

A Framework for Implementing Iterative Algorithms on Distributed Systems

Vikram Mudaliar

Senior Thesis in Computer Engineering

University of Illinois Urbana Champaign

mudalia2@illinois.edu

Spring 2017

Advisor: Nitin Vaidya

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158322017?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ii

Abstract
In this thesis, I build a framework for implementing iterative algorithms by abstracting

the code for node communication. This thesis explains the building of said framework

using a distributed algorithm and introduces the tools and methods used. I first

implemented an algorithm and tested it out on a testbed of 15 Raspberry pi’s. After the

desired functionality was met, I then went on to proceed with abstracting the code so

that similar iterative algorithms could reuse the parts of the code that dealt with inter-

node communication and communication link setup. This	work	is	funded	in	part	by	the	

National	Science	Foundation

Subject Keywords: Optimization, multi-agent systems, fault-tolerance, communication

failures

 iii

Acknowledgments
I would like to thank all those people who have provided their valuable time and

generous help in helping me finish my senior thesis. My deepest gratitude is to my

adviser, Prof. Nitin Vaidya. I have been fortunate to have an adviser who gave me

constant guidance and resources during the entirety of my research experience. His

elucidation of tough subject matter at different stages of my research helped me finish

this thesis. I would specially like to thank my research partner, Jihui Yang, for his

expertise and help. He was the ideal partner and helped me understand the convoluted

aspects of socket programming with ease. I am deeply grateful to him for pushing me

into trying out new aspects of programming; I am a significantly better programmer

because of it. His company throughout the project was cherished and memorable.

 iv

Table of Contents
1. Introduction 1

2. Previous Work 2

3. Implementation 3

3.1. Neighbor_list.txt 5

3.2. Comm_socket.py 6

3.3. Iterative_algo.py 7

3.4. Upload.py 9

3.5. Run.py 10

3.6. Testbed 11

4. Conclusion 12

References 13

 1

1.Introduction
In the research area of distributed systems, most of the time, algorithms are specifically

developed to determine the behavior of a node - an independent unit that processes

work - within a network of such nodes. These nodes are only aware of properties

pertaining to itself and its neighbors. Each node has the ability to communicate with its

neighbors through some form of message passing system (i.e. broadcast or unicast).

Therefore, consider a set of interconnected nodes with some initial value such that after

running the algorithm for several rounds, they all are left with the same value.

Algorithms that execute certain blocks of code repeatedly are called iterative algorithms.

Also consensus is defined as when each node possessing an initial value, follows a

distributed strategy to agree on the same value by calculating some function of these

initial values. In this thesis we use iterative algorithms to obtain average consensus

among the nodes. The purpose of this project is to build and study the behavior of these

algorithms, such as those described in [1-5].

The goal of the thesis was to quicken the setup of a network of nodes to study how an

algorithm behaves. Often, valuable time is spent on setting up the testbed to run the

algorithm on and also finding a means for communication between them. Cutting down

on this time, we can help to get to the actual algorithm testing stage much quicker. This

framework provides a way for the user to quicken development of such algorithms by

abstracting the communication block of the code and testing the algorithm on a network

of nodes by remotely uploading the data.

We implement the program in Python for its general ease and use and abstraction. In

the interest of speed and minimizing communication overhead, a shared memory

approach was chosen to pass messages between the different threads that represented

individual nodes. For the nodes themselves we use Raspberry pi’s with a 150 Mbps

wireless USB network adapter TL-WN727N.

 2

2.Previous Work

In order to further improve the setup time of iterative algorithms, there has been quite a

lot of work in the research community. A system [6] to simulate a theoretical network of

nodes to study how an algorithm behaves was developed. Real-world constraints like

network delay and faulty nodes were not a concern for said project. Therefore, to be

more real-world friendly we build upon this idea by configuring a testbed and testing

different topological scenarios. As far as consensus (and average consensus) problems

go, it has received extensive notice from the research community. The applicability to

topics such as modeling of flocking behavior in biological, multi-agent systems, and

physical systems [1], [2] makes it an extensively researched topic.

 3

3. Implementation

In this thesis I implement the algorithm described in [5] to test out the framework. As

described in there, the algorithm helps to address the problem of achieving average

consensus over lossy links. By average consensus, we mean to say that each node will

end up with a value which is the average of the all the initial node values. By lossy links,

we mean that communication channels between the nodes might be prone to packet

loss. We achieve this lossy communication by using broadcast. In Figure 1, we can see

the general topology of the testbed. The arrows represent the direction of

communication; i.e. a recipient arrow means that a node can only receive information

along those channels. Thus, we can see that every node can only send/receive

information to/from one other adjacent neighbor node. Each node also receives data

from the host. Thus, we simulate topological constraints through this cyclic nature of

communication, thereby implementing a ring based routing system between the

Raspberry pi’s using a neighbor list.

 Figure 1. High Level Network Topology

 4

Figure 2 shows the sub files present in each of the node and the host. We split up the

implementation on the node side into 3 files. Neighbor_list.txt contains the neighbor list

of each node. Comm_socket.py consists of the socket programming and node

communication methods and finally Iterative_algo.py consists of the iterative algorithm

we are implementing. On the host side, we have two files Upload.py uploads the files

remotely to the nodes and compiles them inline. Run.py sends the start signal to begin

the algorithm.

 Figure 2. Code components of each entity

 5

3.1 Neighbor_list.txt
This file consists basis for the ring based routing algorithm to work. Essentially, this file

governs which neighbors to talk to and which neighbors to listen to. In Figure 3, we

have the list for node with IP address 192.168.12.1. There is an oddity in the fact that

the node itself appears in both categories, but this is due to the specificities of the

algorithm [5] we are implementing.

 Figure 3. Neighbor_list.txt

In our setup we utilize a ring based network topology. However, since we have a

dedicated file to specify whom to receive/send from, in theory any network topology can

be obtained by changing the corresponding IP addresses in this file. For example, if I

want to recreate a bus topology we would use the host as the common line of

communication between the nodes and each node can only send/receive from the host.

 6

3.2 Comm_socket.py
This file contains most of the abstractions we have built in the framework. It can be

imported in order to achieve broadcast communication between two nodes. All the user

has to do is to call broadcastInit(port) and specify the IP address of the node he wants

to send the information to. The file handles all the socket programming instructions such

as opening, closing and specifying the type of transmission between sockets.

 Figure 4.Comm_socket.pyt

3.3 Iterative_algo.py

 7

This file consists of the bulk of the algorithm code to be implemented. This would be the

file that the user modifies to implement the core functionality of the iterative steps in the

algorithm. Figure 5 shows implementation of the algorithm stated in [5].
broadcastReceive(port) is the function through which data is received by a node

broadcastSend(port) is the function that calculates the new ‘node value’ by applying some

function (i.e. average in our implementation ‘line 74&75’) on the initial values and transmits this

value to other nodes. We also specify how many number of rounds the algorithm should run for

in this function.

 Figure 5. iterative_algo.pyt

 8

 Figure 5. continued

 9

3.4 Upload.py
While developing one of the major obstacles encountered was to update the recent

version of the code on the different nodes in the network. This process can become

very tedious indeed because manually removing the SD-card and updating the recent

versions on the Raspberry pi’s is not the most optimized solution of doing it. Therefore

Upload.py helps us to do this remotely from the host computer. Because Python does

not need to compiled before it runs, we send an in-command line statement to run the

file. Thereby this greatly reduces the development time and helps achieve quick code

revisions on all nodes.

 Figure 6. Upload.py

 10

3.5 Run.py
The second of the host files, Figure 7. Run.py is used to remotely activate the algorithm

on the testbed. Due to the iterative nature of the algorithms, it is a necessity that all of

the nodes begin the execution of the code at roughly the same time so as to not miss a

round of computation. During the development process we observed that it was very

hard to get this timing right, it was practically impossible to do so when we have more

than 3 nodes. Therefore, in order to get around this obstacle, the nodes now await a

execution signal from the host before starting the algorithm. Run.py sends this

execution signal across broadband to all the nodes on the port (8888 in our case).

 Figure 7. Run.py

 11

3.6 Testbed
In Figure 8 we see the setup of the testbed. The white boxes are housings for the

Raspberry Pi’s. They have a TpLink TL-WN727N network adapter attached via USB.

For the purpose of user interface we have also connected keyboards and monitors. The

rightmost node is always marked 1 and the convention observed is incrementation in

the anticlockwise direction.

 Figure 8. Testbed

 12

4.Conclusion
During this thesis I learned about setting up an ad-hoc network. Then using this network

configuration, I learned to send data packets between two computers using Unicast. I

then extended the functionality to Broadcast. Using Broadcast, I implemented the

average consensus algorithm to over lossy links. Once we got the algorithm to work

between two computers, I expanded the testbed onto 15 Raspberry pi’s. Finally, in order

to simulate topological constraints, I implemented a ring based routing algorithm in

between the pi’s using a neighbor list. In order to make usability easier, a Python script

was developed to remotely upload the files through broadcast onto the testbed. Then

another script was run to simultaneously run the algorithm on the nodes. In the future, if

given the opportunity, I would like to further extend the project by display the different

statuses of the nodes on the main host computer. Also the nodes could return the data

obtained through the iterations back to the host computer so that it would be easier for

somebody to evaluate the test results.

 13

References
[1] Bernadette Charron-Bost, Matthias Függer, Thomas Nowak. Approximate

Consensus in Highly Dynamic Networks: The Role of Averaging Algorithms,

arXiv:1408.0620.

[2] John Duchi, Alekh Agarwal, Martin Wainwright. Dual Averaging for Distributed

Optimization: Convergence Analysis and Network Scaling, arXiv:1005.2012.

[3] Lili Su, Nitin Vaidya. Fault-Tolerant Multi-Agent Optimization: Part III,

arXiv:1509.01864.

[4] Lili Su, Nitin H. Vaidya. Fault-Tolerant Distributed Optimization (Part IV):

Constrained Optimization with Arbitrary Directed Networks, arXiv:1511.01821.

[5] C. N. Hadjicostis, A. D. Dominguez-Garcia and N. H. Vaidya, "Resilient Average

Consensus in the Presence of Heterogeneous Packet Dropping Links",

Disc.ece.illinois.edu, 2012. [Online]. Available:

http://disc.ece.illinois.edu/publications.php. [Accessed: 20- Apr- 2017].

[6] S. Peter, "Undergrad Thesis - A system to simulate distributed algorithms (Java

Application)", GitHub, 2016. [Online]. Available:

https://github.com/speter52/GraphSim. [Accessed: 20- Apr- 2017].

