-7)
(direction: output port JH)

B

DCmotor3
(output port 20H, bits 0-3)
(direction: output port 2H)

Figure H.l. Microcontroller Port Locations

H.3 Reading the Value of a Digital Sensor

Digital sensors return either 0 or 1. Each digital sensor is connected directly to a single

bit of one input port. To read data in from a digital input port, one should use inp inC language

105

or in in Assembly language. Then one must mask out the appropriate bits. When using inp in

C language, one should data types of unsigned char. The following snippets of code

demonstrate how to read the current status of microswitch (bump sensor) #3, which is located on

port 20H, bit 6.

In C laniuaie:
unsigned char bump3;

bump3 • inp (Ox20);
II Ox means hexadecimal notation

if ((bump3 & Ox40) •= 0)
II microswitch #3 is depressed

else
II microswitch #3 not depressed

H.4 Reading the Value of an Analog Sensor

In Assembly laniuaie:
IN AL, 20h
AND AL, OlOOOOOOb
CMP AL, 0
JNE MSl

MSO: ;microswitch depressed
JMP EXIT

MSl: ;not depressed
EXIT: ; ...

Analog sensors return a voltage between 0 and 5 V. This voltage is converted by an

analog-to-digital (AID) converter to a byte value between 0 and 255. The Vesta microcontroller

bas eight analog input channels. Reading the value of an analog is slightly more complicated.

We must first write to port 1 OH to "tell" the microcontroller which channel we wish to read from

(only the least 3 significant bits are important). Then we must write a 0 to port 30H to initiate

the conversion. Approximately 200 microseconds later, the digital byte can be read from port

30H. To write a value to a port, one should use outp inC language or out in Assembly

language. When using outp inC language, one should data types of unsigned char. Notice

that when one writes to port 1 OH, the motor speeds of de motors 1 and 2 will be affected. So it

will be important to set output port 1 OH back to its original value after the analog read is

complete. The following snippets of code demonstrate how to read the current position of

potentiometer #2, located on analog channel 3.

106

InC lao~ua~e:
unsigned char
int

outp (OxlO, 3);
outp (Ox30, 0);

pot2;
delay;

for (delay ~ o ; delay < 10 ;
delay++); II short delay

pot2 = inp (Ox30) ;
II pot2 now has a value between 0 and
II 255 depending on the position of
II potentiometer #2.

H.5 Writing to the Motor Ports

In Assembly lan~ua~e:

DELAY :

MOV AL , 3
OUT lOh, AL
MOV AL, 0
OUT 30h, AL
MOV ex, 30
LOOP DELAY
IN AL, 30h

register AL now has a value
between 0 and 255 depending
on the position of
potentiometer #2.

Each de motor is controlled by a combination of two ports. One of the ports is used to

control the speed of the motor, and the other is used to control the direction of the motor. The

speed of each de motor is a 4-bit value, with 0 being the slowest speed (essentially off) and 15

being the fastest speed. The direction is a single bit value, with 0 being forward and 1 being

reverse. The following snippets of code demonstrate how to set the speed of de motor 1 to about

50% (speed value = 7) and set it running forward. The speed of motor 1 is located on port 1 OH,

bits 0-3. The direction of motor 1 is located on port OH.

In C lan~ua~e :
outp (OxlO, Ox07);
II notice that we have simultaneously
II set de motor 2 (which is located at
II port lOH, bits 4 - 7) to a speed of 0.
outp (OxOO, 0); II motor forward

In Assembly lao~ua~e :
MOV AL, 07h
OUT lOh, AL
MOV AL, 0
OUT OOh, AL

The servo motor is controlled by a 4-bit value which is directly proportional to the

desired angle. Using this microcontroller, the servo motor has a total of approximately 90

degrees of rotation. One cannot control the speed of the servo motor; it moves at a fixed low

speed with high torque. The following snippets of code demonstrate how to set the servo motor

107

to roughly 45-degrees. The servo will move there slowly and stop automatically when it gets

there. The servo is located on port 20H, bits 4-7.

InC lanil@ie:
outp (Ox20, Ox70);
II notice that we have simultaneously
II set de motor 3 (which is located at
II port 20H, bits 0-3) to a speed of 0.

H.6 Downloading Your Program to the Microcontroller

In Assembly laniuaie:
MOV AL, 70h
OUT 20h, AL

Once you have written your program in C language or Assembly language, you will need

to compile it or assemble it into an executable file. This file gets downloaded to the RAM in the

microcontroller through a serial cable using a program called RDEB. A step-by-step process is

given below. It is recommended that you create batch files for steps 2 and 3 as you will be

performing these two steps frequently.

1.) Make sure that your PATH environment variable contains the following directories:

C:\C600\BIN
C:\C600\BINB
C:\CTR20\BIN

Also make sure that your LIB environment variable contains these directories:

C:\C600\LIB
C:\CTR20\LIB

There is a program called SETENV. BAT in the c: \ CTR2 o directory which sets these variables

for you.

2.) If you have written a C language program called mp6. c, compile and link it:

cl /Zi /Od /c mp6.c
link st+mp6,mp6,,sctr_m /map /co /noe;

108

........... ----------------------

The file st . obj must be in the current directory for this to work. It has been placed in the

c: \ CTR2 o directory for your convenience.

If you have written an Assembly language program called mp6 . asm, assemble and link it:

masm mp6.asm;

3.) Tum on the power for the microcontroller (reset it if power was already on), and make sure

the serial cable is connected between the microcontroller serial port and the COMI port of

the PC. If you are using an HP Vectra 386 machine, run the RDEB software by typing the

following command:

rdeb /BP=O /sbc=2000 /coml /B4800 mp6

If you are using a Pentium machine, type the following command:

rdeb /BP=O /sbc=FFFF /coml /B4800 mp6

4.) Begin downloading your code by typing the following command within RDEB:

load mp6

5.) When the code is done downloading, type g to run the program on the microcontroller. At

this point, you may disconnect the serial cable unless your program uses the serial port to

communicate with the PC (i.e., printf). To quit out ofRDEB, press <Ctrl-Break> and type

q.

6.) To save on batteries, tum the microcontroller off whenever it is not in use (i.e., when you are

editing your code).

H. 7 Serial Communication

Since the robots you are building must be entirely autonomous, there is actually no need

for any kind of serial communication once the program is running on the robot's microcontroller.

109

However, for debugging purposes, it might be useful to be able to communicate with the PC

(assuming you leave the serial cable still connected even after you are done downloading your

program). There are a few ways to communicate with the PC:

1.) If you are writing your program inC language, then you may use the standard printf

subroutine to send output to the computer monitor, even if the code is running on the

microcontroller. The reason this works is that the standard printf routine is replaced by

another routine which sends the output through the serial port of the Vesta to the PC. As

long as RDEB is still running on the PC, the output will appear on the monitor. The

following snippet of C code demonstrates how one might use printf:

unsigned char reflective1;

while (1)
{

reflective1 = get_reflective_sensor (1) ;
II This subroutine would, of course, have to be written.
printf ("The reflective value is \d\n•, reflective1);

2.) Another way to send data out from the Vesta to the PC is by using interrupt IOH. This

technique will not work with RDEB running on the PC. Therefore, after you have

downloaded your program to the microcontroller, you must exit RDEB and run a terminal

program such as PROCOMM or TELIX or another program which can receive data from the

serial port. However, if the serial cable is still connected when you try to quit RDEB, then

RDEB will try to "kill" the program running on the microcontroller. So here are the steps

you must follow: connect the serial cable, run RDEB, download your code, type g,

disconnect the serial cable, quit RDEB (<Ctrl-Break> and q), run PROCOMM, and reconnect

the serial cable. The program running on the PC (i.e., PROCOMM) should be set to

110

send/receive at 4800 baud. The following snippets of code demonstrate how to send the

character'*' through the serial port from the Vesta to the PC using interrupt IOH.

In C laniuaie:
union REGS regs;

regs.h.al • (unsigned char)
regs.h.ah = 14;
int86 (Ox10, ®s, ®s);

'*'. I

In Assembly laniuaie:
MOV AL, '*'
MOV AH, 14
INT lOh

3.) Finally, one can also receive characters from the PC keyboard by using interrupt 16H.

Again, this will not work with RDEB running; there must be a terminal program or other

software running on the PC which can transmit characters through the serial port at 4800

baud. The following snippets of code demonstrate how to read in a character from the PC

keyboard:

InC laniuaie:
union REGS

regs.h.ah = 0;

regs;

int86 (Oxl6, ®s, ®s);
II regs.h.al now contains the
II ASCII code of the key pressed
if (regs.h.al •= 'F')

robot forward ();
if (regs.h.al == 'B')

robot.backward ();

H.8 The Sensors

In Assembly laniuaie:
MOV AH, 0
INT l6h AL now contains

the ASCII code
of key pressed .

CMP AL, 'F'

JE FORWRD
CMP AL, 'B'
JE BAKWRD

A potentiometer is used to measure rotation. The shaft of the

:=D..--..lJO potentiometer can be interfaced directly to a gear on your robot to perhaps

measure the position of an arm. It is an analog sensor which will return a

value of 0 at one extreme and 255 at the other. The microcontroller has two potentiometer ports

which can be read from analog input channels 3 and 5.

111

......... ----------------------

The reflective object sensor, OPB730F, can measure how reflective a surface

is in the infrared range. For example, you could use this sensor to detect when

your robot is over a black surface as opposed to an orange surface since the

orange surface reflects more. This sensor is an analog sensor which returns approximately 45 for

complete reflection and 255 for zero reflection. In order for the sensor to work it must placed

approximately 1116" to 118" from the surface you are trying to measure. The distance from the

surface WILL affect the reading, so the separation must be made consistent. The reflective

object sensors are mounted on red and blue LEGO pieces. The microcontroller has four

reflective object sensor ports which can be read from analog input channels 0, 2, 4, and 6.

The phototransistors, MRD370, can measure the intensity of visible light

reaching it. They are highly directional (they must be pointed directly at the

light source to detect it). One possible use for the phototransistor is to place

-
a light bulb (which is always lit) directly across from it, and use the sensor to detect when an

object (e.g., a ping-pong ball) has come in the way. The phototransistor is an analog sensor

which reads 0 when no light reaches it and higher values (up to 255) depending on the amount of

light reaching it. The microcontroller has two phototransistor ports which can be read from

analog ports 1 and 7.

The infrared receivers detect light only in the infrared range at 40 kHz.

They can receive from a wide range of directions, and so they may need to

be shielded with some type of a tunnel-shaped device around it. They are

digital sensors which return 1 when not receiving IR and 0 when receiving IR. The

microcontroller has two IR receiver ports which can be read from digital port 1 OH, bits 4 and 6.

112

The DIP switches, which are mounted directly on your microcontroller, can be used to

ID set options or modes for your robot. They return digital values of 0 when closed and 1

when open. The microcontroller has four DIP switches which you can use as inputs.

They can be read from digital port 20H, bits 0, 1, 2, and 3.

The microswitches, or bump sensors, are simply low-force switches which

are excellent for detecting collisions with obstacles. They return digital

values of 0 when depressed and 1 when depressed. The microcontroller has

four microswitch ports which can be read from digital port 20H, bits 4, 5, 6, and 7.

The hexadecimal display is mounted directly on the microcontroller, and can be used for

debugging purposes or however you see fit. It can display he~adecimal values from 0 to

F. To display a hexadecimal number, you must do four separate writes to ports 3H, 4H,

5H, and 6H. The following table summarizes how this works:

EQI16H EQI15H EQil ~H EQil JH H~x Disllla~
1 1 1 1 0
1 1 1 0 1
1 1 0 1 2
1 1 0 0 3
1 0 1 1 4
1 0 1 0 5
1 0 0 1 6
1 0 0 0 7
0 1 1 1 8
0 1 1 0 9
0 1 0 1 A
0 1 0 0 B
0 0 1 1 c
0 0 1 0 D
0 0 0 1 E
0 0 0 0 F

113

............. -------------------------

To save on batteries, you may turn the hexadecimal display off when you are not using it by

flipping one of the DIP switches located on the microcontroller (see Fig. 1).

H.9 The Motors

The microcontroller supports three de motors and can drive them forward or backward at

any of sixteen different speeds. A speed of 0 will essentially turn the motor off, and a speed of

15 will tum the motor on at its top speed.

The microcontroller supports one high-torque servo motor. A servo motor can be

commanded to go to any angle (within its range). It will start moving towards that position at a

fixed speed and will stop automatically when it gets there. Setting the servo port to 0 will send it

to one extreme, and setting it to 15 will send the servo to the other extreme. The two extremes

are approximately 90 degrees apart.

H.IO Resources

The following resources are available for your use if you have questions, comments,

suggestions, or problems. They are also quite useful if you would like to explore certain topics

in greater detail.

Sprin~ 1995 Le~oBot stqff:
Dennis Culley, Doug Gerwitz, Rajeev Goel, Matt Merten, Nate Myers, John
Knapowski, Jonathan Kua

ECE 291 TA 's:
Dennis Culley, Joseph Gebis, John Knapowski, Brandon Long, Nate Myers, Doug
Stirrett

ECE 291 Professor:
Professor W. Kent Fuchs

114

............. ----------------------

Robotics Newsgrouv: como. robotics
Type "nn comp.robotics" from your EWS account for a discussion of current
problems and discoveries in robotics. Many of the active users of this news group
have built LEGO robots.

Robotics Mailing List: robot-board@.oberon. com
To subscribe to this mailing list, send e-mail to "listserv@oberon.com" with a
subject of"subscribe robot-board your _name". Discussions on this mailing list
range from topics such as LEGO robots to different types of sophisticated sensors.

MIT 6 270 Course Manual
The 1992 and 1994 versions of MIT's 6.270 course manual [10] are located in the
ECE 291laboratory. This is the course at MIT which has inspired many
universities (including U of I now) to develop courses where students design
LEGO robots. The course manual contains oodles of useful information.

Mobile Robots -- Insviration to lmvlementation
This book, by Joseph L. Jones and Anita M. Flynn, is also located in the ECE 291
laboratory, and is a very well--written book. It contains examples of robots, many
of which are built from LEGO parts [11].

Robot-Building Lab and Contest at the 1993 National AI Conference
This is an article by Carl Kadie which describes his experiences when he
participated in a LEGO robot contest sponsored by AAAI [12].

Vesta Hardware Manual
The beige binder contains more detailed information about the Vesta SBC88A
microcontroller you are using. It is actually rather poorly written and somewhat
cryptic in nature, but might still be of some use with enough patience.

C-Thru-ROM User's Manual
This manual contains information on how to use RDEB, the software we use to
download programs to the microcontroller. It also supposedly allows you to
debug the code while it is running on the microcontroller, but this feature has
never been exploited yet.

115

LIST OF REFERENCES

[1] Fred G. Martin. The 6.270 Robot Builder's Guide, MIT Media Laboratory, Cambridge,
MA, 1992.

[2] Fred G. Martin. Circuits to Control: Learning Engineering by Designing LEGO Robots.
Cambridge, MA: Massachusetts Institute of Technology. 1994.

[3] E. W. Banios. "Teaching engineering practices." Proceedings of the Frontiers in
Education conference, pp. 161-168. I.E.E.E. and A.S.E.E. 1991.

(4] E. S. Ferguson. Engineering and the Mind 's Eye. Cambridge, MA: The MIT Press.
1992.

[5] W. C. Flowers. "On engineering students' creativity and academia." ASEE Conference
Proceedings. 1987.

[6] J. B. Jones. "Design at the frontier of engineering education." Proceedings of the
Frontiers in Education conference, pp. 107-111. I.E.E.E. and A.S.E.E. 1991.

[7] Fred G. Martin. "Building robots to learn design and engineering." Proceedings of the
Frontiers in Education conference. I.E.E.E. and A.S.E.E. 1992.

[8] Fred G. Martin and Randy Sargent. "Learning engineering through robotic design."
Proceeding of the Ninth International Conference on Technology and Education, pp.
1191-1193. 1992.

[9] J. C. Latombe. Robot Motion Planning. Norwell, MA: Kluwer Academic Press. 1991.

[10] 1994 6.270 LEGO Robot Design Competition Course Notes, MIT Media Laboratory,
Cambridge, MA, 1994.

[11] Joseph L. Jones and Anita M. Flynn. Mobile Robots: Inspiration to Implementation.
Wellesley, MA: A K Peters. 1993.

[12] Carl Kadie. "Robot-building lab and contest at the 1993 National AI Conference." AI
Magazine, pp. 73-77. 1993.

116

