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ABSTRACT

We describe a new scenario based on a combination of using nanoscale semi-

conductor materials and statistical algorithms to achieve high SNR cur-

rent signals for robust DNA sequence base calling. In our setting, altered

DNA molecules are threaded through nanopores in electrically active two-

dimensional membranes such as graphene and molybdenum di-sulphide to

be sensed by changes in electronic currents flowing through the membrane.

Unfortunately, solid-state nanopores have been unsuccessful in DNA base

identification due to the conformational stochastic fluctuations of DNA in the

electrolytic solution inside the pore, which introduces significant noise to the

measured signal. Hence, we propose an integrated effort that combines elec-

tronic simulation based on device physics with statistical learning algorithms

to perform clustering and inference from the solid-state nanopore data. In

particular we develop Gaussian Mixture Models (GMMs) that take into ac-

count the characteristics of the system to cluster the electrical current data

and estimate the probability of the DNA position inside the nanopore. The

validity of the learning algorithms for noisy GMM model has been demon-

strated for uniform and Gaussian noise models with synthetic data sets. We

also demonstrate the implementation of a pipelined version of the GMM

training algorithm, which can be used to realize in near-sensor computing

and inference systems. Finally, we also propose one possible solution to the

theoretical resolution limit of nanopore DNA sequencing.
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CHAPTER 1

INTRODUCTION

In recent years, there has been growing interest in the scientific community to

develop inexpensive and high-accuracy devices for biomolecular identification

[1]. One such technology is nanopore-based devices that have the potential to

revolutionize diagnosis and treatment of diseases and hence, possibly enable

medicine. Given the importance of identifying genetic information and con-

sequently studying its impact on a myriad of diseases, nanopore-based DNA

sequencing devices hold great promise as possible replacements to conven-

tional sequencing technology by eliminating the need for chemical labeling

or sample amplification.

Over the past few years, there has been a rapid development in the realm of

nanopore sequencing with biological and solid-state nanopores being explored

as possible materials to extract genetic information via ionic or electronic

currents. Although biological nanopores such as α-hemolysin [2] and MspA

[3] already exhibit great potential for DNA sequencing, there are drawbacks

to biological pores, including fixed pore size and weak mechanical strength.

Such drawbacks can be overcome by the use of solid-state nanopores [4].

Solid-state nanopores have been demonstrated to have a distinct advantage

over biological pores in terms of flexibility in pore design and mechani-

cal strength, lending credence to their potential for genomic applications.

Two-dimensional solid-state materials such as graphene and molybdenum

di-sulphide (MoS2) in particular have attracted attention because of their

atomically-thin layered structure and electrically active characteristics, pre-

disposing them to offer single base resolution and simultaneously multiple

modalities of detecting bio-molecular translocation [5, 6]. Monolayer and

multi-layer two-dimensional solid state membranes containing nanopores are

capable of detecting translocation of bio-molecules such as DNA and proteins

by ionic and transverse sheet currents as demonstrated by simulations [7, 8]

and experiments [9].
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In typical nanopore sequencing experiments, DNA molecules are threaded

through a nanopore under an applied voltage; an ionic current flowing through

the nanopore alongside the DNA is observed and different transient dips due

to different DNA nucleotides (ionic current blockade) are measured. Resolv-

ing the magnitude and duration of each dip permits one, in principle, to

identify individual bases and, in turn, the sequence of DNA. However, first-

principles calculations suggest another opportunity for graphene to detect

DNA, namely through the transverse sheet current across graphene nanorib-

bons (GNRs) that can be measured [10]. It was shown previously that the

sensitivity of GNR to translocated DNA can be drastically enhanced by tai-

loring the edge of the GNR into a quantum point contact geometry (QPC)

or by tuning the carrier concentration in the GNR [7]. The GNR devices

were found in simulations to be able to sensitively probe the helical geom-

etry of double-stranded DNA (dsDNA) [7], the conformational transitions

from helical to zipper form of dsDNA, as well as the number of nucleotides

in stretched ssDNA [11]. A further advancement encouraging the use of

graphene nanopores for DNA sequencing are actual experiments that have

detected DNA permeation through a nanopore in GNRs by means of sheet

current measurements [12], but have not yet resolved DNA nucleotide iden-

tity.

Apart from probing the DNA using two independent methods (i.e. ionic

and transverse currents), Girdhar et al. [7] also proposed the integration of

solid-state multi-layer nanopore membranes within a multi-functional elec-

tronic device to increase its detection sensitivity. Among the advantages

of the solid-state nanopore is its compatibility with semiconductor nano-

electronics that favors the fabrication of compact device. Until now, many

efforts to detect, identify, and map DNA patterns using solid-state nanopores

have been unsuccessful because the conformational stochastic fluctuations of

DNA in electrolytic solution inside the pore add significant noise to the mea-

sured signal [13]. Additional noise sources include possible tunneling effects

and electron scattering by non-ideal edges of the electronic sensing mem-

brane. The contribution of such noise sources to the final signal is usually

quite large, effectively screening the electronic signatures of the DNA nucle-

obases.

In this regard, the development of a versatile and generally applicable sen-

sor technology with a high signal-to-noise (SNR) ratio is desirable. For this
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purpose, we propose an integrated effort that combines electronic simulation

based on device physics with machine learning techniques to characterize

the electronic signals arising from solid-state nanopore sensing, and their in-

tegration into systems that might implement algorithms for real-time base

calling.

Although machine learning algorithms for base calling or SNR improve-

ment have not been reported in solid-state nanopores, they have been exten-

sively utilized in the real-time base identification in genetic and epigenetic

applications. The recently introduced, ∼ $1000 DNA sequencer MINION de-

veloped by Oxford Nanopore Technologies, relies heavily on deep learning for

the identification of nucleobase sequences from measured ionic currents. In

fact, it was recently reported that redesign of these deep learning algorithms

saw an accuracy improvement of almost 10% for the same nanopore device

[14]. While the deep learning based base calling algorithm used by Oxford

Nanopore Technologies is proprietary, there have been open-source software

implementations of these algorithms available [15].

All of the previously described base calling methods have been imple-

mented in software for biological nanopores (used in the MINION device), but

in order to achieve a true integration of the genomic information with semi-

conductor nanotechnology, hardware implementations of these algorithms

might be critical, in addition to the utilization of solid-state nanopores. One

of the primary impediments is the low SNR due to thermal fluctuations of

DNA bases, ions, and water inside solid-state nanopores [13]. In particular,

the noise from variations in DNA structural conformation inside a nanopore

may offset the signal induced by each nucleotide, largely weakening the sens-

ing sensitivity of the nanopore device. Therefore, in order to ensure the

effective operation of a nanopore device in single-molecule sensing applica-

tions, controlling the motion of biomolecules in solid state nanopores is highly

desirable. The electronic signal obtained from the controlled translocation of

DNA through the nanopore is further processed using clustering algorithms

in order to infer information about the DNA or for further processing the

data.

In this thesis, we briefly describe a possible setup of a nanopore transistor

that achieves a controlled motion of the DNA translocation through the pore,

using which possible models of the movement of the DNA within the pore

and its correlation to the applied control voltage can be extracted. The

3



Draft of May 8, 2017 at 20 : 44

extraction of the cluster data is performed via Gaussian Mixture Models

(GMMs). However, since the stochastic fluctuations of the DNA can result

in noisy data, we modify GMM-based algorithms that take the inherent noise

characteristics of the DNA into account.

Specifically, we study modified GMM algorithms under the influence of uni-

form noise and Gaussian noise respectively. These algorithms are validated

by synthetic data and are yet to be tested with the measured nanopore cur-

rents because of limitations in the computational resources required to fully

simulate the nanopore transistor in various circumstances. We also explore

the development of pipelined versions of the GMM algorithm since integra-

tion of genomic and semiconductor technologies augur the possibility of near

sensor computing with reduced energy requirements. Finally, we propose

one possible solution to the theoretical resolution limit of nanopore DNA

sequencing where we get some insights from radar signal processing.

4



Draft of May 8, 2017 at 20 : 44

CHAPTER 2

NANOPORE TRANSISTOR SETUP

In solid-state nanopores, a possible strategy to control molecule fluctuation

was proposed by Girdhar et al, using a multi-layered membrane transistor

containing a motion-control electrode layer, as shown in Fig 2.1, to shape the

electrostatic landscape in the nanopore to reduce the stochastic fluctuations

of the interior biomolecules. The electrically active multi-layer membrane de-

vice utilizes a combination of metallic or semiconducting electrodes to control

the motion and graphene to read out the currents while the DNA is passing

through the nanopore. Since controlling the motion and translocation veloc-

ity of DNA is key, we utilize gold electrodes to slow down DNA translocation

with a bias voltage (VC1) applied, which would operate as a control gate to

trap the DNA inside the pore. Simultaneously, a graphene layer (VDS) is

used to read sheet currents and discern passing nucleotides.

In order to realize the functionality of the device in Fig 2.1, we utilize

a simpler model of the device whose cross section is shown in Fig 2.2. The

setup consists of a gold electrode, connected to a control voltage source (biVC)

and an electrically active graphene membrane, whose sensitivity is controlled

by a gate voltage (Vgate). The gold electrode can be tuned to shape the

electrostatic potential within the confines of the pore, while the graphene

membrane can be used to sense the electronic current at every instant in time.

The gold electrodes and the sensing membrane are assumed to be separated

by a dielectric so that there is no influence of the applied stabilization voltage

on the carrier density of the graphene membrane. We will utilize this model to

cluster the DNA positions at different gate voltages to study the relationship

between the position of the DNA backbone and the transverse sheet currents.

The trajectories and behavior of DNA within the nanopore devices were

simulated by molecular dynamics (MD) simulations [17, 5, 16] while the cal-

culations of the electronic current were carried out using a method based

on the quantum mechanical non-equilibrium Green’s function. These sim-
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Figure 2.1: Schematic diagram of a four-layer device [7] containing two
graphene layers (black) to control the translational motion of DNA through
the nanopore. The top graphene layer (VC1) controls the translational
speed of the DNA, whereas the second (VC2) controls the lateral
confinement of the DNA within the nanopore. The third graphene layer
(VDS) measures the sheet current. Finally, a heavily doped back gate
(green) lies underneath the sheet current layer to control the carrier
concentration. Oxide barriers (transparent) between different graphene
layers provide electrical isolation.

Figure 2.2: Cross section of the device setup to study the relationship
between the DNA fluctuations and transverse sheet currents. The gold
electrodes are connected to a voltage source VC that can be tuned to sculpt
the electrostatic landscape within the pore in order to control the
fluctuations of the DNA. Simultaneously, a graphene membrane reads out
the current at every instant in time. The sensitivity and carrier
concentration on the graphene membrane are controlled by a gate voltage
placed beneath the graphene membrane. It is assumed that there is no
cross interference between the gate voltage and the stabilizing voltage on
the graphene sensitivity [16].

ulations mimic stochastic fluctuations of the DNA via thermostats such as

6



Draft of May 8, 2017 at 20 : 44

Nose-Hoover-Langevin thermostats. Hence the algorithms developed to im-

prove the SNR can be tested using the data generated from these simulations

and reliably applied to experimental situations as well.

In Fig 2.3, we show center of mass (CoM) positions of the DNA molecule

in the XY-plane for each frame at various positive voltages [16]. At zero

electrode bias, the DNA positions at different times spread almost uniformly

inside the pore, as no significant interaction between the pore and the DNA

molecule exists. At positive voltages (Fig 2.3), on the other hand, the DNA

CoM positions become more localized around a specific location in the pore,

indicating damping of the DNA motion. This location is not exactly at the

pore center because of the slight randomness in conformational change in re-

sponse to applied voltages. The reduction of DNA fluctuations is discernible

through the backbone spread in the overlapped DNA conformations obtained

from the MD trajectory.
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Figure 2.3: The positions of the DNA backbone within the nanopore at
every time instant for different stabilizing voltages applied. It is evident
that at higher gate voltages, the stochastic fluctuations of the DNA become
discernibly reduced suggesting that larger voltages reduce the motion of the
DNA molecule more strongly since the range of motion is reduced.

From the CoM positions at every instant in time we also calculate the

sheet conductance (or current) variations of the stabilized trajectory to gain

an insight into the effect of the stabilization on the graphene sheet current

[18]. Fig 2.4 shows the histograms for the conductances measured for the

gated (VC = 0.8 V) and un-gated (VC = 0 V) scenarios. While the means

for the two gate stabilizing voltages are similar, the variance for the gated

7
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Figure 2.4: Histogram of conductance measured for the unstabilized and
stabilized DNA trajectories. The histogram for the stabilized DNA shows a
smaller variance due to localization of the DNA backbone within the pore
in the presence of a sculpted electrostatic landscape.

trajectory is significantly smaller than the un-gated trajectory. This is at-

tributed to the position of the DNA being confined to a smaller region due

to the presence of the gating voltage. This demonstrates that the presence

of the gated voltage can be used to significantly alter the DNA translocation

through the nanopore and the corresponding effect can be measured using

transverse sheet currents. With these measurements, we observe a consider-

able variation in the measured sheet current statistics, thereby indicating an

avenue to understanding the implications of a controlled DNA translocation

on the measured sheet current.

The previously described results regarding the positions of the DNA back-

bones and the histogram of the conductance measurements show the possibil-

ity of relating the DNA backbone positions and the transverse sheet currents.

However, clustering algorithms are required to estimate the relationships be-

tween the two physical quantities. Hence, we use GMMs to cluster the DNA

backbone and transverse sheet current data.

8
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CHAPTER 3

CLUSTERING USING GAUSSIAN
MIXTURE MODELS

The idea behind GMMs is to treat the probability distribution of the clus-

tered quantity as a sum of weighted Gaussians as

p{x|Vgate} =
K∑
k=1

ωk
1√

2πσk,x
e

x−µk
2

2σk,x . (3.1)

where x is the position of the DNA along two dimensions i.e., (x, y) at a

given time instant, Vgate is the applied stabilization voltage used to control

the DNA backbone position, while µ and σ are the means and variances of

contributing distributions. The weight factor ωi, as well as µ and σ will need

to be learned using the training data.

For the nanopore transistor with stabilizing voltages, we utilize the Expectation-

Maximization (EM) algorithm to compute the parameters for GMM, namely,

the mixing coefficients {ωi}i=1,...,k, the set of mean vectors {µi}i=1,...,k, and

the set of covariance matrices {Σi}i=1,...,k. The outline for the EM algorithm

for GMMs is in Algorithm 1.

For this problem, we have obtained the training data for possible DNA

locations and sheet current on the probe for different fixed voltages. Thus

we can apply the EM algorithm to compute the ML estimate for some con-

ditional probability distribution functions, P{I{x},x|V } and P{x|V }.And

The dependence between the current and DNA backbone position, is given

by

P{x|I(x)} =
P{I(x),x}
P{I(x)}

. (3.2)

In order to compute the dependence, we need to figure out the denomina-

tor and numerator which is difficult due to our limited data. Note that the

marginal probability distribution is the integral of the conditional probability

9
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Algorithm 1 EM-GMM training algorithm

1: While log-likelihood function log p(·) does not converge do
2: E step
3: Evaluate the responsibilities
4: γ(znk) = ωkN(xn|µk,Σk)∑K

j=1 ωjN(xn|µj ,Σj)

5: M Step
6: Re-estimate the parameters using current responsibilities
7: Nk =

∑N
n=1 γ(znk)

8: µnewk = 1
Nk

∑N
n=1 γ(znk)xn

9: Σnew
k = 1

Nk

∑N
n=1 γ(znk)(xn − µnewk )(xn − µnewk )T

10: ωnewk = Nk
N

11: Evaluate the new likelihood function
12: log p(X|µ,Σ, π) =

∑N
n=1 log{

∑K
k=1 ωkN(xn|µk,Σk)}

distribution as shown below.

P{I(x),x} =

∫ ∞
−∞

P{I(x),x|V }dV . (3.3)

P{x} =

∫ ∞
−∞

P{x|V }dV . (3.4)

The difficulty is we currently have trained conditional probability distri-

bution for only a finite number (Nvoltages = 4) of different given voltages.

Thus we cannot directly apply the exact formula to compute the marginal

probability distribution. For now, we apply the following equations to ap-

proximate the probabilities appear in the denominator and numerator shown

in (3.2).

P̂{I(x),x} =

Nvoltages∑
i=1

1

Nvoltages

P{I(x),x|Vi}. (3.5)

P̂{x} =

Nvoltages∑
i=1

1

Nvoltages

P{x|Vi}. (3.6)

The reason why we assume for different voltages the probability is uniform

is because we have equal amount of training data for each given voltage. An-

other perspective is to view the different conditional probability distribution

functions as the quantizer output of all conditional distribution functions

given all possible values of voltage. In the future, if we have a sufficiently

good interpolation to approximate the conditional distribution for all possi-

10
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ble voltage value, we can improve our precision by using the precise formula

to compute the marginal distribution.

While the GMM model expresses the distribution of data as a linear com-

bination of Gaussians, the exact number of Gaussians to be utilized for a

given cluster data set is not specified. Kullback-Leibler divergence [19] is

commonly used to measure information lost when approximating a model.

The definition of KL divergence for continuous case is given as

DKL(f ||g(·|θ)) =

∫
Ω

f(x) log
f(x)

g(x|θ)
dx (3.7)

=

∫
Ω

f(x) log(x)dx−
∫

Ω

f(x) log(x|θ)dx. (3.8)

where the second term is the relative KL information. In this formula, f(x) is

the actual probability distribution and g(x|θ) is the approximated distribu-

tion with parameter θ. It is trivial to apply Jensen’s inequality to prove that

KL information is nonnegative and is zero if and only if two distributions are

identical.

However, KL divergence has several limitations [20]. For example, in real-

world problems, the true f is unknown and the parameter θ in g must be

estimated from the empirical data y. In this case, we need to compute

the expected KL divergence to measure the difference between f(x) and

g(x|θ̂(y)).The expected KL divergence is given below

Ey[DKL(f ||g(·|θ))] =

∫
Ω

f(x) log(x)dx−
∫

Ω

f(y)[

∫
Ω

f(x) log(x|θ̂(y))dx]dy.

(3.9)

The first term is a constant, which means in order to minimize the expected

KL divergence, we need to maximize the second term. In other words,

max
g∈G

∫
Ω

f(y)[

∫
Ω

f(x) log(x|θ̂(y))dx]dy = max
g∈G

EyEx[log(g(x|θ̂(y))]. (3.10)

where G is the collection of all possible models, θ̂(y) is the MLE estimate

based on model g, and y is empirical data. It is always not easy to compute

the expected KL divergence. However, there are two approximate unbiased

11
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estimates of maxg∈GEyEx[log(g(x|θ̂(y))] which work well if the number of

samples is sufficiently large and the model is also good. And these two

approximate unbiased estimates of the expected KL divergence lead to Akaike

information criterion (AIC) and Bayesian information criterion (BIC), which

are both based on 2-Log likelihood. They are defined as follows

AIC = −2 logL(θ̂|y) + 2k (3.11)

BIC = −2 logL(θ̂|y) + k log(n) (3.12)

where L is the likelihood function, θ̂ is the ML estimate of θ, k is the number

of the estimated parameters include means, variances and so on. And n is the

number of observations. One thing important to mention is for both of these

two criteria, the first term is caused by bias and the second term is caused by

variance. Bias means the the difference caused by the projection of the actual

parameters to a parameter space with limited dimension. Variance means

the difference between the real parameters and the ML estimate. Therefore,

using either of the criteria, we choose the number of Gaussians (usually

1 ∼ 10) that produces the least AIC or BIC.

Fig 3.1 shows the probability density functions of the DNA backbone posi-

tions for the un-gated and gated DNA translocation cases. We find that the

probability density of the DNA backbone is in the center of the pore. Ten

Gaussians have been used to cluster the data. The pdfs also display limited

widths as the gating voltage increases. A similar process could be used to

compute the cluster for the transverse sheet conductances and thereby the

conditional probability densities. Fig 3.2 displays the probability density

that the DNA is at a specific position given that the conductance measured

was 1.7µs. While we find that there might be two regions that the DNA is

present, in order to infer the position, we could define a metric such as the

maximum probability density.

Hence, using the above formulation, we can infer that the location which

has the highest pdf value is the most probable DNA location. This approach

can be utilized to develop a scheme to train and adaptively tune the position

of the DNA given the conductance measured at a given time instant by

tuning the stabilization voltage. While this algorithm to move the DNA

might give good control over the DNA translocation, it assumes that the

12
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a b

c d

Figure 3.1: Probability distribution function of the conductance backbone
positions using 10 Gaussian mixtures and different gate voltages:
(a)VC = 0. V (b) VC = 0.3 V (c) VC = 0.5 V (d) VC = 0.8 V.

underlying data is noise-less. This might not always be the case since noise

can be induced by fluctuations or due to electronic scattering in the sensing

membrane. Therefore, we next develop a modified GMM algorithm that

accounts for the underlying noise statistics.

Figure 3.2: Approximate probability density given that conductance
measured is G = 1.7µs. Note that the figure is plotted to display the pdfs
only in the lower left corner of the circular nanopore.

13
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CHAPTER 4

GMMS WITH BACKGROUND NOISE

In this chapter, we discuss GMM-based algorithm to cluster data in the

presence of noise. To be more specific, we address two special cases of noise:

one is uniform noise while the other is Gaussian noise.

4.1 Case 1: Uniform Noise

Consider a finite mixture model with K mixtures of the form

p(x|θ) =
K∑
k=1

ωkN (x|µk,Σk). (4.1)

where x is a multidimensional data set with ωk, µk and Σk being the weights,

mean vector, and covariance matrix of the kth mixture. N is the multivari-

ate normal distribution, and θ is an independent variable (stabilization gate

voltage in the case of gated nanopore transistors). In the following sections

regarding the GMMs with noise, we will assume that the number of clusters

are defined beforehand.

While modeling a cluster of data with a GMM, the parameter estimates are

sensitive to outliers and presence of background noise because the maximum

likelihood estimate is basically the mean value, which is not a robust statistic

[21, 22]. Additionally, the implementation of the GMMs involve estimating

the converged value of the mean, covariance and weights over multiple iter-

ations in multiple runs with each run beginning with a random guess of the

means and variances. Hence, we can model the background noise by adding

the noise component f0 to the mixture model as [21]

p(x|θ) = Pf0(x|µ0,Σ0) +
K∑
k=1

ωkN (x|µk,Σk). (4.2)

14



Draft of May 8, 2017 at 20 : 44

where P is the weight of the background noise component, with distribution

f0. For (4.2), the weights will be subject to the constraint

P +
K∑
k=1

ωk = 1. (4.3)

Since we are assuming the noise to be uniform, we set

f0(x|µ,Σ) =
1

xmax − xmin
. (4.4)

where xmax and xmin are the maximum and minimum of the domain under

consideration. Therefore, in such a scenario, the initial weights of the Gaus-

sian mixture can be found via k -means estimates, while P can be assumed

to another value such that sum of all the weights are the same. The EM

algorithm for GMM with uniform noise is as follows, in Algorithm 2.

Algorithm 2 EM-GMM-uniform noise training algorithm

1: While log-likelihood log p(·) does not converge do
2: E step
3: Evaluate the current responsibilities
4: γ(znk) = ωkN(xn|µk,Σk)∑K

j=1 ωjN(xn|µj,Σj)

5: M Step
6: Re-estimate the parameters using current responsibilities
7: Nk =

∑N
n=1 γ(znk)

8: P new = 1−
∑K

k=1 ωk
9: µnewk = 1

Nk

∑N
n=1 γ(znk)xn

10: Σnew
k = 1

Nk

∑N
n=1 γ(znk)(xn − µnewk )(xn − µnewk )T

11: ωnewk = Nk
N

12: Evaluate the new likelihood function
13: log p(X|µ,Σ, π) =

∑N
n=1 log{

∑K
k=1 ωkN(xn|µk,Σk)}

From Algorithm 2, we notice that the weights are modified in the max-

imization step with the new weight of the noise term computed after each

of the mixture weights. In order to test the GMM with background noise

algorithm, we first develop a synthetic data set as shown in Fig 4.1. If we set

the number of clusters K = 2 as input to the GMM with uniform background

noise algorithm, we observe that the clusters identified at the end of EM do

not coincide with the input clusters as shown in Fig 4.2. This is due to the

weights of the uniform background noise not being taken into consideration.
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Figure 4.1: Input test cluster for the GMM with background noise
algorithm. Two clusters are created with the points drawn from a normal
distribution of means (µx1 , µ

y
1) = (1, 1) and (µx2 , µ

y
2) = (10, 10) colored as red

and blue respectively. Uniform background noise defined along the domain
defined from [0, 0] to [10, 10].

Figure 4.2: Identification of clusters in the input test data (Fig.4.2) using
the GMM expectation maximization algorithm without considering the
uniform background noise.

However, an implementation of the GMM algorithm with the background

noise taken into consideration converges onto the correct clusters as shown in

Fig 4.3. In fact even the means that are obtained at the end of the iterations

are very close to the means of the input clusters.

Hence, from the above description and implementation of the EM algo-

rithm with the background noise taken into consideration, we observe that

a minor variation can enable an accurate description of the clusters. This

approach was tested over many clusters and samples and was found to be a

robust modification of the original EM algorithm.
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Figure 4.3: Identification of clusters in the input test data using GMM with
background noise expectation maximization algorithm.

4.2 Case 2: Gaussian Noise

The GMM can also treated as a classification problem, whereby, each data

point is assigned certain mean and variance to be associated along. In some

cases, xn can have missing data and only be partially complete. In such cases

the probabilistic likelihood p(x|θ) cannot be evaluated in the usual manner.

Similar scenarios can also be thought of as data sets with noisy data such

that the noise distribution is Gaussian. In this regard, it was proposed by

Ozerov et al. [23] to modify the existing GMM algorithm with log-likelihood

criterion for noisy data. In this paper, we study and implement the algorithm

proposed by Ozerov et al.

Let us consider the scenario where

xn = N (yn,Σn). (4.5)

where the parameters yn and Σn are known, i.e., we can consider yn to be

a feature computed from a distorted signal and Σn to be an estimate of the

noise covariance with zero mean.

In the original EM algorithm, the log-likelihood assumes that the distribu-

tion of xn is accurately modeled, which may not always be the case. Hence,

Ozerov et al. proposed a log-likelihood integration approach which does not

rely on the assumption regarding the distribution of x but makes as if all

values were observed. Here, the log-likelihood log p(x|θ) is replaced by its
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expectation over the observations which results in the function

fLLK(y,Σ|θ) = Ex[log p(x|θ)|y,Σ,Σn]

=
N∑
n=1

∫
RM

p(xn|yn,Σn) log
K∑
k=1

ωkN (xn|µk,Σk)dxn. (4.6)

This can be solved in closed form for only one state (K = 1). However, an

approximate solution to the integral can be obtained as

fLLK(y,Σ|θ) ≈
N∑
n=1

log
K∑
k=1

ωkN (yn|µk,Σk)e
− 1

2
tr(Σ−1

i Σn). (4.7)

Utilizing the above formulas, given the inherent noise characteristics (co-

variance Σn), it yields the EM algorithm for the GMM model with Gaussian

noise, Algorithm 3.

Algorithm 3 EM-GMM-Gaussian noise training algorithm

1: While likelihood function fLLK(·) does not converge do
2: E step
3: Evaluate the responsibilities

4: γ(znk) = ωkN(xn|µk,Σk)e−
1
2 tr(Σ

−1
i

Σn)∑K
j=1 ωjN(xn|µj ,Σj)

for k = 1...K

5: M Step
6: Re-estimate the parameters using current responsibilities
7: Nk =

∑N
n=1 γ(znk)

8: µnewk = 1
Nk

∑N
n=1 γ(znk)xn

9: Σnew
k = 1

Nk

∑N
n=1 γ(znk)(xn − µnewk )(xn − µnewk )T + Σn

10: ωnewk = Nk
N

11: Evaluate the new likelihood function
12: fLLK(y,Σ|θ) ≈

∑N
n=1 log

∑K
k=1 ωkN (yn|µk,Σk)e

− 1
2
tr(Σ−1

i Σn)

It can be seen that Algorithm 3 reduces to the classical EM algorithm if

the noise covariance matrix is 0. In order to test the GMM algorithm with

inherent Gaussian noise characteristics taken into account, we first generate a

test cluster consisting of two sets of points drawn from normal distributions

with means [µ1
x, µ

1
y] = [−1,−1] and [µ2

x, µ
2
y] = [1, 1] while the variances of

both clusters are chosen as Σ1,2
xx = Σ1,2

yy = 2 as shown in Fig 4.4.
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Figure 4.4: Test cluster for the GMM algorithm with background Gaussian
noise, consisting of two sets of points drawn from normal distributions
centered at [-1,-1], [1,1] and variances 2, 2 respectively.

When the GMM with Gaussian background noise algorithm was run till

convergence (by assuming the covariance matrix of the noise term to be

identity), we observed that two clusters were identified with the means and

variances shifted from the original means and variances as shown in Fig 4.5.

Another important feature to note is that, even though it is assumed that the

noise covariance matrix is diagonal, due to the iterative solution of the means,

covariances and weights, the resulting variance matrices might contain non-

zero off-diagonal elements, which would result in the clusters being identified

as ellipses, while the test cluster were generated with the variance matrices

containing zero valued off-diagonal elements. While convergence is achieved

for various test cases at varying densities of points, and differing number of

clusters, there always seems to be a shift in the means calculated, which might

be explained by the fact that each iteration of the GMM consists of a random

initialization of the covariances, and hence convergence might occur at the

local maxima of the log-likelihood criterion instead of the global optimum

point. However, further studies regarding the validity of the approach and

its convergence need to be carried out in a more systematic manner. Ozerov

et al. do not compare the noiseless and noisy clusters but instead focus on

studying the properties of the log-likelihood criterion and its application to

speech processing. Since the GMM algorithm can be used to “complete”

data sets or extract features from noisy sensor data, a possible application of

19



Draft of May 8, 2017 at 20 : 44

this method can be in the feature extraction layer in deep learning systems

to decompose the input data into true data and noise rather than blindly

learning the parameters that describe the input data [19].

The discussions and results outlined in Chapter 4 show that the GMM is a

versatile model which can be generalized to incorporate many noise models.

The key step always seems to be the simplification or approximation of the

log-likelihood estimate. While only uniform and Gaussian noise models have

been reported in the literature, it might be worthwhile to explore other noise

models such as 1/f noise, since it is thought to be the most dominant source

of noise in nanopore current measurements.

Figure 4.5: Clusters identified from the input test data using the GMM
with Gaussian background noise algorithm. A shift in the means of the two
clusters is observed, the magnitude of which seems to be dependent on the
covariance of the noise.

20



Draft of May 8, 2017 at 20 : 44

CHAPTER 5

TOWARDS NEAR SENSOR COMPUTING
SYSTEMS: PIPELINING THE GMM

ALGORITHM

The integration of the genomic information that can be obtained from nanopore

sensors to semiconductor nanotechnology, can be achieved when some the

computing is carried out in hardware near the sensor. These rudimentary

feature extractors and inference engines could potentially be used to perform

basic classification such as identification of large proteins present along the

DNA (which can discernibly be identified by large characteristic variations in

currents compared to the background signal) or perform basic clustering and

possibly identify the background cluster data from the dynamically chang-

ing features etc. The realization of all these features is possible in hardware

using a pipelined version of the GMM algorithm, Algorithm 4.

Algorithm 4 Pipeline-Friendly EM-GMM

1: While likelihood function does not converge do
2: η ← 0, τ ← 0, r ← 0, g ← 0, ρ← 0
3: for n← 1 to N
4: s← 0
5: for k ← 1 to K do
6: gk ← wkN (xn|µk,Σk)
7: s← s+ gk
8: for k ← 1 to K do
9: r ← gk

s

10: ηk ← ηk + r
11: ρk ← ρk + rxn
12: τk ← τk + rx2

n

13: for k ← 1 to K do
14: wk ← ηk

N

15: µk ← ρk
ηk

16: σ2
k ←

τkηk−ρ2k
η2k

The original EM-GMM algorithm does not fit into a fully-pipelined hard-

ware design. This is because the data dependency in the original EM-GMM
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algorithm makes it impossible to stream the data only once in each EM it-

eration [20]. Hence, we study the implementation of the pipelined version of

the GMM algorithm that was first proposed by Gao et al. [24] An important

step here is to collect the data as each input stream enters the pipeline as

opposed to the bulk collection of all parameters. The prior probabilities,

weights, and expectations are collected along each iteration of the data. The

pipelined version of the GMM algorithm is stated as Algorithm 4.

In the above algorithm, we see that the values of the prior responsibilities

(γ) are collected via the variable η, which continually adds up the responsibil-

ity at each input data point (r). Similarly the expectations and variances are

computed via the variables ρ and τ respectively. To validate and implement

the algorithm, we consider a synthetic data set consisting of three clusters

of points centers at µ = 10, 20, 30 with variances σ = 1, 3, 3 respectively.

We implement Algorithm 4 and obtain a good match between the calculated

clusters and the input clusters as shown in Fig 5.1. However, in order to

truly develop a system architecture to be integrated into semiconductor nan-

otechnology, the calculations of the Gaussian terms need to be performed in

fixed point and the algorithm will have to account for quantization errors

due to a fixed-point implementation.

Figure 5.1: Verification of the pipelined version of the GMM algorithm with
respect to a synthetic data set obtained from three clusters drawn from
normal distributions colored in red, blue and green respectively. The black
dots are the calculated clusters from the pipelined GMM algorithm.
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CHAPTER 6

THEORETICAL RESOLUTION LIMIT

To measure the performance of a DNA sequencing algorithm, a theoretical

resolution limit is useful for comparison. Detecting methylation sites in ionic

and sheet current signals is very similar to detecting targets in reflected radar

returns thus one possible solution is the ambiguity function which commonly

used in radar signal processing [25]. The formula of ambiguity function is

given as follows:

χ(τ, f) =

∫ ∞
−∞

s(t)s∗(t− τ)ej2πftdt. (6.1)

The ambiguity function is a two-dimensional function of time delay τ and

Doppler frequency f showing the distortion of a returned pulse due to the

receiver matched filter. Since the matched filter produces the maximum

achievable instantaneous SNR at its output. Thus the ambiguity function is

one reasonably good measure for the sequencing resolution. As for sequencing

scenario, the Doppler frequency f is analogous to the frequency of probe

measuring the signal such as instantaneous ionic current value [25].

f =
1

δt
. (6.2)

where δt is the time interval of the probe measuring the signal. But further

experiments are required to find the resolution limit of nanopore sequencing,

what is the maximum tolerable distortion is still unknown.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this thesis, we discussed the development of a nanopore transistor device

that would allow simultaneous control and sensing of the translocating DNA.

The control layer was implemented using gold electrode which enabled the

sculpting of the electrostatic landscape in order to reduce the stochastic fluc-

tuations of the DNA. However, in order to perform inference on the system,

the feature extraction is carried out using Gaussian mixture models. While

most GMMs do not account for the inherent noise statistics or incomplete-

ness of the data models, we have explored and implemented the modifications

of the GMMs with uniform and Gaussian background noise. These models

were validated using synthetic data, due to large computational complexity

of the simulations of nanopore systems. The GMM model with uniform back-

ground noise is quite robust while the GMM with Gaussian noise seems to

show deviations from the original mean, possibly due to convergence at local

minima. We also explored the design of a pipelined GMM algorithm that

could enable the design of near sensor inference engines.Finally, we propose

one direction to find the resolution limit of nanopore sequencing.

The validation of the GMM with background noise models require more

experiments on empirical data rather than synthetic data. From an algo-

rithmic standpoint, more systematic studies need to be carried out with the

GMM with Gaussian background noise models to further check their validity

and correctness. One possible interesting future research problem is to use

hidden Markov model to capture the dynamics of nanopore sequencing to

provide a better sequencing algorithm.
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