
A FLEXIBLE DIGITAL COMMUNICATIONS SYSTEM FOR EDUCATION

BY

JACOB WILLIAM JANOVETZ

RS., University of Illinois at Urbana-Champaign, 1996

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1999

Urbana, Illinois

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

THE GRADUATE COLLEGE

SEPTEMBER 1999
(date)

WE HEREBY RECOMMEND THAT THE THESIS BY

JACOB WILLIAM JANOVETZ

ENTITLED FLEXIBLE DIGITAL COMMUNICATIONS SYSTEM

FOR EDUCATION

BE ACCEPTED IN PARTIAL FULFILUvIENT OF THE REQUIREMENTS FOR

THE DEGREE QF __ �M=A=S=T=E=R�O�F�S�C=I=E=N�C=E�---------�

Director of Thesis Research

Head of Department

Committee on Final Examinationt

Chairperson

t Required for doctor's degree but not for master's.

0-517

© Copyright by Jacob William Janovetz, 1999

A FLEXIBLE DIGITAL COMMUNICATIONS SYSTEM FOR EDUCATION

BY

JACOB WILLIAM JANOVETZ

B.S., University of Illinois at Urbana-Champaign, 1996

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1999

Urbana, Illinois

To all those with a child-like curiosity, an explorative spirit, and the will to enact them.

iii

ACKNOWLEDGMENTS

I would especially like to thank my friend Dr. Ricardo Uribe for our endless discussions, his

unique perspectives, and the environment and atmosphere he has cultivated in the Advanced

Digital Systems Lab. Not only would this work not have been possible without the ADSL, but

my motivations may have faltered without the people there.

Thanks to Professors Doug Jones and Steve Franke as advisors; they have welcomed and

encouraged my involvement in the DSP and Digital Communications Labs and have offered

many good suggestions for the final form of this work.

I also want to thank Mike Kramer, Mike Palac, and Tony Keiser for discussions and sug­

gestions regarding ERITHACUS.

Thanks, finally, to Joel Sherrill, Eric Norum, and all the RTEMS support people for their

contributions to the free RTEMS operating system. All in al11 they have more source code

running on ERJTHACUS than I do.

iv

TABLE OF CONTENTS

CHAPTER

1 INTRODUCTION
1.1 Hardware and Software
1.2 Communication Labs .
1.3 Organization

2 SYSTEM OVERVIEW .
2.1 Design Goals

2.1.1 Present lab sessions
2.1.2 Possible extensions ,
2.1.3 Effective and portable interface .
2.1.4 Programmability

2.2 Technology Introduction
2.2.1 Digital signal processors
2.2.2 Field programmable gate arrays
2.2.3 VHSIC hardware description language
2.2.4 RTEMS

2.3 System Overview
2.3.1 FPGA interface .
2.3.2 DSP interface ..

3 TRANSMITTER ARCHITECTURE
3.1 System Architecture

3.1.1 Wavetable synthesis
3.1.2 Waveform synthesis with memory .

3.1.2.1 Channel coding
3.2 Hardware Architecture

4 RECEIVER ARCHITECTURE
4.1 System Architecture
4.2 Hardware Receiver Architecture .

5 CONCLUSION

APPENDIX A TRANSMITTER TECHNICAL INFORMATION
A.I Transmitter FPGA Registers

A.1.1 Register descriptions

v

PAGE

1
1
3
3

4
4
5
6
6
6
7
7
8
9

10
11
12
12

14
15
15
16

17
17

20
20
22

26

28
28
28

A.2 DSP /Wavetable Interface
A.3 Output Buffering
AA Sample Rate DDS

A.4.1 DDS configuration sample code .

APPENDIX B RECEIVER TECHNICAL INFORMATION
B.1 Software Receiver FPGA Registers .

B.1.1 Register descriptions
B.2 Hardware Receiver FPGA Registers

B.2.1 Register descriptions ..
B.3 Analog Inputs .. .
B.4 Analog Outputs
B.5 Sample Rate DDS ..
B.6 PLL Coefficient

APPENDIX C SOFTWARE SUPPORT
C.1 Device-Side Software ..

C.J.l FTPD .
C.1.2 Telnet ...
C.J.3 HTTPD ..

C.2 Host-Side Software
C.2.1 Libraries . .
C.2.2 MATLAB commands .
C.2.3 MATLAB user interfaces

APPENDIX D SCHEMATICS

APPENDIX E BILL OF MATERIALS

APPENDIX F REVISION 1.0 ERRATA

REFERENCES

vi

31
32

32

33

34

34

34

35

35

39

39

40
40

43

43

43

44

46

46

46

48

49

52

69

74

76

LIST OF TABLES

Table Page

2.1 ECE 363 Lab Sessions 5
2.2 Logic Block Usage on Xilinx 4000 Devices .. 9

A.I Transmitter FPGA Registers 29
A.2 Transmitter Data Sources. 30

B.1 Software Receiver FPGA Registers .. 34
B.2 Hardware Receiver FPGA Registers. 36
B.3 RX.MODE Register 37
B.4 DAC_SELECT Register 38

C.1 Supported FTPD Directives. 44
C.2 ERITHACUS FTPD Files 45
C.3 ERITHACUS Telnet Commands. 45
C.4 COMMSETTXPARAM parameters. 49
C.5 Receiver DAC Output Options. 50

E.l Bill of Materials. 69

vii

LIST OF FIGURES

Figure

2.1 ERITHACUS Block Diagram.

3.1 Quadrature Modulation .. .
3.2 Wavetable Synthesis
3.3 Segmented Bandlimited Pulse.
3.4 Transmission Sequence with ISL
3.5 Transmitter Block Diagram ...
3.6 Transmitter Source Generation.
3.7 Wavetable Address Generation.

4.1 A Complete Digital Receiver Using ERITHACUS.

4.2 Block Diagram of ERITHACUS Receiver Section ..
4.3 Block Diagram of the Hardware Receiver.
4.4 Receiver Input Stage and Phase Detector.
4.5 Receiver Loop Filter. . .
4.6_ Receiver Output Stage.

C.1 Receiver Control Panel.
C.2 Auto BERT.

D.l Design Notes.
D.2 Processor ...
D.3 Processor FPGA and Memory.
D.4 Ethernet Interface.
D.5 Accessory DSP and Memory.
D.6 Audio Interface
D.7 Transmitter FPGA and FPGA Memory.
D.8 Transmitter DSP
D.9 Wavetable Memory and Analog Outputs.
D.10 Clock Generation.
D.11 Receiver FPGA. , .. .
D.12 Receiver DSP 1 and Shared Memory ..
D.13 Receiver DSP 2.
D.14 Receiver Analog Outputs.
D.15 Analog Inputs.
D.16 Power Supply

viii

Page

12

14
15
16

17
18
18
19

20

21

22

23

24

25

50

51

53

54
55
56

57
58
59

60

61

62

63

64
65

66

67
68

LIST OF ABBREVIATIONS

ABC - Already Been Chewed

ABS - Anti-lock Braking System

ADC - Analog-to-Digital Converter

ALU - Arithmetic Logic Unit

ATM - Asynchronous Transfer Mode

BDM - Background Debug Mode

BER - Bit Error Rate

BPSK - Binary Phase Shift Keying

BSP - Board Support Package

CDMA - Code Division Multiple Access

CDS - Christoph� Dale Schmitz

CPLD - Complex Programmable Logic Device

CPU - Central Processing Unit

DAC - Digital-to-Analog Converter

DDS - Direct Digital Synthesizer (or Synthesis)

DRAM - Dynamic Random Access Memory

DSP - Digital Signal Processor

DSSS - Direct Sequence Spread Spectrum

FIFO - First-In First-Out

FPGA - Field Programmable Gate Array

FSK - Frequency Shift Keying

GNU - GNU is Not UNIX

IF - Intermediate Frequency

!IR - Infinite Impulse Response

IMFS - In-memory File System

ix

IP - Internet Protocol

ISI - Intersymbol Interference

JWJ - Jacob William Janovetz

MAC - Multiply and Accumulate

MB - Megabytes

MSB - Most Significant Bit

NCO - Numerically Controlled Oscillator

NSF - National Science Foundation

OAR - On-line Applications Research Corporation

PAM - Pulse Amplitude Modulation

PCMCIA - People Can1t Memorize Computer Industry Acronyms

PLL - Phase-locked Loop

PN - Pseudorandom Noise

QPSK - Quadrature Phase Shift Keying

QAM - Quadrature Amplitude Modulation

RISC - Reduced Instruction Set Computer

RTEMS - Real Time Executive for Military Systems

RTOS - Real Time Operating System

STh1M - Single Inline Memory Module

SRAM - Static Random Access Memory

SRRC - Square Root Raised Cosine

TCP - Transmission Control Protocol

USB - Universal Serial Bus

VCO - Voltage-controlled Oscillator

VHDL - VHSIC Hardware Description Language

VHSIC - Very High Speed Integrated Circuits

x

CHAPTER 1

INTRODUCTION

This thesis presents the design for a flexible digital communications system based on repro­

grammable special-purpose microprocessors and reconfigurable hardware devices for use in the

Digital Communications Laboratory (ECE 363) at the University of Illinois. The new design

will serve as a replacement for the analog system currently in use, as well as provide a platform

for further course development.

The ECE 363 coursework involves BER measurements under different system configurations

and parameters. The relevance of this work is that students acquire an intuition for which parts

of the system are critical paths to overall system performance. A vital component to building

this intuition is the ability to reconfigure the system to make reasonable comparisons between

BER curves. The original lab equipment was designed in blocks to allow physical reconfiguration

of the system. Unfortunately, the digital receiver is one of those blocks and is hardwired for

its task, making receiver configuration difficult. A software-based configurable system is one

alternative, but software systems are often too slow to run at high bitrates1
. Therefore, a system

has been designed which leverages the advantages of both hardware and software design.

1.1 Hardware and Software

Conventional wisdom has it that hardware is fast :while software is flexible. The original

lab equipment for ECE 363 was designed as rather inflexible analog hardware to meet the

bit-rate demands of the course. A flexible software solution was not available at the time.

Recently however, a new class of programmable hardware devices has_ lessened the extent to

1 High bit-rates are necessary to get adequate resolution (BER of 10-6) on BER measurements in a reasonable
amount of time (20 seconds).

1

which this conventional wisdom is true. FPGAs and other programmable logic devices provide

a new architecture with performance near that of dedicated hardware and flexibility near that

of software.

FPGAs have been around since the mid-1980's, but not until recently have their density

and speeds met the needs of general architectures. Driven by requirements of reduced time to

market and aftermarket flexibility, FPGAs have become fast and dense, sponsoring their use in

high-speed busses and reconfigurable computing tasks. Recently, FPG As have grown to acco-­

modate large amounts of logic (10 1000 gates to over 1 million gates) and operate at high speeds

(40 MHz to over 200 MHz [1]). This advancement in their capability has made them viable

solutions for many signal processing and communications tasks. FPGA use in communications

has even triggered research towards more "special purpose,, architectures such as Tsutsui's

FPGA optimized for digital telecommunications systems such as ATM implementations [2]. A

well-written, thorough review of FPGA technology is presented in [3].

One of the most common ways to program FPGAs is through the use of a hardware descrip­

tion language such as Verilog or VHDL. Verilog and VHDL provide a means for the designer to

describe hardware textually rather than through more traditional schematics. The use ofHDLs

represents a convergence of hardware and software methodologies. Both FPGAs and VHDL

have been used extensively in DSP and communicaions applications because it is these appli­

cations which often require high processing speeds and configurability. McCloskey [4] discusses

the application of VHDL to software radio and overviews general software radio architectures.

Vaupel et al. [5] present COMB OX, a library of VHDL module generators for communications.

The system presented here fits the genre of software radio testbeds that have been proposed

in the literature [6], [7J, [8], [9]. Typically, these systems are composed of a centralizing CPU (or

host workstation) and one or more FPGAs for computation. Some systems include specialized

ASIC modules to provide fast, dedicated functional units (in [8J i an ASIC provides common

CORD IC functionality while the FPGA provides reconfigurable control and datapath elements).

Nearly all existing software radio designs contain elements of both hardware and software design.

Even after the system has been built, hardware design continues in the form of hardware

descriptions for the FPGAs on board, and software design continues in the form of software

or firmware upgrades. In both cases, the platform is not particularly limited by the original

hardware design.

2

1.2 Communication Labs

Several universities offer lab courses in digital communications and a few authors have pub­

lished their laboratory setups. Kamali [10] presents a setup using off-the-shelf components such

as spectrum analyzers, signal generators, and optical sensors to introduce students to practi­

cal measurements of communications systems. Overstreet and Austen [11] use a DSP, adding

flexibility to the lab equipment and allowing the generation of several modulation schemes.

Unfortunately, most of the work of other universities remains largely unpublished. However, to

the author's knowledge, no other university uses reconfigurable hardware in its digital comnrn­

nications courses.

Although not directly related to digital communication, (12] introduces a rapid prototype

design course funded by the NSF and taught at the Georgia Institute of Technology. The

course allows students to prototype a number of different types of processors using VHDL and

FPGAs. The University of Illinois also has a course which introduces VHDL for use on FPGAs

[13]. These offerings show that there is a concentration on VHDL and reconfigurable hardware

in education.

1.3 Organization

The remainder of this thesis is presented as follows: Chapter 2 discusses the overview

of the system which was designed. Chapters 3 and 4 present the transmitter and receiver

architectures, respectively. Chapter 5 provides conclusions of the project and discusses future

directions . Finally, the appendices contain more technical information related to the project.

3

CHAPTER 2

SYSTEM OVERVIEW

ERITHACUS is a large syst'em composed of many smaller blocks which, in turn, a.re com­

posed of several different technologies. This chapter presents the design goals of the system

and introduces the various technologies used. This chapter also includes a brief overview of

ERITHACUS.

2 .1 Design Goals

The University of Illinois at Urbana-Champaign (UIUC) hosts two separate laboratory

courses concerned with digital communications and digital signal processing (DSP). The Digital

Signal Processing Lab (ECE 320) is concerned with teaching the basics of DSP implementation

on special-purpose processors called DSPs. The primary purpose of ECE 320 is to build insight

into DSP and uses DSP programming as a vehicle for achieving this goal. The Digital Com­

munications Lab (ECE 363) is concerned with building an intuition for digital communications

systems. It covers the construction and measurement of various pieces of a communications

system such as matched :filtering
1

carrier recovery, and timing recovery. EOE 363 is not a

programming cburse. Instead, it concentrates on block-based physical implementations.

The hardware described in this thesis (hi,mceforth referred to as ERITHAcus) is designed

as a replacement for the aging analog equipment currently used in ECE 363. The general

philosophy is to design a highly configurable digital signal processing system geared toward the

implementation of communications systems and capable of operating at high bit rates (above

I Mbps).

The requirements placed on the new system were:

• Capability of replacing the present analog equipment in every lab situation.

4

• Provision of flexibility to allow enhancing the present labs.

• Provision of a simple, effective, and portable interface to allow for changing lab equipment.

• Provision of programmability to allow students in the DSP course to test algorithms.

These four requirements are addressed in the following sections.

2.1.1 Present lab sessions

Table 2.1 lists the current lab sessions in ECE 363. Labs 1 and 2 are introductory and

characterization labs which do not use the digital receiver. Labs 3 and 4 work on baseband

signals only. The remaining labs all operate on passband signals.

Table 2.1 EOE 363 Lab Sessions.

I Lab I Title

Lab 1 Introduction to the Spectrum Analyzer
Lab 2 PN, Mixer, and Noise Source Characterization
Lab 3 Binary Antipodal Signaling
Lab4 Suboptimal Demodulation {Midsymbol Sampling)
Lab 5 Binary Phase Shift Keying
Lab 6 Carrier Recovery
Lab 7 Quadrature Phase Shift Keying
Lab 8 Differential Phase Shift Keying
Lab 9 Clock Recovery
Lab 10 Communications in a Hostile Channel

All labs currently operate at a bitrate of 1 Mbps on an analog hardware receiver operating

on baseband signals. Supporting these present lab sessions placed the following requirements

on the new hardware:

• Support for high-speed baseband binary antipodal signaling using matched filter { optimal)

reception and midsymbol sampling (suboptimal) l"eception.

• Passband signaling using external components for upconversion
1

downconversion, and

quadrature separation.

• Closed-loop control of external components {e.g., VCOs for carrier recovery).

5

2.1.2 Possible extensions

The new hardware also has to support the possibility of future lab sessions. Because the

old hardware is a static, analog design, its ability to adapt to the changing needs of the course

is limited. The new hardware has to be programmable enough to support enhancements such

as

• Source and channel coding experiments using simple codes such as Hamming codes or more

advanced codes such as Reed-Solomon codes. Trellis-coded modulation and maximum­

likelihood sequence estimation should be possible.

• Direct sequence-spread spectrum labs in which the signal bandwidth can be very large

relative to the bitrate.

• Transmission and reception of real, useful data with a simple method of transferring that

real data to a workstation.

The first goal is met with a highly programmable system using FPGAs and DSPs. The

second goal is met with high-bandwidth components such as ADCs and DACs in conjunction

with high-performance computation units such as FPGAs. The third requirement is discussed

in the following section.

2.1.3 Effective and portable interface

In order that the new hardware be usable for years to come, it was necessary to incorporate

a standard and portable interface. The interface also had to provide enough bandwidth for

real-time transfer of data. After considering many current technologies such as IEEE 1394,

USE, and ethernet, ethernet was chosen. Ethernet provides a remarkably portable interface

while still providing transfer rates that a.re more than adequate. Leveraging this technology

allows the new hardware to be used with a variety of workstations and with almost no bounds

on location.

2.1.4 Programmability

One shortcoming of the ECE 320 course is that the lab equipment is poorly matched to

digital communications projects. The course currently uses DSP evaluation modules which have

6

audio-grade converters and operate at common audio sample rates. The new system should

provide an alternative development platform for these students that is appropriate.for a variety

of digital communications projects and has a short learning curve for students of ECE 320.

This means that the sample rate should be programmable to almost any frequency in the range

of the conversion system and that the conversion system be given a bandwidth larger than the

conversion rate to allow for bandpass sampling. Antialias and reconstruction filters should be

external to the system.

2.2 Technology Introduction

2.2.1 Digital signal processors

DSPs are specialMpurpose microprocessors designed for operating on signals. Their archi­

tecture has been tuned to operate very well in control, communication, audio, and other areas

where low power consumption and programmable signal processing is needed. The differences

between DSPs and general microprocessors are subtle and vary from one DSP architecture to

another, but all DSPs contain some architectural optimizations for performing Fast Fourier

'Transforms (FFTs) and general filtering tasks (FIR or UR).

The DSP used in ERITHACUS is a Motorola DSP56302 that runs at 66 MHz and can perform

one instruction per cycle. The 56302 is very well suited to highMend audio applications due to

its 24-bit data bus, but performs well in communications applications as well. In addition, the

56302 is easier to program in assembly than most of its competitors. Although the width of the

56302 datapath exceeds requirements for most communications tasks, it was chosen because

current courses already use the 56302 and because of its ease of programming. For the target

application and low quantity, competing DSPs offer no advantages to the 56302.

Most DSPs are characterized by several architectural features that make them different from

generalMpurpose architectures. These differences include differences in bus architecture, ALU

style, registers, and the control unit.

Most DSPs have a Harvard (as opposed to van Neumann) ·architecture bus which provides a

separation between code and data sections of memory. Although recent DSPs have integrated

small instruction caches, no current DSP has data cache. DSPs are often used in realMtime

situations and almost always operate intensively on constantly changing data. Therefore1 a

7

data cache would provide limited usefulness. The Harvard architecture and instruction cache

are provided in the interest of getting data into the DSP's ALU(s) as quickly as possible.

The DSPs that are most commonly used use a fixed-point representation. Although many

DSPs contain Boating-point AL Us, DSPs used for communications and digital audio are almost

exclusively fixed-point. A fixed-point ALU has many advantages over a floating-point ALU,

among these being lower complexity, lower power consumption
1

smaller die size, and faster

operation. All DSPs contain a complete multiply-and-accumulate unit which can produce at

least one result per instruction cycle. Often, these MAC units are pipelined to provide faster

operation and eliminate critical paths at high clock speeds.

Unlike typical RISC microprocessors, which provide a large number of general-purpose reg­

isters, DSPs have many special-use registers that can be used for specific operations. For

example, the Motorola DSP has four register types that correspond to address registers, offset

registers, modulo registers, and ALU registers. Even among the ALU registers, segregation is

present.

The control unit of a DSP is simplified compared to a full microprocessor, shifting the cost

and power consumption of the DSP towards the ALU. The result is a simplified interrupt struc­

ture with very predictable results, but poorer performance in non-computationally-intensive

situations. On the other hand, a few features are added, such as hardware support for loops,

modulo addressing, bit-reversed addressing, and instruction set support for parallel memory

access and ALU operations.

2.2.2 Field programmable gate arrays

FPGAs are large monolithic devices which contain hundreds or thousands of logic blocks.

Each logic block contains a certain amount of programmable logic and/or memory depending

on the FPGA architecture. Specifically1 in the Xilinx 4000 series devices used on ERITHACUS1

each block contains two D flip-fl.ops, several control multiplexors, and two blocks that can

function as either look-up tables, single- or dual-ported SRAM, or fast-carry logic for simple

ALUs [14]. These blocks are arranged in regular patterns on the die and contain a large amount

of programmable interconnect to perform the task of routing between logic blocks and to the

input/output sections of the chip.

8

FPGAs have many advantages over DSPs for high-speed signal processing. Because the

hardware is programmable
1

the architecture of the device is flexible. That is, although a DSP

may be restricted to one or two multipliers, an FPGA can have many. Indeed, tP.e precision

of each multiplier can be tuned to fit the algorithm. Many communications tasks require the

high-speed execution of a simple algorithm such as a 16-tap filter. An FPGA programmed with

eight or 16 multipliers would be well suited to this type of work.

Unfortunately, the advantages of FPGAs come at a high cost. Large FPGAs are expensive

due to the large amount of logic required to support :flexibility. FPGAs are also more difficult

to program; while a DSP algorithm can be written fairly quickly in the native assembly, the

FPGA is still a hardware design platform. Therefore, a hardware designer must carefully

architect hardware components together to form a datapath for the algorithm. Even for simple

algorithms such as an !IR filter, FPGA design is far more difficult and time-consuming than

DSP code development.

The FPGA architecture used in ERITHACUS is the Xilinx 4000. Specifically, a 4013XLA

(576 logic blocks) is used in the transmitter and a 4062XLA (2304 logic blocks) is used in the

receiver. Table 2.-2 [15] shows the number of logic blocks required to implement some common

algorithms.

Table 2.2 Logic Block Usage on Xilinx 4000 Devices.

Algorithm / Hardware Block

16-bit 2's Complement Adder
8x10 Fixed-Point Multiplier
10-bit 24-tap Symmetric FIR Filter
1024-point FFT
Reed-Solomon Encoder
Reed-Solomon Decoder (8 bits per symbol)
Viterbi Decoder

2.2.3 VHSIC hardware description language

I CLBs
9

65

JOI

532

105

941

425

VHSIC Hardware Description Language (VHDL) is a language developed as a standard way

to describe hardware components, their entity, and their functionality (either behaviorally or

structurally) [16]. Originally developed as a language used for simulating hardware, VHDL has

developed into a synthesis language. That is, the hardware designer can describe hardware and

9

have a compiler synthesize the design into a collection of small logic blocks. These logic blocks

depend heavily on the target architecture (for example, ASIC and FPGA).

The main drawback to using VHDL for a description methodology is that the present

synthesis technology is fairly young. The resulting design is ahnost always larger and slower

than a hand-made design. Fortunately, the hardware design market is quickly driving VHDL

synthesis tools to become better and more complete. Presently, however, a good trade-off must

be made between using VHDL and customized blocks. In a hybrid design, VHDL is used

to describe simple, well-synthesized hardware and custom blocks are provided which take full

advantage of the target hardware. Several such blocks are described in [15].

Although there are many other ways to develop FPGA hardware descriptions, VHDL was

chosen for the following reasons:

• Text-based description promotes portability to other systems and synthesis tools.

• Text-based description promotes self-documentation.

• Text-based descriptions are more flexible than schematic-based descriptions.

• Although synthesis tools are still somewhat immature, the design cycle with synthesis is

much shorter than with custom schematics.

2.2.4 RTEMS

RTEMS is an RTOS originally commissioned by the United States Army for use in military

missile systems. The RTEMS code base was placed into the public domain, but remains sup­

ported by OAR. Like any RTOS, RTEMS allows the programmer to start multiple tasks running

at the same, time. The operating system is responsible for scheduling tasks to execute and also

handles any incoming and outgoing events that occur, such as interrupts. Full documentation

for RTEMS is available in [17]. The following features highlight RTEMS's capabilities:

• Task manager for setting up multiple tasks with different scheduling strategies.

• Semaphore manager for managing resources.

• Message, event, and signal managers for passing messages between tasks.

• Interrupt, clock, and timer managers for coordinating time-sensitive events.

10

RTEMS is used on ERITHACUS as the support hub for system control. The CPU on ERITHA­

cus (Motorola 68EN360) is used to communicate with the various DSP and FPGA processors_

on-board as well as communicate with other devices through ethernet. Due to the CPU's many

responsibilities, a multitasking OS was required. RTEMS was chosen for several reasons:

• Free software tools (compiler, assembler, etc.) available from GNU are mature, stable,

and reliable.

• Source code for RTEMS is freely available (Open Source) and still under evolutionary

development.

• Availability of a free integrated TCP /IP stack (ported from FreeBSD).

Using RTEMS on a target board such as ERITHACUS only requires the development of a

board support package (BSP) that gives the OS access to the hardware through various initial­

ization and interface routines. Once complete, the programmer has access to many operating

system perks such as memory allocation, multithreading, and message passing. Development

under RTEMS can be done in C, C++, or Ada. Finally, because the TCP /IP stack was ported

from a UNIX variant, porting applications to the stack is relatively simple.

2.3 System Overview

ERITHACUS is a system of many interconnected blocks and as such requires something to

tie it all together. The CPU (a Motorola 68EN360) controls all of the smaller components of

the system. It interfaces to ethernet on one side, and to the system on the other. It can reset

and download programs to all of the DSPs and FPGAs on the system. It can also communicate

with any of these devices during operation to update coefficients, change waveforms, capture

data, etc. Figure 2.1 shows a simplified block diagram of the entire ERITHACUS system and

how the CPU is interconnected.

The CPU is directly supported by a standard 72-pin DRAM SIMM (up to 16 MB), two

1 MB flash memory devices, and an ethernet physical interface. The DRAM provides working

memory while the flash memory provides nonvolatile storage for things such as boot code,

configuration parameters, common DSP or FPGA images, and transmission waveforms. The

CPU itself contains support circuitry for the ethernet standard, but relies on the Motorola

11

IOBascT Ethernet
l0Base2 Conlroll<r

Serial Bus
DSP(Acc)

RS-232(M)
CPU DSP (fa)

RS-232{1')

DSP(Rx-1)

FPGA (Tx)
DSP(Rx-2)

FPGA (Rx)
Programming Bus

Figure 2.1 ERITHACUS Block Diagram.

68160 for the line drivers and receivers. Two RSw232 serial interface ports are provided. One is

used as a monitor interface. The other can be used to connect a serial mouse or keyboard.

2.3.1 FPGA interface

There are three FPGAs on ERITHACUS. One (a Xilinx 4008E with 324 logic blocks} serves

as a CPU interface block. Presently, this device does little more than address decoding for

the rest of the system. The transmitter section has a Xilinx 4013XLA with 576 logic blocks

to perform transmitter algorithms and flexible address generation for the wavetable synthesis.

The third FPGA is a Xilinx 4062XLA with 2304 logic blocks lotated in the receiver section for

hardware receiver functionality.

The three PPG As are connected to the CPU through two separate interfaces, one for general

communication and one for programming. A bus of interconnected programmable pins between

the FPGAs serves as the generalwpurpose interconnect. Because the function of these pins is

fully programmable, their use is determined by the specific images loaded onto the FPGAs.

The programming interface to each FPGA is a synchronous serial interface connected to the

CPU general-purpose input/output pins. When an FPGA is reset, it expects an FPGA image

to be sent as a bitstream through the synchronous interface. Once programming is complete,

the programming interface is not used until there is a reset of the FPGA.

2.3.2 DSP interface

In addition to the FPGAs, the system has four Mototola 56302 DSPs. One is located

in the transmitter section, two are connected through shared memory in the receiver section,

12

and the fourth is an ''accessory" DSP with its own audio-grade CODEC system. The CPU

communicates with four DSPs through a common 8�bit parallel bus. On the CPU side, this

bus is mapped to the CPU's address space and on the DSP side, it corresponds to the DSP

Host Interface. The bus provides both programming and communication capability. When a

DSP is reset (by the CPU), it expects boot code to be sent through the host interface. The

CPU provides this boot code. Once the DSP is operating, the CPU can interrupt the DSP to

change parameters or request data. More elaborate communication protocols can be developed

into software on the CPU and DSP to provide a continuous interchange of data.

The DSPs are also interconnected through a synchronous serial interface. This interface

provides a means for the DSPs to communicate without going through the CPU. One situation

in which this may be useful is if the accesory DSP takes samples from the audio CODEC,

encodes them for transmission and sends the. encoded bitstream to the transmitter DSP, then

receives a similar bitstream -from the receiver section and decodes it to be sent out the audio

CODEC.

13

CHAPTER 3

TRANSMITTER ARCHITECTURE

The primary gOal for the transmitter architecture is flexibility. Because a wide variety of

modulation formats are available to the communications designer [18], the transmitter must be

able to encode data in many ways, including baseband and passband formats.

A complex baseband design was chosen for ERITHACUS. This means that the transmitter

output two baseband signals, s1 (t) and SQ(t), which can be jointly modulated to form a passband

signal sm(t) as in

sm(t) = s1(t) cos(2nf,t) + sq(t) sin(2nf,t) (3.1)

where f0 is the carrier frequency. A block diagram of this quadrature modulation is shown

in Figure 3.1. The quadrature modulator is a simple circuit with three inputs (carrier input,

I input, and Q input) and a single output. Complex baseband signal generation is flexible

enough to generate binary antipodal signals, BPSK, QPSK, n-QAM
1
FSK, DSSS1 CDMA, AM,

FM, and other modulation formats as long as the hardware to generate the baseband signal is

flexible enough.

so(t)-�X

cos(2'1T lot) ---;=L_

Figure 3.1 Quadrature Modulation.

14

3.1 System Architecture

3.1.1 Wavetable synthesis

Due to the flexibility requirements placed on the design, wavetable synthesis was chosen as

the transmission method for ERITHACUS. In conjunction with quadrature modulation, many

transmission schemes can be synthesized. The block diagram for a basic wavetable synthesizer

is shown in Figure 3.2. The address generator produces consecutive addresses with some base

address offset at the clock rate !elk· These addresses select a word from the wavetable RAM

that is fed to the DAC to produce an analog voltage. The base address offset changes at a

clock rate lower than !elk to select which waveform is being sent. In a digital transmitter, the

waveform select signal acts as a symbol select (to determine which symbol is sent).

Waveform_ Address
Selecr Generator

Wavetable

RAM
DAC

Figure 3.2 Wavetable Synthesis.

y(l)

Given that the wavetable must produce an M-ary signal with N samples per symbol, the

wavetable must be large enough to store N · M samples. The symbol rate is then limited to

fsym = fc1k/N. Therefore, as the target symbol rate is increased and the sample rate remains

constant, the temporal resolution of the waveform must degrade. This is a basic trade-off

present in any wavetable synthesis method. Fort unately, with proper reconstruction filters, as

long as the bandwidth of the waveform does not exceed the Nyquist bandwidth of the conversion

system, temporal resolution is not an issue.

The agility of wavetable synthesis methods lies in the programmability of the wavetable

memory, but even more flexibility can be gained with a programmable address generator. A

programmable address generator can be used to sequence transmitted waveforms in ways benefi­

cial to digital communications. Such sequencing can be described as memory in the transmitter.

15

3.1.2 Waveform synthesis with memory

In the digital communications context, memory is usually used to describe the characteristics

of a channel which 'remembers 1 past symbols. That is1 the waveform that appears at the receiver

is not only a product of the current symbol, but also some number, L, of previous symbols.

There are many communications applications in which symbol memory can prove useful in

the synthesis of waveforms. At the transmitter, memory is useful in two areas: signal generation

and coding. Some signaling waveforms are designed to last longer than a single symbol time.

Examples are the SRRC pulse and the duobinary pulse [18]. Both pulses are designed to work

in bandlimited channels and both have memory. Coding can be used in digital communication

systems as a means of compressing the data before transmission, introducing redundancy to help

detect or correct errors1 or as a means of shaping the spectrum of the signal. In general, coding

works on a sequence of symbols and therefore introduces memory into the transmitted signal.

Although there are hardware-dependent limitations, many coding schemes can be implemented

easily by organizing the wavetable.

The effects of a channel can also be described using memory. In these situations, a wavetable

synthesizer with memory can emulate the channel characteristics, a valuable ability for a system

used as a testbed for communications work. Figure 3.3 illustrates the channel emulation concept

for a channel with a low-pass characteristic (assuming the signal is baseband). In this example,

a square pulse has been broadened by the channel. The pulse now has four times its original

temporal duration. Therefore, a wavetable synthesizer with L = 3 can be used to emulate this

channel.

"

..

"

"

Figure 3.3 Segmented Bandlimited Pulse.

16

Figure 3.4 shows how a sequence of bits are affected by the channel discussed above. Shown

below the filtered waveform are channel memory for each symbol epoch. In order to synthesize

this waveform, the transmitter must superimpose segments. from Figure 3.3 corresponding to
i

the memory of the channel at each epoch. With Wavetable synthesis methods1 all possible

superpositions must be calculated a priori.

·�

OS

'

�-

_, ,�
• • • • • m •

'

_,

0001 00,0 0101 o 101\ I 0\lD 1100 1000 000\

10 .0 30 4" ro 60 70 M

Figure 3.4 Transmission Sequence with ISI.

3.1.2.1 Channel coding

Many channel coding schemes can be described in terms of a simple state machine. These

types of codes lend themselves to VHDL implementation due to the ease with which state

machines can be implemented in VHDL. With this technique
1
input symbols are considered the

input to the state machine and the current state corresponds to the symbol being sent.

3.2 Hardware Architecture

Figure 3.5 contains the block diagram of the syste� transmitter along . with FPGA inter­

nals specifically designed for the ECE 363 course. The FPGA design currently contains two

major blocks for wavetable synthesis: the source generator and the address generators. The

source generator is responsible for synthesizing the bits to be sent out the transmitter. The

address generators are responsible for sequencing wavetable addresses depending on the type

of modulation for which they have been programmed.

17

DDS ControV
Clocks

!Address
Generator

Q Addrm
GeneratOT

I Wavetab!

Q Wavemble

Clock Generator
(DDSJ

DAC

DAC

Figure 3.5 Transmitter Block Diagram.

Figure 3.6 shows the transmitter source generation hardware. Presently, four data.sources are

available: PN7, PN15, PN23, and a data FIFO. PN7, PN15, and PN23 are pseudorandom noise

generators which use generator polynomials x7 +x6+1, x15+x14 + 1 1 and x23 +x5+ 1, respectively.

The actual implementation makes better use of the available hardware by collapsing all three

PN generators into a single 23-bit register. The next bit is then computed by selecting which

modulo-2 addition is required (taps 6 and 7, taps 14 and 15, or taps 5 and 23). The data FIFO

is a 16x16 bit FIFO that takes data from the DSP and syncronizes the data to the output

bitrate. The DSP must be able to keep up with the rate or data will be lost. This data.source

can be used to transmit real data rather than test sequences.

PN (7,6,0)

PN (JS,14,0)

PN (23,5,0)

Data from
TxDSP

16xl6F1FO

-. LSBSm
MSBFir11

Figure 3.6 Transmitter Source Generation.

18

,_

Select

Datapump Out

Figure 3.7 contains a simplified block diagram of the wavetable address generators. The

word used to address the wavetable is composed of two parts: a sample index and a waveform

offset. The sample index is k bits used to index into a particular waveform. All waveforms

must be composed of the same number of bits. The waveform offset is constructed from the

current data symbol and L previous data symbols. New data is shifted into the datapump every

N, W samples and therefore the waveform offset changes every N · W samples. The variable W

is used to indicate how many times a particular waveform should be repeated before shifting

in another symbol. While this is not particularly useful in baseband transmission, it serves a

purpose in passband signals.

For example, consider passband synthesis of BPSK with a symbol rate of 1 kHz and carrier

at 130 MHz. We would like to use simple filters and therefore as high a sample rate as possible.

Using a simple wavetable without repetition and a sample rate of 40 MHz, 40,000 samples would

need to be stored for each symbol. With repetition, however, we can program a full waveform

to be four samples. Therefore, N = 4 and W = 10, 000. Without reconstruction filters, our

signal appears at 10 MHz, 30 MHz, 50 MHz, 70 MHz, 90 MHz1 110 MHz, 130 MHz, and so on.

We build a reconstruction filter to be centered at 130 MHz.

Sample
Counter

k

LSB .•. MSB

Datapump History

Shift M Databits
per Clock

,@�\'.'.�! �·�-3'----�I �,�
-2
'----�-·�

-
�J ---"'----�'

'----
---'J-- Datapump Out

L•M

Wavetable Address

N = Samples perWavefonn
W = Wavefonns per Symbol
k=log2(N)

M = Bits per Symbol
L = Transmitter Memory
n = Current Symbol
1§1"" Unused Bits

Figure 3. 7 Wavetable Address Generation.

19

CHAPTER4

RECEIVER ARCHITECTURE

This chapter discusses the final receiver architecture and how it can be used to construct

a variety of receivers. Two levels of architecture are discussed: the system and the FPGA

hardware receiver. The flexible system architecture is typically fairly simple because it is

composed of reconfigurable computing blocks. The FPGA hardware receiver is somewhat more

complex because it consists of the design elements of an actual receiver, with its datapath

optimized for the FPGA architecture.

4.1 System Architecture

The digital receiver section of ERITHACUS was designed as a baseband (or low IF) receiver

and is expected to be operated in a system similar to that shown in Figure 4.1. It samples

two bandlimited channels, In-phase (I) and Quadrature (Q}, and uses those samples to perform

carrier recovery and make symbol decisions.

LO

Preselector · · · · · ·· · ·· · ·Front:ena '.R.e'Ceiv·er ·· · ·

DAC

=�=�- I Erithacus

Figure 4.1 A Complete Digital Receiver Using ERITHACUS.

A block diagram of the entire receiver section is shown in Figure 4.2. The receiver contains

two 10-MSPS ADCs for I and Q sampling, a Xilinx XC4062XLA FPGA, two Motorola 56302

20

-----------·--·--

DSPs sharing 16 kwords of dual-ported SRAM, a DDS-based clock generation circuit, and four

100-MSPS DACs for various output tasks.

DSP Rx(2) ual-Port DSP Rx(l) ln-phwie In SRAM
Quadrature In

DAC 1 Analog Out 1
FPGA DAC2 Analog Out 2 de111"X

CPLD DAC 3 Analog Out 3
Traarg1d}ter Clock Generation DAC 4 Analog Out 4

Figure 4.2 Block Diagram of ERITHACUS Receiver Section.

The sample clock for the receiver section may come from either the transmitter section or

the dedicated clock generation circuit in the receiver. In some lab setups, it is necessary to

synchronize the transmitter and receiver in order to eliminate the need for timing recovery. If

this synchrony is not required, the receiver can generate its own sampling clock up to 42 MHz

with 30-mHz resolution. The ADCs in the receiver, however, are limited to 10 MSPS. Although

limited to 10 MSPS, the ADCs have an input bandwidth of 60 MHz [19]. As a result, the

ADCs can perform bandpass sampling as long as the input signal does not exceed the Nyquist

criterion.

Four DACs are present in the receiver design for several reasons. They provide a simple

method of getting internal signals out of the digital domain for observation on an oscilloscope

or spectrum analyzer. The DACs can also output signals for closed-loop control as in PLL

applications. Due to pin-count restraints on the FPGA, the four DACs are multiplexed to a

single bus on the FPGA. In order to output a sample to all four DACs, the FPGA requires four

clock periods. The design intention was that the clock .generation would run at four times the

sample rate and be divided down by the FPGA to input and output samples synchronously.

The computational units of the receiver are the two DSPs and the FPGA. The partitioning

of any particular receiver is very open and flexible. The two DSPs are more appropriate for

designs at lower rates (300 ksps and below) or high complexity because their architecture is a

good-enough fit for these rates. In addition, they are much easier to target than the FPGA,

21

significantly reducing implementation time. At higher rates1 the FPGA is better suited because

multiple functional units can be instantiated that operate concurrently on the incoming data.

In many cases1 a hybrid design may work very well. In a hybrid, the DSPs take care of

the complex, lower-rate computations such as AGC or decoding while the FPGA handles the

higher-rate problems such as matched filtering, carrier recovery, and timing recovery.

4.2 Hardware Receiver Architecture

The ECE 363 lab equipment runs at a symbol rate of 1 MHz and sample rate of 10 MSPS.

For these rates, a hardware design is necessary. This section presents the particular hardware

receiver used in the ECE 363 course. Because the FPG A is reprogrammable, this is certainly

not the only hardware receiver possible. It is, however, tuned for the uses of the course and is

a good starting point for other hardware receiver designs.

The overall block diagram is shown in Figure 4.3. The in-pha.se samples come from the I

ADC and the quadrature samples come from the Q ADC. The output stage controls the DAC

demultiplexor which sends samples to the DAC. Not shown in the diagram, but implicit to

any FPGA receiver design, is the interface to the DSP which, in this case, performs little more

than a supervisory task. The DSP configures certain parameters of the architecture and queries

other parameters such as error count, bit count, etc. Technical details on these parameters are

given in Appendix B.

!ADC
QADC

Loop
Filter

FPGA _ ----_______________________ ,

Figure 4.3 Block Diagram of the Hardware Receiver.

22

After samples are acquired by the ADCs, they are sent directly to the FPGA. Here, they

enter the input stage shown in Figure 4.4. The ADCs are DC-coupled to allow low-frequency

receiver designs. As a result, the ADCs will add a small amount of DC offset to the input signal

which must be removed to avoid demodulation errors. A simple adder as shown in the figure

is adequate. Following offset adjustment is a gain adjustment (10x8 multiplier) for automatic

gain control. The I Gain and Q Gain values can come from an external source such as the DSP.

Following the offset and gain adjustment, I and Q samples are sent to a modified Costas

phase detector [20]. The modified form computes the equation

Yn = Xn;Q · sign Xn,I (4.1)

for BPSK mode and

Yn = Xn,Q • sign Xn,I - Xn,I · sign Xn,Q (4.2)

for QPSK mode, where Xn,I and Xn,Q are the current samples from the in-phase and quadrature

ADCs
1

respectivelyi Yn is the output of the phase detector, and sign x = +1 for x > 0 and -1

forx<O.

I Offset I Gain
QPSK

!Ox!

I Sample

Phase Detector

Output

Q Sample

Q Offset QGain

Figure 4.4 Receiver Input Stage and Phase Detector.

The phase detector output is sent to the loop filter. For testing purposes, the loop filter

can derive its input from the I input as well, as seen in Figure_ 4.5. The loop filter is composed

of three multipliers and three adders. The block is implemented in fixed-point arithmetic with

the precisions of each signal shown above a hatch on that signal. The filter implements the

first-order IIR filter with transfer function

a

H(z) - -l---(-l---a-),---1

23

(4.3)

where the constant a is between O and 1.0. The time-domain recursion for this filter is

is

Yn = axn + (I - a)Yn-1 (4.4)

Due to pipelining constraints (see Section B.6), the recursion that is actually implemented

Yn = ax11 + (a - a2)xn-I + (I - 2a + a2)Yn-2

Yn = axn + bxn-1 + (1- c)Yn-2

(4.5)

(4.6)

where b = (a - a2) and c = (2a - a2). The relationship between this recursion and the block

diagram should be evident. The constants in the diagram (A, B, and C) correspond to fixed­

point versions of the constants a, b, and c, respectively.

Test Mode

I Sample

PD Output

JO A 19

h
x

�" �1--< X}--!iDll-f-,

IOxlO

r+----JilD}-- +}+-+(+
26 26

to c 19
Yn X}--!iDll-f-- D 14

J Ox Io Loop Filter
����������_)--+� Output

Figure 4.5 Receiver Loop Filter.

A note about the multiplier implementation is appropriate here. To be precise, a multiplier

with two 10-bit inputs will req:uire 21 bits to fully represent the result. All 21 bits are required

for only one pair of inputs (-512 and -512). With a restriction on the PLL coefficients, this pair

will never occur. Therefore, the MSB of the result is discarded.

The matched filter and timing recovery components from Figure 4.3 are difficult to describe

in block diagram form. The matched filter is implemented as an integrate and dump (or, more

appropriately, a sum and clear) design. The receiver can also be placed in a midsymbol sampling

mode which bypasses the integrate and dump filter. The symbol decision is based on a single

I/Q sample. Timing recovery is implemented as a common early/late gate [18], [21].

The last major component of the hardware receiver is the output stage shown in Figure 4.6.

It consists of four multiplexors, one for each DAC signal. The select signals to the multiplexors

24

can be changed at any time. Software has been written to configure these multiplexors so that

students can view different signals in the signal path. See Appendix C for more details.

DAc_SELECT{O)

Loop Filter Out f)-
To DACI

0

DAC_SELECT(5:4)

I Sample

I Iotegrator
ToDAC3

I Decision

QSample

DACSELECT{2)

Phase Detector Out' f)-
To DAC2

0

DAC_SELECT{7;6)

QSample

Q Integrator
ToDAC4

QDecision

I Sample

Figure 4.6 Receiver Output Stage.

25

CHAPTER 5

CONCLUSION

A reconfigurable system
1

designed for use in digital signal processing and digital commu­

nications, has_ been presented. The system has already been found capable of replacing the

current analog-based hardware used in the educational lab for which it was designed. Due to

its digital design1 the system should prove to be far more reliable than the current hardware.

A hybrid design approach of both software-based components (DSPs) and hardware-based

components (FPGAs) was taken to provide both high-speed capability at the cost of design

time {hardware) and ease of programmability at the cost of operation speed (software). Thus

far, the approach has paid off; both software and hardware receivers have been developed on

the system.

Additional labs will be developed to take advantage of the new hardware. An example

of this is a coding lab which will introduce students to the necessity for channel coding in a

useful communications link. The analog-based receiver does not easily enable the creation of

such a design, whereas the new hardware makes this development somewhat painless. The

implementation of a spread spectrum transmitter and receiver would also be possible and is a

likely extension given the importance of spread spectrum technology.

Ethernet capability has been a remarkably useful aspect of the ERITHACUS design. While it

not only provides rapid reconfiguration from well-known and ubiquitous software protocols such

as ftp and telnet, it also allows control of remotely loCated ERITHACUS devices by Matlab or

Java clients. In the two years since ethernet was chosen for ERITHACUS, the Internet explosion

has lead to an unparalleled ubiquity of ethernet presence, further assuring that the proper

choice had been made.

26

In addition to applications in digital communication education, ERITHACUS should prove

useful in research activities. Palac [22] presents a communications testbed for use in joint

source-channel algorithm research. Such equipment could be used jointly with ERITHACUS for

a more thorough coverage of requirements.

27

APPENDIX A

TRANSMITTER TECHNICAL INFORMATION

A.I Transmitter FPGA Registers

Although the hardware is reprogrammable, the specific transmitter FPGA image developed

for the Digital Communications Lab is discussed here. Not only does this FPGA image provide

a good starting point for other designs, but it is also flexible enough to be useful in most

transmitter configurations. This section describes the parameters that can be modified in the

transmitter FPGA. Table A.1 lists the registers available to the transmitter DSP. All registers

are write-only.

The DSP maps the FPGA to a certain address space. This is typically the block starting

at x:$20000, but is reprogrammable. It is set by the DSP boot code. When writing to the

FPGA, the 16 least significant bits of the source are written. The eight most significant bits

are -ignored. An example follows.

BITS_PER_SYMBOL equ $20008

; Set the transmitter for 4 bits per symbol.
move #$000004,xO
move xO,x:BITS_PER_SYMBOL

A.1.1 Register descriptions

DDS.RESET

This register is used to reset the transmitter DDS. The data written to this register are

ignored, but the DDS is immediately reset. The DDS should be reset prior to programming.

28

Table A.1 Transmitter FPGA Registers.

I Address I Register \ Description
$00 DDSJlESET Write causes DDS reset.
$01 DDS.16BIT Write 16 bits to DDS.
$02 DDS.SEIT Write 8 bits to DDS and update.
$03 WAVE.CE Chip enable for wavetable outputs.
$04 DATAPUMP JlESET Write causes datapump logic to reset.
$05 SOURCEllELECT Selects data source for transmitter.
$06 COUNTER-MASK Mask used for sample counter (related to

samples per waveform).
$07 DATA.MASK Mask used for data (related to bits per

symbol).
$08 SAMPLES.PER.WAVEFORM Number of samples per waveform.
$09 WAVEFORMS.PER.SYMBOL Number of waveforms per symbol.
$0A BITS..PERllYMBOL Number of bits per symbol.
$OB LEASE.ADDRESS Base address of I lookup table.
$0C Q.BASE..ADDRESS Base address of Q lookup table.
$10 FJFO..DATAIN Writes a 16-bit data word to the datapump

FIFO.

DDS.16BIT

This register is used to shift 16 bits of update information into the DDS. Once written, a

state machine is started to transfer the data to the DDS. Therefore, the DSP must wait until

the state machine is complete before writing to the DDS again. This time is typically 60-100

DSP clock cycles.

DDS.SHIT

This register is used to shift 8 bits of update information into the DDS. Once written, a

state machine is started to transfer the data to the DDS. When the state machine is complete,

the DDS is instructed to update its frequency and phase registers. The DSP must wait until

the state machine is complete before writing to the DDS again.

WAVE.CE

The least significant bit of this register is used to control the chip enable (CE) of both

wavetables. Because the wavetables are dual-ported, a simultaneous read and write at the

29

same address is not allowed. Therefore, for proper wavetable updates, the DSP must either

guarantee that it is not writing to the same addresses that are being read out (as transmission

symbols) or the DSP must disable the wavetables for a short time while writing.

Writing a 'O' to this register enables the wavetables. Writing a '1' disables them.

DATAPUMP _RESET

This register is used to reset the transmitter datapump. Data written to this register are

ignored. When written, the FPGA resets the PN registers and clears all counters used to

generate symbols. In addition, a state machine is started that clears the datapump FIFO.

SOURCE_.SELECT

This register is_ used to select the source for bits sent to the datapump. See Figure 3.6.

Table A.2 shows the available sources and their corresponding settings for this register.

Table A.2 Transmitter Data Sources.

I Data Source I SOURCE SELECT I -

PN (7, 6, 0) $00
PN (15, 14, 0) $01
PN (23, 5, 0) $02
FIFO (LSB fast) $04
FIFO (MSB first) $05

COUNTER_MASK

The value set in this register is used as a mask to transfer the sample count to the wavetable

address. In most cases, COUNTER.MASK will contain log2(SAMPLES_FER_WAVEFORM)

ones. For example, if SAMPLES_FER_WAVEFORM=32, COUNTER.MASK=$001F so that

five bits of the counter are transferred to the wavetable address.

DATA_MASK

The value set in this register is used as a mask to transfer the datapump history to the

wavetable address. In most cases, DATA_MASK will contain (L + 1) ·Mones where Lis the

30

transmitter memory (in symbols) and M is the number of bits per symbol. For example, with

two bits per symbol and transmitter memory of four symbols, DATA-1v1ASK=$00FF.

SAMPLES_pER_ WAVEFORM

This register specifies the number of samples per waveform. An actual symbol can be

composed of many repeated waveforms.

WAVEFORMS_pER_SYMBOL

This register specifies the number of waveforms used to construct a symbol. If this value is

greater than one, the waveform must be periodic because the same waveform will be repeated

WAVEFORMS_pER_SYMBOL times.

BITS_pER_SYMBOL

This register specifies how many bits will be taken from the transmitter data source for each

symbol. Closely related to this is the constellation size. Due to the design of the transmitter,

SAMPLES_pER_WAVEFORM must be greater than BITS_pER-8YMBOL.

LBASE_ADDRESS and Q_BASE_ADDRESS

This register sets an offset into the wavetable for use in address generation. This offset is

most useful when real-time changes of the transmission waveforms are necessary. Two complete

wavetables can be stored in memory. While the DSP is updating one wavetable, the transmitter

is-using the other. Writing to this register swaps the wavetables.

FIFO_DATAIN

This register is used to enqueue a single 16-bit word into the transmitter FIFO. The FIFO

can contain up to 16 words. When the FIFO is half empty, the FPGA generates· an interrupt

to the DSP. The DSP must then write eight words to this register.

A.2 DSP /Wavetable Interface

The I and Q wavetables are mapped as write-only to DSP memory at X: $10000 and

Y: $10000, respectively. Specifically, bits 9-22 of the DSP databus are mapped to the 14 most

31

significant bits of the 16-bit wide dual-port SRAMs. This is indicated in the schematic sheet in

Figure D.9. Note that the most significant bit of the DSP bus is not connected to the waveta­

bles. The DSP represents numbers in two's complement. Therefore, this bit is a sign bit. The

DACs
1

however, use a linear mapping from negative full--scale to positive full-scale. As a result

of this wiring, DSP words should be formatted between 0.0 and 1.0 (:fixed point) to correspond

to the full DAC range.

Numbers represented with the full DSP range (-1.0 to 1.0) can easily be converted into the

range required by the DACs by dividing by two (right-shift by one bit) and then adding 0.5.

A.3 Output Buffering

Figure D.9 shows the schematics for the output buffering circuitry. The DAC outputs are

fed into a current-feedback amplifier for buffering. The output stage is DC-coupled to allow

for very low bit-rate transmission. When coupled to a 50-!1 load, the load should see a+/- LO

voltage swing corresponding with the+/- full-scale output of the DAC.

Because the outputs are de-coupled, a bias adjustment is provided to zero the offset voltage

when the DAC output is zero. This bias adjustment is provided as a ten-turn potentiometer.

To adjust the bias, the transmitter is configured to output constant zero, and the output stage

is terminated with a 50 n load. Finally, the bias potentiometer is adjusted until the voltage at

the output is zero.

A.4 Sample Rate DDS

The DDS devices in the transmitter and reCeiver are fed from the same 125-MHz clock

source. The output clock frequency (f out) is adjustable in 29-mHz increments from DC (no

clock) to about 42 MHz by the word written to the DDS_l6BIT and DDS_8BIT registers.

Thirty-two bits of this 40-bit word determine the sample rate. The other eight bits determine

phase and special functions (see [23] for details). The 32-bit word F,Jal is related to foot by the

following equation:

F11a1
f out = 125000000 ·

232 Hz (A.I)

The code in Section A.4.1 sets the transmitter sample rate to 40 MHz. Appropriate delays

are inserted to allow the DDS programming state machines to complete after each write to

32

the DDS registers. Immediately after a reset, the DDS must receive a FQ_UD. Although not

documented, this requirement has been consistent. Note that the 16-bit values written to the

DDS registers are right-justified in the DSP's 24-bit operands.

A.4.1 DDS configuration sample code

DDS_RESET

DDS_16BIT

DDS_8BIT

equ

equ

equ

$20000

$20001

$20002

Configure the DDS frequency (40 MHz)

move #>$000000,xO
move xO,x:DDS_RESET

rep #30

nop

move #>$000000,xO
move xO,x:DDS_BBIT
rep #200
nop

move #>$008520,xO
move x0,x:DDS_16BIT
rep #200
nop

move #>$0051eb,x0
move x0,x:DDS_16BIT
rep #200
nop

move #>$000000,xO
move x0,x:DDS_88IT

rep #200
nop

33

Reset the DDS

Flip the FQ_UD (must do after reset)

Setup the DDS for 40 MHz

APPENDIXB

RECEIVER TECHNICAL INFORMATION

B.1 Software Receiver FPGA Registers

Table B.1 lists the registers available to the receiver DSP.

Table B.1 Software Receiver FPGA Registers.

I Address I Register I R/W I Description

$00 DDS.RESET w Write causes DDS reset.

$01 DDS_l6BIT w Write 16 bits to DDS.

$02 DDS_8BIT w Write 8 bits to DDS and update.

$10 DACOUTl w Digital to analog converter 1.

$11 DACOUT2 w Digital to analog converter 2,

$12 DACOUT3 w Digital to analog converter 3.

$13 DACOUT4 w Digital to analog converter 4.

$14 IJNPUT R I analog to digital converter.
$15 QJNPUT R Q analog to digital converter.

B.1.1 Register descriptions

DDS_RESET

This register is used to reset the receiver DDS. The data written to this register are ignored,

but the DDS is immediately reset.

DDS_l6BIT

This register is used to shift 16 bits of update information into the DDS. Once written, a

state machine is started to transfer the data to the DDS. Therefore, the DSP must wait until

34

the state machine is complete before writing to the DDS again. This time is typically about

100 DSP clock cycles.

DDS_8BIT

This register is used to shift 8 bits of update information into the DDS. Once written, a

state machine is started to transfer the data to the DDS. When the state machine is complete,

the DDS is instructed to update its frequency and phase registers. The DSP must wait until

the state machine is complete before writing to the DDS again.

DACOUTl, DACOUT2, DACOUT3, DACOUT4

The values written to these registers will appear at the output of DACl, DAC2, DAC3, and

DAC4, respectively. The values take effect on the next sample clock.

I-1NPUT, Q-1NPUT

The values read from these registers are the current samples from the in-phase and quadra­

ture ADCs, respectively.

B.2 Hardware Receiver FPGA Registers

The hardware receiver FPGA image is used when high data rates must be accomodated.

This image provides complete demodulation including carrier recovery, matched :filtering, and

timing recovery. Although the DSP does little computation in hardware receiver mode, it is used

as a communication link between the CPU and FPGA. Table B.2 lists the registers available

to the receiver DSP. The next section describes these registers.

B.2.1 Register descriptions

DDS_RESET

This register is used to reset the receiver DDS. The data Written to this register is ignored,

but the DDS is immediately reset.

35

Table B.2 Hardware Receiver FPGA Registers.

I Address I Register I R/W I Description

$00 DDS_RESET w Write causes DDS reset.

$01 DDS_l6BIT w Write 16 bits to DDS.

$02 DDS_SBIT w Write 8 bits to DDS and update.

$04 BER_RESET w Write causes BER counters to reset.

$05 BER-ENABLE w Enables or disables the BERT.

$06 RX.MODE w Determines the receiver mode.

$07 DAC_SELECT w Selec t bits for receiver DAG outputs.

$08 LOOPF ..SELECT w Loop filter input select.
$10 LOFFSET w I ADC offset adjust.
$11 Q_OFFSET w Q ADC offset adjust.
$12 LGAIN w I input gain.
$13 Q_GAJN w Q input gain.
$14 PLL_COEFl w PLL Coefficient.
$15 PLL_CQEF2 w PLL Coefficient.
$16 PLL_COEF3 w PLL Coefficient.
$20 BJT_COUNT.B R Received bit count (bits 31:16)
$21 BJT_COUNT __!, R Received bit count (bits 15:0)
$22 ERROR-COUNT.B R Error count (bits 23:16)
$23 ERROR_COUNT __!, R Error count (bits 15:0)
$28 !..SAMPLE R I sample (2s complement after offset adjust).
$29 Q_SAMPLE R Q sample (Zs complement after offset

adjust).

DDS_l6BIT

This register is used to shift 16 bits of update information into the DDS. Once written, a

state machine is started to transfer the data to the DDS. Therefore, the DSP must wait until

the state machine is complete before writing to the DDS again. This time is typically about

100 DSP clock cycles.

DDS_SBIT

This register is used to shift 8 bits of update information into the DDS. Once written, a

state machine is started to transfer the data to the DDS. When the state machine is complete,

the DDS is instructed to update its frequency and phase registers. The DSP must wait until

the state machine is complete before writing to the DDS again.

36

BERJlESET

When written to
1

the bit error rate tester is reset. The bit count, error count, and detector

registers are cleared.

BER_ENABLE

The least significant bit of this register determines if the BER tester is enabled. When set,

the BERT is turned off and no counts are updated. When clear, the BERT is enabled.

RX-MODE

The least significant bits in this register determine the operating mode of the receiver, as

shown in Table B.3.

Table B.3 RX...MODE Register.

I RX...MODE I Receiver Mode

=O BPSK phase detector.

xxxl QPSK phase detector.

xxOx Matched filter disabled.

xxlx Matched filter enabled.

xOxx Timing recovery disabled.

xlxx Timing recovery enabled.

O= Receiver clock source is DDSTX.
l= Receiver clock source is DDSRX.

DAC_SELECT

The bits in this register determine what is sent to the four DACs in the receiver section, as

shown in Table B.4.

LOOPF _SELECT

The least significant bit of this register determines the input for the loop filter. When clear,

the loop filter input comes from the phase detector. When set, the loop filter gets its input

from the in-phase ADC.

37

Table B.4 DAC_SELECT Register.

I DAC SELECT I DAC output-

xxx=O DACl - Loop filter output.

=l DACl = 0

xxxxxOxx DAC2 = Phase detector output.
xxxxxlxx DAC2 - 0

:xx:00:xxxx DAC3 = Quadrature ADC sample.
:xx:01:x:x:xx DAC3 = Quadrature matched-filter output.
:xxlOxxxx DAC3 = Quadrature decision.
:xx:11:xxxx DAC3 - In-phase ADC sample.
OOxxxxxx DAC4 = In-pha.se ADC sample.

Olxxxxxx DAC4 = In-phase matched-filter output.
lOxxxxxx DAC4 = In-phase decision.
llxxxxxx DAC4 - Quadrature ADC sample.

LOFFSET, Q_OFFSET

The values written to these registers specify the values to be added to incoming in-phase

and quadrature ADC samples, respectively. This can be used to adjust for the DC-coupled

offset error of the ADCs.

LGAIN, Q_GAIN

The values written to these registers specify the constant gain multipliers applied to the

incoming in-phase and quadrature
1

respectively. The gain is applied after offset adjustment.

PLL_COEFl, PLL_CQEF2, PLL_COEF3

These three values specify the loop filter coefficients used in the phase-locked loop. For

more details on programming the loop filter, see Section B.6.

BIT_COUNT-1!, BIT_CQUNT_L

These two registers can be read to fetch the upper and lower 16 bits of the 32-bit bit count

register, respectively.

38

ERROR_COUNT-1!, ERROR_CQUNT.L

These two registers can be read to fetch the upper and lower 16 bits of the 32-bit error

count register, respectively. Because of the nature of pseudorandom sequence error counting,

the result here is approximately three times the true error count. Host software is responsible

for dividing this value by three to determine bit error rate.

I-8AMPLE, Q_SAMPLE

These two registers can be read to fetch the current 12-bit sample from the in-phase and

quadrature ADCs
)

respectively. The values are left-justified to fit the fractional representation

of the DSP.

B.3 Analog Inputs

The two analog inputs on ERITHACUS are de-coupled 50-f! inputs with a specified max­

imum sampling rate of 10 MSPS and a bandwidth of approximately 100 MHz to allow for

bandpass sampling. The ADCs have been successfully driven past 20 MSPS with no noticeable

degradation.

Due to the de-coupling, some offset error may be present on the digital value read from the

ADCs. Therefore, offset adjustment is provided by the FPGA and should be performed when

the inputs are terminated with a 50-0 load.

B.4 Analog Outputs

Because the receiver design is configurable, its intermediate results are only available in­

side the DSP or FPGA. This makes debugging and evaluating the receiver slightly difficult.

Therefore, four analog outputs are provided as virtual test points for the receiver. The design of

these analog outputs is identical to those in the transmitter portion of ERITHACUS. In software

receiver mode, the DSP can write a fixed-point value to any of the DAC registers and have it

appear as a voltage at the output (-1.0 corresponds to-1.0 V
1
+0.125 corresponds to +0.125 V

1

and so on). In hardware receiver mode, the FPGA controls what is sent to each DAC. Flexible

routing inside the FPGA allows the DAC outputs to be configured dynamically by the user.

39

DACOUTl has 14-bit resolution, DACOUT2 has 13-bit resolution, and DACOUT3 and

DACOUT4 each have 12-bit resolution. The differences in resolution were an outcome of

physical design constraints (pin count limitations). As a result, DACOUTl should be used when

higher resolution is beneficial, such as when controlling a VCO. DACOUT3 and DACOUT4

can be used for less critical outputs such as observing internal intermediate signals.

B.5 Sample Rate DDS

The receiver section has a DDS to control sample rate, similar to the one in the transmitter

section. For more details, see Section A.4.

Programming the receiver DDS is similar to programming the transmitter DDS (Section

A.4.1). However, while words written to the transmitter FPGA need to be right-justified,

words written to the receiver FPGA need to be left-justified. Therefore, a sequence such as

move #>$0051eb,x0

move x0,x:DDS_16BIT

would be replaced by:

move #>$51eb00,x0

move x0,x:DDS_16BIT

B.6 PLL Coefficient

The loop filter in the hardware receiver PLL is a first-order !IR filter with transfer function

The 3-d.B point is defined as

H(z) = ---"--
1- (l - a)z-1

40

(B.l)

(B.2)

Solving for w, we get
2

. 2 a [H(e'w)[
= 1 _ (1-a)e-iw)(l -(1- a)eiw)

a'

- 1-2(1-a)cosw+ (1-a)2

1 .
=

2
(at the 3 dB pomt)

2a2
= 1-2(1-a)cosw+ (1-a)2

_1 2a2 -1-(1 -a)2
w = cos [2(1 _ a) J

(B.3)

(B.4)

(B.5)

(B.6)

(B.7)

Therefore, an expression for the 3-dB point (in Hz) in terms of the single degree of freedom
(a) is given by

F, -1[fsdB = -cos
2,r

2a2 -1- (1 - a)2

2(1-a)]

The time-domain recursion for the filter in (B. l} is

Yn = axn + (1 -a)Yn-l

(B.8)

(B.9)

where Xn is the input sequence, Yn is the output sequence at time n1 and a is the PLL coefficient
0 < a < LO. The multipliers realized in the FPGA implementation are 10-bit by 10-bit
multipliers from the Xilinx CORE library [15] with a latency of five cycles. The multipliers run
at a clock rate that is four times that of the sample rate. Therefore, their effective latency is
two cycles. As a result, look-ahead [24], [25] must be applied once

1
resulting in the following

transformed equation:

Yn = llXn + (a - a2)Xn-l + (1 - 2a + a2)Yn-2

Yn = llXn + bXn-1 + (1- c)Yn-2

(B.10)
(B.11)

where b = (a -a2) and c = (2a - a2). These coefficients are represented internally as 10-bit
signed fixed-point numbers. Because a is typically very small, its value is prescaled by 128 to
avoid requiring a large multiplier. Once an appropriate value for the coefficient a has been
found using (B.8), b and c can be determined. Finally, conversion to fixed-point notation is
required.

As an example, suppose we want the loop filter to have a cutoff frequency of 500 Hz.
Then a ::::::: 3.0510-4. Prescaling by 128 and converting to 10-bit signed fixed-point yields

41

A = 3.0510-4 • 128 · 512 ::::::: 20. Therefore, A = 20, B = 20, and C = 40, Here, A, B,

and C are the integer coefficients representing a, b, and c, respectively. Typically, for the range

of interest in EOE 363, A= B = ! · C. Therefore, only the value for A can be entered in the

Receiver Control Panel.

42

APPENDIX C

SOFTWARE SUPPORT

C.1 Device-Side Software

The device-side software is software written to interact under the RTEMS operating system.

The code is written in C and is a collection of procedures that run as threads under the OS.

All of the software is loaded at one time during boot.

0.1.1 FTPD

A subset of a UNIX file transport protocol daemon (FTPD) has been written for ERITHACUS.

The ERITHACUS FTPD1 supports nearly all of the most-used capabilities of UNIX FTPD and

can interface with standard FTP clients. The FTPD written for this thesis has been submitted

for inclusion in future releases of RTEMS and will be available in RTEMS 4.1.0.

A standard FTP daemon merely receives files from a client and places those files on the

server (or vice versa). In addition, some file manipulation capabilities are provided such as

remove, make directory, etc. A list of the supported FTP directives is shown in Table C.l.

To better facilitate interoperability with the programmable hardware on ERITHACUS
7
FTPD

"hooks" are provided. A hook is a filename with a special meaning attached. When a file is PUT

to a recognized hook, FTPD performs a special operation on that data. The hooks provided

for the standard ERITHACUS firmware are shown in Table C.2.

The format of the file depends on its destination on ERITHACUS. ER1THACUS allows the

Xilinx FPGAs in the transmitter and receiver to be programmed through FTP. The file is a

standard Xilinx bitfile which is generated from the Xilinx back-end toolset. The bitfile must

have been generated for the exact device on the system.

I It is common to refer to the server-side program of a protocol as a daemon.

43

Table C.1 Supported FTPD Directives.

I FTP Directive I Description
RETRx Retrieve file x from the server.

STORx Send file x to the server.
LIST x Retrieve a file list.
USER Currently a null op.
PASS Currently a null op.
SYST Replies with the system type ('RTEMS').
DELEx Remove file x from the server.
MKDx Create a directory x on the server.
RMDx Remove directory x from the server.
PWD Print current (remote) working directory.
CWDx Change current (remote) working directory to x.
SITE CHMOD x y Change permissions on file y to x (in octal).
PORT a,b,c,d,x,y Setup a data port to IP address a.b.c.d with port

x*256 + y.

ERITHACUS also allows the four DSPs to be programmed through FTP. Two versions of

code are allowed for each DSP. The first is boot code, which is downloaded immediately after

resetting the device. Boot code must contain only program and no data. The boot code is

typically short and allows for downloading larger programs in a second pass. Boot code files

are specified with the prefix dspboot. The second pass of code can contain more program and

can also contain data segments. This pass is specified with the prefix dspcode. All DSP hooks

expect a Motorola . cld file as input, which is generated from Motorola's DSP assembler.

Finally, FTPD allows raw data to be written to the transmitter's wavetable memory. This

procedure actually writes the data through the transmitter DSP. Therefore, standard boot code

must be running on the DSP. Typically, a MATLAB program will generate and download these

files.

C.1.2 Telnet

A programmable telnet daemon exists on ERITHACUS to allow users (and host-side software)

to configure the system. Two modes of operation exist: interactive and automated. The

automated mode is a less verbose mode used for applications which must configure ERITHACUS

without user input, including MATLAB scripts and Java programs.

44

Table C.2 ERITHACUS FTPD Files.

Filename I Expected Format I Description

untar UNIX tar file. Untars the file to the current directory.

fpga. tx Xilinx . bit file. Image for transmitter FPGA.

fpga.rx Xilinx . bit file. Image for rec;eiver FPGA.

waveram.i Raw data (up to 8kx16). In-phase wavetable.

waveram.q Raw data (up to 8kx16). Quadrature wavetable.

dspboot.tx Motorola . cld file. Boot code for transmitter DSP.

dspboot.rxl Motorola . cld file. Boot code for receiver DSP # 1.

dspboot . rx2 Motorola . cld file. Boot coQe for receiver DSP #2.

dspboot.acc Motorola . cld file. Boot code for accessory (audio) DSP.

dspcode. tx Motorola . cld file. Executable for transmitter DSP.

dspcode.rxl Motorola . cld file. Executable for receiver DSP # 1.
dspcode.rx2 Motorola . cld file. Executable for receiver DSP #2.
dspcode.acc Motorola . cld file. Executable for accessory (audio) DSP.

The interactive version of the telnet daemon provides a simple command language to set

and query parameters. For the most part, the language provides a simple set of instructions to

communicate with the DSPs. Configuration of the system is mainly done through this interface.

Table C.3 lists the supported commands and a brief description of each. Surprisingly, this

short list of commands provides a good deal of flexibility. Valid DSP IDs are tx, ace, rx1, and

rx2.

Table C.3 ERITHACUS Telnet Commands.

I Command I Description

dspcommand ID VECTOR Performs a host command.
dspwrite ID DATA Writes data to a DSP host interface.
dspwrite ID MEM:ADDR DATA Writes data to a location in DSP memory.

dspcommand ID VECTOR

This command performs a Host Interface Command Vector 'VECTOR' on DSP 'ID'. After

this command, the DSP calls the interrupt at the given vector location. This command can be

used to invoke certain events on the DSP. It can also be used to change a single parameter if a

dspwri te precedes the command. More information on Host Command Vectors can be found

in [26].

45

Example: dspcommand tx $32 causes the interrupt at vector $32 on the transmitter DSP

to be called.

dspwrite ID DATA

This command writes a single word to the host interface. When followed by a dspcommand,

the sequence can be used to change single parameters on the DSP.

Example: dspwrite rxl $1234af writes the hexadecimal value $1234af to the host inter­

face. Subsequently1 a host command could be issued invoking an interrupt service routine to

read the data from the host interface.

dspwrite ID MEM:ADDR DATA

This command can only be issued when the boot code is present on the DSP. The boot code

provides a method for writing data to arbitrary locations in DSP memory.

Example: dspwri te ace x: $002000 $000000 clears the memory location x: $002000.

C.1.3 HTTPD

A very simple version of an HTTP daemon is provided to serve static hypertext information

to any standard web browser, such as Lynx or Netscape. The purpose of this support is to

provide on-line documentation in a simple, portable, ubiquitous format. In addition, ERITHA­

cus control programs written in Java can be served from the device itself, providing a highly

portable environment with which to control ERITHACUS.

C.2 Host-Side Software

The host-side software is a collection of routines written to allow higher-level systems (such

as MATLAB) to control ERITHACUS. These routines provide communication through the telnet

and FTP daemons running on the system.

C.2.1 Libraries

Communication with ERITHACUS is done through two protocols: FTP and telnet. Although

the user can control the system through appropriate clients on a host workstation (f.tp and

46

telnet), more flexible interfaces can be built into programs such as MATLAB. To facilitate

communication with ERJTHACUS through such programs, a library has been developed that

provides the necessary commands. What follows is a list of these commands, their description,

and how to use them. Examples can be found in the EruTHACUS source code at [27].

FTPLIB_OpenConnection(char *hostname, int showMessages)

This function opens a connection to the ERITHACUS with the hostname given in the first

argument. The second argument specifies whether progress messages should be displayed on

standard output.

Example: FTPLIB_OpenConnection("erithacusO.ece. uiuc .edu". 0)

FTPLIB_CloseConnection()

This function closes a connection previously opened with FTPLIB_OpenConnection(. ..).

Connections should be closed before exiting the program.

Example: FTPLIB_CloseConnection()

FTPLIB_SendFile(char *localFilename, char *remoteFilename)

This function sends a file over a previously opened connection. The local filename is the

name of the file on the host workstation. The remote filename could be one of those listed

in Table C.2. If the filename is not a recognized filename, then the file will be stored in the

RTEMSIMFS.

Example: FTPLIB_SendFile (11MyRxCode. cld", "dspcode. rx1")

FTPLIB-8endData(long size, unsigned char *bufr, char *remoteFilename)

This is identical to FTPLIB_Send.File (...) except that the source of data is a buffer rather

than a file on the host.

Example: FTPLIB_SendData(8192, IWaveBufr, "vaveram. i ")

47

C.2.2 MATLAB commands

MATLAB provides the front end for most of the educational labs using ER1THACUS. The

following commands are provided to configure the transmitter and receiver as well as extract

information from the receiver during operation.

RESULT = COMMECPDIREOT(HOSTNAME, COMMAND)

This command is equivalent to sending the string COMMAND through the telnet interface

to ERITHACUS. A single-line result string is returned in RESULT. The command string can be

any of those listed in Table C.3. This command is commonly used by the MATLAB interfaces

to query bit error rate and other parameters from the receiver.

Y = COMMMAKEWAVETABLE(WAVEFORM, N)

The function of this command is somewhat elusive, but important. Given a matrix of wave­

form vectors (WAVEFORM) and the length of a single bit period (N), this command generates

a matrix which can be downloaded into the ERITHACUS wavetables. Each column is a single

bit period which makes up a waveform in the wavetable. In general, the waveforms specified

in WAVEFORM are longer than a single bit period representing memory in the transmit­

ter. COMMMAKEWAVETABLE breaks the waveform into sections of length N and computes

every combination of these sections representing every combination of bits sent through the

transmitter.

COMMDELAY(X)

This command causes the MATLAB program to delay for X seconds with microsecond reso­

lution. This function is used when measuring BER to wait for a certain amount of time.

COMMSETTXPARAM(HOSTNAME, Parameter!, Value!,

Parameter2, Value2, ...)

This command is used to configure the transmitter. Any number of parameters and their

values can be specified at a time. Supported parameters are listed in Table C.4.

48

Table C.4 COMMSETTXPARAM parameters.

I Parameter I Description

SampleRate The transmitter sample rate (in MHz).
SamplesPerWaveform Number of samples per waveform.
WaveformsPerSymbol Number of waveforms per symbol period.
BitsPerSymbol The number of bits per symbol.
DataSource One of 1PN7', 'PN15 1, 'PN23', 'User', or 'UserScrambled'.
!Waveform The data to be written to the I wavetable.

QWaveform The data to be written to the Q wavetable.

The following example configures the transmitter for a QPSK constellation. The waveforms

were previously generated by calls to COMMMAKEISI. The sample rate is 10 MHz, the symbol

rate is 1 MHz.

commsettxparam('dcommO.ece.uiuc.edu 1
• 'samplesperwaveform', 10, ...

'waveformspersymbol', 1,

C.2.3 MATLAB user interfaces

'samplerate' , 10. 0, .. .
1 bitspersymbol', 2, .. .

'datasource', 'PN15', .. .

'iwaveform' , [iwave iwave] ,

'qwaveform', [qwave qwave]);

Two graphical user interfaces have been developed for use in the ECE 363 lab: the receiver

control panel (Figure C.1) is used to configure the receiver, and AutoBERT (Figure C.2) is

used to take automated bit-error-rate measurements.

The receiver control panel is started with the MATLAB command COMMRXCONTROL­

PANEL. Along the bottom of the window, four selections appear to configure the outputs to

the DACs. The available options are shown in Table C.5. Note that at this time DAC3 and

DAC4 only have one output available. The buttons under "ADC Offset Calibration" instruct

ERITHACUS to perform calibration on the I and Q inputs. The inputs must be terminated

for the calibration to be correct. Under "Receiver Mode," BPSK or QPSK can be selected,

which alters the way the phase detector operates. Under "Matched Filter," matched filtering

("enabled") or midsymbol sampling ("disabled") can be selected. Also, timing recovery can be

49

Figure C.1 Receiver Control Panel.

enabled or disabled. A slider is provided as 1'0ptimal Timing Adjust" to select the sampling

time for symbol decision. Finally, under "Loop Filter Constant," the characteristics of the loop

filter can be adjusted. See Section B.6 for information on this value.

Table C.5 Receiver DAC Output Options.

I DAC I Outputs Available

DA Cl I Input, I Integrator, I Decision, Q Input
DAC2 Q Input, Q Integrator, Q Decision

1
I Input

DAC3 Phase Detector Output
DAC4 VCO Control Output

The BERT is started with the MATLAB command COMMAUTOBERT. COMMBERT

starts a similar GUI that is manually driven. The AutoBERT (shown in Figure C.2) takes

automated measurements through a range of SNR (specified by "SNR Start,'' "SNR Stop,"

and "SNR Step") by adjusting the output signal power referred to the specified noise power

("N0"). Once a measurement starts, total bits and errors are counted by the receiver. The

measurement stops when at least "Min errors" have been counted or the "Max dwell" time has

been exceeded, whichever comes first. During a measuI'ement, the total bits, total errors, and

the BER are updated once per second.

For square pulses and a given SNR and N0 , the peak power is computed as

Ppeak = SNR+ No+ 60

50

--------------- ----·----·

(C.1)

Figure C.2 Auto BERT.

The factor of 60 is included to adjust for a bit-rate of 106 because SNR = Eb/N0 , E1, =

Prms/T1,, and for square pulses, Prms = Ppeak·

The results of the measurement are plotted in the same window. The theoretical curve for

BPSK is shown solid. The measurement data is shown dashed and boxed. Theoretical results

are computed as

(C.2)

51

APPENDIX D

SCHEMATICS

This appendix contains the schematics for ERITHACUS. The entire board was entered into

MicroSim's schematic capture program Schematics Version 7.1. The board layout was also done

in MicroSim using PCBoards Version 7.1.

The board consists of six layers: four signal layers and two supply layers. The signal layers

are the two outer layers and the- two inner layers. Although this distribution makes debugging

and trace alterations more difficult (because the two inner layers are under the supply layers),

impedance is better equalized between the outer signal and inner signal layers. This is essential

because sections of the board can operate to 66 MHz.

The ground plane is continuous through the digital section of the board. However
1

separate

ground planes are provided under each analog section. These independent ground planes are

connected via a ferrite bead to the digital ground plane.

The power plane is separated into several sections to provide both 3.3- and 5.0-V sections

to the digital logic as well as to provide separate analog power planes to each analog section.

The supply plane partitioning is explained in Figure D.1.

Gerber files were produced and sent to Paramount Circuits. Paramount performed the

board fabrication and testing from these files. Finally, the board was assembled by hand by

the author in the Advanced Digital Systems Lab at the University of Illinois.

Figure D.1 contains design notes for the system. Figures D.2-D.4 contain schematics for

the CPU section of the system. Figures D.5 and D.6 contain schematics for the accessory DSP

portion. Figures D.7-D.9 contain schematics for the transmitter section. Figure D.10 contains

the clock generator schematic. Figures D.11-D.15 contain schematics for the receiver section.

Figure D.16 contains the schematic for the board power supply.

52

0 I 0 ,I, "' I "" -

I
- !

-
II�
clL

'-- '--

]6
• . < ' . ,_ ; • ! I N .,

1�
• " . � t; N •• ' . ' 8. "·E

,! '
,,, .i ,, � isl a·B�� _,

�§
]!ij� 2i E - - 11�

�g- E"'"' ., . • •• - < d! •t'' •fi• • > �wt· . ' . - :ii-if. ,.,
� �g :J!·"Q·� :!s.S� i,1� , .. '�!'

�!l1jjii
iitqJ£ r· i- ·E

i\lailii:a i;;�;� '"' �lii ,1;!i-. jjBi "'.s!ilj �lijiil�S ill!e ,'!" ·-· �
Hh thHi fi•!! 11"' ,s "g§ � .. ; ; i 8ll �'!ii ·,·· i -- ·-"r ;;;� .. .a,,·ti ; ;:;i !e;;J ::if' i:� !";�� �I"'"' � 88� ���- c ••• ;t ,,.F

tu 1tiih iHi� �'";,; ai�a ·!',
H�i lga

i·l�Bfgl �����§ ;u"�u I'' 1!1 22! :,.<'io,>>'ij '°i'20? ,Ji!<<<< �7���_:; �-�iO.,;; "'- lh,
� ro : : : : 19; 11: :il&h §

"'

,5§ ai st ro

���i <o! l!oi<> =� �!'" a ••• �� , ·,•j •ss :, !.! ,,-1>. �>> " -<<<< �'2":i �":' <:2-o ,ll.,:..; < <ai.,

l
i] J !� • i Q)

1
•

• • ll-
l ! ! 0 • ' '-- z • '--

8 0

! c: <
.� • "'

� �

0 l (j • "' I ""

53

" m

N

" "

54

-·----··-----

N

I'

!

' 1''
l: ,, , ...

0

0

"

"

b

i
�

1!
�
.,:
"
0..
"'
u
0 • •
0
u

8
0..

.,

Q
" •

u

0
"'
·-

"'

"'

55

Cl 0 m

,,

;I

;1

N
,,

' -
!!. !H

' ' �

. ' ' '

Cl 0 m

56

4 3 2

0
=

0

c
5:iV� !°"!!!!!�iiij

"'
;;�� : rn li� pg ·-·...

I

'""

··-... ••• ,1 I ;;;;;
' .

"""'

"��� ' -,,, ..
..•.

·-·-·

"

-

.�

A

4

,,r,,01... u�
::;:::+",

I I�

·�

-., ..

...

n, 'a�=;;cs;;;.==========1=:;:==========F::;----------1_.,, .. ,'

3 2

Figure D.5 Accessory DSP and Memory.

IB

A

��---·�
......,,_,

1

4

D

c

g:

B

A

4

3 2

--.. ��===:-··"·"'� ,.�.,.,.,.,,

. .-€·· -"""''"
rv- fy''

I !,' I :(f:.� t';.l.'.

;.,..,..�

...
-

'

I - 1.�
"""' ·j ,I 1.:: ',_,,. !'"16, 'V"--,-' (e-J-.1.--':,�i-i· T_J_j-j -�

3 2

Figure D.6 Audio Interface.

i=.:.':.-�-·­
t::'.:;'C.-

1

D

c

B

A

4

'"""',..,.

DI ---

_.,...,.=

Cl
:::.Jr,,,.
;:::��
Ill'/,�_;::· ,,,,.,��· ... �.,-,

M
"'

1�!

Bl

A

4

·-..... ,

,ru,M

·�
.,,,,J..,,..,

3

�·-E::.
r:·

'.!f'H'i· f:;.::.."':''."
=�'ll'}

=���

�g

:::
:::,:

��
::�

EE
:::
�-::. ...
:l�:;,,"

:?
::�

m
ll
-

�

3

2

;.:.J! I rm,:, 1
'""-"

-�l!!!I !!11!! I
"'=··

· ,r·-,1�1 �·-=-�:)d)! !JJl!J

·-"""'

2

=·-"
,....-=

=,,,.,.

''E3=J31•• JB:::i:� . :;

=,.__,

"\�.�::;:;; ' ·- ., ...

i=�':" .. -,.
"--·�·-·

1

Figure D.7 Transmitter FPGA and FPGA Memory.

ID

IC

Is

A

4

D

g;

B

A

4

""""""'

. .:.;

�:;:'°a, .. , �
,,�,-"

..... , .. ,.
::::::;;::.::
i::!la:,11

3 2

........ '"

-��....,.

i;:::t::m

�!! E3:1;11E'

2

Figure D.8- Transmitter DSP.

D

c

B

A

;t�-,»

4

0

cl
' '

I I

Bl

A

4

3 2

---� -l·
� ·�-:111 ... J;= ,,,;; • • 1111

_ __....,..,

-�Ill -�Ill.• . ..
-�

-°'

-�-�·
-.-.. ,

••• <• .. �·-
-�.�·�·

91 .. £]� I 19:?" 1" '·-·
,,.;... " �·· .. ,.., �1 �· .�:- " 1

. -·-· '" '

:'.:�-�
---·,·---

3 2 1

Figure D.9 Wavetable Memory and Analog Outputs.

0

I
C

IB

A

4 3 2 1

D D

'I

..,..

I
,- ""'

, '-'
- _ ill i1' -L !Cl< ; I�

� .. �

- �, 1'1" ,,,,s ,

1
�� �·�, ==ill -

I

C

. ii �.-.:::

Bl

A

-··
111 [1�- p �::·, .,1 �

•

IB
� - , 1,, !• I" '"ll

3 2

Figure D.10 Clock Generation.

;;-�o=.,._,.
��-

A

"

N

nm !I
!ID!�

,,
s j,J;ii: ' i(;'j(I , 3!

1, [ilf!.!�;
" oO im

&

0 " "'

63

c "

!
'
l

l '

11L
llil

1;
!. ��II

;;
f�

I ' :'"

"'"
0
"
-

0

:;;
"'
0

�
""
"'
"'

§
n

'"
!"'" "' mm ""

"
0

·S
u

�
"
....

""
0
"
�
"' ..

'!
�

: !;, b
i ·

.

I
;H

c "

64

4

D

c

g,

B

A

4

3 2

� "� �

-�=---+- ... ' I "":E"' l=l �� }'j ;�::;.�-·::::.= �·,ca .

.�;,',

�iiJM
�"' ""El���I .. -······E ·-· ,I ,,.,.. ..

,-....... ··

;.
....,.,_,,..,.

•1.;

3

�· s,,.;;;
•;,:

Figure D.13 Receiver DSP 2.

1

D

c

8

A

;;:�-;;;:.--··
=��

��

c

B

A

4 3 2

·····�----------�

4

� �·.I, . .;,� I I$· I,.,-
,.. ...,.. " �"• � '"'; !.�' Ill:" ' �·"m �

. ·- I,;-::' •

- "'
- --

""'

,_ �"' � '""'m �
·- � -�··

111 q�:. ·"�r �.I� fl I� I�,, �=l�.:.1 !f �r·

3 2

Figure D.14 Receiver Anafog Outputs.

�'I.

�':::1.--,­
i:::.�-

1

D

c

B

A

4

D

3 2

.,, " "',. I ;··
T
e- .,-"="'=J ·-·, = '"""'

r-·�· .. � �

D

c

,� ·-· · r�m c �-, ,,,,___! '"-;" f:
··,;n =···

�- �- ri5''" �-
'·· " .

"""' ·--�"'
n

..

B -· 1 ,,, � � - .-, : � B I
-,, f"' - Q,, , �"· ,. I ·:,:··: r�- ,.l!ia!!i!sl -.

. I I ' ... "· Cr ...

:: f'� ...A.,i��

A

4 3 2

Figure D.15 Analog Inputs.

.-··� ...-,�

---·

A

" "

• u
'

,.

!" .!

D

!" l"
,,

g I ;;....
� 1,

8 ;: '
0 ::

'I I
,.

"
·•
1,

],,
'
•

•
..

� ,,
lw

1.llil

i ijl:,! �!

<> ,,
0 ••

< .,

B
,,
;'

()

�1::
0

••

. ,,

. .. "' ,, 0 ,:

I ;,

()

I" �
s.

.

!

,,

a,
,

-:': f;

,i!!
,! !;

I ,, I

68

"'

i"t

1j
i i: !
0

� •·
1
1

,. �
!ij

I" .I

" .,

l!
!;

fl
! I

"'

«:

,. ..

i!u
,m

' '. '

"

t.r.
1
r/r.1

'rru

':

l
l

APPENDIXE

BILL OF MATERIALS

Table E.1 contains the bill of materials for ERITHACUS. The reference designators cor­

respond to the part designators given in the schematics in Appendix D. Pricing is given as

approximate for unit quantities except for resistors and capacitors.

Table E.1: Bill of Materials.

RefDes Component Description Manufacturer Unit

Part Number Price

US, U6 1 M x 8 bit FLASH memory AMD $25.00
Am29F080-90SC

U4 72-pin SIMM socket AMP $2.50
822031-4

U62, U63 160-MHz rail-to-rail op-amp Analog Devices $3.00
AD8041AN

U60, U61 12-bit, 10-MSPS monolithic Analog Devices $25.00
A/D converter AD9220AR

U37, U38 125-MHz complete DDS Analog Devices $25.00
AD9850BRS

Rl03, Rl04, 1-kO Trimmer potentiometer Bourns $2.34
Rl71, R172, 3296W (1 kQ)
Rl73, Rl74
X3 125-MHz crystal oscillator Champion Technologies $35.00

Kl300C
11, 13 910-nH 5% Inductor (1008 Coil craft $1.00

SMD) 1008CS-911XJBC
12,14 680-nH 5% Inductor (1008 Coilcraft $1.00

SMD) 1008CS-681XJBC
P4 PCB-mount RJ-45 connector Corcom $3.23

RJ45-8L-B
U24 16-bit audio CODEC Crystal Semiconductor $35.00

CS4215-K1

69

Table E.l: (Continued)

RefDes Component Description Manufacturer Unit
Part Number Price

U46 Flash CPLD Cypress Semiconductor $20.00
CY7C373i-66AC

U32, U33, U51 1 Voltage feedback op-amp Harris $1.00
U52, U53, U54 CA2904M
U34, U35, U55, Current feedback op-amp Harris $5.00

U56, U57, U58 HFAl!OOIP
U30, U31, U47, 14-bit, 100-MSPS D/A Harris $35.00
U48, U49, U50 converter Hl5741BIB
U28, U29 8 k x 16 bit, 15-ns, 5-V IDT $40.00

dual-port SRAM IDT7025S15PF
U45 8 k x 8 bit, 25-ns) 3.3-V IDT $30.00

dual-port SRAM IDT70V05S25PF
U44 8 k x 16bit, 25-ns, 3.3-V IDT $45.00

dual-port SRAM IDT70V25S25PF
U3 Multichannel RS-232 Maxim $4.00

driver/receiver MAX232ACSE
U16, U26, U40, Microprocessor voltage monitor Maxim $1.00
U42 (2.93-V threshold) MAX811SEUS-T
Ul Microprocessor voltage monitor Maxim $1.00

(4.63-V threshold) MAXSllLEUS-T
U23 Audio op-amp Motorola $1.50

MC33078D
U13 Bus Transceiver Motorola $1.00

MC74HCT245ADW
U21, U36 Buffer Motorola $2.00

MC74HCT241ADW
U22, U59 Hex inverter Motorola $1.00

MC74HCT04AD
U2 33 MHz ethernet-enabled Motorola $75.00

QUICC processor MC68EN360FE33C
U12 Enhanced ethernet transceiver Motorola $20.00

MC68!60FB
Ul4, U15 32 k x 8 bit, 5-V, I5-ns SRAM Motorola $4.00

MCM6206BAEJ15
U!S, U19, U20 32 k x 8 bit, 3.3-V, 15-ns SRAM Motorola $5.00

MCM6306DJ15
U4 8 M x 36 bit, 70-ns DRAM Motorola $25.00

SIMM MCM36800-70
Ul 7, U27, U41, SO-MHz digital signal processor Motorola $50.00
U43 DSP56302PV80
U!O Coaxial transceiver interface National Semiconductor $5.00

DP8392CN

70

Table E.l: (Continued)

Refiles Component Description Manufacturer Unit

. Part Number Price

U64 +5 V to -5.0 V de-de converter Power Trends $16.00
PT5022N

U65 +5 V to -5.2 V de-de converter Power Trends $16.00
PT5026S

Dl Diode $1.00
1N916

DB, D9, DlO, Schottky diode Rectron $1.00
Dll FM5817
P5, P6, P7 3.5-mm PCB-mount stereo jack Switchcraft $1.13

35RAPC4BHN2

Ull Isolated ethernet DC /DC Valor $10.00
converter (5 V to 9 V) PM6125

U9 Ethernet A UI transformer Valor $3.00
LT6033

us Ethernet lOBASE-T filter Valor $5.00
module FL1012

U25 Field-programmable gate array Xilinx $190.00
XC4028XL-3HQ240C

U39 Field-programmable gate array Xilinx $65.00
XC4010XL-3PQ208C

U7 Field-programmable gate array Xilinx $80.00
XC4008E-4PQ208C

X2 50-MHz crystal oscillator $5.00
Xl 25-MHz crystal oscillator $1.00
Y3 24.576-MHz crystal $1.00
Yl 20-MHz crystal $1.00
Y2, Y4, Y5, Y6 16-MHz crystal $1.00
2 33-pF capacitor (1206 SMD) IMS $0.00
2 3.3-pF capacitor (1206 SMD) IMS $0.00
12 O.Ol-µF capacitor (1206 SMD) IMS $0.00
2 47-pF capacitor (1206 SMD) IMS $0.00
2 0.0022-µF capacitor (1206 SMD) IMS $0.00
1 3900-pF capacitor (1206 SMD) IMS $0.00
2 470-pF capacitor (1206 SMD) IMS $0.00
4 0.33-µF capacitor (1206 SMD) IMS $0.00
31 O.l-µF capacitor (1206 SMD) IMS $0.00
1 0.47-µF capacitor (1206 SMD) IMS $0.00
2 27-pF capacitor (1206 SMD) IMS $0.00
4 1800-pF capacitor (1206 SMD) IMS $0.00
2 8.2-pF capacitor (1206 SMD) IMS $0.00
12 22-pF capacitor (1206 SMD) IMS $0.00
1 400-pF capacitor (1206 SMD) IMS $0.00

71

Table E.1, (Continued)

RefDes Component Description Manufacturer Unit

Part Number Price

2 20-pF capacitor (1206 SMD) IMS $0.00
1 0.039-µF capacitor (1206 SMD) IMS $0.00
See note 1 0.01-µF capacitor (0805 SMD) $0.00
See note :.i 0.1-µF capacitor (0805 SMD) $0.00
See note 3 10-µF 16-V tantalum capacitor Kemet $0.60

(6032 SMD) T491Cl06K016AS
3 1-µF bipolar capacitor (1206 $0.00

SMD)
2 1-µF bipolar capacitor $0.00
6 100-µF 10-V tantalum capacitor Panasonic $4.25

ECS-F1AE107
1 1-kn resistor $0.00
2 15.8-fl resistor (1206 SMD) IMS $0.00
6 39-fl resistor (1206 SMD) IMS $0.00
4 40-fl resistor (1206 SMD) IMS $0.00
2 49.9-fl resistor (1206 SMD) IMS $0.00
12 50-D resistor (1206 SMD) IMS $0.00
6 60-fl resistor (1206 SMD) IMS $0.00
6 64-0 resistor (1206 SMD) IMS $0.00
3 100-fl resistor (1206 SMD) IMS $0.00
2 150-fl resistor (1206 SMD) IMS $0.00
4 200-fl resistor (1206 SMD) IMS $0.00
12 240-fl resistor (1206 SMD) IMS $0.00
1 300-fl resistor (1206 SMD) IMS $0.00
?? 330-fl resistor (1206 SMD) IMS $0.00
12 500-fl resistor (1206 SMD) IMS $0.00
7 604-fl resistor (1206 SMD) IMS $0.00
6 976-fl resistor (1206 SMD) IMS $0.00
8 1-kD resistor (1206 SMD) IMS $0.00
2 3.9-kfl resistor (1206 SMD) IMS $0.00

·��.�==.�======m•====·
C127, 0129, 0132, 0134, C135, 0127, Cl39, 0141, 0143, 0146, 0148, 0149, 0152, 0154, 0155, 0158, 0160,
0161, 0164, 0166, 0169, 0171, 0172, 0174, 0175, 0178, 0180, 0183, 0185, 0186, 0188, 0190, 0192, 0193,
0196, 0198, 0202, 0205, 0207, 0208, 0212, 0213, 0214, 0217, 0276, 0278, 0280, 0_282, 0284, 0286, 0288,
0290, 0296, 0298, 0300, 0302 0304, 0206 0312, 0314, 0316, 0318

2C94, C96, 098, ClOO, 0102, C105, 0103, Cl08, 0110, 0112, 0114, 0116, 0117, 0119, 0122, 0124, 0126,
0128, 0130, 0131, 0133, 0136, 0138, 0140, 0142, 0144, 0145, CI47, 0150, 0151, 0153, 0156, 0157, 0159,
0162, 0163, 0165, 0167, 0168, 0170, 0173, 0176, 0177, 0179, 0181, Cl82, Cl84, 0187, 0189, 0191, 0194,
0195, 0197, 0199, 0200, 0201, 0203, 0204, 0206, 0209, 0210, 0212, 0215, 0216, 0226, 0227, 0228, 0229,
0230, 0231, 0232, 0233, 0234, 0235, 0240, 0241, 0265, 0266, 0267, 0268, 0269, 0270, 0271, 0272, 0273,
0274, 0275, 0277, 0279, 0281, 0283, 0285, 0287, 0289, 0291, 0292, 0293, 0295, 0297, 0299, 0301, 0303,
0305 0307, 0308, 0309, 0310 0313, 0315, 0317, 0319, 0320, 0321, 0322, 0332, 0333, 0334

�=.=·==�=.=·=�===�===
C251, 0252, C255, C256, C259

72

Table E.l, (Continued)

RefDes Component Description Manufacturer Unit

Part Number Price

See note .. 4.7-k!1 resistor (1206 SMD) IMS $0.00

6 5-klt resistor {1206 SMD) IMS $0.00

See note O 10-klt resistor {1206 SMD) IMS $0.00

2 22.1-klt resistor (1206 SMD) IMS $0.00

2 39.2-klt resistor (1206 SMD) IMS $0.00

2 47.5-kQ resistor (1206 SMD) IMS $0.00

4 100-kQ resistor (1206 SMD) IMS $0.00

4 680-klt resistor (1206 SMD) IMS $0.00

Pl Female PCB-mount DB-9 $0.00

connector
P2 Male PCB-mount DB-9 $0.00

connector

P3, PS, P9, PCB-mount BNC connector $0.00

PlO, Pll, P12,

Pl3, Pl4, Pl5
L7, LS, L9, LIO, Ferrite bead $0.00
Lil, L12, L13,
L14
N/A Printed circuit board Paramount Circuits $600.00

N/A

4Rl, R2, R3, R4, RS, R6, R7, RS, R9, RIO, Rll, R12, Rl3, Rl4, R15, R16, R17, Rl8, R19, R20, R21, R22,
R23, R24, R25, R26, R27, R28, R29, R84, R85, Rl31, R132, Rl33, Rl70

-·--·-------��-.-�---·-=
R118, Rl19, R120, Rl21, Rl22, R124, Rl25, R126, Rl28, R129, Rl30

73

APPENDIX F

REVISION 1.0 ERRATA

Date: September 30, 1997

Refiles: Pl, P2

Device: 9-pin DIN connectors for RS-232 interface to 68360.

Error: Footprint placed in incorrect orientation.

Fix: Will have to jumper wires to that connector when it is used. No part can be mounted

in the current configuration.

Date: October 8, 1997

Refiles: U4

Device: 72-pin DRAM SIMM socket.

Error: Footprint mounting holes are incorrectly placed.

Fix: Must modify DRAM SIMM socket to accomodate the board. Simply remove one of the

plastic alignment pegs so that it fits. The part can still be used with this modification.

Date: October 12, 1997

Refiles: Ul

Device: MAX811 microprocessor voltage monitor.

Error: Device causes timing problems when in development mode.

Fix: This device causes problems when the board is in development mode (debugging

through background debugger). Therefore, it is best to remove the part. When the

part is not on the board, short pins 2 and 3.

74

Date: February 121 1998

RefDes, N/A

Device: AD9220 VREF decoupling capacitor.

Error: Device is missing from schematic.

Fix: A 0.1-µ.F decoupling capacitor must be added to the board between VREF and

AGND2. The best place for this capacitor is on the bottom side of the board right

next to the via closest to VREF. A small amount of the solder mask can be scraped

off with a knife to provide a connection to AGND2.

Date: April 24, 1998

ReIDes: U601 U61

Device: AD9220 input range.

Error: Design change from+/- 2.5 V input range to+/- 1 V.

Fix: Disconnect SENSE (pin 17) from GND and reconnect to VREF (pin 18}. The change

is easiest done by desoldering the SENSE pin and pulling the pin off the surface. Then

connect (using fine wire) to VREF.

Date: April 24, 1998

RefDes, Rl 77, R184

Device: AD9220 VREF pullup resistor.

Error: Value change from 1 kn to 7.5 kn.

Fix: Value change may help offset error. Preliminary tests show that it does not.

75

REFERENCES

[1] B. V. Herzen, "Signal processing at 250 MHz using high-performance FPGA's,'1 IEEE
Transactions on Very Large Scale Integration (VLSI} Systems, vol. 61 pp. 238-246, June
1998.

[2] A. Tsutsui, T. Miyazaki, K. Yamada, and N. Ohta, "Special purpose FPGA for
high�speed digital telecommunication systems," in Proceesings of the IEEE International
Conference on Computer Design: VLSI in Computers and Processing, 1995, pp. 486-491.

[3] S. Hauck, ''The roles of FPGA's in reprogrammable systems," Proceedings of the IEEE,
voL 86, pp. 615-638, Apr. 1998.

[4] J. McCloskey, "Application of VHDL to software radio technology/' in Proceedings of the
1998 International Verilog HDL Conference and VHDL International Users Forum, 1998,
pp. 90-95.

[5] M. Vaupel, T. Gr6tker, and H. Meyr, ''ComBox: Library-based generation ofVHDL
modules,11 in Workshop on VLSI Signal Processing, IX, 1996, pp. 293-302.

[6] M. DOrfel and R. Hofmann, "A prototyping system for high performance communication
systems," in Proceedings of the Ninth International Workshop on Rapid Systems
Prototyping, 1998, pp. 84-85.

[7] C. Deltoso, C. Joanblanq
1
M. Cand, and P. Senn, ''Fast prototyping based on generic and

synthesizable V HDL models a case study: Punctured Viterbi decoders,1' in Proceedings of
the Seventh International Workshop on Rapid Systems Prototyping, 1996, pp. 158-163.

[8] E. P. Mariatos, M. K. Bir bas, and A. N. Bir bas, "A reconfigurable DSP board based on
CORDIC elements/' in Proceedings of the Fifth International Workshop on Rapid
Systems Prototyping: Shortening the Path from Specifkation to Prototype, 1994,
pp. 22-25.

[9] S. Swanchara, S. Harper, and P. Athanas, "A stream-based configurable computing radio
testbed," in Proceedings of the IEEE Symposium on FPGAs for Custom Computing
Machines, 1998, pp. 40-47.

[10] B. Kamali, "Development of an undergraduate structured laboratory to support classical
and new base technology experiments in communications," IEEE '.llransactions on
Education, vol 2, pp. 97-100, Feb. 1994.

[11] B. Overstreet and J. Austen, "A DSP based laboratory system for exploring digital
communication concepts," in IEEE Proceedings of Southeastcom '95: Visualize the
Future, 1995, pp. 278-281.

[12] J. 0. Hamblen, H. L. Owen, S. Yalamanchili1 and B. Dao, 1'An undergraduate computer
engineering rapid systems prototyping design laboratory," IEEE Transactions on
Education, vol. 42, pp. 8-14, Feb. 1999.

76

--- --

[13] Electrical and Computer Engineering Department, University of Illinois at
Urbana-Champaign, "Microcomputer laboratory,11

http://www.ece.uiuc.edu/ece311/index.html, 1999.

[14] Xilinx, Inc., The Programmable Logic Databook, 1996.

[15] Xilinx, Inc., CORE Solutions Databook, 1998.

(16] P. J. Ashenden, The Designer's Guide to VHDL. San Francisco: Morgan Kaufmann
Publishers, Inc., 1996.

[17] OAR Co'Jl., RTEMS C User's Guide, 1999.

[18] J. G. Proakis and M. Salehi, Communications Systems Engineering. Englewood Cliffs:
Prentice-Hall, Inc., 1994.

[19] Analog Devices, Inc., Complete 12-Bit 1.5/3.0/10.0 MBPS Monolithic A/D Converters,
1999.

[20] J.P. Costas, "Means for Obtaining Character Time in a Radio Communication System
Receiver," U.S. Patent 3,047,660, 1962.

[21] E. A. Lee and D. G. Messerschmitt, Digital Communication. Boston: Kluwer Academic
Publishers, 1988.

[22] M. S. Palac, "A first generation test bed for the analysis of joint source-channel cocling
algorithms, with a discussion of their application to the broadcast scenario," M.S. thesis,
University of Illinois at Urbana-Champaign, 1998.

[23] Analog Devices, Inc., AD9850 Datasheet, 1997.

[24] K. K. Parhi and D. G. Messerschmitt, "Pipeline interleaving and parallelism in recursive
digital filters - parts I, II," IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 37, pp. 1099-1134, July 1989.

[25] N. R. Shanbhag, "Algorithm transformation techniques for low-power wireless VLSI
systems design," International Journal of Wireless Information Networks, pp. 23-40,
1998.

[26] Motorola, Inc., Motorola DSP 56300 Family Manual, 1997.

[27] J. Janovetz
1

"Erithacus digital communications system,"
http://www.uiuc.edu/ph/www /janovetz/ erithacus.html, 1999.

77

