
THE DESIGK AND IMPLEMENTATION OF A
VIRTUAL REALITY SYSTEM

BY

JOHN V, BELMONTE

B.S., University of Dlinois, 199 J

THESIS

Subml.tted in partial fulfillment of the requirements
for the degree of Master of Sdence in Electrical Engineering

in the Grnduate College of the
University of Dlinois at Urbana-Champaign, 1994

Urbana, Illinois

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

THE GRADUATE COLLEGE

JUNE 1994

WE HEREBY RECOMMEND THAT THE THESIS BY

JOHN V. BELMONTE

ENTITLED, ___ T_HE_D_E_S_IG_N�AND __ IMP __ LE __ ME_NT_A_T_IO_N __ OF_A _____ �

VIRTUAL REALITY SYSTEM

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THEDEGREEOF· ____ M_A_S_TE_R_O_F_S�C_IE_N�C�E-----;,,----,-,---,------
(, / "' /·

Committee on Final Examinationt

t Required for doctor's degree but not for master's,

/t/t?�t(-(
/ } § ·Dire';.Jsr�/ Thesis Research

y, / ,# #a j . / A
Head of Department

Chairperson

----·-------------

ACKNOWLEDGMENTS

The virtual reality system described in this thesis was conceived, designed, and implemented

in the.educational environment of the Advanced Digital Systems Laboratory (ADSL). I

believe that there is no other university environment where this project would have prospered

as it has in ADSL. My deepest gratitude goes to Doctor Ricardo Uribe for creating ADSL

and tirelessly supporting and encouraging all students who have walked through its doors.

I also thank the following people: Kevin Lee for his help in the design of the V-Node and for

handing down to me his knowledge of computer graphics, digital hardware design, and

prototyping; Matthew Klapman for introducing me to virtual reality and for allowing me to

model my head-mounted display from his own design; James Kuch for introducing me to

LED tracking and for his help with the tracking algorithms; Raymund Angara for

implementing the sound spatialization software; and Jennifer Anderson for her assistance in

the design of the objects in the virtual world.

iii

TABLE OF CONTENTS

Page

1. INTRODUCTION .. 1

2. SYSTEM OVERVIEW .. 4

2. 1. Physical Components ... 4

2.2. Operation .. 5

3. GRAPHICS SYSTEM ... 7

3.1. G-Node Graphics Synthesizer Card ... 7

3.2. Sphere-based Graphics 1 a

3.3. Graphics Pipeline ... 15

4. HEAD TRACKING SYSTEM .. 18

4. 1. V-Node Video Digitizer Card .. 18

4.2. LED Tracking .. 20

5. SOUND SPATIALIZATION SYSTEM .. 23

5.1. Spatialization Using Intensity .. 23

5.2. Audio Hardware .. 26

6. HEAD-MOUNTED DISPLAY .. 28

6.1. Display Screen .. 28

6.2. Optics .. 29

6.3. Mechanics ... 31

7. APPLICATION SOFTWARE .. 33

8. SUGGESTIONS FOR FUTURE WORK .. 35

LIST OF REFERENCES .. 36

iv

APPENDIX A. G-NODE DOCUMENTATION ... 37

A.1. Schematics and Programmable Logic ... 37

A.2. Software ... 51

APPENDIX B. V-NODE DOCUMENTATION .. 55

B. 1. Schematics and Programmable Logic ... 55

B.2. Software ... 66

APPENDIX C. AUDIO SYSTEM DOCUMENTATION 74

C. 1. Schematics and Programmable Logic ... 7 4

C.2. Software ... 78

APPENDIX D. HEAD-MOUNTED DISPLAY DOCUMENTATION 81

APPENDIX E. HOST SYSTEM DOCUMENTATION 83

v

LIST OF FIGURES

Figure Page

2.,, Physical components of the YRS ... 5

3,1. G-Node block diagram ... 8

3.2. A polygon-based sphere, ,, 11

3.3. A "cootie bug" rendered with sphere-based graphics 11

3.4. Automatic lighting effect of sphere-based graphics 13

3.5. Flat surfaces: polygon vs. sphere representations 14

3.6. The intersecting-spheres problem .. 14

3.7. The VRS graphics pipeline ... 16

4.1. V-Node block diagram .. 19

4.2. Two .. camera LED tracking ,..,, ,.,,,..,,, 21

5.1. Controlling perceived distance through intensity .. 24

5.2. Controlling perceived direction through intensity .. 25

6.1. Display system block diagram, .. 29

6.2. The optical system ofthe HMD , ... 31

6.3. HMD design, front view 32

6.4. HMD design, side view , ... 32

vi

1. INTRODUCTION

"The environment as we, perceive it is our invention."

-H. von Foerster, Observing Systems (1981)

Everything that we perceive must, at some point, have been translated into electrochemical

impulses for our nervous system. Surpri&ingly, these impulses contain no data revealing their

type or origin. As H. von Foerster [1] states in his "Principle of Undifferentiated Encoding":

The response of a nerve cell does not encode the physical nature of the agents
that caused its response. Encoded is only "how much" at this point on my
body, but not "what."

This principle has some interesting repercussions. One is that our nervous system has no way

of discerning between signals originating from "out in the real world'' and signals originating

internally. Another is that the "what" von Foerster refers to, the mapping from

electrochemical impulses to physical things, is something that each of us has invented during

our development. These points suggest that reality is not a well-defined and tangible thing.

They also suggest that it may be possible to present stimuli, not corresponding to physical

things in the "real world," which would cause a person to perceive an alternate environment

which is just as real as any other.

Virtual reality, as it is commonly called, involves intercepting a user's stimuli from the "real

world" and replacing them with believable computer-synthesized stimuli. The "believable"

part is related more to interactivity than to realism. For example, we could sit a person in

front of a large projection screen and show him a videotape of a beautiful valley with a

running stream nearby. Th.is visually realistic scene might fool our subject until he decides to

look up at the sky and only sees the ceiling, or becomes thirsty and bumps into the screen as

he attempts to walk over to the stream for a drink. If he had some way of doing such tasks,

1

maybe he would not mind the grass appearing like indoor carpeting and the trees not casting

shadows (two common signs of a limited graphics system),

Virtual reality (VR) systems often attempt to stimulate a user through the senses of sight and

hearing, but only because computers have evolved to stimulate these two senses more than

the others. It is possible for a VR system to work without video and sound1 just as it is

possible for a blind and deaf person to experience reality. The only thing necessary is for the

user to develop a mapping from the impulses received by her nervous system to the things in

her (virtual) environment. An excellent example of a limited VR is a text-based virtual

community, many of which exist on the Internet. Users interact with an environment, which

includes other people, using only a keyboard and a text terminal. Just as we can read a good

book and feel as if we were "there," descriptions in a text-based virtual environment serve to

replace our senses of sight, hearing, touch, etc. Our nervous system has the incredible ability

to fill in the missing electrochemical impulses internally (that is, we imagine). The text

based VR experience is much more "real" than simply reading a book because the user can

interact with her environment.

Some applications require a more sophisticated VR system. Because humans have evolved

an exceptional spatial ability, we often need a "hands-on" interactivity in order to accomplish

tasks. An exciting future application of virtual reality will be to design machines at the

atomic scale. Advancements in the field of molecular nanotechnology will soon allow us to

manipulate matter to the extent of combining individual atoms to form mechanical devices

[2]. Atoms have many characteristics such as size, weight, attraction and repulsion, and

.. slipperiness," which will make building such devices using current computer-aided design

methods nonintuitive. Virtual reality will be �he only means to shrink ourselves to the atomic

level and slow down time so that we can build nanoscale systems as ifwe were playing with

Tinker-Toys.

This thesis describes the design and implementation of a virtual reality system, hereby

referred to as "the VRS." In capability, the VRS falls somewhere between a text-based VR

2

system and the full-fledged system that would be required for our atom-assembling

application. It generates images and sounds which are tightly linked to the actions of the

user, providing him with the ability to explore and interact with a spatial environment. The

VRS is a working project which, to date, has successfully introduced hundreds of people to

the concept virtual reality.

The following chapter presents an overview of the VRS, describing the system from both an

engineer's and a user's point of view. Chapters 3-7 give detailed presentations of the various

hardware and software components of the VRS: the graphics system, the head tracking

system, the sound spatialization system, and the head-mounted display. Chapter 8 makes

some suggestions for future work. The appendices provide technical documentation of the

system's hardware and software, including schematic diagrams and program listings.

3

2. SYSTEM OVERVIEW

The VRS is a complex system consisting of a number of hardware and software components.

These components interact with each other and the user to provide the user with a virtual

environment of sight and sound.

The VRS is based around a desktop personal computer, which is considered to be the host of

the system. A number of expansion cards, which plug into the bus of the host, have been

designed specifically for this project. Most of the expansion cards contain their own

processor and memory so that they may perform tasks without requiring assistance from the

host's central processing unit (CPU). Another advantage to having a processor on each

expansion card is that the processors can work in parallel. In all, there are five processors in

the YRS.

The main functions of the host machine in the operation of the VRS are to provide:

• a communication link between the other components of the VRS

• an interface to basic input devices (that is, keyboard and joystick)

• a means of file access

For readers who have not had the opportunity to see and use the VRS, this chapter provides a

description of the physical components and operation of the VRS.

2.1. Physical Components

The physical components of the VRS are shown in Figure 2.1. The host machine is an Intel

80486-based personal computer running an MS-DOS operating system. There are four

expansion cards in the host machine that were designed for the VRS. One card is the G-Node

graphics synthesizer card, which outputs images to the head-mounted display (HMD). Two

4

--------·---

identical V-Node video digitizer cards process video inputs from black-and-white cameras.

The cameras view the head movements of the user. The final expansion card interfaces the

host computer to an external digital signal processor (DSP) board. The DSP board performs

sound spatia1ization processing on a sound source, such as a compact disc player, and drives

four audio speakers. An analog joystick, connected to the host computer, provides another

input from the user.

V-Node video
digitizer cards

Desktop personal
computer

Head-mounted
display

••

���Di __ IDSPevaluationl
board

Interface card to DSP
evaluation board

Figure 2.1. Physical components of the VRS.

2.2. Operation

The user sits on a stool facing a workbench on which the YRS resides. A steel frame

attached to the bench supports two video cameras. One camera is above the user, pointing

towards the floor. The other is to the user's right, pointing towards the left. The user must

position herself so that her head is in the center of both camera views. A video monitor on

the bench can display the output of either camera, and is used to check the alignment of the

5

user. Before beginning, the user puts her favorite compact disc into a player that is mounted

in a rack on the bench.

The user now places the HMO on her head and adjusts the headband for a secure fit.

Looking ahead, she sees a colorful landscape filled with animated objects. She looks around

by moving her head left, right, down, and up. Noticing a pinwheel twirling in the sky, she

takes hold of the joystick in front of her and begins to maneuver herself towards the spinning

object. Pushing forward on the joystick allows her to move ahead. The more she pushes, the

faster she moves. Pushing the joystick to the left or right causes her to pivot. Once directly

under the pinwheel, the user looks up at it. After a few seconds she begins to feel dizzy.

At this point, the user hears a familiar song that seems to be emanating from a distance off to

her left. Looking in that direction, she sees a blue musical note that appears to be bouncing

up and down. As she moves towards the note, the music grows in intensity. The user rushes

past the note, which at close range she finds to be many times taller than herself. She

continues onward to do more exploring, as the music decays off in the distance behind her.

6

3. GRAPHICS SYSTEM

A key quality of a virtual reality system is the ability of its graphics system to respond

quickly to inputs from the user. This chapter looks at the three tightly linked elements of the

VRS that affect the graphics performance. The first element is the G-Node graphics

synthesizer card, designed specifically for the VRS. The second element is the method in

which the virtual world is visually represented, in this case by sphere-based graphics. The

final element is the graphics pipeline implementation which determines how a database of

objects is translated into a visual scene.

3.1. G-Node Graphics Synthesizer Card

The G-Node graphics synthesizer card was designed in order to significantly improve the

graphics performance of a desktop computer. Although it plugs into an IBM-AT compatible

machine as an expansion card, the G-Node can be thought of as a stand-alone graphics

computer. For example, one can write a program in C that displays a 3-D object rotating in

space, compile it, and transfer it to the G-Node's on-board processor. The G-Node runs the

program, and the rotating object appears on a display screen connected to the card. At this

point, the host computer is free to run other programs since the graphics program is running

independently on the G-Node.

The G-Node design is based around a Texas Instruments TMS34020 graphics system

processor (GSP), which is a 32-bit microprocessor optimized for use in graphic display

systems. In addition to a general-purpose processing unit, the GSP has an on-board graphics

controller and hardware support for graphical data types such as pixels and 2-D pixel arrays.

As shown in Figure 3.1, there are four major devices connected to the GSP:

• video random access memory (VRAMJ, for storing the display screen, program
code and data

7

• a random access memory-digital to analog converter (RAM-DAC), which
converts a digital pixel stream into an analog red-green-blue (RGB) signal

• the host CPU, via the Industry Standard Architecture (ISA) bus

• a floating-point coprocessor

The memory on the G-Node consists of one niegabyte of VRAM organized as 256K x 32-

bits. AVRAM chip has two access ports to its memory cells. One is a standard dynamic

RAM (DRAM) port and the other is a serial access memory (SAM) port which is used for

transferring-pixels to the display screen. The GSP manipulates pixels in the display buffer

through the DRAM port. In addition, the GSP's video controller uses the DRAM port to

send commands that transfer one or more lines of the display buffer to the SAM port.

Floating-Point VAAM <>Be> RGB
Coprocessor

256K x 32 Video
TMS34082 Out

t t t

GSP

TMS34020

!
(JSA Bus)

Figure 3,1, G-Node block diagram.

VRAM is normally used to store display buffers exclusively, but in the G-Node design it is

also used to store program code and data. The result is that the available code and data space

are dependent on the number of display buffers and the display screen resolution. When

configured for double-buffered, 640 x 480 output, the G-Node has 64K of available RAM.

8

For double-buffered, 160 x 240 output (used to drive the HMD), the G-Node has 904K of

RAM available.

The GSP has a host port that allows another processor to access its local bus. In the G-Node

design, the GSP's host port is connected to the ISA bus. This allows the main CPU of the

VRS to read and write to the RAM on the G-Node. Such accesses are transparent to the

program running on the GSP. When the VRS system is being initialized, the host port is used

to transfer the GSP's code into the on-board RAM. Duiing normal operation of the VRS, the

host port is used as a means of communication between the programs running on the GSP

and the host CPU. This is accomplished by setting aside a portion of the GSP's RAM as a

communication buffer. The host CPU loads data into the buffer and then sets a flag which

lets the GSP's program know that the buffer holds valid data. Since host accesses are

transparent to the GSP, it is free to petform other tasks while the buffer is being filled by the

host. Once the GSP finishes operating on the data, it clears the flag and the process is

repeated.

Also connected to the GSP is a Texas Instruments TMS34082 graphics floating-point

coprocessor, which can quickly perfonn floating-point operations for the GSP. In addition,

the TMS34082 has its own instruction sequencer. Built-in read-only memory contains

routines to perform calculations that are critical to a 3-D graphics pipeline such as vector

operations and window clipping. The coprocessor also has the ability to run custom routines

from external RAM, but this feature is not supported in the G-Node design.

Although the GSP can support-color resolutions of 1, 2, 4, 8, 16, or 32 bits per pixel, the G

Node design is fixed in hardware at 8 bits per pixel. Eight bits per pixel provides 256

simultaneous colors from a 16.8 million-color palette (the RAM-DAC has triple 8-bit video

digital to analog converters, yielding 224 possible colors). This seems to be an adequate

number of simultaneous colors for a system that uses constant shaded (that is, single color)

graphics primitives, as the VRS does. Supporting only one color resolution eliminates the

need for pixel multiplexing hardware between the VRAM SAM ports and the RAMDAC.

9

-----------------·----- -

The choice of color resolution obviously affects the amount of frame buffer memory

required, but it also affects the speed at which the GSP can write pixels to memory. Since the

GSP's data bus is 32 bits wide, it can access four 8-bit pixels simultaneously. The GSP' s

page mode access to VRAM runs at a speed of 8 MHz, so the resulting pixel bandwidth in

the G=Node design peaks at 32 million pixels per second.

3.2. Sphere-based Graphics

There are a number of ways to represent three-dimensional solid objects on a graphics

display. When rendering speed is critical, a common method is to approximate the shape of

an object using polygon faces [3]. An arbitrary three-dimensional polygon in space will

always project onto the viewing plane as a two-dimensional polygon. Such 2-D polygons can

be easily rendered on the display screen.

Polygon representations work well for boxy shapes but are not well suited for shapes with

curved surfaces. To accurately approximate a sphere, for example, many polygon faces are

required (Figure 3.2). For each polygon face that is sent through the graphics pipeline, a

matrix transformation must be applied to each of its vertices. The result is poor real-time

performance in rendering rounded objects. Smooth polygon shading methods, such as

Gouraud shading, have been designed to reduce the number of faces needed to approximate

curved surfaces. Unfortunately, such techniques significantly increase the time it takes to

draw a polygon. (Smooth-shading prohibits the use of VRAM block pixel-writes.)

The desire to produce computer animation with a limited system can often result in creative

solutions. One such example is work done by a group of Dutch programmers to produce

impressive real-time graphics from limited Intel 80286/386-based personal computers. (The

program is called VectorDemo, by UltraForce Development, 1991.) Such machines have a

very low processor-to-display bandwidth and slow (if any) floating-point computational

hardware. One technique, employed by the VectorDemo program to overcome these

limitations, is to represent 3-D solid objects with spheres. An arbitrary sphere in space will

10

always project onto the viewing plane as a two-dimensional circle. The result is that

rounded, three-dimensional shapes can be rendered entirely by drawing circles (see Figure

3 .. 3). I call this type of representation sphere-based graphics.

Figure 3.2. A polygon-based sphere.

Figure 3.3. A "cootie bug" rendered with sphere-based graphics.

11

Sphere-based graphics have a number of advantages over polygon representations. The first

is that only one point per sphere, the center point, has to pass through the graphics pipeline.

(Recall that, for polygons, each vertex has to be transformed.) A small calculation is also

necessary to determine the radius of the circle projected onto the viewing plane:

where rsphere is the actual radius of the sphere, dis the distance between the viewer and the

sphere, and/is the focal length (that is, the distance between the viewer and the view plane).

Sphere-based rendering takes place one sphere at a time. To make the spheres overlap

properly, they are drawn in order from farthest (relative to the viewer) to nearest. For each

sphere, a two-dimensional circle is drawn which corresponds to the sphere's color and

projected diameter. In addition, a smaller white circle is drawn to simulate a highlight spot.

The highlight has the effect of making the spheres look more three-dimensional. (The

VectorDemo program used prestored images of ray-traced spheres for a higher degree of

realism.) The highlight spots also produce an "automatic'' lighting effect at the object level.

When an object is oriented so that the highlight spot of each of its spheres is visible, the

object appears to be facing the light source (Figure 3.4(a)). When the spheres are positioned

so that most of the highlights are occluded, the object appears to be facing away from the

light source (Figure 3.4(b)).

In the VRS graphics pipeline, the highlight spots are always drawn in the upper-left comer of

each sphere. This models a light source which is infinitely far away (that is, it casts parallel

rays of light) and is in a fixed position with respect to the viewer (for example, the light"

always comes from over the viewer's left shoulder).

12

Light direction

Figure 3.4. Automatic lighting effect of sphere-based graphics. An
object facing the light (a) and another not facing the light (b) are
shown.

There are some limitations to sphere-based graphics. Just as polygon-based graphics are not

well suited for representing curved surfaces, sphere-based graphics are not well suited for

representing flat surfaces. For example, a wall could be accurately represented with only six

polygons (Figure 3.S(a)), but many spheres would be required to make a bumpy

approximation of a wall (Figure 3.5(b)). This suggests the creation of a graphics system that

could generate both sphere-based and polygon-based representations, using each where

appropriate.

Another limitation of sphere-based graphics becomes apparent in the case of intersecting

spheres. When two spheres intersect, the resulting shape,is obviously not a sphere.

Therefore, the projection of such a shape onto the viewing plane cannot be rendered using

circles. As an example, Figure 3.6(a) shows the correct rendering of two intersecting spheres.

By rendering the spheres one at a time, only the renderings in Figure 3.6(b) and Figure 3.6(c)

are attainable. Furthermore, an object may change quickly between these two incorrect

renderings as the distance between the viewer and each sphere changes. This causes a

noticeable "popping" effect.

13

Figure 3.5. Flat surfaces: polygon (a) vs. sphere (b) representations.

Figure 3.6. The intersecting-spheres problem. A correct rendering
(a), two incorrect renderings (b) and (c), and a proposed solution (d)
and (e) are shown.

Some methods can be employed to sidestep the intryrsecting-spheres problem. One method is

to avoid intersecting spheres altogether when designing objects. This solution is rather

prohibitive. (Imagine trying to build a model car out of marbles.) A more reasonable method

14

is to limit objects to having only slightly intersecting spheres. The frequency and degree of

popping are proportional to the depth of the intersection. This solution would minimize

popping while providing more flexibility in object design. Still another solution requires two

changes: (I) design objects such that intersecting spheres are the same color, and (2) remove

any border from the rendered circles. The result is shown in Figure 3.6(d). Note that the

highlight spots can foil this method, as shown in Figure 3.6(e).

3.3. Graphics Pipeline

A graphics pipeline defines the sequence of operations necessary to convert a database of

objects into a graphics image. Each visual frame generated by the system requires a single

pass through the pipeline. In the VRS, the workload of the graphics pipeline is divided

between the host CPU and the G-Node board's processor. An important decision to be made

is where to split the pipeline between the two processors. It is desirable to balance the

workload so that neither processor has to wait for the other to finish its share of the work.

Another factor that must be considered is the amount of data flowing through the pipeline at

the point where it is split. This directly affects the amount of time that the processors must

spend transferring data.

The stages of a graphics pipeline are dependent on both the graphics hardware and the

method of object representation. For example, the G-Node board does not have hardware

depth-buffering, so a depth-sorting stage is necessary in the VRS graphics pipeline. Another

example is that, since sphere-based graphics have an "automatic lighting" attribute, a lighting

stage is not needed. A block diagram of the VRS graphics pipeline is shown in Figure 3.7.

The VRS graphics pipeline is divided into eleven stages. The first eight stages are performed

by the host CPU and the final three stages by the processor on the G-N ode board. In the first

stage, the host samples the user's input devices, consisting of the joystick, the two V-Node

boards, and the keyboard. The joystick detennines· the movement of the user's view

reference point, and the V-Node boards provide the user's view direction. Together these

15

data are used to calculate the view vector in the second stage of the pipeline. The third

pipeline stage uses the view vector to form a viewing transformation matrix. This matrix is

used to transform three-dimensional points from world coordinates into viewing coordinates,

Sample lnplll
Devices -

Calculate
Projected I+-Radii of
Spheres

�//
Hoo,

CPU
.

'
/

.
.

.
G·Node

@
/ 8

Calculate
View Vector

'

Perspective
Scale

Center
Points

'

.... -·-·

X-Y Clip
Spheres

'

,_

I+-

-

Calculate
Viewing

1-1
Update

Trans. Objects
Matrix

' '

l
Transform

Near/Far Clip
I+-

Center PoinJs
Center Points to Viewing

Coordinates
" '

..... _. ___ _ ·--- ··-·-·-·----,·«--- · ·

Depth Sort
....

Render
Spheres Spheres

rn ..

Figure 3.7. The VRS graphics pipeline.

Up to this point, the data passing through each pipeline stage have been a fixed size. This

means that the time spent in the first three stages will be relatively constant. In contrast, the

amount of data flowing through the remaining eight stages may vary, affecting the time

needed to complete each stage. For example, the amount of data (in this case spheres)

traveling through the sorting and rendering stages is dependent on how many spheres are

currently in the user's view.

Stage four is responsible for updating the objects in the virtual world. An object consists of

one or more spheres. Attributes that may be updated include position, size, and color.

Although the G-Node board is better suited than the host CPU for handling pipeline stages

five through eight, these stages stiII reside on the host CPU in the current implementation. In

stage five, the center point of each sphere in the world is transformed from world to viewing

16

coordinates using the viewing transformation matrix. In stage six, all spheres whose center

points are outside the bounds of the near and far planes are removed from the pipeline. Stage

seven involves a perspective scaling of the center points. In stage eight, the projected radius

of each sphere is calculated using the equation presented in Section 3.2.

After completing stage eight, the host CPU transfers the resulting data to the G-Node card,

which will use the data in the final three stages of the graphics pipeline. The data consist of a

list of spheres. Each sphere is defined by an x-y-z position, a diameter, and a color. At this

point in the pipeline, the x, y, and diameter values are in screen coordinates. All values are

transferred as 16-bit integers. Note that the host CPU and G-Node card operate on their

respective parts of the graphics pipeline in parallel. After the host CPU completes its final

stage and transfers the sphere data to the G-Node, the host CPU can immediately return to the

beginning of the pipeline to work on the next visual frame.

In stage nine, the G-Node's processor removes spheres from the pipeline that are completely

outside the bounds of the screen. (Spheres that are partially clipped by the screen's borders

will be handled in hardware by the TMS34020 chip.) In stage ten, the spheres are sorted by

the z-coordinate of their center point. Finally, in stage eleven, the G-Node card renders the

spheres to the display buffer. This rendering includes drawing the highlight spot on each

sphere. The spheres are drawn, in order, from farthest to nearest.

17

--------·--·- · --

4. HEAD TRACKING SYSTEM

An important attribute of a virtual reality system is the existence of input devices that are

natural to the user. When first born, humans do not stimulate their environment through

keyboards and joysticks. Instead, we use our voice and body motions. This suggests that a

computer with sound and sight inputs will be easier for us to use. A limited form of "sight,"

often used in virtual reality, is achieved when the computer can determine the position and

orientation of the user's body. This method of input is known as body tracking.

Body tracking is currently one of the most difficult problems in the implementation of virtual

reality. Typical simplifications of this problem are achieved by tracking only a few key parts

of the body, and by tracking with less than the full six degrees of freedom (x-y-z position and

roll-pitch-yaw orientation).

The VRS incorporates a head tracking system that determines the pitch-yaw orientation of the

user's head. This vital data allows the VRS to respond to the user's action of "loolcing

around." The roll orientation, which corresponds to the tilting of the head right or left, is not

tracked by the system. This omission is not very noticeable since we normally keep our eyes

level with the horizon (assuming that the environment has a horizon).

The VRS tracking is accomplished by attaching light emitting diodes (LEDs) to the user

which are sensed by video cameras. The remainder of this chapter examines the V-Node

video digitizer card, designed specifically for the VRS, and the details of the LED tracking

method employed.

4.1. V-Node Video Digitizer Card

The V-Node video digitizer is an expansion card designed for the ISA bus. Independent of

the host CPU, the V-Node can capture images from a video camera and perform image

18

processing using its on-board graphics processor. This allows live video to be used as a form

of input that places very little load on the host CPU, similar to a keyboard or a mouse.

Looking at Figure 4.1, it is apparent that the V-Node design is similar to that of the G-Node

at the block level. With respect to the flow of data, the V-Node is identical to the G-Node,

except that the V-Node is running in reverse. Recall the function of the G-Node card. It

processes a small amount of data (such as sphere geometries) into a large amount of data

(many thousands of pixels) which are stored in VRAM. Once an entire image is generated,

the pixels are transferred out of the VRAM through the SAM port and converted to analog

video. In the complementary V-Node design, analog video is converted into digital pixels,

which are then transferred into VRAM by way of the SAM port. Once an entire image is

captured, the V-Node processes this large amount of pixel data to extract a small amount of

visual data.

DRAM
256K x 16

t

(

VRAM
256K x 16

!
GSP

TMS34010

!
ISA Bus

Video AID

Converter

t

l

Figure 4.1. V-Node block diagram.

NTSC r

Video

Like the G-Nod.e design, the V�Node is based around a GSP: in this case the Texas

Instruments TMS34010 processor. The TMS34010 is the predecessor to the TMS34020,

having a sixteen-bit data path to memory (versus the TMS34020's thirty-two bit path), a

19

slower operating speed, and a less powerful instruction set. The GSP is connected to 512K

bytes of DRAM which store programs and data, and 512K bytes of VRAM which store

captured images. The video AID converter used in the design can sample at eight bits per

pixel and includes a genlock and a pixel lookup table. The genlock circuit extracts the

synchronization signals, which are required for coordinating the SAM port transfers, from the

video source. The programmable pixel lookup table is useful for tasks such as on-the-fly

image thresholding.

The V-Node card has the ability to digitize a 512 x 512 pixel, 8-bit grayscale image in I/30th

of a second (only 256 x 256 pixel images are used for the VRS head tracking). The image

capture occurs in the background of the GSP's program execution, so the. program running on

the GSP could be processing one image while the next image is being digitized.

4.2. LED Tracking

Judging by the amount of research that is conducted in the area every year, computer vision is

a very difficult problem. The head tracking ·subsystem of the VRS required a practical

implementation of computer vision that was within the limits of the V -Node's image

processing capability. Since the user must already wear an HMD to use the system, it makes

sense to attach visual indicators to simplify the computer vision task. LEDs were used as

visual indicators with the idea that it would be relatively easy to track a small point of light

within an image.

Although it is possible to extract three-dimensional position data from a single camera view

[4], the calculations involved could not be executed by the V-Node's GSP in real time.

Instead, the head tracking subsystem employs a simpler two-camera setup, as shown in

Figure 4.2. One camera is positioned directly above the user, and a second camera is

positioned at the user's side. Two LEDs are attached to the top of the HMD. The LEDs are

positioned so that the imaginary line between them points in the direction that the user is

20

looking. Both cameras are in the plane of the user's torso and are oriented orthogonally in

space.

�x

'

[]
..... ----

'
'

0 0

'r-1

·---·· ...•.... --- ··· , ..

•...

�
· -.,. '•

'

. . . ,

·--,.
--.,_

,�'
x-z camera view (yaw)

' '

n
y-z camera view (pitch)

Figure 4.2. Two-camera LED tracking.

The top camera provides a view of the x-z plane, while the side camera shows the y-z plane.

Once the positions of both LEDs within each camera's view are determined, the data can be

combined !O form a three-dimensional ray which indicates the user's direction of view.

Two V-Node cards, one for each camera, are used in the head tracking subsystem. Their task

is to digitize an image and determine the position of each LED in as short a time as possible.

To simplify this task, a number of assumptions are made. The first assumption is that the red

LEDs that appear in the image will have a greater light intensity than the rest of the scene.

To help make this assumption valid, red gel filters are placed over the camera lenses. The

gels have the effect of allowing red light to pass while attenuating light at other wavelengths.

With the assumption that the LEDs will be the brightest objects in the camera's view, they

can be located by a simple thresholding of the digitized image. This thresholding is

performed ''on the fly" by the video AID converter. As each pixel is digitized, its value is

21

looked up in a RAM conversion table that resides on the AID chip. The RAM table must be

programmed according to the desired threshold intensity. As an example, if we wanted to

threshold at a value of 128 (zero corresponds to black and 255 to bright white), we would fill

locations 0-127 of the table with O's and locations 128-255 with 1 's. The result will be a

monochrome image, with pixels below the threshold set "off' and pixels equal to or above

the threshold set "on."

The tracking is accomplished by scanning the thresholded image, columnwise, from left to

right. The first pixel that is on is assumed to indicate the position of LED 1. Next the image

is again scanned columnwise, but from right to left. The first pixel that is on is assumed to be

LED2. The assumption here is that LEDl will always be to the left of LED2. Consider the

home position to be the case when, in both camera's view, LEDl is to the left ofLED2, and

the LEDs are horizontal. This home position corresponds to the user looking straight ahead.

Given the constraint that LEDi must stay to the left of LED2 in both images, ideally this

gives the user± 90° of yaw and± 90° of pitch movement relative to the home position.

The tracking method described in the previous paragraph requires a large number of pixel

comparisons. Since images are digitized at a resolution of 256 x 256 pixels, up to 65,536

comparisons may have to be performed by the V-Node's GSP. To improve the response time

of the image processing, a second tracking method is employed which requires fewer pixel

comparisons. Instead of scanning the- entire image for an LED, only a small region is scanned

around the position where the LED was last spotted. The assumption is that an LED will not

move very far from one frame to the next. A 40 x 40 pixel region is scanned around each

LED, resulting in a maximum of 3200 comparisons. If an LED is not within its region, the

system reverts to the full-screen scanning method to locate it.

The VRS head tracking subsystem has a throughput of fifteen updates per second.

22

5. SOUND SPATIALIZATION SYSTEM

Together the graphics system, the bead-tracking system, and the user form a feedback system.

Visual images respond to input from the user who may, in return, respond to the visual

images. By adding to this system a second stimulus for the user, we can strengthen the user's

perception of the virtual environment. Since sound can be manipulated by computer without

much difficulty, it is a practical choice for a second stimulus. A system that can simulate a

sound emanating from an arbitrary point in Space is called a sound spatialization system.

This chapter describes a means of sound spatialization using intensity and provides a

description of the audio hardware used to implement it.

5.1. Spatia/ization Using Intensity

There are a number of cues that allow us to determine the direction and distance of a sound.

One of the most prominent distance cues is intensity. We are able to judge the distance of a

familiar sound, such as a car horn, by how loud it is. Even in the case of an unfamiliar sound,

we are still able to determine relative distances.

Looking at Figure 5.1, we can make a sound emanate from point A by playing it through a

loudspeaker at that position. Without moving the speaker, it is possible to make the same

sound seem to originate from point Busing the intensity and distance relationship:

I
l=

d'

So if point B were twice the distance from the listener as point A, we would have to play the

sound with one-fourth the intensity.

23

d=2
I= 114

B
,e

d=l
1 = I A�speaker

O listener

Figure 5.1. Controlling perceived distance through intensity.

Intensity is also a -directional cue. Looking at Figure 5.1 again, it is apparent that the right ear

of the listener, which is "facing" the speaker, will sense a greater intensity than the left ear.

Our ability to determine the direction of a sound is due in part to this interaural intensity

difference. Given the two-speaker setup in Figure 5.2, we should be able to apply this

principle to the problem of positioning a virtual sound at an arbitrary point between the

speakers. The method is to play the same sound in both speakers and vary the gain of each to

control the interaural intensity difference. For example, to create a virtual sound that

originates from directly between the speakers (point C), we would set each speaker to an

equal gain factor. To place a virtual sound closer to speaker 1 (point D), we would increase

the gain of speaker 1 and decrease the gain of speaker 2. This is called intensity panning.

The distance and direction intensity cues can be combined to position a virtual sound at any

point in the horizontal plane of the listener. Moore (5] derives the following general purpose

intensity-localization rule:

24

d" cos(e-e)
d

"

0

if /e-e"/<90°

otherwise

where G
n
C0,d) is the amplitude gain for channel n for a virtual sound source located at a

distanced and an angle 0 from the listener, and e
n

and d
n

are the angle and distance between·

the speaker n and the listener. This equation requires a minimum of four speakers, placed at

90° intervals, to cover the full 360° around the listener.

c.

135
°

45
°

Figure 5.2. Controlling perceived direction through intensity.

Using intensity panning alone for sound spatialization has its limitations. Such a system can

only create a "weak" virtual sound between two speakers. Nevertheless, intensity panning is

simple to implement an.ct provides a rough clue as to the position of a virtual sound (for

example, it is easy to discern between a virtual sound coming from the left and one coming

from the rear).

25

5.2. Audio Hardware

The VRS audio hardware implements a four-speaker intensity panning system. It accepts up

to four mono-audio sources. The system can process each audio source to produce a virtual

sound channel. The audio hardware consists of an off-the-shelf DSP evaluation board made

by Analog Devices (ADSP-21020 EZ-LAB™ Evaluation Board, hereby referred to as "the

EVB"). The EVB includes a floating-point DSP; 32K-words of program memory and 32K

words of data memory; a 16-bit, stereo audio coder-decoder; and a two-channel, 8-bit,

combined analog to digital and digital to analog converter.

The host system is responsible for calculating the distance and direction of the virtual sound

source in relation to the listener. This data must be conveyed to the DSP, which is running

the sound spatialization program. Since each virtual sound bas to be updated only once per

pass through the graphics pipeline, and since a virtual sound's position can be specified in

only four bytes, a simple serial link would be well suited for communication between the host

and the DSP. Unfortunately, the serial port of the EVB was not designed to be used while the

DSP is running code. Therefore, it was necessary to design a custom interface card for the

host system that connects to an expansion port of the EVB.

The 21020 EVB interface card is an 8-bit ISA card that plugs into the bus of the host

machine. A connector at the back of the card links it to the expansion port of the EVB. The

interface hardware consists of lK-byte of dual-ported RAM. One side of the dual-ported

RAM is mapped into the memory space of the host CPU, while the other·side is mapped into

the memory space of the DSP on the EVB. Each processor can access the RAM

independently, with the constraint that they do not access the same location simultaneously.

In addition, there is a special memory location in the dual-ported RAM used for sending an

interrupt from the host CPU to the DSP.

For each virtual sound source, the host CPU places a two-dimensional vector in the dual

ported RAM. The vector specifies both the direction and distance of the virtual sound on the

26

listener's horizontal plane. After the host CPU has loaded aU the vectors, it sends an

interrupt to the DSP. When the DSP receives the interrupt, it copies the vectors from the

dual-ported RAM to its local memory.

The main loop of the sound localization code, which runs on the DSP, operates at a rate of

44.1 kHz, and currently supports only one virtual sound source. The following tasks are

performed once per loop:

• Input a digital sample from the AID converter

• For each of the four channels, calculate gain based on the virtual sound vector

• For each channel, scale the input sample by the calculated gain

• For each channel, output the scaled sample

27

6. HEAD-MOUNTED DISPLAY

The goal of a virtual reality display is simple. We want to replace the user's vision with

computer synthesized images. Current display technology does not provide an ideal solution

to this problem. A popular approach is to attach a display to the user's head so that he will

see the computer-generated images regardless of what direction his head is turned to. This is

called a head-mounted display (IDvfD). Ideally, we want an HMD to be like a pair of

sunglasses: . lightweight, unobtrusive, cordless, one-size-fits-all, and completely covering the

user's field of view. There are many obstacles in the way of this ideal Small (one-inch

diagonal or less), high resolution, full color display screens are not yet commercia11y

available. Attempting to use larger displays, especially for stereoscopic HMDs, results in a

need for complicated optics. Liquid crystal displays (LCDs), which are often used in HMDs,

require a backlight. Backlights add significant weight, size, and power consumption to an

HMD.

For the head-mounted display of the VRS, a design was chosen which could be easily built

using commonly available components. This chapter discusses the display screen, optics,

and mechanics of the YRS HMD.

6.1. Display Screen

The critical component of an HMD is its display screen. Once a display is chosen, decisions

can then be made concerning stereo-vs.-mono, optics, and packaging options. In my search

for a display, I had the following minimum requirements:

• color output -helps compensate for lack of geometrical detail in synthesized
images.

• analog RGB input- eliminates the need for converting the video source into a
composite signal which would require additional hardware and degrade image
quality.

28

• built-in backlight- required since there is no ambient light within an HMD.

Given these basic constraints, it is desirable to use the smallest, highest-resolution display

available. Among a severely limited number of choices, a Sharp LQ4RA01 LCD module

was chosen for the project. This four-inch-diagonal display has a resolution of 160 x 234,

weighs 170 g, and refreshes at a rate of 30 Hz. It requires an analog ROB signal that adheres

to NTSC timing specifications, which the G-Node can be programmed to generate. An

external DC to AC converter, also produced by Sharp, is required to power the LCD's

backlight. In addition, two external potentiometers are used to adjust the brightness and

contrast of the display. A block diagram of the display system is shown in Figure 6.1.

6.2. Optics

Power
Supply

DC/AC
Converter

-SV DC �

+SV DC •

Brightness Contrast

C)
l

/ '

49
LCD Screen

.j

110VAC•()

.
Backlight

...._�, ������

4
Gre�n

G·Node

....,,._

Figure 6.1. Display system block diagram.

Ideally an HMO should have two display screens. By presenting a separate image to each

eye, a virtual reality system may generate stereoscopic cues that we use for depth perception.

Unfortunately, due to the size and weight of the display screen used in this project, it was not

practical to build a dual-screen HMD. It may seem that a single-screen HMD would be

relatively simple in design compared to a stereo Hl\.1D, but this is not the case. The problem

29

is that when we have both eyes looking at the same screen, they must converge on the image.

Normally we want to bring the screen very close (less than six inches) to the user's eyes so

that the image covers a large percentage of his field of view. As a consequence our user will

soon get a headache from trying to maintain convergence on a screen that is so close to his

eyes. In the design of a monoscopic HMD, there is a tradeoff between visual comfort and

field of view.

By including some optics in an HMD, it is possible to improve its visual characteristics.

Heavy or bulky lenses are undesirable for an HMD design. This project uses a Fresnel lens.

In addition to being almost paper-thin, a Fresnel lens makes objects appear larger and farther

away, thereby reducing eye fatigue. The magnification that the lens provides can be used

either to improve the HMD's field of view or to allow the display screen to be placed at a

greater distance from the user's eyes. The drawback of a Fresnel lens is that it is not a

"perfect lens" and, therefore, distorts the image. This distortion manifests itself as a slight

spherical aberration.

For the particular Fresnel lens used in this project, the display screen is in best focus at a

distance of six inches from the user's eyes. If the LCD module were placed six inches from

the user's head, then, due to the module's weight, a counterbalance would be required. This

would increase the overall weight of the HMD. The solution is to place the LCD module

near to the head, facing the floor, and use a mirror to reflect the image into the eyes (Figure

6.2). The mirror is positioned so that all points on the display screen's surface appear to be

six inches from the user's eyes. Because of this reflection, the image that the user sees is

inverted around the y-axis. The graphics display system must take this inversion into account

when generating an image.

30

r LCDModule

Mirror

Figure 6.2. The optical system of the HMO.

6.3. Mechanics

The HMD is built around a Crews brand plastic helmet that has a clear shield to protect the

face. This open-top helmet has a structure similar to a welder's helmet. A latching knob in

the rear of the helmet is used to adjust the diameter of the headband. The shield of the helmet

is easily removed and is not used in the design.

The LCD module is mounted under the front of the helmet using L-brackets. A glossy black

plastic plate, used as a mirror, is attached to the front edge of the LCD module. A Fresnel

lens extends from the rear edge of the LCD module to the bottom of the plastic plate. Black

antistatic plastic is used to shroud the entire face of the helmet, serving to block outside light.

Two connectors are mounted on the outside of the helmet. One connector accepts a 5-pin

DIN plug that feeds power from an external supply. The other connector accepts a DB-9 plug

that feeds video from the G-Node board. Two circuit modules are mounted on the inside

front of the helmet. One module is the Sharp DC/AC converter for the LCD backlight. The

other module contains support circuitry for the LCD module, including two thumb-screw

31

potentiometers for brightness and contrast control. Figures 6.3 and 6.4 show the front and

top views, respectively, of the HMD.

DC/AC module

Power connector

Mirror

LED's
Su rt circuit

Video connector

LCD module

Shroud not shown.

Figure 6.3. HMD design, front view.

Headband
adjustment knob

Shroud not shown.

LED's

LCD module

Figure 6.4. HMD design, side view.

32

7. APPLICATION SOFTWARE

This chapter describes the operation of the application software that runs on the host CPU.

The application software defines the interaction between the user and the objects in the

virtual world. The application can be considered to be separate from the graphics pipeline,

although in the current implementation these two software pieces are combined into a single

program.

The current application running on the VRS allows the user to explore an animated

landscape. The objects appearing in the landscape are loaded from text definition files at run

time. Each text file defines a single object by listing a three-dimensional position, a

diameter, and a color for each sphere making up that object.

The application program is implemented in C++, an object-oriented language. Each object in

the virtual world is represented by an instance of a class called CppObj, which consists of the

file name of that object's text definition file, an array of spheres, and a transformation matrix.

When a CppObj instance is defined, the file name is passed to the constructor. Currently, the

following methods are available in the CppObj class:

• load() - Parses the text definition file and loads the data into the sphere array. It is
only called when the object is first created.

• moveTo(x, y, z) - Translates the object to the absolute position (x, y, z) in world
coordinates.

• bounce(v)- Causes the object to bounce along they-dimension, given initial velocity
v, assuming a gravity acceleration of 9.8 m/s2

•

• spin(T) -Causes the object to spin around its own y-axis with a period of T.

• becomeSound(n) -Causes the object to emit sound from virtual channel n.

33

All motion in the virtual world is based on the real-time clock of the host computer, as

opposed to the frame number. This ensures the fluid motion of objects even when the frame

rate varies.

34

8. SUGGESTIONS FOR FUTURE WORK

Much of the potential of the VRS has yet to be tapped. There are a number of improvements

that could be made, some of which have already been started by students in the Advanced

Digital Systems Laboratory. These include:

• writing a more interactive application program. In the current application, the
individual objects of the virtual world do not respond to the actions of the user.

• replacing the current audio system, which consists of the EVB and an interface
expansion card, with a single expansion card. This card would have a DSP, memory,
and four channels of 16-bit audio input and output.

• enhancing the sound spatialization software. The number of virtual sound channels
could easily be expanded beyond the current limit of one. Also, Moore [5] discusses
a number of spatialization methods that

1
combined with intensity panning, could

provide a more convincing two-dimensional sound.

• adding advanced input devices, such as arm tracking, to the system. For example, we
would like the user to be able to reach out and grab objects in the virtual world.

• moving more of the graphics pipeline stages to the G-Node. As discussed in Section
3.3, there are some stages currently performed by the host CPU that the G-Node could
handle more efficiently. This would increase the graphics performance of the VRS.

• enhancing the lighting model of the sphere-based graphics. Instead of always drawing
the highlight in the same position on the spheres, the highlight position could be
calculated based on the position of the user and a virtual light source. This idea could
then be extended to allow for multiple light sources.

35

LIST OF REFERENCES

[I] H. von Foerster, Observing Systems. Seaside, CA: Intersystems Publications, 1981.

[2] K. E. Drexler, G. Pergamit, and C. Peterson, Unbounding the Future: The
Nanotechnology Revolution. New York, NY: Morrow, 1991.

[3] D. Hearn and M. P. Baker, Computer Graphics. Englewood Cliffs, NJ: Prentice
Hall, 1986.

[4] D. F. DeMenthon and L. S. Davis, "Model-Based Object Pose in 25 Lines of Code,"
Proceedings of the Image Understanding Workshop, Jan. 1992, pp. 753-761.

[5] F. R. Moore, Elements of Computer Music. Englewood Cliffs, NJ: Prentice-Hall,
1990.

36

APPENDIX A. G-NODE DOCUMENTATION

A.1. Schematics and Programmable Logic

The following items describing the G-Node hardware are included in this section:

• Circuit board layout diagram (p. 38)

• Circuit board schematic diagrams (pp. 39-44)

• Text file describing progranunable logic device (PLD) number U3 (p. 45)

• Schematic diagram describing PLD number Ul4 (p. 46)

• Schematic diagrams and text file describing PLD number U4 (pp. 47-50)

37

a

RE

..:I§
...., 1? E
� 0 .

" c "'
-< "'

,>" "
� ,g
,; �

0
I

I �

N In � I� I::,

1 5 L LJ

I, ,I,. U12 I '

ll
U11 I

ll
U10 I

il U9 I

I l us I

l U7 I

l us I

l us I

I I
- - - - - - - - - - - - - -

P2 P1

I
..
::,

,; D I
I

II
N

::,

I �

�
j I I

�L RP2 I

'L
I

"'-
::,

38

-

r-

Gr a-hies Processor

/RES
LCLK(2,1)

CORDY
/COINT

LRD

,=s
/1\,LTCIJ

LAO(Jl:0)

PC "Ost �nterface

'"' /HlNT /CAS(]:0)
/HOE /HOE N=
HOST HOST '"
HRDY !tRDY '"'

/1-tWRIT · /!-/WRITE "
/HR.EA /HREAD

/HCS /HCS
/PCAl /PCA1 RCA(9,1)

/!Ul:SE /RESET

BAWKA{7:0) BANKA(7,0)

LAO{Jl:0) LAD(Jl,O)

is PCA(ll:1)R PCA(lJ.:11

HOST.SCH

LTA(!,:5)
/CS45J

/HSYN
/VSYN.

/BLAN
VCLK

GSP20 .SCH

FP C::o-roc-ssor

/RESET
LC::Ll{(:l:l)
CORDY
/CO INT
LR=
SF
'"'

� /CASl
,=s

/ALTCH

LAO(Jl:0)

COl?PER. SCH

Vid"'o Memo

/CAS(J:0) SC
/VRAS /SOE(J:OJ
n• SD(?:0) �
,w,
SF

RCA(9: 1)

LAD(Jl:O)

VRAM.SCH

Video out-ut

LTA(6:5) SD(7:0) ' -

/CS45J /SOE{J:O)
'TR SC
,w,

/HSYNC
/VSYNC
/BLANK
VCLK

Ll\.0(7:0)

VIDEO.SCH

Advanced Digital Systems Lab

T!tle

GNODE, TOP Level

Si zejoocum,;,nt Number
A John V. Belmonte

Oat.,, Januar " 1994 She<H: '

1·
=

LO

oe '

I
L !

A

,.
, ..

'
,o
''"
""'

""

,,,

'\

'

!

c_..,

'

40

"'
"

s. ·" •
11,·

'

" I
I

"' s
A

'H, B
I

ITT u
...

I s I ...
·� .. ""

"'

,
" " " •

'"

R

PCJ\l
OC"Al>
PCAl.l
OCAH
rc1u5
P<:A1�
PCJ\l "/ "�"'"
PCJ\l 9

<'<OD15
r,cou
e,:-m,
PCt>l2
1•rn1l
rrnlo
-·,
PCt>B

rct>>

ll

"
'

�

Jl1il:!l

l>C<•G
PClJS

"'
,;;rMst ,ot,c =- '" ·"

-"·
""''''
'<00
PCD]
Peno

"�'"="

no<�E'l'

-
""""
=
.rot•H"DY

,nm

LLLLLLLLLLLLLLLLLLLLLL
LLLLLLLLLLAJ\AAAAJ\AAAAAAAAAAAAAAA

g��Yi�P.$��rrrrrri;rfii�rrir�irit
·,1,i,1;1;r,i:,p1 O]',]:i];,ji]l)ili]l) i. 1,1 .. >111�

vcc, M/8GIF12ffPIH11!!>/HA/Na

"""' BB ,ca,,,,.'"' /Hn '"'' I L6/H5n,SIN< ms

-

icl�

1'<lVonc•d olo,ltal s,.,,L•m� Lab

Or<ooE, ZSA Bus ',:ht<,rh� ..

[sli•ID=,i;.�nL Hui,;i,9�
" -'ohn v . .,,.,,.,m, ...

� 'i,ilij"h�;,--. .L"--t

•ml '."

o�,.��,,.,,...,
� <""""'<"""'

• 0

'
'

<
C'�

'

J

'
•

'
' ..

I
,1

N

M

"

"'
N

42

' I
I

�I
• :�' !

'"

• •

'

i·
'

..

l!iik . ,

C,�N� .. ,,e,r-�
<<<"<<<<<:

•

'

l
l

'

�r.��t � @

'

�lff1�1��2 :�

'I .,
"
1 ,.

"•

[�

0

"

"
-

'

'
;

.

.

§f
;;c:
:;:;:
.,
..

i,

.

.

I.
l

•
'
.
0
"
.

. . .

'
;

o�""'"'""',...
._,.._ .. ,.u."

'

.
'

. "

:; : :;

'

43

'
•

'

[

r

•
'

.. -:

.
"

•

•
'

l
'

'
.
'
•

]
l

' .
' .

;
'

t

VCC: CS/CB/C10/D13/F]/J]
Ml3/N3/N6/N9

GNDt C4/C7/C9/Cl2/E3/El]/H3/Hl3
K] /t,l]/M3 /N5/N8/Nl l

NC: Al/Al5/B2/Bl4/D4
P2/Rl/Rl5

2 x O.l uf"
l x 470 pF
1 X 10 UF

/RESET

LCLK2
LCLK

CORDY
/COJ:NT

LRD,;
SE_

'�!si
...,,.,,__,_
/ALTC!-1

LAP{)J.:0

voe

CND

�u

m,

JD

MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
ssssssssssssssssssssssssssssssss
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
33222222222211111111119876543210
l0987654J2109876543210

TMS
:ROY TOO

voe

MSTR TDJ:� �

iNTR �g� lJ:NTG ECl Gl4

Ul6
REsiff TMSJ4082
LCLK2
LCLKl
CLK

CORDY
cO:un•
cro2
C1Dl
croo

cc

BUS FLT

LRDY

!�

AL'l'CI-!

LLLLLLLLLLLLLLLLLLLLLL
AAAAAAAAA 11.AAAAAAAA AAAA LL LL LL LN L,L
DDDDDDDDDDDDDDDDDDDDDOAAAAAAAAAA
332222222222llllllllllPDDDDDDDQD
l0987654J21098765432l0987654J2lO

GND

Advanced Digital systems Lab

Title
GNODE: Floating Point Coprocessor

,Size\bocument Number
A

Date:
John v. Belmonte

January 27, 1994)Sheet 6 o{

R=

LO

----.

-

'
'

'

> 0 ,,.,,.. 0 i"'"' ��,..m�"'"'"'"'"'"'"'"'"'NNNN

,zzzzzzzzzzzzzzzzzzzzzz
OHHHHHHHHHHHHHHHHHHHHHH
-����������������������

45

'
'
'

'

3

'
'

' '"
! 8
: :;; e
: :;, ..,.• ff :;

46

i
(

!
{

ff

I
I

''
'

•
'•
'

I
a-'

:--'' ,
' I

' '' '
;; " '
f r

1 �
;.... '

•

''
'

47

'
"
' .

'•'"
'

•
d
J u' ''

8
'

0
J•

'
•' ' •

' ' . '

• I

' ••
''

...

]
'

l

I
I
,-

.... ..,

...

••

s�
"'
, .

..
""•C
..

·r
• •
".
• •...
t:i:rn
"""
,.,

• ••

I

48

49

'

!
,'
'
0

50

' '

'
' f u
'

�) r �
0 d O , r '

Z 'D O ' u ' ,

'
'

'
'

A.2. Software

The following items describing VRS software running on the G-Node are included in this

section:

• C language source code which implements the G-Node's graphics pipeline stages
(comq.c, pp. 52-53)

• C language header which defines the communication structure between the host
and the G-Node (com.h, p. 54)

51

-

' .

! ·•
0

'
'

·�•

""
"::
"
'
::
::"""'" "
'

i
"
""
''"
\',

I
'
'
'
''"
i""
::

0

'·•
i·• ,

o�

'•

52

. ,
g

' .

.
0

1
,

! '

'
.
•
'

0

'
..... <,
'C-"' 0" _.,,,,,
-�. _,,""'"''"'
- • 0

,IJ�A •-<

-§,-@ ,; IE :;;
... �"' ,.,,
'll.�-"" ,.,
,: 'C ...

'
a

�.
'

u

�.
•
'
'
r
2

'
.., 0000 .�
·* �
� "'"' .,... ;-

A A S a
S O A S

f
'

. '

1,-������������������������������-

'
.,
e

'

N

• •
.,
e

'

N

'
•
�
'

N

'
e

N

'

!·"
N'

,.
,;
:.; �

•oO ·•
��E

-f.�.
--""
..

"ON ,..
00, -�" 0 .. ,

'a,};:: ... � . ..,' ..

:

•

'

. •
'

'
'
.'

'
' '
-�"

]
J

8
''•

"".

...
NNN

. ..,,, "''
f ,o ,o

' "'"'
...
,,

'

53

'
'

•
c
'
'
'

'

"·•'

-

"

j

'' . '
••

".,
, .
••..•

<M ..
. .
"

;; ;;
••..
••..
••.... " ..

••

·1
le
''
'".. .. "'"..

'
.

'
.
;

'

'
"

'
"

•

;
.
.

.................
....

....
....

"'"'"'"'

'
.

54

APPENDIX B. V-NODE DOCUMENTATION

B.1. Schematics and Programmable Logic

The following items describing the V-Node hardware are included in this section:

• Circuit board layout diagram (p. 56)

• Circuit board schematic diagrams (pp. 57-61)

• Text file describing PLD number U! (p. 62)

• Text file describing PLD number US (p. 63)

• Text file describing PLD number U! 7 (p. 64)

• Schematic diagram describing PLD number U7 (p. 65)

55

. .
·,. .

...
ADSL

V�Node Board Layout
John V. Belmonte

c c c - - -
c c c c

"' .. "' m
� - -- "'

�

'---- - J-.. - -- ---'----

G[AP1 I;;;;-]

G L U7 J c�=1 [_��
J·--

0 0 U4

c�-1 c� [U2 I -·
..

--·--··--·--·-- .
I

]3
,,

.

I

PC-AT l:-terface Gra�h· ca Proceaaor

HD(0:151 lID(O:lSJ /HSYNC

/VSYN.C
!tFSO HFSO

HFSl HFS1

/CS251
/CS261

/HWIUT /HWRI'l'E /BLANI<•
/HREA /HREAO

/RCS" /HCS

RESE RESET

HRPY l-fRDY
-

HOST.SCH

DOTCLK

t,I\D[O;lSJ

!:'.!
MA(0:8]-

/CAS•

/W,.$0
/RASl

;

/TRQE

GSP.SCH

Video Di�itizer

.._/HSYNC

/VSYNC

/CS;JSl
/CS26l.

/BLANK SD[0:7]

LAD[0:7]
see

MA[O,lJ se,

'"
./TRQE DOTCL

VIDEO.SCH

Me>mor··

LI\D(0:15] DO'l'CLK'4 L.

MA[O,SJ
se,
see

/CAS

/RASO
/RASl SD[0;7]

'",-
/TRQE

MEM.SCH

Advanced Digital Systems

TLt:le
\/NODE, Top Level

size!oocument Number
A John v. Belmonte

Oat<>: Janua " 199�She<'et

Lab

!�
' "' '

g._ = """" �"'
rocs16 LA,0 -W- IRQlO LA" -&- IRQll "'"' � � IRQ12 LA20 � "'--- l:RQ15 LA19 �

ti: � LA,a
� K LA"

file- � """' *° iITf" D MSffil �
fill: �

so,
M so, c '

DD CD Err ��7
SblO
SDll CH nis DRQ7 SD12 c,s Btt C,S DIT ,sv SD13

Etti- = S014 c>,
= GND SD15 c,a

&l

GNDo-M- GND roan< �
RESET so, A>

+SV� .sv SDS AS

"'---- IRQ9 SDS M

- -SU SD< AS
AS- DRQ2 so,
A, - -12V so,

M- SRDY so> A
B, M

GNDo-ffi
+12V SDO
GND 'IORDY "'

m
Sf.iEMW ·=

AU

SMEMl'l SA19 "'
BB """ S.AlB

AD
BU ""' SA17 cm � bACK3 SA16 A,S

Al6 JU.g_ � SA>S -rn ffi ' K SA14 :m "' DRQl $1\13
SA12

"'
B2D REFR .,, mt scti<; SAll All
!Q2 IRQ7 SAl.0 �
,tt

IRQ6 SM
IRQS SAS A,0

m l:R04 SA' .,,
m � SM A:;l5
� SAS .,, K .,, � TC SM
� BA!.E SAS '"

+5vom ,sv SA' A:.9

� DSC SAI A O
AH GNDo----!il-!- GND SAO

ISA BUS

L.." "
u" ' ' '

U' '
" Drn

G
' M ' "' M ' AS
s M ' AS ' ., ' "

Ba "
BS
BS
B<
" ., "

� H
l:l HD
14 Dll

5 12
16 HD
17 HD14

A HD15

74ALS245

u, ' Drn "
c

' ' M Ba H '
" B, ' D ' M BS ' H ' AS BS ' H '

s s' M " " AS " HD2 ' " ., ' HD> ' " DO " B'
74AtS245

,n

"'
ID '"
,u"'"

,i;.. " DS "

HD , 15

HRDY

" "' ' cs
S T ' " DS ' IHREAD

� " OS

A ' u o, n o, ' ' ., o,
rn ' " o,

20L8
"HOST"

HFS
HFSO

""
� 21 rocrl" " ' RDY

mw >TE
/RESET >

Advanced Di'git:al Systems Lab

Title
VNODE: ISA Bus Interface

Size]°ocument Number
A John v. Belmonte

Date: Januar " l.994 Shee '
r
=

'.'
"' '

�

"'

E'

l!.!!.!fi'.J.>.

"

�

'.E"1-
-=

�
=

"'

11dJ,w t'
�U� ���:�Bt��}t�k
c'b!> RSS""NSLC>H<LD

•o �g� SS I 01 �¥"1.H"�gfl:rc:±!l!b,
111>2 I> LAD2

l�g��!
!ID>

1,ADJ
HD< LAD<
llbS ,._..,, HD6

U< ""°" Ii�:;�
HI>' L"D7
USS 'tHS'4D>D-�0 VS.<
''°" ,.,,.,,.
HD. LM>S
llDlO L1'Dl0

�gg e �gg 1f=j!II(�g;� f �g:� I= hl>

""'"'="1 1101 > .. rit g �U%�"l', -"-'-"ill.I

�h'_�t�g�k���Jk�l
Y't��SS�'tSLAKCC�lC

"''''11111 'li1i11l•

E

=··.,..;.;-

-- " o,
o, " o,

" o, ,,,, "'" o,
'" o,

"'"'
"''"
20L0
"DECODE"

il

�
' •

.. '
L.!!filil

R-PAC:K
3l oh"'

• " '

' '

R-Plu,K
,a Ohm ' ...

"

,.,.v�nc�,, D1�ltd syotc,.o L•h

ITitl•
VNODe, Ptoc••�•• � Lccu "'""°""

sh•loccUfflont Numb·
•

�
•><>Im V. B�loncnt,.

]094,�hP�t �
iR

""I

1�- 0

; ;
'

Tl 111.,

•
"

Tr

' .

f IH

60

�,1r(r.11u
�

.
" •
" "

'

'

�
•

•

'.rl cr'-t-·f1 • -�
'�-!---------�

'

.

'

'

'

61

'

,,

'
' O"N
.,,."''"""'� =o
M><><M ,.

I I r'r'r'I

:·

!

' ' "'

I
3"•
'

E

.

-�"
'
,

!

ON ... I<>
0000
"''"'MM
..,. "'

62

'

\
\ '
..
•• •o '"
'"
><

:.� �

l•
'
"•

] •

el

4/20/94 US.PDS I

; PI\UISH DesigTI Description

; ---- -------- ----------- ------- ·--- Declaration segment -·----------
TlTLE =PE, US
P1'TIERN
1u,v1sION LO
AlmlOR John V, Belmonte
COMFIINY
DATE 1122,n. revise<! 9/3(92

CHIP _1J8 PAL2DL8

�rn 1 /TR
PIN 2 /W
Prll J fl.AL
PIN 4 LCLK2
PIN S /RAS
l'Ill" 6 /RF
PlN 7 t.l\26
PIN 8 LA25
PIN 11 J.A24
pI!(12 =

PIN 15 I.ROY
PIN 16 /RASO
PlU 17 IMS!
PIN 19 /CS25l
PIN H /CS'l'IIIB.
PIN 20 /VALID
PIN 21 /CS261
PIN 22 /VW
Pm 24 \ICC

-"
-"

=n

Ll\012

PIN Declarations ---------------

COHBil<IIITORJIIL
COl!BINi\TORIAL
COMBINIITORIJ\L
COMDIHI\TOl!l/lL
COJ!BlW.'l'OltIAL
COIIDINIITORIIIL
COMBINATORIAL
COHBINA'WRll\L

EQ\J�;;:,;;;;·-
---------------- Bool<>an �aticn Segment ------

VALID • (/RAS + t.CLK2) ,.
(IIAL:rD • IRAS)

RASO ; (VALID ' llP • RAS) +
['IALW • /LA26 • /1.1125

(RASO • RASI

MS, (111\1,ID • RP • RAS) <-

SIGNALS ROW ADDRESS Im !.All

; IIC'l'lV11TE FOi\ REFRESH
• iLfl24 • l!AS) +

;\CTIVATE FOR oDo
KEEP 1!.CT!VE UNTU, /RASal

; ACTIVII.TE !'OR REFRESH
(VALID ' Ll\26 • l.11;l5 • Ll\24 ' RIIS) +

ACTIVATE FOR Ul
(RAsl ' IIJ\S) KEEP ACTlV!l UNTU, /IIJ\S�l

CS251 (V!\LJD RIIS ' /RP ' ILl\26 • l.11;l5 /l.11;l4) +
, ACTIVATE f<:l!I 010

(CS251 (RJIS + I.JILi ! ; KEBP ACTIVE UN'l'IL RAS•l,/\L�O

C5261 � (VALID MS • /RF ' 1,/\26 " /Ll\25 • /!.A24) +

CCS261 + IMS + LALi)

CSTI!IE !VALID "' MS /RF • l.11;l6 ' l.11;l5 • /Ll\24

(CSTIME ' (RAS + LALi l

VW•/(IW ' !LAL+/Tll.))

/LR!lY /TR ' /W ' CSTU!E

ACTIVATB FDR 100
KBEP ACTIVE UNTIL RAS•!.AL•O

> •
ACTIVATB FPR 110
UNTIL MS•LAL•O

WRITE LINE FOR \IRAM

MID WAIT-STATE FOR TIMER CHIP

t

[4120/94
·�·

Ul7.PDS =-:rl
, PAL.\SM Design Description

, ---------------------------------- De"lanti.on Se-nt ------------

TITLE VNODE. U17
PATTERN
RBVISlOII l.O
A.!.l'rl!OR .John V, Belmonto
=·=
011Ti;: •1un

CHIP _ul7 PM.22V10

PIN l
em ,
em ,

em ,
PIN 5
PIN 6
p,:N 12
PJ:N 15
PlN 16
PIN 11
Pltl 19
PIN J.�
PIN 20
PIN 21
l>IN 22
Piii 24

�QtlATlCONS

-"

/CS261
"

fTRQB
/l!UIIIK
/CS251 ""
/DOTCT,Ko
'

'"

,co

/RD2H
/Wl'-261
/RD2Sl
/111!251
'"

HD25l
WR251

CS251- TRQE
CS2Sl W

RD261 " CS26l • TRQE
WR261 • CS261 ' W

y " /Y • /l!LANK

SCO � !'I /B[JINK
SCI m Y • /Bt.ANK

llOTCLl<O • DOTCLK

SiMULFITION

Pru Decl<1rations ---------------

C'OIIBINIITORIM.
REGJS'l'&RED;
COKJlINATOIUl\l..
COMBIW\TORIIIL
COMB:ttlllTORTAL
CO!fBINIITORIAL
COMBINATORIAL
COl!BINATORIIIL

Boolean Equadon Segment ------

Sb..,lation S�gment ------------

� u � � 5
' ' i '

A
I •

• '

i
I
I

! ! . ! i

J ! n 0
%

� � � � � �

r.
� � ��

I

, I '

!�1-�r--1'
' J

I

cl;-,....,--·
-

1
-

,, l ,· I ' , ! , •I
11 .. J fG· I 11 .. J ! d I �rr \ r" 1 • ��·T

.I ! !j
! 0 0 '

� � 5 �

65

'

;�
J "
0 0
i

1

u �

8.2. Software

The following items describing VRS software running on the V -Node are included in this

section:

• C language source code which initializes the video control registers of the GSP
(video.c, p. 67)

• C language source code which initializes the video AID converter (bt251.c, p. 68)

• C language source code which initializes the video genlock (bt261.c, pp. 69-70)

• C language source code which initializes the A/D's RAM lookup table (th.c,

p. 71)

• C language source code which implements the LED tracking (jind2t.c, pp. 72-73)

66

u

g
�

'
'

IN <> � CN
· �O"'

0 -��" � ,,_,,..,
·�� ��
.'

67

0
0

!
.

'

-

.

........

""'"""' """'"'"'' " " .
0 '
• 0

,,,,, '.!!!' Brn:h 3ffiffiffis �
-� = "'-"' j:>>:>!i: Q
,. ____ ,. ___ _

l!�!::E� �tt:t:t t
t.UU: �HU �

!
'
.,

!
,
.,
•

"'
..

4/20/94 DT251.C I

I" llt251.c
This 34010 prognm initinlhes the BT2Sl di11itiz"r chip .

. ,

Undud" �stdlib h>
linclude •gspr"g h•

typ,,def volatile unsigned short vus,

ldeUne llT2Sl_lUJDR
ldefine BT25l_RAM
ldeHne llT25l_REG

main() [
int iJ

(• lvus"l 0><02000000)
1 • 1vus•)oxo2000010)
!" (vus•)Ox02000020)

llT25l_ADD!l m 0x00; t• Co"1Mnd Register
BT;!Sl_REG ; 0><.00; r• D7,ll6 � input select

I' OS,04 sync select
_ 0 ; VIDO. 5 ; VIOl
' " u VID2, P � VIDl

/• DJ,02 � 00, 50 lt(V sync slicing level

BT251_11,DDR � oxoi,
BT25l_REG ; OxDO;

BT2Sl_ADrnl • Dx02;
OT251_R&; Ox 40,

BT2Sl.)\DDR OxOO;

,. "'· 75 mV

,. lo, 100 mv
,. U, 125 mV
I' 01,DO m 00

/• IOUTO IREH) . '
I' 07,02 ; current . '
I' DI.DO; 00 .,
I' l,2V • $PB . '
/• LOV • SDO . '
, . . av; SM . '

I' 10UTl (REF-I . '
I' 07,02 • current . '
J' Dl,00 � 00 . '
,. .JV • $40 . '

for(i � o, 1 < 256; i+> l
llT251_M>I' • i;

/• fill RAM using autoincrement •1

. '

.,

. '

. '

. '

. '

.,

. '

-

'

" 1

j
'
.
.•
. '

•
'

l
•

s:�: uowo "'�"' �
0000

:-�tlf
� I ll '
0---<, "'""" �
�!'.!'i!'i!'i!
::: "' .. ''""
o----

""'"'"'"'
O kbt:t: !..HB:

. ' . '

� !-��
"'

•
' "a•.•
. ,
•

i

l
'

1

69

,

,S
'
,"•

]
-. .5
.

'

.

.

'

70

000
o""
000
000
000
000
NNN
000
"><-�

000

•

. i
'
'

�
'

°'"
"

. -� ...

--"
•
--'

71

;:J

4/20/94 FIND2T.C 1

/• find2t ·"
version J
12141n

Tracks 2 LED's in the frame buffer.
Assumes that there is ,. left LBD (Xlf and a right LED lX2l an<l tha-t they

<lo not cross boundaries.
Uses 1<indowin11.
Uses FIELD interrupt to .,nsure stable fiel<l for processing,
Special stuU for light-tweerer input,

•;

lin"lu<le <stdlib.h>
Hnclu<ln •gspreg. h"

ldefine T'Rtrll l
ldehne FM.SB O

ldefine FRA!fl':_START
ldefin<> XW.X J40
ldeline 'illAX 242
ldefim, LBDR,IID 12
l,foUne XCOR 4
J<lefine YCOR 4
ldofine BOXRAD 20

(!IOL • 1024L + 21 <-: Jl /" statt of lmag<> •!

I' ""'x vdue �encl to host 'I

I' radius of LED in i=ge •;
I' approx. offsets into center of LED •r

tYl)edef unsigned char uchar;
tYl)edef unsigned short ushort;
tn,edef unsigne<l int uint,

ldefine OFYJNT_IIKC'roR OxFFFPFEl\0

I' status info starts at FFFF FFOO •/
ldef.ine LOST 1'1int')OxFFFFFFOO) I' nurnb<!r o! timns lock 1<as la�t •/

{' coord:lantes
�deErne xl
ldefine yl
ldefine .>i:2
l<leUne Y2

start at FFFF FFSO • r
(" I short• I OxFFFFFFaO)
I_' lnh<>H' JOxPPFFFF90)
1 • lshort•)O><FFffFFJIOI
(• (short' I oxFFFFFF80l

tdnHne 111\X I x, l' I I I (xJ (y) l ? (x) IYI
ldefine OIHH "· y I I l (Xl < fyl l ? (>el lyl

ldefine WRITB(addr, val J
ldeH>te REIID(addr I
ldefin" WRtTELI addr, v.o) I

'(ushort •1addr • Val
'(u�hort ')addr
'lui.nt • Jaddr • w,l

gra!;>_frnme() {

WRITE(DFYCTL, REJID(DPYCTI, I I OxlOOO);

WRlTBI DFYlNT, 261 I;
WRITE(INTFEND.REAfl(lNTFEND) &OxFSFF),
while(CREIIDIIITT'PENDI& Ox04001 •• 0) {);

WRITE I INTFEIID. REI\DI INTPEIID)& OxFl!FFl;

while(IREIIDIINTPENDl&Ox04001••01 ();

WI\lTE (DP'iCTL, REJID I DP'(CTL) & OxE!'FF) ;

void scan(void l {
static int last
const int xhaH
corist int yhal r
int ten,p;

if(!!aSt) {

FM,1.m,
1:MII.X/ 2'
YHAX!l;

!' enable refr.ash

/' disable rehesh

. ;

•;

l':1 ><half,
Y1 yhaH;

la,:,t � se�rch_bo><_.h(&Xl, &Yl, xMlf, yh�1f 1, t• Hnd left LED '/

ten,p a (Xl!II.X - Xl) / 2:
X2 � Xl • temp;
Y2 • yhdf;

last � lagt && search_bo>c..rll &X2. u·2. t,,,,.,.. yh5l(I;
if! last I WRITEI HSTCTLL, REI\D(HSTC'l'LL I f Ox�O);
LOST•+;

else {

I' Hnd right LBD •;

last • search_box_udl &Xl. &Yl, BOXRAD, BmraAD l && search_bo,c_ud(&X2, &Y2,
BOXRAD. BOXRAD I,

ifl (XI �· ><2) '1< !Vl �� Y2 l) last , l'l\LSB;
;:r I la5t) WRITE(IISTC'l'LL, Rl!IID(IISTCTLL) I oxao 1,

int seareh_box_ml(short •xeur. short •y,;ur, short xrad, short yrad I (
int xl. x2. yl, y2;
int "' y;
unsigned long &ddr. majo<ldr;

><1 • It/IX(•xcur - >:rad, 0); /' clip box against frame '!
x2 • IIINI •xcur Xrttd, X!fNC) ,
Yi • MAXI 'ycur yr�d. o I;
y2 • HINI •ycur + yrad; YHAX I!

llltl)addr , FRl\t!B_5TART + ((lyl « 10) + XO << 31;

for(y "yl; y < y2; Y"-) {

adde � majaddr;

for(" � xl; " < xz, x+>) {
H(l'luchar•)addrl \• O) goto found_µ<l:
addr •� B;

majaddr •• 1024 << 3;

return I FALSE I, I' LBD not found in box 't

found_ud,
•xcur a >< + I;
•yeur � y • YCTlR,
return I TROE 1;

int search_boX_.lr(short •xcur, short •yeur, short ><rad, sho,ct yrad) l
int d, x2, yl, y2;
int x. "'
unsigned Ionq addr, ""'ja<ldr;

xl � MAX(
x2 • >UIH
'/1 " MAX(
'/2 � HIN(

•xcur
'><cur
'yrnr
'l'CUJC

xra<l.
xrad.
yrad,

• yrad,

0) '
XMIIX I'
D) ;
'illAX) ;

t• clip box against frame • /

maja<ldr � FRl\t!B_STAAT + (((yl <-< 101 + "11 « 3);

for(x • "1, x < xa, x++ l {

addr a maj addr,

for('/ � yl; y < Y2, y++ f {

;;!

! 4nD/94 FIND2T.C 21
if[l•(uchar')addr) 1� O) 11oto found_lr:
addr += 1024 « J,

majaddr h 8;

r�turn! FALSE); ;• LEll not found in bo,c •1

found_h:
'xcur = x • XCOR,
•ycur = y .- 11
return I 1'11.UE) ,

int nearnh_box_rl(shon •xcur, short 'YCU"<", short xrad, short yud I {
j.nt xl, .x2, Yl, y2;
int"• y:
lm�igned long a,;ldr, majaddr:

;l • l!AX(•xcur - xnd, O l;
x2 = »INI •,rcur l- xrad, XHI\X) ;
yl = MAXI •ycur - yrad, O);
y2 • MrHI •ycur + yr;,.d, YHAX);

I' oHp box againH frame •1

maj�dd-c • FRIIHE_START + (f(yl « 10) + x2-ll « JJ;

for(,c • x2-l; ,c >= xl: x-- I

add>: � ,...jaddr;

for(y � Yll y <: y2; yo) {
l{(('(uchar'l"-ddrl !• O) goto found_rl;
addr += 1024 « J;

""'jaddr -= 8;

rP.turnl FALSE); /' LED net found in bo>< •1

{ound_d;
•xcur = >< - XC:OR;
•ycur = y + I;
retuml TR\ll: 1,

main(!

,.

WRITE! LOST, 0);

whil,,r TRUE) {

"'hile(!READ(llSTCTLL) & O,c80)
grab_fr,:une(I;
scan(!;

Ox80 I (); "I

APPENDIX C. AUDIO SYSTEM DOCUMENTATION

C.1. Schematics and Programmable Logic

The following items describing the audio hardware are included in this section:

• Circuit board layout diagram (p. 75)

• Circuit board schematic diagram (p. 76)

• Text file describing PLD number Ul (p. 77)

74

•

I
I

I

I

I
I

£

� '5! §

...l..g_�E
V'J � .s ;:;
Q .s 1: i:o .,, .

��
>

t:.l � .E

r

I

I
I

75

I

- -

OJ
::,

- -

I

j

- - -
P1

'- - -

-

::,

I
L__,j

I

I

-

-

-

vcc "'

�

BH AH -le ' 0 __....
GNO SAO ' VO

"
aao

osc SA> ASO ' VO
,o

a29
>SV SA' A,S ' ' VO

"

M BAf.,E SAS ., ' VO
"

= TC SAO A , ' VO
"

=> SAS A,S ' VO _!JL_
l

2

-i IRQ3 SM A>s a ' 0
"

IRQ4 SA, .,, ' ' s .,, '
�:! "IRQ5 SAS An u '
. ' IRQ6 SA9, � u

'
• 0 IRQ7 SAlD '
B "§" SCLK SJ\11 � H '

RE!i'R SAl.! �

Gt

'
m � SAl] �
�g SAl4g,.g PAL20I,B

!I� K

� � SA15 l� SA16 � GND, P'N "
K �5V: erN 24 v_'fc B <

""' SA17 f4UB S - SA18 �
�,4 SMEMI< SA19 �
Ii 5MEMW ASN i-4-�4-

•
GNO IORDY

AS +12V soo

·-= so,
AS

• -l2V so,
A,

• DRQ2 so,
M

• AS
-SV so< M

I;- IRQ9 sos .,
>SV sos

- RESET soT
.,

a GND = f1'L
GNO :ISA BUS

v c

4. 71<

v c "' ' " CE vcc (L -
---, s,w r

�
" "BUSY a, /SEL " TIIT ""

� I
---"- OS ausY " "

'"" ,. ''
AO 51'

" '
'

A> " " A, AO

�
' AS A>

" ,
rn '° '

M ., 0 '° '
AS " "

DMAll ' "
M M o= ' "
A, AS "

'
AS AS "

I s AS ., " ,, AS B I DO AS '
o, '
o, o,

" '" '
D

fflE
" o, o, u OM

0 "
"

o, os " ' DM 13
" OS o< " DM

D
l

o, o, OM u '
0, o,

" OM rn
o,

" ' OM '
-2'- ONO oo

" OM '
C'f7Cl30

I lK x 8 p D GNO
I

ONO DB-;!5

Advanced Digital Systems Lab

Title
AD21020 EVB INTERFACE

siieloocument NUl'l1ber
A

Date:
John v. Belmonte

April 12 1994!She,.t o,

I

I

I

I

I

I

I

I

·=

,. 0

I

-

;
.,

§
'
'
•

77

'
'
e
"
•

j

!

�2�'<�
" "" ' "

..,.,,.,,.,.,

:,,:,:,:,:,
c CC O c
"'"'""""

,(,(,(,("'

C.2. Software

The following item describing YRS software running on the ADSP-21020 evaluation board

is included in this section:

• C language source code which implements the sound spatialization algorithm
(vrsnd.c, pp. 79-80)

78

-

...
•"

gg
gg
..•• •• ..
8J:J
«

"
0

;
'·•

1
•
"
'•

e
]
i
i

....
................

gg
00
Oo
00
00
Oo

!i
..

.. -------------------------- + ' '"'
"'" 'Ill '

:-- + +--\

' .

..

'•

0

' • •

:... . .. :
'"'' ' ... ' '"" "" '
+ -- + ----------------- + -- •

79

. S
I
.[
'
•

l
•

•
•
0

..
0

l
••

1
!

;
'
" •

;
•

'
•
..

' 0

. ...

...

.,
'

..• •
,: ...

0

'

'.
. , •

.'

I

l
•

.

•

80

APPENDIX D. HEAD-MOUNTED DISPLAY

DOCUMENTATION

The following_item describing the HMD hardware is included in this section:

• Circuit board schematic diagram (p. 82)

81

g:i

v

l!
0
'
N
p
u
T

co
D

l�,
1 =
,-
''

ND
'
' D

-mEcTOR
,_, '"'

p

R

'
N
p u
T

•

1 , 1
1

GND

8,2K «K

- v

·r
'

BRIG!iTNESS POT '
SOK '

• v '

J ,�.
s

,OK '
'
'

GND '
"
"
"u
"
"
,.

Jv
"
,,
"

" '" "

GND GND

.. �v

M 790
' m

G
OUT

'

N
D -8v

'

GND GND

+r PA>
"'' vm
PAS CONTROL

GNO

,my VBL1
L> PB> vm

= NC � � NC

::!7P
ve, PB a

OU't'{GND)
LO pa, vn GNO

NC
LS PC> GND VF a
LS PC,

OUT
vsw VN

-!?>< �
OUT

GND NC NC
vcoc VBL2

LS Pc, vm
VSH """ ���n" ..
BPT
='

VGl GN

va,
VSL
va,
vo,
vo,
GND

SI-IARP LQ4RA
LCD MODULE

'L__,r,,
R:JER

GND

L
E
D
p
0
w

�

Advanced Digital Systems

TitJ.e

SMD Interface

Si:,;e Document Number

A John v. Belmonte

Oat .. , A ril " 1994 Sheet

Lab

'

-·'
TCR

•
LO

' '

APPENDIX E. HOST SYSTEM DOCUMENTATION

The following items describing VRS software running on the host CPU are included in this

section:

• C++ language source code containing the application program and the host CPU's
graphics pipeline stages (vll.cpp, pp. 84-90)

• C++ language header which defines the communication structure between the host
and the G-Node (com.h, p. 91)

• Object definition file for miscellaneous scenery (input.def, p. 92)

• Object definition file for the musical note (note.def, p. 93)

• Object definition file for the pinwheel (pinwheel.def, p. 94)

• Object definition file for the cootie bug (jencoot.def, p. 95)

83

-

,...._ .,_.," -o.·� 0 .,,..,.,,
O•

,, �,., u u �"" .,
0 0 0, ...,_.., """

... ,.,, ... 0

•
�ti,.
•o " ,.,.••

:.. �!

.�•

�

]
!

'

'
.s

'"
.,
'

.
0

,

ON"'"' "'"""'
����
.............

HH

,
.,

00 "

"'"'""'
0000

'it'il';l';l ''"" '""
Nc<INN

l2U "'

�UM "'==:. � � � � """"-�-�-�-�
.... � ...,,.,,.,,.,, ••••

84

00 ••
..

0 0 " ·�-�••
M••

'

J
.'·• �

••O

•
.s

i
••O

.."

••'0" '
0 •··""

•� g, § ·;::
g

" ..

.."

'

i;
•.. • • ., i

'·•

.�•
•
. ,
'
•
.,

.,
.
s

+ + • • + •

.., " ..,,,,,.,..," " """"
E -� -�-i=..�-�
0 'a .g1.g,g

.
'

'
'

'

l
'
a
•• •
''

85

'
"
•

'

'

.S .!

..
••
;; ;:;
H

:fi
. " ..
..
§§

H
"' . .., . ..,

'

.... ...
.. ,•
�" .'.l
.. "•

'

a

....

Q

'
Q

•
"·••

l

f
l j

'

-�

Q

:: I

'
Q

.... ,, __ .,
O•

';ii';O

tr� �
"O O , "Cl

--rw,>, ,.

t" "f �
-«

:;:Jt� .. !-�-... -.,i �
:;..g :;.

":;;'.

.L
H,- ' ..
�E.
·.,
"'
.;::A
Vii

l�
-·

u � .;::: , .·.-.r
, O <
-::-r -"o . -

� >,-,,_,.
:: .. ,,, " �
-� A j -"

-�.
-

.!
'

. '

e,

"
-, ' '

Q

"'
::: 1-��
>

.
Q

- .. "
•o

.;;
-" '

0" " a�:•
.,
-·•

:;; :;; -
" .:; " .:; ' .:. . ;;
' " ' >, ' � ' >,
... 'H. NII NII
" >, " >,

:i:%:]:i... _.. ,,.. ...
iE%E]E�E

] 'i]] - - ---� -� ...

. '

.,

. '
Q

' .. ,. ..
··• °' ' -�, ,...,...

"�--

.... ,....., ..
!.tt�� �"' �
Hi§

"'"'"'"'
���]

.;;"' "" .. i·l';-1'!..-��
' 'I• II"

..,,..., ..
g § § g ...,..,..,..,

.HH

;; ;; ;; ;; ... ,., aaaa
,.
� �" �

"•;)-=;:::::::

!, �: �,· �- �,.
., ___ _
l 0 ... N..,

.,:;;:,j:;:;:;;
A A A A � ' " .

-... �"" �

86

'
!"
,
"
., •

'
-

:;]

1 1

��'""''

.::.H
i;''" .,., . �

... ;Ji -U �,
-�-••••

t
'"' --
>

""'

•. •
'

'

i ...� .�
••
'
.

j

•
'

'
• ..
g

0

'""

"""
...

''
. : .

o:;;
.. •
• 0 •

•

0

c,�·g
00•

00 ,,
'" ...
k' ».l -.•

- .
�-�,."
••·•
g

•

87

'
'
.

]� - .
..

ii •·•
g

,

,

,
••
.2 ;"
8"

0

. •

, .. .•·
...
0

-g]
• 8
,.
'

";a
,...
ii�
.,i

,, •"
: � ..
<>-�- .• .• .• " .-< M-� >,N"'
·�"' + ., � .. , .. , " "
0 0 0 -�� ... ----

" � c, ".., . �-�----
g .8.l.'�H ;;
• 1! .=..:.,.;., :.,.:., .2

�-�"-'.0.0.0.0 .. o
�·-H1 0 0 DO� t,
·� u-� -�,,,.,,,,,,, .-o-·.., •

£ -CO'e{l;;::;;::;;:;" �'&
! "'� �:.O:O:ii:ii'.-�tl?:��� "1H'H t�-_.,....,.,.,.,.,..,.,., . ..,.,.,.�
� f��{l{l{l{l{Hl'il 8.
] "j

.,
_.:,
+ " .•

.;; <"'o"�
v" ··-.. .,_ ..,.,.,_ -� . ..,,,_ . ---
o-->< � ·• "

o· � D
·.. •

·• 0 -

•
' - ..
-·

_,
::.'i
..

: .;;'ji
••

... -"'"•
v

.,..,<><>-
.. "

o-x m
" .,., > � 0
·-

0 •

1
'·•
&
'

'
.

' i•

•00
O•o

00 ... o-,y�,
...-
" 0 0
...

''

..
0000 E
. """

., ,...,., "'
EHE if
1t"""

E ��33

---··-----·

'

'

0

•

........

1�]�
g,_ �-
.,, .. .,, ..

a�i
' " . "

.... ..,"'

£�.lL�

..

�] ti
�," ' '

0

'

'
• .

.,
•
0

l

88

.

'

"

'
•

0

•

I
'
B

'
ooa
O•a

�?&'.'"''
...
000
0""
-� � �

NM � >
<--<- .,,.,.,
"' "' __, "' "'
0:,0 0 <> 0>

Oo

.H
' 0

�
-

-
>

!

.,'

•
•
3•
'
]•
'
•'
a

ii,;;.,:;
"."'

..
,a, ' -·-·"'
O•
<" ..
!!:;..
..... •..
..,
�.
'.

� �-i

i:1
-�-"

... ,.,.,.,

-1z
z

a'"" ,,.
v ::;:;;
"".:!.�
.. ..,..,

0""'""

'{l{l
....
...

. ��:g . .

.. u
-·::;

"•
'
.,

�::.:::::.
0 •

0
• "' " 0 .,, __ .,.

--D •

" .. "' -,o-.; " ..
:;;'''"''- ;;; u--,,
• >" " -. -'"---� "'"'"'o--o
..... ,,,. u

89

.'

.;.;;" .. ' "
'" " "

�"'
,,, .

-:s "'

.,," . . '"" ...• •
·� o-.. ...

.,

' .
. ,'
I
"' .:
B� ..
..

.. J

00 0

g:g:�
� �';'
'""

].
!' ' .
0

•
0 '

....

.
·-..... � "'
.:;-'§'.::::'.'.�"� � �" " "'

.. -o,-«s

"'::::::::::::
"--�,�-�
-��i�;
£

'•
7 -

•

" ..

••••

tt

'
'
'
.... ..

.. � �
,,e e

"'
...

...
'"

.
'

;,::
".,'"

!·•
'

90

"

'
•
'
.,'
'
'

•·•
'

. ,
,.

I
•
'

f'

,
'
;

;
'

' .

�

'

i��•••.. .·�-�.. , '"� ...

:,:

�!-����������������������������-

.

'

. .

'

.

.

'

.

91

"""'

14/20194 INPUT.DEF I I
BLACK •• "
BLtlE •••. ' '"l
GREDI .•• , ••• •• 2
CY>IN. H. .. ,

• '

YIN yAN(l
" ""
" m

'" ""
'" ""
'" m
" ""

.,, ""

.,o ""
·SO ""
" '""
" "
'" '"
'" '""
'" ""
" ""

.,, '"

.,, '""

... ""

COOTIE Fl\Cl! l
'"" '"
m ""
"" ""
'"" ""
m ""
"" ""
m ""
"" ""
"" ""
"" ""

COOTIE !'ACE 2
-400 '"
-HO ""
-no ""
-400 ""
-420 ""

-380 ""
-410 ""
-l?O ""
-440 ""
-HO ""

Night Sun
10000 4000

""" A t,&D� r.D"' 0 •-�"""' DDn 1� I OAAK_GRM!' •. .•. 8 LIGIIT _REO .•.•.. 12
LIGRTJIAGEN'l'A .• U lfAGem'A. .,

DROWN. •
L1GHT_GRAY ••••• 7

• ""
---- ----

" ""
" '"
" ..
" ..

" ..

" ..
" '"
" '"
" ..

" ""
" ..

" '"
" '"
" '"
" '"
" '"
" '"
" '"

" -160
" '"
" '"

'"" '"
'" "
'" "
.. "
.. "
" '"
" '"

" -160
.,. '"
.,s '"

-100 '"
.,o "
.,, '"
... '"
... '"
.,, '"
.,s "

15000 -1000

LlGHT_BLUE: 9
r..!Gl!T_GRErn 10 YELWW. .14
LIG!!T_CYAN ..•. ,11 WlllTE.. , .15

COLOR

•
'
'

'

'

'

'
'

'
'

•
•
•
•
"
•
•
•

'

•
•
•
'
'

'

'
'

'

'
•
•
•
'
'
'
'

'
'

•

.,.

he�d.

"'"
head

hud
eyeE

nose
antennae

head
eyes

nose
ant Mn�"

-

"'

81

0"'"'":
' . .

;..

.,..,,.,..,..,..,..,..,...,..,..,

93

-

0 0 0 "' "' " <:> O O
... ������� ... � ... � ... � ... � ... � .. ������H,.,HM .. M

OOOQOOOOOOQOO
�mmmmmmNNNNNNOOOOOOOOOOOOOOoooo
..,..,..,..,..,..,..,..,..,..,..,..,..,.,.,.,.,.,mmmmmmm,,. ,,.

00 000 000 ooo
O 00 0 NN OONN� OOO�NOOO���oo
�om�OON NN N�HMNONNNMN��NNMH��

"'"""' o ';'':'°'NO, 0 """<" a , , O>MN, , • """'"', I , '"'"

0000000000000000000000000000000

94

·----------------·------ --·--------·--- --·------

Si
e:

�
cl��� •: "' '

� :l3� .. '"""''..,
� - ._ ..

000
000
...

000

000

00
Oo,�

000000

•

0

..

..

0 00

: :::rn

95

'

!
'

