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1. INTRODUCTION

"The environment as we, perceive it is our invention." 

-H. von Foerster, Observing Systems (1981)

Everything that we perceive must, at some point, have been translated into electrochemical 

impulses for our nervous system. Surpri&ingly, these impulses contain no data revealing their 

type or origin. As H. von Foerster [1] states in his "Principle of Undifferentiated Encoding": 

The response of a nerve cell does not encode the physical nature of the agents 
that caused its response. Encoded is only "how much" at this point on my 
body, but not "what." 

This principle has some interesting repercussions. One is that our nervous system has no way 

of discerning between signals originating from "out in the real world'' and signals originating 

internally. Another is that the "what" von Foerster refers to, the mapping from 

electrochemical impulses to physical things, is something that each of us has invented during 

our development. These points suggest that reality is not a well-defined and tangible thing. 

They also suggest that it may be possible to present stimuli, not corresponding to physical 

things in the "real world," which would cause a person to perceive an alternate environment 

which is just as real as any other. 

Virtual reality, as it is commonly called, involves intercepting a user's stimuli from the "real 

world" and replacing them with believable computer-synthesized stimuli. The "believable" 

part is related more to interactivity than to realism. For example, we could sit a person in 

front of a large projection screen and show him a videotape of a beautiful valley with a 

running stream nearby. Th.is visually realistic scene might fool our subject until he decides to 

look up at the sky and only sees the ceiling, or becomes thirsty and bumps into the screen as 

he attempts to walk over to the stream for a drink. If he had some way of doing such tasks, 
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maybe he would not mind the grass appearing like indoor carpeting and the trees not casting 

shadows (two common signs of a limited graphics system), 

Virtual reality (VR) systems often attempt to stimulate a user through the senses of sight and 

hearing, but only because computers have evolved to stimulate these two senses more than 

the others. It is possible for a VR system to work without video and sound1 just as it is 

possible for a blind and deaf person to experience reality. The only thing necessary is for the 

user to develop a mapping from the impulses received by her nervous system to the things in 

her (virtual) environment. An excellent example of a limited VR is a text-based virtual 

community, many of which exist on the Internet. Users interact with an environment, which 

includes other people, using only a keyboard and a text terminal. Just as we can read a good 

book and feel as if we were "there," descriptions in a text-based virtual environment serve to 

replace our senses of sight, hearing, touch, etc. Our nervous system has the incredible ability 

to fill in the missing electrochemical impulses internally (that is, we imagine). The text

based VR experience is much more "real" than simply reading a book because the user can 

interact with her environment. 

Some applications require a more sophisticated VR system. Because humans have evolved 

an exceptional spatial ability, we often need a "hands-on" interactivity in order to accomplish 

tasks. An exciting future application of virtual reality will be to design machines at the 

atomic scale. Advancements in the field of molecular nanotechnology will soon allow us to 

manipulate matter to the extent of combining individual atoms to form mechanical devices 

[2]. Atoms have many characteristics such as size, weight, attraction and repulsion, and 

.. slipperiness," which will make building such devices using current computer-aided design 

methods nonintuitive. Virtual reality will be �he only means to shrink ourselves to the atomic 

level and slow down time so that we can build nanoscale systems as ifwe were playing with 

Tinker-Toys. 

This thesis describes the design and implementation of a virtual reality system, hereby 

referred to as "the VRS." In capability, the VRS falls somewhere between a text-based VR 
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system and the full-fledged system that would be required for our atom-assembling 

application. It generates images and sounds which are tightly linked to the actions of the 

user, providing him with the ability to explore and interact with a spatial environment. The 

VRS is a working project which, to date, has successfully introduced hundreds of people to 

the concept virtual reality. 

The following chapter presents an overview of the VRS, describing the system from both an 

engineer's and a user's point of view. Chapters 3-7 give detailed presentations of the various 

hardware and software components of the VRS: the graphics system, the head tracking 

system, the sound spatialization system, and the head-mounted display. Chapter 8 makes 

some suggestions for future work. The appendices provide technical documentation of the 

system's hardware and software, including schematic diagrams and program listings. 
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2. SYSTEM OVERVIEW

The VRS is a complex system consisting of a number of hardware and software components. 

These components interact with each other and the user to provide the user with a virtual 

environment of sight and sound. 

The VRS is based around a desktop personal computer, which is considered to be the host of 

the system. A number of expansion cards, which plug into the bus of the host, have been 

designed specifically for this project. Most of the expansion cards contain their own 

processor and memory so that they may perform tasks without requiring assistance from the 

host's central processing unit (CPU). Another advantage to having a processor on each 

expansion card is that the processors can work in parallel. In all, there are five processors in 

the YRS. 

The main functions of the host machine in the operation of the VRS are to provide: 

• a communication link between the other components of the VRS

• an interface to basic input devices (that is, keyboard and joystick)

• a means of file access

For readers who have not had the opportunity to see and use the VRS, this chapter provides a 

description of the physical components and operation of the VRS. 

2.1. Physical Components 

The physical components of the VRS are shown in Figure 2.1. The host machine is an Intel 

80486-based personal computer running an MS-DOS operating system. There are four 

expansion cards in the host machine that were designed for the VRS. One card is the G-Node 

graphics synthesizer card, which outputs images to the head-mounted display (HMD). Two 
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identical V-Node video digitizer cards process video inputs from black-and-white cameras. 

The cameras view the head movements of the user. The final expansion card interfaces the 

host computer to an external digital signal processor (DSP) board. The DSP board performs 

sound spatia1ization processing on a sound source, such as a compact disc player, and drives 

four audio speakers. An analog joystick, connected to the host computer, provides another 

input from the user. 

V-Node video 
digitizer cards 

Desktop personal 
computer 

Head-mounted 
display 

•• 

���Di __ IDSPevaluationl 
board 

Interface card to DSP 
evaluation board 

Figure 2.1. Physical components of the VRS. 

2.2. Operation 

The user sits on a stool facing a workbench on which the YRS resides. A steel frame 

attached to the bench supports two video cameras. One camera is above the user, pointing 

towards the floor. The other is to the user's right, pointing towards the left. The user must 

position herself so that her head is in the center of both camera views. A video monitor on 

the bench can display the output of either camera, and is used to check the alignment of the 
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user. Before beginning, the user puts her favorite compact disc into a player that is mounted 

in a rack on the bench. 

The user now places the HMO on her head and adjusts the headband for a secure fit. 

Looking ahead, she sees a colorful landscape filled with animated objects. She looks around 

by moving her head left, right, down, and up. Noticing a pinwheel twirling in the sky, she 

takes hold of the joystick in front of her and begins to maneuver herself towards the spinning 

object. Pushing forward on the joystick allows her to move ahead. The more she pushes, the 

faster she moves. Pushing the joystick to the left or right causes her to pivot. Once directly 

under the pinwheel, the user looks up at it. After a few seconds she begins to feel dizzy. 

At this point, the user hears a familiar song that seems to be emanating from a distance off to 

her left. Looking in that direction, she sees a blue musical note that appears to be bouncing 

up and down. As she moves towards the note, the music grows in intensity. The user rushes 

past the note, which at close range she finds to be many times taller than herself. She 

continues onward to do more exploring, as the music decays off in the distance behind her. 
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3. GRAPHICS SYSTEM

A key quality of a virtual reality system is the ability of its graphics system to respond 

quickly to inputs from the user. This chapter looks at the three tightly linked elements of the 

VRS that affect the graphics performance. The first element is the G-Node graphics 

synthesizer card, designed specifically for the VRS. The second element is the method in 

which the virtual world is visually represented, in this case by sphere-based graphics. The 

final element is the graphics pipeline implementation which determines how a database of 

objects is translated into a visual scene. 

3.1. G-Node Graphics Synthesizer Card 

The G-Node graphics synthesizer card was designed in order to significantly improve the 

graphics performance of a desktop computer. Although it plugs into an IBM-AT compatible 

machine as an expansion card, the G-Node can be thought of as a stand-alone graphics 

computer. For example, one can write a program in C that displays a 3-D object rotating in 

space, compile it, and transfer it to the G-Node's on-board processor. The G-Node runs the 

program, and the rotating object appears on a display screen connected to the card. At this 

point, the host computer is free to run other programs since the graphics program is running 

independently on the G-Node. 

The G-Node design is based around a Texas Instruments TMS34020 graphics system 

processor (GSP), which is a 32-bit microprocessor optimized for use in graphic display 

systems. In addition to a general-purpose processing unit, the GSP has an on-board graphics 

controller and hardware support for graphical data types such as pixels and 2-D pixel arrays. 

As shown in Figure 3.1, there are four major devices connected to the GSP: 

• video random access memory (VRAMJ, for storing the display screen, program
code and data
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• a random access memory-digital to analog converter (RAM-DAC), which
converts a digital pixel stream into an analog red-green-blue (RGB) signal

• the host CPU, via the Industry Standard Architecture (ISA) bus

• a floating-point coprocessor

The memory on the G-Node consists of one niegabyte of VRAM organized as 256K x 32-

bits. AVRAM chip has two access ports to its memory cells. One is a standard dynamic 

RAM (DRAM) port and the other is a serial access memory (SAM) port which is used for 

transferring-pixels to the display screen. The GSP manipulates pixels in the display buffer 

through the DRAM port. In addition, the GSP's video controller uses the DRAM port to 

send commands that transfer one or more lines of the display buffer to the SAM port. 

Floating-Point VAAM <>Be> RGB 
Coprocessor 

256K x 32 Video 
TMS34082 Out 

t t t 

GSP 

TMS34020 

! 
( JSA Bus ) 

Figure 3,1, G-Node block diagram. 

VRAM is normally used to store display buffers exclusively, but in the G-Node design it is 

also used to store program code and data. The result is that the available code and data space 

are dependent on the number of display buffers and the display screen resolution. When 

configured for double-buffered, 640 x 480 output, the G-Node has 64K of available RAM. 
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For double-buffered, 160 x 240 output (used to drive the HMD), the G-Node has 904K of 

RAM available. 

The GSP has a host port that allows another processor to access its local bus. In the G-Node 

design, the GSP's host port is connected to the ISA bus. This allows the main CPU of the 

VRS to read and write to the RAM on the G-Node. Such accesses are transparent to the 

program running on the GSP. When the VRS system is being initialized, the host port is used 

to transfer the GSP's code into the on-board RAM. Duiing normal operation of the VRS, the 

host port is used as a means of communication between the programs running on the GSP 

and the host CPU. This is accomplished by setting aside a portion of the GSP's RAM as a 

communication buffer. The host CPU loads data into the buffer and then sets a flag which 

lets the GSP's program know that the buffer holds valid data. Since host accesses are 

transparent to the GSP, it is free to petform other tasks while the buffer is being filled by the 

host. Once the GSP finishes operating on the data, it clears the flag and the process is 

repeated. 

Also connected to the GSP is a Texas Instruments TMS34082 graphics floating-point 

coprocessor, which can quickly perfonn floating-point operations for the GSP. In addition, 

the TMS34082 has its own instruction sequencer. Built-in read-only memory contains 

routines to perform calculations that are critical to a 3-D graphics pipeline such as vector 

operations and window clipping. The coprocessor also has the ability to run custom routines 

from external RAM, but this feature is not supported in the G-Node design. 

Although the GSP can support-color resolutions of 1, 2, 4, 8, 16, or 32 bits per pixel, the G

Node design is fixed in hardware at 8 bits per pixel. Eight bits per pixel provides 256 

simultaneous colors from a 16.8 million-color palette (the RAM-DAC has triple 8-bit video 

digital to analog converters, yielding 224 possible colors). This seems to be an adequate 

number of simultaneous colors for a system that uses constant shaded (that is, single color) 

graphics primitives, as the VRS does. Supporting only one color resolution eliminates the 

need for pixel multiplexing hardware between the VRAM SAM ports and the RAMDAC. 
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The choice of color resolution obviously affects the amount of frame buffer memory 

required, but it also affects the speed at which the GSP can write pixels to memory. Since the 

GSP's data bus is 32 bits wide, it can access four 8-bit pixels simultaneously. The GSP' s 

page mode access to VRAM runs at a speed of 8 MHz, so the resulting pixel bandwidth in 

the G=Node design peaks at 32 million pixels per second. 

3.2. Sphere-based Graphics 

There are a number of ways to represent three-dimensional solid objects on a graphics 

display. When rendering speed is critical, a common method is to approximate the shape of 

an object using polygon faces [3]. An arbitrary three-dimensional polygon in space will 

always project onto the viewing plane as a two-dimensional polygon. Such 2-D polygons can 

be easily rendered on the display screen. 

Polygon representations work well for boxy shapes but are not well suited for shapes with 

curved surfaces. To accurately approximate a sphere, for example, many polygon faces are 

required (Figure 3.2). For each polygon face that is sent through the graphics pipeline, a 

matrix transformation must be applied to each of its vertices. The result is poor real-time 

performance in rendering rounded objects. Smooth polygon shading methods, such as 

Gouraud shading, have been designed to reduce the number of faces needed to approximate 

curved surfaces. Unfortunately, such techniques significantly increase the time it takes to 

draw a polygon. (Smooth-shading prohibits the use of VRAM block pixel-writes.) 

The desire to produce computer animation with a limited system can often result in creative 

solutions. One such example is work done by a group of Dutch programmers to produce 

impressive real-time graphics from limited Intel 80286/386-based personal computers. (The 

program is called VectorDemo, by UltraForce Development, 1991.) Such machines have a 

very low processor-to-display bandwidth and slow (if any) floating-point computational 

hardware. One technique, employed by the VectorDemo program to overcome these 

limitations, is to represent 3-D solid objects with spheres. An arbitrary sphere in space will 
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always project onto the viewing plane as a two-dimensional circle. The result is that 

rounded, three-dimensional shapes can be rendered entirely by drawing circles (see Figure 

3 .. 3). I call this type of representation sphere-based graphics. 

Figure 3.2. A polygon-based sphere. 

Figure 3.3. A "cootie bug" rendered with sphere-based graphics. 
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Sphere-based graphics have a number of advantages over polygon representations. The first 

is that only one point per sphere, the center point, has to pass through the graphics pipeline. 

(Recall that, for polygons, each vertex has to be transformed.) A small calculation is also 

necessary to determine the radius of the circle projected onto the viewing plane: 

where rsphere is the actual radius of the sphere, dis the distance between the viewer and the 

sphere, and/is the focal length (that is, the distance between the viewer and the view plane). 

Sphere-based rendering takes place one sphere at a time. To make the spheres overlap 

properly, they are drawn in order from farthest (relative to the viewer) to nearest. For each 

sphere, a two-dimensional circle is drawn which corresponds to the sphere's color and 

projected diameter. In addition, a smaller white circle is drawn to simulate a highlight spot. 

The highlight has the effect of making the spheres look more three-dimensional. (The 

VectorDemo program used prestored images of ray-traced spheres for a higher degree of 

realism.) The highlight spots also produce an "automatic'' lighting effect at the object level. 

When an object is oriented so that the highlight spot of each of its spheres is visible, the 

object appears to be facing the light source (Figure 3.4(a)). When the spheres are positioned 

so that most of the highlights are occluded, the object appears to be facing away from the 

light source (Figure 3.4(b)). 

In the VRS graphics pipeline, the highlight spots are always drawn in the upper-left comer of 

each sphere. This models a light source which is infinitely far away (that is, it casts parallel 

rays of light) and is in a fixed position with respect to the viewer (for example, the light" 

always comes from over the viewer's left shoulder). 
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Light direction 

Figure 3.4. Automatic lighting effect of sphere-based graphics. An 
object facing the light (a) and another not facing the light (b) are 
shown. 

There are some limitations to sphere-based graphics. Just as polygon-based graphics are not 

well suited for representing curved surfaces, sphere-based graphics are not well suited for 

representing flat surfaces. For example, a wall could be accurately represented with only six 

polygons (Figure 3.S(a)), but many spheres would be required to make a bumpy 

approximation of a wall (Figure 3.5(b)). This suggests the creation of a graphics system that 

could generate both sphere-based and polygon-based representations, using each where 

appropriate. 

Another limitation of sphere-based graphics becomes apparent in the case of intersecting 

spheres. When two spheres intersect, the resulting shape,is obviously not a sphere. 

Therefore, the projection of such a shape onto the viewing plane cannot be rendered using 

circles. As an example, Figure 3.6(a) shows the correct rendering of two intersecting spheres. 

By rendering the spheres one at a time, only the renderings in Figure 3.6(b) and Figure 3.6(c) 

are attainable. Furthermore, an object may change quickly between these two incorrect 

renderings as the distance between the viewer and each sphere changes. This causes a 

noticeable "popping" effect. 
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Figure 3.5. Flat surfaces: polygon (a) vs. sphere (b) representations. 

Figure 3.6. The intersecting-spheres problem. A correct rendering 
(a), two incorrect renderings (b) and (c), and a proposed solution (d) 
and (e) are shown. 

Some methods can be employed to sidestep the intryrsecting-spheres problem. One method is 

to avoid intersecting spheres altogether when designing objects. This solution is rather 

prohibitive. (Imagine trying to build a model car out of marbles.) A more reasonable method 
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is to limit objects to having only slightly intersecting spheres. The frequency and degree of 

popping are proportional to the depth of the intersection. This solution would minimize 

popping while providing more flexibility in object design. Still another solution requires two 

changes: (I) design objects such that intersecting spheres are the same color, and (2) remove 

any border from the rendered circles. The result is shown in Figure 3.6(d). Note that the 

highlight spots can foil this method, as shown in Figure 3.6(e). 

3.3. Graphics Pipeline 

A graphics pipeline defines the sequence of operations necessary to convert a database of 

objects into a graphics image. Each visual frame generated by the system requires a single 

pass through the pipeline. In the VRS, the workload of the graphics pipeline is divided 

between the host CPU and the G-Node board's processor. An important decision to be made 

is where to split the pipeline between the two processors. It is desirable to balance the 

workload so that neither processor has to wait for the other to finish its share of the work. 

Another factor that must be considered is the amount of data flowing through the pipeline at 

the point where it is split. This directly affects the amount of time that the processors must 

spend transferring data. 

The stages of a graphics pipeline are dependent on both the graphics hardware and the 

method of object representation. For example, the G-Node board does not have hardware 

depth-buffering, so a depth-sorting stage is necessary in the VRS graphics pipeline. Another 

example is that, since sphere-based graphics have an "automatic lighting" attribute, a lighting 

stage is not needed. A block diagram of the VRS graphics pipeline is shown in Figure 3.7. 

The VRS graphics pipeline is divided into eleven stages. The first eight stages are performed 

by the host CPU and the final three stages by the processor on the G-N ode board. In the first 

stage, the host samples the user's input devices, consisting of the joystick, the two V-Node 

boards, and the keyboard. The joystick detennines· the movement of the user's view 

reference point, and the V-Node boards provide the user's view direction. Together these 
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data are used to calculate the view vector in the second stage of the pipeline. The third 

pipeline stage uses the view vector to form a viewing transformation matrix. This matrix is 

used to transform three-dimensional points from world coordinates into viewing coordinates, 
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Figure 3.7. The VRS graphics pipeline. 

Up to this point, the data passing through each pipeline stage have been a fixed size. This 

means that the time spent in the first three stages will be relatively constant. In contrast, the 

amount of data flowing through the remaining eight stages may vary, affecting the time 

needed to complete each stage. For example, the amount of data (in this case spheres) 

traveling through the sorting and rendering stages is dependent on how many spheres are 

currently in the user's view. 

Stage four is responsible for updating the objects in the virtual world. An object consists of 

one or more spheres. Attributes that may be updated include position, size, and color. 

Although the G-Node board is better suited than the host CPU for handling pipeline stages 

five through eight, these stages stiII reside on the host CPU in the current implementation. In 

stage five, the center point of each sphere in the world is transformed from world to viewing 
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coordinates using the viewing transformation matrix. In stage six, all spheres whose center 

points are outside the bounds of the near and far planes are removed from the pipeline. Stage 

seven involves a perspective scaling of the center points. In stage eight, the projected radius 

of each sphere is calculated using the equation presented in Section 3.2. 

After completing stage eight, the host CPU transfers the resulting data to the G-Node card, 

which will use the data in the final three stages of the graphics pipeline. The data consist of a 

list of spheres. Each sphere is defined by an x-y-z position, a diameter, and a color. At this 

point in the pipeline, the x, y, and diameter values are in screen coordinates. All values are 

transferred as 16-bit integers. Note that the host CPU and G-Node card operate on their 

respective parts of the graphics pipeline in parallel. After the host CPU completes its final 

stage and transfers the sphere data to the G-Node, the host CPU can immediately return to the 

beginning of the pipeline to work on the next visual frame. 

In stage nine, the G-Node's processor removes spheres from the pipeline that are completely 

outside the bounds of the screen. (Spheres that are partially clipped by the screen's borders 

will be handled in hardware by the TMS34020 chip.) In stage ten, the spheres are sorted by 

the z-coordinate of their center point. Finally, in stage eleven, the G-Node card renders the 

spheres to the display buffer. This rendering includes drawing the highlight spot on each 

sphere. The spheres are drawn, in order, from farthest to nearest. 
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4. HEAD TRACKING SYSTEM

An important attribute of a virtual reality system is the existence of input devices that are 

natural to the user. When first born, humans do not stimulate their environment through 

keyboards and joysticks. Instead, we use our voice and body motions. This suggests that a 

computer with sound and sight inputs will be easier for us to use. A limited form of "sight," 

often used in virtual reality, is achieved when the computer can determine the position and 

orientation of the user's body. This method of input is known as body tracking. 

Body tracking is currently one of the most difficult problems in the implementation of virtual 

reality. Typical simplifications of this problem are achieved by tracking only a few key parts 

of the body, and by tracking with less than the full six degrees of freedom (x-y-z position and 

roll-pitch-yaw orientation). 

The VRS incorporates a head tracking system that determines the pitch-yaw orientation of the 

user's head. This vital data allows the VRS to respond to the user's action of "loolcing 

around." The roll orientation, which corresponds to the tilting of the head right or left, is not 

tracked by the system. This omission is not very noticeable since we normally keep our eyes 

level with the horizon (assuming that the environment has a horizon). 

The VRS tracking is accomplished by attaching light emitting diodes (LEDs) to the user 

which are sensed by video cameras. The remainder of this chapter examines the V-Node 

video digitizer card, designed specifically for the VRS, and the details of the LED tracking 

method employed. 

4.1. V-Node Video Digitizer Card 

The V-Node video digitizer is an expansion card designed for the ISA bus. Independent of 

the host CPU, the V-Node can capture images from a video camera and perform image 
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processing using its on-board graphics processor. This allows live video to be used as a form 

of input that places very little load on the host CPU, similar to a keyboard or a mouse. 

Looking at Figure 4.1, it is apparent that the V-Node design is similar to that of the G-Node 

at the block level. With respect to the flow of data, the V-Node is identical to the G-Node, 

except that the V-Node is running in reverse. Recall the function of the G-Node card. It 

processes a small amount of data (such as sphere geometries) into a large amount of data 

(many thousands of pixels) which are stored in VRAM. Once an entire image is generated, 

the pixels are transferred out of the VRAM through the SAM port and converted to analog 

video. In the complementary V-Node design, analog video is converted into digital pixels, 

which are then transferred into VRAM by way of the SAM port. Once an entire image is 

captured, the V-Node processes this large amount of pixel data to extract a small amount of 

visual data. 

DRAM 
256K x 16 

t 

( 

VRAM 
256K x 16 

! 
GSP 

TMS34010 

! 
ISA Bus 

Video AID 

Converter 

t 

l 

Figure 4.1. V-Node block diagram. 

NTSC r

Video 

Like the G-Nod.e design, the V�Node is based around a GSP: in this case the Texas 

Instruments TMS34010 processor. The TMS34010 is the predecessor to the TMS34020, 

having a sixteen-bit data path to memory (versus the TMS34020's thirty-two bit path), a 
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slower operating speed, and a less powerful instruction set. The GSP is connected to 512K 

bytes of DRAM which store programs and data, and 512K bytes of VRAM which store 

captured images. The video AID converter used in the design can sample at eight bits per 

pixel and includes a genlock and a pixel lookup table. The genlock circuit extracts the 

synchronization signals, which are required for coordinating the SAM port transfers, from the 

video source. The programmable pixel lookup table is useful for tasks such as on-the-fly 

image thresholding. 

The V-Node card has the ability to digitize a 512 x 512 pixel, 8-bit grayscale image in I/30th 

of a second (only 256 x 256 pixel images are used for the VRS head tracking). The image 

capture occurs in the background of the GSP's program execution, so the. program running on 

the GSP could be processing one image while the next image is being digitized. 

4.2. LED Tracking 

Judging by the amount of research that is conducted in the area every year, computer vision is 

a very difficult problem. The head tracking ·subsystem of the VRS required a practical 

implementation of computer vision that was within the limits of the V -Node's image 

processing capability. Since the user must already wear an HMD to use the system, it makes 

sense to attach visual indicators to simplify the computer vision task. LEDs were used as 

visual indicators with the idea that it would be relatively easy to track a small point of light 

within an image. 

Although it is possible to extract three-dimensional position data from a single camera view 

[4], the calculations involved could not be executed by the V-Node's GSP in real time. 

Instead, the head tracking subsystem employs a simpler two-camera setup, as shown in 

Figure 4.2. One camera is positioned directly above the user, and a second camera is 

positioned at the user's side. Two LEDs are attached to the top of the HMD. The LEDs are 

positioned so that the imaginary line between them points in the direction that the user is 
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looking. Both cameras are in the plane of the user's torso and are oriented orthogonally in 

space. 
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Figure 4.2. Two-camera LED tracking. 

The top camera provides a view of the x-z plane, while the side camera shows the y-z plane. 

Once the positions of both LEDs within each camera's view are determined, the data can be 

combined !O form a three-dimensional ray which indicates the user's direction of view. 

Two V-Node cards, one for each camera, are used in the head tracking subsystem. Their task 

is to digitize an image and determine the position of each LED in as short a time as possible. 

To simplify this task, a number of assumptions are made. The first assumption is that the red 

LEDs that appear in the image will have a greater light intensity than the rest of the scene. 

To help make this assumption valid, red gel filters are placed over the camera lenses. The 

gels have the effect of allowing red light to pass while attenuating light at other wavelengths. 

With the assumption that the LEDs will be the brightest objects in the camera's view, they 

can be located by a simple thresholding of the digitized image. This thresholding is 

performed ''on the fly" by the video AID converter. As each pixel is digitized, its value is 
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looked up in a RAM conversion table that resides on the AID chip. The RAM table must be 

programmed according to the desired threshold intensity. As an example, if we wanted to 

threshold at a value of 128 (zero corresponds to black and 255 to bright white), we would fill 

locations 0-127 of the table with O's and locations 128-255 with 1 's. The result will be a 

monochrome image, with pixels below the threshold set "off' and pixels equal to or above 

the threshold set "on." 

The tracking is accomplished by scanning the thresholded image, columnwise, from left to 

right. The first pixel that is on is assumed to indicate the position of LED 1. Next the image 

is again scanned columnwise, but from right to left. The first pixel that is on is assumed to be 

LED2. The assumption here is that LEDl will always be to the left of LED2. Consider the 

home position to be the case when, in both camera's view, LEDl is to the left ofLED2, and 

the LEDs are horizontal. This home position corresponds to the user looking straight ahead. 

Given the constraint that LEDi must stay to the left of LED2 in both images, ideally this 

gives the user± 90° of yaw and± 90° of pitch movement relative to the home position. 

The tracking method described in the previous paragraph requires a large number of pixel 

comparisons. Since images are digitized at a resolution of 256 x 256 pixels, up to 65,536 

comparisons may have to be performed by the V-Node's GSP. To improve the response time 

of the image processing, a second tracking method is employed which requires fewer pixel 

comparisons. Instead of scanning the- entire image for an LED, only a small region is scanned 

around the position where the LED was last spotted. The assumption is that an LED will not 

move very far from one frame to the next. A 40 x 40 pixel region is scanned around each 

LED, resulting in a maximum of 3200 comparisons. If an LED is not within its region, the 

system reverts to the full-screen scanning method to locate it. 

The VRS head tracking subsystem has a throughput of fifteen updates per second. 
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5. SOUND SPATIALIZATION SYSTEM

Together the graphics system, the bead-tracking system, and the user form a feedback system. 

Visual images respond to input from the user who may, in return, respond to the visual 

images. By adding to this system a second stimulus for the user, we can strengthen the user's 

perception of the virtual environment. Since sound can be manipulated by computer without 

much difficulty, it is a practical choice for a second stimulus. A system that can simulate a 

sound emanating from an arbitrary point in Space is called a sound spatialization system. 

This chapter describes a means of sound spatialization using intensity and provides a 

description of the audio hardware used to implement it. 

5.1. Spatia/ization Using Intensity 

There are a number of cues that allow us to determine the direction and distance of a sound. 

One of the most prominent distance cues is intensity. We are able to judge the distance of a 

familiar sound, such as a car horn, by how loud it is. Even in the case of an unfamiliar sound, 

we are still able to determine relative distances. 

Looking at Figure 5.1, we can make a sound emanate from point A by playing it through a 

loudspeaker at that position. Without moving the speaker, it is possible to make the same 

sound seem to originate from point Busing the intensity and distance relationship: 

I 
l=

d' 

So if point B were twice the distance from the listener as point A, we would have to play the 

sound with one-fourth the intensity. 

23 



d=2 
I= 114

B 
,e 

d=l 
1 = I A�speaker 

O listener 

Figure 5.1. Controlling perceived distance through intensity. 

Intensity is also a -directional cue. Looking at Figure 5.1 again, it is apparent that the right ear 

of the listener, which is "facing" the speaker, will sense a greater intensity than the left ear. 

Our ability to determine the direction of a sound is due in part to this interaural intensity 

difference. Given the two-speaker setup in Figure 5.2, we should be able to apply this 

principle to the problem of positioning a virtual sound at an arbitrary point between the 

speakers. The method is to play the same sound in both speakers and vary the gain of each to 

control the interaural intensity difference. For example, to create a virtual sound that 

originates from directly between the speakers (point C), we would set each speaker to an 

equal gain factor. To place a virtual sound closer to speaker 1 (point D), we would increase 

the gain of speaker 1 and decrease the gain of speaker 2. This is called intensity panning. 

The distance and direction intensity cues can be combined to position a virtual sound at any 

point in the horizontal plane of the listener. Moore (5] derives the following general purpose 

intensity-localization rule: 
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d" cos(e-e )
d 
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0 

if /e-e"/<90°

otherwise 

where G
n
C0,d) is the amplitude gain for channel n for a virtual sound source located at a 

distanced and an angle 0 from the listener, and e
n 

and d
n 

are the angle and distance between· 

the speaker n and the listener. This equation requires a minimum of four speakers, placed at 

90° intervals, to cover the full 360° around the listener. 

c. 

135
° 

45
° 

Figure 5.2. Controlling perceived direction through intensity. 

Using intensity panning alone for sound spatialization has its limitations. Such a system can 

only create a "weak" virtual sound between two speakers. Nevertheless, intensity panning is 

simple to implement an.ct provides a rough clue as to the position of a virtual sound (for 

example, it is easy to discern between a virtual sound coming from the left and one coming 

from the rear). 
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5.2. Audio Hardware 

The VRS audio hardware implements a four-speaker intensity panning system. It accepts up 

to four mono-audio sources. The system can process each audio source to produce a virtual 

sound channel. The audio hardware consists of an off-the-shelf DSP evaluation board made 

by Analog Devices (ADSP-21020 EZ-LAB™ Evaluation Board, hereby referred to as "the 

EVB"). The EVB includes a floating-point DSP; 32K-words of program memory and 32K

words of data memory; a 16-bit, stereo audio coder-decoder; and a two-channel, 8-bit, 

combined analog to digital and digital to analog converter. 

The host system is responsible for calculating the distance and direction of the virtual sound 

source in relation to the listener. This data must be conveyed to the DSP, which is running 

the sound spatialization program. Since each virtual sound bas to be updated only once per 

pass through the graphics pipeline, and since a virtual sound's position can be specified in 

only four bytes, a simple serial link would be well suited for communication between the host 

and the DSP. Unfortunately, the serial port of the EVB was not designed to be used while the 

DSP is running code. Therefore, it was necessary to design a custom interface card for the 

host system that connects to an expansion port of the EVB. 

The 21020 EVB interface card is an 8-bit ISA card that plugs into the bus of the host 

machine. A connector at the back of the card links it to the expansion port of the EVB. The 

interface hardware consists of lK-byte of dual-ported RAM. One side of the dual-ported 

RAM is mapped into the memory space of the host CPU, while the other·side is mapped into 

the memory space of the DSP on the EVB. Each processor can access the RAM 

independently, with the constraint that they do not access the same location simultaneously. 

In addition, there is a special memory location in the dual-ported RAM used for sending an 

interrupt from the host CPU to the DSP. 

For each virtual sound source, the host CPU places a two-dimensional vector in the dual

ported RAM. The vector specifies both the direction and distance of the virtual sound on the 
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listener's horizontal plane. After the host CPU has loaded aU the vectors, it sends an 

interrupt to the DSP. When the DSP receives the interrupt, it copies the vectors from the 

dual-ported RAM to its local memory.

The main loop of the sound localization code, which runs on the DSP, operates at a rate of 

44.1 kHz, and currently supports only one virtual sound source. The following tasks are 

performed once per loop: 

• Input a digital sample from the AID converter

• For each of the four channels, calculate gain based on the virtual sound vector

• For each channel, scale the input sample by the calculated gain

• For each channel, output the scaled sample
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6. HEAD-MOUNTED DISPLAY

The goal of a virtual reality display is simple. We want to replace the user's vision with 

computer synthesized images. Current display technology does not provide an ideal solution 

to this problem. A popular approach is to attach a display to the user's head so that he will 

see the computer-generated images regardless of what direction his head is turned to. This is 

called a head-mounted display (IDvfD). Ideally, we want an HMD to be like a pair of 

sunglasses: . lightweight, unobtrusive, cordless, one-size-fits-all, and completely covering the 

user's field of view. There are many obstacles in the way of this ideal Small ( one-inch 

diagonal or less), high resolution, full color display screens are not yet commercia11y 

available. Attempting to use larger displays, especially for stereoscopic HMDs, results in a 

need for complicated optics. Liquid crystal displays (LCDs), which are often used in HMDs, 

require a backlight. Backlights add significant weight, size, and power consumption to an 

HMD. 

For the head-mounted display of the VRS, a design was chosen which could be easily built 

using commonly available components. This chapter discusses the display screen, optics, 

and mechanics of the YRS HMD. 

6.1. Display Screen 

The critical component of an HMD is its display screen. Once a display is chosen, decisions 

can then be made concerning stereo-vs.-mono, optics, and packaging options. In my search 

for a display, I had the following minimum requirements: 

• color output -helps compensate for lack of geometrical detail in synthesized
images.

• analog RGB input- eliminates the need for converting the video source into a
composite signal which would require additional hardware and degrade image
quality.
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• built-in backlight- required since there is no ambient light within an HMD.

Given these basic constraints, it is desirable to use the smallest, highest-resolution display 

available. Among a severely limited number of choices, a Sharp LQ4RA01 LCD module 

was chosen for the project. This four-inch-diagonal display has a resolution of 160 x 234, 

weighs 170 g, and refreshes at a rate of 30 Hz. It requires an analog ROB signal that adheres 

to NTSC timing specifications, which the G-Node can be programmed to generate. An 

external DC to AC converter, also produced by Sharp, is required to power the LCD's 

backlight. In addition, two external potentiometers are used to adjust the brightness and 

contrast of the display. A block diagram of the display system is shown in Figure 6.1. 

6.2. Optics 
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Figure 6.1. Display system block diagram. 

Ideally an HMO should have two display screens. By presenting a separate image to each 

eye, a virtual reality system may generate stereoscopic cues that we use for depth perception. 

Unfortunately, due to the size and weight of the display screen used in this project, it was not 

practical to build a dual-screen HMD. It may seem that a single-screen HMD would be 

relatively simple in design compared to a stereo Hl\.1D, but this is not the case. The problem 
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is that when we have both eyes looking at the same screen, they must converge on the image. 

Normally we want to bring the screen very close (less than six inches) to the user's eyes so 

that the image covers a large percentage of his field of view. As a consequence our user will 

soon get a headache from trying to maintain convergence on a screen that is so close to his 

eyes. In the design of a monoscopic HMD, there is a tradeoff between visual comfort and 

field of view. 

By including some optics in an HMD, it is possible to improve its visual characteristics. 

Heavy or bulky lenses are undesirable for an HMD design. This project uses a Fresnel lens. 

In addition to being almost paper-thin, a Fresnel lens makes objects appear larger and farther 

away, thereby reducing eye fatigue. The magnification that the lens provides can be used 

either to improve the HMD's field of view or to allow the display screen to be placed at a 

greater distance from the user's eyes. The drawback of a Fresnel lens is that it is not a 

"perfect lens" and, therefore, distorts the image. This distortion manifests itself as a slight 

spherical aberration. 

For the particular Fresnel lens used in  this project, the display screen is in best focus at a 

distance of six inches from the user's eyes. If the LCD module were placed six inches from 

the user's head, then, due to the module's weight, a counterbalance would be required. This 

would increase the overall weight of the HMD. The solution is to place the LCD module 

near to the head, facing the floor, and use a mirror to reflect the image into the eyes (Figure 

6.2). The mirror is positioned so that all points on the display screen's surface appear to be 

six inches from the user's eyes. Because of this reflection, the image that the user sees is 

inverted around the y-axis. The graphics display system must take this inversion into account 

when generating an image. 
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Figure 6.2. The optical system of the HMO. 

6.3. Mechanics 

The HMD is built around a Crews brand plastic helmet that has a clear shield to protect the 

face. This open-top helmet has a structure similar to a welder's helmet. A latching knob in 

the rear of the helmet is used to adjust the diameter of the headband. The shield of the helmet 

is easily removed and is not used in the design. 

The LCD module is mounted under the front of the helmet using L-brackets. A glossy black 

plastic plate, used as a mirror, is attached to the front edge of the LCD module. A Fresnel 

lens extends from the rear edge of the LCD module to the bottom of the plastic plate. Black 

antistatic plastic is used to shroud the entire face of the helmet, serving to block outside light. 

Two connectors are mounted on the outside of the helmet. One connector accepts a 5-pin 

DIN plug that feeds power from an external supply. The other connector accepts a DB-9 plug 

that feeds video from the G-Node board. Two circuit modules are mounted on the inside

front of the helmet. One module is the Sharp DC/AC converter for the LCD backlight. The 

other module contains support circuitry for the LCD module, including two thumb-screw 
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potentiometers for brightness and contrast control. Figures 6.3 and 6.4 show the front and 

top views, respectively, of the HMD. 

DC/AC module 

Power connector 

Mirror 

LED's 
Su rt circuit 

Video connector 

LCD module 

Shroud not shown. 

Figure 6.3. HMD design, front view. 

Headband 
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Figure 6.4. HMD design, side view. 
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7. APPLICATION SOFTWARE

This chapter describes the operation of the application software that runs on the host CPU. 

The application software defines the interaction between the user and the objects in the 

virtual world. The application can be considered to be separate from the graphics pipeline, 

although in the current implementation these two software pieces are combined into a single 

program. 

The current application running on the VRS allows the user to explore an animated 

landscape. The objects appearing in the landscape are loaded from text definition files at run

time. Each text file defines a single object by listing a three-dimensional position, a 

diameter, and a color for each sphere making up that object. 

The application program is implemented in C++, an object-oriented language. Each object in 

the virtual world is represented by an instance of a class called CppObj, which consists of the 

file name of that object's text definition file, an array of spheres, and a transformation matrix. 

When a CppObj instance is defined, the file name is passed to the constructor. Currently, the 

following methods are available in the CppObj class: 

• load() - Parses the text definition file and loads the data into the sphere array. It is
only called when the object is first created.

• moveTo( x, y, z) - Translates the object to the absolute position (x, y, z) in world
coordinates. 

• bounce( v )- Causes the object to bounce along they-dimension, given initial velocity
v, assuming a gravity acceleration of 9.8 m/s2

•

• spin( T) -Causes the object to spin around its own y-axis with a period of T.

• becomeSound( n) -Causes the object to emit sound from virtual channel n.
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All motion in the virtual world is based on the real-time clock of the host computer, as 

opposed to the frame number. This ensures the fluid motion of objects even when the frame 

rate varies. 
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8. SUGGESTIONS FOR FUTURE WORK

Much of the potential of the VRS has yet to be tapped. There are a number of improvements 

that could be made, some of which have already been started by students in the Advanced 

Digital Systems Laboratory. These include: 

• writing a more interactive application program. In the current application, the
individual objects of the virtual world do not respond to the actions of the user.

• replacing the current audio system, which consists of the EVB and an interface
expansion card, with a single expansion card. This card would have a DSP, memory,
and four channels of 16-bit audio input and output.

• enhancing the sound spatialization software. The number of virtual sound channels
could easily be expanded beyond the current limit of one. Also, Moore [5] discusses
a number of spatialization methods that

1 
combined with intensity panning, could

provide a more convincing two-dimensional sound.

• adding advanced input devices, such as arm tracking, to the system. For example, we
would like the user to be able to reach out and grab objects in the virtual world.

• moving more of the graphics pipeline stages to the G-Node. As discussed in Section
3.3, there are some stages currently performed by the host CPU that the G-Node could
handle more efficiently. This would increase the graphics performance of the VRS.

• enhancing the lighting model of the sphere-based graphics. Instead of always drawing
the highlight in the same position on the spheres, the highlight position could be
calculated based on the position of the user and a virtual light source. This idea could
then be extended to allow for multiple light sources.
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APPENDIX A. G-NODE DOCUMENTATION 

A.1. Schematics and Programmable Logic

The following items describing the G-Node hardware are included in this section: 

• Circuit board layout diagram (p. 38)

• Circuit board schematic diagrams (pp. 39-44)

• Text file describing progranunable logic device (PLD) number U3 (p. 45)

• Schematic diagram describing PLD number Ul4 (p. 46)

• Schematic diagrams and text file describing PLD number U4 (pp. 47-50)
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A.2. Software

The following items describing VRS software running on the G-Node are included in this 

section: 

• C language source code which implements the G-Node's graphics pipeline stages
(comq.c, pp. 52-53)

• C language header which defines the communication structure between the host
and the G-Node (com.h, p. 54)
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APPENDIX B. V-NODE DOCUMENTATION 

B.1. Schematics and Programmable Logic

The following items describing the V-Node hardware are included in this section: 

• Circuit board layout diagram (p. 56)

• Circuit board schematic diagrams (pp. 57-61)

• Text file describing PLD number U! (p. 62)

• Text file describing PLD number US (p. 63)

• Text file describing PLD number U! 7 (p. 64)

• Schematic diagram describing PLD number U7 (p. 65)
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4/20/94 US.PDS I 

; PI\UISH DesigTI Description 

; ---- -------- ----------- ------- ·--- Declaration segment -·----------
TlTLE =PE, US 
P1'TIERN 
1u,v1sION LO 
AlmlOR John V, Belmonte 
COMFIINY 
DATE 1122,n. revise<! 9/3(92 

CHIP _1J8 PAL2DL8 

�rn 1 /TR 
PIN 2 /W 
Prll J fl.AL 
PIN 4 LCLK2 
PIN S /RAS 
l'Ill" 6 /RF 
PlN 7 t.l\26 
PIN 8 LA25 
PIN 11 J.A24 
pI!( 12 = 

PIN 15 I.ROY 
PIN 16 /RASO 
PlU 17 IMS! 
PIN 19 /CS25l 
PIN H /CS'l'IIIB. 
PIN 20 /VALID 
PIN 21 /CS261 
PIN 22 /VW 
Pm 24 \ICC 

-" 
-" 

=n 

Ll\012 

PIN Declarations ---------------

COHBil<IIITORJIIL 
COl!BINi\TORIAL 
COMBINIITORIJ\L 
COMDIHI\TOl!l/lL 
COJ!BlW.'l'OltIAL 
COIIDINIITORIIIL 
COMBINATORIAL 
COHBINA'WRll\L 

EQ\J�;;:,;;;;·-
---------------- Bool<>an �aticn Segment ------

VALID • (/RAS + t.CLK2) ,. 
(IIAL:rD • IRAS) 

RASO ; (VALID ' llP • RAS) + 
['IALW • /LA26 • /1.1125 

(RASO • RASI 

MS, (111\1,ID • RP • RAS) <-

SIGNALS ROW ADDRESS Im !.All 

; IIC'l'lV11TE FOi\ REFRESH 
• iLfl24 • l!AS) + 

;\CTIVATE FOR oDo 
KEEP 1!.CT!VE UNTU, /RASal 

; ACTIVII.TE !'OR REFRESH 
(VALID ' Ll\26 • l.11;l5 • Ll\24 ' RIIS) + 

ACTIVATE FOR Ul 
(RAsl ' IIJ\S) KEEP ACTlV!l UNTU, /IIJ\S�l 

CS251 (V!\LJD RIIS ' /RP ' ILl\26 • l.11;l5 /l.11;l4) + 
, ACTIVATE f<:l!I 010 

(CS251 (RJIS + I.JILi ! ; KEBP ACTIVE UN'l'IL RAS•l,/\L�O 

C5261 � (VALID MS • /RF ' 1,/\26 " /Ll\25 • /!.A24) + 

CCS261 + IMS + LALi) 

CSTI!IE !VALID "' MS /RF • l.11;l6 ' l.11;l5 • /Ll\24 

(CSTIME ' (RAS + LALi l 

VW•/( IW ' !LAL+/Tll.)) 

/LR!lY /TR ' /W ' CSTU!E 

ACTIVATB FDR 100 
KBEP ACTIVE UNTIL RAS•!.AL•O 

> • 
ACTIVATB FPR 110 
UNTIL MS•LAL•O 

WRITE LINE FOR \IRAM 

MID WAIT-STATE FOR TIMER CHIP 
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, ---------------------------------- De"lanti.on Se-nt ------------

TITLE VNODE. U17 
PATTERN 
RBVISlOII l.O 
A.!.l'rl!OR .John V, Belmonto 
=·= 
011Ti;: •1un

CHIP _ul7 PM.22V10 

PIN l 
em , 
em , 
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PIN 5 
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y " /Y • /l!LANK 
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SCI m Y • /Bt.ANK 

llOTCLl<O • DOTCLK 

SiMULFITION 

Pru Decl<1rations ---------------

C'OIIBINIITORIM. 
REGJS'l'&RED; 
COKJlINATOIUl\l.. 
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COMB:ttlllTORTAL 
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COMBINATORIAL 
COl!BINATORIIIL 

Boolean Equadon Segment ------

Sb..,lation S�gment ------------
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8.2. Software 

The following items describing VRS software running on the V -Node are included in this 

section: 

• C language source code which initializes the video control registers of the GSP
(video.c, p. 67)

• C language source code which initializes the video AID converter (bt251.c, p. 68)

• C language source code which initializes the video genlock (bt261.c, pp. 69-70)

• C language source code which initializes the A/D's RAM lookup table (th.c,

p. 71)

• C language source code which implements the LED tracking (jind2t.c, pp. 72-73)
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4/20/94 DT251.C I 

I" llt251.c 
This 34010 prognm initinlhes the BT2Sl di11itiz"r chip . 

. , 

Undud" �stdlib h> 
linclude •gspr"g h• 

typ,,def volatile unsigned short vus, 

ldeUne llT2Sl_lUJDR 
ldefine BT25l_RAM 
ldeHne llT25l_REG 

main() [ 
int iJ 

(• lvus"l 0><02000000) 
1 • 1vus•)oxo2000010) 
!" (vus•)Ox02000020) 

llT25l_ADD!l m 0x00; t• Co"1Mnd Register 
BT;!Sl_REG ; 0><.00; r• D7,ll6 � input select 

I' OS,04 sync select 
\_ 0 ; VIDO. 5 ; VIOl 
' " u VID2, P � VIDl 

/• DJ,02 � 00, 50 lt(V sync slicing level 

BT251_11,DDR � oxoi, 
BT25l_REG ; OxDO; 

BT2Sl_ADrnl • Dx02; 
OT251_R&; Ox 40, 

BT2Sl.)\DDR OxOO; 

,. "'· 75 mV 

,. lo, 100 mv 
,. U, 125 mV 
I' 01,DO m 00 

/• IOUTO IREH) . ' 
I' 07,02 ; current . '
I' DI.DO; 00 ., 
I' l,2V • $PB . '
/• LOV • SDO . '
, . . av; SM . ' 

I' 10UTl (REF-I . ' 
I' 07,02 • current . '
J' Dl,00 � 00 . '
,. .JV • $40 . ' 

for( i � o, 1 < 256; i+> l 
llT251_M>I' • i; 

/• fill RAM using autoincrement •1 
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;:J 

4/20/94 FIND2T.C 1 

/• find2t ·" 
version J 
12141n 

Tracks 2 LED's in the frame buffer. 
Assumes that there is ,. left LBD (Xlf and a right LED lX2l an<l tha-t they 

<lo not cross boundaries. 
Uses 1<indowin11. 
Uses FIELD interrupt to .,nsure stable fiel<l for processing, 
Special stuU for light-tweerer input, 

•; 

lin"lu<le <stdlib.h> 
Hnclu<ln •gspreg. h" 

ldefine T'Rtrll l 
ldehne FM.SB O 

ldefine FRA!fl':_START 
ldefin<> XW.X J40 
ldeline 'illAX 242 
ldefim, LBDR,IID 12 
l,foUne XCOR 4 
J<lefine YCOR 4 
ldofine BOXRAD 20 

(!IOL • 1024L + 21 <-: Jl /" statt of lmag<> •! 

I' ""'x vdue �encl to host 'I 

I' radius of LED in i=ge •; 
I' approx. offsets into center of LED •r 

tYl)edef unsigned char uchar; 
tYl)edef unsigned short ushort; 
tn,edef unsigne<l int uint, 

ldefine OFYJNT_IIKC'roR OxFFFPFEl\0 

I' status info starts at FFFF FFOO •/ 
ldef.ine LOST 1'1int')OxFFFFFFOO) I' nurnb<!r o! timns lock 1<as la�t •/ 

{' coord:lantes 
�deErne xl 
ldefine yl 
ldefine .>i:2 
l<leUne Y2 

start at FFFF FFSO • r 
(" I short• I OxFFFFFFaO) 
I_' lnh<>H' JOxPPFFFF90) 
1 • lshort• )O><FFffFFJIOI 
(• (short' I oxFFFFFF80l 

tdnHne 111\X I x, l' I I I (xJ (y) l ? (x) IYI 
ldefine OIHH "· y I I l (Xl < fyl l ? (>el lyl 

ldefine WRITB( addr, val J 
ldeH>te REIID( addr I 
ldefin" WRtTELI addr, v.o) I 

'(ushort •1addr • Val 
'(u�hort ')addr 
'lui.nt • Jaddr • w,l 

gra!;>_frnme() { 

WRITE( DFYCTL, REJID( DPYCTI, I I OxlOOO ); 

WRlTBI DFYlNT, 261 I; 
WRITE( INTFEND.REAfl(lNTFEND) &OxFSFF), 
while( CREIIDIIITT'PENDI& Ox04001 •• 0 ) {); 

WRITE I INTFEIID. REI\DI INTPEIID)& OxFl!FFl; 

while( IREIIDIINTPENDl&Ox04001••01 (); 

WI\lTE ( DP'iCTL, REJID I DP'(CTL ) & OxE!'FF ) ; 

void scan( void l { 
static int last 
const int xhaH 
corist int yhal r 
int ten,p; 

if( !!aSt ) { 

FM,1.m, 
1:MII.X/ 2' 
YHAX!l; 

!' enable refr.ash 

/' disable rehesh 

. ; 

•; 

l':1 ><half, 
Y1 yhaH; 

la,:,t � se�rch_bo><_.h( &Xl, &Yl, xMlf, yh�1f 1, t• Hnd left LED '/ 

ten,p a (Xl!II.X - Xl) / 2: 
X2 � Xl • temp; 
Y2 • yhdf; 

last � lagt && search_bo>c..rll &X2. u·2. t,,,,.,.. yh5l( I; 
if! last I WRITEI HSTCTLL, REI\D( HSTC'l'LL I f Ox�O ); 
LOST•+; 

else { 

I' Hnd right LBD •; 

last • search_box_udl &Xl. &Yl, BOXRAD, BmraAD l && search_bo,c_ud( &X2, &Y2, 
BOXRAD. BOXRAD I, 

ifl (XI �· ><2) '1< !Vl �� Y2 l ) last , l'l\LSB; 
;:r I la5t ) WRITE( IISTC'l'LL, Rl!IID( IISTCTLL ) I oxao 1, 

int seareh_box_ml( short •xeur. short •y,;ur, short xrad, short yrad I ( 
int xl. x2. yl, y2; 
int "' y; 
unsigned long &ddr. majo<ldr; 

><1 • It/IX( •xcur - >:rad, 0 ); /' clip box against frame '! 
x2 • IIINI •xcur Xrttd, X!fNC ) , 
Yi • MAXI 'ycur yr�d. o I; 
y2 • HINI •ycur + yrad; YHAX I! 

llltl)addr , FRl\t!B_5TART + ( ( lyl « 10) + XO << 31; 

for( y "yl; y < y2; Y"- ) { 

adde � majaddr; 

for( " � xl; " < xz, x+> ) { 
H( l'luchar•)addrl \• O) goto found_µ<l: 
addr •� B; 

majaddr •• 1024 << 3; 

return I FALSE I, I' LBD not found in box 't 

found_ud, 
•xcur a >< + I; 
•yeur � y • YCTlR, 
return I TROE 1; 

int search_boX_.lr( short •xcur, short •yeur, short ><rad, sho,ct yrad ) l 
int d, x2, yl, y2; 
int x. "' 
unsigned Ionq addr, ""'ja<ldr; 

xl � MAX( 
x2 • >UIH 
'/1 " MAX( 
'/2 � HIN( 

•xcur 
'><cur 
'yrnr 
'l'CUJC 

xra<l. 
xrad. 
yrad, 

• yrad, 

0 ) ' 
XMIIX I' 
D ) ; 
'illAX ) ; 

t• clip box against frame • / 

maja<ldr � FRl\t!B_STAAT + ( ( (yl <-< 101 + "11 « 3); 

for( x • "1, x < xa, x++ l { 

addr a maj addr, 

for( '/ � yl; y < Y2, y++ f { 



;;! 

! 4nD/94 FIND2T.C 21 
if[ l•(uchar')addr) 1� O ) 11oto found_lr: 
addr += 1024 « J, 

majaddr h 8; 

r�turn! FALSE); ;• LEll not found in bo,c •1 

found_h: 
'xcur = x • XCOR, 
•ycur = y .- 11 
return I 1'11.UE ) , 

int nearnh_box_rl( shon •xcur, short 'YCU"<", short xrad, short yud I { 
j.nt xl, .x2, Yl, y2; 
int"• y: 
lm�igned long a,;ldr, majaddr: 

;l • l!AX( •xcur - xnd, O l; 
x2 = »INI •,rcur l- xrad, XHI\X ) ; 
yl = MAXI •ycur - yrad, O ); 
y2 • MrHI •ycur + yr;,.d, YHAX ); 

I' oHp box againH frame •1 

maj�dd-c • FRIIHE_START + (f(yl « 10) + x2-ll « JJ; 

for( ,c • x2-l; ,c >= xl: x-- I 

add>: � ,...jaddr; 

for( y � Yll y <: y2; yo ) { 
l{( ('(uchar'l"-ddrl !• O ) goto found_rl; 
addr += 1024 « J; 

""'jaddr -= 8; 

rP.turnl FALSE ); /' LED net found in bo>< •1 

{ound_d; 
•xcur = >< - XC:OR; 
•ycur = y + I; 
retuml TR\ll: 1, 

main(! 

,. 

WRITE! LOST, 0 ); 

whil,,r TRUE ) { 

"'hile( !READ( llSTCTLL ) & O,c80) 
grab_fr,:une( I; 
scan(!; 

Ox80 I (); "I 



APPENDIX C. AUDIO SYSTEM DOCUMENTATION 

C.1. Schematics and Programmable Logic

The following items describing the audio hardware are included in this section: 

• Circuit board layout diagram (p. 75)

• Circuit board schematic diagram (p. 76)

• Text file describing PLD number Ul (p. 77)
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C.2. Software

The following item describing YRS software running on the ADSP-21020 evaluation board 

is included in this section: 

• C language source code which implements the sound spatialization algorithm
(vrsnd.c, pp. 79-80)
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APPENDIX D. HEAD-MOUNTED DISPLAY 

DOCUMENTATION 

The following_item describing the HMD hardware is included in this section: 

• Circuit board schematic diagram (p. 82)
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APPENDIX E. HOST SYSTEM DOCUMENTATION 

The following items describing VRS software running on the host CPU are included in this 

section: 

• C++ language source code containing the application program and the host CPU's
graphics pipeline stages (vll.cpp, pp. 84-90)

• C++ language header which defines the communication structure between the host
and the G-Node (com.h, p. 91)

• Object definition file for miscellaneous scenery (input.def, p. 92)

• Object definition file for the musical note (note.def, p. 93)

• Object definition file for the pinwheel (pinwheel.def, p. 94)

• Object definition file for the cootie bug (jencoot.def, p. 95)
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