3

STATE OF ILLINOIS
DWIGHT II. GREEN, Governor
DEPARTMENT OF REGISTRATION AND EDUCATION
FRANK G. THOMPSON, Director
DIVISION OF THE
STATE GEOLOGICAL SURVEY
M. M. LEIGHTON, Chief URBAN

CIRCULAR NO. 105

STRUCTURE OF HERRIN (No. 6) COAL BED
IN
CHRISTIAN AND MONTGOMERY COUNTIES
and Adjacent Parts of
FAYETTE, MACON, SANGAMON, AND SHELBY COUNTIES

By

J. Norman Payne and Gilbert H. Cady

PRINTED BY AUTHORITY OF THE STATE OF ILLINOIS

URBANE, ILLINOIS

STATE OF LLLINOIS
DWIGHT H. GREEN, Governur
DEPARTMENT OF REGISTRATION AND EDUCATION
FRANK G. THOMPSON, Director
DIVISION OF THE
STATE GEOLOGICAL SURVEY
M. M. LEIGHTON, Chief URBANA

CIRCULAR NO. 105

STRUCTURE OF HERRIN (No. 6) COAL BED
IN
CHRISTIAN AND MONTGOMERY COUNTIES
and Adjacent Parts of
FAYETTE, MACON, SANGAMON, AND SHELBY COUNTIES
By
J. Norman Payne and Gilbert H. Cady

PRINTED by authority of the state of illinois
Page
Structure of Ferrin (No. 6) Coal Bed. 5
Introduction: 5
Coal mining 5
Minable coais 7
Index strata. 8
Carlinvilie limegtone 9
Shoal Creek limestone 9
Coal beds between Shoai Creek and Millereville limestones 12
Millersvilie limestone. 12
Structural features of special interest with respect to coal mining 13
Areas in which the Herrin (No. 6) cosl bed is thin or absent. 13
Revision of present map and preparation of maps of other areas 17
Bibl lography. 18
Oi] and Gas Possibilities 19
Introduction. 19
Structural features 22
Possible producing horizons 23
Appendix - Tabulated Coal Data. 4.1
Christiar County 43
Fayette County. 47
Macon County. 48
Montgomery County 49
Sangamon County 55
Shelby County 57
TABLFS

1. Tabulation of Intervals between the top of No. 6 coal bed and the top of varloue key beds, with average thickness of key beds, in Montgomery and Christian counties 24
2. Sumary of formations encountered in deep wells 35

ILLUSTRATIONS

Figure Page
1 Index map. 6
2 North alde of south "cut-out" 4th NW entry, Peabody Coal Company No. 9, Taylorville, Ilinoia 14
3 East side of "island" of coal off 4 th NW entry 14
4 South side of south "cut-out" on west side of 4 th NW back entry 14
5 Conglomerate near the centex of the south "cut-out" on east aide of 4 th NW back entry 15
6 Calcareous conglomerate near ceriter of south "cut-out" on west wall of 4 th NW front entry. 15
7 Irregular contact between coal and "cut-out" fill shown on east side of "island" of coal in room off 4 th NW entry. 15
8 Contact between "cut-out" fill and coal showing upward bending of bands of coal toward the contact. 17
9 Structure map of the top of the Lower Misaisaippian lime- stone in Chriatian and Montgomery and adjacent parts of Fayette, Macon, Sangamon, and Shelby counties 20
10 Isopach map showing interval between the top of theHerrin (No. 6) coal bed and the top of the Lower Missis-sippian limestone in Christian and Montgomery and ad-jacent parta of Fayette, Macon, Sangamon, and Shelbycounties21
Plate
I Structure map of the Herrin (No. 6) coal bed in Chriatian and Montgomery and adjecent parts of Fayette, Macon, Sangamon, and Shelby counties
2 Graphic correlation and atructure of Herrin (No. 6) coal bed and certain McLeanaboro atrata in Christian and Montgomery and parts of adjacent countles

STRUC'TURE OF HERRIN (NO. 6) COAL BED IN CHRISTIAN AND MONTGOMERY AND ADJACENT PARTS OF FAYETTE, MACON, SANGAMON, AND SHELBY COUNTIES

By
J. Norman Pagne and Gilbert H. Cady

Introduction

The area included in this report lies near the center of the Siate (fig. 1) and a short distance south of springfield and Decatur. It includes the greater parts of Christian and Montgonery counties and lesser parts of Fayette, Macon, Sangamon, and Shelby counties and compriaes Ts. 8 to 14 N. , Rs. 5 W. to 2 E . of the Third Principal Meridian. Several railroads running between St. Louis anü Chicago and between other midwestern industrial cities cross the area, affording convenient means of transportation of the coal to important centers of consumption.

Coal Mining

Most of the coal produced in the region has come from Christian County. The total production from thíg county up to 1930 was $77,669,381$ tons, giving it ninth 15/* rank among the coal producing countiea in the State up to that time. In 1931-32 it ranked fifth and 16/ 1t ranked fifth, and since 1932 the county has ranked second in production. The total tonnage produced from 1931 to 1942 was $50,241,737$ tone. The total production of coal from Montgomery County up to 1930 was $61,718,866$ tons, giving it twelfth rark ainong coal producing counties in the State. 15/ From 1931 to 1943 it has ranked twelfth to eighteenth, with a total production during theae years of 16/ 9,001, 1.88 tons.

[^0]

Fig. I. - Index map.

There are seven active shipping mines in the area.

Minable Coals

Most of the coal produced in this area has come from the Herrin (No. 6) coal bed, although coal was at one time produced from two lower beds at Litchfield and from the Springfield (No. 5) coal bed at Moweaqua. The extent of the No. 6 coal bed, the mined-out areas, and the reserve tonnage (computed on the basis of one million tons per square mile per foot of thickness of the coal bed) are shown in the following tabulation:

Reserves in the No. 6 cosl bed

County	Average thickness ft. $1 n$.	Area originally underlain by coal bed sq. mi.	Area mined out sq. mi.	Reserve area sq. mi.	Reserve tonnage, millions of tons
Christian	68	446	42	404	2707
Fayette	6 -	165	--	165	990
Mecon	- -	-	--	-	-
Montgomery	$6 \quad 7$	430	16	414	2732
Sangamon	72	123	5	118	835
Shelby Total	63	197	1	196	$\frac{1215}{8479}$

Less important reeources are represented by the Litchfield and Springfield (No. 5) coal beds but available information is inadequate for estimating the quantity of such coal. The lower of the two coal beds at Litchfield, reported to be as much as 6 feet thick, was encountered at a depth of about 700 feet in the shaft in sec. 32 , T. 9 N., R. 5 W. (Montgomery County No. 43), or about 286 feet below the horizon of
the Herrin (No. 6) coal bed. According to David White, the flora of this coal bed is definitely of Pottsville age; consequently he considered it older than the Murphysboro (No. 2) coal bed, but F. H. Kay thought that the two beds might be the same. ${ }^{6 /}$ The coal bed mined at the Assumption mine (Christian County No. 69) at a depth of 987 feet appears to be correlative with the lower Litchfield coal bed.

The upper coal bed mined at Litchfield, ranging from 2 to 4 feet thick, was encountered at a depth of about 530 feet in the shaft in sec. 4, T. 8 N., R. 5 W. (Montgomery County No. 171), and was originally mined through a shaft in sec. 32, T. 9 N., R. 5 W. (Montgomery County No. 43) at a depth of 540 feet, this shaft later being deepened to the lower coal bed. * The upper bed lies about 90 to 100 feet below the horizon of the Herrin (No. 6) bed and is belfeved to be the equivalent of the Colchester (No, 2) coal bed 12, 13/

The Springfield (No. 5) coal bed is represented only by black "slate" and a thin bed of coal in the south and central parts of the area, but in T. 14 N., particularly in T. 14 N., R. 2 W. (see tabulated data), it is as much as 5 to 6 feet thick.

The Danville (No. 7) coal bed is in general not worth prospecting, although in some records it has been reported as 3 feet or more thick. From avallable data it appears probable that this bed is generally of less than minable thickness in this area.

Index Strata

Certain beda of fairly definite stratigraphic position and at well established intervale from Ferrin (No. 6) coal bed are useful in estimating the depth to No. 6 and other coal beds of commercial importance.

Trivoli ** (No. 8) coal bed. ${ }^{\text {13/ }}$ - A thin coal bed generally 160-170 feet above

[^1]No. 6 coal bed (table 1), is believed to be continuous with the Trivoli (No. 8) coal 12/
bed found in the adjacent area to the west. Although seldom more than 1 foot thick, this bed is usually reported in diamond-drill records and is often noted in the records of other types of borings. The coal is usually overlain by a varying thickness of sandy and silty shales. Occasionally a thin limestone is encountered a short distance below or even directly below the No. 8 coal bed.

Carinville* limestone. - The Carlinville limestone generally lies about 200 feet above the Herrin (No. 6) coal bed and about 40 feet above the Trivoli coal bed. Although present throughout Rs. 4 and $5 \mathrm{~W} .$, the 1 imestone thins out in R. 3 W . and is rarely reported in arill-holes east of R. 3 W . ($\mathrm{pl}, 2$). It also appears to thin out in the northern townships of the area. This limestone has not been definitely identified in outcrop in this area.

Shoal Creek* limestone. - The Shoal Creek limestone is the most widespread and persistent key bed. The interval from the top of the Shoal Creek limestone to the top of No. 6 coal bed varies from about 280 feet in the northwest part of the area to about 320 to 330 feet in the east part (see pl, 2 and table 1). Exposures of this limestone are numerous in the west and northwest parts of the area (pl. l). It is gray to light gray, mottled in some places, and nodular. It occurs in beds 2 inches to 3 feet thick and ranges in total thickness from 5 to 25 feet (pl. 2). Locally a thin coal bed is present a few feet above the limestone but in some localities it is overlain by a massive sandstone which is conglomeratic at the base (see section II below). The Shoal Creek limestone is usualiy underlain by a black shale or "slate" beneath which a thin coal bed may be present in some places. Three of the best exposures of the Shoal Creak limestone and associated beds observed by the

[^2]writers show the following aucceasion.

I - Outcrop in abandoned quarry on the east banik of Shosl Creek
just west of Panama, in the NW. $1 / 4 \mathrm{NW} .1 / 4 \mathrm{NE} .1 / 4$ sec. 28 , T. 7 N., R. 4 W., Bond County.

Description of strata
Thickness Feet Inches
Limestone, gray, crinoidal, fosgiliferous; weathers yellowish, brown, and red; occurs as one bed

Shale, calcareous, gray, fossiliferous; contains thin stringers and nodules of limestone 3

Shale, clayey, gray, plastic, underclay-like
2-3

Limestone, gray to light gray, fine-grained, fosailiferous, nodular appearing in part; occurs in beds 4 to 30 incheg thick

12-14 -
Shale, calcareous, dark gray, fossiliferous -- 6
Shale, carbonaceoua, black, sheety 2
Shale, light gray, weak, slip-fractured 2 --
Coal, impure, the top 10 inches approaching a coaly ahale 19
Underclay, noncalcareous, light gray, nearly white; base covered by water

II - Exposure in quarry on the north bank of a tributary on east side of Weat Shoel Creek about 2 miles northeast of Litchfield, in the NE. $1 / 4 \mathrm{NE} .1 / 4 \mathrm{NW} .1 / 4 \mathrm{sec} .25, \mathrm{~T} .9 \mathrm{~N} .$, R. 5 W., Montgomery County.
(Tabulated data, Montgomery County No. 196)
Shale, sandy, gray, micaceous, weathers brownish; interbedded aandstone, gray, fine-grained, micaceous, weathers brownish to brown 5 --

Sandstone, gray, massive, cross-bedded, weathers light to dark brown; coaly zone occurs 3 feet below top

5-8
Shale, gilty and sandy, gray, micaceous, lenticular
$0-1$
6
Conglomerate, consisting of limestone and shale pebbles in a sandy matrix, very carbonaceous and containing carbonized plant stems; a lenticular bed of cosl l-1 $1 / 2$ inches thick occurs near middle of the bed

	Thickness -	
	Feet	Inches
Shale, calcareous, greenish-gray; contains numerous nodules of light gray to brownish, very fine-grained, dense limestone $1 / 4$ to 3 inchea in diameter		
Limestone, light gray, fine-grained, fossiliferous, nodular-appearing, eapecially when weathered	10-12	
Shale, micaceous, dark gray, becoming darker downward; base not exposed	24	
(Owner of quarry reports 4 inches of coal 4 feet below base of limestone)		
III - Exposure in quarry of Illinois Quarry Company on the east bank of South Fork Sangamon River, about 1 mile north of Kincaid, in the NE. $1 / 4 \mathrm{SW} .1 / 4 \mathrm{SE} .1 / 4 \mathrm{sec} .34$, T. 14 N., R. 3 W., Christian County. (Tabulated data, Christian County No. 58)		
Drift	6-7	
Shale, clayey, gray, badly weathered to yellow and brown	--	8
Coal, weathered	--	4
Underclay, gray, weathers yellow and brown; red streak 2 inches thick 8 inches below top	$1-2$	-
Limestone, shaly, nodular, gray, very fine-grained; weatherg yellowish	1	4
Shale, calcareous, chocolate-brown in top inch, becomes lighter downward	--	2
Limestone, gray to light gray with dark gray mottlings, very hard and dense, fine-grained with coarse-grained areas, fossiliferous	1	-
Shale, calcareous, gray, fossiliferous; contains limestone stringers anà nodules	--	2
Limestone, nodular, as above	1	4
Shale, calcareous, blue-gray; limestone stringers and nodules in the lower 6 inches	1	2
Limestone, gray, more uniformly colored than the nodules above but with some gray mottlings, fine- to coarse-grained, crinoidal, very hard	1	4
Shale, blue-gray as $1^{14^{\prime \prime}}$ to $2^{\prime \prime} 6^{\prime \prime}$ above, fossiliferous	2	--
Limestone, gray to light gray, fine-grained, dense, hard, massive; fossillferous; base not exposed	4	\cdots

Coal beds between Shoal Creek and Millersville limestones. - Throughout the east part of the area two thin coal beds, 50 to 60 feet apart, are commonly present between the Shoal Creek limestone and the Millersville limestone. The lower of these beds lies 400 to 425 feet above No. 6 coal bed or about 100 feet above the Shoal Creek limestone (table l). Limestone or calcareous ghale and black "slate" are commonly reported above this coal bed. From wells drilled in this area and from others drilled farther east, black argillaceous and fossiliferous limestone cuttings have been recovered from about 20 feet below this coal bed. The upper coal bed lies about 475 to 490 feet above No. 6 coal bed or about 100 feet below the top of the Millersville limestone (table l). Limestone or black "slate" are not reported above this bed. The lower coal bed is the thicker of the two, usually being 8 inches to more than a foot thick, whereas the upper coal bed is rarely more than 4 inches thick. Relatively thick typical underclays and commonly also nodular argillaceous ("fresh-water") limestones are found in or below the underclay of each coal bed.

Millersville limestone. - The Millersville limestone is the most prominent marker in the east part of the area because of its conspicuous thickness of from 20 to 50 feet (table 1). The top of this limestone lies 575 to 600 feet above the top of Herrin (No. 6) coal bed (pl. 2 and table 1). There are exposures of this limestone west of Millersvilie in secs. 28 (Christian County No. 40) and 34 (Christian County No. 45), T. 12 N., R. 1 W., and south and southwest of Ramsey in secs. 19 (Fayette County No. 400) and 29 (Fayette County No. 410), T. 8 N., R. le. The outcrop in sec. 28 in Christian County exposes the lower bench of the limestone and the underlying sandy shales and sanastones, whereas the exposure in sec. 34 displays a considerable thickness of the midde and upper beds. The limestone is usually light gray to buff, fine-grained, and fossiliferous. Some beds contain numerous fusulinids and other foraminifera. The lower part of the limestone is possibly algal in origin, being made up almost entirely of rounded and
flattened particles composed of a light colored chalky encrustation of calcite over a more translucent center; many of these fragments are flattened discs or ovals similar in outline to the seed of the hollyhock. West of Millersville the lower bench of this limestone is only about 1 foot thick, whereas at Ramsey this lower bed or one very similar in appearance to it is more than 7 feet thick. Frequently a thin coal bed is reported 10 to 15 feet above the Millersville limestone. This coal bed and an associated thin limestone crop out in sec. 35, T. 12 N., R. l W. (Christian County No. 154), and sec. 2, T. 11 N., R. 1 W. (Christian County No.142).

A limestone 10 or more feet thick and about 130 feet above the Millersville limestone is reported in a few wells. This limestone may possibly be the correlative of the Omega limestone as identified in the vicinity of Shelbyville.

Structural Features of Special Interest With Reapect to Coal Mining

The regional dip of the Ferrin (No, 6) coal bed in this area is to the southeast. The higheat recorded altitude of the coal bed is 340 feet above sea-level in sec. 33, T. 13 N., R. 5 W. (Sangamon County No. 90), and the lowest 18256 feet below sea-level in sec. 29, T. 9 N., R. 2 E. (Fayette County No. 605), glving an average dip of about 14 feet per mile across the intervening distance of 42 miles. Deviations and reversala from the regional dip are numerous (pl .1), and should be taken into consideration in selecting sites for proposed mining operations. Small faults have been encountered in some of the mines, but according to available data the maximum displacement does not exceed 10 feet.

$$
\frac{\text { Areas in Which the Herrin (No. 6) Coal Bed }}{\text { is Thin or Absent }}
$$

An elongated area several miles wide in which the No. 6 coal bed is thin or absent extends from northern Shelby County (T. 12 N., R. 2 E.) almost due west to R. 3 W. and thence weat of south through western Montgomery County (pl. 1). Because

Fig. 4. - South side of south "cutout" on west side of 4 th NW back entry. The dark material at the upper left is limestone, that in the extreme upper right corner is silty shale, and the light colored material is coarse-grained sandstone. Note the smoothness of the contact of the coal and sandatone at the coal-limestone contract.

Fig. 5. - Conglomerate near the center of the south "cut-out" on east side of 4 th NW back entry. Note the rounded blocks of coal at upper right of hammer head. The blocks of lighter colored speckled material at lower left end of hammer handle are limestone.

Fig. 7. - Irregular contact between coal and "cut-out" fill shown on east side of "island" of coal in room off 4 th NW entry.

Fig. 6. - Calcareous conglomerate near center of south "cut-out" on west wall of 4 th NW front entry. Crinold stems and fossil fragments are abundant in this conglomerate.
there has been little drilling in the area of the so-called "cut-out" the boundaries of the area belleved to be barren are drawn near the holes in which little or no No. 6 coal was encountered. Small "cut-outs" have been discovered south of Hillsboro and northwest of Taylorville, and it is probable that others may be encountered here and there in the area. The form and pattern of the "cut-oute" suggest that they represent stream channels.

An excellent opportunity to examine one of these smaller "cut-outs" was afforded when the Peabody Coal Company drove an entry across one in their No. 9 mine near Taylorville, and the writer and other members of the Survey staff were permitted to examine it. Here the "cut-out" splits, leaving an "island" of coal in the center (pl. 1). In the "cut-out" the coal has been completely removed (fig. 2) and the resulting channel is filled with shale, silty ahale, siltatone, sandatone, and conglomerate (figs. 3, 4, 5). The sediments are usually fine-grained (fig. 3) but occasionally coarse-grained gandstone (fig. 4) or conglomerate (fig. 5) is present. The conglomerate is usually composed of blocks and pebbles of coal, black "slate", shale, and Ifmestone in a sandatone matrix (fig. 5). In certain localitiea the conglomerate is extremely calcareous and contains abundant crinoid stems and other foasil framents (iig. 6); in the calcareous conglomerate the fragments are usually smaller than in the noncalcareous conglomerate. The conglomerate thins out to the north toward the ouge of the "cut-out" and was apparentiy a bar-iike depoeit gimilar to the gravel bars developed in our present atreams. The regularity of the contact of the "cut-out" material and the coal (fig. 4) In some localities in the mine is striking, but there is no evidence of any appreciable amount of movement along this contact. At other localities the contact is irregular. (fig. 7). The apparance of dark shale overlying the gray shale in figures 3 and 7 is a photographic illusion.

Another peculiarity developed along the borders of the "cut-out" is the thickening of the coal, or in some places the bands of the coal bend upward toward the
contact with the "cut-out" material (fig. 8). This may be due to differential compaction of the "cut-out" materials as compared with that of the coal, limestone, and ahale originally deposited.

> Fig. 8. - Contact between "cut-out" fill and coal showing upward bending of bands of coal toward the contact, on south side of north "cut-out" on east side of 4 th $N W$ back entry.

Revision of Present Map and Preparation of Maps of Other Areas

The present map is the sixth of a series of maps showing the atructure of Herrin (No. 6) coal bed in southern Ilifnols (Circulars 24, 42, 58, 71, and 88). Iike the others, it is a progress map on which additions and corrections can be readily made. Because of new drilling and the occasional discovery of records of earlier driling, it is expected that additional data will become available from time to time. The map covering Marion and parts of adjacent counties is well advanced and should be conpleted within the next year.

B1b] 10arcephy

Information on the geology of the Pennsylvanfan rocks and on the structure and occurrence of the Ferrin (No. 6) coal bed anc associatea atrata in this area may be found in the following publications.

1. Bement, A., IJlinois coal: Illinois Geol. Survey Bull. 56, pp. 13-45, 61-62, 1929.
2. \qquad The Illinois coal field: Illinols Geol. Survey Bull. 36, pp. 182-202, 1910
3. Blatchley, R. S., Oil and gas in Boni, Macoupin, and Montgomery counties: Illinots Geol. Surver Bull. 28, 1914.
4. Cady, G. H., Signtficant uncertaintiea in Pennaylvanian correlation in Illinois coal basin: Am. Assoc. Petrol. Geologists, vol. 23, No. 10, pp. 1507-1524, 1939; Illinois Geol. Survey Cir. 57, 1939.
5. Collinawood, D. M., Further consiceration of prospects for oil in the Decatur area: Illinois Geol. Survey Rept. Inv. No. 1, 1924.
6. Kay, F. H_{H}, Coal resources of District VII (southwestern Illinois); Illinois Geol. Survey Coop. Mining Ber. Bull. 11, pp. 13-40, 65-89, 138-155, 204-223, 1922.
7. Lee, Wallace, Geology and mineral reaources of the Gillesple-Mount Olive ģadrangles: U. S. Geol. Survey Geol. Atlas, Folio No. 220, 1926.
8. \qquad Coal in Gillespie anả Mount Olive quadrangles, Illinois: Illinois Geol. Survey Bull. 30, p2. 51-59, 1917.
9. \qquad , 011 and gas in the Gillespie and Mount Olive quadrangles, Illinois: Illinois Geol. Survev Bull. 31, pp. 71-107, 1915
10. Moulton, Gail F., Pioper testing for oil structures in Illinois and some favorable areas Ceserving sucb testing: Illinois Feal. Survey Rept. Inv. No. 6, pp. 18-20, 1925.
11. Newton, w. A., Surface structure map of Shelby, Effingham, and Fayette cointiea: Illinoie Geol. Sarvey Rept. Inv. No. 76, 1941.
12. Payne, J. N., Structure of Eerrin (No. 6) coal bed in Macoupin County, eastern Greene and Jersey, southeastern Scott, and aouthern Morgan ance Sangamon counties, Illinois: Illinojs Geol. Survey Cir. 88, 1942.
13. Wanless, H. R., Pennsy]vanian correlations in the Eastern Interior anc Appalachian coal fields: Geol. Soc. America, Spec. Faper 17, pp. 80, 104, 1939.
14. Worthen, A. H., seological Survey of Ilifnois: Christian County, vol. VI, pp. 156-162, 1875; Fayette County, vol. VI, pp. 135-148, 1875 Macon County, vol. VI, pp. 185-194, 1875; Montgomery County, vol. VI, pp. 149-155, 1875; Sangamon County, vol. V. pp. 306-319, 1873 ; Shelby County, vol. VI, pp. 163-174, 1875.
15. A compilation of the reports of the mining inaustry of Illinojs from the earliest records to the close of the year 1930: Illinois State Department of Mines and Minerals, p. 16, 1931.
16. Fiftieth to sixty-first coal reports of Illinois: Illinois State Department of Mines and Minerals, 1931-1942.

OIL AND GAS POSSIBILITIES

Introduction

Commercial production of oil and gas in this area has been obtained only from sandatone in the lower part of the Pennsylvanian succession in the Litchefield, Mt. Olive, Raymond, ana Waggoner pools (figs. 9 and 10). Nevertheless, because in the 1mportant Louden pool that lies but a short distance beyonc the southeast corner of this area the production is from various Chester sandstones and the Devonian limestone, it is posaible that some of these pre-Pennsylvanian formations may be procuctive in this area. Conseduently the structure of the pre-Pennsylvantan beda and the relation of such structure to that of the Herrin (No. 6) coal bed is of interest in providing a basis for appraising the usefulness of the coal-bed structure map in indicating the position of pre-Penngylvanian structures favorable for ofl and gas accumulation.

To make possible this comparison a contour map of the top of t'e Lower Mississippian limestone has been prepared, this being the datum below the Pennaylvanian beds for which the greatest amount of information is available (fig. 9). The graphic comparison of the structure of this datura and that of the Eerrin (No. 6) coal bei is provicied by the isopach map (fig. 10), which ahows the variations in thickness of the strata comprising, the interval. It should be undergtood that the structure map of the limestone is much more generalized than that of the coal bed, being based upon fewer datum points, and hence was prepared on a amall scale anì a greater contour interval. Furthermore the elevation of the limestone in some places was estimated from the poaition of higher formationa.

Fig. 9. - Structure map of the top of the Lower Mississippian limestone in Christian and Montgomery and adjacent parte of Fayette, Macon, Sangamon, and Shelby Counties, by J. Norman Payne.

Fig. 10. - Isopach map showing interval between the top of the Herrin (No. 6) coal bed and the top of the Lower Missiasippian limestone in Christian and Montgomery and adjacent parts of Fayette, Macon, Bangamon, and Shelby Counties, by J. Norman Payne.

Structural Features

It is believed that areas deserving special attention are those in which the gtructure of the coal bed and that of the limestone show more or less parallel deformation in the form of anticlines or anticlinal noses. Also of special interest are those areas in which the position of an anticlinal structure in the coal bed more or less coincides with an area of thinning of the interval between the two key beds. (pl. 1 and figs. 9 and 10). The more strongly developed anticlines and anticlinal noses ahown on plate 1 are llsted below from north to south, those for which there is more or less correapondence between the two datum planes being marked with an asterigk (*) after the number.

1 An anticinal nose extending irregularly from gec. 2, T. $14 \mathrm{~N} ., \mathrm{R} .3 \mathrm{~W}$. , to sec. il, T. 13 N., R. i E.

2 Extending from Blue Mound in T. 14 N., R. $2 \mathrm{E} .$, to Moweaqua, T. $14 \mathrm{~N} ., \mathrm{R} .2 \mathrm{E}$.
3 Extending irregularly from SE part T. 14 N., R. 4 W., to southeast of Taylorville in T. $12 \mathrm{~N} ., \mathrm{R} .2 \mathrm{~W}$. (the eastern part of this structure has been previously recommended for testing, see bibliography, ref. 5, pp. $12-15$ and pl. 1).

4* Extending from sec. 7, T. 13 N., R. $5 \mathrm{~W} .$, to sec. 9, T. $13 \mathrm{~N} ., \mathrm{R} .4 \mathrm{~W}$.
5* From sec. 3, T. 12 N., R. $5 \mathrm{~W} .$, to sec. 19, T. $12 \mathrm{~N} ., \mathrm{R} .4 \mathrm{~W}$.
6 From sec. 15, T. 11 N., R. $5 \mathrm{~W} .$, to sec. $9, \mathrm{~T} .11 \mathrm{~N}, \mathrm{R} .4 \mathrm{~W}$.
7 Waggoner ofl pool, secs. 31 and $32, \mathrm{~T} .11 \mathrm{~N} ., \mathrm{R} .5 \mathrm{~W}$.
8 Ohlman dome or arch, previously described (see bibliography, Refs. 3 and 10) as located in southeast part of T. $11 \mathrm{~N} ., \mathrm{R} .2 \mathrm{~W}$. and the adjacent part of the townsh1p to the south, is now shown by additional data to extend across the south part of $T .11 \mathrm{~N} ., \mathrm{R}, \mathrm{l}$ W. and R. I E.

9 In the northeast quarter T. 9 N., R. 4 W., the northwest quarter T. 9 N., R. $3 \mathrm{~W} .$, and southwest quarter T. $10 \mathrm{~N} ., \mathrm{R} .3 \mathrm{~W}$. (Mississippian structure map only).

10 Raymond oil pool in T. 10 N., R. 4 and 5 W.
11 Nokomis arch in central part of T, $10 \mathrm{~N} ., \mathrm{Rs}$. 1 and 2 W . Previously described (see bibliography, Ref. 10).

12 From Roaamond and vicinity, T. 11 N., R. 1 W., to Pana, T. 11 N., R. 1 E.
13 Litchfield pool in Ts. 8 and 9 N., R. 5 W. (Mississippian structure map only)
14* Fram sec. 14, T. 9 N., R. 1 W., to sec. 14, T. 9 N., R. 1 E.
15* From sec. 12, T. 8 N., R. 4 W., to sec. 9, T. 8 N., R. 3 W.
16 Through Ramsey in the north half of T. 8 N., R. I E. based mainly on driller's \log of drill hole, Fayette County No. 612.

Possible Producing Formations

The possible producing formations underlying this area are, in descending order, (1) Pennsylvanian aandstones, (2) Chester sandstones, (3) Ste. Genevieve limestone and sandstone, (4) St. Louis limestone, (5) Salem limestone, (6) Burling-ton-Keokuk limestones or sandstonea, (7) Devonian-Silurian limestones, (8) "Trenton" limestone, and (9) possibly limestones ani sandstones below the "Trenton."

The Chester formations and possibly part of the Ste. Genevieve are bevelled** off as the western edge of the area is approached, and consequently the number of producing horizons is reduced considerably in the western portion of the area. This 1s the reason for the 700 -foot increase in the interval between coal No. 6 and the top of the Lower Misaissippian from west to east (fig. 10).**

[^3]Table 1.--Tabulation of intervala between top of No. 6 coel and top of various key beds, with average thickness of key beds in Montgomery and Chriatian countiea

MONTGOMERY COUNTY

Bed	T. 8 N., R. 4 W.			T. 8 N., R. 5 W.				T. 9 N., R. I W.										
							$\begin{gathered} \text { Average thickneas } \\ \text { of bed. } \end{gathered}$				$\begin{gathered} \text { Average thickneas } \\ \text { of bed } \end{gathered}$							
Milleraville ls.	(Above No. 6 coal)																	
Shoal Creek Coal No. 2 Shoal Creek									$\begin{array}{r} 578- \\ 584 \end{array}$	581	26'-0	2						
									482		O',	1						
Shoal Creek Coal No. J									424	424	1'-	2						
Shoal Creek 18.	$\begin{array}{r} 309- \\ 333 \end{array}$	324	11'-0"	9	305-				4	424	1 -	2						
Macoupin coal	231-					317	$17^{\prime}=0$	6	337	337	181.							
	256	248	$0^{+}-8^{\prime \prime}$	11	259	248	$0^{1}-4^{\prime \prime}$	6	264		B.gl.	1						
Carlinville ls.	199-			11 199-			O-4	12										
	206	203	4: $0^{\prime \prime}$	6	224	210	7'- ${ }^{\prime \prime}$											
Trivoli (Ho. 8) coal No. 7 coal	$\begin{array}{r} 151- \\ 174 \end{array}$				156 178	165	0-5"	6										
	174 $25-35$	162 29	$1 \prime$ $0^{\prime}-3^{\prime \prime}$	8	178 $28-36$	165 31	O'- 5"	6 4	$\begin{array}{r} 173 \\ 28-30 \end{array}$	170 29	1'-4	2						
Horizon of top of No. 6 coal from which measurements are made																		
No. 5 coal Upper Litchfield coal	37-53	45	$1{ }^{\prime}-9^{\prime \prime}$	2	(Below No, 6 coal) $28-42$ 34 $2^{\prime}-4 "$ $142-$			3										
	150		3'-6"	1				3										
					$\begin{array}{r} 142- \\ 155 \\ 230- \\ 262 \end{array}$	249	4'-7"	6										
Lower Litchfield conl																		

T. $9 \mathrm{~N} ., \mathrm{R} .2 \mathrm{~W}$.					T. 9 N., R. 3 W.				T. 9N., R. 4 W .			
Bed							$\begin{aligned} & \text { Average thickness } \\ & \text { of bed } \end{aligned}$					
					(above	No. 6	coel)					
Millersville 18. Shoal Creek coal No. 2												
Shoal Creek coal No. 1	$398-$	425	1'-4"	3								
Shoal Creek la.	$\begin{aligned} & 306 \\ & 347 \end{aligned}$	329		4	$318-$	323	$9^{\text {r-0" }}$	4	$305-$ 321	315	14'0"	4
Macoupin coal	250-	256	$0 \cdot 3$	4	$238-$	247	$0 \cdot 10$	4	$\begin{array}{r}235- \\ 254 \\ \hline\end{array}$	243	Blk.sl.	3
Carlinville 1 s .					$197-$	198	"-0'3	2	$200-$			4
Trivoli												
No. 7 cosl	172	166	$1{ }^{\prime \prime}-2 \times$	4	175		$1{ }^{-0 \prime}$	1				
	30-35	33	1'-0"	2								
Horizon of top of No. 6 coal from which measurements are made.												
No. 5 coal					$\begin{gathered} \text { (Below } \\ 55 \end{gathered}$	$\text { No. } 6$	$\begin{aligned} & \cos 1\} \\ & \text { Bik, al. } \end{aligned}$		50		B1k. sl.	1
Uppar Litch- field coal												
Lower Litchfleld coal					262		?	1				

Horizon of top of No. 6 coal from which measurementa are made.

No. 5 coal	$38-53$	47	$3^{\prime}-3^{\prime \prime}$	5
Upper Litch-	$120-$			
(ield coal Lower Litch- field coal	136	126	$5^{\prime \prime}-8^{\prime \prime}$	6
	$270-$	279	$5^{\prime}-8^{\prime \prime}$	3

T. 11 N., R. 4 W.* T. 11 N., R. 5 W.												
Bed												
	(Above No. 6 coal)											
Milleraville ls. Shoal Creek coal No. 2												
Shoel Creek coal No. 1												
Shoml Creek la.	$\begin{array}{r} 293- \\ 304 \end{array}$	299	12'-0"	3	$\begin{array}{r} 281- \\ 294 \end{array}$	286	9'- 0"	6	$\begin{array}{r} 281- \\ 292 \end{array}$	287	10'- $0^{\prime \prime}$	
Macoupin coal	$246-$ 258	252	0'- 4'	2	$\begin{array}{r} 235- \\ 256 \end{array}$	247	Blk, sl.	4	253		Bik. s	
Carlinville ls,									173		?	
$\begin{aligned} & \text { Trivoli } \\ & \text { (No. 8) coal } \end{aligned}$	$\begin{array}{r} 162 \\ 176 \end{array}$	169	1'- ${ }^{\prime \prime}$	2	$\begin{array}{r} 162- \\ 184 \end{array}$	173	1'-0"	9				
No. 7 coel							O-4"	1				

Horizon of top of No. 6 coal from which measurementa are made.
(Below No. 6 coal)
No. 5 coal Upper Litch-
field coal
Lower Litch-
field cosl

* Data in T. 10 N., Re. 3, 4, and $5 \mathrm{~W} .$, insufficient and too poor for tabulation.

CERISTIAN COUNTY

* Data in T. 11 N., R. 3 W. not aatisfactory for tabulation.

* Data in T. 14 N., R. 1 E. not setiefactory for tabulation.

Table 2. - Summary of Formations Encountered in Deep Wells

Fayette County No. 172
R. E. Garland - Miller No. 1.

SE. 1/4 SE. $1 / 4 \mathrm{SW} .1 / 4$ sec. 34, T. $9 \mathrm{~N} ., \mathrm{R} .2$ I. Drilled October 1938. Cuttings examined by G. W. Prescott; set No. 3111. Surface altitude 545.5 feet: datum sea-level.

	```Thick- ness. ft.```	Depth to bottom ft.	Altitude of top ft.
Pleistocene syotem	280	180	$+546$
Pennsylvanian system	1110	1290	+366
Mississippian system			
Chester geries			
Elvira group			
Menard-Vienna limestone, shale, and gandstone	100	1390	-744
Tar Springs sandstone	86	1476	-844
Homberg group			
Glen Dean limestone	24	1500	-930
Hardinaburg aandstone	10	1510	-954
Golconde limestone and ahale	150	1660	-964
Cypress sandatone	30	1690	-1114
New Design group			
Paint Creek limestone and shale	58	1748	-1144
Bethel sandstone	40	1788	-1202
Renault limestone and shale	12	1800	-1242
Aux Vases sandstone	44	1844	-1254
Iowe series			
Meramec group			
Ste. Genevieve formation Levias dolomite	12	1856	-1298

## Fayette County (Six M1les East of Area)

Carter Oll Co. - Mary Miller No. 1.
Cen. W. I/2 NW. $1 / 4 \mathrm{NW} .1 / 4$ sec. 12, T. 8 N., R. 3 E.
Drilled 1937.
Cuttinge examined by G. W. Prescott; set No. 234l.
Surface altitude approximately 570 feet (barometer): datum sea-level.

	Thickness ft.	Depth to bottom ft.	Altitude of top ft.
No cuttinge	210	210	+570
Pennaylvanian system	1140	1350	+360
Mississippian system			
Chester aeries			
\#omberg group			
Glen Dean formetion	20	1370	-780
Hardinsburg sandstone	20	1390	-800
Golconda formation	98	1488	-820
Cypress sandstone	57	1545	-918
New Design group			
Paint Creek formation	40	1585	-975
Pethel sandstone	21	1606	-1015
Renault formation	17	1623	-1036
Aux Vases sandstone	77	1700	-1053
Iowe series			
Meramec group		-	
Ste. Genevieve formation			
Levies limestone	22	1722	-1130
Rosiclare sandatone	43	1765	-1152
Fredonia limestone	127	1892	-1195
St. Louis limestone and dolomite	243	2135	-1322
Salem limestone and dolomite	170	2305	-1565
Ogage group	652	2957	-1735
Kinderhook group			
Chouteau İmestone	10	2967	-2387
Hannibal-Grasay Creek ahale	105	3072	-2397
Devonian system Limeatone and dolomite	98	3170	-2502

## Montgomery County No. 224

Jack Brown - Cecil Lipe No. 1. SW. 1/4 SW, $1 / 4 \mathrm{SE}, 1 / 4 \mathrm{sec} .28, \mathrm{~T} .10 \mathrm{~N} ., \mathrm{R} .3 \mathrm{~W}$. Drilled in 1940.
Cuttinge examined by F. E. Tippie; set No. 5232. Surface aititude 646 feet: datum sea-ievel.
$\left.\begin{array}{cccc} & \begin{array}{c}\text { Thick- } \\ \text { nesa } \\ \text { ft. }\end{array} & \begin{array}{c}\text { Depth to } \\ \text { bottom } \\ \text { ft. }\end{array} & \begin{array}{c}\text { Altitude } \\ \text { of top }\end{array} \\ \text { ft. }\end{array}\right]$

## Sangamon County No. 17

```
Madison Coal Corporation - Diamond-drill hole No. 3 at
 Divernon Mine No. }
Near SW. cor. NW. 1/4 sec. 29, T. 13 N., R. 5 W.
Drilled before 1934.
Core examined by C. L. Cooper to }1635\mathrm{ feet; Company
 description 1635 to 2000 feet.
Surface altitude 616.3 feet: datum sea-level.
```

	Thickneas ft.	Depth to bottom甲t.	Altitude of top f゙t.
No core	15	15	\$616
Pennsylvanian syatem	688	703	+601
Misgissippian system			
Iowa serles			
Meramec group			
Ste. Genevieve formation (?)	25	728	- 87
St. Louis IImestone	200	928	-112
Salem limeatone, sandstone, and shale	183	1111	-312
Osage group			
Warsew shale and limestone	80	1191	-495
Keokuk limestone	57	1248	-575
Burlington limestone	92.	1340	-632
Fern Glen ahale and 11 raestone	85	1425	-724
Kinderhook group 800			
Shale	223	1648	-809
Devonian-Silurian aystems			
Limestone	259	1907	-1032
Ordovician syatem			
Cincinnation series			
Maquoketa shale	93	2000	-1291

## Sangamon County No. 66 ( $51 / 2$ miles north of area)

## Lucille Millar - G. W. Sample No. 1.

SW. 1/4 SW. $1 / 4 \mathrm{NE} .1 / 4 \mathrm{sec} .11, \mathrm{~T} .15 \mathrm{~N} ., \mathrm{R} .3 \mathrm{~W}$. Drilled in 1939.
Cuttings examined by E. A. Atherton; set No. 3326. Surface altitude 595.9 feet: datum sea-level.

	Thickness ft.	Depth to bottom ft.	Altitude to top ft.
Pleistocene system	130	130	+596
Pennsylvanian eystem	592	722	+466
Misaissippian syotem			
Chester series			
New Design group			
Renault limestone and shale	39	761	-126
Aux Vases sandstone	42	803	-165
Iowa series			
Meramec group			
Ste. Genevieve formation			
Levias limestone	13	816	-207
Rosiclare sandetone	14	830	-220
Fredonia limestone	36	866	-234
St. Louis limestone	229	1095	-270
Salem limestone	85	1180	-499
Osage group			
Warsaw and Keokuk shale, limeatone, and sandstone	188	1368	-584
Burlington limestone	96	1464	-772
Fern Glen limeatone, dolomite, and shale	105	1569	-868
Kinderhook group			
Hannibal-Gragay Creek shale	208	1777	-973
SiJurian system			
Limestone and dolomite	281.	2058	-1181
Ordovician system			
Cincinnatian series Maquoketa shale and limestone	204	2262	-1462
Galena-Platteville limestone	$408$	2670	-1666
Glenwood sandstone	5	2675	-2074
Chazyan series   St. Peter sandatone	57	2732	-2079

## Sheiby County No. 114

Iilican Oil Corp. - D. Carr No. 1. SW. 1/4 SE. $1 / 4 \mathrm{NE} .1 / 4 \mathrm{sec} .12, \mathrm{~T} .13 \mathrm{~N} ., \mathrm{R}, 2 \mathrm{E}$. Drilled in 1939 Cuttings examined by F. E. Tippie; set No. 3368 Surface altitude 715.9 feet: datum gea-level.

	Thickness ft.	Depth to bottom ft.	Altitude to top ft.
No samples	180	180	$+716$
Pennsylvanian syatem	1120	1300	$+536$
Mississippian system			
Chester series			
Elvira group			
Tar Springs sandetone	35	1335	$-584$
Homberg group			
Glen Dean-Golconds formations	140	1475	-619
Cypress sandstone	35	1510	-759
New Design group			
Faint Creek formation	85	1595	-794
Bethel sandstone	40	1635	-879
Renault limeatone	25	1660	-919
Aux Vases sandatone	15	1675	-944
Iowa series			
Meramec group			
Ste. Genevieve formation	25	1700	-959
St. Louls formation	225	1925	-984,
Salem formation	75	2000	-1209
Osage group	600	2600	$-1284$
Kinderhook group			
Chouteau dolomite	20	2620	-1884
Hannibal-Grasay Creek shale	110	2730	-1904
Devonian system			
Limeatone	65	2795	-2014
Silurian syetem			
Niagaran serlea			
Dolomite	105	2900	-2079

## APPENDIX

## tabulated coal data <br> for <br> CERISTIAN AND MONTGOMERY AND ADJACENT PARTS OF <br> FAYETTE, MACON, SANGAMON, AND SHELBY COUNTIES

## EXPLANATION OF ABBREVIATIONS USED IN TABULATED DRILL RECORD DATA

Type of Hole:


Section Plat


Combination symbols, replacing the second letter of the abbreviations above, have the following meanings:

> -S-Skeleton log
> -COThickness of coal confidential
> -K-Entire log confidential
> -N-No log in Survey files

SH-Shaft mine	SA-Abandoned mine
SL-Slope mine	OA-Abandoned strip mine
SB-Drift mine	OU-Outcrop information
ST-Strip mine	

Location: Location in section by numbers and letters; see plat-above, left.
Surface Altitude is given in feet and tenths of feet: as " 4326 " means "top of hole is 432.6 feet above sea level." The Level Method for determining altitude of top of hole, shaft, etc., is as follows:

> B - Barometer
> C - Company information
> F —Field estimate using topographic map
> H -Hand level

P -Plane table
T -Topographic map estimate not in field
$\mathbf{Y}$-Wye level or transit
Total Depth of hole is given to nearest foot.
Quad. Number: Refers to number of quadrangle as given on Index Map (p. 40) in "Publications on the Geology, Mineral Resources and Mineral Industries of Illinois, Sept. 1, 1941 ." An asterisk (") after number indicates the datum point is not shown on the structural contour map drawn on the Herrin (No. 6) coal.
Year Drilled: Last two figures only; as " 26 " means "1926."
Doubtful Information: A notation here indicates that, although information is available, the accuracy of some part of the data is in doubt. The nature of the doubt is shown by number, as follows:
2. Correlation of coal bed
6. Both correlation and altitude
3. Eract location
7. Both location and altitude
4. Surface altitude
8. Depth to coal bed
5. Both correlation and location
9. Correlation, location, and altitude

Coal No. 6 and No. 5: Depsh to coal is given to the top of bed, to the nearest foot. Allitude is given of the top of the coal bed in feet above sea level. A symbol "CR" following this figure indicates distance below sea level. Thickness is given in feet and inches. $O$ indicates coal bed is eroded or is absent at its usual horizon. Where no coal data are given, the information is unreliable or hole did not reach the coal bed. Where alfitude is shown but not depth, the former is estimated from other data.
Coal No. $5^{\circ}$ : Refers to coal No. 5 unless otherwise specified in the company name column.
Operators: CC signifies Coal Company; MC, Mining Company, etc. Names are slightly abbreviated when necessary.

CHRISTIAN

Lecation of Hole				$\underset{\substack{\text { County } \\ \text { Number }}}{ }$	Type Hole	Operator		Surface Altitude	$\underset{\substack{\text { Total } \\ \text { Depth }}}{\text { cen }}$	Nuad.	$\underset{\text { Year }}{\text { Drilled }}$		Coal Nas				Coal No. 5				
								(V000					ayint	Thibuns		$\underset{\substack{\text { Deprit } \\ \text { (Feet) }}}{ }$	${ }_{\substack{\text { anent } \\ \text { (ren) }}}^{\text {a }}$	Theiowe			
tiownal	Mena	(1ection						n. 1						tis	Ft.			In			
						$\begin{aligned} & \text { CHRISTIAN } \\ & \text { MAY } 1.1943 \end{aligned}$															
11 N	1 E	15	E 5	66	S A	SWITH L CN		6790 p		188			720	416 R		06					
11 N	1 E	15	G 8	65	S A	PAiv A C	3	6771 P		188			714	37 CA	7	06					
11 N	1 E	16	A 2	67	5 H	PANA CC	1	6976 P		188			722	24 CA		00					
11 N	1 E	16	E 4	133	UC	PANA CC		6960	842	188	* 39										
11 N	1 E	21	E4	90	D 0	PANA CC		6927 Y	411	188											
11 N	1 E	21	G 2	68	S H	PENWELL CM.	1	7034 P	722	188			714	11 Ch	7	03					
11 N	$1 . \mathrm{E}$	23	A 8	73	$1{ }^{1}$	INDEPENDNT		6658 P	1727	188	38		695	29 ch	5	00	724	58 Ct	1	00	
11 N	1 E	23	D 2	71	T D	SWORDS MCO		6560 P	1801	188	38		695	39 Cf	5	00					
11 N	1 E	27	C 5	46	$1{ }^{1} \mathrm{O}$	ALEXANDER		6622 p	1375	198			720	5668 3	6	00	799	137 CF	5	06	
11 N	1. E	28	A 5	31	T D	LEE R TRST		6760 c	1722	188	42		710	34 CR	6						
11 N	1 M	2	68	142	0 U	L. IMESTONE		$6370 \quad \mathrm{~T}$		188											
11 N	1 k	2	H8	91	0 D	BRAZIL CM		6366 P	619	186						* 0					
11 N	13	6	H 5	92	0 D	CYPRESS OG	10	6312 P	280	186	38 3										
11 N	1 H	13	G 7	93	T S	MEYER MRK		$6690 \quad \mathrm{G}$	1405 937	188 188	39		699	24 CA	8		805	130 CR	2		
1 IN	1.15	15	D 1	49	0 D	ALLEN GAR		6748 P	937	188			599	24 CH	8	02	805	1306	2	06	
11 N	1 W	27	D 1	94	T N	GRAHAM ETL		7020 G	405	188	38										
11 N	1 \%	29	A 8	47	D D	STEPHENSCL		6606 P	644	188	12		636	25							
11 N	1 W	32	A 6	48	00	PEABODY CC		6677 p	675	188			667	$6^{1}$	7	04					
11 N	2 W	36	U) 5	50	00	PEABODY CC	6	6402 P	586	189			577	63 109							
11 N	2 W	31	H1	51	O D	PEABODY CC	4	6479 P	690	189	6		540	108	2	0.0					
11 N	2 W	35	H 7	52	P T	OHLHN DOHE		6640 P	1058	189			595	69	7	00	676	12 CR	5	00	
11 N	4 H	34	E 8	152	D 0	HARVEL PRS		6362 P	700	190	90		390	246	2	00					
12 l	1 E	2	C5	44	S A	AS SUMPT:ON	A S	$6384 \quad p$	1069	175						78					
12 N	1 E	-2	0 3    7	69 120	SA	ASSUNPTION	HS	6438 P	1041	175						* 0					
12 N	1 E	12	E 7	120	CN	HART WALTR				188	39										
12 N	1 E	27	B 3	57	90	SULLIVN MA		6630 T	1041	198	5					* 0					
12 N	1 W	7	H1	80	D D	CYPRE\&S OG	7		175	188	38										
12 N	1. 4	20	H8	81	0 O	CYPRESS 0 G	8		217	188	38										
12 N	14	24	F4,	99	T O	OLSON DRGC			2720	188	41										
12 N	1 \%	28	E 1	40	$0 \cup$	LIMESTONE		6138 P		188											
12 N	$1:$	2.9	A 1	130	P N			6344 P		188											
12 N	1 H	30	A 8	B 3	D D	CYPRESS OG	5	6264 P	201	188	38										
12 N	1 \%	30	$G 7$	82	00	CYPRESS OG	6	$6198 \quad \mathrm{P}$	208	188	38										
12 N	1 \%	31	A 8	89	0 D	CYPRESS OG	9	63 6 $667 \quad P$	230	188	38 38										
12 N	1 : 1	31	C 1	85	D 0	CYPRESS OG	1.	6361 p	169	188	38										
12 N	17	31	04	86	D 0	CYPRESS 0 G	2	6322 P	159	188	38										
12 N	$1!$	32	B2	88	0 D	CYPRESS OG	3	$6415 \quad \mathrm{P}$	216	188	38										
12 N	$1: 17$	32	E 8	72	TD	BROWN LACY		6201 P	1457	188	38 38										
12 H	14	32	H 1	87	D 0	CYPRESS OG	4	6336 P	164	$188$	38										
12 N	1.4	34	G 8	45	0 U	LIMESTONE		6190 P		188											


Location of Hole				County	TypeofHole	Operator ${ }_{\text {coser }}$		Suriace		$\underset{\text { Total }}{\text { Depth }}$	Quad.	$\underset{\substack{\text { Year } \\ \text { Drilled }}}{\text { der }}$		Coal No. 6				Coal No. 5					
Tomundp	Rame	: ${ }^{\text {ectuon }}$							Depth					$\xrightarrow{\text { Altituda }}$ (Peet	Thick	knea	(ixect	$\underset{\substack{\text { Alprude } \\(\text { Prec })}}{\substack{\text { a }}}$	Trictmars				
											${ }_{(P r e t)}$	(Pee)			in.				Io.				
12 N	1 H	35	B 7		154	OU	COAL			6250	T.		188										
12 N	$1:$	35	07	56	P T	CHRI C OG			6287	P	1430	188	25		579	50							
12 N	20	1	A 5	100	00	PEABOOY CC	1	5795	P	+ 520	174	41		579	50	6	* 0						
12 N	21	1	E 5	101	00	PEABODY CC	2	5773	P	438	174	41		430	147	7	04						
12 N	$2 W$	2	A 6	108	00	PEABODY CC	3	6195	P	448	174	41		441	179	7	00						
12 N	2 m	3	A 7	107	00	PEABODY CC	4	6151	P	443	174	41		439	176	1	06						
12 N	2 m	6	A 2	42	00	CONSOLSTL	2	5680	P	387	174	17		380	188	4	04						
12 N	2	6	A 5	131	00	PEABISODY CC	10	6001	P	433	174	42		414	186	4	06						
12 N	$2:$	6	B 5	132	1. 0	PEABOOY CC	11	5695	P	382	174	42		468	20	7	06						
12 N	23	$\varepsilon$	D 4	129	D D	PEAB00Y CC	12	5626	$p$	360	174	42		350	213	7	08						
12 N	2*	6	E B	124	00	PEABOOY CC	13	6147	P	438	174	42		428	187	9	06						
12 N	2	8	C 3	43	4 D	CONSOL STL	1	5687	P	406	174	17		401	168	4	03						
12 N	2 y	27	${ }^{B} 1$	77	PT	ROGERS BRO		6567	P	3116	189	37	8	475	182	4	00						
12 N	20	29	C7	78	PT	MEYERS WM		6303	P	485	189	34	8			5	* 0						
12 N	2 H	29	05	70	P T	NOKOMISOC		6297	P	1122	189	35					* 0						
12 N	24	29	D8	79	PT	NOKOMJS OC		6249	P	1035	189	37					* 0						
12 N	2 W	31	E 8	116	TN	TRELEAVER		5250	Q		189	39											
$12 N$ 12 $12 N$	3 $\begin{aligned} & \text { b } \\ & 3\end{aligned}$	13	C 4	55	0 D	SULLIVN MA		6219	P	965	189	4					* 0						
12 N	3 W	34	C 0 0 5	56 7	P P T	PALHER   PALPIER   OGM		6236	P	1230	189						* 0						
13 N	1 E	7	A 3 F 7	75	TD	DUNBR WNGT		61.80	c	1329	175	40.		535	83	7							
13 N	1 E	9	F 7	112	T T	MARSCHL		6110	G	1225	175	41		508	103	4	00	544	67				
13 N	1 E	15	A 5	144	TS	BRIANS R		6160	G	1275	175	42								3	00		
13 N	1 Vi	6	A 2	16	00	BYRD WILEY	1	6259	P	506	175	12		496	130	7	01						
13 N	$1{ }^{17}$	10	A 4	95	TN	KLERBOLKER		5890	P	1185	175	39											
13 N	1 \%	12	F 1	17	D 0	BYRD WILEY	10	5865	P	495	175	12		471	116	7	09	490		4			
13 N	1 W	15	B 8	18	D 0	BYRD WILEy	3	5879	P	520	175	12		450	138	7	00	476	112		06		
13 N	1 \%	30	G 5	19	OD	CONSOL STL	2	5861	P	457	175	18		449	137	8	01						
13 N	117	32	F 8	20	0 D	TAYLR BYRD	5	5967	P	588	175	12		469	128	7	05						
13 N	17	34	04	21	0 D	CONSOL STL	1	6200	P	519	175	18		505	115	8	05						
13 N	1. ${ }^{1 /}$	35	F 1	22	D D	TAYLR BYRD	8	6084	P	964	175	12		534	74	6		557	51		3		
13 N	2 w	8	A 6	135	0 D	PEABODY CC	19	6077	c	444	174	42					* 0		51				
13 N	2 w	8	A 6	136	U	PEABODY CC	20	6100	c	450	174	42					* 0	440	170		10		
13 N	$2 W$	8	B6	137	01	PEABODY CC	21	6110	c	434.	174	42		425	186	7							
13 N	$2 \%$	10	D 1	122	0 N	PEABODY CC	31	6080	T		174												
13 N	2	10	03	23	00	BYRD WILEY	12	6082		548	174	12		466	142								
13 N	2 \%	10	03	98	0 S	PEABODY CC		6080	T		174	12		465	143	7	07	54.	64	2	08		
13 N	$2{ }^{2}$	13	04	24	00	BYRD WILEY	13	6186	P	950	174			473	146	7	01	563	56	2	04		
13 N	2 "	17	E 6	128	D 0	PEAB00Y CG	17	6093	P	435	174	42		425	184	8	00						
13 N	a 4	17	H6	134	00	PEABODY CC	18	6094	P	431	174	42		424	185		06						

CHRISTIAN


CHRISTIAN


FAYETTE


MACON


MONTGOMERY


MONTGOMERY


MONTGOMERY

Location of Hole				County Number	Type Hole	Operator ${ }^{\text {Opma }}$		Surface		(Total	Ouad.	Drear ${ }_{\text {Y }}^{\text {Yeal }}$		Coal No. 6				Coal Na. 5					
		Section						(Pepth	Alutude (Feret)					Thicksers		Puple		Thickness					
Towmbip	Hepra			(Pete)				Ft.	In.					P?	ta								
6 N	5 V	32	E 5		108	0 D	GULL\VN M A		3	6651	P	480	201	5		408	257	8	09				
8 N	5 W	32	H 1	193	P S	MYER 8 GRA		6584	P	700	201	38		372	286	5	00						
8 N	5 W	33	W1	104	00	MADISON CC	1	6451	C	400	201	21.		363	289								
9 N	1 W	2	A 2	63	D0	MERSHNETL	A 6	6504	Y	683	188	12		675	25 CB	7	05						
9 N	1 W	8	H6	64	D D	BROWNHH		6564	$Y$	666	203	12		659	3 CA	7	06						
9 N	1 w	15	A 4	207	CN						203												
9 N	2 W	+ 6	D 3	156	S A	HND ILLCC	12	6655 7040	Y		202			541	125	B	00						
9 N	$2 W$	10	G 6	301	PT	HOOVER		7040	$\underline{6}$	2598	202	41					04						
9 N	2 W	13	E8 8	58 59	D D	DERINGYCC	12	6641 6352	${ }_{C}^{C}$	631 524	202 202	6		623 506	129	7	08						
9 N	$2 W$	20	D 5	59	D D	PEABOOY CG		6	c		202	6											
9 N	2 \#	27	A 3	240	W W	BAKER EC		7026	?	158	202	38											
9 N	$2{ }^{2}$	29	A 5	60	00	HARGRAVE H	A 15	6350	Y	523	202	12		515	120	7	08						
9 N	$2 \%$	31	D 7	61	00	SETTY A	A 1	6216	$Y$	498	202	12		490	132		05						
9 N	2 W	35	A 2	62	00	DERING CC	17	6487 6524	C	615	202 189	6		608	41		- 0						
9 N	3 II	2	A 6	52	00	DERINGCC	7	6524	$Y$	617	189	6											
9 N	3 m	4	A 2	254	10	8 BOWNJ		6402	P	2106	202	39											
9 N	3 W	9	A 6	236	P T	MILLER ETL.		6280	H	975	203			460	188	8	0						
9 N	$3!$	14	A 5	53	0 D	DERING CC	10	6479	C	489	202	6		460	188	a	00						
9 N		1.6	G 7	165	P T	MILLER ETL		6640	H	1145	202	31			195								
9 N	3 w	17	G 1	166	PT	M ILLER ETL		6700	H	766	202	31		475	195	6	00						
9 N	3 H	19	D 5	239	5 D	TOPF ETAL		5820	C	1021	202	40											
9 N	$3 W$	23	A 8	208	PN	GULF REF		6586	P		302												
9 N	$3 W$	25	G88	5	D0	OERINGCC	15	6366 6559	Y	479 683	202 202			479	166	3	06						
9 N	3 W	27	H 5 C 5	54 56	100 00	JRVING COC	1	6559 5919	P	683 427	202 202	83		416	176	8	07						
9 N	3 H	28	C 5	56	00	Lumaghtcc	1	5919	Y	427	202												
9 N	3 H	28	C 6	57	D 0	COLP GENT		5952	P	700	202	5		414	181	1	06						
9 N	$3 \%$	28	C 7	206	P T	MURPHY OC		6110	P	1203	202	22											
9 N	4 W	4	A 3	195	PT	KESLJOS		6199	P	944	201	38					* 0						
9 N	4 W	4	H 2	45 183	PT	CENTRL OIL		6350 6497	Y	600	190						* 0						
9 N	4 H	5	A 3	183	P T	DOYLE NOEL		6497	P	885	201	31					-						
9 N	$4 W$	9	A 2	46	PS			6636	P	915 26	201		2	435	184	10	10 00						
9 N	4 H	13	A 2	234	T D	TOPF BLACK		6190	G	2160	202	40	2	435	184								
9 N	4	15	A 8	309	$1{ }^{1} \mathrm{~S}$	LACEY A M		6200 6295	T	644	202	42					* 0						
9 N	4	20	08	47	P T	OHIO OIL		6295 6020	P	1280	$\begin{aligned} & 201 \\ & 201 \end{aligned}$						* 0						
9 N	4 W	21		40	- N			6020															
9 N	4 H	21	G 2	48	PT			6275	P	632	201	7					-0						
9 N	$4{ }^{4}$	28	G 7	277	T0	BROWN HGR		6260	G	2011	201	41		410	257	10	+0 0						
9 N	4 4	31	A 6	194	PT	PORTETAL		6673	P	871	201	39		410	25								
9 N	4 W	31	A 6	187 50	PN $P T$	FARTHING		$\begin{aligned} & 6684 \\ & 5717 \end{aligned}$	$\begin{aligned} & \mathrm{P} \\ & \mathrm{P} \end{aligned}$	649	$\begin{aligned} & 201 \\ & 202 \end{aligned}$						* 0			-			
9 N	4 W	36	C 5	50	Pr					649													

MONTGOMERY

Lacation of Hole				County Namber	Type Hole	Operator $\quad$ Opr's		Surface Altitude		Total Dopth	Quad. Number	$\begin{gathered} \text { Year } \\ \text { Drilled } \end{gathered}$		Coal No. 6				Coal No. 5					
Tomereip	Reass	saetioe							Alerude					Thichoen		$\underset{\substack{\text { Depth } \\ \text { (Pett) }}}{ }$	Alpituse(\#eet)	Thickenes					
				(\%est)				PL 1	In.					Pt	In								
9 N	4 VI	36	04		49	P T	CENTRL011			5898	$Y$	940	$20 \%$	6		395	194	5	00				
9 N	5 W	7		311	PN	AYLWARD		6380	c		201	*		395	194								
9 N	5 w	9	03	255	T 0	BROWN		6355	P	665	201	40					* 0						
9 N	54	22	H4	256	TS	BROHN F		6650	G	338	201	39											
9 N	- 5 H	24	H2	39	P T	OHIO O1L		6554	P	1844	201	15					-0						
9 N	5 W	25	E 8	41	P T	SCHAFFER	1	5738	P	710	201	15					-0						
9 N	5 W	25	H6	196	0 J	LIMESTONE		5924	P		201												
9 N	54	25	14	230	P S	NELSON ETL		5750	$T$	840	201	11					- 0						
9 N	5 \%	29	C 3	432	00	LITCHFCC	3	6700	$Y$	811	201	95					* 0						
9 N	5 \%	32		231	D D	POST WW				636	201	94		419			3						
9 N	5 \%	32	F 1	163	S A	LJTCHFCC	A S	6839	$p$		201						* 0						
9 N	5 \%	32	G1	43	5 A	LITCHF CC	H 5	6889	P	700	201	95		414	275		3						
9 N	5 H'	33	C 8	44	00	OLD BEN	1	6874	P	604	201			414	273		6						
9 N	$5 \mathrm{H} \mathrm{\prime}$	33	G 8	203	CN			6821	P		201												
10 N	1 W	3	A 4	285	PN			6818	$P$		169												
10 N	1. W	5	E 4	13	00	PEABOOY CC	23	6724	$Y$	674	188	7		666	6	7	06						
10 N	2 W	8	C 3	14	D B	PEABOOY CC	22	6655	$Y$	728	188	7		718	58 CA	7	00						
10 N	1.4	10	G 8	178	T0	B IV ORDS MCD		7380	C	1610	18 B	38		738		5	00						
10 N	1 W	14	A 5	15	00	PEABODYCC	2	6597	$Y$	671	188			662	ZCR	8	02						
10 N	1 \%	16	D 5	222	T D	8 WORDS MCD		7410	G	1650	188	39											
10 N	17	17	F 5	16	0 O	HARGRAVE H				644	188	10	7	637		6	00						
10 N	17	22	G 8	17	0.0			6496	$Y$	651	188	8		643	7	7	09						
10 N	1 H	32	G 3	18	00	HARGRAVE H	5 A	6464	Y	65 B	188	12		650	4CA	6	01						
10 N	1 W	34	A 4	19	00	HARGRAVE H	34	6514	P	675	188	10		667	16 CR	7	00						
10 N	1 w	36	H6	20	0 D	HARGRAVE H	10 A	6341	Y	688	188	12		680	46 CR	7	08						
10 N	2 W	2	H 5	22	D 0	PEABODY CC		6564	$Y$	623	189	5		604	52	8	06						
10 N	2 H	3	A 4	300	T D	BNDM TREEG		6810	C	3227	189	41		609	72	8	00	690	9 CH	6	00		
10 N	2	3	G 1	21	$P T$	LESCHN OIL		6500	T	1300	189	14	4	598	52	10	00	680	3 OCA	5	00		
10 N	$2 w$	3	H 1	24	00	PEABODYCC	7	6532	Y	586	189			577	76	7	06						
10 N	2 w	6	H 1	25	D D	CONSOL IND	1.	6447	C	710	189	6					- 0						
10 N	3\%	10	63	26	S A	IND ILL CC	1.0	6666	$\mathbf{Y}$	826	189				41								
10 N	2 w	14	H 1	27	D D	BOLNKEIST	1	6577	$\gamma$	667	189	4	3	658		$8$	$02$						
10 N	$3 \%$	15	E 3	214	DN	PEABODY CC		6710	P		189		3										
10 N	2 w	20	02	297	1 D	DETRICK HC		6700	c	2528	189	41		61.8	5 \%	12	00						
10 N	2w	22	C2	28	D D	NOKOMIS CC		6636	$Y$	670	189	41		656	8	8	02	-					
10 N	2 y	23	H5	288	W N	HARGRAVE		6667	P		189	12											
10 N	2 W	24	G 8	289	${ }_{\mathrm{N}}^{\mathrm{N}}$						189												
10 N	2 w	27	$F 7$	153	SH	NOKOM18 CC		6633	$Y$		189				25	8	01						
10 N	2 W	30	D 4	29	${ }_{6} \square_{5}{ }^{\text {d }}$	PEABODY CC	6	6678	Y	594	189	6		587	81	6	00						
10 N	2 V	32	F8	23	S A	IND ILLCC	14	6654	$\gamma$	594	189	6		577	81								

MONTGOMERY

Location of Hole				County Number	Type   Hole	Operstor $\quad$ Onink		SurfaceAltitudo	$\underset{\text { Toptal }}{\text { Depth }}$	Quad.	$\underset{\text { Year }}{\text { Drilled }}$	需	Coal No. 6				Coal No. 5				
												$\underset{\substack{\text { Depeth } \\ \text { (Prex) }}}{ }$	${ }_{\text {(Fati) }}$	Thickne		${ }_{\substack{\text { nepphe } \\ \text { (Fes) }}}$	Nated	Thictase			
Comentio	Rans*	sectoo												P.	10			n. 1	ta		
10 N	$2 \geqslant$	32	F8	30 23	D D	PEABODY CC	2		$6654 \quad \mathrm{Y}$	583 675	189			574	91		00				
10 N	2 W	34	F 3	223 31	P T	CASSENS		7280	2675	189	39		663	65	1	00					
10 N	34	13	G 1	31	0 D	DERINGCC	3	6486	727	189	6					- 0					
10 N	3 H	26	G 2	32 224	D D	DERING CC	5	$6499 \quad Y$	662 2070	189	6					* 0					
10 N	3 F	28	A 4	224	T D	BROWN JACK		6460 G	2070	189	40					* 0					
10 N	$41 \%$	7	B 8	257	PT	GULF REF		6310 G	635	190	40										
10 N	4 Hi	8	C 8	159	S A	RAYMOND CC		6426 P		190	96		434	209	3	03					
10 N	$4 \%$	18	A ${ }^{6}$	278	CH	HARNER ETL		6220 G	604	190	40										
10 N	4 II	18	66	33 258	CH	CONSOL STL		6300	$\begin{array}{r}444 \\ \hline\end{array}$	190			439	191	4	02					
10 N	4 H	19	A 6	258	PS	HENDERSON		6140 G	1005	190	40										
10 N	4 W	19	A 8	302	PT	OORTOMEDGE		6430 G	628	190	41		405	238	3	00					
10 N	4 W	19	A 8	225	PT	BURROUGH8		$6420 \quad \mathrm{G}$	647	190	40										
10 N	4 W	19	D 5	279	T D	SNIDER GWN		$6431 \quad \mathrm{P}$	662	190	41										
10 N	$4 W$	19	H 7	292	T 0	REED 0 A		6400	850	190	41										
10 N	4 W	29	C 5	200	PS	MARHILL		6468 P	527	190	39										
10 N	4 W	30	F 8	227	CH	WOOLSEY MW		6420 c	575	190	40		405	237	2	00					
10 N	$4 \%$	30	${ }^{H} \mathrm{~B}$	226	PT	HENDERSON		6340 c	642	190	40		401	233	4	00					
10 N	4 H	32	D 3	303	T N	VENTURELLI		6140 G		190	41										
10 N	4 V	32	D 3	34 208	PT			$6144 \quad \mathrm{P}$	815	190			447	167	3	00					
10 N	5 W	1	B2	228	T0	GULF REF		6250 G	2523	190	40										
10 N	517	5	D 5	283	PT	BRANSON		6310 G	658	190	41										
10 N	5 H	6	${ }^{+} 7$	260	TS	MILLER		6290 G	693	190	40										
10 N	5 W	12	B 2	229	PT	GULF REF		6340 G	1000	190	40					* 0					
10 N	$5 \%$	1.3	B 1	280	T D	DORTOMEDGE		6235 P	670	190	41										
10 N	51	24	A 1	261	PT	OORTOMEDGE		6449 P	645	190	40		425	220	5	00					
10 N	54	24	B 4	262	10	SCHERRER		6430 G	686	190	40										
10 N	511	24	H3	281	TD	CASSONJ		6438 P	648	190	41										
10 N	5 w	25	G1.	264	TD	DORTOMEDGE		6360 G	660	190	40					- 0					
10 N	$5 \%$	30	08	35	D 0	CRAWFORD	13	$6495 \quad p$	450	190	3 3					- 3					
10 N	$5 \geqslant$	31	E 8	36	D D	LOWRY		6542 P	413	190	3		391	263		3					
11 N	4 il	5	A 1	11	0 D	HIRSCHG	2	6507 c	382	190			370	281	8	01					
11 N	4 V	19	E 1	12	00	HIRSCH G	3	6514 c	391	190		3	381	270	6	01					
11 N	4 W	33	C 2	3.07	0 N	HARVEL PRO		6347 P		190											
11 N	5 W	1	A 1	${ }^{6}$	0 D	HIRSCH G	1	6508 C	386	190			375 371	276 260	8	07 06					
11 N	5 w	4	G 4	151	SA	FARMRSVCM	1	6307 p		190		3	371	260	8	06					
11 N	5 il	10	H5	7	D 0	HIRSCH G	9	6529 c	385	190			375	278	8	04					
11 N	5 W	14	08	8	00	HIRSCH G	10	6543 c	362	190			350 370	304 266	8	02 07					
11 N	5 \%	22	B8	$6^{9}$	00	WILMSTAR	7	6360 c	380	190	2				6	00					
11 N	5 W	29	A 6	265	T D	MCFARLAND		635 B P	570	190	40		370 380	2666 254	6 5	00	$\begin{array}{r} 405 \\ 430 \end{array}$	$214$	9	$12$	
11 N	5 W	29	A 6	267	PT	EWINGETAL		6340 P	580	190	40		380	254	5	00					



SANGAMON



SHELBY

1.


[^4]


[^0]:    * References are given in bibliography, page 18.

[^1]:    * Personal comrunication from Dr. J. J. Rutledge of the Maryland Bureau of Mines. ** Exact equivalence of this bed and the Irivoli coal bed of western Ilinnois has not been definitely established.

[^2]:    * Confusion and uncertainty exists concerning the correct identification and correlation of the Carlinville and Shoal Creek limestonea. 4/Their uage in this report, as in Circular No. 88, 12/follows that of Kay and Lee 6-9/ not that of later authors.

[^3]:    **For further information see "Subsurface geology of the Chester Series in Illinois," by L. E. Workmen, Illinois Geol. Survey Rept. Inv. No. 61, fig. 1, p. 210 (Areal geologic map of Chester seriea below Pennsylvanian system); fig. 3, pp. 220-221 (Isopach map of Chester geries below Pennaylvanian aystem); "Subsurface geology of Iown (Lower Missiasippian) series in Illinois," by J. Norman Payne, same report, fig. 3, pp. 234-235 (Inopach map of Iowa (Lower Misaiseippian) series).

[^4]:    
    
    , 1 a. ese

